WO2021245881A1 - Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor - Google Patents

Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor Download PDF

Info

Publication number
WO2021245881A1
WO2021245881A1 PCT/JP2020/022124 JP2020022124W WO2021245881A1 WO 2021245881 A1 WO2021245881 A1 WO 2021245881A1 JP 2020022124 W JP2020022124 W JP 2020022124W WO 2021245881 A1 WO2021245881 A1 WO 2021245881A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
secondary resistance
end ring
stator
die
Prior art date
Application number
PCT/JP2020/022124
Other languages
French (fr)
Japanese (ja)
Inventor
晶子 新
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022529251A priority Critical patent/JP7309068B2/en
Priority to PCT/JP2020/022124 priority patent/WO2021245881A1/en
Publication of WO2021245881A1 publication Critical patent/WO2021245881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present disclosure relates to a secondary resistance adjusting device for a cage-type die cast rotor and a secondary resistance adjusting method for the die casting rotor.
  • the cage-shaped die-casting rotor is manufactured by a die-casting method in which molten aluminum is poured into the iron core for the rotor, and the aluminum part is composed of a plurality of rotor bars and an annular end ring in which the end faces of the rotor bars are connected to each other.
  • the combined resistance of the rotor bar and end ring is called the secondary resistance and affects the torque characteristics of the motor.
  • Patent Document 1 discloses a method for obtaining a die-cast rotor having a desired secondary resistance by die-casting a conductive material having a resistivity different from that of aluminum together with aluminum.
  • Patent Document 1 it is necessary to prepare a large number of types of conductive materials for adjusting the secondary resistance, and when the conductivity of aluminum itself varies depending on the material lot or the like, the desired secondary resistance is obtained. There is a problem that it does not become.
  • the present disclosure has been made in view of the above, and a die cast rotor having a desired secondary resistance can be obtained without preparing a conductive material or the like, even if the conductivity of aluminum itself varies depending on the material lot or the like. It is an object of the present invention to obtain a die casting rotor secondary resistance adjusting device and a die casting rotor secondary resistance adjusting method.
  • the secondary resistance adjusting device of the die casting rotor of the present disclosure the rotor core, a plurality of rotor bars arranged around the rotor core, and both ends of the rotor core are provided. Adjust the secondary resistance, which is the combined resistance between the rotor bar and the end ring of a cage-type die casting rotor with an end ring that joins each end of a plurality of rotor bars.
  • the secondary resistance adjusting device includes a stator jig having a stator winding and a stator core into which a diecast rotor is inserted, a fixture for fixing the diecast rotor to the stator jig, and rotation inside the stator jig.
  • An AC voltage source that applies a voltage to generate a magnetic field to the stator windings
  • a first measuring instrument that measures the power generated in the stator windings when a voltage is applied to the stator windings by the AC voltage source.
  • a second measuring instrument for measuring the resistance value of the stator winding, a third measuring instrument for measuring the temperature of the end ring or the rotor bar of the diecast rotor, a calculation device, and a lathe device are provided.
  • the arithmetic unit calculates the cutting allowance of the end ring for setting the secondary resistance to the first value based on the measurement results of the first measuring instrument, the second measuring instrument, and the third measuring instrument.
  • the lathe device cuts the end ring based on the cutting allowance calculated by the arithmetic unit.
  • Schematic diagram of the secondary resistance adjusting device of the die casting rotor according to the embodiment Top view of the die casting rotor to be adjusted for the secondary resistance according to the embodiment. Front view of the die casting rotor to be adjusted for the secondary resistance according to the embodiment.
  • FIG. 1 is a schematic view of a secondary resistance adjusting device for a die cast rotor according to an embodiment.
  • the adjustment target of the secondary resistance adjusting device is the cage type die casting rotor 11.
  • FIG. 2 is a plan view of the die casting rotor 11 to be adjusted for the secondary resistance according to the embodiment.
  • FIG. 3 is a front view of the die casting rotor 11.
  • the cage-shaped die-casting rotor 11 is manufactured by a die-casting method in which molten aluminum is poured into a rotor core 31 which is an iron core for a rotor.
  • the die-cast rotor 11 is composed of a rotor core 31 formed of a laminated iron core in which electromagnetic steel sheets are laminated, a plurality of rotor bars 32 made of aluminum, and a pair of end rings 33 made of aluminum.
  • a plurality of grooves extending in the axial direction at a certain angle are formed on the outer periphery of the rotor core 31, and a plurality of rotor bars 32 are embedded in these grooves.
  • End rings 33 are provided at both ends of the rotor core 31 in the axial direction.
  • the end ring 33 joins each end face of the plurality of rotor bars 32.
  • the end ring 33 has an annular shape.
  • the die cast rotor 11 is inserted inside the stator jig 12 and is fixed so as not to rotate by being pressed from above and below by the fixing pin 13.
  • the secondary resistance which is the combined resistance between the rotor bar 32 and the end ring 33, is adjusted.
  • a method other than the fixing pin 13 may be adopted as the fixing tool for fixing the die casting rotor 11 to the stator jig 12.
  • the stator jig 12 has a stator core 12a and a stator winding 12b.
  • the stator core 12a is formed of a laminated core in which electromagnetic steel sheets are laminated.
  • the stator winding 12b is wound around the stator core 12a.
  • An AC voltage source 14, a power meter 15, and an ohmmeter 16 are connected to the stator winding 12b.
  • the AC voltage source 14 can be selected from either single-phase or three-phase according to the form of the stator winding 12b so that a rotating magnetic field can be generated inside the stator jig 12. When single-phase is selected, it is necessary to make it two-phase via a capacitor or the like.
  • the power meter 15 as the first measuring instrument can measure voltage and current, and has a function of calculating electric power from the measured voltage and current.
  • the resistance meter 16 as the second measuring instrument measures the resistance value of the stator winding 12b.
  • the temperature sensor 17 as a third measuring instrument is in contact with the end ring 33 of the die casting rotor 11 in order to measure the temperature of the aluminum portion of the die casting rotor 11. Regarding the temperature sensor 17, if the temperature of the rotor bar 32 or the end ring 33, which is an aluminum portion, can be measured, this form does not apply.
  • the arithmetic unit 18 receives the measurement results of the power meter 15, the resistance meter 16, and the temperature sensor 17, and calculates the cutting allowance of the end ring 33 required to set the secondary resistance to the desired first value. It has a function.
  • the lathe device 19 includes a transport device 19a for gripping and transporting the die-cast rotor 11 and a cutting tool 19b for cutting the end ring 33 of the die-cast rotor 11.
  • the lathe device 19 has a function of cutting the end ring 33 based on the calculation result of the calculation device 18.
  • FIG. 4 is a circuit diagram showing a connection relationship between the stator winding 12b, the AC voltage source 14, the power meter 15, and the resistance meter 16 according to the embodiment, and shows a three-phase mode as an example.
  • the stator winding 12b is formed of three phases of U-phase 21a, V-phase 21b, and W-phase 21c so as to generate a rotating magnetic field, and the ends of the windings of U-phase 21a, V-phase 21b, and W-phase 21c are connected to each other. Is short-circuited.
  • the AC voltage source 14 is connected to the beginning of each volume of the U phase 21a, the V phase 21b, and the W phase 21c so that a voltage can be applied to the U phase 21a, the V phase 21b, and the W phase 21c.
  • the power meter 15 applies the voltage applied between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, the W phase 21c and the U phase 21a, and the U phase 21a, the V phase 21b, and the W phase 21c. It is connected so that the flowing current can be measured and the electric power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b can be calculated.
  • the resistance meter 16 can measure the resistance between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c and the U phase 21a so that the U phase 21a, the V phase 21b, and the W phase 21c can be measured. It is connected to the beginning of each volume.
  • the voltage application switches 22a, 22b, 22c and the resistance measurement switches 23a, 23b, 23c can change the current path so that the voltage application and the resistance measurement are not performed at the same time and the resistance meter 16 is not damaged. It is connected.
  • FIG. 5 shows a flowchart showing the procedure of secondary resistance adjustment according to this configuration.
  • the procedure for adjusting the secondary resistance will be described with reference to FIG.
  • step S1 the die cast rotor 11 is inserted into the stator jig 12.
  • step S2 the die cast rotor 11 is fixed so that the die cast rotor 11 does not rotate.
  • the die-casting rotor 11 is pressed from above and below with the fixing pin 13 to fix it, but if the die-casting rotor 11 does not rotate even if it receives a rotating magnetic field, another arbitrary fixing method is adopted. May be good.
  • step S3 a voltage is applied from the AC voltage source 14 to the stator winding 12b so as to generate a rotating magnetic field inside the stator jig 12.
  • the voltage application switches 22a, 22b, 22c are closed, and voltage is applied to the U phase 21a, the V phase 21b, and the W phase 21c from the AC voltage source 14 to the stator winding 12b. ..
  • step S4 the electric power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b is calculated.
  • the voltage applied between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c and the U phase 21a and the U phase 21a in the power meter 15 will be described.
  • the current flowing through the V phase 21b and the W phase 21c is measured, and the power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b is calculated.
  • step S5 the temperature of the end ring 33 of the die casting rotor 11 is measured by the temperature sensor 17.
  • step S6 the voltage application from the AC voltage source 14 is stopped.
  • the voltage application switches 22a, 22b, and 22c are opened to stop the voltage application from the AC voltage source 14.
  • step S7 the resistance of the stator winding 12b is measured by the resistance meter 16.
  • the resistance measurement switches 23a, 23b, and 23c are closed, and the resistance meter 16 is used between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c-U phase. Measure the resistance between 21a.
  • step S8 the obtained measured values of current, power, temperature, and resistance are transmitted to the arithmetic unit 18.
  • step S9 the arithmetic unit 18 calculates the cutting allowance of the end ring 33 required to set the secondary resistance to the desired first value based on the input measured value, and the result is a lathe. It is transmitted to the device 19.
  • the formula for calculating the cutting allowance of the end ring 33 differs depending on the specifications of the die cast rotor 11 and the stator jig 12.
  • the first value which is the desired value of the secondary resistance, is C
  • the excitation reactance is much larger than the secondary resistance.
  • the temperature correction coefficient of the die cast rotor 11 k t, U-phase 21a measured by the power meter 15, V-phase 21b, the average value of the current flowing through the W-phase 21c I The total value of the electric power of the U phase 21a, the V phase 21b, and the W phase 21c calculated by the power meter 15, P, between the U phase 21a and the V phase 21b measured by the resistance meter 16, and between the V phase 21b and the W phase 21c.
  • the secondary resistance r 2 is expressed by the following formula (1).
  • equation (1) the measured secondary resistance r 2 'are determined.
  • temperature correction coefficient k t if the temperature t measured by the temperature sensor 17, when it is to be corrected to 25 ° C. as a room, the temperature coefficient of the aluminum so is 4.2 ⁇ 10 -3 / °C, temperature compensation coefficient k t is expressed by the following equation (2).
  • step S10 the fixed die-casting rotor 11 is released, and the die-casting rotor 11 is taken out from the stator jig 12 by the transfer device 19a. Further, the die cast rotor 11 is conveyed into the lathe device 19. The lathe device 19 cuts the end ring 33 of the die casting rotor 11 with the cutting tool 19b based on the information of the cutting allowance ⁇ x of the end ring received from the arithmetic unit 18.
  • the secondary resistance of the die casting rotor 11 to be adjusted is measured and the end ring 33 is cut based on the value, the conductivity of the aluminum itself varies depending on the material lot or the like. Even if it is, a die cast rotor having a desired secondary resistance can be obtained.
  • the configuration shown in the above-described embodiment shows an example of the contents of the present disclosure, can be combined with another known technique, and is one of the configurations as long as it does not deviate from the gist of the present disclosure. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)

Abstract

In the present invention, the power generated in a stator winding (12b) when voltage is applied to the stator winding (12b) is measured, the resistance value of the stator winding (12b) is measured, and the temperature of an end ring (33) or a rotor bar of a die casting rotor (11) is measured. The present invention comprises: a computation device (18) that, on the basis of these measurement results, calculates a cutting allowance of the end ring (33) for setting the secondary resistance of the die casting rotor (11) to a first value; and a lathe device (19) that cuts the end ring (33) on the basis of the cutting allowance calculated by the computation device (18).

Description

ダイカストロータの二次抵抗調整装置およびダイカストロータの二次抵抗調整方法Secondary resistance adjustment device for die-cast rotor and secondary resistance adjustment method for die-cast rotor
 本開示は、かご型のダイカストロータの二次抵抗調整装置およびダイカストロータの二次抵抗調整方法に関する。 The present disclosure relates to a secondary resistance adjusting device for a cage-type die cast rotor and a secondary resistance adjusting method for the die casting rotor.
 かご型のダイカストロータは、溶融したアルミニウムをロータ用鉄心に流し込むダイカスト工法で製造され、アルミニウム部分は複数のロータバーと、ロータバーの端面同士を結合した環状のエンドリングとで構成される。ロータバーとエンドリングの合成抵抗は二次抵抗と呼ばれ、モータのトルク特性に影響する。 The cage-shaped die-casting rotor is manufactured by a die-casting method in which molten aluminum is poured into the iron core for the rotor, and the aluminum part is composed of a plurality of rotor bars and an annular end ring in which the end faces of the rotor bars are connected to each other. The combined resistance of the rotor bar and end ring is called the secondary resistance and affects the torque characteristics of the motor.
 ダイカストロータの二次抵抗を調整できれば、様々な仕様のモータを製造できる。例えば、特許文献1には、アルミニウムと抵抗率が異なる導電材料をアルミニウムと一緒にダイカスト製造することで所望の二次抵抗を有するダイカストロータを得る方法が開示されている。 If the secondary resistance of the die cast rotor can be adjusted, motors with various specifications can be manufactured. For example, Patent Document 1 discloses a method for obtaining a die-cast rotor having a desired secondary resistance by die-casting a conductive material having a resistivity different from that of aluminum together with aluminum.
特開平4-88855号公報Japanese Unexamined Patent Publication No. 4-88855
 しかしながら、特許文献1の方法では、二次抵抗を調整するための導電材料を多種類用意しなければならず、またアルミニウム自体の導電率が材料ロット等によってばらついた場合は所望の二次抵抗とならないという問題がある。 However, in the method of Patent Document 1, it is necessary to prepare a large number of types of conductive materials for adjusting the secondary resistance, and when the conductivity of aluminum itself varies depending on the material lot or the like, the desired secondary resistance is obtained. There is a problem that it does not become.
 本開示は、上記に鑑みてなされたものであって、導電材料等を用意することなく、アルミニウム自体の導電率が材料ロット等によってばらついていても、所望の二次抵抗を有するダイカストロータを取得することができる、ダイカストロータの二次抵抗調整装置およびダイカストロータの二次抵抗調整方法を得ることを目的とする。 The present disclosure has been made in view of the above, and a die cast rotor having a desired secondary resistance can be obtained without preparing a conductive material or the like, even if the conductivity of aluminum itself varies depending on the material lot or the like. It is an object of the present invention to obtain a die casting rotor secondary resistance adjusting device and a die casting rotor secondary resistance adjusting method.
 上述した課題を解決し、目的を達成するために、本開示のダイカストロータの二次抵抗調整装置では、ロータコアと、ロータコアの周りに配設される複数のロータバーと、ロータコアの両端に設けられ、複数のロータバーの各端部を結合するエンドリングとを有するかご型のダイカストロータのロータバーとエンドリングとの合成抵抗である二次抵抗を調整する。二次抵抗調整装置は、ステータ巻線と、ダイカストロータが内部に挿入されるステータ鉄心とを有するステータ治具と、ダイカストロータをステータ治具に固定する固定具と、ステータ治具の内部に回転磁界を発生させるための電圧をステータ巻線に印加する交流電圧源と、交流電圧源によってステータ巻線に電圧が印加されたときの、ステータ巻線に発生する電力を測定する第1の測定器と、ステータ巻線の抵抗値を測定する第2の測定器と、ダイカストロータのエンドリングまたはロータバーの温度を測定する第3の測定器と、演算装置と、旋盤装置と、を備える。演算装置は、第1の測定器、第2の測定器、および第3の測定器の測定結果に基づいて、二次抵抗を第1の値にするためのエンドリングの切削代を算出する。旋盤装置は、演算装置で算出された切削代に基づいてエンドリングを切削する。 In order to solve the above-mentioned problems and achieve the object, in the secondary resistance adjusting device of the die casting rotor of the present disclosure, the rotor core, a plurality of rotor bars arranged around the rotor core, and both ends of the rotor core are provided. Adjust the secondary resistance, which is the combined resistance between the rotor bar and the end ring of a cage-type die casting rotor with an end ring that joins each end of a plurality of rotor bars. The secondary resistance adjusting device includes a stator jig having a stator winding and a stator core into which a diecast rotor is inserted, a fixture for fixing the diecast rotor to the stator jig, and rotation inside the stator jig. An AC voltage source that applies a voltage to generate a magnetic field to the stator windings, and a first measuring instrument that measures the power generated in the stator windings when a voltage is applied to the stator windings by the AC voltage source. A second measuring instrument for measuring the resistance value of the stator winding, a third measuring instrument for measuring the temperature of the end ring or the rotor bar of the diecast rotor, a calculation device, and a lathe device are provided. The arithmetic unit calculates the cutting allowance of the end ring for setting the secondary resistance to the first value based on the measurement results of the first measuring instrument, the second measuring instrument, and the third measuring instrument. The lathe device cuts the end ring based on the cutting allowance calculated by the arithmetic unit.
 本開示によれば、導電材料等を用意することなく、アルミニウム自体の導電率が材料ロット等によってばらついていても、所望の二次抵抗を有するダイカストロータを得ることができるという効果を奏する。 According to the present disclosure, there is an effect that a die cast rotor having a desired secondary resistance can be obtained even if the conductivity of aluminum itself varies depending on the material lot or the like without preparing a conductive material or the like.
実施の形態に係るダイカストロータの二次抵抗調整装置の概略図Schematic diagram of the secondary resistance adjusting device of the die casting rotor according to the embodiment. 実施の形態に係る二次抵抗調整対象となるダイカストロータの平面図Top view of the die casting rotor to be adjusted for the secondary resistance according to the embodiment. 実施の形態に係る二次抵抗調整対象となるダイカストロータの正面図Front view of the die casting rotor to be adjusted for the secondary resistance according to the embodiment. 実施の形態に係るステータ巻線と交流電圧源とパワーメータと抵抗計との結線関係を示す回路図A circuit diagram showing a connection relationship between a stator winding, an AC voltage source, a power meter, and an ohmmeter according to an embodiment. 実施の形態に係る二次抵抗調整の手順を示すフローチャートFlow chart showing the procedure of secondary resistance adjustment according to the embodiment
 以下、実施の形態にかかるダイカストロータの二次抵抗調整装置およびダイカストロータの二次抵抗調整方法を図面に基づいて詳細に説明する。 Hereinafter, the secondary resistance adjusting device for the die casting rotor and the secondary resistance adjusting method for the die casting rotor according to the embodiment will be described in detail with reference to the drawings.
実施の形態.
 図1は、実施の形態に係るダイカストロータの二次抵抗調整装置の概略図である。二次抵抗調整装置の調整対象は、かご型のダイカストロータ11である。図2は、実施の形態に係る二次抵抗調整対象となるダイカストロータ11の平面図である。図3は、ダイカストロータ11の正面図である。
Embodiment.
FIG. 1 is a schematic view of a secondary resistance adjusting device for a die cast rotor according to an embodiment. The adjustment target of the secondary resistance adjusting device is the cage type die casting rotor 11. FIG. 2 is a plan view of the die casting rotor 11 to be adjusted for the secondary resistance according to the embodiment. FIG. 3 is a front view of the die casting rotor 11.
 図1から図3において、かご型のダイカストロータ11は、溶融したアルミニウムをロータ用鉄心であるロータコア31に流し込むダイカスト工法で製造される。ダイカストロータ11は、電磁鋼板を積層した積層鉄心から形成されているロータコア31と、アルミニウムで形成されている複数のロータバー32と、アルミニウムで形成されている一対のエンドリング33とで構成される。ロータコア31の外周には、或る角度を持って軸方向に延びる複数の溝が形成され、これらの溝に複数のロータバー32が埋め込まれている。エンドリング33は、ロータコア31の軸方向の両端に設けられている。エンドリング33は、複数のロータバー32の各端面を結合する。エンドリング33は、環状の形状を呈している。ダイカストロータ11は、ステータ治具12の内部に挿入され、固定ピン13で上下から押し付けられることにより回転しないように固定されている。エンドリング33を適当量だけ切削することで、ロータバー32とエンドリング33との合成抵抗である二次抵抗を調整する。なお、ダイカストロータ11をステータ治具12に対し固定するための固定具は、固定ピン13以外の他の方法を採用してもよい。 In FIGS. 1 to 3, the cage-shaped die-casting rotor 11 is manufactured by a die-casting method in which molten aluminum is poured into a rotor core 31 which is an iron core for a rotor. The die-cast rotor 11 is composed of a rotor core 31 formed of a laminated iron core in which electromagnetic steel sheets are laminated, a plurality of rotor bars 32 made of aluminum, and a pair of end rings 33 made of aluminum. A plurality of grooves extending in the axial direction at a certain angle are formed on the outer periphery of the rotor core 31, and a plurality of rotor bars 32 are embedded in these grooves. End rings 33 are provided at both ends of the rotor core 31 in the axial direction. The end ring 33 joins each end face of the plurality of rotor bars 32. The end ring 33 has an annular shape. The die cast rotor 11 is inserted inside the stator jig 12 and is fixed so as not to rotate by being pressed from above and below by the fixing pin 13. By cutting the end ring 33 by an appropriate amount, the secondary resistance, which is the combined resistance between the rotor bar 32 and the end ring 33, is adjusted. As the fixing tool for fixing the die casting rotor 11 to the stator jig 12, a method other than the fixing pin 13 may be adopted.
 ステータ治具12は、ステータ鉄心12aとステータ巻線12bとを有する。ステータ鉄心12aは、電磁鋼板を積層した積層鉄心から形成されている。ステータ巻線12bは、ステータ鉄心12aに巻線されている。ステータ巻線12bには、交流電圧源14とパワーメータ15と抵抗計16とが接続されている。交流電圧源14は、ステータ治具12の内部に回転磁界を発生させることができるよう、ステータ巻線12bの形態に合わせて、単相および三相の何れかが選択可能である。単相が選択される場合は、コンデンサ等を介し二相にする必要がある。第1の測定器としてのパワーメータ15は、電圧と電流の測定が可能で、測定した電圧と電流から電力を演算する機能を有する。 The stator jig 12 has a stator core 12a and a stator winding 12b. The stator core 12a is formed of a laminated core in which electromagnetic steel sheets are laminated. The stator winding 12b is wound around the stator core 12a. An AC voltage source 14, a power meter 15, and an ohmmeter 16 are connected to the stator winding 12b. The AC voltage source 14 can be selected from either single-phase or three-phase according to the form of the stator winding 12b so that a rotating magnetic field can be generated inside the stator jig 12. When single-phase is selected, it is necessary to make it two-phase via a capacitor or the like. The power meter 15 as the first measuring instrument can measure voltage and current, and has a function of calculating electric power from the measured voltage and current.
 第2の測定器としての抵抗計16は、ステータ巻線12bの抵抗値を測定する。第3の測定器としての温度センサ17は、ダイカストロータ11のアルミニウム部の温度を測定するために、ダイカストロータ11のエンドリング33に接触している。温度センサ17に関しては、アルミニウム部分であるロータバー32またはエンドリング33の温度を測定できれば、この形態によらない。 The resistance meter 16 as the second measuring instrument measures the resistance value of the stator winding 12b. The temperature sensor 17 as a third measuring instrument is in contact with the end ring 33 of the die casting rotor 11 in order to measure the temperature of the aluminum portion of the die casting rotor 11. Regarding the temperature sensor 17, if the temperature of the rotor bar 32 or the end ring 33, which is an aluminum portion, can be measured, this form does not apply.
 演算装置18は、パワーメータ15と抵抗計16と温度センサ17の測定結果を受け取り、二次抵抗を所望の値である第1の値にするために必要なエンドリング33の切削代を算出する機能を有している。 The arithmetic unit 18 receives the measurement results of the power meter 15, the resistance meter 16, and the temperature sensor 17, and calculates the cutting allowance of the end ring 33 required to set the secondary resistance to the desired first value. It has a function.
 旋盤装置19は、ダイカストロータ11を把持し搬送するための搬送装置19aと、ダイカストロータ11のエンドリング33を切削するための刃物19bとで構成されている。旋盤装置19は、演算装置18の演算結果に基づきエンドリング33を切削する機能を有している。 The lathe device 19 includes a transport device 19a for gripping and transporting the die-cast rotor 11 and a cutting tool 19b for cutting the end ring 33 of the die-cast rotor 11. The lathe device 19 has a function of cutting the end ring 33 based on the calculation result of the calculation device 18.
 図4は、実施の形態に係るステータ巻線12bと交流電圧源14とパワーメータ15と抵抗計16との結線関係を示す回路図であり、例として三相の形態を示している。ステータ巻線12bは、回転磁界を発生させられるように、U相21a、V相21b、W相21cの三相で形成され、U相21a、V相21b、W相21cの各巻線の終端同士が短絡されている。交流電圧源14は、U相21a、V相21b、W相21cに電圧を印加できるようにU相21a、V相21b、W相21cの各巻始めに接続されている。パワーメータ15は、U相21a-V相21b間、V相21b-W相21c間、W相21c-U相21a間に印加されている電圧及びU相21a、V相21b、W相21cに流れる電流を測定し、ステータ巻線12bにおけるU相21a、V相21b、W相21cの電力を計算することができるように接続されている。抵抗計16は、U相21a-V相21b間、V相21b-W相21c間、W相21c-U相21a間の抵抗を測定できるように、U相21a、V相21b、W相21cの各巻始めに接続されている。電圧印加用スイッチ22a,22b,22cと、抵抗測定用スイッチ23a,23b,23cは、電圧印加と抵抗測定が同時に行われて抵抗計16が壊れることがないよう、電流の経路を変更できるように接続されている。 FIG. 4 is a circuit diagram showing a connection relationship between the stator winding 12b, the AC voltage source 14, the power meter 15, and the resistance meter 16 according to the embodiment, and shows a three-phase mode as an example. The stator winding 12b is formed of three phases of U-phase 21a, V-phase 21b, and W-phase 21c so as to generate a rotating magnetic field, and the ends of the windings of U-phase 21a, V-phase 21b, and W-phase 21c are connected to each other. Is short-circuited. The AC voltage source 14 is connected to the beginning of each volume of the U phase 21a, the V phase 21b, and the W phase 21c so that a voltage can be applied to the U phase 21a, the V phase 21b, and the W phase 21c. The power meter 15 applies the voltage applied between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, the W phase 21c and the U phase 21a, and the U phase 21a, the V phase 21b, and the W phase 21c. It is connected so that the flowing current can be measured and the electric power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b can be calculated. The resistance meter 16 can measure the resistance between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c and the U phase 21a so that the U phase 21a, the V phase 21b, and the W phase 21c can be measured. It is connected to the beginning of each volume. The voltage application switches 22a, 22b, 22c and the resistance measurement switches 23a, 23b, 23c can change the current path so that the voltage application and the resistance measurement are not performed at the same time and the resistance meter 16 is not damaged. It is connected.
 図5に、本構成による二次抵抗調整の手順を示すフローチャートを示す。以下、図5を参照して二次抵抗調整の手順を説明する。 FIG. 5 shows a flowchart showing the procedure of secondary resistance adjustment according to this configuration. Hereinafter, the procedure for adjusting the secondary resistance will be described with reference to FIG.
 まず、ステップS1において、ダイカストロータ11がステータ治具12内に挿入される。 First, in step S1, the die cast rotor 11 is inserted into the stator jig 12.
 次に、ステップS2において、ダイカストロータ11が回転しないようにダイカストロータ11が固定される。図1においては、固定ピン13でダイカストロータ11を上下から押し付けて固定する方法としているが、ダイカストロータ11が回転磁界を受けても回転しないのであれば、他の任意の固定方法を採用してもよい。 Next, in step S2, the die cast rotor 11 is fixed so that the die cast rotor 11 does not rotate. In FIG. 1, the die-casting rotor 11 is pressed from above and below with the fixing pin 13 to fix it, but if the die-casting rotor 11 does not rotate even if it receives a rotating magnetic field, another arbitrary fixing method is adopted. May be good.
 次に、ステップS3において、交流電圧源14からステータ巻線12bに対して、ステータ治具12の内部に回転磁界を発生させるような電圧が印加される。図4に示す例において説明すると、電圧印加用スイッチ22a,22b,22cを閉じ、交流電圧源14からステータ巻線12bに対して、U相21a、V相21b、W相21cに電圧を印加する。 Next, in step S3, a voltage is applied from the AC voltage source 14 to the stator winding 12b so as to generate a rotating magnetic field inside the stator jig 12. Explaining in the example shown in FIG. 4, the voltage application switches 22a, 22b, 22c are closed, and voltage is applied to the U phase 21a, the V phase 21b, and the W phase 21c from the AC voltage source 14 to the stator winding 12b. ..
 次に、ステップS4において、ステータ巻線12bにおけるU相21a、V相21b、W相21cの電力が算出される。図4に示す例において説明すると、パワーメータ15で、U相21a-V相21b間、V相21b-W相21c間、W相21c-U相21a間に印加されている電圧及びU相21a、V相21b、W相21cに流れる電流を測定し、ステータ巻線12bにおけるU相21a、V相21b、W相21cの電力を算出する。 Next, in step S4, the electric power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b is calculated. In the example shown in FIG. 4, the voltage applied between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c and the U phase 21a and the U phase 21a in the power meter 15 will be described. , The current flowing through the V phase 21b and the W phase 21c is measured, and the power of the U phase 21a, the V phase 21b, and the W phase 21c in the stator winding 12b is calculated.
 次に、ステップS5において、温度センサ17でダイカストロータ11のエンドリング33の温度が測定される。 Next, in step S5, the temperature of the end ring 33 of the die casting rotor 11 is measured by the temperature sensor 17.
 次に、ステップS6において、交流電圧源14からの電圧印加を停止する。図4に示す例において説明すると、電圧印加用スイッチ22a,22b,22cを開き、交流電圧源14からの電圧印加を停止する。 Next, in step S6, the voltage application from the AC voltage source 14 is stopped. In the example shown in FIG. 4, the voltage application switches 22a, 22b, and 22c are opened to stop the voltage application from the AC voltage source 14.
 次に、ステップS7においては、抵抗計16で、ステータ巻線12bの抵抗が測定される。図4に示す例において説明すると、抵抗測定用スイッチ23a,23b,23cを閉じ、抵抗計16で、U相21a-V相21b間、V相21b-W相21c間、W相21c-U相21a間の抵抗を測定する。 Next, in step S7, the resistance of the stator winding 12b is measured by the resistance meter 16. In the example shown in FIG. 4, the resistance measurement switches 23a, 23b, and 23c are closed, and the resistance meter 16 is used between the U phase 21a and the V phase 21b, the V phase 21b and the W phase 21c, and the W phase 21c-U phase. Measure the resistance between 21a.
 次に、ステップS8において、得られた電流、電力、温度、抵抗の測定値が演算装置18に送信される。 Next, in step S8, the obtained measured values of current, power, temperature, and resistance are transmitted to the arithmetic unit 18.
 次に、ステップS9において、演算装置18は、入力された測定値に基づいて、二次抵抗を所望の第1の値とするために必要なエンドリング33の切削代を算出し、結果を旋盤装置19に送信する。 Next, in step S9, the arithmetic unit 18 calculates the cutting allowance of the end ring 33 required to set the secondary resistance to the desired first value based on the input measured value, and the result is a lathe. It is transmitted to the device 19.
 エンドリング33の切削代を算出する式は、ダイカストロータ11とステータ治具12の仕様によって異なる。二次抵抗rとエンドリング33の切削代xの関係がr=a・x+bで表せる場合を例として説明する。a,bは、定数である。測定された二次抵抗r’は、切削代x=0のときの二次抵抗であるので、b=r’となる。二次抵抗の所望値である第1の値をCとし、二次抵抗をエンドリング33の切削前の状態から第1の値Cにするための切削代をΔxとすると、Δx=(C-r’)/aとなる。 The formula for calculating the cutting allowance of the end ring 33 differs depending on the specifications of the die cast rotor 11 and the stator jig 12. A case where the relationship between the secondary resistance r 2 and the cutting allowance x of the end ring 33 can be expressed by r 2 = a · x + b will be described as an example. a and b are constants. The measured secondary resistance r 2 'is, since the secondary resistance when the cutting allowance x = 0, b = r 2 ' becomes. Assuming that the first value, which is the desired value of the secondary resistance, is C, and the cutting allowance for changing the secondary resistance from the state before cutting of the end ring 33 to the first value C is Δx, Δx = (C−). It becomes r 2 ') / a.
 また、ここでの二次抵抗rの算出においては、拘束試験時の等価回路をベースとし、簡易的に、励磁リアクタンスが二次抵抗よりもはるかに大きいと仮定する。図4のような三相の結線を例とすると、ダイカストロータ11の温度補正係数をk、パワーメータ15で測定したU相21a、V相21b、W相21cに流れる電流の平均値をI、パワーメータ15で演算したU相21a、V相21b、W相21cの電力の合計値をP、抵抗計16で測定したU相21a-V相21b間、V相21b-W相21c間、W相21c-U相21a間の抵抗の平均値をRとおくと、二次抵抗rは下記の式(1)で表される。式(1)によって、測定された二次抵抗r’が求められる。 Further, where the in the calculation of the secondary resistance r 2 is based an equivalent circuit at the time of restraining the test, in a simplified manner, it is assumed that the excitation reactance is much larger than the secondary resistance. When the three-phase connections, such as in FIG. 4 as an example, the temperature correction coefficient of the die cast rotor 11 k t, U-phase 21a measured by the power meter 15, V-phase 21b, the average value of the current flowing through the W-phase 21c I , The total value of the electric power of the U phase 21a, the V phase 21b, and the W phase 21c calculated by the power meter 15, P, between the U phase 21a and the V phase 21b measured by the resistance meter 16, and between the V phase 21b and the W phase 21c. When the average value of the resistance between the W-phase 21c-U-phase 21a is denoted by R, the secondary resistance r 2 is expressed by the following formula (1). By equation (1), the measured secondary resistance r 2 'are determined.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、温度補正係数kについて、仮に、温度センサ17で測定した温度tを、室温としての25℃に補正するとした場合、アルミニウムの温度係数は4.2×10-3/℃なので、温度補正係数kは、下記の式(2)で表される。 Note that the temperature correction coefficient k t, if the temperature t measured by the temperature sensor 17, when it is to be corrected to 25 ° C. as a room, the temperature coefficient of the aluminum so is 4.2 × 10 -3 / ℃, temperature compensation coefficient k t is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このように、演算装置18においては、式(1)、式(2)に基づいて、二次抵抗r’を求め、上式、Δx=(C-r’)/aに基づいてエンドリング33の切削代Δxを求める。 Thus, the arithmetic unit 18, the formula (1), based on equation (2), 'seek, above equation, [Delta] x = (C-r 2' secondary resistance r 2 based on) / a End The cutting allowance Δx of the ring 33 is obtained.
 次に、ステップS10において、固定されていたダイカストロータ11が解放され、搬送装置19aでダイカストロータ11がステータ治具12から取り出される。さらに、ダイカストロータ11は旋盤装置19内まで搬送される。旋盤装置19は、演算装置18から受け取ったエンドリングの切削代Δxの情報に基づき、刃物19bでダイカストロータ11のエンドリング33を切削する。 Next, in step S10, the fixed die-casting rotor 11 is released, and the die-casting rotor 11 is taken out from the stator jig 12 by the transfer device 19a. Further, the die cast rotor 11 is conveyed into the lathe device 19. The lathe device 19 cuts the end ring 33 of the die casting rotor 11 with the cutting tool 19b based on the information of the cutting allowance Δx of the end ring received from the arithmetic unit 18.
 このように実施の形態によれば、調整対象のダイカストロータ11の二次抵抗を測定し、その値に基づいてエンドリング33を切削しているので、アルミニウム自体の導電率が材料ロット等によってばらついていても、所望の二次抵抗を有するダイカストロータを得ることができる。 As described above, according to the embodiment, since the secondary resistance of the die casting rotor 11 to be adjusted is measured and the end ring 33 is cut based on the value, the conductivity of the aluminum itself varies depending on the material lot or the like. Even if it is, a die cast rotor having a desired secondary resistance can be obtained.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the contents of the present disclosure, can be combined with another known technique, and is one of the configurations as long as it does not deviate from the gist of the present disclosure. It is also possible to omit or change the part.
 11 ダイカストロータ、12 ステータ治具、12a ステータ鉄心、12b ステータ巻線、13 固定ピン、14 交流電圧源、15 パワーメータ、16 抵抗計、17 温度センサ、18 演算装置、19 旋盤装置、19a 搬送装置、19b 刃物、31 ロータコア、32 ロータバー、33 エンドリング。 11 die cast rotor, 12 stator jig, 12a stator core, 12b stator winding, 13 fixing pin, 14 AC voltage source, 15 power meter, 16 resistance meter, 17 temperature sensor, 18 arithmetic unit, 19 lathe device, 19a transfer device. , 19b blade, 31 rotor core, 32 rotor bar, 33 end ring.

Claims (4)

  1.  ロータコアと、前記ロータコアの周りに配設される複数のロータバーと、前記ロータコアの両端に設けられ、前記複数のロータバーの各端部を結合するエンドリングとを有するかご型のダイカストロータの前記ロータバーと前記エンドリングとの合成抵抗である二次抵抗を調整するダイカストロータの二次抵抗調整装置において、
     ステータ巻線と、前記ダイカストロータが内部に挿入されるステータ鉄心とを有するステータ治具と、
     前記ダイカストロータを前記ステータ治具に固定する固定具と、
     前記ステータ治具の前記内部に回転磁界を発生させるための電圧を前記ステータ巻線に印加する交流電圧源と、
     前記交流電圧源によって前記ステータ巻線に前記電圧が印加されたときの、前記ステータ巻線に発生する電力を測定する第1の測定器と、
     前記ステータ巻線の抵抗値を測定する第2の測定器と、
     前記ダイカストロータの前記エンドリングまたは前記ロータバーの温度を測定する第3の測定器と、
     前記第1の測定器、前記第2の測定器、および前記第3の測定器の測定結果に基づいて、前記二次抵抗を第1の値にするための前記エンドリングの切削代を算出する演算装置と、
     前記演算装置で算出された前記切削代に基づいて前記エンドリングを切削する旋盤装置と、
     を備えることを特徴とするダイカストロータの二次抵抗調整装置。
    A squirrel-cage die-casting rotor having a rotor core, a plurality of rotor bars disposed around the rotor core, and end rings provided at both ends of the rotor core and connecting each end of the plurality of rotor bars. In the secondary resistance adjusting device of the die casting rotor that adjusts the secondary resistance which is the combined resistance with the end ring.
    A stator jig having a stator winding and a stator core into which the die-cast rotor is inserted.
    A fixture for fixing the die cast rotor to the stator jig, and
    An AC voltage source that applies a voltage for generating a rotating magnetic field to the stator windings inside the stator jig,
    A first measuring instrument for measuring the electric power generated in the stator winding when the voltage is applied to the stator winding by the AC voltage source.
    A second measuring instrument for measuring the resistance value of the stator winding, and
    A third measuring instrument for measuring the temperature of the end ring or the rotor bar of the die casting rotor, and
    Based on the measurement results of the first measuring instrument, the second measuring instrument, and the third measuring instrument, the cutting allowance of the end ring for setting the secondary resistance to the first value is calculated. Arithmetic logic unit and
    A lathe device that cuts the end ring based on the cutting allowance calculated by the arithmetic unit, and
    A secondary resistance adjusting device for a die cast rotor, which is characterized by being provided with.
  2.  前記演算装置は、前記第1の測定器、前記第2の測定器、および前記第3の測定器の測定結果に基づいて、前記エンドリングを切削する前の前記二次抵抗を求め、求めた切削する前の前記二次抵抗と、前記第1の値とに基づいて前記エンドリングの切削代を算出することを特徴とする請求項1に記載のダイカストロータの二次抵抗調整装置。 The arithmetic unit obtained and obtained the secondary resistance before cutting the end ring based on the measurement results of the first measuring instrument, the second measuring instrument, and the third measuring instrument. The secondary resistance adjusting device for a die cast rotor according to claim 1, wherein the cutting allowance of the end ring is calculated based on the secondary resistance before cutting and the first value.
  3.  前記ロータバーおよび前記エンドリングは、アルミニウムで形成されていることを特徴とする請求項1または2に記載のダイカストロータの二次抵抗調整装置。 The secondary resistance adjusting device for a die cast rotor according to claim 1 or 2, wherein the rotor bar and the end ring are made of aluminum.
  4.  ステータ巻線と、ダイカストロータが内部に挿入されるステータ鉄心とを有するステータ治具を用いて、ロータコアと、前記ロータコアの周りに配設される複数のロータバーと、前記ロータコアの両端に設けられ、前記複数のロータバーの各端部を結合するエンドリングとを有するかご型の前記ダイカストロータの前記ロータバーと前記エンドリングとの合成抵抗である二次抵抗を調整するダイカストロータの二次抵抗調整方法において、
     前記ステータ治具に対し回転しないように前記ダイカストロータを固定する工程と、
     前記ステータ治具に回転磁界を発生させるための電圧を前記ステータ巻線に印加する工程と、
     前記ステータ巻線に前記電圧が印加されたときの、前記ステータ巻線に発生する電力を測定する工程と、
     前記ダイカストロータの前記エンドリングまたは前記ロータバーの温度を測定する工程と、
     前記ステータ巻線の抵抗値を測定する工程と、
     測定された前記電力、測定された前記温度、測定された前記抵抗値に基づいて、前記二次抵抗を第1の値にするための前記エンドリングの切削代を算出する工程と、
     算出された前記切削代に基づいて前記エンドリングを切削する工程と、
     を備えることを特徴とするダイカストロータの二次抵抗調整方法。
    Using a stator jig having a stator winding and a stator core into which a die-cast rotor is inserted, a rotor core, a plurality of rotor bars arranged around the rotor core, and both ends of the rotor core are provided. In a method for adjusting secondary resistance of a die casting rotor that adjusts a secondary resistance that is a combined resistance between the rotor bar and the end ring of a cage-type die casting rotor having an end ring that connects each end of the plurality of rotor bars. ,
    The process of fixing the die cast rotor so that it does not rotate with respect to the stator jig, and
    A step of applying a voltage for generating a rotating magnetic field to the stator jig to the stator winding, and a process of applying the voltage to the stator winding.
    A step of measuring the electric power generated in the stator winding when the voltage is applied to the stator winding, and a step of measuring the electric power generated in the stator winding.
    The step of measuring the temperature of the end ring or the rotor bar of the die casting rotor, and
    The process of measuring the resistance value of the stator winding and
    A step of calculating the cutting allowance of the end ring for making the secondary resistance a first value based on the measured power, the measured temperature, and the measured resistance value.
    The process of cutting the end ring based on the calculated cutting allowance, and
    A method for adjusting the secondary resistance of a die cast rotor, which comprises.
PCT/JP2020/022124 2020-06-04 2020-06-04 Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor WO2021245881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022529251A JP7309068B2 (en) 2020-06-04 2020-06-04 Device for adjusting secondary resistance of die-cast rotor and method for adjusting secondary resistance of die-cast rotor
PCT/JP2020/022124 WO2021245881A1 (en) 2020-06-04 2020-06-04 Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022124 WO2021245881A1 (en) 2020-06-04 2020-06-04 Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor

Publications (1)

Publication Number Publication Date
WO2021245881A1 true WO2021245881A1 (en) 2021-12-09

Family

ID=78830259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022124 WO2021245881A1 (en) 2020-06-04 2020-06-04 Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor

Country Status (2)

Country Link
JP (1) JP7309068B2 (en)
WO (1) WO2021245881A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965625A (en) * 1995-08-23 1997-03-07 Fuji Electric Co Ltd Squirrel-cage rotor for induction motor
JPH09149612A (en) * 1995-11-20 1997-06-06 Fujitsu General Ltd Rotor of motor
JPH11206079A (en) * 1998-01-09 1999-07-30 Shibaura Mechatronics Corp Squirrel-cage rotor of induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965625A (en) * 1995-08-23 1997-03-07 Fuji Electric Co Ltd Squirrel-cage rotor for induction motor
JPH09149612A (en) * 1995-11-20 1997-06-06 Fujitsu General Ltd Rotor of motor
JPH11206079A (en) * 1998-01-09 1999-07-30 Shibaura Mechatronics Corp Squirrel-cage rotor of induction motor

Also Published As

Publication number Publication date
JPWO2021245881A1 (en) 2021-12-09
JP7309068B2 (en) 2023-07-14

Similar Documents

Publication Publication Date Title
JP4629659B2 (en) Synchronous electric machine having one stator and at least one rotor and related control device
EP3157162B1 (en) Motor control device, and method for correcting torque constant in such motor control device
JPH11262293A (en) Control method of multiplex winding motor
Lee et al. Equivalent circuit considering the harmonics of core loss in the squirrel-cage induction motor for electrical power steering application
Meier Theoretical design of surface-mounted permanent magnet motors with field-weakening capability
Carbonieri et al. Induction motor mapping using rotor field-oriented analysis technique
JPH08331900A (en) Controller for electric rotating machine
WO2020202655A1 (en) Drive device for permanent-magnet synchronous machine, torque compensation method for permanent-magnet synchronous machine, and electric vehicle
WO2021245881A1 (en) Secondary resistance adjusting device for die casting rotor, and method for adjusting secondary resistance of die casting rotor
Lazari et al. Accurate\(d\)–\({q}\) Axis Modeling of Synchronous Machines With Skew Accounting for Saturation
US9450522B2 (en) Field control device, method of field control, and synchronous rotating machine
JPH11122984A (en) Device and method for motor control
Williamson et al. Equivalent circuits for cage induction motors with inter-bar currents
JPH08322300A (en) Vector controller of induction motor
Agamloh et al. Performance Comparison of Transverse and Axially Laminated Synchronous Reluctance Machines
JP2007135281A (en) Speed sensorless vector control device of induction motor
US20180159454A1 (en) Method and apparatus for operating an electric machine, electric machine
JP7368176B2 (en) Induction motor control device and control system
Qi et al. Precise field oriented torque control of induction machines using thermal model based resistance adaption
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP3627426B2 (en) Control device for rotating electrical machine
Vidanovski et al. Contribution to the estimation of rotor resistance for heavy-duty of induction motor
Dmitrievskii et al. Development and experimental study of the high efficient synchronous reluctance motor
Nasir Sensor-less Monitoring of Induction Motor Temperature with an Online Estimation of Stator and Rotor Resistances Taking the Effect of Machine Parameters Variation into account

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938690

Country of ref document: EP

Kind code of ref document: A1