WO2021245849A1 - Medical treatment instrument unit, medical manipulator, and medical robot - Google Patents

Medical treatment instrument unit, medical manipulator, and medical robot Download PDF

Info

Publication number
WO2021245849A1
WO2021245849A1 PCT/JP2020/021984 JP2020021984W WO2021245849A1 WO 2021245849 A1 WO2021245849 A1 WO 2021245849A1 JP 2020021984 W JP2020021984 W JP 2020021984W WO 2021245849 A1 WO2021245849 A1 WO 2021245849A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible joint
bending
medical
joint portion
treatment tool
Prior art date
Application number
PCT/JP2020/021984
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 原口
Original Assignee
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リバーフィールド株式会社 filed Critical リバーフィールド株式会社
Priority to PCT/JP2020/021984 priority Critical patent/WO2021245849A1/en
Publication of WO2021245849A1 publication Critical patent/WO2021245849A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present invention relates to a medical treatment tool unit driven by a drive unit, a medical manipulator including such a medical treatment tool unit, and a medical robot including such a medical manipulator.
  • a medical manipulator that drives a treatment part such as forceps by a drive unit is expected as a technology that accurately reflects the movement of the operator's hand to reduce the burden on the operator and patient by surgery and increase the possibility of telemedicine. ing.
  • Patent Document 1 discloses a flexible tube of a medical manipulator which is excellent in torsional rigidity, load bearing capacity, and flexibility while being miniaturized.
  • This flexible tube is formed between a plurality of ring portions connected in the axial direction, a tube connecting portion that partially connects the adjacent ring portions in the axial direction, and a ring portion adjacent in the axial direction. It is divided on both sides in the circumferential direction of the tube joint and is provided with slits that allow bending of the flexible tube due to bending of the tube joint.
  • the dimension in the circumferential direction gradually decreases from one side in the axial direction which is the fixed side at the time of bending to the other side in the axial direction which becomes the movable side at the time of bending.
  • Patent Document 2 discloses a joint portion and a medical instrument of a medical instrument that facilitates operability of the joint portion and the surgical instrument.
  • the joint part of this medical device has a highly flexible outer shell part formed in a cylindrical shape having a space inside, and a tubular part that is arranged in the inner space of the outer shell part and has a higher compression rigidity than the outer shell part.
  • the core material tube formed in the core material tube and the cable used for operating the surgical instrument are inserted inside the core material tube, and the material has a smaller coefficient of friction against the cable than the core material tube.
  • the formed resin tube is provided.
  • a flexible joint that bends a treatment part such as forceps with multiple degrees of freedom (DOF) is indispensable in a robot minimally invasive surgery system.
  • a medical manipulator having such a flexible joint portion is required to have sufficient bending force, treatment force (grip force) and durability required for surgery.
  • An object of the present invention is to provide a medical treatment tool unit having sufficient bending force, treatment force and durability.
  • the present invention also aims to provide a medical manipulator equipped with such a medical treatment tool unit, and to provide a medical robot equipped with such a medical manipulator and capable of estimating force.
  • one aspect of the present invention is a medical treatment tool unit having a treatment unit driven by a drive unit, and a shaft having a transmission mechanism for transmitting a driving force from the drive unit to the treatment unit.
  • a flexible joint portion provided between the shaft and the treatment portion.
  • the flexible joint portion connects between a disk body arranged in a plurality of stages in a first direction along the axis of the shaft at predetermined intervals and an adjacent disk body, and extends in a second direction orthogonal to the first direction. It has a connecting portion which is present and has a connecting portion in which the extending directions of the adjacent connecting portions when viewed in the first direction are different from each other.
  • the flexible joint portion was formed of a resin material having a bending deformation region (bending strength / flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a bending elastic modulus of 10 GPa or less. It is a feature.
  • the connecting portion having the highest stress at the time of bending in the flexible joint portion is made of a resin material having excellent bending characteristics, excellent flexibility can be ensured for a long period of time. Can be done.
  • the resin material for the flexible joint preferably contains at least one resin selected from the group consisting of PEEK, PEI, PPSU, PSU, PES, and POM-C.
  • a set of one disk body and one connecting portion connected to the disk body is regarded as a one-stage structure, and the extending directions of the connecting portions in adjacent structures are set. It is preferable that they differ from each other by 45 degrees.
  • the positions of the adjacent connecting portions are arranged differently by 45 degrees when viewed in the first direction, and the stress concentration on the connecting portion with respect to the bending direction is relaxed. Will be done.
  • the number of stages of the structure in the flexible joint portion is preferably 9 or more and 12 or less. As a result, it is possible to increase the flexibility of bending while relaxing the stress concentration applied to the structure when the flexible joint portion bends.
  • the treatment portion has a grip portion and the extending direction of the connecting portion is not located along the occlusal surface of the grip portion arranged on the tip end side of the flexible joint portion. This makes it easier to bend in the direction along the occlusal surface of the grip portion.
  • the medical treatment tool unit may have a spring portion or a flexible tube portion inserted in the center of a plurality of discs. As a result, rigidity is added to the flexible joint portion by the spring portion or the flexible tube portion, and it becomes easy to obtain a treatment force.
  • the present invention provides, in another aspect, a medical manipulator including the above-mentioned medical treatment tool unit and a drive unit for driving the treatment tool of the medical treatment tool unit.
  • the drive unit may drive the treatment tool by air pressure.
  • the present invention is a medical robot provided with a medical manipulator that drives a treatment tool by this air pressure, and an air pressure sense estimation that estimates an external force applied to the treatment tool based on the measurement of the air pressure.
  • a medical robot equipped with a mechanism provided with a mechanism.
  • the medical manipulator according to the present invention provided in such a medical robot has excellent linearity between the operating force from the actuator and the operation, and also has excellent repetitive operation stability (bending durability), so that the air pressure sense is estimated.
  • the accuracy of the external force estimated by the mechanism can be improved.
  • the present invention it is possible to provide a medical manipulator having sufficient bending force, treatment force and durability.
  • the present invention also provides a medical manipulator equipped with a medical treatment tool unit and a medical robot capable of estimating force.
  • FIG. 1 is a perspective view illustrating the medical manipulator according to the present embodiment.
  • FIG. 2 is a diagram illustrating a treatment unit of the medical manipulator according to the present embodiment.
  • the medical manipulator 1 according to the present embodiment includes a medical treatment tool unit provided with a treatment unit 60 and a drive unit 50 for driving the treatment unit 60.
  • a drive unit 50 for example, a pneumatic cylinder is used.
  • the forceps unit 100 including the treatment portion 60 having the grip portion 61 will be described as a specific example of the medical treatment tool unit.
  • the forceps unit 100 (medical treatment tool unit) included in the medical manipulator 1 is provided between the shaft 20 having a transmission mechanism for transmitting a driving force from the drive unit 50 to the treatment unit 60, and between the shaft 20 and the treatment unit 60.
  • a flexible joint portion 10 is provided.
  • the direction along the axis of the shaft 20 is referred to as the X direction (first direction)
  • one of the directions orthogonal to the X direction is referred to as the Y direction
  • the X direction and the direction orthogonal to the Y direction are referred to as the Z direction. I will decide.
  • a plurality of wires 211, 212, and 213 are inserted in the shaft 20 as a part of the transmission mechanism, and the power from the drive unit 50 is transmitted to the grip portion 61 of the forceps unit 100.
  • the forceps unit 100 includes wires 211 for opening and closing the grip portion 61, and wires 212 and 213 for bending the flexible joint portion 10 to adjust the orientation of the grip portion 61.
  • a slide cam 62 is provided in the grip portion 61, and the slide cam 62 is operated by a wire 211 inserted in the center of the shaft 20 to open and close the grip portion 61. For example, pulling the wire 211 closes the grip portion 61, and returning the wire 211 opens the grip portion 61.
  • the wires 212 and 213 are inserted at symmetrical positions about the wires 211. By pulling one of the wires 212 and 213 and extending the other, the flexible joint portion 10 can be bent and the direction of the grip portion 61 can be changed. Although not shown in FIG. 2, a set of wires different from the set of wires 212 and 213 is also provided, and the wires 212 and 213 are bent in a direction orthogonal to the bending direction of the flexible joint portion 10. You can do it. By balancing these wire operations, the flexible joint portion 10 can be bent 360 degrees in any direction when viewed in the X direction.
  • FIG. 3 is a perspective view illustrating the flexible joint portion.
  • FIG. 4 is a plan view illustrating the flexible joint portion.
  • FIG. 5 is a front view illustrating the flexible joint portion.
  • the flexible joint portion 10 is formed of a resin material.
  • the flexible joint portion 10 connects between the discs 11 arranged in a plurality of stages in the X direction at predetermined intervals and the adjacent discs 11, and is connected to each other in a second direction (direction along the YZ plane) orthogonal to the X direction. ) With a connecting portion 12 extending.
  • the flexible joint portion 10 has a length of about 10 mm (mm) in the X direction and a diameter of about 5 mm.
  • the thickness of one disk body 11 is about 0.4 mm, and the distance between adjacent disk bodies 11 is about 0.5 mm.
  • the thickness of the connecting portion 12 is about 0.4 mm, and extends so as to pass through the center (center seen in the X direction) of the flexible joint portion 10 (extending in the radial direction of the disk body 11).
  • the pair of one disk body 11 and one connecting portion 12 connected to the disk body 11 is regarded as a one-stage structure ST, and the connecting portion 12 in the adjacent structure ST is used.
  • the extending directions are provided so as to differ from each other by 45 degrees. That is, when viewed in the X direction, the connecting portions 12 are installed so as to be offset by 45 degrees in the extending direction.
  • the number of stages of the structure ST in the flexible joint portion 10 is preferably 9 or more and 12 or less. If the number of steps of the structure ST is less than 9, it becomes difficult to secure the flexibility when bending the flexible joint portion 10, and if it is more than 12 steps, it becomes difficult to secure the strength of the flexible joint portion 10 in the X direction.
  • a hole h1 through which the wire 211 is inserted penetrates through the center of the flexible joint portion 10 when viewed in the X direction, and the wires 212 and 213 are formed on a predetermined circumference centered on the center of the flexible joint portion 10.
  • a plurality of holes h2 through which the wire is inserted penetrates.
  • the diameter of the hole h1 is about 1.8 mm, and the diameter of the hole h2 is about 0.5 mm.
  • the bending deformation region (bending strength / flexural modulus) is 3.0% or more, the compressive strength is 50 MPa or more, and the bending elasticity. It is made of a resin material having a modulus of 10 GPa or less. As described above, when the flexible joint portion 10 in which the structure ST of the disk body 11 and the connecting portion 12 is provided in a plurality of stages is formed of a resin material, the resin material within the range of the above characteristics can be used.
  • the connecting portion 12, which has the highest stress during bending, has excellent bending characteristics. Therefore, excellent flexibility can be ensured for a long period of time as the flexible joint portion 10 made of the resin material.
  • the resin material for the flexible joint portion 10 as described above includes a group consisting of PEEK (Polyetheretherketone), PEI (polyetherimide), PPSU (Polyphenylsulfone), PSU (Polysulfone), PES (Polyethersulfone), and POM-C (polyacetal copolymer). At least one selected resin is included.
  • PEEK Polyetheretherketone
  • PEI polyetherimide
  • PPSU Polyphenylsulfone
  • PSU Polysulfone
  • PES Polyethersulfone
  • POM-C polyacetal copolymer
  • the extending direction of the connecting portion 12 is not located in the direction along the occlusal surface of the grip portion 61 arranged on the distal end side of the flexible joint portion 10 (Y direction in FIGS. 1 and 2). This makes it easier to bend in the direction along the occlusal surface of the grip portion 61. That is, the wire 211 is pulled when the grip portion 61 is closed, and a force is applied to the flexible joint portion 10 in the compression direction. In this state, a force is required to bend the flexible joint portion 10 as compared with the case where no force is applied to the flexible joint portion 10 in the compression direction. In the forceps unit 100, an operation of bending along the occlusal direction is performed with the grip portion 61 closed. Since the extending direction of the connecting portion 12 is not located along the occlusal surface, it becomes easy to perform the bending operation along the occlusal surface even when the grip portion 61 is closed.
  • the inventor of the present application has found the present invention by conducting various studies on the resin material in the flexible joint portion 10 of the medical manipulator 1 according to the present embodiment. The examination is shown below.
  • a robot forceps provided with a flexible joint (an example of a medical manipulator 1) has a problem of a trade-off relationship between rigidity characteristics and flexibility characteristics at a joint with a metal part.
  • the inventor of the present application considers that the flexible joint portion 10 is made of super engineering plastic (SEP) widely used in medical equipment because of its excellent heat resistance, chemical stability, and mechanical strength. investigated.
  • SEP super engineering plastic
  • the prototype of the flexible joint 10 is designed using polyetheretherketone (PEEK) with 12 machined slits, and the bending and gripping movements of the forceps unit 100 are realized by wire actuation.
  • PEEK polyetheretherketone
  • the results of the performance evaluation show that the flexible joint portion 10 made of PEEK can maintain the bending range even when a compressive force in the axial direction (X direction) is applied.
  • the flexible joint portion 10 made of PEEK is durable against a compressive force of 30 Newton (N), and the relationship between the degree of compression and the compressive force is linear.
  • the flexible joint portion 10 made of PEEK can withstand a maximum of 10,000 bendings without significantly changing the mechanical properties of the bending.
  • the flexible joint portion 10 has sufficient rigidity to output a force exceeding 1.2 N to the environment from the grip portion 61 of the forceps unit 100.
  • the experimental results by the inventor of the present application show that the developed forceps unit 100 has the basic feasible performance of robotic surgery.
  • Non-Patent Document 1 Haraguchi et al. Have proposed a pneumatically driven multi-DOF forceps using a machined spring in combination with a backbone structure of a NiTi superelastic wire (Non-Patent Document 2).
  • Hu et al. Has developed a flexible suture robot using two coil spring bending portions that rotate in the pitch direction and the yaw direction, respectively (Non-Patent Document 3).
  • the above-mentioned flexible continuum joint is mainly made of a metal material such as a titanium alloy or stainless steel. Metallic bend joints are difficult to maintain in terms of both compressive stiffness and bending flexibility.
  • the other group uses a "quasi-flexible" joint consisting of stacked rigid discs (Non-Patent Documents 4 and 5) or rigid portions (Non-Patent Document 6) in the axial direction (X direction). ) Is increased in rigidity. However, since the bending direction and bending range are limited at each part, the rigid disk or the mechanism connecting the rigid parts increases the length of the flexible joint, which increases the bending radius of the joint and bends. Bending dexterity is reduced.
  • SEPs super engineering plastics
  • mechanical parts that face workloads in both the axial and bending directions (eg, flexible couplers made of polyacetal material).
  • SEP often has excellent heat resistance, chemical stability, and the like.
  • the flexible joint portion 10 is made of SEP material due to the following three advantages.
  • the SEP joint is more flexible in bending than the metal joint while maintaining moderate axial rigidity.
  • the SEP junction is reasonably applicable to medical energy devices such as electric knives due to its electrical insulation.
  • it is possible to realize low-cost manufacturing by injection molding at the mass production stage.
  • Section 2 describes the SEP flexible joint structure and the operating mechanism of the robot forceps (medical manipulator 1).
  • Section 3 shows some experimental results of the mechanical properties and durability of the SEP flexible joint for the practical performance evaluation of the SEP flexible joint.
  • the robot forceps (medical manipulator 1), which is an example of the medical manipulator 1, is mainly driven by the forceps unit 100. It is equipped with a unit 50.
  • the forceps unit 100 is connected to the drive unit 50 via the actuator adapter 30, and the actuator adapter 30 transmits the movement of the actuator in the drive unit 50 to the forceps unit 100 and easily separates the sterilized portion and the unsterilized portion. Designed to be able to.
  • the forceps unit 100 has a shaft 20, a flexible joint portion 10 with two degrees of freedom bending, and a grip portion 61.
  • the length of the shaft 20 is about 300 mm, and the diameter of the shaft 20 and the flexible joint portion 10 is 4.5 mm.
  • the drive unit 50 has five pneumatic cylinders, each with a position sensor, and performs two pairs of wire tendon drives for flexible joint control and one push-pull drive for grip control.
  • Pneumatic cylinders generally have a good power-to-weight ratio, so the drive unit mechanism is small and lightweight.
  • the high back-drivability makes it possible to estimate the external force.
  • the length of the bent portion of the flexible joint portion 10 is as small as 10 mm.
  • the bending motion of the flexible joint portion 10 is driven by four stainless steel wires (7 ⁇ 7 stranded wire, diameter: 0.36 mm).
  • FIG. 2 shows wires 212 and 213, which are two of the four stainless steel wires. Opposite wires operate in pairs every two, and the tendon drive mechanism determines the bending motion with one degree of freedom (the mechanism for driving the bending motion by the drive unit will be described later).
  • FIG. 2 shows wire 211 as a stainless steel wire.
  • the slide cam 62 at the base of the grip portion 61 converts the linear motion of the wire 211 into the opening / closing motion of the grip portion 61 (maximum opening angle is 66 °).
  • the flexible joint portion 10 is made of SEP material.
  • SEP material polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyacetal copolymer (POM-C), polyetherimide (PEI), polyphenylsulfone (PPSU), and polysulfone (PSU).
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • POM-C polyacetal copolymer
  • PEI polyetherimide
  • PPSU polyphenylsulfone
  • PSU polysulfone
  • PES Polyethersulfone
  • Table 1 shows the relevant characteristics of SEP candidates for the application of the flexible joint 10. All candidates have been verified to have sufficient biocompatibility for practical use as medical materials. In addition, all candidates other than POM have sufficient heat resistance (about 130 ° C.) for autoclave sterilization, and they also have chemical resistance to acute or alkaline chemicals for cleaning. There is.
  • the flexible joint portion 10 was manufactured using PEEK because of its excellent mechanical rigidity.
  • Other materials may be used as long as they have certain advantages suitable for a given application.
  • the mechanical rigidity of PPS and PEI is good, but the problem is that they have low resistance to impact. Since PPSU, PSU, and PES are more flexible and have better formability than PEEK, manufacturing costs can be reduced by simplifying the design of the flexible joint 10, in this case flexible. The number of slit portions of the joint portion 10 is smaller, and the wall thickness can be increased. Also, if the forceps unit 100 is intended for single use with the flexible joint 10, POM (classified as a normal engineering plastic) can also be used.
  • PTFE and PP were also examined. Furthermore, SUS304 was also examined as a metal material.
  • the strength of the flexible joint portion 10 was insufficient because the compressive strength was low (less than 50 MPa). Further, when the flexible joint portion 10 is configured by using SUS304, the bending deformation region is low (less than 3.0%) and the flexural modulus is high (more than 10 GPa). Therefore, when the flexible joint portion 10 is configured, a spring is used. There is no choice but to make it a structure, and some kind of reinforcing member is required.
  • the resin material forming the flexible joint portion 10 has a bending deformation region (bending strength / flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a bending elastic modulus.
  • the one with a modulus of 10 GPa or less is suitable.
  • the above seven resin materials meet all of these requirements. Of these, PEEK, PEI, PPSU, PSU and PES are preferred, with PEEK being the most preferred.
  • FIG. 6 is a diagram illustrating the stress distribution in the flexible joint portion.
  • FIG. 6 shows the FEM analysis result of the stress distribution in the flexible joint portion 10 when a compressive force of 30 N is applied to the top in order to output the gripping force.
  • the compressive force arises from the wire tension for the gripping motion.
  • the grip mechanism when the wire is pulled at 30N, the grip force exceeds 7.5N at the center of the grip 61, which is reasonably sufficient for laparoscopic surgery. Therefore, a compressive force exceeding 30 N is not required.
  • FIG. 7 is a schematic diagram of a pneumatic drive system with one degree of freedom.
  • the bending wires 212 and 213 of the flexible joint portion 10 are connected to the corresponding bending cylinders 52 and 53 (SMC, CJ2XB10-15Z) in the drive unit 50, and the pair of reciprocal cylinders expand and contract to drive the tendon. conduct.
  • the drive wire of the grip portion 61 is also connected to the central grip cylinder 51 (SMC Corporation, CJ2XB16-15RZ).
  • an analog linear encoder (Renishaw, ATOM4T0-100) is used as a position sensor to measure the position of each cylinder rod in position control.
  • Each cylinder 51, 52 and 53 is operated by a 5-port servo valve (FESTO, MPYE-5-M5-010-B, FESTO) of the control unit 70, and two pressure sensors are attached to the two control ports of the valve. And control the driving force.
  • a PI controller represented by the equation (1) is implemented for controlling the pneumatic driving force of the cylinders 51, 52 and 53.
  • the symbol u shown in the formula (1) represents the input voltage of the servo valve (considering the neutral voltage of 5.0 V), F ref represents the desired cylinder force, and F meas represents the measured cylinder force calculated by the pressure sensor. represents, K p and K i represent the feedback gain parameter of the PI controller shows these values in Table 2. In this system, the control cycle is 0.002 seconds.
  • FIG. 8 is a diagram illustrating a state in which the flexible joint portion is bent.
  • FIG. 8 shows the appearance of the forceps unit 100 when the flexible joint portion 10 is bent using the pneumatic drive system.
  • the bending angle of the flexible joint portion 10 is 67 °, which is the mechanical bending limit of this prototype.
  • FIG. 9 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
  • FIG. 9 shows a change in the bending angle of the flexible joint portion 10 corresponding to the force output from the bending cylinder even when there is no driving force of the grip portion 61.
  • FIG. 10 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
  • FIG. 10 shows a change in the bending angle of the flexible joint portion 10 corresponding to the force output from the bending cylinder when the driving force of the grip portion 61 is present.
  • FIGS. 9 and 10 show that when the bending cylinder outputs 13N, the grip portion 61 It is shown that the flexible joint portion 10 can bend up to 50 ° regardless of the driving force. Further, FIGS. 9 and 10 show the same tendency in the relationship between the bending angle of the flexible joint portion 10 and the bending cylinder force when the bending angle is less than 50 °.
  • the main reason for the hysteresis is the static friction of the operation transmission mechanism, that is, the static friction of the cylinder piston and the wire and its guide path.
  • the bending angle of the flexible joint portion 10 was 50 ° when the bending cylinder force became 13N, while the bending cylinder force became 6N in the cylinder force decreasing process.
  • the bending angle of the flexible joint portion 10 recovered to 50 °.
  • An extra force of about 7N prevented the bending wire from returning to its original position.
  • FIGS. 9 and 10 show that when the bending angle is less than 50 °, the cylinder output difference between the increasing and decreasing processes for bending the flexible joint 10 to the same angle is 6-7N. There is. The cylinder output difference was 9N at the maximum bending angle. Therefore, the magnitude of static friction is estimated to be 6-9N.
  • the bending cylinder had to output an extra compression force, which resulted in a smaller bending angle than in the absence of the driving force of the grip 61. According to this result, the SEP flexible junction related to the combination of the grip portion 61 with the drive controller needs to be designed and mounted so as not to cause this kind of mechanical interference.
  • the force of the four bending cylinders was kept at 0N, and the force of the gripping cylinder was gradually increased by 2N to 30N.
  • the length of the flexible joint 10 and the corresponding cylinder force in this case were measured and recorded.
  • FIG. 11 is a diagram showing the relationship between the grip cylinder output and the length of the flexible joint portion. From the experimental results, it was found that when the compressive force was increased to 30 N, the flexible joint portion 10 was compressed by 0.62 mm. On the other hand, the results of FEM analysis show compression of the wrist joint of 0.48 mm with the same compressive load (see (2-2) and FIG. 6 above), which results in compression deformation of the flexible joint 10 by PEEK. Can be predicted approximately.
  • the compression of the flexible joint portion 10 causes a positional error of the tip of the forceps unit 100.
  • the compression length can be measured in real time using the positions of the four bending cylinders, the position error can be compensated by the control system for the entire surgical robot arm.
  • the two bending cylinders are manufactured so as to output a driving force according to a sine function reference (amplitude: 20N, frequency: 1Hz) and to repeatedly perform a bending motion of the flexible joint portion 10 with one degree of freedom. Therefore, the flexible joint portion 10 continuously bends to both sides with a bending angle amplitude of about 65 °.
  • bending was temporarily stopped after each repetition of 1000, 2000, 3000, 5000, and 10000 times, and the experiment shown in (3-1) above was performed without the driving force of the grip portion 61.
  • FIG. 12 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
  • FIG. 12 shows the relationship between the bending cylinder force and the angle of the flexible joint portion 10 after each set of the number of repeated bendings. The results show that the bending characteristics of the flexible joint portion 10 due to PEEK do not change significantly.
  • the variation between the bending angle and the cylinder output curve was considered to be due to the static friction of the operation transmission mechanism that causes the hysteresis in FIGS. 9 and 10.
  • FIG. 12 shows a cylinder output difference of 4-5N between these two curves for bending the flexible joint 10 to the same angle. It shows that there is, and it is within the range of static friction discussed in (3-1) above (6 to 9N). In addition, no cracks or large plastic deformation occurred in the flexible joint portion 10.
  • FIG. 13 is a diagram showing an experimental device.
  • the movement of the tip of the forceps unit 100 in one direction was constrained by a jig fixed to a force sensor (CFS018CA101U, Leptorino Corp.). Initially, the force output from the four bending cylinders was 0N. Next, the output force of the bending cylinder that drives the flexible joint portion 10 and bends in the restraint direction was increased by 2N to 26N. This experiment was performed in the Z-axis direction and the X-axis direction shown in FIG.
  • the compressive rigidity of the flexible joint portion 10 should be strengthened to maintain the maximum bendable angle and reduce the positional error of the forceps unit 100 in the position control.
  • the maximum bending force should be strengthened without major deformation.
  • the experimental results shown in (3-4) above indicate that the maximum bending force without large deformation was 1.2N. This magnitude of force is sufficient for surgical operations such as cutting, excision, detachment, and suturing, but insufficient for lifting and holding large organs.
  • the bending characteristics did not change significantly even after the wrist joint joint was repeatedly bent 10,000 times without the driving force of the grip portion 61.
  • the PEEK flexible joint 10 can withstand an external force of more than 1.2 N at the center of the grip 61 and maintain its shape when in contact with the environment.
  • the robotic forceps (medical manipulator 1) with the flexible joint 10 made by PEEK show excellent performance and have potential for use in robotic surgery.
  • FIG. 16 is a diagram showing the results of static load analysis of the flexible joint portion according to the comparative example.
  • the flexible joint portion according to the comparative example shown in FIG. 16 is made of stainless steel (SUS204).
  • FIG. 17 is a diagram showing the results of static load analysis of the flexible joint portion (manufactured by PEEK) according to the present embodiment. In each of the examples, the static load analysis result at the time of bending when the compressive force 30N is applied to the flexible joint portion is shown.
  • FIG. 18 is a block diagram for explaining the force sense estimation mechanism of the medical robot.
  • the medical robot 500 includes an actuator 55 (specifically, a gripping cylinder 51, a bending cylinder 52, 53) for operating the forceps unit 100, a drive unit 50 including a linear encoder 56 attached to each actuator 55, and a pneumatic sense. It includes an estimation mechanism 561, a pneumatic control unit 562, a pneumatic measurement unit 571, and a servo valve 572.
  • the pneumatic control unit 562 outputs a control signal for controlling the servo valve 572, and the servo valve 572 changes the air pressure supplied to each actuator 55 by this control signal, and the forceps unit 100 associated with each actuator 55.
  • Adjustment portion 60 such as grip portion 61, flexible joint portion 10.
  • the linear encoder 56 included in the drive unit 50 measures the position of the operating portion of the forceps unit 100 associated with the actuator 55 by measuring the position of the piston of the actuator 55.
  • the air pressure measuring unit 571 measures the air pressure supplied from the servo valve 572 to each actuator 55.
  • the air pressure sensation estimation mechanism 561 obtains the force applied in the operating direction of the actuator 55 based on the information on the position of each part of the forceps unit 100 from each linear encoder 56 and the information on the air pressure from the air pressure measuring unit 571. Based on the force, the external force applied to the moving portion of the forceps unit 100 is estimated. Specifically, the air pressure sensation estimation mechanism 561 can estimate the bending external force of the flexible joint portion 10 of the forceps unit 100 and the gripping force of the grip portion 61.
  • the linearity between the operating force output by the actuator 55 and the displacement of the moving portion of the forceps unit 100 is high. There is little change in this linearity over time. Therefore, the air pressure sensation estimation mechanism 561 can more accurately estimate the external force applied to the moving portion of the forceps unit 100.
  • the present invention is not limited to these examples.
  • the example of the forceps having the grip portion 61 as the treatment portion 60 is shown, but the treatment portion 60 other than the forceps may be used.
  • Specific examples include a cutting tool such as an ultrasonic scalpel and a laser scalpel.
  • the gist of the present invention also includes those to which a person skilled in the art appropriately adds, deletes, and changes the design of each of the above-described embodiments, and those in which the features of the configuration examples of each embodiment are appropriately combined. Is included in the scope of the present invention as long as it is provided.
  • the medical treatment tool unit may have a spring portion or a flexible tube portion inserted in the center of a plurality of discs.
  • the rigidity of the spring portion or the flexible tube portion is added to the flexible joint portion, and the spine structure (core material) for increasing the compression rigidity of the flexible joint portion 10 is formed, so that the treatment force can be easily obtained.
  • PEEK is suitable as the material for the flexible tube portion.

Abstract

A medical manipulator according to one aspect of the present invention which has sufficient bending strength, treatment ability, and durability, and drives a treatment unit using a drive unit is provided with: a shaft having a transmission mechanism for transmitting driving force from the drive unit to the treatment unit; and a soft joint part provided between the shaft and the treatment unit. The soft joint part has: disk bodies disposed in multiple stages at predetermined intervals in a first direction along the axis of the shaft; and connection sections that connect adjacent disk bodies and extend in a second direction perpendicular to the first direction. When viewed in the first direction, adjacent connection parts extend in mutually different directions. The soft joint part is characterized by being made from a resin material having a bending deformation range (bending strength/flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a flexural modulus of 10 GPa or less.

Description

医療用処置具ユニット、医療用マニピュレータおよび医療用ロボットMedical treatment tool unit, medical manipulator and medical robot
 本発明は、駆動ユニットによって駆動される医療用処置具ユニット、かかる医療用処置具ユニットを備える医療用マニピュレータ、およびかかる医療用マニピュレータを備える医療用ロボットに関するものである。 The present invention relates to a medical treatment tool unit driven by a drive unit, a medical manipulator including such a medical treatment tool unit, and a medical robot including such a medical manipulator.
 駆動ユニットによって鉗子などの処置部を駆動する医療用マニピュレータは、術者の手の動きを正確に反映して手術による術者および患者の負担軽減や、遠隔医療の可能性を高める技術として期待されている。 A medical manipulator that drives a treatment part such as forceps by a drive unit is expected as a technology that accurately reflects the movement of the operator's hand to reduce the burden on the operator and patient by surgery and increase the possibility of telemedicine. ing.
 特許文献1には、小型化を図りつつねじり剛性、耐荷重、および屈曲性に優れた医療用マニピュレータの可撓チューブが開示される。この可撓チューブは、軸線方向に連設された複数のリング部と、軸線方向で隣接するリング部間を周方向の一部で結合するチューブ結合部と、軸線方向で隣接するリング部間においてチューブ結合部の周方向の両側に区画されチューブ結合部の曲げによる可撓チューブの屈曲を許容するスリットとを備える。このチューブ結合部において、周方向の寸法が屈曲時に固定側となる軸線方向の一側から屈曲時に可動側となる軸線方向の他側にかけて漸次小さくなっている。 Patent Document 1 discloses a flexible tube of a medical manipulator which is excellent in torsional rigidity, load bearing capacity, and flexibility while being miniaturized. This flexible tube is formed between a plurality of ring portions connected in the axial direction, a tube connecting portion that partially connects the adjacent ring portions in the axial direction, and a ring portion adjacent in the axial direction. It is divided on both sides in the circumferential direction of the tube joint and is provided with slits that allow bending of the flexible tube due to bending of the tube joint. In this tube joint, the dimension in the circumferential direction gradually decreases from one side in the axial direction which is the fixed side at the time of bending to the other side in the axial direction which becomes the movable side at the time of bending.
 特許文献2には、関節部および術具の操作性を確保しやすい医療用器具の関節部および医療用器具が開示される。この医療用器具の関節部は、内部に空間を有する筒状に形成された柔軟性の高い外殻部と、外殻部の内部空間に配置され、外殻部よりも圧縮剛性が高い筒状に形成された芯材チューブと、芯材チューブの内部空間に配置され、内部に術具の操作に用いられるケーブルが挿通されるとともに芯材チューブよりもケーブルに対する摩擦係数が小さな材料から筒状に形成された樹脂チューブと、が設けられている。 Patent Document 2 discloses a joint portion and a medical instrument of a medical instrument that facilitates operability of the joint portion and the surgical instrument. The joint part of this medical device has a highly flexible outer shell part formed in a cylindrical shape having a space inside, and a tubular part that is arranged in the inner space of the outer shell part and has a higher compression rigidity than the outer shell part. The core material tube formed in the core material tube and the cable used for operating the surgical instrument are inserted inside the core material tube, and the material has a smaller coefficient of friction against the cable than the core material tube. The formed resin tube is provided.
特開2019-34082号公報Japanese Unexamined Patent Publication No. 2019-34082 特開2020-18835号公報Japanese Unexamined Patent Publication No. 2020-18835
 医療用マニピュレータにおいて、鉗子などの処置部を多自由度(DOF:degrees of freedom)で屈曲させる柔軟関節部は、ロボット低侵襲手術システムにおいて必要不可欠である。このような柔軟関節部を有する医療用マニピュレータには、手術に必要な十分な曲げ力、処置力(把持力)および耐久性が求められる。 In a medical manipulator, a flexible joint that bends a treatment part such as forceps with multiple degrees of freedom (DOF) is indispensable in a robot minimally invasive surgery system. A medical manipulator having such a flexible joint portion is required to have sufficient bending force, treatment force (grip force) and durability required for surgery.
 本発明は、十分な曲げ力、処置力および耐久性を備えた医療用処置具ユニットを提供することを目的とする。本発明はまた、かかる医療用処置具ユニットを備える医療用マニピュレータを提供すること、およびかかる医療用マニピュレータを備えて力覚推定可能な医療用ロボットを目的とする。 An object of the present invention is to provide a medical treatment tool unit having sufficient bending force, treatment force and durability. The present invention also aims to provide a medical manipulator equipped with such a medical treatment tool unit, and to provide a medical robot equipped with such a medical manipulator and capable of estimating force.
 上記課題を解決するために、本発明の一態様は、駆動ユニットによって駆動される処置部を有する医療用処置具ユニットであって、駆動ユニットから処置部へ駆動力を伝える伝達機構を有するシャフトと、シャフトと処置部との間に設けられる柔軟関節部と、を備える。柔軟関節部は、シャフトの軸に沿った第1方向に所定の間隔で複数段に配置される円盤体と、隣り合う円盤体の間を連結し、第1方向と直交する第2方向に延在する連結部であって、第1方向にみて隣り合う連結部の延在方向が互いに異なる連結部と、を有する。この柔軟関節部は、曲げ変形域(曲げ強度/曲げ弾性率)が3.0%以上であって、圧縮強度が50MPa以上であり、曲げ弾性率が10GPa以下の樹脂材料によって形成されたことを特徴とする。 In order to solve the above problems, one aspect of the present invention is a medical treatment tool unit having a treatment unit driven by a drive unit, and a shaft having a transmission mechanism for transmitting a driving force from the drive unit to the treatment unit. , A flexible joint portion provided between the shaft and the treatment portion. The flexible joint portion connects between a disk body arranged in a plurality of stages in a first direction along the axis of the shaft at predetermined intervals and an adjacent disk body, and extends in a second direction orthogonal to the first direction. It has a connecting portion which is present and has a connecting portion in which the extending directions of the adjacent connecting portions when viewed in the first direction are different from each other. The flexible joint portion was formed of a resin material having a bending deformation region (bending strength / flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a bending elastic modulus of 10 GPa or less. It is a feature.
 このような構成によれば、柔軟関節部において屈曲の際に最も応力が高くなる連結部が優れた曲げ特性を有した樹脂材料から構成されているため、優れた屈曲性を長期にわたり確保することができる。 According to such a configuration, since the connecting portion having the highest stress at the time of bending in the flexible joint portion is made of a resin material having excellent bending characteristics, excellent flexibility can be ensured for a long period of time. Can be done.
 上記医療用処置具ユニットにおいて、柔軟関節部の樹脂材料は、PEEK、PEI、PPSU、PSU、PES、POM-Cよりなる群から選択された少なくとも1つの樹脂を含むことが好ましい。柔軟関節部をこのような樹脂材料にすることで、柔軟関節部に必要な機械的強度、長期耐熱性および耐薬品性を得ることができる。 In the medical treatment tool unit, the resin material for the flexible joint preferably contains at least one resin selected from the group consisting of PEEK, PEI, PPSU, PSU, PES, and POM-C. By using such a resin material for the flexible joint portion, it is possible to obtain the mechanical strength, long-term heat resistance and chemical resistance required for the flexible joint portion.
 上記医療用処置具ユニットにおいて、1つの円盤体と、当該円盤体に接続される1つの連結部との組を1段の構造体として、隣り合う構造体における連結部のそれぞれの延在方向が互いに45度相違することが好ましい。これにより、円盤耐と連結部とを組み合わせた構造体において、第1方向にみて隣り合う連結部の位置が45度ずつ相違して配置され、屈曲の方向性に対する連結部への応力集中が緩和される。 In the medical treatment tool unit, a set of one disk body and one connecting portion connected to the disk body is regarded as a one-stage structure, and the extending directions of the connecting portions in adjacent structures are set. It is preferable that they differ from each other by 45 degrees. As a result, in the structure in which the disk resistance and the connecting portion are combined, the positions of the adjacent connecting portions are arranged differently by 45 degrees when viewed in the first direction, and the stress concentration on the connecting portion with respect to the bending direction is relaxed. Will be done.
 上記医療用処置具ユニットにおいて、柔軟関節部における構造体の段数は、9段以上12段以下であることが好ましい。これにより、柔軟関節部が屈曲する際に構造体に加わる応力集中を緩和しつつ屈曲の柔軟性を高めることができる。 In the medical treatment tool unit, the number of stages of the structure in the flexible joint portion is preferably 9 or more and 12 or less. As a result, it is possible to increase the flexibility of bending while relaxing the stress concentration applied to the structure when the flexible joint portion bends.
 上記医療用処置具ユニットにおいて、処置部は把持部を有し、連結部の延在方向が柔軟関節部の先端側に配置される把持部の咬合面に沿う方向には位置しないことが好ましい。これにより、把持部の咬合面に沿う方向に屈曲しやすくなる。 In the medical treatment tool unit, it is preferable that the treatment portion has a grip portion and the extending direction of the connecting portion is not located along the occlusal surface of the grip portion arranged on the tip end side of the flexible joint portion. This makes it easier to bend in the direction along the occlusal surface of the grip portion.
 上記医療用処置具ユニットにおいて、複数の円盤体の中央に挿通されたスプリング部または可撓性チューブ部を有していてもよい。これにより、柔軟関節部にスプリング部または可撓性チューブ部による剛性が加わり、処置力を得やすくなる。 The medical treatment tool unit may have a spring portion or a flexible tube portion inserted in the center of a plurality of discs. As a result, rigidity is added to the flexible joint portion by the spring portion or the flexible tube portion, and it becomes easy to obtain a treatment force.
 本発明は、別の一態様において、上記の医療用処置具ユニットと、医療用処置具ユニットが有する処置具を駆動する駆動ユニットとを備える、医療用マニピュレータを提供する。駆動ユニットは空気圧により処置具を駆動してもよい。本発明は、他の一態様において、この空気圧により処置具を駆動する医療用マニピュレータを備える医療用ロボットであって、処置具に付与される外力を前記空気圧の測定に基づき推定する空気圧力覚推定機構を備える、医療用ロボットを提供する。 The present invention provides, in another aspect, a medical manipulator including the above-mentioned medical treatment tool unit and a drive unit for driving the treatment tool of the medical treatment tool unit. The drive unit may drive the treatment tool by air pressure. In another aspect, the present invention is a medical robot provided with a medical manipulator that drives a treatment tool by this air pressure, and an air pressure sense estimation that estimates an external force applied to the treatment tool based on the measurement of the air pressure. Provide a medical robot equipped with a mechanism.
 かかる医療用ロボットが備える上記の本発明に係る医療用マニピュレータは、アクチュエータからの操作力と動作との線形性が優れ、かつ繰り返し動作安定性(曲げ耐久性)にも優れるため、空気圧力覚推定機構において推定する外力の精度を高めることができる。 The medical manipulator according to the present invention provided in such a medical robot has excellent linearity between the operating force from the actuator and the operation, and also has excellent repetitive operation stability (bending durability), so that the air pressure sense is estimated. The accuracy of the external force estimated by the mechanism can be improved.
 本発明によれば、十分な曲げ力、処置力および耐久性を備えた医療用マニピュレータを提供することが可能となる。また、本発明により、医療用処置具ユニットを備える医療用マニピュレータ、および力覚推定可能な医療用ロボットが提供される。 According to the present invention, it is possible to provide a medical manipulator having sufficient bending force, treatment force and durability. The present invention also provides a medical manipulator equipped with a medical treatment tool unit and a medical robot capable of estimating force.
本実施形態に係る医療用マニピュレータを例示する斜視図である。It is a perspective view which illustrates the medical manipulator which concerns on this embodiment. 本実施形態に係る医療用マニピュレータの処置部を例示する図である。It is a figure which illustrates the treatment part of the medical manipulator which concerns on this embodiment. 柔軟関節部を例示する斜視図である。It is a perspective view which illustrates the flexible joint part. 柔軟関節部を例示する平面図である。It is a top view which illustrates the flexible joint part. 柔軟関節部を例示する正面図である。It is a front view which illustrates the flexible joint part. 柔軟関節部における応力分布を例示する図である。It is a figure which illustrates the stress distribution in a flexible joint part. 1自由度の空気圧駆動システムの概略図である。It is a schematic diagram of a pneumatic drive system with one degree of freedom. 柔軟関節部を曲げた状態を例示する図である。It is a figure which illustrates the state which the flexible joint part was bent. 曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。It is a figure which shows the relationship between the bending cylinder force and the bending angle of a flexible joint part. 曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。It is a figure which shows the relationship between the bending cylinder force and the bending angle of a flexible joint part. 把持シリンダ出力と柔軟関節部の長さとの関係を示す図である。It is a figure which shows the relationship between the grip cylinder output and the length of a flexible joint part. 曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。It is a figure which shows the relationship between the bending cylinder force and the bending angle of a flexible joint part. 実験装置を示す図である。It is a figure which shows the experimental apparatus. 2方向の力センサによって測定された環境に与えられる力と、柔軟関節部の状態とを示す図である。It is a figure which shows the force applied to the environment measured by the force sensor in two directions, and the state of a flexible joint part. 2方向の力センサによって測定された環境に与えられる力と、柔軟関節部の状態とを示す図である。It is a figure which shows the force applied to the environment measured by the force sensor in two directions, and the state of a flexible joint part. 比較例に係る柔軟関節部の静荷重解析の結果を示す図である。It is a figure which shows the result of the static load analysis of the flexible joint part which concerns on a comparative example. 本実施形態に係る柔軟関節部(PEEK製)の静荷重解析の結果を示す図である。It is a figure which shows the result of the static load analysis of the flexible joint part (manufactured by PEEK) which concerns on this embodiment. 本実施形態に係る医療用ロボットの力覚推定機構を説明するためのブロック図である。It is a block diagram for demonstrating the force sense estimation mechanism of the medical robot which concerns on this embodiment.
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the same members are designated by the same reference numerals, and the description of the members once described will be omitted as appropriate.
(医療用マニピュレータの構成)
 図1は、本実施形態に係る医療用マニピュレータを例示する斜視図である。
 図2は、本実施形態に係る医療用マニピュレータの処置部を例示する図である。
 本実施形態に係る医療用マニピュレータ1は、処置部60が設けられた医療用処置具ユニットと、処置部60を駆動する駆動ユニット50とを備える。駆動ユニット50には、例えば空気圧シリンダが用いられる。本実施形態では、把持部61を有する処置部60を備える鉗子ユニット100を、医療用処置具ユニットの具体例として説明する。
(Composition of medical manipulator)
FIG. 1 is a perspective view illustrating the medical manipulator according to the present embodiment.
FIG. 2 is a diagram illustrating a treatment unit of the medical manipulator according to the present embodiment.
The medical manipulator 1 according to the present embodiment includes a medical treatment tool unit provided with a treatment unit 60 and a drive unit 50 for driving the treatment unit 60. For the drive unit 50, for example, a pneumatic cylinder is used. In the present embodiment, the forceps unit 100 including the treatment portion 60 having the grip portion 61 will be described as a specific example of the medical treatment tool unit.
 医療用マニピュレータ1が備える鉗子ユニット100(医療用処置具ユニット)は、駆動ユニット50から処置部60へ駆動力を伝える伝達機構を有するシャフト20と、シャフト20と処置部60との間に設けられる柔軟関節部10とを備える。なお、本実施形態では、シャフト20の軸に沿った方向をX方向(第1方向)、X方向と直交する方向の一つをY方向、X方向およびY方向と直交する方向をZ方向ということにする。 The forceps unit 100 (medical treatment tool unit) included in the medical manipulator 1 is provided between the shaft 20 having a transmission mechanism for transmitting a driving force from the drive unit 50 to the treatment unit 60, and between the shaft 20 and the treatment unit 60. A flexible joint portion 10 is provided. In the present embodiment, the direction along the axis of the shaft 20 is referred to as the X direction (first direction), one of the directions orthogonal to the X direction is referred to as the Y direction, and the X direction and the direction orthogonal to the Y direction are referred to as the Z direction. I will decide.
 シャフト20内には、伝達機構の一部として複数本のワイヤ211、212、213が挿通されており、駆動ユニット50からの動力を鉗子ユニット100の把持部61に伝える。鉗子ユニット100は、把持部61を開閉動作するためのワイヤ211と、柔軟関節部10を屈曲させて把持部61の向きを調整するためのワイヤ212、213とを備える。 A plurality of wires 211, 212, and 213 are inserted in the shaft 20 as a part of the transmission mechanism, and the power from the drive unit 50 is transmitted to the grip portion 61 of the forceps unit 100. The forceps unit 100 includes wires 211 for opening and closing the grip portion 61, and wires 212 and 213 for bending the flexible joint portion 10 to adjust the orientation of the grip portion 61.
 把持部61には例えばスライドカム62が設けられており、シャフト20の中央に挿通されたワイヤ211によってスライドカム62を動作させて把持部61の開閉が行われる。例えば、ワイヤ211を引っ張ることで把持部61が閉じ、ワイヤ211を戻すことで把持部61が開くようになる。 For example, a slide cam 62 is provided in the grip portion 61, and the slide cam 62 is operated by a wire 211 inserted in the center of the shaft 20 to open and close the grip portion 61. For example, pulling the wire 211 closes the grip portion 61, and returning the wire 211 opens the grip portion 61.
 ワイヤ212、213はワイヤ211を中心とした対称の位置に挿通される。ワイヤ212、213の一方を引っ張り、他方を伸ばすことで柔軟関節部10が屈曲し、把持部61の向きを変えることができる。なお、図2には示されないが、ワイヤ212、213の組とは別のワイヤの組も設けられており、ワイヤ212、213による柔軟関節部10の屈曲方向と直交する方向への屈曲を行うことができるようになっている。これらのワイヤ操作のバランスによって柔軟関節部10をX方向にみて360度いずれの方向にも屈曲させることができる。 The wires 212 and 213 are inserted at symmetrical positions about the wires 211. By pulling one of the wires 212 and 213 and extending the other, the flexible joint portion 10 can be bent and the direction of the grip portion 61 can be changed. Although not shown in FIG. 2, a set of wires different from the set of wires 212 and 213 is also provided, and the wires 212 and 213 are bent in a direction orthogonal to the bending direction of the flexible joint portion 10. You can do it. By balancing these wire operations, the flexible joint portion 10 can be bent 360 degrees in any direction when viewed in the X direction.
 図3は、柔軟関節部を例示する斜視図である。
 図4は、柔軟関節部を例示する平面図である。
 図5は、柔軟関節部を例示する正面図である。
 柔軟関節部10は樹脂材料によって形成される。柔軟関節部10は、X方向に所定の間隔で複数段に配置される円盤体11と、隣り合う円盤体11の間を連結し、X方向と直交する第2方向(YZ平面に沿った方向)に延在する連結部12とを有する。柔軟関節部10のX方向の長さは約10ミリメートル(mm)、直径は約5mmである。1つの円盤体11の厚さは約0.4mm、隣り合う円盤体11の間隔は約0.5mmである。連結部12の厚さは約0.4mmであり、柔軟関節部10の中心(X方向にみた中心)を通るように延在(円盤体11の径方向に延在)している。
FIG. 3 is a perspective view illustrating the flexible joint portion.
FIG. 4 is a plan view illustrating the flexible joint portion.
FIG. 5 is a front view illustrating the flexible joint portion.
The flexible joint portion 10 is formed of a resin material. The flexible joint portion 10 connects between the discs 11 arranged in a plurality of stages in the X direction at predetermined intervals and the adjacent discs 11, and is connected to each other in a second direction (direction along the YZ plane) orthogonal to the X direction. ) With a connecting portion 12 extending. The flexible joint portion 10 has a length of about 10 mm (mm) in the X direction and a diameter of about 5 mm. The thickness of one disk body 11 is about 0.4 mm, and the distance between adjacent disk bodies 11 is about 0.5 mm. The thickness of the connecting portion 12 is about 0.4 mm, and extends so as to pass through the center (center seen in the X direction) of the flexible joint portion 10 (extending in the radial direction of the disk body 11).
 この柔軟関節部10においては、1つの円盤体11と、当該円盤体11に接続される1つの連結部12との組を1段の構造体STとして、隣り合う構造体STにおける連結部12のそれぞれの延在方向が互いに45度相違するように設けられる。すなわち、X方向にみて、連結部12の延在方向が45度ずつ順にずれるように設置される。このように連結部12が設置されることで、柔軟関節部10の屈曲の方向性に対する連結部12への応力集中が緩和され、柔軟関節部10の強度と柔軟性との両立が達成される。 In the flexible joint portion 10, the pair of one disk body 11 and one connecting portion 12 connected to the disk body 11 is regarded as a one-stage structure ST, and the connecting portion 12 in the adjacent structure ST is used. The extending directions are provided so as to differ from each other by 45 degrees. That is, when viewed in the X direction, the connecting portions 12 are installed so as to be offset by 45 degrees in the extending direction. By installing the connecting portion 12 in this way, stress concentration on the connecting portion 12 with respect to the bending direction of the flexible joint portion 10 is alleviated, and both strength and flexibility of the flexible joint portion 10 are achieved. ..
 柔軟関節部10における構造体STの段数は、9段以上12段以下が好ましい。構造体STの段数が9段よりも少ないと柔軟関節部10を屈曲させる際の柔軟性を確保し難くなり、12段よりも多いと柔軟関節部10のX方向の強度を確保し難くなる。 The number of stages of the structure ST in the flexible joint portion 10 is preferably 9 or more and 12 or less. If the number of steps of the structure ST is less than 9, it becomes difficult to secure the flexibility when bending the flexible joint portion 10, and if it is more than 12 steps, it becomes difficult to secure the strength of the flexible joint portion 10 in the X direction.
 図5に示すように、X方向にみて柔軟関節部10の中央にはワイヤ211を挿通させる孔h1が貫通し、柔軟関節部10の中央を中心とした所定の円周上にワイヤ212、213などを挿通させる複数の孔h2が貫通している。孔h1の直径は約1.8mm、孔h2の直径は約0.5mmである。 As shown in FIG. 5, a hole h1 through which the wire 211 is inserted penetrates through the center of the flexible joint portion 10 when viewed in the X direction, and the wires 212 and 213 are formed on a predetermined circumference centered on the center of the flexible joint portion 10. A plurality of holes h2 through which the wire is inserted penetrates. The diameter of the hole h1 is about 1.8 mm, and the diameter of the hole h2 is about 0.5 mm.
 本実施形態に係る医療用マニピュレータ1で用いられる柔軟関節部10においては、曲げ変形域(曲げ強度/曲げ弾性率)が3.0%以上であって、圧縮強度が50MPa以上であり、曲げ弾性率が10GPa以下の樹脂材料によって形成されている。上記のようなに、円盤体11および連結部12の構造体STを複数段設けた柔軟関節部10を樹脂材料で形成する場合、樹脂材料として上記の特性の範囲内のものを用いることで、屈曲の際に最も応力が高くなる連結部12が優れた曲げ特性を有することになる。したがって、樹脂材料による柔軟関節部10として優れた屈曲性を長期にわたり確保することができる。 In the flexible joint portion 10 used in the medical manipulator 1 according to the present embodiment, the bending deformation region (bending strength / flexural modulus) is 3.0% or more, the compressive strength is 50 MPa or more, and the bending elasticity. It is made of a resin material having a modulus of 10 GPa or less. As described above, when the flexible joint portion 10 in which the structure ST of the disk body 11 and the connecting portion 12 is provided in a plurality of stages is formed of a resin material, the resin material within the range of the above characteristics can be used. The connecting portion 12, which has the highest stress during bending, has excellent bending characteristics. Therefore, excellent flexibility can be ensured for a long period of time as the flexible joint portion 10 made of the resin material.
 上記のような柔軟関節部10の樹脂材料としては、PEEK(Polyetheretherketone)、PEI(polyetherimide)、PPSU(Polyphenylsulfone)、PSU(Polysulfone)、PES(Polyethersulfone)、POM-C(polyacetal copolymer)よりなる群から選択された少なくとも1つの樹脂が含まれる。柔軟関節部10に用いられる樹脂材料については後述する。 The resin material for the flexible joint portion 10 as described above includes a group consisting of PEEK (Polyetheretherketone), PEI (polyetherimide), PPSU (Polyphenylsulfone), PSU (Polysulfone), PES (Polyethersulfone), and POM-C (polyacetal copolymer). At least one selected resin is included. The resin material used for the flexible joint portion 10 will be described later.
 また、連結部12の延在方向が柔軟関節部10の先端側に配置される把持部61の咬合面に沿う方向(図1、図2ではY方向)には位置しないことが好ましい。これにより、把持部61の咬合面に沿う方向に屈曲しやすくなる。すなわち、把持部61を閉じる際にはワイヤ211が引っ張れており、柔軟関節部10には圧縮方向に力が加えられる。この状態では、柔軟関節部10に圧縮方向に力が加わっていない場合に比べて柔軟関節部10の屈曲に力を要することになる。鉗子ユニット100では把持部61を閉じた状態で咬合方向に沿って屈曲させる動作が行われる。連結部12の延在方向が咬合面に沿う方向に位置しないことで、把持部61を閉じた状態でも咬合面に沿った屈曲動作を行いやすくなる。 Further, it is preferable that the extending direction of the connecting portion 12 is not located in the direction along the occlusal surface of the grip portion 61 arranged on the distal end side of the flexible joint portion 10 (Y direction in FIGS. 1 and 2). This makes it easier to bend in the direction along the occlusal surface of the grip portion 61. That is, the wire 211 is pulled when the grip portion 61 is closed, and a force is applied to the flexible joint portion 10 in the compression direction. In this state, a force is required to bend the flexible joint portion 10 as compared with the case where no force is applied to the flexible joint portion 10 in the compression direction. In the forceps unit 100, an operation of bending along the occlusal direction is performed with the grip portion 61 closed. Since the extending direction of the connecting portion 12 is not located along the occlusal surface, it becomes easy to perform the bending operation along the occlusal surface even when the grip portion 61 is closed.
 ここで、本願発明者は、本実施形態に係る医療用マニピュレータ1の柔軟関節部10における樹脂材料について様々な検討を行うことで、本願発明を見出した。その検討について以下に示す。 Here, the inventor of the present application has found the present invention by conducting various studies on the resin material in the flexible joint portion 10 of the medical manipulator 1 according to the present embodiment. The examination is shown below.
 柔軟関節部を備えたロボット鉗子(医療用マニピュレータ1の例)は、金属部品との接合部における剛性特性と柔軟性特性との間でのトレードオフ関係の問題を有する。この問題に対して、本願発明者は、優れた耐熱性、化学的安定性、および機械的強度から医療機器に広く用いられているスーパーエンジニアリングプラスチック(SEP)により柔軟関節部10を構成することを検討した。 A robot forceps provided with a flexible joint (an example of a medical manipulator 1) has a problem of a trade-off relationship between rigidity characteristics and flexibility characteristics at a joint with a metal part. To solve this problem, the inventor of the present application considers that the flexible joint portion 10 is made of super engineering plastic (SEP) widely used in medical equipment because of its excellent heat resistance, chemical stability, and mechanical strength. investigated.
 柔軟関節部10の試作品は、12個の機械加工されたスリットを備えたポリエーテルエーテルケトン(PEEK)を用いて設計されており、鉗子ユニット100の曲げおよび把持の動きはワイヤ作動によって実現される。性能評価の結果は、軸方向(X方向)の圧縮力が与えられた場合であってもPEEK製の柔軟関節部10がその曲げ範囲を維持し得ることを示している。 The prototype of the flexible joint 10 is designed using polyetheretherketone (PEEK) with 12 machined slits, and the bending and gripping movements of the forceps unit 100 are realized by wire actuation. To. The results of the performance evaluation show that the flexible joint portion 10 made of PEEK can maintain the bending range even when a compressive force in the axial direction (X direction) is applied.
 PEEK製の柔軟関節部10では30ニュートン(N)の圧縮力に対して耐久性があり、圧縮の程度と圧縮力の関係は線形である。PEEK製の柔軟関節部10において、その曲げの機械的特性が大きくは変化することなく、最大10000回の曲げに耐える。この柔軟関節部10には、鉗子ユニット100の把持部61から環境に1.2Nを超える力を出力するのに十分な剛性がある。本願発明者による実験結果は、開発された鉗子ユニット100がロボット手術の基本的な実現可能性能を有していることを示している。 The flexible joint portion 10 made of PEEK is durable against a compressive force of 30 Newton (N), and the relationship between the degree of compression and the compressive force is linear. The flexible joint portion 10 made of PEEK can withstand a maximum of 10,000 bendings without significantly changing the mechanical properties of the bending. The flexible joint portion 10 has sufficient rigidity to output a force exceeding 1.2 N to the environment from the grip portion 61 of the forceps unit 100. The experimental results by the inventor of the present application show that the developed forceps unit 100 has the basic feasible performance of robotic surgery.
 次に、本願発明者が行った柔軟関節部10の具体的な樹脂材料の検討について詳細に説明する。 Next, the study of a specific resin material for the flexible joint portion 10 conducted by the inventor of the present application will be described in detail.
(セクション1)
 多自由度(DOF)は、ロボット低侵襲手術システムにおいて用いられるロボット鉗子(医療用マニピュレータ1)に必要不可欠である。本検討は、ロボット鉗子(医療用マニピュレータ1)の遠位曲げ接合部(柔軟関節部10)の機構に焦点を当てる。
(Section 1)
Multi-degree of freedom (DOF) is essential for robotic forceps (medical manipulator 1) used in robotic minimally invasive surgical systems. This study focuses on the mechanism of the distal bending joint (flexible joint 10) of a robotic forceps (medical manipulator 1).
 柔軟連続体接合部の部品数は少なく、またシャフト、ベアリング、およびプーリ等の小さな予備部品が不要なため、機械的な単純さと小型化の点で剛性リンク接合部よりも優れている。ディング等(Ding et al.)は、曲げ運動を実現するためのマルチバックボーン連続体機構を備えた挿入可能ロボットエフェクタープラットフォームを開発した(非特許文献1)。ハラグチ等は、NiTi超弾性ワイヤのバックボーン構造との組み合わせに係る機械加工バネを用いた空気圧駆動型マルチDOF鉗子を提案した(非特許文献2)。フー等(Hu et al.)は、ピッチ方向とヨー方向にそれぞれ回転する2つのコイルばね曲げ部を用いた柔軟縫合ロボットを開発した(非特許文献3)。 The number of parts in the flexible continuous joint is small, and small spare parts such as shafts, bearings, and pulleys are not required, so it is superior to the rigid link joint in terms of mechanical simplicity and miniaturization. Ding et al. Has developed an insertable robot effector platform equipped with a multi-backbone continuum mechanism for realizing bending motion (Non-Patent Document 1). Haraguchi et al. Have proposed a pneumatically driven multi-DOF forceps using a machined spring in combination with a backbone structure of a NiTi superelastic wire (Non-Patent Document 2). Hu et al. Has developed a flexible suture robot using two coil spring bending portions that rotate in the pitch direction and the yaw direction, respectively (Non-Patent Document 3).
 これらの柔軟連続体接合部の多くは、曲げ運動を実現するためにワイヤ作動機構を採用して大きな柔軟性を示した。しかし、作動ワイヤの大きな張力が、柔軟接合部の過剰な圧縮を生じさせてしまう。したがって、軸方向(X方向)の剛性に注意を払うべきである。上述した柔軟連続体接合部は、主にチタン合金やステンレス鋼等の金属材料で作製される。金属製曲げ接合部は、圧縮剛性と曲げ柔軟性の両方で性能を維持することが困難である。 Many of these flexible continuum joints have shown great flexibility by adopting a wire actuation mechanism to realize bending motion. However, the high tension of the working wire causes excessive compression of the flexible joint. Therefore, attention should be paid to the rigidity in the axial direction (X direction). The above-mentioned flexible continuum joint is mainly made of a metal material such as a titanium alloy or stainless steel. Metallic bend joints are difficult to maintain in terms of both compressive stiffness and bending flexibility.
 弾性連続体要素とは別に、他のグループは、積み重ねた剛性ディスク(非特許文献4、5)または剛性部分(非特許文献6)からなる「準柔軟」接合部を用いて軸方向(X方向)の剛性を高めている。しかし、曲げ方向と曲げ範囲は各部分で制限されるので、剛性ディスクまたは剛性部分を接続する機構が柔軟接合部の長さを増大させ、これにより、接合部の曲げ半径が増大し、曲げの巧妙さ(bending dexterity)が低下する。 Apart from the elastic continuum element, the other group uses a "quasi-flexible" joint consisting of stacked rigid discs (Non-Patent Documents 4 and 5) or rigid portions (Non-Patent Document 6) in the axial direction (X direction). ) Is increased in rigidity. However, since the bending direction and bending range are limited at each part, the rigid disk or the mechanism connecting the rigid parts increases the length of the flexible joint, which increases the bending radius of the joint and bends. Bending dexterity is reduced.
 一方で、特に狭い空間で腹腔鏡手術を実行するためには、やはりロボット鉗子(医療用マニピュレータ1)の手関節接合部において剛性と柔軟性の両特性の二重の要求を満たす必要がある。したがって、連続体接合部においては、金属の代わりに別の材料を用いることが期待される。 On the other hand, in order to perform laparoscopic surgery especially in a narrow space, it is necessary to satisfy the dual requirements of both rigidity and flexibility at the wrist joint joint of the robot forceps (medical manipulator 1). Therefore, it is expected that another material will be used instead of metal in the continuum joint.
 多くの場合、スーパーエンジニアリングプラスチック(SEP)は、軸方向と曲げ方向の両方において作業負荷に直面する機械部品において用いられる(例えば、ポリアセタール材料で作製された柔軟連結器)。また、SEPは、多くの場合に優れた耐熱性、化学的安定性等を有する。これらの利点により、SEPは絶縁、殺菌、軽量化、および非磁性等の特殊な環境で用いられる医療機器に適している。 Often, super engineering plastics (SEPs) are used in mechanical parts that face workloads in both the axial and bending directions (eg, flexible couplers made of polyacetal material). In addition, SEP often has excellent heat resistance, chemical stability, and the like. These advantages make SEP suitable for medical devices used in special environments such as insulation, sterilization, weight reduction, and non-magnetic.
 そこで、本検討では、以下の3つの利点により柔軟関節部10がSEP材料で作製されたロボット鉗子(医療用マニピュレータ1)を提案する。先ず、SEP接合部は、適度な軸方向剛性を維持しつつ金属接合部よりも曲げに柔軟性がある。第二に、SEP接合部は、その電気絶縁性により電気ナイフ等の医療エネルギ装置に合理的に適用可能である。第三に、大量生産段階での射出成形により低コストでの製造を実現可能である。 Therefore, in this study, we propose a robot forceps (medical manipulator 1) in which the flexible joint portion 10 is made of SEP material due to the following three advantages. First, the SEP joint is more flexible in bending than the metal joint while maintaining moderate axial rigidity. Second, the SEP junction is reasonably applicable to medical energy devices such as electric knives due to its electrical insulation. Thirdly, it is possible to realize low-cost manufacturing by injection molding at the mass production stage.
 ここでは、SEP柔軟手関節接合部を備えたロボット鉗子(医療用マニピュレータ1)の設計および試作品並びにその実用上の性能評価を紹介する。セクション2では、SEP柔軟接合部構造とロボット鉗子(医療用マニピュレータ1)の作動機構について説明する。セクション3では、SEP柔軟接合部の実用上の性能評価のために、SEP柔軟接合部の機械的特性及び耐久性の幾つかの実験結果を示す。 Here, we will introduce the design and prototype of a robot forceps (medical manipulator 1) equipped with a SEP flexible wrist joint and its practical performance evaluation. Section 2 describes the SEP flexible joint structure and the operating mechanism of the robot forceps (medical manipulator 1). Section 3 shows some experimental results of the mechanical properties and durability of the SEP flexible joint for the practical performance evaluation of the SEP flexible joint.
(セクション2)材料および方法
(2-1)ロボット鉗子の設計および機構
 図1に示すように、医療用マニピュレータ1の例であるロボット鉗子(医療用マニピュレータ1)は、主に鉗子ユニット100と駆動ユニット50を備えている。鉗子ユニット100はアクチュエータアダプタ30を介して駆動ユニット50に接続され、アクチュエータアダプタ30は、駆動ユニット50におけるアクチュエータの動きを鉗子ユニット100に伝達し、かつ殺菌部と未殺菌部とを容易に分離することができるように設計される。
(Section 2) Materials and Methods (2-1) Design and Mechanism of Robot Forceps As shown in FIG. 1, the robot forceps (medical manipulator 1), which is an example of the medical manipulator 1, is mainly driven by the forceps unit 100. It is equipped with a unit 50. The forceps unit 100 is connected to the drive unit 50 via the actuator adapter 30, and the actuator adapter 30 transmits the movement of the actuator in the drive unit 50 to the forceps unit 100 and easily separates the sterilized portion and the unsterilized portion. Designed to be able to.
 鉗子ユニット100は、シャフト20と、2自由度曲げの柔軟関節部10と把持部61とを有する。シャフト20の長さは約300mm、シャフト20および柔軟関節部10の直径は4.5mmである。 The forceps unit 100 has a shaft 20, a flexible joint portion 10 with two degrees of freedom bending, and a grip portion 61. The length of the shaft 20 is about 300 mm, and the diameter of the shaft 20 and the flexible joint portion 10 is 4.5 mm.
 駆動ユニット50は、それぞれ位置センサ付きの5つの空気圧シリンダを有し、柔軟関節部制御用の2対のワイヤ腱駆動と把持部制御用の1つのプッシュプル駆動とを行う。空気圧シリンダは一般に優れた出力重量比を有しているので、駆動ユニットの機構は小型かつ軽量である。また、高い逆操縦性(back-drivability)により、外力の推定が実行可能である。 The drive unit 50 has five pneumatic cylinders, each with a position sensor, and performs two pairs of wire tendon drives for flexible joint control and one push-pull drive for grip control. Pneumatic cylinders generally have a good power-to-weight ratio, so the drive unit mechanism is small and lightweight. In addition, the high back-drivability makes it possible to estimate the external force.
 図2に示すように、柔軟関節部10の曲げ部分の長さは10mmと小型である。柔軟関節部10の曲げ運動は、4本のステンレス鋼線(7×7より線、直径:0.36mm)によって駆動される。なお、図2には4本のステンレス鋼線のうちの2本であるワイヤ212、213が示される。相反ワイヤ(opposite wires)は2本毎に対で動作し、腱駆動機構によって1自由度の曲げ運動を決定する(駆動ユニットにより曲げ運動を駆動する機構については後述する。)。 As shown in FIG. 2, the length of the bent portion of the flexible joint portion 10 is as small as 10 mm. The bending motion of the flexible joint portion 10 is driven by four stainless steel wires (7 × 7 stranded wire, diameter: 0.36 mm). Note that FIG. 2 shows wires 212 and 213, which are two of the four stainless steel wires. Opposite wires operate in pairs every two, and the tendon drive mechanism determines the bending motion with one degree of freedom (the mechanism for driving the bending motion by the drive unit will be described later).
 把持部61には、市販の把持鉗子(ケンブリッジエンドー製Autonomy Lapro-Angle Instruments)を用いた。開閉運動は、中央のステンレススチールワイヤ(1×7より線、直径:0.75mm)からのプッシュプル作動によって決定される。図2にはステンレススチールワイヤとしてワイヤ211が示される。把持部61の根元にあるスライドカム62は、ワイヤ211の直線運動を把持部61の開閉運動に変換する(最大開放角は66°)。 A commercially available gripping forceps (Autonomy Lapro-Angle Instruments manufactured by Cambridge Endo) was used for the grip portion 61. The opening and closing movement is determined by push-pull operation from a central stainless steel wire (1 x 7 stranded wire, diameter: 0.75 mm). FIG. 2 shows wire 211 as a stainless steel wire. The slide cam 62 at the base of the grip portion 61 converts the linear motion of the wire 211 into the opening / closing motion of the grip portion 61 (maximum opening angle is 66 °).
(2-2)SEP材料の選択指針
 柔軟関節部10はSEP材料で作製される。本検討では、次の7つのSEP材料を候補として選択した。すなわち、ポリエーテルエーテルケトン(PEEK)と、ポリフェニレンスルフィド(PPS)と、ポリアセタール共重合体(POM-C)と、ポリエーテルイミド(PEI)と、ポリフェニルスルホン(PPSU)と、ポリスルホン(PSU)と、ポリエーテルスルホン(PES)とである。
(2-2) Guideline for selecting SEP material The flexible joint portion 10 is made of SEP material. In this study, the following seven SEP materials were selected as candidates. That is, polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyacetal copolymer (POM-C), polyetherimide (PEI), polyphenylsulfone (PPSU), and polysulfone (PSU). , Polyethersulfone (PES).
 表1は、柔軟関節部10の適用のためのSEP候補の関連特性を示す。全ての候補は、医療材料としての実用に十分な生体適合性を有することが検証されている。また、POM以外の全ての候補は、オートクレーブ殺菌に十分な耐熱性(約130℃)を有しており、またこれらは洗浄用の急性(acute)またはアルカリ性の薬剤に対する耐薬品性も有している。 Table 1 shows the relevant characteristics of SEP candidates for the application of the flexible joint 10. All candidates have been verified to have sufficient biocompatibility for practical use as medical materials. In addition, all candidates other than POM have sufficient heat resistance (about 130 ° C.) for autoclave sterilization, and they also have chemical resistance to acute or alkaline chemicals for cleaning. There is.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本検討では、優れた機械的剛性から、PEEKを用いて柔軟関節部10を製造した。一定の用途に適した特定の利点を有していれば、他の材料を用いてもよい。 In this study, the flexible joint portion 10 was manufactured using PEEK because of its excellent mechanical rigidity. Other materials may be used as long as they have certain advantages suitable for a given application.
 PPSおよびPEIの機械的剛性は良好であるが、衝撃に対する耐性が低いことが問題である。PPSU、PSU、およびPESは、PEEKよりも柔軟であり良好な成形性を有しているので、柔軟関節部10の設計を簡素化することにより製造コストを低減することができ、この場合、柔軟関節部10のスリット部分の数はより少なく、また壁厚を厚くすることができる。また、鉗子ユニット100が柔軟関節部10を伴う単回使用を目的としている場合、POM(通常のエンジニアリングプラスチックとして分類される)を用いることもできる。 The mechanical rigidity of PPS and PEI is good, but the problem is that they have low resistance to impact. Since PPSU, PSU, and PES are more flexible and have better formability than PEEK, manufacturing costs can be reduced by simplifying the design of the flexible joint 10, in this case flexible. The number of slit portions of the joint portion 10 is smaller, and the wall thickness can be increased. Also, if the forceps unit 100 is intended for single use with the flexible joint 10, POM (classified as a normal engineering plastic) can also be used.
 ここで、上記の7つの樹脂材料のほか、PTFEおよびPPについても検討した。さらに、金属材料としてSUS304についても検討した。樹脂材料としてPTFEおよびPPを用いて柔軟関節部10を構成した場合、圧縮強度が低い(50MPa未満)ため柔軟関節部10として強度不足であることが分かった。また、SUS304を用いて柔軟関節部10を構成した場合、曲げ変形域が低く(3.0%未満)、曲げ弾性率が高い(10GPa超)ため、柔軟関節部10として構成する場合にはバネ構造にせざるを得ず、何らかの補強部材が必要となる。 Here, in addition to the above seven resin materials, PTFE and PP were also examined. Furthermore, SUS304 was also examined as a metal material. When the flexible joint portion 10 was constructed using PTFE and PP as the resin material, it was found that the strength of the flexible joint portion 10 was insufficient because the compressive strength was low (less than 50 MPa). Further, when the flexible joint portion 10 is configured by using SUS304, the bending deformation region is low (less than 3.0%) and the flexural modulus is high (more than 10 GPa). Therefore, when the flexible joint portion 10 is configured, a spring is used. There is no choice but to make it a structure, and some kind of reinforcing member is required.
 上記の検討結果から、柔軟関節部10を形成する樹脂材料としては、曲げ変形域(曲げ強度/曲げ弾性率)が3.0%以上であって、圧縮強度が50MPa以上であり、曲げ弾性率が10GPa以下のものが適している。上記の7つの樹脂材料は、これらの要件を全て満たしている。この中でも、PEEK、PEI、PPSU、PSUおよびPESが好適であり、最も好適なのはPEEKである。 From the above examination results, the resin material forming the flexible joint portion 10 has a bending deformation region (bending strength / flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a bending elastic modulus. The one with a modulus of 10 GPa or less is suitable. The above seven resin materials meet all of these requirements. Of these, PEEK, PEI, PPSU, PSU and PES are preferred, with PEEK being the most preferred.
(2-3)PEEKを用いた柔軟関節部10の設計
 図3から図5に示すように、PEEKを用いた柔軟関節部10では、12個のスリットがくり抜かれて曲げ運動を実現しており、各スリットの厚みは0.4mmである。2つのスリットの間(隣り合う円盤体11の隙間)の距離は0.5mmである。2つのスリットの間の接続は、1つ手前のスリットから45°だけ連続してシフトしている。各円盤体11には、直径0.5mmの4つの同心状の孔h2によって決定される経路を曲げ運動駆動ワイヤが通過している。また、直径1.8mmの中央の孔h1によって決定される経路を把持運動駆動ワイヤ(中央のステンレス鋼ワイヤ)が通過している。
(2-3) Design of flexible joint portion 10 using PEEK As shown in FIGS. 3 to 5, in the flexible joint portion 10 using PEEK, 12 slits are hollowed out to realize bending motion. , The thickness of each slit is 0.4 mm. The distance between the two slits (the gap between the adjacent discs 11) is 0.5 mm. The connection between the two slits is continuously shifted by 45 ° from the one in front of it. A bending motion drive wire passes through each disk 11 through a path determined by four concentric holes h2 having a diameter of 0.5 mm. Further, the gripping motion driving wire (stainless steel wire in the center) passes through the path determined by the hole h1 in the center having a diameter of 1.8 mm.
 図6は、柔軟関節部における応力分布を例示する図である。
 図6には、把持力を出力するために30Nの圧縮力が頂部に与えられたときの柔軟関節部10における応力分布のFEM解析結果が示される。圧縮力は、把持運動のためのワイヤ張力から生じる。把持部機構によると、ワイヤが30Nで引っ張られたとき、把持力は把持部61の中央で7.5Nを超え、これは腹腔鏡手術ではまずまず十分な把持力である。したがって、30Nを超える圧縮力は必要ない。
FIG. 6 is a diagram illustrating the stress distribution in the flexible joint portion.
FIG. 6 shows the FEM analysis result of the stress distribution in the flexible joint portion 10 when a compressive force of 30 N is applied to the top in order to output the gripping force. The compressive force arises from the wire tension for the gripping motion. According to the grip mechanism, when the wire is pulled at 30N, the grip force exceeds 7.5N at the center of the grip 61, which is reasonably sufficient for laparoscopic surgery. Therefore, a compressive force exceeding 30 N is not required.
 解析はSolidworks 2017によって実行された。圧縮された長さは、線形静的力学解析による決定では0.48mmであったことが分かる。幾つかのスポットでの応力は、公称では圧縮強度(表1によると105MPa)を超えていた。この結果から、PEEKによって形成された柔軟関節部10は、把持運動に起因する余分な力による塑性変形を回避するのに十分な耐久性を有することが判明する。 The analysis was performed by Solidworks 2017. It can be seen that the compressed length was 0.48 mm as determined by linear static dynamics analysis. The stresses at some spots nominally exceeded the compressive strength (105 MPa according to Table 1). From this result, it is found that the flexible joint portion 10 formed by PEEK has sufficient durability to avoid plastic deformation due to extra force due to the gripping motion.
(2-4)空気圧駆動システム
 図7は、1自由度の空気圧駆動システムの概略図である。柔軟関節部10の曲げ用のワイヤ212、213は、駆動ユニット50内の対応する曲げシリンダ52、53(SMC社、CJ2XB10-15Z)に接続され、一対の相反シリンダがそれぞれ伸縮して腱駆動を行う。把持部61の駆動ワイヤもまた、中央の把持シリンダ51(SMC社、CJ2XB16-15RZ)に接続されている。
(2-4) Pneumatic drive system FIG. 7 is a schematic diagram of a pneumatic drive system with one degree of freedom. The bending wires 212 and 213 of the flexible joint portion 10 are connected to the corresponding bending cylinders 52 and 53 (SMC, CJ2XB10-15Z) in the drive unit 50, and the pair of reciprocal cylinders expand and contract to drive the tendon. conduct. The drive wire of the grip portion 61 is also connected to the central grip cylinder 51 (SMC Corporation, CJ2XB16-15RZ).
 各シリンダ51、52および53に対して、位置センサとしてアナログリニアエンコーダ(Renishaw社、ATOM4T0-100)を用いて、位置制御における各シリンダロッドの位置を測定する。各シリンダ51、52および53は、制御ユニット70の5ポートサーボ弁(FESTO社、MPYE-5-M5-010-B、FESTO)によって作動し、2つの圧力センサが弁の2つの制御ポートに取り付けられ、駆動力制御を行う。 For each cylinder 51, 52 and 53, an analog linear encoder (Renishaw, ATOM4T0-100) is used as a position sensor to measure the position of each cylinder rod in position control. Each cylinder 51, 52 and 53 is operated by a 5-port servo valve (FESTO, MPYE-5-M5-010-B, FESTO) of the control unit 70, and two pressure sensors are attached to the two control ports of the valve. And control the driving force.
 シリンダ51、52および53の空気圧駆動力制御のために、数式(1)で表されるPI制御器が実装される。数式(1)に示す記号uはサーボ弁の入力電圧(5.0Vのニュートラル電圧を考慮)を表し、Frefは所望のシリンダ力を表し、Fmeasは圧力センサによって計算された測定シリンダ力を表し、KpおよびKiはPI制御器のフィードバックゲインパラメータを表し、表2にこれらの値を示す。このシステムでは、制御周期は0.002秒である。 A PI controller represented by the equation (1) is implemented for controlling the pneumatic driving force of the cylinders 51, 52 and 53. The symbol u shown in the formula (1) represents the input voltage of the servo valve (considering the neutral voltage of 5.0 V), F ref represents the desired cylinder force, and F meas represents the measured cylinder force calculated by the pressure sensor. represents, K p and K i represent the feedback gain parameter of the PI controller shows these values in Table 2. In this system, the control cycle is 0.002 seconds.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図8は、柔軟関節部を曲げた状態を例示する図である。
 図8には、空気圧駆動システムを用いて柔軟関節部10を曲げたときの鉗子ユニット100の外観を示す。曲げシリンダで20Nの力を出力したとき、柔軟関節部10の曲げ角度は67°であり、これが本試作品の機械的曲げ限界である。
FIG. 8 is a diagram illustrating a state in which the flexible joint portion is bent.
FIG. 8 shows the appearance of the forceps unit 100 when the flexible joint portion 10 is bent using the pneumatic drive system. When a force of 20 N is output by the bending cylinder, the bending angle of the flexible joint portion 10 is 67 °, which is the mechanical bending limit of this prototype.
(セクション3)柔軟関節部10の機械的性能:実験と結果
 このセクションでは、剛性および耐久性を含むPEEKによる柔軟関節部110の機械的性能を評価するための実験について示す。
(Section 3) Mechanical Performance of Flexible Joint 10: Experiments and Results This section describes experiments to evaluate the mechanical performance of flexible joint 110 by PEEK, including rigidity and durability.
(3-1)PEEKによる柔軟関節部10の曲げ機構
 把持部61の駆動力を考慮して、PEEKによる柔軟関節部10の曲げ機構を試験した。先ず、鉗子(把持部61)をほぼ新品(500回未満の曲げ)のPEEKによる柔軟関節部10に真っすぐにセットした。このとき、全てのシリンダから出力された力を0Nに制御した。次いで、1つの曲げシリンダの力を1Nずつ20Nまで徐々に増大させた。67°の最大曲げ範囲を実現するための最大の力は20Nと決定された。その後、同じ手順でシリンダの力を徐々に0Nまで低下させた。曲げ角度および対応するシリンダの力を記録した。曲げ角度は、図8に示すように、柔軟関節部10の真上から撮影した写真から測定される。この場合、把持部61の駆動力は印加されていない。
(3-1) Bending mechanism of the flexible joint portion 10 by PEEK The bending mechanism of the flexible joint portion 10 by PEEK was tested in consideration of the driving force of the grip portion 61. First, the forceps (grip portion 61) were set straight on the flexible joint portion 10 made of almost new PEEK (bending less than 500 times). At this time, the force output from all the cylinders was controlled to 0N. Then, the force of one bending cylinder was gradually increased by 1N to 20N. The maximum force to achieve a maximum bending range of 67 ° was determined to be 20N. After that, the force of the cylinder was gradually reduced to 0N by the same procedure. Bending angles and corresponding cylinder forces were recorded. As shown in FIG. 8, the bending angle is measured from a photograph taken from directly above the flexible joint portion 10. In this case, the driving force of the grip portion 61 is not applied.
 図9は、曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。
 図9では、把持部61の駆動力がない場合であって、曲げシリンダから出力された力に対応する柔軟関節部10の曲げ角度の変化を示している。
FIG. 9 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
FIG. 9 shows a change in the bending angle of the flexible joint portion 10 corresponding to the force output from the bending cylinder even when there is no driving force of the grip portion 61.
 次に、把持シリンダが把持器駆動ワイヤを退避させて把持部61を閉じると共に30Nの駆動力を発生させる条件下で同じ実験を行った。この場合、柔軟関節部10の曲げワイヤの張力に加えて、把持部61の駆動ワイヤの張力による30Nの圧縮荷重が、PEEKによる柔軟関節部10に与えられる。 Next, the same experiment was conducted under the condition that the gripping cylinder retracts the gripping device drive wire, closes the gripping portion 61, and generates a driving force of 30N. In this case, in addition to the tension of the bending wire of the flexible joint portion 10, a compressive load of 30 N due to the tension of the drive wire of the grip portion 61 is applied to the flexible joint portion 10 by PEEK.
 図10は、曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。
 図10では、把持部61の駆動力が存在した場合であって、曲げシリンダから出力された力に対応する柔軟関節部10の曲げ角度の変化を示している。
FIG. 10 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
FIG. 10 shows a change in the bending angle of the flexible joint portion 10 corresponding to the force output from the bending cylinder when the driving force of the grip portion 61 is present.
 曲げシリンダの出力が増大したことに伴う柔軟関節部10の曲げ角度と曲げシリンダ力との関係を比較すると、図9および図10は、曲げシリンダが13Nを出力していたとき、把持部61の駆動力に関係なく柔軟関節部10が50°まで曲がり得ることを示している。また、図9および図10は、曲げ角度が50°未満であった場合の柔軟関節部10の曲げ角度と曲げシリンダ力との関係において、同様の傾向を示している。 Comparing the relationship between the bending angle of the flexible joint portion 10 and the bending cylinder force due to the increase in the output of the bending cylinder, FIGS. 9 and 10 show that when the bending cylinder outputs 13N, the grip portion 61 It is shown that the flexible joint portion 10 can bend up to 50 ° regardless of the driving force. Further, FIGS. 9 and 10 show the same tendency in the relationship between the bending angle of the flexible joint portion 10 and the bending cylinder force when the bending angle is less than 50 °.
 しかし、把持部61の駆動力が存在し、曲げ角度が50°を超えた場合、曲げ角度を大きくすることが困難になった。図9(把持駆動力なし)に示すように、曲げシリンダ出力が20Nであった場合、柔軟関節部10は65°曲がり得るが、曲げシリンダが同じ力を出力した場合、図10の曲げ角度は61°であった。 However, when the driving force of the grip portion 61 exists and the bending angle exceeds 50 °, it becomes difficult to increase the bending angle. As shown in FIG. 9 (without gripping driving force), when the bending cylinder output is 20N, the flexible joint portion 10 can bend 65 °, but when the bending cylinder outputs the same force, the bending angle in FIG. 10 is It was 61 °.
 曲げシリンダの出力が低下すると、把持部61の駆動力が存在した場合と存在しなかった場合の両方でヒステリシスが同様であったことが分かる。(開始角度は僅かに異なっていたが、両方の場合の柔軟関節部10の曲げ角度は、曲げシリンダ出力が10~11Nに減少するまでは殆ど変化せず、曲げシリンダの出力が6Nに減少すると、両方の場合の柔軟関節部10の曲げ角度が50°まで回復した。) When the output of the bending cylinder decreased, it can be seen that the hysteresis was the same both when the driving force of the grip portion 61 was present and when it was not present. (Although the starting angle was slightly different, the bending angle of the flexible joint 10 in both cases hardly changed until the bending cylinder output decreased to 10 to 11N, and when the bending cylinder output decreased to 6N. , The bending angle of the flexible joint 10 in both cases recovered to 50 °.)
 ヒステリシスの主な理由は、作動伝達機構の静摩擦、すなわちシリンダピストン並びにワイヤおよびその案内経路の静摩擦であると考えられる。図9のシリンダ力増大プロセスを例にとると、曲げシリンダ力が13Nになったときに柔軟関節部10の曲げ角度が50°であった一方、シリンダ力減少プロセスでは、曲げシリンダ力が6Nになったときに柔軟関節部10の曲げ角度が50°に回復した。約7Nの余分な力が、曲げワイヤが元の位置に戻ることを妨げていた。 It is considered that the main reason for the hysteresis is the static friction of the operation transmission mechanism, that is, the static friction of the cylinder piston and the wire and its guide path. Taking the cylinder force increasing process of FIG. 9 as an example, the bending angle of the flexible joint portion 10 was 50 ° when the bending cylinder force became 13N, while the bending cylinder force became 6N in the cylinder force decreasing process. When it became, the bending angle of the flexible joint portion 10 recovered to 50 °. An extra force of about 7N prevented the bending wire from returning to its original position.
 加えて、図9および図10は、曲げ角度が50°未満の場合、柔軟関節部10を同じ角度に曲げるための増大プロセスと減少プロセスでのシリンダ出力差が6~7Nであることを示している。また、シリンダ出力差は最大曲げ角度で9Nであった。したがって、静摩擦の大きさは6~9Nであると推定される。 In addition, FIGS. 9 and 10 show that when the bending angle is less than 50 °, the cylinder output difference between the increasing and decreasing processes for bending the flexible joint 10 to the same angle is 6-7N. There is. The cylinder output difference was 9N at the maximum bending angle. Therefore, the magnitude of static friction is estimated to be 6-9N.
 次に、把持部61の駆動力がある条件とない条件での50°後のシリンダ力に応じた曲げ角度の相違について検討する。この現象は、PEEKによる柔軟関節部10の圧縮が原因であると考えられた。把持部61の駆動力がない場合、曲げ側のPEEKによる柔軟関節部10のスリットは、約60°の曲げ角度で互いに接触し始めた。一方、把持部61の駆動力により柔軟関節部10が少し圧縮されると、曲げ側のスリットは、約50°の曲げ角度で互いに接触して圧迫し始めた。そのとき、曲げシリンダは余分な圧迫力を出力する必要があり、これにより、把持部61の駆動力がない場合よりも小さな曲げ角度がもたらされた。この結果によると、把持部61の駆動制御器との組み合わせに係るSEP柔軟接合部は、この種の機械的干渉を生じさせないように設計および実装する必要がある。 Next, the difference in bending angle according to the cylinder force after 50 ° with and without the driving force of the grip portion 61 will be examined. This phenomenon was considered to be caused by the compression of the flexible joint portion 10 by PEEK. In the absence of the driving force of the grip 61, the slits of the flexible joint 10 due to PEEK on the bending side began to contact each other at a bending angle of about 60 °. On the other hand, when the flexible joint portion 10 was slightly compressed by the driving force of the grip portion 61, the slits on the bending side came into contact with each other at a bending angle of about 50 ° and began to compress. At that time, the bending cylinder had to output an extra compression force, which resulted in a smaller bending angle than in the absence of the driving force of the grip 61. According to this result, the SEP flexible junction related to the combination of the grip portion 61 with the drive controller needs to be designed and mounted so as not to cause this kind of mechanical interference.
(3-2)圧縮剛性試験
 前のセクションで論じたように、把持シリンダは中央ワイヤを引っ張って把持力を生成し、追加の圧縮力を手関節部に与える。これは位置制御における誤差をもたらすので、柔軟関節部10の圧縮も評価すべきである。
(3-2) Compressive Rigidity Test As discussed in the previous section, the gripping cylinder pulls on the central wire to generate a gripping force, which applies additional compressive force to the wrist joint. Since this results in an error in position control, compression of the flexible joint 10 should also be evaluated.
 実験では、4つの曲げシリンダの力を0Nに保ち、把持シリンダの力を2Nずつ30Nまで徐々に増大させた。この場合における柔軟関節部10の長さおよび対応するシリンダ力を測定して記録した。 In the experiment, the force of the four bending cylinders was kept at 0N, and the force of the gripping cylinder was gradually increased by 2N to 30N. The length of the flexible joint 10 and the corresponding cylinder force in this case were measured and recorded.
 図11は、把持シリンダ出力と柔軟関節部の長さとの関係を示す図である。
 実験結果から、圧縮力が30Nに増大すると、柔軟関節部10が0.62mm圧縮されることが判明した。一方、FEM解析の結果は、同じ圧縮荷重で0.48mmの手関節部の圧縮を示しており(上記(2-2)および図6を参照)、これによりPEEKによる柔軟関節部10の圧縮変形を近似的に予測することができる。
FIG. 11 is a diagram showing the relationship between the grip cylinder output and the length of the flexible joint portion.
From the experimental results, it was found that when the compressive force was increased to 30 N, the flexible joint portion 10 was compressed by 0.62 mm. On the other hand, the results of FEM analysis show compression of the wrist joint of 0.48 mm with the same compressive load (see (2-2) and FIG. 6 above), which results in compression deformation of the flexible joint 10 by PEEK. Can be predicted approximately.
 柔軟関節部10の圧縮は、鉗子ユニット100の先端の位置誤差をもたらす。しかし、圧縮長さは4つの曲げシリンダの位置を用いてリアルタイムで測定可能であるので、位置誤差は手術ロボットアーム全体の制御システムによって補償され得る。 The compression of the flexible joint portion 10 causes a positional error of the tip of the forceps unit 100. However, since the compression length can be measured in real time using the positions of the four bending cylinders, the position error can be compensated by the control system for the entire surgical robot arm.
(3-3)曲げ耐久性試験
 ロボット鉗子(医療用マニピュレータ1)は長寿命であるべきである。ここでは、耐久性能に関する次の項目を確認するための実験を実施した。すなわち、実験は、による柔軟関節部10を備えた開発に係る鉗子ユニット100の曲げ疲労に対する耐久性、および曲げ特性が変化しないかどうかの2項目である。上記(3-1)で述べた関係を調査した。
(3-3) Bending durability test The robot forceps (medical manipulator 1) should have a long life. Here, an experiment was conducted to confirm the following items related to durability performance. That is, the experiment has two items, that is, the durability of the forceps unit 100 according to the development provided with the flexible joint portion 10 against bending fatigue, and whether or not the bending characteristics do not change. The relationship described in (3-1) above was investigated.
 この実験では、2つの曲げシリンダは、正弦関数基準(振幅:20N、周波数:1Hz)に従って駆動力を出力し、柔軟関節部10の1自由度の曲げ運動を繰り返して行うように作製される。したがって、柔軟関節部10は、約65°の曲げ角度振幅で連続的に両側に曲がる。実験中、1000、2000、3000、5000、および10000回の繰り返し完了毎に曲げを一時停止し、把持部61の駆動力なしで上記(3-1)に示す実験を行った。 In this experiment, the two bending cylinders are manufactured so as to output a driving force according to a sine function reference (amplitude: 20N, frequency: 1Hz) and to repeatedly perform a bending motion of the flexible joint portion 10 with one degree of freedom. Therefore, the flexible joint portion 10 continuously bends to both sides with a bending angle amplitude of about 65 °. During the experiment, bending was temporarily stopped after each repetition of 1000, 2000, 3000, 5000, and 10000 times, and the experiment shown in (3-1) above was performed without the driving force of the grip portion 61.
 図12は、曲げシリンダ力と柔軟関節部の曲げ角度との関係を示す図である。
 図12では、曲げ繰り返し回数の各セット後の曲げシリンダ力および柔軟関節部10の角度の関係が示される。結果は、PEEKによる柔軟関節部10の曲げ特性が大きくは変化しないことを示している。曲げ角度-シリンダ出力曲線間の変動に関しては、図9および図10のヒステリシスをもたらす作動伝達機構の静摩擦に起因していると考えられた。最大の変動が現れる2000回曲げ、および10000回曲げの後の曲線について、図12は、柔軟関節部10を同じ角度に曲げるためのこれら2つの曲線の間でのシリンダ出力差が4~5Nであることを示しており、上記(3-1)で論じた静摩擦の範囲内である(6~9N)。また、柔軟関節部10に亀裂や大きな塑性変形は発生していない。
FIG. 12 is a diagram showing the relationship between the bending cylinder force and the bending angle of the flexible joint portion.
FIG. 12 shows the relationship between the bending cylinder force and the angle of the flexible joint portion 10 after each set of the number of repeated bendings. The results show that the bending characteristics of the flexible joint portion 10 due to PEEK do not change significantly. The variation between the bending angle and the cylinder output curve was considered to be due to the static friction of the operation transmission mechanism that causes the hysteresis in FIGS. 9 and 10. For the curves after 2000 and 10000 bends where maximum variation appears, FIG. 12 shows a cylinder output difference of 4-5N between these two curves for bending the flexible joint 10 to the same angle. It shows that there is, and it is within the range of static friction discussed in (3-1) above (6 to 9N). In addition, no cracks or large plastic deformation occurred in the flexible joint portion 10.
(3-4)曲げ剛性試験
 多くの場合、手術補助ロボットは、接触や持ち上げ等の操作力を対象物に与える必要がある。これらの場合、柔軟関節部10の曲げ運動は、必要な力を伝達するのに十分剛性であるべきである。環境からの反力による大きな追加的変形は許容されない。
(3-4) Flexural rigidity test In many cases, the surgical assistance robot needs to apply operating forces such as contact and lifting to the object. In these cases, the bending motion of the flexible joint 10 should be rigid enough to transmit the required force. Large additional deformation due to reaction force from the environment is not allowed.
 この力を発揮する性能を確認するための実験を行った。図13は実験装置を示す図である。1方向における鉗子ユニット100の先端の動きは、力センサ(CFS018CA101U、Leptorino Corp.)に固定されたジグによって拘束した。当初、4つの曲げシリンダから出力された力は0Nであった。次いで、柔軟関節部10を駆動して拘束方向に曲げる曲げシリンダについて、出力される力を2Nずつ26Nまで増大させた。この実験は、図13に示すZ軸方向およびX軸方向について行った。 An experiment was conducted to confirm the performance that exerts this power. FIG. 13 is a diagram showing an experimental device. The movement of the tip of the forceps unit 100 in one direction was constrained by a jig fixed to a force sensor (CFS018CA101U, Leptorino Corp.). Initially, the force output from the four bending cylinders was 0N. Next, the output force of the bending cylinder that drives the flexible joint portion 10 and bends in the restraint direction was increased by 2N to 26N. This experiment was performed in the Z-axis direction and the X-axis direction shown in FIG.
 図14および図15は、2方向の力センサによって測定された環境に与えられる力と、柔軟関節部10の状態とを示している。シリンダの力と鉗子ユニット100から出力された力の間の直線性は、PEEKによる柔軟関節部10が作動力を環境に伝達するのに十分に剛性であることを明らかにしている。約1.2Nの最大値が両方向で測定された。より大きな駆動力を印加すれば、鉗子ユニット100はより強い力を出力することができるが、同時に柔軟関節部10の圧縮変形も大きくなる可能性がある。この実験では、アクチュエータの力が増大すると、柔軟関節部10と把持部61の接続点で局所的な変形が発生した。この変形は、機械的設計の結果として、柔軟関節部10と把持部61との間の取り付けバックラッシュに起因していた。 14 and 15 show the force applied to the environment as measured by the two-way force sensor and the state of the flexible joint 10. The linearity between the force of the cylinder and the force output from the forceps unit 100 reveals that the flexible joint 10 with PEEK is rigid enough to transmit the working force to the environment. A maximum value of about 1.2N was measured in both directions. If a larger driving force is applied, the forceps unit 100 can output a stronger force, but at the same time, the compression deformation of the flexible joint portion 10 may also increase. In this experiment, when the force of the actuator increased, local deformation occurred at the connection point between the flexible joint portion 10 and the grip portion 61. This deformation was due to a mounting backlash between the flexible joint 10 and the grip 61 as a result of the mechanical design.
(4)論考
 セクション3の実験は、PEEKによる柔軟関節部10の耐久性および剛性に関する性能がロボット手術に基本的に適していることを実証した。柔軟関節部10の外径および曲げ範囲が本検討と同等であるミヤザキ(非特許文献4)によって紹介された柔軟鉗子と性能を比較すると、本検討に係る柔軟関節部10の長さはわずか12mmであり、比較対象の長さは28mmである。このことは、本検討に係る鉗子ユニット100が狭い空間で良好に機能するための十分な巧妙さを有していることを意味する。出力された力の性能については、本検討に係る鉗子ユニット100は、曲げ力(1.2N~1.0N)および把持力(7.5N~0.6N)に関して強力である。
(4) Discussion The experiments in Section 3 demonstrated that PEEK's performance regarding durability and rigidity of the flexible joint 10 is basically suitable for robotic surgery. Comparing the performance with the flexible forceps introduced by Miyazaki (Non-Patent Document 4), which has the same outer diameter and bending range as the present study, the length of the flexible joint 10 according to the present study is only 12 mm. The length of the comparison target is 28 mm. This means that the forceps unit 100 according to the present study has sufficient skill to function well in a narrow space. Regarding the performance of the output force, the forceps unit 100 according to this study is strong with respect to the bending force (1.2N to 1.0N) and the gripping force (7.5N to 0.6N).
 ただし、性能を向上させるためには幾つか改善が依然として必要である。先ず、駆動ワイヤと他の部品の間の摩擦を減少させるべきである。この摩擦は、シリンダが同じ力を出力する場合における同じ曲げ角度の再現性を妨げる。摩擦の影響は、力制御において動的に補償する必要がある。位置制御に関しては、位置センサを用いて実際の曲げ角度を測定し、この情報を制御ループに適用することができる。 However, some improvements are still needed to improve performance. First, the friction between the drive wire and other components should be reduced. This friction hinders the reproducibility of the same bending angle when the cylinders output the same force. The effects of friction need to be dynamically compensated for in force control. For position control, a position sensor can be used to measure the actual bending angle and this information can be applied to the control loop.
 第二に、柔軟関節部10の圧縮剛性も強化して、最大曲げ可能角度を維持すると共に位置制御における鉗子ユニット100の位置誤差を減少させるべきである。 Secondly, the compressive rigidity of the flexible joint portion 10 should be strengthened to maintain the maximum bendable angle and reduce the positional error of the forceps unit 100 in the position control.
 第三に、大きな変形を伴わない最大曲げ力を強化すべきである。上記(3-4)に示す実験結果は、大きな変形を伴わない最大曲げ力が1.2Nであったことを示している。この大きさの力は、切断、切除、剥離、および縫合等の手術動作には十分であるが、大きな臓器を持ち上げたり保持したりするのには不十分である。 Third, the maximum bending force should be strengthened without major deformation. The experimental results shown in (3-4) above indicate that the maximum bending force without large deformation was 1.2N. This magnitude of force is sufficient for surgical operations such as cutting, excision, detachment, and suturing, but insufficient for lifting and holding large organs.
(5)検討のまとめ
 上記では、スーパーエンジニアリングプラスチック材料の一種であるPEEKプラスチックで作製された柔軟関節部10を有する鉗子ユニット100を備えたロボット鉗子(医療用マニピュレータ1)を検討した。この鉗子ユニット100の曲げおよび把持の動きは、先端から離れた位置にある空気圧シリンダによって駆動されるワイヤ作動により実現された。性能評価実験の結果は、柔軟関節部10の機械的特性を明らかにした。曲げ作動出力と曲げ角度の関係は、位置制御器の単純な動的モデルを構築するのに役立った。ただし、この関係は、PEEKによる柔軟関節部10が0.62mm圧縮された30Nの把持部61の駆動力による接合部圧縮に起因して、50°を超えて曲げた後に変化した。耐久性については、把持部61の駆動力なしで10000回手関節接合部の曲げを繰り返した後でも、屈曲特性は大きくは変化しなかった。曲げ剛性に関しては、PEEKによる柔軟関節部10は、把持部61の中央で1.2Nを超える外力に耐え、環境に接触したときにその形状を維持することができる。結論として、PEEKによる柔軟関節部10を備えたロボット鉗子(医療用マニピュレータ1)は、申し分ない性能を示し、ロボット手術における使用に対する将来性を有している。
(5) Summary of Study In the above, a robot forceps (medical manipulator 1) equipped with a forceps unit 100 having a flexible joint portion 10 made of PEEK plastic, which is a kind of super engineering plastic material, was examined. The bending and gripping movements of the forceps unit 100 were realized by wire actuation driven by a pneumatic cylinder located away from the tip. The results of the performance evaluation experiment clarified the mechanical properties of the flexible joint portion 10. The relationship between bending motion output and bending angle helped to build a simple dynamic model of the position controller. However, this relationship changed after bending over 50 ° due to the joint compression due to the driving force of the 30N grip 61, where the flexible joint 10 was compressed by 0.62 mm by PEEK. Regarding durability, the bending characteristics did not change significantly even after the wrist joint joint was repeatedly bent 10,000 times without the driving force of the grip portion 61. With respect to flexural rigidity, the PEEK flexible joint 10 can withstand an external force of more than 1.2 N at the center of the grip 61 and maintain its shape when in contact with the environment. In conclusion, the robotic forceps (medical manipulator 1) with the flexible joint 10 made by PEEK show excellent performance and have potential for use in robotic surgery.
(比較例)
 図16は、比較例に係る柔軟関節部の静荷重解析の結果を示す図である。
 図16に示す比較例に係る柔軟関節部はステンレス鋼(SUS204)によって形成されたものである。
 図17は、本実施形態に係る柔軟関節部(PEEK製)の静荷重解析の結果を示す図である。
 いずれの例についても、柔軟関節部に圧縮力30Nが印加されている場合に曲げた際の静荷重解析結果が示される。
(Comparative example)
FIG. 16 is a diagram showing the results of static load analysis of the flexible joint portion according to the comparative example.
The flexible joint portion according to the comparative example shown in FIG. 16 is made of stainless steel (SUS204).
FIG. 17 is a diagram showing the results of static load analysis of the flexible joint portion (manufactured by PEEK) according to the present embodiment.
In each of the examples, the static load analysis result at the time of bending when the compressive force 30N is applied to the flexible joint portion is shown.
 この解析結果から、SUS304に比べ、柔軟性が高く肉厚に設計できるPEEKを用いることで、柔軟関節部10として作用する応力レベルを顕著に低くすることができる。したがって、柔軟関節部10としては、SU304を用いるよりもPEEKを用いるほうが屈曲に対する機能性および耐久性を高くすることができる。 From this analysis result, it is possible to significantly reduce the stress level acting as the flexible joint portion 10 by using PEEK, which has higher flexibility and can be designed to be thicker than SUS304. Therefore, as the flexible joint portion 10, it is possible to increase the functionality and durability against flexion by using PEEK rather than by using SU304.
 上記のように検討した樹脂材料によって柔軟関節部10を構成することにより、十分な曲げ力、処置力および耐久性を備えた医療用マニピュレータ1を提供することが可能となる。 By constructing the flexible joint portion 10 with the resin material examined as described above, it becomes possible to provide a medical manipulator 1 having sufficient bending force, treatment force and durability.
 図18は、医療用ロボットの力覚推定機構を説明するためのブロック図である。医療用ロボット500は、鉗子ユニット100を動作させるアクチュエータ55(具体的には、把持シリンダ51、曲げシリンダ52、53)および各アクチュエータ55に付設されたリニアエンコーダ56を備える駆動ユニット50、空気圧力覚推定機構561、空気圧制御部562、空気圧測定部571、ならびにサーボバルブ572を備える。空気圧制御部562は、サーボバルブ572を制御するための制御信号を出力し、この制御信号によりサーボバルブ572は各アクチュエータ55に供給する空気圧を変動させて、各アクチュエータ55に関連付けられた鉗子ユニット100の動作部(把持部61などの処置部60、柔軟関節部10)を変位させる。駆動ユニット50が備えるリニアエンコーダ56は、アクチュエータ55のピストンの位置を測定することにより、アクチュエータ55に関連付けられた鉗子ユニット100の動作部の位置を測定する。空気圧測定部571は、サーボバルブ572から各アクチュエータ55に供給される空気圧を測定する。 FIG. 18 is a block diagram for explaining the force sense estimation mechanism of the medical robot. The medical robot 500 includes an actuator 55 (specifically, a gripping cylinder 51, a bending cylinder 52, 53) for operating the forceps unit 100, a drive unit 50 including a linear encoder 56 attached to each actuator 55, and a pneumatic sense. It includes an estimation mechanism 561, a pneumatic control unit 562, a pneumatic measurement unit 571, and a servo valve 572. The pneumatic control unit 562 outputs a control signal for controlling the servo valve 572, and the servo valve 572 changes the air pressure supplied to each actuator 55 by this control signal, and the forceps unit 100 associated with each actuator 55. (Treatment portion 60 such as grip portion 61, flexible joint portion 10) is displaced. The linear encoder 56 included in the drive unit 50 measures the position of the operating portion of the forceps unit 100 associated with the actuator 55 by measuring the position of the piston of the actuator 55. The air pressure measuring unit 571 measures the air pressure supplied from the servo valve 572 to each actuator 55.
 空気圧力覚推定機構561は、各リニアエンコーダ56からの鉗子ユニット100の各部の位置に関する情報および空気圧測定部571からの空気圧に関する情報に基づき、アクチュエータ55の動作方向に加わっている力を求め、この力に基づき、鉗子ユニット100の動作部に加わっている外力を推定する。具体的には、空気圧力覚推定機構561は、鉗子ユニット100の柔軟関節部10の曲げる外力や把持部61の把持力を推定することができる。 The air pressure sensation estimation mechanism 561 obtains the force applied in the operating direction of the actuator 55 based on the information on the position of each part of the forceps unit 100 from each linear encoder 56 and the information on the air pressure from the air pressure measuring unit 571. Based on the force, the external force applied to the moving portion of the forceps unit 100 is estimated. Specifically, the air pressure sensation estimation mechanism 561 can estimate the bending external force of the flexible joint portion 10 of the forceps unit 100 and the gripping force of the grip portion 61.
 前述のように、本実施形態に係る医療用ロボット500の医療用マニピュレータ1が備える鉗子ユニット100では、アクチュエータ55が出力する操作力と、鉗子ユニット100の動作部の変位との線形性が高く、この線形性の経時変化が少ない。それゆえ、空気圧力覚推定機構561は、鉗子ユニット100の動作部に加えられた外力をより正確に推定することができる。 As described above, in the forceps unit 100 included in the medical manipulator 1 of the medical robot 500 according to the present embodiment, the linearity between the operating force output by the actuator 55 and the displacement of the moving portion of the forceps unit 100 is high. There is little change in this linearity over time. Therefore, the air pressure sensation estimation mechanism 561 can more accurately estimate the external force applied to the moving portion of the forceps unit 100.
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、上記の実施形態では処置部60として把持部61を有する鉗子の例を示したが、鉗子以外の処置部60であってもよい。具体例として、超音波メス、レーザメスのような切除具が挙げられる。また、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。例えば、医療用処置具ユニット(鉗子ユニット100)において、複数の円盤体の中央に挿通されたスプリング部または可撓性チューブ部を有していてもよい。これにより、柔軟関節部にスプリング部または可撓性チューブ部による剛性が加わり、柔軟関節部10の圧縮剛性を高めるための背骨構造(芯材)となって、処置力を得やすくなる。可撓性チューブ部の材料としては、PEEKが好適である。 Although the present embodiment has been described above, the present invention is not limited to these examples. For example, in the above embodiment, the example of the forceps having the grip portion 61 as the treatment portion 60 is shown, but the treatment portion 60 other than the forceps may be used. Specific examples include a cutting tool such as an ultrasonic scalpel and a laser scalpel. Further, the gist of the present invention also includes those to which a person skilled in the art appropriately adds, deletes, and changes the design of each of the above-described embodiments, and those in which the features of the configuration examples of each embodiment are appropriately combined. Is included in the scope of the present invention as long as it is provided. For example, the medical treatment tool unit (forceps unit 100) may have a spring portion or a flexible tube portion inserted in the center of a plurality of discs. As a result, the rigidity of the spring portion or the flexible tube portion is added to the flexible joint portion, and the spine structure (core material) for increasing the compression rigidity of the flexible joint portion 10 is formed, so that the treatment force can be easily obtained. PEEK is suitable as the material for the flexible tube portion.
1…医療用マニピュレータ
10…柔軟関節部
11…円盤体
12…連結部
20…シャフト
30…アクチュエータアダプタ
50…駆動ユニット
51…把持シリンダ
52,53…曲げシリンダ
55…アクチュエータ
56…リニアエンコーダ
60…処置部
61…把持部
62…スライドカム
70…制御ユニット
100…鉗子ユニット(医療用処置具ユニット)
211,212,213…ワイヤ
500…医療用ロボット
561…空気圧力覚推定機構
562…空気圧制御部
571…空気圧測定部
572…サーボバルブ
ST…構造体
h1,h2…孔
1 ... Medical manipulator 10 ... Flexible joint 11 ... Disc body 12 ... Connecting part 20 ... Shaft 30 ... Actuator adapter 50 ... Drive unit 51 ... Grip cylinder 52, 53 ... Bending cylinder 55 ... Actuator 56 ... Linear encoder 60 ... Treatment unit 61 ... Grip portion 62 ... Slide cam 70 ... Control unit 100 ... Forceps unit (medical treatment tool unit)
211,212,213 ... Wire 500 ... Medical robot 561 ... Pneumatic sense estimation mechanism 562 ... Pneumatic control unit 571 ... Pneumatic measurement unit 572 ... Servo valve ST ... Structure h1, h2 ... Hole

Claims (9)

  1.  駆動ユニットによって駆動される処置部を有する医療用処置具ユニットであって、
     前記駆動ユニットから前記処置部へ駆動力を伝える伝達機構を有するシャフトと、
     前記シャフトと前記処置部との間に設けられる柔軟関節部と、
     を備え、
     前記柔軟関節部は、
      前記シャフトの軸に沿った第1方向に所定の間隔で複数段に配置される円盤体と、
      隣り合う前記円盤体の間を連結し、前記第1方向と直交する第2方向に延在する連結部であって、前記第1方向にみて隣り合う前記連結部の延在方向が互いに異なる前記連結部と、を有し、
     前記柔軟関節部は、曲げ変形域(曲げ強度/曲げ弾性率)が3.0%以上であって、圧縮強度が50MPa以上であり、曲げ弾性率が10GPa以下の樹脂材料によって形成されたことを特徴とする医療用処置具ユニット。
    A medical treatment tool unit having a treatment unit driven by a drive unit.
    A shaft having a transmission mechanism for transmitting a driving force from the driving unit to the treatment unit,
    A flexible joint portion provided between the shaft and the treatment portion,
    Equipped with
    The flexible joint portion is
    Discs arranged in a plurality of stages at predetermined intervals in the first direction along the axis of the shaft, and
    A connecting portion that connects between adjacent discs and extends in a second direction orthogonal to the first direction, and the extending directions of the adjacent connecting portions that are adjacent to each other in the first direction are different from each other. With a connecting part,
    The flexible joint portion was formed of a resin material having a bending deformation region (bending strength / flexural modulus) of 3.0% or more, a compressive strength of 50 MPa or more, and a bending elastic modulus of 10 GPa or less. A characteristic medical treatment tool unit.
  2.  前記樹脂材料は、PEEK、PEI、PPSU、PSU、PES、POM-Cよりなる群から選択された少なくとも1つの樹脂を含む、請求項1記載の医療用処置具ユニット。 The medical treatment tool unit according to claim 1, wherein the resin material contains at least one resin selected from the group consisting of PEEK, PEI, PPSU, PSU, PES, and POM-C.
  3.  1つの前記円盤体と、当該円盤体に接続される1つの前記連結部との組を1段の構造体として、隣り合う前記構造体における前記連結部のそれぞれの延在方向が互いに45度相違する、請求項1または請求項2に記載の医療用処置具ユニット。 The set of one disk body and one connecting portion connected to the disk body is regarded as a one-stage structure, and the extending directions of the connecting portions in the adjacent structures differ from each other by 45 degrees. The medical treatment tool unit according to claim 1 or 2.
  4.  前記柔軟関節部における前記構造体の段数は、9段以上12段以下である、請求項3に記載の医療用処置具ユニット。
    The medical treatment tool unit according to claim 3, wherein the number of stages of the structure in the flexible joint portion is 9 or more and 12 or less.
  5.  前記処置部は把持部を有し、前記連結部の延在方向が前記柔軟関節部の先端側に配置される前記把持部の咬合面に沿う方向には位置しない、請求項1から請求項4のいずれか1項に記載の医療用処置具ユニット。 The treatment portion has a grip portion, and the extending direction of the connecting portion is not located in a direction along the occlusal surface of the grip portion arranged on the tip end side of the flexible joint portion, claims 1 to 4. The medical treatment tool unit according to any one of the above.
  6.  複数の前記円盤体の中央に挿通されたスプリング部または可撓性チューブ部を有する、請求項1から請求項5のいずれか1項に記載の医療用処置具ユニット。 The medical treatment tool unit according to any one of claims 1 to 5, which has a spring portion or a flexible tube portion inserted in the center of the plurality of discs.
  7.  請求項1から請求項6のいずれか一項に記載の医療用処置具ユニットと、前記医療用処置具ユニットが有する処置具を駆動する駆動ユニットとを備える、医療用マニピュレータ。 A medical manipulator including the medical treatment tool unit according to any one of claims 1 to 6 and a drive unit for driving the treatment tool of the medical treatment tool unit.
  8.  前記駆動ユニットは空気圧により前記処置具を駆動する、請求項7に記載の医療用マニピュレータ。 The medical manipulator according to claim 7, wherein the drive unit drives the treatment tool by air pressure.
  9.  請求項8に記載の医療用マニピュレータを備える医療用ロボットであって、前記処置具に付与される外力を前記空気圧の測定に基づき推定する空気圧力覚推定機構を備える、医療用ロボット。 The medical robot provided with the medical manipulator according to claim 8, further comprising an air pressure sensation estimation mechanism that estimates an external force applied to the treatment tool based on the measurement of the air pressure.
PCT/JP2020/021984 2020-06-03 2020-06-03 Medical treatment instrument unit, medical manipulator, and medical robot WO2021245849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021984 WO2021245849A1 (en) 2020-06-03 2020-06-03 Medical treatment instrument unit, medical manipulator, and medical robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021984 WO2021245849A1 (en) 2020-06-03 2020-06-03 Medical treatment instrument unit, medical manipulator, and medical robot

Publications (1)

Publication Number Publication Date
WO2021245849A1 true WO2021245849A1 (en) 2021-12-09

Family

ID=78830693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021984 WO2021245849A1 (en) 2020-06-03 2020-06-03 Medical treatment instrument unit, medical manipulator, and medical robot

Country Status (1)

Country Link
WO (1) WO2021245849A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531222A (en) * 2005-03-03 2008-08-14 インテュイティブ サージカル, インコーポレイテッド Cardiac tissue ablation device with flexible wrist
US20140188159A1 (en) * 2011-07-11 2014-07-03 Agile Endosurgery, Inc. Surgical tool
WO2015079775A1 (en) * 2013-11-28 2015-06-04 国立大学法人 東京工業大学 Surgical robot
US20170000977A1 (en) * 2015-06-30 2017-01-05 Boston Scientific Scimed, Inc. Medical device having outer polymeric member including one or more cuts
JP2020515330A (en) * 2017-03-30 2020-05-28 マイクロポート(シャンハイ)メドボット カンパニー,リミティッド Snake-type joints for surgical robots, surgical instruments and endoscopes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531222A (en) * 2005-03-03 2008-08-14 インテュイティブ サージカル, インコーポレイテッド Cardiac tissue ablation device with flexible wrist
US20140188159A1 (en) * 2011-07-11 2014-07-03 Agile Endosurgery, Inc. Surgical tool
WO2015079775A1 (en) * 2013-11-28 2015-06-04 国立大学法人 東京工業大学 Surgical robot
US20170000977A1 (en) * 2015-06-30 2017-01-05 Boston Scientific Scimed, Inc. Medical device having outer polymeric member including one or more cuts
JP2020515330A (en) * 2017-03-30 2020-05-28 マイクロポート(シャンハイ)メドボット カンパニー,リミティッド Snake-type joints for surgical robots, surgical instruments and endoscopes

Similar Documents

Publication Publication Date Title
Hwang et al. Strong continuum manipulator for flexible endoscopic surgery
Kim et al. A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery
US8984982B2 (en) Parallel kinematic structure
US9144370B2 (en) Mechanical structure of articulated sheath
US7988215B2 (en) Surgical robotic system
Suh et al. Design considerations for a hyper-redundant pulleyless rolling joint with elastic fixtures
US20130298759A1 (en) Integrated mecatronic structure for portable manipulator assembly
US10806526B2 (en) Wrist mechanism for surgical instrument
EP3448297B1 (en) Compliant mechanisms having inverted tool members
Arata et al. Outer shell type 2 DOF bending manipulator using spring-link mechanism for medical applications
Miyazaki et al. A master–slave integrated surgical robot with active motion transformation using wrist axis
Dalvand et al. Modular instrument for a haptically-enabled robotic surgical system (herosurg)
Kanno et al. A forceps manipulator with flexible 4-DOF mechanism for laparoscopic surgery
Orekhov et al. A surgical parallel continuum manipulator with a cable-driven grasper
JPWO2018163622A1 (en) Surgical systems, surgical systems, surgical instruments, and external force detection systems
Kim et al. Design concept of hybrid instrument for laparoscopic surgery and its verification using scale model test
WO2021245849A1 (en) Medical treatment instrument unit, medical manipulator, and medical robot
Zhou et al. Robotic Forceps with a Flexible Wrist Joint Made of Super Engineering Plastic.
Ahmed et al. Kinestatic modeling of a spatial screw-driven continuum robot
Spiers et al. Investigating remote sensor placement for practical haptic sensing with EndoWrist surgical tools
Takikawa et al. Pneumatically Driven Multi-DOF Surgical Forceps Manipulator with a Bending Joint Mechanism Using Elastic Bodies
Prasai et al. Design and fabrication of a disposable micro end effector for concentric tube robots
Kim et al. Development of novel bevel-geared 5 mm articulating wrist for micro-laparoscopy instrument
Zhou et al. Design and evaluation of a robotic forceps with flexible wrist joint made of PEEK plastic
US9226795B2 (en) Robot structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP