WO2021246029A1 - Blower - Google Patents

Blower Download PDF

Info

Publication number
WO2021246029A1
WO2021246029A1 PCT/JP2021/011827 JP2021011827W WO2021246029A1 WO 2021246029 A1 WO2021246029 A1 WO 2021246029A1 JP 2021011827 W JP2021011827 W JP 2021011827W WO 2021246029 A1 WO2021246029 A1 WO 2021246029A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
shaft
sealing
gas passage
blower
Prior art date
Application number
PCT/JP2021/011827
Other languages
French (fr)
Japanese (ja)
Inventor
和夫 坂田
薫 奥野
龍男 木下
Original Assignee
株式会社大阪送風機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪送風機製作所 filed Critical 株式会社大阪送風機製作所
Priority to KR1020217035476A priority Critical patent/KR102653737B1/en
Priority to JP2021576138A priority patent/JP7319636B2/en
Priority to CN202180003259.XA priority patent/CN114207287B/en
Publication of WO2021246029A1 publication Critical patent/WO2021246029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • F04D25/045Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3452Pressing means the pressing force resulting from the action of a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Definitions

  • the present invention relates to a blower, particularly to a blower suitable for an exhaust gas recirculation system of a large engine.
  • a recirculation blower that boosts the exhaust gas from the system that outputs power and electric power and recirculates it to the system, and the gas supplied to the system (low pressure recirculation).
  • Auxiliary blowers that boost pressure (including gas) are known.
  • EGR systems exhaust gas recirculation systems
  • NOx exhaust gas recirculation
  • the blower is described in, for example, Patent Document 1 and Patent Document 2.
  • Patent Document 3 describes that the recirculated exhaust gas flow rate can be controlled by its own blower rotation speed and is equipped with a rotation sensor for measuring the blower rotation speed.
  • Patent Document 4 a centrifugal blower in which an impeller and a rotating shaft are integrally molded with a resin material and housed in a housing is provided.
  • a first and second seal rings made of a fluororesin having an inner peripheral surface having substantially the same diameter are provided, and a seal air is supplied to the housing internal space between the two seal rings. ..
  • the EGR gas that is boosted in the impeller casing and should be recirculated to the engine is suppressed from entering the internal space side of the housing through the shaft hole of the impeller rotation shaft. Therefore, if the pressure of the seal air supplied to the impeller side space inside the housing is set sufficiently higher than the inside of the impeller casing, the amount of seal air leaking from the impeller side space to the motor side space side communicating with the outside of the housing (atmosphere side). There was a problem that the number increased.
  • the conventional blower has a problem that the power consumption of the drive motor for driving the seal air supply source increases, and a problem that it is difficult to adopt it for the EGR blower of the marine engine installed in the ship. Was there.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a blower capable of suppressing the power consumption of a seal air supply source, and also to provide a marine engine. It is an object of the present invention to provide a blower suitable for an EGR blower.
  • the blower according to the present invention has a casing in which a gas passage and a shaft hole communicating with the gas passage are formed, and a rotary shaft rotatably inserted into the shaft hole of the casing.
  • a blower provided with an impeller supported by the rotating shaft and housed in the casing, and a sealing device for sealing the shaft hole, wherein the sealing device is provided in the vicinity of the shaft hole.
  • An annular shaft seal box having an inner side wall portion, and a higher pressure seal air than the inside of the gas passage are introduced into the shaft seal box, and the first and second seal rings are closely attached to the pair of inner side wall portions.
  • the static pressure gas sealing means introduces the sealing air having a higher pressure than that in the gas passage into the main sealing chamber formed between the first and second sealing rings, so that the sealing air in the blower is introduced. Exhaust gas is surely prevented from leaking from the gas passage side to the atmosphere side.
  • the front-rear differential pressure of the second seal ring is suppressed by the third seal ring of the backup sealing means, the front-rear differential pressure of the third seal ring is also suppressed, so that the front-rear differential pressure of each seal ring is adjusted. It is possible to effectively reduce the leakage flow rate of the sealed air to the atmosphere side.
  • the casing is formed with a gas passage into which a part of the exhaust gas of the engine can be introduced and a shaft hole communicating with the gas passage, and the impeller is the gas.
  • the exhaust gas introduced into the passage and boosted can be recirculated to the engine.
  • At least the second seal ring on the atmosphere side is composed of a plurality of arcuate segment seal members adjacent to each other in the circumferential direction.
  • a first facing surface in which the plurality of segment seal members spread in the axial and radial directions and face each other in the circumferential direction, and a second facing surface in which the plurality of segment seal members spread in the circumferential direction and the radial direction and face each other in the axial direction. Can be configured to have.
  • the minute gap shape between the inner peripheral surface shape and the end shape of the plurality of segment seal members can be appropriately set, and the flow rate of the seal air passing through the minute gap of the second seal ring and the second seal air flow rate can be set. It is possible to stably secure the front-rear differential pressure of the seal ring of 2.
  • the backup sealing means attaches the third seal ring to the outside in the radial direction and in the axial direction on the outward side in the axial direction away from the gas passage with respect to the shaft sealing box.
  • the configuration may further include an external annular member that covers from the outside and an elastic member that urges the third seal ring in the axial direction of the rotating shaft so as to be in close contact with the external annular member. can.
  • the auxiliary seal chamber can be easily formed by the third seal ring and the external annular member, and the stable seal posture of the third seal ring can be set, so that the seal air during operation leaks to the atmosphere side. It can be reduced more effectively.
  • a preferred embodiment of the present invention may be a configuration in which the external annular member is fixed to the shaft sealing box on the outward side in the axial direction away from the gas passage.
  • the third seal ring and the external annular member can be easily added to the existing blower.
  • a motor for rotationally driving the rotating shaft is provided, and the casing and the motor can be integrally connected to each other.
  • a compact blower can be manufactured.
  • a preferred embodiment of the present invention is an annular plate-shaped swing having a diameter larger than the inner peripheral diameter of the external annular member on the rotating shaft on the axially outer side of the external annular member.
  • the board may be arranged.
  • a preferred embodiment of the present invention is a casing in which a gas passage into which a part of the exhaust gas of a marine engine can be introduced and a shaft hole communicating with the gas passage are formed, and the shaft hole of the casing. Attached to a blower equipped with a rotary shaft rotatably inserted and an impeller supported by the rotary shaft and housed in the casing and introduced into the gas passage to recirculate the boosted EGR gas to the engine.
  • An EGR blower sealing device that seals the shaft hole, the annular first and second sealing rings surrounding the rotating shaft in the vicinity of the shaft hole, and the first and second sealing rings.
  • An annular shaft sealing box having an annular wall portion surrounding the annular wall portion and a pair of inner side wall portions integrally coupled to the annular wall portion on both sides in the axial direction of the rotating shaft, and the inside of the shaft sealing box in the gas passage or more.
  • a high-pressure seal air is introduced into the main seal chamber, and the first and second seal rings are brought into close contact with the pair of inner side walls to form a main seal chamber to prevent the exhaust gas from leaking from the gas passage to the atmosphere side.
  • It has a static pressure gas sealing means and an annular third sealing ring that surrounds the rotating shaft on the outward side in the axial direction away from the gas passage with respect to the shaft sealing box, from the main sealing chamber to the atmosphere side.
  • the configuration may include a backup sealing means for forming an auxiliary sealing chamber that limits the leakage of sealing air.
  • the leakage of the exhaust gas in the blower from the gas passage side to the atmosphere side in the ship can be effectively suppressed by the pressurized seal air of the static pressure gas sealing means, and the amount of the seal air leaking to the atmosphere side can be effectively suppressed. It can be sufficiently reduced by the cooperation of the static pressure gas sealing means and the backup sealing means.
  • the present invention it is possible to provide a blower capable of suppressing the power consumption of the seal air supply source, and at the same time, it is possible to provide a blower suitable for an EGR blower of a marine engine.
  • FIG. 3 is an enlarged cross-sectional view of a portion near a shaft hole of an EGR blower according to another embodiment of the present invention.
  • FIG. 1 to 4B show a case where the blower according to the embodiment of the present invention is provided as an EGR blower in a power system equipped with an EGR device.
  • the power system 100 of the present embodiment includes an engine 110, which is a multi-cylinder large two-stroke diesel engine, a turbocharger 120, and an EGR device 130. All are designed to be installed in the engine room of a ship (not shown).
  • the engine 110 is, for example, an electronically controlled high-output engine that can be used as the main engine of an ocean-going vessel.
  • a fuel supply unit 102, an air supply receiver 103, an exhaust receiver 104, and the like are mounted on a multi-cylinder engine main body 101. Has the same configuration. Although it is intended for ships in this embodiment, the engine 110 can also be used as a stationary engine for operating a generator of a power plant, for example, when it is not for ships.
  • the multi-cylinder engine body 101 is provided with a plurality of cylinders 111.
  • Each of these plurality of cylinders 111 is connected to the air supply receiver 103 via the scavenging port 113, and can be exhausted into the exhaust receiver 104 when the corresponding exhaust valve 114 is opened.
  • the combustion gas expands and the piston 112 is driven.
  • exhaust gas is generated. Then, the exhaust gas from each cylinder 111 is intermittently sent out into the exhaust receiver 104.
  • the fuel supply unit 102 pumps and pressurizes the marine diesel fuel purified by the fuel purifier, and when the fuel valve for each cylinder opens at a predetermined timing, the fuel is injected and supplied into each cylinder 111 of the engine body 101. You can do it.
  • the air supply receiver 103 is a compressed air reservoir (scavenging receiver) for performing a scavenging action of filling the combustion gas in each cylinder 111 of the engine body 101 with new air while discharging the combustion gas
  • the exhaust receiver 104 is an engine. It is an exhaust reservoir that can supply most of the exhaust gas from each cylinder of the main body 101 to the turbocharger 120 side while accumulating and storing it.
  • the turbocharger 120 includes a turbine 121 driven by exhaust gas supplied from the exhaust receiver 104 side, and a compressor 122 that introduces and compresses outside air when driven by the turbine 121 and supplies it into the air supply receiver 103. Have.
  • the EGR device 130 takes in a part of the exhaust gas from the exhaust receiver 104 into the recirculation path Le to the air supply receiver 103 side to purify the wet scrubber unit 131, and the exhaust gas purified by the scrubber unit 131 (hereinafter referred to as “exhaust gas”).
  • the EGR cooler 132 that cools the EGR gas) by heat exchange and the EGR gas cooled by the EGR cooler 132 can be supplied into the supercharging passage Lc from the compressor 122 of the turbocharger 120 to the air supply receiver 103. It is configured to include an EGR blower 133 that boosts the pressure to a pressure level.
  • the wet scrubber unit 131 sprays, for example, droplets capable of neutralizing sulfur oxides in the exhaust gas taken into the recirculation path Le, and absorbs soot particles in the exhaust gas and the recirculation path. Consists of a scrubber that can make the size of the droplets suitable for the primary cooling of the recirculated exhaust gas in Le, and a mist catcher that collects the droplets after purification of the recirculated exhaust gas on the inner bottom side of the scrubber. Has been done.
  • the EGR cooler 132 is a heat exchanger having an EGR gas passage through which the purified and primary cooled EGR gas passes through the scrubber unit 131 and a cooling water passage through which cooling water from the outside is passed. It is composed of a heat exchanger capable of cooling (secondary cooling) the EGR gas by heat exchange between fluids passing through both passages.
  • the EGR blower 133 is rotatable in the casing 10 in which the gas passage 11 into which the EGR gas that has passed through the EGR cooler 132 is introduced and the shaft hole 12 communicating with the gas passage 11 are formed, and the shaft hole 12 of the casing 10. It includes a rotating shaft 21 that has been inserted, an impeller 22 that is supported by the rotating shaft 21 and housed in a casing 10, and a sealing device 30 that seals the shaft hole 12.
  • a motor 70 having an output shaft 71 for rotationally driving the rotary shaft 21 on the outer surface side (right side in FIG. 1) separated from the gas passage 11 of the casing 10 with respect to the shaft seal box 33. Is placed.
  • the gas passage 11 of the casing 10 opens to a large diameter on the left end side in FIG. 1 which is the outer end side of the casing 10, while the right side (inner side) in the same figure. It has an introduction passage 11a that extends inward in the axial direction of the rotation shaft 21 and has a diameter reduced inward, and a scroll passage 11b that surrounds the inner end of the introduction passage 11a.
  • the casing 10 has an introduction port portion 11c that opens to a large diameter on the outer end side of the introduction passage 11a, and an outlet portion 11d that projects the downstream end of the scroll passage 11b to the outward side in the radial direction from the introduction port portion 11c. And have.
  • the casing 10 is a motor that forms the gas passage 11 and forms a shaft hole 12 at the center of the main body 13 that opens the motor mounting surface side and a substantially disk shape that closes the motor mounting surface side of the main body 13. It is composed of a mounting plate 14 and a plurality of bolts 15 that detachably fix the motor mounting plate 14 to the main body 13.
  • a mounting bracket 73 for mounting the motor 70 is mounted on the motor mounting plate 14 of the casing 10, and a support bracket 74 for supporting the motor 70 from below is mounted on the back side of the casing 10. Then, the casing 10 and the case 72 of the motor 70 are integrally connected via the mounting bracket 73 and the support bracket 74.
  • the rotary shaft 21 is a cylindrical body with a lid that can be connected to the output shaft 71 of the motor 70 so as to rotate integrally, and is fitted to the output shaft 71 of the motor 70 with a predetermined fitting pressure.
  • An annular spacer 25 that is interposed between the cylindrical body 23 and the lid 24 so that the substantially cylindrical body 23 and the lid body 24 can be positioned at predetermined positions in the axial direction with respect to the output shaft 71 of the motor 70, and the substantially cylindrical body 23 with respect to the output shaft 71 of the motor 70. It has a bolt 26 for integrally fastening and fixing the lid 24 and the spacer 25.
  • the impeller 22 supported by the rotating shaft 21 in the casing 10 has an inlet portion 22a close to the inner end portion of the introduction passage 11a in the gas passage 11 and an outlet portion that opens in the scroll passage 11b in the radial direction. It has a 22b and a plurality of blade portions 22c extending from the inlet portion 22a to the outlet portion 22b and separated from each other at equal angular intervals.
  • the impeller 22 constitutes a centrifugal blower together with the casing 10 and the rotating shaft 21, and when the impeller 22 is rotationally driven by the motor 70 via the rotating shaft 21, the EGR gas introduced into the gas passage 11 of the casing 10 is used in the engine 110. The pressure is increased so that it can be recirculated.
  • the sealing device 30 is interposed between the casing 10 and the rotating shaft 21 and closes the gap G around the rotating shaft 21 in the shaft hole 12.
  • the sealing device 30 comprises an annular shaft 31 and 32 that surrounds the rotating shaft 21 near one end of the shaft hole 12 and an annular shaft that houses the first and second sealing rings 31 and 32. It is configured to include the sealing box 33. Further, as shown in FIGS. 2 and 3, the sealing device 30 includes a static pressure gas sealing means 40 and a backup sealing means 60.
  • the shaft seal box 33 is substantially orthogonal to the annular wall portion 33a having an annular inner peripheral surface shape surrounding the first and second seal rings 31 and 32 and the annular wall portion 33a on both sides in the axial direction of the rotating shaft 21. It has a pair of inner side wall portions 33b and 33c that are integrally connected so as to be used.
  • the shaft sealing box 33 forms a first annular body 34 fixed around the shaft hole 12 of the casing 10 by a plurality of bolts 33g on the outer surface side, and an inner side wall portion 33b on one side of the pair.
  • the second annular body 35 bolted to the inner surface side (left end surface side in FIG. 2) of the first annular body 34 and the inner side of one of the pair while being integrally formed on the outer surface side of the first annular body 34. It is composed of a third annular body 36 that forms an inner side wall portion 33c on one side so as to face the wall portion 33b.
  • a plurality of compression coil springs 41 are contracted at equal intervals (equal angular intervals) in the circumferential direction between the first and second seal rings 31 and 32 in the shaft sealing box 33.
  • an annular main seal chamber 42 is formed in the shaft seal box 33. is doing.
  • high-pressure seal air is introduced from the seal air (air for sealing) supply circuit 45 shown in FIG. 3 into the gas passage 11 and the shaft hole 12 of the casing 10. The leakage of exhaust gas from the gas passage 11 in the casing 10 to the atmosphere side can be suppressed.
  • the seal air supply circuit 45 includes a check valve 46 and a pressure gauge (not shown) on the air supply passage 45h communicating with the seal air passage 34h formed in the first annular body 34 of the shaft seal box 33. It is composed of a pressure control unit 47 including a flow meter, a relief valve, a filter and the like, an on-off valve 48, and an air supply source 49 such as an air pump.
  • a pressure control unit 47 including a flow meter, a relief valve, a filter and the like, an on-off valve 48, and an air supply source 49 such as an air pump.
  • the pressure regulating unit 47 and the on-off valve 48 are controlled according to, for example, the rotation speed [rpm] of the engine 110, the load, the pressure in the gas passage 11, and the seal air supply circuit 45.
  • the supply pressure of the seal air is always higher than the atmospheric pressure, such as the outlet side pressure of the exhaust receiver 104, the back pressure from the turbine 121 side of the turbo supercharger 120, the inlet side pressure of the air supply receiver 103, and the turbo.
  • the pressure in the gas passage 11 pressure on the back side of the impeller 22
  • the rotation speed [rpm] of the motor 70 and the like. It can be regulated to a pressure higher than that pressure.
  • the supply pressure of the seal air may be gradually increased or decreased.
  • the second seal ring 32 on the atmosphere side includes a plurality of arcuate segment seal members 51 adjacent to each other in the circumferential direction and a plurality of these. It has a split seal structure composed of a garter spring 52 that elastically and integrally restrains the segment seal member 51 while urging the rotary shaft 21 side.
  • not only the second seal ring 32 but also the first seal ring 31 close to the shaft hole 12 of the casing 10 has a plurality of arcuate segment seal members 51 adjacent to each other in the circumferential direction. It has a split seal structure composed of a garter spring 52 that elastically and integrally restrains the plurality of segment seal members 51 while urging them toward the rotating shaft 21.
  • Each of the plurality of segment seal members 51 of the first and second seal rings 31 and 32 has a pair of knock pin holes 51k having a predetermined angular interval on one side thereof, and a plurality of compression coil springs on the other side. It has a plurality of concave holding holes 51n capable of holding the end portion of 41. Further, the first seal ring 31 and the second seal ring 32 are opposite to each other so that the concave holding holes 51n and the knock pin holes 51k open in opposite directions in the axial direction of the rotating shaft 21. is set up.
  • the plurality of segment seal members 51 spread in the axial direction and the radial direction and face the first facing surface 51a in the circumferential direction with the minute gap Ec separated from each other, and the sliding gap Ed spreads in the circumferential direction and the radial direction.
  • a plurality of knock pins 33j on the shaft sealing box 33 side which are arranged on the same circumference and are loosely fitted in a plurality of pairs of knock pin holes 51k so as to have a second facing surface 51b facing each other in the axial direction. It is guided on the rotating shaft 21 by 33k, and is urged by a garter spring 52 on the outer peripheral side on the outer peripheral surface of the rotating shaft 21 with a predetermined contact pressure.
  • the minute gap Ec extending in the axial direction of the rotating shaft 21 is not covered at all on the outer peripheral surface side and the mutual facing side (concave holding hole 51n side) of the first and second seal rings 31 and 32.
  • the close surface side (knock pin hole 51k side) where the first and second seal rings 31 and 32 are in close contact with the pair of inner side wall portions 33b and 33c the first and second seal rings 31 and 32 are covered and narrowed by the pair of inner side wall portions 33b and 33c. ing.
  • the circumferential position of the minute gap Ec extending in the axial direction of the rotating shaft 21 is displaced, and the sliding gap Ed extending in the circumferential direction is As shown in FIG. 4B, the first and second seal rings 31 and 32 are bent in the opposite direction between the minute gaps Ec on both sides in the axial direction, and are narrower than the minute gaps Ec on both sides in the axial direction. There is. These minute gaps Ec and minute gaps Ec form an orifice-shaped leak passage 51e having a large pressure loss.
  • the backup sealing means 60 is arranged on the outer surface side (right end side in FIG. 2) of the shaft sealing box 33 separated from the gas passage 11 of the casing 10, and has an annular third sealing ring 61 surrounding the rotating shaft 21.
  • An external annular member 63 provided so as to cover the third seal ring 61 from the radial outside and the axial outside, and detachably fixed to the first annular body 34 of the shaft sealing box 33 by a bolt 66, and a third.
  • An elastic member 64 such as a compression coil spring for urging the seal ring 61 of No. 3 to the outer side in the axial direction of the rotating shaft 21 so as to be in close contact with the inner side wall portion 63a of the external annular member 63, and the first shaft sealing box 33. It has a hermetic seal 65 made of a rubber elastic ring interposed between the annular body 34 and the external annular member 63.
  • the backup sealing means 60 forms an auxiliary sealing chamber 62 between the shaft sealing box 33 and the external annular member 63 to limit the leakage of the sealing air from the main sealing chamber 42 of the static pressure gas sealing means 40 to the atmosphere side. is doing.
  • a plurality of circles adjacent to each other in the circumferential direction are substantially similar to the second seal ring 32 on the atmosphere side of the static pressure gas seal means 40. It has a split seal structure composed of an arc-shaped segment seal member (equivalent to 51) and a garter spring (equivalent to 52) that elastically and integrally restrains these plurality of segment seal members while urging them toward the rotating shaft 21 side. is doing.
  • the plurality of segment seal members of the third seal ring 61 are also pressured by the plurality of segment seal members, similarly to the plurality of arcuate segment seal members 51 of the second seal ring 32 shown in FIGS. 4A and 4B. It has an orifice-shaped leak passage (indicated by reference numeral 61e in parentheses in the figure) having a large loss.
  • the pressure P2 in the auxiliary seal chamber 62 becomes a predetermined pressure or less, which is sufficiently smaller than the pressure P1 of the seal air in the main seal chamber 42, although the pressure is equal to or higher than the atmospheric pressure, and the upstream pressure of the third seal ring 61 is applied.
  • the pressure ratio of the atmospheric pressure P3 [MPa], which is the downstream pressure, becomes relatively large with respect to the pressure P2 in the auxiliary seal chamber 62. Therefore, the condition that the seal air leaking from the orifice-shaped leak passage 61e of the third seal ring 61 becomes a so-called subsonic flow ((P3 + 0.1) / (P2 + 0.1) is larger than the critical pressure ratio b) is satisfied. obtain.
  • the mass flow rate of the seal air leaking from the auxiliary seal chamber 62 to the atmosphere side depends on both the pressure P2 and the atmospheric pressure P3 in the auxiliary seal chamber 62, and is sufficiently (auxiliary seal) by the third seal ring 61.
  • the flow rate is limited to a smaller flow rate than when the inside of the chamber 62 becomes a choked flow at a high pressure of about P1.
  • the mass flow rate of the seal air leaking from the main seal chamber 42 to the auxiliary seal chamber 62 side depends on both the pressure P1 in the main seal chamber 42 and the pressure P2 in the auxiliary seal chamber 62.
  • the second seal ring 32 is sufficiently limited (to a smaller flow rate than in the case of choked flow).
  • the EGR blower 133 having the sealing device 30 of the present embodiment cooperates with the static pressure gas sealing means 40 and the backup sealing means 60 of the sealing device 30 to move to the atmosphere side through the shaft hole 12 of the casing 10. The amount of leaked seal air is sufficiently reduced.
  • a ring plate having a diameter larger than the inner peripheral diameter of the external annular member 63 is formed on the rotating shaft 21 located on the outer side in the axial direction from the external annular member 63 with respect to the casing 10.
  • the shake plate 81 of the above is arranged.
  • the shake-off plate 81 projects in the shape of a baffle plate substantially perpendicular to the outer peripheral surface of the rotary shaft 21, and radiates the seal air leaking from the auxiliary seal chamber 62 in the axial direction of the rotary shaft 21 together with surrounding dust and the like. By swinging it off in the direction, the intrusion of dust into the motor 70 side is suppressed.
  • the turbocharger 120 when the turbine 121 is rotationally driven by the exhaust energy from the exhaust receiver 104 of the engine 110, the fresh air (air from the outside) and the EGR gas taken into the compressor 122 are pressurized. It is supercharged to the supply air receiver 103 side of the engine 110 with a predetermined supercharging pressure.
  • the turbocharger 120 is configured to control the intake of exhaust gas into the turbine 121 by a variable nozzle function, bypass the exhaust gas, and control the bypass flow rate according to preset operating conditions. May be good. In that case, the energy of the exhaust gas from the exhaust receiver 104 may change depending on the operating state of the engine 110, whereas the supercharging pressure by the turbocharger 120 can be suitably controlled.
  • the EGR device 130 selectively limits its operation by narrowing or shutting off the recirculation path Le according to the engine speed [rpm] or according to preset operating conditions. Can be. By doing so, it is possible to selectively limit the emission of NOx according to the engine speed [rpm] and the navigation area of the ship.
  • the static pressure gas seal is formed in the main sealing chamber 42 formed between the first and second sealing rings 31 and 32.
  • each seal ring 32 since the front-rear differential pressure of the second seal ring 32 is suppressed by the third seal ring 61 of the backup sealing means 60 and the front-rear differential pressure of the third seal ring 61 is also suppressed, each seal ring 32, The leakage flow rate of the seal air to the atmosphere side, which can change depending on the front-rear differential pressure of 61, is effectively limited by the cooperation of the static pressure gas sealing means 40 and the backup sealing means 60.
  • a gas passage 11 into which a part of the exhaust gas of the engine 110 can be introduced is formed in the casing 10, and the rotating shaft 21 is inserted into the shaft hole 12 communicating with the gas passage 11 to be an impeller. Since the blower configuration is such that the 22 is supported and the exhaust gas introduced into the gas passage 11 is recirculated to the engine 110 so as to be recirculated, the exhaust gas of the engine 110 is recirculated in order to reduce the emission amount of NOx and the like. It is suitable for the EGR blower 133 that can be used.
  • At least the second seal ring 32 on the atmosphere side of the first and second seal rings 31 and 32 is composed of a plurality of arcuate segment seal members 51, so that a plurality of seal rings 32 are formed.
  • the minute gaps Ec, Ed, etc. between them can be set to an appropriate shape and size, and the seal air passing through the minute gap of the second seal ring 32 can be set.
  • the leakage flow rate and the front-rear differential pressure of the second seal ring 32 can be stably secured.
  • the backup seal means 60 covers the third seal ring 61 from the radial outside and the axial outside, and the third seal ring 61 covers the external annular member 63. Since it has an elastic member 64 that urges the rotary shaft 21 in the axial direction so as to be in close contact with the third seal ring 61, the auxiliary seal chamber 62 can be easily formed by the third seal ring 61 and the external annular member 63, and the auxiliary seal chamber 62 can be easily formed. The stable sealing posture of the sealing ring 61 of 3 can be set, and the leakage of the sealing air during operation to the atmosphere side can be reduced more effectively.
  • the external annular member 63 is detachably coupled to the shaft sealing box 33 on the outward side in the axial direction separated from the gas passage 11, a third seal ring is attached to the existing blower. 61 and the external annular member 63 can be easily added.
  • a motor 70 for rotationally driving the rotating shaft 21 is arranged on the outward side in the axial direction separated from the gas passage 11 with respect to the shaft sealing box 33, and the casing 10 and the case of the motor 70 are arranged. Since the 72 is integrally connected, a compact EGR blower 133 can be manufactured.
  • the inner peripheral diameter of the external annular member 63 (hole diameter (2R1) corresponding to the radius R1 in FIG. 2) is on the rotating shaft 21 axially outside the external annular member 63. Since a larger diameter annular plate-shaped shake-off plate 81 is arranged, the seal air leaking outward from the auxiliary seal chamber 62 in the axial direction is shaken off by the shake-off plate 81 in the outward radiation direction together with surrounding dust and the like. It is possible to effectively suppress the intrusion of dust into the motor 70 side.
  • the mechanical sealing type sealing device 30 that closes the shaft hole 12 of the EGR blower 133 is an annular first and second sealing ring that surrounds the rotating shaft 21 in the vicinity of the shaft hole 12.
  • a static pressure gas sealing means 40 that forms a main seal chamber 42 in close contact with 33c to prevent leakage of exhaust gas from the gas passage 11 to the atmosphere side, and a shaft sealing box 33 that is separated from the gas passage 11 in the non-axial direction. It has an annular third seal ring 61 that surrounds the rotating shaft 21 on the side, and includes a backup seal means 60 that forms an auxiliary seal chamber 62 that limits the leakage of seal air from the main seal chamber 42 to the atmosphere side. It is configured to be.
  • the exhaust gas in the EGR blower 133 can be effectively suppressed from leaking from the gas passage 11 side to the atmosphere side in the ship by the pressurized seal air of the static pressure gas sealing means 40, and the seal air leaks to the atmosphere side.
  • the amount can be sufficiently reduced by the cooperation of the static pressure gas sealing means 40 and the backup sealing means 60.
  • the rotary shaft 21 is integrally fastened to the output shaft 71 of the motor 70, but as shown in FIG. 5, the rotary shaft 21 is the motor 70.
  • a rotary sleeve 27 dedicated to the seal which is fixed to prevent rotation on the outer peripheral surface of the substantially cylindrical body 23, is provided. It is also possible to provide a surface treated portion 27a that forms a sliding surface having a small frictional resistance with the seal rings 31, 32, and 61 and having excellent wear resistance.
  • the seal rings 31, 32, and 61 all have the same split seal structure, but the first seal ring 31 or the third seal ring 61 is the second seal ring 32.
  • the seal structure may be different from that of the above.
  • the engine 110 is used for a ship in one embodiment, the present invention is a large engine other than that for a ship, for example, a stationary engine for operating a generator, and the generator, the stationary engine, and the like are used. It can also be applied when it is installed in a relatively narrow space.
  • the present invention can provide a blower capable of suppressing the power consumption of the seal air supply source, and at the same time, can provide a blower suitable for an EGR blower of a marine engine. Therefore, it is useful for all blowers suitable for an exhaust gas recirculation system of a large engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a blower that includes a rotating shaft (21) inserted into a shaft hole (12) of a casing (10) in which a gas passage (11) is formed, an impeller (22) supported by the rotating shaft (21), and a sealing device (30) sealing the shaft hole (12), wherein the sealing device (30) includes first and second seal rings (31) and (32) surrounding the rotating shaft (21) near the shaft hole (12), a shaft sealing box (33) surrounding these seal rings, a static pressure gas sealing means (40) in which is formed a main sealing chamber (42) for introducing seal air having a pressure higher than that inside a gas passage (11) to prevent exhaust gas from leaking from the gas passage (11) to the atmosphere side, and a backup sealing means (60) that includes an annular third seal ring (61) surrounding the rotating shaft (21) on an axially outer side with respect to the shaft sealing box (33) and forms an auxiliary sealing chamber (62) limiting the leakage of seal air from the main sealing chamber (42) to the atmosphere side.

Description

ブロワBlower
 本発明は、ブロワに関し、特に大型のエンジンの排気再循環システムに好適なブロワに関する。 The present invention relates to a blower, particularly to a blower suitable for an exhaust gas recirculation system of a large engine.
 送風対象のガスを吸入して昇圧させるブロワとして、従来、動力や電力を出力するシステムからの排ガスを昇圧して同システムに再循環させる再循環ブロワや、同システムへの供給ガス(低圧再循環ガスを含む)を昇圧する補助ブロワ等が知られている。 As a blower that inhales and boosts the gas to be blown, a recirculation blower that boosts the exhaust gas from the system that outputs power and electric power and recirculates it to the system, and the gas supplied to the system (low pressure recirculation). Auxiliary blowers that boost pressure (including gas) are known.
 例えば、舶用ディーゼルエンジン等のエンジンの排気エミッション低減技術の一つとして、エンジンの排ガスの一部をそのエンジンの吸気側(掃気作用をなす場合はその給気側の意)に還流させて再循環させ、排気中のNOx(窒素酸化物)を低減させるEGRシステム(排気再循環システム)が普及してきているが、そのようなEGRシステムにおいて、排ガスの一部を再循環可能な圧力に昇圧するEGRブロワが、例えば特許文献1や特許文献2に記載されている。 For example, as one of the exhaust gas emission reduction technologies for engines such as marine diesel engines, a part of the exhaust gas of the engine is recirculated to the intake side of the engine (meaning the air supply side when a scavenging action is performed) and recirculated. EGR systems (exhaust gas recirculation systems) that reduce NOx (exhaust gas recirculation) in exhaust gas have become widespread. In such EGR systems, EGR that boosts a part of exhaust gas to a pressure that allows recirculation is possible. The blower is described in, for example, Patent Document 1 and Patent Document 2.
 また、例えば特許文献3には、再循環排ガス流量を自身のブロワ回転数により制御可能なもので、ブロワ回転数を計測する回転センサを取り付けたものが記載されている。 Further, for example, Patent Document 3 describes that the recirculated exhaust gas flow rate can be controlled by its own blower rotation speed and is equipped with a rotation sensor for measuring the blower rotation speed.
 さらに、特許文献4には、インペラと回転軸とが樹脂材により一体成型されてハウジングに収納された遠心ブロワで、その回転軸の軸方向におけるハウジング内部の複数箇所に、回転軸の外周面と略同径の内周面を有するフッ素系樹脂製の第1、第2のシールリングが設けられるとともに、両シールリングの間のハウジング内部空間にシールエアを供給するようにしたものが記載されている。 Further, in Patent Document 4, a centrifugal blower in which an impeller and a rotating shaft are integrally molded with a resin material and housed in a housing is provided. A first and second seal rings made of a fluororesin having an inner peripheral surface having substantially the same diameter are provided, and a seal air is supplied to the housing internal space between the two seal rings. ..
特開2011-157959号公報Japanese Unexamined Patent Publication No. 2011-157959 特開2012-172647号公報Japanese Unexamined Patent Publication No. 2012-172647 特開2002-332919号公報Japanese Unexamined Patent Publication No. 2002-332919 特開2016-89671号公報Japanese Unexamined Patent Publication No. 2016-89671
 しかしながら、前述のような従来のブロワにあっては、インペラケーシング内で昇圧されエンジンに再循環されるべきEGRガスが、インペラ回転軸の軸穴を通してハウジングの内部空間側に侵入するのを抑制するべく、ハウジング内部のインペラ側空間に供給するシールエアの圧力をインペラケーシングの内部より十分に大きく設定すると、インペラ側空間からハウジングの外部(大気側)に連通するモータ側空間側へと漏れ出るシールエア量が多くなってしまうという問題があった。 However, in the conventional blower as described above, the EGR gas that is boosted in the impeller casing and should be recirculated to the engine is suppressed from entering the internal space side of the housing through the shaft hole of the impeller rotation shaft. Therefore, if the pressure of the seal air supplied to the impeller side space inside the housing is set sufficiently higher than the inside of the impeller casing, the amount of seal air leaking from the impeller side space to the motor side space side communicating with the outside of the housing (atmosphere side). There was a problem that the number increased.
 そのため、従来のブロワにあっては、シールエア供給源を駆動する駆動モータの消費動力が増加してしまうという問題や、船舶内に設けられる舶用エンジンのEGRブロワ等には採用し難いという問題が生じていた。 Therefore, the conventional blower has a problem that the power consumption of the drive motor for driving the seal air supply source increases, and a problem that it is difficult to adopt it for the EGR blower of the marine engine installed in the ship. Was there.
 本発明は、上述のような従来の問題を解決するためになされたものであり、シールエア供給源の消費動力を抑えることができるブロワを提供することを目的とし、併せて、船舶用のエンジンのEGRブロワに好適なブロワを提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a blower capable of suppressing the power consumption of a seal air supply source, and also to provide a marine engine. It is an object of the present invention to provide a blower suitable for an EGR blower.
 (1)本発明に係るブロワは、上記目的達成のため、ガス通路と該ガス通路に連通する軸穴とが形成されたケーシングと、前記ケーシングの前記軸穴に回転自在に挿通された回転軸と、前記回転軸に支持されて前記ケーシング内に収納されインペラと、前記軸穴をシールするシール装置と、を備えたブロワであって、前記シール装置が、前記軸穴の近傍で前記回転軸を取り囲む環状の第1および第2のシールリングと、前記第1および第2のシールリングを取り囲む環状壁部と該環状壁部に対し前記回転軸の軸方向の両側で一体に結合する一対の内側壁部とを有する環状の軸封ボックスと、前記軸封ボックス内に前記ガス通路内以上に高圧のシールエアを導入するとともに前記第1および第2のシールリングを前記一対の内側壁部に密接させた主シール室を形成し、前記ガス通路から大気側への前記排ガスの漏れを防止する静圧ガスシール手段と、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記回転軸を取り囲む環状の第3のシールリングを有し、前記主シール室から大気側へのシールエアの漏れを制限する補助シール室を形成するバックアップシール手段と、を含んでいることを特徴とする。 (1) In order to achieve the above object, the blower according to the present invention has a casing in which a gas passage and a shaft hole communicating with the gas passage are formed, and a rotary shaft rotatably inserted into the shaft hole of the casing. A blower provided with an impeller supported by the rotating shaft and housed in the casing, and a sealing device for sealing the shaft hole, wherein the sealing device is provided in the vicinity of the shaft hole. A pair of annular first and second seal rings surrounding the first and second seal rings, and a pair of annular wall portions surrounding the first and second seal rings, which are integrally coupled to the annular wall portions on both sides of the rotation axis in the axial direction. An annular shaft seal box having an inner side wall portion, and a higher pressure seal air than the inside of the gas passage are introduced into the shaft seal box, and the first and second seal rings are closely attached to the pair of inner side wall portions. The static pressure gas sealing means for forming the main sealing chamber to prevent the exhaust gas from leaking from the gas passage to the atmosphere side, and the axially outer side separated from the gas passage with respect to the shaft sealing box. It has an annular third seal ring that surrounds the axis of rotation and comprises a backup seal means that forms an auxiliary seal chamber that limits the leakage of seal air from the main seal chamber to the atmosphere side. ..
 この構成により、本発明では、第1、第2のシールリングの間に形成される主シール室内に静圧ガスシール手段によってガス通路内よりも高圧のシールエアが導入されることで、ブロワ内の排ガスがガス通路側から大気側への漏れ出ることが確実に防止される。しかも、第2のシールリングの前後差圧がバックアップシール手段の第3のシールリングにより抑えられるとき、第3のシールリングの前後差圧も抑えられることから、各シールリングの前後差圧に応じたシールエアの大気側への漏れ流量を有効に低減させることができる。 With this configuration, in the present invention, the static pressure gas sealing means introduces the sealing air having a higher pressure than that in the gas passage into the main sealing chamber formed between the first and second sealing rings, so that the sealing air in the blower is introduced. Exhaust gas is surely prevented from leaking from the gas passage side to the atmosphere side. Moreover, when the front-rear differential pressure of the second seal ring is suppressed by the third seal ring of the backup sealing means, the front-rear differential pressure of the third seal ring is also suppressed, so that the front-rear differential pressure of each seal ring is adjusted. It is possible to effectively reduce the leakage flow rate of the sealed air to the atmosphere side.
 (2)本発明の好ましい実施形態は、前記ケーシングに、エンジンの排ガスの一部を導入可能な前記ガス通路と該ガス通路に連通する軸穴とが形成されており、前記インペラが、前記ガス通路に導入し昇圧した排気ガスを前記エンジンに再循環させる構成とすることができる。 (2) In a preferred embodiment of the present invention, the casing is formed with a gas passage into which a part of the exhaust gas of the engine can be introduced and a shaft hole communicating with the gas passage, and the impeller is the gas. The exhaust gas introduced into the passage and boosted can be recirculated to the engine.
 この場合、NOx等の低減のためにエンジンの排気を再循環させるEGRブロワに好適なものとなる。 In this case, it is suitable for an EGR blower that recirculates the exhaust gas of the engine in order to reduce NOx and the like.
 (3)本発明の好ましい実施形態は、前記第1、第2のシールリングのうち少なくとも大気側の前記第2のシールリングが、周方向に隣り合う複数の円弧状のセグメントシール部材で構成されており、前記複数のセグメントシール部材同士が、軸方向および径方向に広がりつつ周方向に対面する第1対向面と、前記周方向および径方向に広がりつつ軸方向に対面する第2対向面とを有している構成とすることができる。 (3) In a preferred embodiment of the present invention, of the first and second seal rings, at least the second seal ring on the atmosphere side is composed of a plurality of arcuate segment seal members adjacent to each other in the circumferential direction. A first facing surface in which the plurality of segment seal members spread in the axial and radial directions and face each other in the circumferential direction, and a second facing surface in which the plurality of segment seal members spread in the circumferential direction and the radial direction and face each other in the axial direction. Can be configured to have.
 このようにすると、複数のセグメントシール部材の内周面形状や端部形状に応じてそれらの間の微小隙間形状を適宜設定でき、第2のシールリングの微小隙間を通過するシールエアの流量および第2のシールリングの前後差圧を安定確保可能となる。 By doing so, the minute gap shape between the inner peripheral surface shape and the end shape of the plurality of segment seal members can be appropriately set, and the flow rate of the seal air passing through the minute gap of the second seal ring and the second seal air flow rate can be set. It is possible to stably secure the front-rear differential pressure of the seal ring of 2.
 (4)本発明の好ましい実施形態は、前記バックアップシール手段が、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記第3のシールリングを径方向の外側および軸方向の外側から覆う外付け環状部材と、前記第3のシールリングを前記外付け環状部材に密接するよう前記回転軸の軸方向に付勢する弾性部材と、をさらに有している構成とすることもできる。 (4) In a preferred embodiment of the present invention, the backup sealing means attaches the third seal ring to the outside in the radial direction and in the axial direction on the outward side in the axial direction away from the gas passage with respect to the shaft sealing box. The configuration may further include an external annular member that covers from the outside and an elastic member that urges the third seal ring in the axial direction of the rotating shaft so as to be in close contact with the external annular member. can.
 この場合、第3のシールリングおよび外付け環状部材によって補助シール室を容易に形成できるとともに、第3のシールリングの安定したシール姿勢を設定可能となり、運転中のシールエアの大気側への漏れをより有効に低減可能となる。 In this case, the auxiliary seal chamber can be easily formed by the third seal ring and the external annular member, and the stable seal posture of the third seal ring can be set, so that the seal air during operation leaks to the atmosphere side. It can be reduced more effectively.
 (5)本発明の好ましい実施形態は、前記外付け環状部材が、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側に固定されている構成としてもよい。 (5) A preferred embodiment of the present invention may be a configuration in which the external annular member is fixed to the shaft sealing box on the outward side in the axial direction away from the gas passage.
 このようにすると、既存のブロワに、第3のシールリングおよび外付け環状部材を容易に追加することができる。 By doing so, the third seal ring and the external annular member can be easily added to the existing blower.
 (6)本発明の好ましい実施形態は、前記回転軸を回転駆動するモータが設けられており、前記ケーシングと前記モータが一体に連結されている構成とすることができる。 (6) In a preferred embodiment of the present invention, a motor for rotationally driving the rotating shaft is provided, and the casing and the motor can be integrally connected to each other.
 この場合、コンパクトなブロワを作製可能となる。 In this case, a compact blower can be manufactured.
 (7)本発明の好ましい実施形態は、前記外付け環状部材より前記軸方向外方側の前記回転軸上に、前記外付け環状部材の内周径より大径の円環板状の振切板が配置されている構成としてもよい。 (7) A preferred embodiment of the present invention is an annular plate-shaped swing having a diameter larger than the inner peripheral diameter of the external annular member on the rotating shaft on the axially outer side of the external annular member. The board may be arranged.
 この構成により、補助シール室から軸方向の外側に漏れ出るシールエアを振切板によって周囲の塵埃などと共に放射外方向に振り切ることができ、モータ側への塵埃の侵入を有効に抑制することができる。 With this configuration, the seal air leaking from the auxiliary seal chamber to the outside in the axial direction can be shaken off in the radial direction together with the surrounding dust by the shakeout plate, and the intrusion of dust to the motor side can be effectively suppressed. ..
 (8)本発明の好ましい実施形態は、船舶用のエンジンの排ガスの一部を導入可能なガス通路と該ガス通路に連通する軸穴とが形成されたケーシングと、前記ケーシングの前記軸穴に回転自在に挿通された回転軸と、前記回転軸に支持されて前記ケーシング内に収納され、前記ガス通路に導入し昇圧したEGRガスを前記エンジンに再循環させるインペラと、を備えたブロワに装着され、前記軸穴をシールするEGRブロアのシール装置であって、前記軸穴の近傍で前記回転軸を取り囲む環状の第1および第2のシールリングと、前記第1および第2のシールリングを取り囲む環状壁部と該環状壁部に対し前記回転軸の軸方向の両側で一体に結合する一対の内側壁部とを有する環状の軸封ボックスと、前記軸封ボックス内に前記ガス通路内以上に高圧のシールエアを導入するとともに前記第1および第2のシールリングを前記一対の内側壁部に密接させた主シール室を形成し、前記ガス通路から大気側への前記排ガスの漏れを防止する静圧ガスシール手段と、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記回転軸を取り囲む環状の第3のシールリングを有し、前記主シール室から大気側へのシールエアの漏れを制限する補助シール室を形成するバックアップシール手段と、を含んでいる構成とすることができる。 (8) A preferred embodiment of the present invention is a casing in which a gas passage into which a part of the exhaust gas of a marine engine can be introduced and a shaft hole communicating with the gas passage are formed, and the shaft hole of the casing. Attached to a blower equipped with a rotary shaft rotatably inserted and an impeller supported by the rotary shaft and housed in the casing and introduced into the gas passage to recirculate the boosted EGR gas to the engine. An EGR blower sealing device that seals the shaft hole, the annular first and second sealing rings surrounding the rotating shaft in the vicinity of the shaft hole, and the first and second sealing rings. An annular shaft sealing box having an annular wall portion surrounding the annular wall portion and a pair of inner side wall portions integrally coupled to the annular wall portion on both sides in the axial direction of the rotating shaft, and the inside of the shaft sealing box in the gas passage or more. A high-pressure seal air is introduced into the main seal chamber, and the first and second seal rings are brought into close contact with the pair of inner side walls to form a main seal chamber to prevent the exhaust gas from leaking from the gas passage to the atmosphere side. It has a static pressure gas sealing means and an annular third sealing ring that surrounds the rotating shaft on the outward side in the axial direction away from the gas passage with respect to the shaft sealing box, from the main sealing chamber to the atmosphere side. The configuration may include a backup sealing means for forming an auxiliary sealing chamber that limits the leakage of sealing air.
 この構成により、ブロワ内の排ガスがガス通路側から船舶内の大気側への漏れるのを静圧ガスシール手段の加圧されたシールエアによって有効に抑制できるとともに、シールエアの大気側への漏れ量を静圧ガスシール手段およびバックアップシール手段の協働により十分に低減させることができる。 With this configuration, the leakage of the exhaust gas in the blower from the gas passage side to the atmosphere side in the ship can be effectively suppressed by the pressurized seal air of the static pressure gas sealing means, and the amount of the seal air leaking to the atmosphere side can be effectively suppressed. It can be sufficiently reduced by the cooperation of the static pressure gas sealing means and the backup sealing means.
 本発明によれば、シールエア供給源の消費動力を抑えることができるブロワを提供することができ、併せて、船舶用のエンジンのEGRブロワに好適なブロワを提供することができる。 According to the present invention, it is possible to provide a blower capable of suppressing the power consumption of the seal air supply source, and at the same time, it is possible to provide a blower suitable for an EGR blower of a marine engine.
本発明の一実施形態に係るEGRブロワおよびそれを含む舶用エンジンのEGRシステムの概略構成図である。It is a schematic block diagram of the EGR system of the EGR blower which concerns on one Embodiment of this invention and a marine engine including it. 本発明の一実施形態に係るEGRブロワの軸穴近傍部分の拡大断面図である。It is an enlarged sectional view of the part near the shaft hole of the EGR blower which concerns on one Embodiment of this invention. 図2中の二点鎖線で囲んだM部分をさらに拡大して示す部分拡大断面図である。It is a partially enlarged sectional view showing the M portion surrounded by the alternate long and short dash line in FIG. 2 in a further enlarged manner. 本発明の一実施形態に係るEGRブロワにおけるセグメントシール型のシールリングの正面図である。It is a front view of the segment seal type seal ring in the EGR blower which concerns on one Embodiment of this invention. 本発明の一実施形態に係るEGRブロワにおけるセグメントシール型のシールリングの構成図であり、図4A中のB矢視図である。It is a block diagram of the segment seal type seal ring in the EGR blower which concerns on one Embodiment of this invention, and is the B arrow view in FIG. 4A. 本発明の他の実施形態に係るEGRブロワの軸穴近傍部分の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a portion near a shaft hole of an EGR blower according to another embodiment of the present invention.
 以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 (一実施形態)
 図1ないし図4Bは、本発明の一実施形態に係るブロワを、EGR装置付きの動力システム中にEGRブロワとして設けた場合を示している。
(One embodiment)
1 to 4B show a case where the blower according to the embodiment of the present invention is provided as an EGR blower in a power system equipped with an EGR device.
 まず、その構成について説明する。 First, the configuration will be explained.
 図1に示すように、本実施形態の動力システム100は、多気筒の大型2サイクルのディーゼル機関であるエンジン110と、ターボ過給機120と、EGR装置130とを具備しており、これらが全て図示しない船舶の機関室に搭載されるようになっている。 As shown in FIG. 1, the power system 100 of the present embodiment includes an engine 110, which is a multi-cylinder large two-stroke diesel engine, a turbocharger 120, and an EGR device 130. All are designed to be installed in the engine room of a ship (not shown).
 エンジン110は、例えば外洋航行船の主機関として使用可能な電子制御式の大出力のエンジンであり、多気筒の機関本体101に、燃料供給ユニット102、給気レシーバ103および排気レシーバ104等を装着した構成を有している。なお、本実施形態では船舶用としているが、船舶用以外とする場合、エンジン110は、例えば発電所の発電機を動作させるための定置機関としても使用可能である。 The engine 110 is, for example, an electronically controlled high-output engine that can be used as the main engine of an ocean-going vessel. A fuel supply unit 102, an air supply receiver 103, an exhaust receiver 104, and the like are mounted on a multi-cylinder engine main body 101. Has the same configuration. Although it is intended for ships in this embodiment, the engine 110 can also be used as a stationary engine for operating a generator of a power plant, for example, when it is not for ships.
 多気筒の機関本体101には、複数のシリンダ111が設けられている。これら複数のシリンダ111は、それぞれ掃気ポート113を介して給気レシーバ103に接続される一方、対応するそれぞれの排気弁114の開弁時に排気レシーバ104内に排気可能になっている。各シリンダ111内では、掃気により取り込まれた後にピストン112により発火点以上に圧縮された空気とその空気中に噴射された燃料とが燃焼するとき、燃焼ガスが膨張してピストン112が駆動されるとともに排ガスが発生する。そして、各シリンダ111からの排ガスが排気レシーバ104内に間欠的に送り出されるようになっている。 The multi-cylinder engine body 101 is provided with a plurality of cylinders 111. Each of these plurality of cylinders 111 is connected to the air supply receiver 103 via the scavenging port 113, and can be exhausted into the exhaust receiver 104 when the corresponding exhaust valve 114 is opened. In each cylinder 111, when the air compressed above the ignition point by the piston 112 after being taken in by scavenging and the fuel injected into the air burn, the combustion gas expands and the piston 112 is driven. At the same time, exhaust gas is generated. Then, the exhaust gas from each cylinder 111 is intermittently sent out into the exhaust receiver 104.
 燃料供給ユニット102は、燃料清浄機で清浄化した舶用ディーゼル燃料をポンプ加圧し、気筒ごとの燃料弁が所定のタイミングで開弁するとき、機関本体101の各シリンダ111内に燃料を噴射・供給できるようになっている。 The fuel supply unit 102 pumps and pressurizes the marine diesel fuel purified by the fuel purifier, and when the fuel valve for each cylinder opens at a predetermined timing, the fuel is injected and supplied into each cylinder 111 of the engine body 101. You can do it.
 給気レシーバ103は、機関本体101の各シリンダ111内の燃焼ガスを排出させつつ新たな空気で満たす掃気作用をなすための圧縮空気溜め(掃気受け)となっており、排気レシーバ104は、機関本体101の各気筒からの排気を蓄圧貯留しつつその大部分をターボ過給機120側に供給することができる排気溜めとなっている。 The air supply receiver 103 is a compressed air reservoir (scavenging receiver) for performing a scavenging action of filling the combustion gas in each cylinder 111 of the engine body 101 with new air while discharging the combustion gas, and the exhaust receiver 104 is an engine. It is an exhaust reservoir that can supply most of the exhaust gas from each cylinder of the main body 101 to the turbocharger 120 side while accumulating and storing it.
 ターボ過給機120は、排気レシーバ104側から供給された排気により駆動されるタービン121と、タービン121により駆動されるとき外気を導入および圧縮して給気レシーバ103内に供給するコンプレッサ122とを有している。 The turbocharger 120 includes a turbine 121 driven by exhaust gas supplied from the exhaust receiver 104 side, and a compressor 122 that introduces and compresses outside air when driven by the turbine 121 and supplies it into the air supply receiver 103. Have.
 EGR装置130は、排気レシーバ104からの排気の一部を給気レシーバ103側への再循環経路Leに取り込んで浄化する湿式のスクラバユニット131と、スクラバユニット131により浄化された排気ガス(以下、EGRガスという)を熱交換により冷却するEGRクーラ132と、EGRクーラ132で冷却されたEGRガスを、ターボ過給機120のコンプレッサ122から給気レシーバ103への過給通路Lc中に供給可能な圧力レベルに昇圧させるEGRブロワ133とを含んで構成されている。 The EGR device 130 takes in a part of the exhaust gas from the exhaust receiver 104 into the recirculation path Le to the air supply receiver 103 side to purify the wet scrubber unit 131, and the exhaust gas purified by the scrubber unit 131 (hereinafter referred to as “exhaust gas”). The EGR cooler 132 that cools the EGR gas) by heat exchange and the EGR gas cooled by the EGR cooler 132 can be supplied into the supercharging passage Lc from the compressor 122 of the turbocharger 120 to the air supply receiver 103. It is configured to include an EGR blower 133 that boosts the pressure to a pressure level.
 湿式のスクラバユニット131は、例えば再循環経路Leに取り込まれた排気ガス中の硫黄酸化物を中和可能な液滴を噴霧させたり、排気ガス中のすす(煤)粒子の吸収や再循環経路Le中の還流排気ガスの一次冷却に適した液滴の大きさにしたりすることができるスクラバと、スクラバの内底部側で還流排気ガス浄化後の液滴を収集するミストキャッチャとを含んで構成されている。 The wet scrubber unit 131 sprays, for example, droplets capable of neutralizing sulfur oxides in the exhaust gas taken into the recirculation path Le, and absorbs soot particles in the exhaust gas and the recirculation path. Consists of a scrubber that can make the size of the droplets suitable for the primary cooling of the recirculated exhaust gas in Le, and a mist catcher that collects the droplets after purification of the recirculated exhaust gas on the inner bottom side of the scrubber. Has been done.
 EGRクーラ132には、詳細を図示しないが、スクラバユニット131を通過し浄化および一次冷却されたEGRガスを通すEGRガス通路と、外部からの冷却水を通す冷却水通路とを有する熱交換器で構成されており、両通路を通る流体間での熱交換によりEGRガスを冷却(二次冷却)することができる熱交換器で構成されている。 Although not shown in detail, the EGR cooler 132 is a heat exchanger having an EGR gas passage through which the purified and primary cooled EGR gas passes through the scrubber unit 131 and a cooling water passage through which cooling water from the outside is passed. It is composed of a heat exchanger capable of cooling (secondary cooling) the EGR gas by heat exchange between fluids passing through both passages.
 EGRブロワ133は、EGRクーラ132を通過したEGRガスが導入されるガス通路11とそのガス通路11に連通する軸穴12とが形成されたケーシング10と、ケーシング10の軸穴12に回転自在に挿通された回転軸21と、回転軸21に支持されてケーシング10内に収納されインペラ22と、軸穴12をシールするシール装置30とを具備している。 The EGR blower 133 is rotatable in the casing 10 in which the gas passage 11 into which the EGR gas that has passed through the EGR cooler 132 is introduced and the shaft hole 12 communicating with the gas passage 11 are formed, and the shaft hole 12 of the casing 10. It includes a rotating shaft 21 that has been inserted, an impeller 22 that is supported by the rotating shaft 21 and housed in a casing 10, and a sealing device 30 that seals the shaft hole 12.
 また、図1に示すように、軸封ボックス33に対しケーシング10のガス通路11から離隔する外面側(図1中の右側)には、回転軸21を回転駆動する出力軸71を有するモータ70が配置されている。 Further, as shown in FIG. 1, a motor 70 having an output shaft 71 for rotationally driving the rotary shaft 21 on the outer surface side (right side in FIG. 1) separated from the gas passage 11 of the casing 10 with respect to the shaft seal box 33. Is placed.
 図1および図2に示すように、ケーシング10のガス通路11は、ケーシング10の外端側である図1中の左端側で大口径に開口する一方、同図中の右側(内方側)へと回転軸21の軸線方向に延びつつ内方側で縮径した導入通路11aと、導入通路11aの内端部を取り囲むスクロール通路11bとを有している。そして、ケーシング10は、導入通路11aの外端側で大口径に開口する導入口部11cと、スクロール通路11bの下流端を導入口部11cより径方向の外方側に突出させる吹出口部11dとを有している。 As shown in FIGS. 1 and 2, the gas passage 11 of the casing 10 opens to a large diameter on the left end side in FIG. 1 which is the outer end side of the casing 10, while the right side (inner side) in the same figure. It has an introduction passage 11a that extends inward in the axial direction of the rotation shaft 21 and has a diameter reduced inward, and a scroll passage 11b that surrounds the inner end of the introduction passage 11a. The casing 10 has an introduction port portion 11c that opens to a large diameter on the outer end side of the introduction passage 11a, and an outlet portion 11d that projects the downstream end of the scroll passage 11b to the outward side in the radial direction from the introduction port portion 11c. And have.
 ケーシング10は、このガス通路11を形成するとともにモータ取付面側が開口する本体部13と、本体部13のモータ取付面側を閉塞する略円板状でその中心部で軸穴12を形成するモータ取付板14と、本体部13に対しモータ取付板14を着脱可能に固定する複数のボルト15とによって構成されている。そして、ケーシング10のモータ取付板14にはモータ70を取り付けるための取付ブラケット73が、ケーシング10の背面側にはモータ70を下方から支持する支持ブラケット74が、それぞれ装着されている。そして、これら取付ブラケット73および支持ブラケット74を介して、ケーシング10とモータ70のケース72とが、一体に連結されている。 The casing 10 is a motor that forms the gas passage 11 and forms a shaft hole 12 at the center of the main body 13 that opens the motor mounting surface side and a substantially disk shape that closes the motor mounting surface side of the main body 13. It is composed of a mounting plate 14 and a plurality of bolts 15 that detachably fix the motor mounting plate 14 to the main body 13. A mounting bracket 73 for mounting the motor 70 is mounted on the motor mounting plate 14 of the casing 10, and a support bracket 74 for supporting the motor 70 from below is mounted on the back side of the casing 10. Then, the casing 10 and the case 72 of the motor 70 are integrally connected via the mounting bracket 73 and the support bracket 74.
 また、回転軸21は、モータ70の出力軸71に対し一体回転するように連結することができる蓋付きの筒状体となっており、モータ70の出力軸71に所定の嵌合圧で嵌合する段付きの略円筒体23と、インペラ22内の略円筒体23の一端に同心的に嵌合しその一端を閉止する蓋体24と、蓋体24とモータ70の出力軸71との間に介在し略円筒体23および蓋体24をモータ70の出力軸71に対して軸方向所定位置に位置決め可能な環状のスペーサ25と、モータ70の出力軸71に対して略円筒体23、蓋体24およびスペーサ25を一体に締結固定するボルト26と、を有している。 Further, the rotary shaft 21 is a cylindrical body with a lid that can be connected to the output shaft 71 of the motor 70 so as to rotate integrally, and is fitted to the output shaft 71 of the motor 70 with a predetermined fitting pressure. A substantially cylindrical body 23 with a step to be fitted, a lid body 24 that is concentrically fitted to one end of the substantially cylindrical body 23 in the impeller 22 and one end thereof is closed, and a lid body 24 and an output shaft 71 of the motor 70. An annular spacer 25 that is interposed between the cylindrical body 23 and the lid 24 so that the substantially cylindrical body 23 and the lid body 24 can be positioned at predetermined positions in the axial direction with respect to the output shaft 71 of the motor 70, and the substantially cylindrical body 23 with respect to the output shaft 71 of the motor 70. It has a bolt 26 for integrally fastening and fixing the lid 24 and the spacer 25.
 ケーシング10内で回転軸21に支持されたインペラ22は、ガス通路11のうち導入通路11aの内端部に近接する入口部22aと、スクロール通路11b内で放射外方向に向かって開口する出口部22bと、入口部22aから出口部22bへと延びつつ相互に等角度間隔に離間する複数の羽根部22cとを有している。このインペラ22は、ケーシング10および回転軸21と共に遠心式の送風機を構成し、回転軸21を介してモータ70により回転駆動されるとき、ケーシング10のガス通路11に導入されたEGRガスをエンジン110に再循環可能に昇圧するようになっている。 The impeller 22 supported by the rotating shaft 21 in the casing 10 has an inlet portion 22a close to the inner end portion of the introduction passage 11a in the gas passage 11 and an outlet portion that opens in the scroll passage 11b in the radial direction. It has a 22b and a plurality of blade portions 22c extending from the inlet portion 22a to the outlet portion 22b and separated from each other at equal angular intervals. The impeller 22 constitutes a centrifugal blower together with the casing 10 and the rotating shaft 21, and when the impeller 22 is rotationally driven by the motor 70 via the rotating shaft 21, the EGR gas introduced into the gas passage 11 of the casing 10 is used in the engine 110. The pressure is increased so that it can be recirculated.
 図2に示すように、シール装置30は、ケーシング10と回転軸21の間に介装されており、軸穴12内の回転軸21の周囲の隙間Gを閉塞している。 As shown in FIG. 2, the sealing device 30 is interposed between the casing 10 and the rotating shaft 21 and closes the gap G around the rotating shaft 21 in the shaft hole 12.
 このシール装置30は、軸穴12の一端近傍で回転軸21を取り囲む環状の第1および第2のシールリング31、32と、第1および第2のシールリング31、32を収納する環状の軸封ボックス33とを含んで構成されている。また、図2および図3に示すように、シール装置30は、静圧ガスシール手段40と、バックアップシール手段60とを備えている。 The sealing device 30 comprises an annular shaft 31 and 32 that surrounds the rotating shaft 21 near one end of the shaft hole 12 and an annular shaft that houses the first and second sealing rings 31 and 32. It is configured to include the sealing box 33. Further, as shown in FIGS. 2 and 3, the sealing device 30 includes a static pressure gas sealing means 40 and a backup sealing means 60.
 軸封ボックス33は、第1および第2のシールリング31、32を取り囲む円環内周面形状の環状壁部33aと、その環状壁部33aに対し回転軸21の軸方向の両側で略直交するよう一体に結合した一対の内側壁部33b、33cとを有している。 The shaft seal box 33 is substantially orthogonal to the annular wall portion 33a having an annular inner peripheral surface shape surrounding the first and second seal rings 31 and 32 and the annular wall portion 33a on both sides in the axial direction of the rotating shaft 21. It has a pair of inner side wall portions 33b and 33c that are integrally connected so as to be used.
 具体的には、軸封ボックス33は、外面側で複数のボルト33gによりケーシング10の軸穴12の周囲に固定された第1環状体34と、一対のうち片側の内側壁部33bを形成するとともに第1環状体34の内面側(図2中の左端面側)にボルト固定された第2環状体35と、第1環状体34の外面側に一体に形成されつつ一対のうち片側の内側壁部33bに対向するよう他の片側の内側壁部33cを形成する第3環状体36とによって構成されている。 Specifically, the shaft sealing box 33 forms a first annular body 34 fixed around the shaft hole 12 of the casing 10 by a plurality of bolts 33g on the outer surface side, and an inner side wall portion 33b on one side of the pair. The second annular body 35 bolted to the inner surface side (left end surface side in FIG. 2) of the first annular body 34 and the inner side of one of the pair while being integrally formed on the outer surface side of the first annular body 34. It is composed of a third annular body 36 that forms an inner side wall portion 33c on one side so as to face the wall portion 33b.
 静圧ガスシール手段40は、軸封ボックス33内の第1および第2のシールリング31、32の間に複数の圧縮コイルばね41を周方向等間隔(等角度間隔)に縮設して、第1および第2のシールリング31、32を軸封ボックス33の一対の内側壁部33b、33cに密接させるように付勢することで、軸封ボックス33内に環状の主シール室42を形成している。この主シール室42内には、図3に示すシールエア(シール用の空気)供給回路45から、ケーシング10のガス通路11および軸穴12内以上に高圧のシールエアが導入されるようになっており、ケーシング10内のガス通路11から大気側への排ガスの漏れを抑止できるようになっている。 In the static pressure gas sealing means 40, a plurality of compression coil springs 41 are contracted at equal intervals (equal angular intervals) in the circumferential direction between the first and second seal rings 31 and 32 in the shaft sealing box 33. By urging the first and second seal rings 31 and 32 so as to be in close contact with the pair of inner side wall portions 33b and 33c of the shaft seal box 33, an annular main seal chamber 42 is formed in the shaft seal box 33. is doing. In the main seal chamber 42, high-pressure seal air is introduced from the seal air (air for sealing) supply circuit 45 shown in FIG. 3 into the gas passage 11 and the shaft hole 12 of the casing 10. The leakage of exhaust gas from the gas passage 11 in the casing 10 to the atmosphere side can be suppressed.
 図3に示すように、シールエア供給回路45は、軸封ボックス33の第1環状体34に形成されたシールエア通路34hに連通するエア供給通路45h上に、逆止弁46と、図示しない圧力計や流量計、リリーフ弁、フィルタ等を含んだ調圧ユニット47と、開閉弁48と、エアポンプ等の空気供給源49とによって構成されている。 As shown in FIG. 3, the seal air supply circuit 45 includes a check valve 46 and a pressure gauge (not shown) on the air supply passage 45h communicating with the seal air passage 34h formed in the first annular body 34 of the shaft seal box 33. It is composed of a pressure control unit 47 including a flow meter, a relief valve, a filter and the like, an on-off valve 48, and an air supply source 49 such as an air pump.
 調圧ユニット47および開閉弁48は、例えばエンジン110の回転速度[rpm]、負荷、ガス通路11内の圧力等に応じて制御されるようになっており、シールエア供給回路45は、ガス通路11に連通する軸穴12内の隙間Gの圧力以上に高い供給圧でシールエアを主シール室42内に常時供給することで、ケーシング10内のガス通路11から軸穴12を通して大気側にEGRガスが漏れ出るのを常時抑止するようになっている。したがって、シールエアの供給圧は、常時大気圧より高い圧力であって、排気レシーバ104の出口側圧力やターボ過給機120のタービン121側からの背圧、給気レシーバ103の入口側圧力やターボ過給機120のコンプレッサ122側からの過給圧、モータ70の回転速度[rpm]等のいずれかに応じて、ガス通路11内の圧力(インペラ22の背面側の圧力)が上昇するとき、その圧力以上に高い圧力に調圧され得る。このシールエアの供給圧は、段階的に増減されてもよい。 The pressure regulating unit 47 and the on-off valve 48 are controlled according to, for example, the rotation speed [rpm] of the engine 110, the load, the pressure in the gas passage 11, and the seal air supply circuit 45. By constantly supplying seal air into the main seal chamber 42 at a supply pressure higher than the pressure of the gap G in the shaft hole 12 communicating with the engine, EGR gas is discharged from the gas passage 11 in the casing 10 to the atmosphere side through the shaft hole 12. It is designed to constantly prevent leakage. Therefore, the supply pressure of the seal air is always higher than the atmospheric pressure, such as the outlet side pressure of the exhaust receiver 104, the back pressure from the turbine 121 side of the turbo supercharger 120, the inlet side pressure of the air supply receiver 103, and the turbo. When the pressure in the gas passage 11 (pressure on the back side of the impeller 22) rises according to any of the boost pressure from the compressor 122 side of the booster 120, the rotation speed [rpm] of the motor 70, and the like. It can be regulated to a pressure higher than that pressure. The supply pressure of the seal air may be gradually increased or decreased.
 静圧ガスシール手段40の第1、第2のシールリング31、32のうち大気側の第2のシールリング32は、周方向に隣り合う複数の円弧状のセグメントシール部材51と、これら複数のセグメントシール部材51を回転軸21側に付勢しつつ弾性的に一体に拘束するガータスプリング52とで構成された分割シール構造を有している。 Of the first and second seal rings 31 and 32 of the static pressure gas sealing means 40, the second seal ring 32 on the atmosphere side includes a plurality of arcuate segment seal members 51 adjacent to each other in the circumferential direction and a plurality of these. It has a split seal structure composed of a garter spring 52 that elastically and integrally restrains the segment seal member 51 while urging the rotary shaft 21 side.
 また、本実施形態においては、第2のシールリング32のみならずケーシング10の軸穴12に近接する第1のシールリング31も、周方向に隣り合う複数の円弧状のセグメントシール部材51と、これら複数のセグメントシール部材51を回転軸21側に付勢しつつ弾性的に一体に拘束するガータスプリング52とで構成された分割シール構造を有している。 Further, in the present embodiment, not only the second seal ring 32 but also the first seal ring 31 close to the shaft hole 12 of the casing 10 has a plurality of arcuate segment seal members 51 adjacent to each other in the circumferential direction. It has a split seal structure composed of a garter spring 52 that elastically and integrally restrains the plurality of segment seal members 51 while urging them toward the rotating shaft 21.
 第1、第2のシールリング31、32のそれぞれ複数のセグメントシール部材51は、それぞれの片面側に所定角度間隔を隔てる一対のノックピン穴51kを有するとともに、他の片面側に複数の圧縮コイルばね41の端部を保持可能な複数の凹状の保持穴51nを有している。また、第1のシールリング31と第2のシールリング32とは、それぞれの凹状の保持穴51n同士およびノックピン穴51k同士が回転軸21の軸線方向において逆向きに開くように、互いに逆向きに設置されている。 Each of the plurality of segment seal members 51 of the first and second seal rings 31 and 32 has a pair of knock pin holes 51k having a predetermined angular interval on one side thereof, and a plurality of compression coil springs on the other side. It has a plurality of concave holding holes 51n capable of holding the end portion of 41. Further, the first seal ring 31 and the second seal ring 32 are opposite to each other so that the concave holding holes 51n and the knock pin holes 51k open in opposite directions in the axial direction of the rotating shaft 21. is set up.
 そして、複数のセグメントシール部材51同士が、軸方向および径方向に広がりつつ微小隙間Ecを隔てて周方向に対面する第1対向面51aと、周方向および径方向に広がりつつ摺動隙間Edを隔てて軸方向に対面する第2対向面51bとを有するように、同一円周上に配置されるとともに、複数対のノックピン穴51kに遊嵌された軸封ボックス33側の複数のノックピン33j、33kによって回転軸21上に案内されるとともに、外周側のガータスプリング52によって回転軸21の外周面上に所定の接触圧で付勢されている。 Then, the plurality of segment seal members 51 spread in the axial direction and the radial direction and face the first facing surface 51a in the circumferential direction with the minute gap Ec separated from each other, and the sliding gap Ed spreads in the circumferential direction and the radial direction. A plurality of knock pins 33j on the shaft sealing box 33 side, which are arranged on the same circumference and are loosely fitted in a plurality of pairs of knock pin holes 51k so as to have a second facing surface 51b facing each other in the axial direction. It is guided on the rotating shaft 21 by 33k, and is urged by a garter spring 52 on the outer peripheral side on the outer peripheral surface of the rotating shaft 21 with a predetermined contact pressure.
 ここで、回転軸21の軸方向に延びる微小隙間Ecは、第1、第2のシールリング31、32の外周面側および相互対面側(凹状の保持穴51n側)では何ら覆われることが無い一方、第1、第2のシールリング31、32が一対の内側壁部33b、33cに密接する密接面側(ノックピン穴51k側)では、一対の内側壁部33b、33cにより覆われて狭められている。 Here, the minute gap Ec extending in the axial direction of the rotating shaft 21 is not covered at all on the outer peripheral surface side and the mutual facing side (concave holding hole 51n side) of the first and second seal rings 31 and 32. On the other hand, on the close surface side (knock pin hole 51k side) where the first and second seal rings 31 and 32 are in close contact with the pair of inner side wall portions 33b and 33c, the first and second seal rings 31 and 32 are covered and narrowed by the pair of inner side wall portions 33b and 33c. ing.
 また、第1、第2のシールリング31、32の軸方向両面側では、回転軸21の軸方向に延びる微小隙間Ecの周方向位置がずれており、周方向に延びる摺動隙間Edは、図4Bに示すように、第1、第2のシールリング31、32の軸方向両面側の微小隙間Ecの間で逆方向の屈曲をなすとともに、軸方向両面側の微小隙間Ecより狭くなっている。これら微小隙間Ecおよび微小隙間Ecは、圧力損失が大きいオリフィス状の漏れ通路51eを構成している。 Further, on both sides of the first and second seal rings 31 and 32 in the axial direction, the circumferential position of the minute gap Ec extending in the axial direction of the rotating shaft 21 is displaced, and the sliding gap Ed extending in the circumferential direction is As shown in FIG. 4B, the first and second seal rings 31 and 32 are bent in the opposite direction between the minute gaps Ec on both sides in the axial direction, and are narrower than the minute gaps Ec on both sides in the axial direction. There is. These minute gaps Ec and minute gaps Ec form an orifice-shaped leak passage 51e having a large pressure loss.
 バックアップシール手段60は、ケーシング10のガス通路11から離隔する軸封ボックス33の外面側(図2中の右端側)に配置され、回転軸21を取り囲む環状の第3のシールリング61と、この第3のシールリング61を径方向の外側および軸方向の外側から覆うよう設けられ、軸封ボックス33の第1環状体34にボルト66により着脱可能に固定された外付け環状部材63と、第3のシールリング61を外付け環状部材63の内側壁部63aに密接するよう回転軸21の軸方向外方側に付勢する圧縮コイルばね等の弾性部材64と、軸封ボックス33の第1環状体34と外付け環状部材63の間に介装されたゴム弾性リングからなるハーメティカルシール65とを有している。 The backup sealing means 60 is arranged on the outer surface side (right end side in FIG. 2) of the shaft sealing box 33 separated from the gas passage 11 of the casing 10, and has an annular third sealing ring 61 surrounding the rotating shaft 21. An external annular member 63 provided so as to cover the third seal ring 61 from the radial outside and the axial outside, and detachably fixed to the first annular body 34 of the shaft sealing box 33 by a bolt 66, and a third. An elastic member 64 such as a compression coil spring for urging the seal ring 61 of No. 3 to the outer side in the axial direction of the rotating shaft 21 so as to be in close contact with the inner side wall portion 63a of the external annular member 63, and the first shaft sealing box 33. It has a hermetic seal 65 made of a rubber elastic ring interposed between the annular body 34 and the external annular member 63.
 このバックアップシール手段60は、軸封ボックス33と外付け環状部材63との間に、静圧ガスシール手段40の主シール室42から大気側へのシールエアの漏れを制限する補助シール室62を形成している。 The backup sealing means 60 forms an auxiliary sealing chamber 62 between the shaft sealing box 33 and the external annular member 63 to limit the leakage of the sealing air from the main sealing chamber 42 of the static pressure gas sealing means 40 to the atmosphere side. is doing.
 また、バックアップシール手段60の第3のシールリング61は、詳細を図示しないが、静圧ガスシール手段40の大気側の第2のシールリング32と略同様に、周方向に隣り合う複数の円弧状のセグメントシール部材(51相当)と、これら複数のセグメントシール部材を回転軸21側に付勢しつつ弾性的に一体に拘束するガータスプリング(52相当)とで構成された分割シール構造を有している。 Further, although the details of the third seal ring 61 of the backup seal means 60 are not shown in detail, a plurality of circles adjacent to each other in the circumferential direction are substantially similar to the second seal ring 32 on the atmosphere side of the static pressure gas seal means 40. It has a split seal structure composed of an arc-shaped segment seal member (equivalent to 51) and a garter spring (equivalent to 52) that elastically and integrally restrains these plurality of segment seal members while urging them toward the rotating shaft 21 side. is doing.
 そして、第3のシールリング61の複数のセグメントシール部材も、図4A、図4Bに示す第2のシールリング32の複数の円弧状のセグメントシール部材51と同様に、複数のセグメントシール部材によって圧力損失の大きいオリフィス状の漏れ通路(同図中に括弧付き符号61eで示す)を有している。 The plurality of segment seal members of the third seal ring 61 are also pressured by the plurality of segment seal members, similarly to the plurality of arcuate segment seal members 51 of the second seal ring 32 shown in FIGS. 4A and 4B. It has an orifice-shaped leak passage (indicated by reference numeral 61e in parentheses in the figure) having a large loss.
 このような本実施形態のシール装置30においては、主シール室42へのシールエアの供給圧が大気圧より十分に高い圧力P1[MPa]であるとき、第2のシールリング32の漏れ通路51eから漏れ出るシールエアがいわゆるチョーク流れになる条件((P2+0.1)/(P1+0.1)が臨界圧力比b以下)が成立し得る。この場合、主シール室42から補助シール室62側にシールエアが漏れ出る際に第2のシールリング32によって上流圧力P1に応じた大きな圧力損失が生じることになり、主シール室42から補助シール室62側に漏れ出るシールエアの質量流量が有効に制限される。 In such a sealing device 30 of the present embodiment, when the supply pressure of the sealing air to the main sealing chamber 42 is a pressure P1 [MPa] sufficiently higher than the atmospheric pressure, the leakage passage 51e of the second sealing ring 32 The condition that the leaking seal air becomes a so-called choked flow ((P2 + 0.1) / (P1 + 0.1) is a critical pressure ratio b or less) can be satisfied. In this case, when the seal air leaks from the main seal chamber 42 to the auxiliary seal chamber 62 side, a large pressure loss corresponding to the upstream pressure P1 is generated by the second seal ring 32, and the auxiliary seal chamber 42 to the auxiliary seal chamber 42. The mass flow rate of the seal air leaking to the 62 side is effectively limited.
 また、この場合、補助シール室62内の圧力P2は、大気圧以上であるものの主シール室42内のシールエアの圧力P1より十分に小さい所定圧以下となり、第3のシールリング61の上流圧力である補助シール室62内の圧力P2に対して、下流圧力である大気圧P3[MPa]の圧力比が比較的大きくなる。よって、第3のシールリング61のオリフィス状の漏れ通路61eから漏れ出るシールエアがいわゆる亜音速流れになる条件((P3+0.1)/(P2+0.1)が臨界圧力比bより大きい)が成立し得る。したがって、補助シール室62から大気側に漏れ出るシールエアの質量流量は、補助シール室62内の圧力P2および大気圧P3の双方に依存するものとなり、第3のシールリング61によって十分に(補助シール室62内が圧力P1程度に高圧でチョーク流れになる場合よりも小流量に)制限される。 Further, in this case, the pressure P2 in the auxiliary seal chamber 62 becomes a predetermined pressure or less, which is sufficiently smaller than the pressure P1 of the seal air in the main seal chamber 42, although the pressure is equal to or higher than the atmospheric pressure, and the upstream pressure of the third seal ring 61 is applied. The pressure ratio of the atmospheric pressure P3 [MPa], which is the downstream pressure, becomes relatively large with respect to the pressure P2 in the auxiliary seal chamber 62. Therefore, the condition that the seal air leaking from the orifice-shaped leak passage 61e of the third seal ring 61 becomes a so-called subsonic flow ((P3 + 0.1) / (P2 + 0.1) is larger than the critical pressure ratio b) is satisfied. obtain. Therefore, the mass flow rate of the seal air leaking from the auxiliary seal chamber 62 to the atmosphere side depends on both the pressure P2 and the atmospheric pressure P3 in the auxiliary seal chamber 62, and is sufficiently (auxiliary seal) by the third seal ring 61. The flow rate is limited to a smaller flow rate than when the inside of the chamber 62 becomes a choked flow at a high pressure of about P1.
 一方、主シール室42へのシールエアの供給圧が大気圧より高い圧力であってもさほど高圧でない場合か、あるいは、主シール室42へのシールエアの供給圧が大気圧より十分に高い圧力P1であるものの補助シール室62内の圧力P2が比較的高い場合、第2のシールリング32のオリフィス状の漏れ通路51eから漏れ出るシールエアが亜音速流れになる条件((P2+0.1)/(P1+0.1)が臨界圧力比bより大きい)が成立し得る。 On the other hand, when the supply pressure of the seal air to the main seal chamber 42 is higher than the atmospheric pressure but not so high, or at the pressure P1 where the supply pressure of the seal air to the main seal chamber 42 is sufficiently higher than the atmospheric pressure. However, when the pressure P2 in the auxiliary seal chamber 62 is relatively high, the condition that the seal air leaking from the orifice-shaped leak passage 51e of the second seal ring 32 becomes a subsonic flow ((P2 + 0.1) / (P1 + 0.). 1) is larger than the critical pressure ratio b) can be established.
 この場合には、主シール室42から補助シール室62側に漏れ出るシールエアの質量流量は、主シール室42内の圧力P1および補助シール室62内の圧力P2の双方に依存するものとなって、第2のシールリング32によって十分に(チョーク流れになる場合よりも小流量に)制限される。 In this case, the mass flow rate of the seal air leaking from the main seal chamber 42 to the auxiliary seal chamber 62 side depends on both the pressure P1 in the main seal chamber 42 and the pressure P2 in the auxiliary seal chamber 62. , The second seal ring 32 is sufficiently limited (to a smaller flow rate than in the case of choked flow).
 このように、本実施形態のシール装置30を有するEGRブロワ133は、シール装置30の静圧ガスシール手段40およびバックアップシール手段60を協働させることで、ケーシング10の軸穴12を通して大気側に漏れ出るシールエアの漏れ量を十分に低減させるようになっている。 As described above, the EGR blower 133 having the sealing device 30 of the present embodiment cooperates with the static pressure gas sealing means 40 and the backup sealing means 60 of the sealing device 30 to move to the atmosphere side through the shaft hole 12 of the casing 10. The amount of leaked seal air is sufficiently reduced.
 図2に示すように、ケーシング10に対して外付け環状部材63より軸方向外方側に位置する回転軸21上には、外付け環状部材63の内周径より大径の円環板状の振切板81が配置されている。この振切板81は、回転軸21の外周面上に略垂直な邪魔板状に突出しており、補助シール室62から回転軸21の軸方向に漏れ出るシールエアを、周囲の塵埃などと共に放射外方向に振り切ることで、モータ70側への塵埃の侵入を抑制するようになっている。 As shown in FIG. 2, on the rotating shaft 21 located on the outer side in the axial direction from the external annular member 63 with respect to the casing 10, a ring plate having a diameter larger than the inner peripheral diameter of the external annular member 63 is formed. The shake plate 81 of the above is arranged. The shake-off plate 81 projects in the shape of a baffle plate substantially perpendicular to the outer peripheral surface of the rotary shaft 21, and radiates the seal air leaking from the auxiliary seal chamber 62 in the axial direction of the rotary shaft 21 together with surrounding dust and the like. By swinging it off in the direction, the intrusion of dust into the motor 70 side is suppressed.
 ところで、ターボ過給機120では、エンジン110の排気レシーバ104からの排気エネルギによってタービン121が回転駆動されるとき、コンプレッサ122に取り込まれる新気(外からの空気)およびEGRガスが加圧され、エンジン110の給気レシーバ103側に所定の過給圧で過給される。このターボ過給機120は、予め設定された運転条件に従って、タービン121への排気の取り込みを可変ノズル機能により制御したり、排気をバイパスさせるとともにそのバイパス流量を制御したりするように構成されてもよい。その場合、エンジン110の運転状態により排気レシーバ104からの排気のエネルギが変化し得るのに対し、ターボ過給機120による過給圧を好適に制御可能となる。 By the way, in the turbocharger 120, when the turbine 121 is rotationally driven by the exhaust energy from the exhaust receiver 104 of the engine 110, the fresh air (air from the outside) and the EGR gas taken into the compressor 122 are pressurized. It is supercharged to the supply air receiver 103 side of the engine 110 with a predetermined supercharging pressure. The turbocharger 120 is configured to control the intake of exhaust gas into the turbine 121 by a variable nozzle function, bypass the exhaust gas, and control the bypass flow rate according to preset operating conditions. May be good. In that case, the energy of the exhaust gas from the exhaust receiver 104 may change depending on the operating state of the engine 110, whereas the supercharging pressure by the turbocharger 120 can be suitably controlled.
 また、EGR装置130は、エンジンの回転数[rpm]に応じて、あるいは予め設定された運転条件に従って、再循環経路Leを絞ったり遮断したりすることで、その作動を選択的に制限するものとすることができる。このようにすることで、エンジンの回転数[rpm]や船舶の航行海域に応じたNOxの選択的な排出制限が可能となる。 Further, the EGR device 130 selectively limits its operation by narrowing or shutting off the recirculation path Le according to the engine speed [rpm] or according to preset operating conditions. Can be. By doing so, it is possible to selectively limit the emission of NOx according to the engine speed [rpm] and the navigation area of the ship.
 次に、作用について説明する。 Next, the action will be explained.
 上述のように構成された本実施形態のシール装置30を備えたEGRブロワ133においては、第1、第2のシールリング31、32の間に形成される主シール室42内に静圧ガスシール手段40によってガス通路11に連通する軸穴12内よりも高圧のシールエアが導入されることで、EGRブロワ133内の排ガスがガス通路11側から大気側への漏れ出ることが確実に防止される。 In the EGR blower 133 provided with the sealing device 30 of the present embodiment configured as described above, the static pressure gas seal is formed in the main sealing chamber 42 formed between the first and second sealing rings 31 and 32. By introducing the seal air having a higher pressure than the inside of the shaft hole 12 communicating with the gas passage 11 by the means 40, it is surely prevented that the exhaust gas in the EGR blower 133 leaks from the gas passage 11 side to the atmosphere side. ..
 また、第2のシールリング32の前後差圧がバックアップシール手段60の第3のシールリング61により抑えられるとともに、第3のシールリング61の前後差圧も抑えられることから、各シールリング32、61の前後差圧に応じて変化し得る大気側へのシールエアの漏れ流量が、静圧ガスシール手段40およびバックアップシール手段60の協働により有効に制限される。 Further, since the front-rear differential pressure of the second seal ring 32 is suppressed by the third seal ring 61 of the backup sealing means 60 and the front-rear differential pressure of the third seal ring 61 is also suppressed, each seal ring 32, The leakage flow rate of the seal air to the atmosphere side, which can change depending on the front-rear differential pressure of 61, is effectively limited by the cooperation of the static pressure gas sealing means 40 and the backup sealing means 60.
 しかも、本実施形態では、ケーシング10に、エンジン110の排ガスの一部を導入可能なガス通路11が形成されており、そのガス通路11に連通する軸穴12に回転軸21が挿通されてインペラ22が支持され、ガス通路11に導入した排気ガスをエンジン110に再循環可能に昇圧させるブロワ構成となっているので、NOx等の排出量の低減のためにエンジン110の排気を再循環させることができるEGRブロワ133に好適なものとなる。 Moreover, in the present embodiment, a gas passage 11 into which a part of the exhaust gas of the engine 110 can be introduced is formed in the casing 10, and the rotating shaft 21 is inserted into the shaft hole 12 communicating with the gas passage 11 to be an impeller. Since the blower configuration is such that the 22 is supported and the exhaust gas introduced into the gas passage 11 is recirculated to the engine 110 so as to be recirculated, the exhaust gas of the engine 110 is recirculated in order to reduce the emission amount of NOx and the like. It is suitable for the EGR blower 133 that can be used.
 さらに、本実施形態では、第1、第2のシールリング31、32のうち少なくとも大気側の第2のシールリング32が、複数の円弧状のセグメントシール部材51で構成されているので、複数のセグメントシール部材51の内周面形状や端部形状に応じてそれらの間の微小隙間Ec、Ed等を適宜の形状やサイズに設定でき、第2のシールリング32の微小隙間を通過するシールエアの漏れ流量および第2のシールリング32の前後差圧を安定確保可能となる。 Further, in the present embodiment, at least the second seal ring 32 on the atmosphere side of the first and second seal rings 31 and 32 is composed of a plurality of arcuate segment seal members 51, so that a plurality of seal rings 32 are formed. Depending on the shape of the inner peripheral surface and the shape of the end of the segment seal member 51, the minute gaps Ec, Ed, etc. between them can be set to an appropriate shape and size, and the seal air passing through the minute gap of the second seal ring 32 can be set. The leakage flow rate and the front-rear differential pressure of the second seal ring 32 can be stably secured.
 加えて、本実施形態では、バックアップシール手段60が第3のシールリング61を径方向の外側および軸方向の外側から覆う外付け環状部材63と、第3のシールリング61を外付け環状部材63に密接するよう回転軸21の軸方向に付勢する弾性部材64とを有しているので、第3のシールリング61および外付け環状部材63によって補助シール室62を容易に形成できるとともに、第3のシールリング61の安定したシール姿勢を設定可能となり、運転中のシールエアの大気側への漏れをより有効に低減可能となる。 In addition, in the present embodiment, the backup seal means 60 covers the third seal ring 61 from the radial outside and the axial outside, and the third seal ring 61 covers the external annular member 63. Since it has an elastic member 64 that urges the rotary shaft 21 in the axial direction so as to be in close contact with the third seal ring 61, the auxiliary seal chamber 62 can be easily formed by the third seal ring 61 and the external annular member 63, and the auxiliary seal chamber 62 can be easily formed. The stable sealing posture of the sealing ring 61 of 3 can be set, and the leakage of the sealing air during operation to the atmosphere side can be reduced more effectively.
 また、本実施形態では、外付け環状部材63が軸封ボックス33に対しガス通路11から離隔する軸方向外方側に着脱可能に結合されているので、既存のブロワに、第3のシールリング61および外付け環状部材63を容易に追加することができる。 Further, in the present embodiment, since the external annular member 63 is detachably coupled to the shaft sealing box 33 on the outward side in the axial direction separated from the gas passage 11, a third seal ring is attached to the existing blower. 61 and the external annular member 63 can be easily added.
 さらに、本発明の好ましい実施形態は、軸封ボックス33に対しガス通路11から離隔する軸方向外方側に回転軸21を回転駆動するモータ70が配置されており、ケーシング10とモータ70のケース72とが一体に連結されているので、コンパクトなEGRブロワ133を作製可能となる。 Further, in a preferred embodiment of the present invention, a motor 70 for rotationally driving the rotating shaft 21 is arranged on the outward side in the axial direction separated from the gas passage 11 with respect to the shaft sealing box 33, and the casing 10 and the case of the motor 70 are arranged. Since the 72 is integrally connected, a compact EGR blower 133 can be manufactured.
 加えて、本実施形態では、外付け環状部材63より軸方向の外側の回転軸21上に、外付け環状部材63の内周径(図2中の半径R1に対応する穴径(2R1))より大径の円環板状の振切板81が配置されているので、補助シール室62から軸方向の外側に漏れ出るシールエアを振切板81によって周囲の塵埃などと共に放射外方向に振り切ることができ、モータ70側への塵埃の侵入を有効に抑制することができる。 In addition, in the present embodiment, the inner peripheral diameter of the external annular member 63 (hole diameter (2R1) corresponding to the radius R1 in FIG. 2) is on the rotating shaft 21 axially outside the external annular member 63. Since a larger diameter annular plate-shaped shake-off plate 81 is arranged, the seal air leaking outward from the auxiliary seal chamber 62 in the axial direction is shaken off by the shake-off plate 81 in the outward radiation direction together with surrounding dust and the like. It is possible to effectively suppress the intrusion of dust into the motor 70 side.
 このように、本実施形態においては、EGRブロワ133の軸穴12を閉塞するメカニカルシール方式のシール装置30が、軸穴12の近傍で回転軸21を取り囲む環状の第1および第2のシールリング31、32と、第1および第2のシールリング31、32を取り囲む環状壁部33aとその環状壁部33aに対し回転軸21の軸方向の両側で一体に結合する一対の内側壁部33b、33cとを有する環状の軸封ボックス33と、軸封ボックス33内にガス通路11内以上に高圧のシールエアを導入するとともに第1および第2のシールリング31、32を一対の内側壁部33b、33cに密接させた主シール室42を形成し、ガス通路11から大気側への排ガスの漏れを防止する静圧ガスシール手段40と、軸封ボックス33に対しガス通路11から離隔する軸方向外方側で回転軸21を取り囲む環状の第3のシールリング61を有し、主シール室42から大気側へのシールエアの漏れを制限する補助シール室62を形成するバックアップシール手段60とを含んでいる構成となっている。 As described above, in the present embodiment, the mechanical sealing type sealing device 30 that closes the shaft hole 12 of the EGR blower 133 is an annular first and second sealing ring that surrounds the rotating shaft 21 in the vicinity of the shaft hole 12. A pair of inner side wall portions 33b that are integrally coupled to the annular wall portions 33a surrounding the first and second seal rings 31 and 32 and the annular wall portions 33a on both sides of the rotating shaft 21 in the axial direction. An annular shaft seal box 33 having 33c, and a pair of inner side wall portions 33b, which introduce high-pressure seal air into the shaft seal box 33 above the inside of the gas passage 11 and the first and second seal rings 31 and 32. A static pressure gas sealing means 40 that forms a main seal chamber 42 in close contact with 33c to prevent leakage of exhaust gas from the gas passage 11 to the atmosphere side, and a shaft sealing box 33 that is separated from the gas passage 11 in the non-axial direction. It has an annular third seal ring 61 that surrounds the rotating shaft 21 on the side, and includes a backup seal means 60 that forms an auxiliary seal chamber 62 that limits the leakage of seal air from the main seal chamber 42 to the atmosphere side. It is configured to be.
 したがって、EGRブロワ133内の排ガスがガス通路11側から船舶内の大気側への漏れるのを静圧ガスシール手段40の加圧されたシールエアによって有効に抑制できるとともに、シールエアの大気側への漏れ量を静圧ガスシール手段40およびバックアップシール手段60の協働により十分に低減させることができる。 Therefore, the exhaust gas in the EGR blower 133 can be effectively suppressed from leaking from the gas passage 11 side to the atmosphere side in the ship by the pressurized seal air of the static pressure gas sealing means 40, and the seal air leaks to the atmosphere side. The amount can be sufficiently reduced by the cooperation of the static pressure gas sealing means 40 and the backup sealing means 60.
 なお、上述の一実施形態に係るEGRブロワ133においては、回転軸21がモータ70の出力軸71に一体に締結されるものとしていたが、図5に示すように、回転軸21がのモータ70の出力軸71に一体に締結される略円筒体23とは別に、略円筒体23の外周面上に回り止め固定されたシール専用の回転スリーブ27を有しており、その回転スリーブ27に、シールリング31、32、61との摺動に対する摩擦抵抗が小さく、かつ、耐摩耗性に優れた摺動面を形成する表面処理部27aが設けられるような構成とすることも可能である。 In the EGR blower 133 according to the above-described embodiment, the rotary shaft 21 is integrally fastened to the output shaft 71 of the motor 70, but as shown in FIG. 5, the rotary shaft 21 is the motor 70. In addition to the substantially cylindrical body 23 that is integrally fastened to the output shaft 71 of the above, a rotary sleeve 27 dedicated to the seal, which is fixed to prevent rotation on the outer peripheral surface of the substantially cylindrical body 23, is provided. It is also possible to provide a surface treated portion 27a that forms a sliding surface having a small frictional resistance with the seal rings 31, 32, and 61 and having excellent wear resistance.
 また、上述の一実施形態では、シールリング31、32、61はすべて同一の分割シール構造を有するものとしたが、第1のシールリング31または第3のシールリング61が第2のシールリング32とは異なるシール構造であってもよいことはいうまでもない。さらに、一実施形態ではエンジン110を船舶用としたが、本発明は、船舶用以外の大型の機関、例えば発電機を動作させるための定置機関等であって、その発電機および定置機関等が相対的に狭い空間内に設置されるような場合にも、適用可能である。 Further, in the above-described embodiment, the seal rings 31, 32, and 61 all have the same split seal structure, but the first seal ring 31 or the third seal ring 61 is the second seal ring 32. Needless to say, the seal structure may be different from that of the above. Further, although the engine 110 is used for a ship in one embodiment, the present invention is a large engine other than that for a ship, for example, a stationary engine for operating a generator, and the generator, the stationary engine, and the like are used. It can also be applied when it is installed in a relatively narrow space.
 以上説明したように、本発明は、シールエア供給源の消費動力を抑えることができるブロワを提供することができ、併せて、船舶用のエンジンのEGRブロワに好適なブロワを提供することができるものであり、大型のエンジンの排気再循環システムに好適なブロワ全般に有用である。 As described above, the present invention can provide a blower capable of suppressing the power consumption of the seal air supply source, and at the same time, can provide a blower suitable for an EGR blower of a marine engine. Therefore, it is useful for all blowers suitable for an exhaust gas recirculation system of a large engine.
 10 ケーシング
 11 ガス通路
 12 軸穴
 21 回転軸
 22 インペラ
 30 シール装置
 31 第1のシールリング
 32 第2のシールリング
 33 軸封ボックス
 33a 環状壁部
 33b、33c 一対の内側壁部
 34h シールエア通路
 40 静圧ガスシール手段
 42 主シール室
 45 シールエア供給回路
 51 セグメントシール部材
 51a 第1対向面
 51b 第2対向面
 51e、61e 漏れ通路
 60 バックアップシール手段
 61 第3のシールリング
 62 補助シール室
 63 外付け環状部材
 63a 内側壁部
 64 弾性部材
 65 ハーメティカルシール
 70 モータ
 71 出力軸
 81 振切板
 100 動力システム
 103 給気レシーバ
 104 排気レシーバ
 110 エンジン
 120 ターボ過給機
 130 EGR装置
 133 EGRブロワ
 Ec 微小隙間
 Ed 摺動隙間
 Lc 過給通路
 Le 再循環経路
 P1 圧力(主シール室内の圧力)
 P2 圧力(補助シール室内の圧力)
 P3 大気圧

 
10 Casing 11 Gas passage 12 Shaft hole 21 Rotating shaft 22 Impeller 30 Sealing device 31 First seal ring 32 Second seal ring 33 Shaft sealing box 33a Circular wall part 33b, 33c Pair of inner side wall parts 34h Sealing air passage 40 Static pressure Gas sealing means 42 Main sealing chamber 45 Sealing air supply circuit 51 Segment sealing member 51a First facing surface 51b Second facing surface 51e, 61e Leakage passage 60 Backup sealing means 61 Third sealing ring 62 Auxiliary sealing chamber 63 External annular member 63a Inner side wall part 64 Elastic member 65 Hermetic seal 70 Motor 71 Output shaft 81 Shake plate 100 Power system 103 Air supply receiver 104 Exhaust receiver 110 Engine 120 Turbo supercharger 130 EGR device 133 EGR Blower Ec Micro gap Ed Sliding gap Lc supercharging passage Le recirculation path P1 pressure (pressure in the main seal chamber)
P2 pressure (pressure in the auxiliary seal chamber)
P3 atmospheric pressure

Claims (8)

  1.  ガス通路と該ガス通路に連通する軸穴とが形成されたケーシングと、前記ケーシングの前記軸穴に回転自在に挿通された回転軸と、前記回転軸に支持されて前記ケーシング内に収納されインペラと、前記軸穴をシールするシール装置と、を備えたブロワであって、
     前記シール装置が、
     前記軸穴の近傍で前記回転軸を取り囲む環状の第1および第2のシールリングと、
     前記第1および第2のシールリングを取り囲む環状壁部と該環状壁部に対し前記回転軸の軸方向の両側で一体に結合する一対の内側壁部とを有する環状の軸封ボックスと、
     前記軸封ボックス内に前記ガス通路内以上に高圧のシールエアを導入するとともに前記第1および第2のシールリングを前記一対の内側壁部に密接させた主シール室を形成し、前記ガス通路から大気側への前記排ガスの漏れを防止する静圧ガスシール手段と、
     前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記回転軸を取り囲む環状の第3のシールリングを有し、前記主シール室から大気側へのシールエアの漏れを制限する補助シール室を形成するバックアップシール手段と、を含んでいることを特徴とするブロワ。
    A casing in which a gas passage and a shaft hole communicating with the gas passage are formed, a rotating shaft rotatably inserted into the shaft hole of the casing, and an impeller supported by the rotating shaft and housed in the casing. And a blower provided with a sealing device for sealing the shaft hole.
    The sealing device
    An annular first and second seal ring surrounding the rotating shaft in the vicinity of the shaft hole,
    An annular shaft seal box having an annular wall portion surrounding the first and second seal rings and a pair of inner side wall portions integrally coupled to the annular wall portion on both sides of the axis of rotation in the axial direction.
    A main seal chamber is formed in the shaft seal box in which a higher pressure seal air is introduced than in the gas passage and the first and second seal rings are brought into close contact with the pair of inner side walls, and the main seal chamber is formed from the gas passage. A static pressure gas sealing means for preventing the exhaust gas from leaking to the atmosphere side,
    Auxiliary to limit the leakage of seal air from the main seal chamber to the atmosphere side by having an annular third seal ring surrounding the rotating shaft on the outward side in the axial direction away from the gas passage with respect to the shaft seal box. A blower comprising a backup sealing means, which forms a sealing chamber.
  2.  前記ケーシングに、エンジンの排ガスの一部を導入可能な前記ガス通路と該ガス通路に連通する前記軸穴とが形成されており、
     前記インペラが、前記ガス通路に導入し昇圧した排気ガスを前記エンジンに再循環させることを特徴とする請求項1に記載のブロワ。
    The casing is formed with the gas passage into which a part of the exhaust gas of the engine can be introduced and the shaft hole communicating with the gas passage.
    The blower according to claim 1, wherein the impeller recirculates the exhaust gas introduced into the gas passage and boosted to the engine.
  3.  前記第1、第2のシールリングのうち少なくとも大気側の前記第2のシールリングが、周方向に隣り合う複数の円弧状のセグメントシール部材で構成されており、
     前記複数のセグメントシール部材同士が、軸方向および径方向に広がりつつ周方向に対面する第1対向面と、前記周方向および径方向に広がりつつ軸方向に対面する第2対向面とを有していることを特徴とする請求項1または2に記載のブロワ。
    Of the first and second seal rings, at least the second seal ring on the atmospheric side is composed of a plurality of arcuate segment seal members adjacent to each other in the circumferential direction.
    The plurality of segment seal members have a first facing surface that spreads in the axial direction and the radial direction and faces each other in the circumferential direction, and a second facing surface that spreads in the circumferential direction and the radial direction and faces each other in the axial direction. The blower according to claim 1 or 2, wherein the blower is characterized by the above.
  4.  前記バックアップシール手段が、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記第3のシールリングを径方向の外側および軸方向の外側から覆う外付け環状部材と、前記第3のシールリングを前記外付け環状部材に密接するよう前記回転軸の軸方向に付勢する弾性部材と、をさらに有していることを特徴とする請求項1ないし3のいずれか一項に記載のブロワ。 The backup sealing means includes an external annular member that covers the third sealing ring from the radial outside and the axial outside on the axially outer side separated from the gas passage with respect to the shaft sealing box. The invention according to any one of claims 1 to 3, further comprising an elastic member for urging the seal ring of No. 3 in the axial direction of the rotating shaft so as to be in close contact with the external annular member. The blower described.
  5.  前記外付け環状部材が、前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側に固定されていることを特徴とする請求項4に記載のブロワ。 The blower according to claim 4, wherein the external annular member is fixed to the shaft sealing box on the outward side in the axial direction separated from the gas passage.
  6.  前記回転軸を回転駆動するモータが設けられており、
     前記ケーシングと前記モータが一体に連結されていることを特徴とする請求項5に記載のブロワ。
    A motor for rotationally driving the rotating shaft is provided.
    The blower according to claim 5, wherein the casing and the motor are integrally connected.
  7.  前記外付け環状部材より前記軸方向外方側の前記回転軸上に、前記外付け環状部材の内周径より大径の円環板状の振切板が配置されていることを特徴とする請求項6に記載のブロワ。 A ring-shaped swing plate having a diameter larger than the inner peripheral diameter of the external annular member is arranged on the rotating shaft on the outer side in the axial direction from the external annular member. The blower according to claim 6.
  8.  エンジンの排ガスの一部を導入可能なガス通路と該ガス通路に連通する軸穴とが形成されたケーシングと、前記ケーシングの前記軸穴に回転自在に挿通された回転軸と、前記回転軸に支持されて前記ケーシング内に収納され、前記ガス通路に導入し昇圧したEGRガスを前記エンジンに再循環させるインペラと、を備えたブロワに装着され、前記軸穴をシールするEGRブロアのシール装置であって、
     前記軸穴の近傍で前記回転軸を取り囲む環状の第1および第2のシールリングと、
     前記第1および第2のシールリングを取り囲む環状壁部と該環状壁部に対し前記回転軸の軸方向の両側で一体に結合する一対の内側壁部とを有する環状の軸封ボックスと、
     前記軸封ボックス内に前記ガス通路内以上に高圧のシールエアを導入するとともに前記第1および第2のシールリングを前記一対の内側壁部に密接させた主シール室を形成し、前記ガス通路から大気側への前記排ガスの漏れを防止する静圧ガスシール手段と、
     前記軸封ボックスに対し前記ガス通路から離隔する軸方向外方側で前記回転軸を取り囲む環状の第3のシールリングを有し、前記主シール室から大気側へのシールエアの漏れを制限する補助シール室を形成するバックアップシール手段と、を含んでいることを特徴とするブロワのシール装置。
     
    A casing in which a gas passage into which a part of the exhaust gas of the engine can be introduced and a shaft hole communicating with the gas passage are formed, a rotating shaft rotatably inserted into the shaft hole of the casing, and the rotating shaft. An EGR blower sealing device that is mounted on a blower equipped with an impeller that is supported, housed in the casing, introduced into the gas passage, and recirculated the boosted EGR gas to the engine, and seals the shaft hole. There,
    An annular first and second seal ring surrounding the rotating shaft in the vicinity of the shaft hole,
    An annular shaft seal box having an annular wall portion surrounding the first and second seal rings and a pair of inner side wall portions integrally coupled to the annular wall portion on both sides of the axis of rotation in the axial direction.
    A main seal chamber is formed in the shaft seal box in which a higher pressure seal air is introduced than in the gas passage and the first and second seal rings are brought into close contact with the pair of inner side walls, and the main seal chamber is formed from the gas passage. A static pressure gas sealing means for preventing the exhaust gas from leaking to the atmosphere side,
    Auxiliary to limit the leakage of seal air from the main seal chamber to the atmosphere side by having an annular third seal ring surrounding the rotating shaft on the outward side in the axial direction away from the gas passage with respect to the shaft seal box. A blower sealing device comprising a backup sealing means for forming a sealing chamber.
PCT/JP2021/011827 2020-06-04 2021-03-23 Blower WO2021246029A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217035476A KR102653737B1 (en) 2020-06-04 2021-03-23 blower
JP2021576138A JP7319636B2 (en) 2020-06-04 2021-03-23 Blower
CN202180003259.XA CN114207287B (en) 2020-06-04 2021-03-23 Blower fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-097939 2020-06-04
JP2020097939 2020-06-04

Publications (1)

Publication Number Publication Date
WO2021246029A1 true WO2021246029A1 (en) 2021-12-09

Family

ID=78830774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011827 WO2021246029A1 (en) 2020-06-04 2021-03-23 Blower

Country Status (4)

Country Link
JP (1) JP7319636B2 (en)
KR (1) KR102653737B1 (en)
CN (1) CN114207287B (en)
WO (1) WO2021246029A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102642291B1 (en) * 2023-07-14 2024-02-28 가부시키가이샤 오사카소우후우키세이사쿠쇼 blower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624663A (en) * 1985-07-01 1987-01-10 Nissan Motor Co Ltd Fault diagnosing apparatus for vehicle
JP2012107609A (en) * 2010-10-22 2012-06-07 Kobe Steel Ltd Compressor
JP2014125986A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Seal device, and rotary machine using the same
JP2016089671A (en) * 2014-10-31 2016-05-23 三菱日立パワーシステムズ株式会社 Air blower, exhaust gas recirculation system, and manufacturing method of air blower
WO2020017635A1 (en) * 2018-07-19 2020-01-23 株式会社荏原製作所 Sealing system and pump system provided with sealing system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037340B2 (en) * 1972-09-08 1975-12-02
JPH0222526Y2 (en) * 1985-06-24 1990-06-18
JPH0932797A (en) * 1995-07-21 1997-02-04 Ube Ind Ltd Sealing structure of pump shaft sealing part
DE29600707U1 (en) * 1996-01-17 1996-03-07 Burgmann Dichtungswerk Feodor Sealing arrangement
JP2002332919A (en) 2001-02-26 2002-11-22 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system
DE102008027232B3 (en) * 2008-06-06 2009-09-03 Uhde Gmbh Blocking of the NO compressor and the residual gas expander in a nitric acid plant
JP4997336B2 (en) 2010-01-29 2012-08-08 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Large two-cycle diesel engine with exhaust gas recirculation system
JP2012172647A (en) 2011-02-24 2012-09-10 Mitsui Eng & Shipbuild Co Ltd Exhaust heat recovery system of engine including turbocharger
CN202646137U (en) * 2012-03-30 2013-01-02 江苏乘帆压缩机有限公司 Shaft-end sealing device of centrifugal type gas compression equipment
EP3208468A1 (en) * 2016-02-22 2017-08-23 Siemens Turbomachinery Equipment GmbH Radial compressor
JP6819656B2 (en) 2018-07-25 2021-01-27 カシオ計算機株式会社 Circuit board, program, and button structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624663A (en) * 1985-07-01 1987-01-10 Nissan Motor Co Ltd Fault diagnosing apparatus for vehicle
JP2012107609A (en) * 2010-10-22 2012-06-07 Kobe Steel Ltd Compressor
JP2014125986A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Seal device, and rotary machine using the same
JP2016089671A (en) * 2014-10-31 2016-05-23 三菱日立パワーシステムズ株式会社 Air blower, exhaust gas recirculation system, and manufacturing method of air blower
WO2020017635A1 (en) * 2018-07-19 2020-01-23 株式会社荏原製作所 Sealing system and pump system provided with sealing system

Also Published As

Publication number Publication date
CN114207287A (en) 2022-03-18
JPWO2021246029A1 (en) 2021-12-09
KR102653737B1 (en) 2024-04-01
KR20210151860A (en) 2021-12-14
JP7319636B2 (en) 2023-08-02
CN114207287B (en) 2024-05-14

Similar Documents

Publication Publication Date Title
US8096127B2 (en) Exhaust turbo-supercharger
US8333073B2 (en) Internal combustion engine with two-stage turbo charging system
KR101116455B1 (en) supercharging device
US20090056681A1 (en) Supercharger with electric motor
JP2002303145A (en) Internal combustion engine with turbo-charger
JP4209590B2 (en) Exhaust gas recirculation valve with integral feedback proportional to volumetric flow
US11965470B2 (en) High efficiency turbocharger with EGR system
JPS6036734A (en) Suction region variable turbine
WO2021246029A1 (en) Blower
US10184484B2 (en) Single inlet/outlet connection for turbocharger compressor
US10458319B2 (en) Wastegate assembly, a turbocharger that utilizes the wastegate assembly and a method
US10018164B2 (en) Gas compressor pressure relief noise reduction
WO2015005252A1 (en) Silencer for supercharger
JP2999173B2 (en) Leakage gas discharge device for exhaust gas turbocharger
JP7042650B2 (en) Turbocharger
KR100774336B1 (en) Turbo charger system for diesel engine
WO2018050858A1 (en) An exhaust gas treatment system for an internal combustion engine and a method of treatment of exhaust gas
KR20110062132A (en) Apparatus for decreasing nitrogen oxide in diesel engine
JP2009074501A (en) Supercharger for internal combustion engine
JP3918260B2 (en) Exhaust gas recirculation system for turbochargers
SE2251095A1 (en) Turbine Arrangement for Turbo Device, Turbo Device, Internal Combustion Engine, and Vehicle
JP2021156198A (en) Blow-by gas recirculation device
WO2024063690A1 (en) Exhaust system, internal combustion engine, and vehicle
SU1370274A1 (en) Four-stroke diesel engine with gas-turbine supercharging
KR20120107777A (en) Insert cooling device of turbocharger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217035476

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021576138

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818298

Country of ref document: EP

Kind code of ref document: A1