WO2021244664A1 - 一种自动生成建筑立面图的方法及装置 - Google Patents

一种自动生成建筑立面图的方法及装置 Download PDF

Info

Publication number
WO2021244664A1
WO2021244664A1 PCT/CN2021/100417 CN2021100417W WO2021244664A1 WO 2021244664 A1 WO2021244664 A1 WO 2021244664A1 CN 2021100417 W CN2021100417 W CN 2021100417W WO 2021244664 A1 WO2021244664 A1 WO 2021244664A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
wall
data
type
plan
Prior art date
Application number
PCT/CN2021/100417
Other languages
English (en)
French (fr)
Inventor
杨小荻
陈涛
卢冬冬
赵珂
Original Assignee
深圳小库科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳小库科技有限公司 filed Critical 深圳小库科技有限公司
Publication of WO2021244664A1 publication Critical patent/WO2021244664A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the present invention relates to the technical field of residential building plan generation, in particular to a method and device for automatically generating building elevations.
  • the building elevation is mainly used to indicate the shape and appearance of the house, exterior wall decoration, the position and form of doors and windows, as well as sun visors, window sills, roof water tanks, cornices, balconies, awnings, rainwater pipes, water buckets, lead lines, The elevation and necessary dimensions of each part of the foot, platform, step, flower bed structure and accessories.
  • CAD Computer Aided Design
  • the rate of manual processing of building elevations is slow, and the entire process is almost manual participation, and the quality and rate of generation greatly depend on the experience and business level of the participants, and building elevations cannot be produced in batches.
  • the error rate is relatively high. For different people, different errors may be made. Even for the same person, different errors may occur in different situations, such as when multiple projects are produced at the same time, or the physical and mental situation is poor when.
  • Another disadvantage is that the cost of correction is high. For people, a modification will often cause a large number of related modifications, and the time cost will increase, and the probability of error will also increase, not to mention the need to make a large number of modifications.
  • the present invention provides a method and device for automatically generating building elevations, so as to solve the problem that there is no reasonable, efficient, accurate and batch-based automatic generation of building elevation plans in the prior art.
  • the present invention provides a method for automatically generating building elevations, including:
  • the element information included in each wall is obtained; the size and type of the wall are obtained, based on the preset wall characteristics and element sizes , The corresponding strategy of the installation location and the installation form generates the installation frame of the element;
  • the building type plan data is stored as three-dimensional space building type plan data.
  • the method further includes:
  • the method further includes:
  • the corresponding wall color/element color is obtained according to the type of the wall/element type, and the color of the wall/element is matched accordingly.
  • the method further includes:
  • the selected daylighting suitability is received, and according to the size and type of the wall surface and the corresponding relationship of the wall daylighting arrangement, the installation element corresponding to the wall surface and its size, installation position and installation form are obtained.
  • the corresponding element data generated in the installation frame according to the form of the element and the size of the corresponding installation frame is:
  • the component type of the preset element the position relationship between each component component, and the corresponding element composition relationship between the component component type and the form of the element;
  • the corresponding element data is generated in the installation frame according to the form of the element, the size of the corresponding installation frame, and the display surface of the element.
  • the present invention also provides a device for automatically generating building elevations, including: building facade wall generation module, element installation frame generation module, element data generation module, and building elevation diagram generation module; wherein,
  • the building facade wall generation module is connected with the element installation frame generation module to obtain the building plan data of the building, analyze and obtain the building plan information data, and convert the building plan plan into a three-dimensional space building plan A floor plan, based on a preset house floor plan and wall corresponding strategy, generate wall data for each floor of the building in a three-dimensional space;
  • the element installation frame generation module is connected to the element data generation module, and the element information included in each wall is obtained according to the corresponding relationship between the floor plan information in the floor plan data and the elements on the wall; State the size and type of the wall, and generate the installation frame of the element based on the corresponding strategy of the preset wall characteristics and element size, installation location and installation form;
  • the element data generation module is connected to the building elevation drawing generation module, and generates the corresponding element data in the installation frame according to the form of the element and the size of the corresponding installation frame;
  • the building elevation drawing generating module stores the building plan data as three-dimensional space building plan data when completing the element data on all walls in the building plan.
  • the device further includes: a building plan information setting module connected to the building facade wall generation module,
  • the device further includes: a building elevation view color matching module, which is connected to the building elevation view generating module,
  • the corresponding wall color/element color is obtained according to the type of the wall/element type, and the color of the wall/element is matched accordingly.
  • the device further includes: a wall installation element setting module connected to the element installation frame generating module,
  • the selected daylighting suitability is received, and according to the size and type of the wall surface and the corresponding relationship of the wall daylighting arrangement, the installation element corresponding to the wall surface and its size, installation position and installation form are obtained.
  • the element data generation module includes: an element component setting unit, an element display surface acquisition unit, and an element data generation unit; wherein,
  • the element component component setting unit is connected to the element display surface acquisition unit, and presets the component component type of the element, the positional relationship between each component component, and the correspondence between the component component type and the form of the element Element composition relationship;
  • the element display surface obtaining unit is connected to the element data generating unit, and obtains the component parts of the selected element according to the form of the element and the element composition relationship;
  • the element data generating unit is connected to the building elevation drawing generating module, and generates the corresponding element in the installation frame according to the form of the element, the size of the corresponding installation frame, and the display surface of the element data.
  • the method and device for automatically generating building elevations of the present invention are based on a platform storing building data, and based on building design and user selection, automatically generating corresponding building elevations, reducing user operations and enabling intuitive viewing of houses Facades help ordinary users select residential building types; supporting the generation of residential building facades in the building plan helps users estimate the actual effects of the building plan, so as to better screen out the best building plan. Or adjust the building plan to improve the user experience.
  • the method of this scheme can be operated in the cloud, does not depend on a fixed platform, and is convenient and efficient. At the same time, based on the pure algorithm model, a large number of building elevations that meet the user's format requirements can be produced within a few seconds, which greatly reduces the design time. Thirdly, the method of this scheme will not make mistakes and will not be tiring, so the quality and efficiency of the generation are very high. There is no error, the accuracy is stronger, the local norms can be met to the maximum, and the diversity can find better solutions that no one has thought of.
  • FIG. 1 is a schematic flowchart of a method for automatically generating a building elevation view in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a second method for automatically generating a building elevation view in an embodiment of the present invention
  • Fig. 3 is a schematic flow chart of a third method for automatically generating a building elevation view in an embodiment of the present invention
  • Figure 4 is a schematic flow chart of a fourth method for automatically generating a building elevation in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a fifth method for automatically generating a building elevation view in an embodiment of the present invention
  • FIG. 6 is a schematic plan view of a building plan of a building scheme using a building type in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a building plan obtained by applying the method in the embodiment of the present invention.
  • Fig. 8 is a schematic elevation view of a house in a building-type architectural plan obtained by applying the method in an embodiment of the present invention
  • Figure 9 is a schematic diagram of a device for automatically generating a building elevation view in an embodiment of the present invention.
  • Figure 10 is a schematic diagram of a second device for automatically generating building elevations in an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a third device for automatically generating building elevations in an embodiment of the present invention.
  • Figure 12 is a schematic diagram of a fourth device for automatically generating building elevations in an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a fifth device for automatically generating a building elevation view in an embodiment of the present invention.
  • Figure 1 is a schematic flow diagram of a method for automatically generating a building elevation in this embodiment
  • Figure 2 is a schematic flow diagram of a second method for automatically generating a building elevation in this embodiment
  • Figure 3 is a schematic flow diagram of the third method of automatically generating building elevations in this embodiment
  • Figure 4 is a schematic flow diagram of the fourth method of automatically generating building elevations in this embodiment
  • Figure 5 is this embodiment
  • Figure 6 is a schematic diagram of the floor plan of a building scheme using the building type in this embodiment
  • Figure 7 is the building type obtained by applying the method in this embodiment
  • Figure 8 is a schematic elevation view of a house in a building-type architectural plan obtained
  • Step 101 Obtain the building plan data of the building, analyze and obtain the building plan information data, convert the building plan into a three-dimensional space plan, and generate a building in the three-dimensional space based on the preset house plan and wall corresponding strategy The wall data of each floor in the model.
  • Step 102 Obtain the element information included in each wall according to the corresponding relationship between the floor plan information in the floor plan data and the elements on the wall; obtain the size and type of the wall, based on the preset wall characteristics and element size, The corresponding strategy of the installation location and the installation form generates the installation frame of the element.
  • Step 103 Generate corresponding element data in the installation frame according to the form of the element and the size of the corresponding installation frame.
  • Step 104 When completing all the element data on the wall in the building type, store the building type plan data as the building type plan data in a three-dimensional space.
  • the technical problem to be solved by the method of automatically generating a building elevation view of this embodiment is that the existing calculations simply convert the CAD into a two-dimensional elevation view, and the building elevation situation cannot be seen freely and intuitively. Therefore, to observe the building facade in more detail, three-dimensional modeling should be performed so that users can observe the building facade from any angle.
  • this solution provides a method to obtain a building plan from a platform for building data storage and management (it can be a cloud platform), and calculate the building plan information in the plan into a three-dimensional facade, which includes: generating doors, The windows, walls, railings and other components are modeled in three-dimensional space to obtain the corresponding residential facades and support the generation of residential facades of the entire building plan.
  • Modeling in three-dimensional space is conducive for users to see the residential model intuitively.
  • components such as doors, windows, and walls are all algorithmically generated without manual adjustment by the user. For example, to generate windows on the wall, calculate and find the wall where windows need to be generated based on the building outline, lighting surface, number of floors and other data in the floor plan information. First, determine the size and type of the window according to the wall size.
  • the method further includes:
  • Step 201 Preset the corresponding relationship between the external contour and size of the building type and the floor plan apartment type, and combine the building type data including the daylighting surface and the number of floors to form the building type plan data.
  • Step 202 Combine the daylighting surface and the number of floors to preset the wall surface data corresponding to each position in the floor plan apartment type to form the floor plan information data of the floor plan.
  • the method further includes:
  • Step 301 Preset the wall color corresponding to each wall type and the element color corresponding to each element type on the wall.
  • Step 302 Obtain the corresponding wall color/element color according to the type of the wall/type of the element, and match the color of the wall/element accordingly.
  • the method further includes:
  • Step 401 Preset the corresponding relationship between various lighting surface information, wall size, lighting elements, and lighting suitability.
  • Step 402 Receive the selected daylighting suitability, and obtain the installation elements corresponding to the wall surface and their dimensions, installation positions and installation forms according to the size and type of the wall surface and the corresponding relationship of the wall daylighting installation.
  • corresponding element data is generated in the installation frame according to the form of the element and the size of the corresponding installation frame, which is:
  • Step 501 Preset the component type of the element, the positional relationship between each component, and the corresponding element composition relationship between the component type and the form of the element.
  • Step 502 Obtain the component parts of the selected element according to the form of the element and the element composition relationship.
  • Step 503 Calculate the display surface of the element on the wall according to the size and type of the wall, the installation frame and the component parts of the element, and the floor plan of the three-dimensional space.
  • Step 504 Generate corresponding element data in the installation frame according to the form of the element, the size of the corresponding installation frame, and the display surface of the element.
  • the building plan needs to be obtained from the building data storage management platform.
  • the building data storage management platform Here is a simple example, as shown in Figures 6 and 7.
  • the floor plan of the building is shown in Figure 6.
  • the marking line 601 represents the lighting surface.
  • Lighting Face refers to the wall where doors and windows need to be designed in order to get suitable light inside the building.
  • the facade result of Figure 8 is obtained.
  • the first floor of the residential building has a door
  • the wall corresponding to the daylighting surface has a window
  • the balcony has a railing
  • the core tube can be a white wall.
  • This implementation also provides a device for automatically generating building elevations, which is used to implement the above-mentioned method for automatically generating building elevations, as shown in Figures 9 to 13.
  • Figure 9 is an automatically generated building elevation in this embodiment.
  • Figure 10 is a schematic diagram of the second device for automatically generating building elevations in this embodiment;
  • Figure 11 is a schematic diagram of the third device for automatically generating building elevations in this embodiment;
  • Figure 12 It is a schematic diagram of the fourth device for automatically generating building elevations in this embodiment;
  • FIG. 13 is a schematic diagram of the fifth device for automatically generating building elevations in this embodiment.
  • the device includes: a building facade wall generating module 901, an element installation frame generating module 902, an element data generating module 903, and a building elevation drawing generating module 904.
  • the building facade wall generation module 901 is connected with the element installation frame generation module 902 to obtain the building plan data of the building, analyze the building plan information data, and convert the building plan into a three-dimensional building plan. Based on the preset corresponding strategy of the floor plan of the apartment and the wall, the wall data of each floor in the building is generated in the three-dimensional space.
  • the element installation frame generation module 902 is connected to the element data generation module 903. According to the corresponding relationship between the floor plan information in the floor plan data and the elements on the wall, the element information included in each wall is obtained; the size and size of the wall are obtained Type, based on the preset wall characteristics and the corresponding strategy of element size, installation location and installation form to generate the installation frame of the element.
  • the element data generating module 903 is connected to the building elevation drawing generating module 904, and generates corresponding element data in the installation frame according to the form of the element and the size of the corresponding installation frame.
  • the building elevation drawing generating module 904 stores the building plan data as three-dimensional building plan data when completing all the element data on the wall in the building plan.
  • the device may further include: a building plan information setting module 1001, which is connected to the building facade wall generation module 901, and presets the correspondence between the building's outline and size and the building's plan The relationship, combined with the building type data including the daylighting surface and the number of floors, constitutes the building type plan data.
  • a building plan information setting module 1001 which is connected to the building facade wall generation module 901, and presets the correspondence between the building's outline and size and the building's plan The relationship, combined with the building type data including the daylighting surface and the number of floors, constitutes the building type plan data.
  • the wall surface data corresponding to each position in the preset floor plan apartment type constitutes the floor plan information data of the floor plan.
  • the device may further include: a building elevation map color matching module 1101, which is connected to the building elevation map generation module 904, and presets the wall colors corresponding to each wall type and each on the wall.
  • the element color corresponding to the element type may be further included in the device.
  • the device may further include: a wall placement element setting module 1201, which is connected to the element installation frame generating module 903, and presets various lighting surface information, wall sizes, lighting elements, and appropriate lighting conditions. The corresponding relationship between the wall lighting placement between the degrees.
  • the placement elements corresponding to the wall and their size, installation location and installation form are obtained.
  • the element data generating module 904 includes: an element component setting unit 941, an element display surface obtaining unit 942, and an element data generating unit 943.
  • the element component setting unit 941 is connected to the element display surface acquisition unit 942, and presets the component component type of the element, the positional relationship between each component component, and the corresponding element composition between the component component type and the element form relation.
  • the element display surface obtaining unit 942 is connected to the element data generating unit 943, and obtains the component parts of the selected element according to the form of the element and the element composition relationship.
  • the installation frame and component parts of the element combined with the floor plan of the three-dimensional space, the display surface of the element on the wall is calculated.
  • the element data generating unit 943 is connected to the building elevation drawing generating module 904, and generates corresponding element data in the installation frame according to the form of the element, the size of the corresponding installation frame, and the display surface of the element.
  • the device for automatically generating building elevations in this embodiment can be used on the client, combined with cloud communication and calculations for storing building data, to show the interface for the user to request download parameter selection, the user selects the appropriate parameters and format, and clicks to download or Preview to output the file in the format corresponding to the general map.
  • it may also include a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program to automatically generate the building elevation as described above. Steps of the method.
  • a readable storage medium in which a computer program is stored is characterized in that, when the computer program is executed by a processor, the steps of automatically generating a residential building plan as described above are realized.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

本发明公开了一种自动生成建筑立面图的方法及装置,该方法包括:获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将楼型平面图转换为三维空间的楼型平面图,在三维空间中生成楼型中每层的墙面数据;根据楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成元素的安装框;根据元素的形式及对应安装框的尺寸在安装框内生成对应的元素数据;在完成楼型中所有墙面上元素数据时,将楼型方案数据以三维空间的楼型方案数据进行存储。本发明提供了高效率、高准确性的自动生成建筑立面图的方案。

Description

一种自动生成建筑立面图的方法及装置 技术领域
本发明涉及住宅建筑平面生成的技术领域,尤其涉及一种自动生成建筑立面图的方法及装置。
背景技术
住宅建筑作为人们居住、生活的重要场所,越来越受到关注和重视,人们都想提升自己居住、生活住宅的水平和方便性。随着房地产行业的发展,住宅楼建筑也越来越多,对住宅户型设计的需求量也越来越大。而每个用户对住宅户型设计的需求也不尽相同,如何满足各个用户不同需求的住宅建筑设计就显得尤为重要。
建筑立面图主要用来表示房屋的体形和外貌、外墙装修、门窗的位置与形式,以及遮阳板、窗台、屋顶水箱、檐口、阳台、雨蓬、雨水管、水斗、引条线、勒脚、平台、台阶、花坛构造和配件各部位的标高和必要尺寸。现有技术中基于CAD(Computer Aided Design;计算机辅助设计)程序生成建筑立面图的方法与流程,应用计算机辅助设计技术从建筑平面图制作二维立面图,只能得到正面的图形,不支持在三维空间下建模。且功能单一,只能通过用户输入来协助立面生成,只支持单个CAD图进行立面生成,操作复杂。
而人工处理建筑立面图的方式速率缓慢,整个流程几乎都是人工参与,而且生成的质量、速率极大的取决于所参与人的经验和业务水平,不能批量出建筑立面图。出错率相对较高,对于不同的人,可能会犯不同的错误,即 使对于同一个人,也有可能在不同的状况下出现不同的错误,比如多个项目同时制作的时候,或者体力脑力情况很差的时候。还有一个缺点是纠正的成本高,对于人来说,一个修改往往会引起大量的相关修改,时间成本上升,出错的几率也会提高,更不用说需要进行大量修改的情况。
因此,如何提供一种合理、效率高、准确可批量化的自动生成建筑立面图方案是本领域技术人员亟待解决的技术问题。
发明内容
本发明提供一种自动生成建筑立面图的方法及装置,以解决现有技术中没有合理、效率高、准确可批量化的自动生成建筑立面图方案的问题。
本发明提供一种自动生成建筑立面图的方法,包括:
获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将所述楼型平面图转换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成所述楼型中每层的墙面数据;
根据所述楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取所述墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成所述元素的安装框;
根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据;
在完成所述楼型中所有墙面上所述元素数据时,将所述楼型方案数据以三维空间的楼型方案数据进行存储。
可选地,其中,该方法还包括:
预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和 楼层层数的楼型数据构成所述楼型方案数据;
结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成所述楼型平面图信息数据。
可选地,其中,该方法还包括:
预设各个墙面类型对应的墙面颜色及墙面上各个所述元素类型对应的元素颜色;
根据所述墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对所述墙面/元素进行配色。
可选地,其中,该方法还包括:
预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系;
接收所选取的采光适宜度,根据所述墙面的尺寸、类型及墙面采光安置对应关系,得到与所述墙面对应的安置元素及其尺寸、安装位置及安装形式。
可选地,其中,根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据,为:
预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与所述元素的形式之间对应的元素组成关系;
根据所述元素的形式及元素组成关系获取所选取元素的组成部件;
根据所述墙面的尺寸及类型、所述元素的安装框及组成部件,结合三维空间的楼型平面图计算出所述元素在所述墙面上的展示表面;
根据所述元素的形式、对应安装框的尺寸及所述元素的展示表面在所述安装框内生成对应的所述元素数据。
另一方面,本发明还提供一种自动生成建筑立面图的装置,包括:建筑 立面墙面生成模块、元素安装框生成模块、元素数据生成模块及建筑立面图生成模块;其中,
所述建筑立面墙面生成模块,与所述元素安装框生成模块相连接,获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将所述楼型平面图转换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成所述楼型中每层的墙面数据;
所述元素安装框生成模块,与所述元素数据生成模块相连接,根据所述楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取所述墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成所述元素的安装框;
所述元素数据生成模块,与所述建筑立面图生成模块相连接,根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据;
所述建筑立面图生成模块,在完成所述楼型中所有墙面上所述元素数据时,将所述楼型方案数据以三维空间的楼型方案数据进行存储。
可选地,其中,该装置还包括:楼型平面图信息设置模块,与所述建筑立面墙面生成模块相连接,
预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和楼层层数的楼型数据构成所述楼型方案数据;
结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成所述楼型平面图信息数据。
可选地,其中,该装置还包括:建筑立面图配色模块,与所述建筑立面图生成模块相连接,
预设各个墙面类型对应的墙面颜色及墙面上各个所述元素类型对应的元 素颜色;
根据所述墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对所述墙面/元素进行配色。
可选地,其中,该装置还包括:墙面安置元素设置模块,与所述元素安装框生成模块相连接,
预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系;
接收所选取的采光适宜度,根据所述墙面的尺寸、类型及墙面采光安置对应关系,得到与所述墙面对应的安置元素及其尺寸、安装位置及安装形式。
可选地,其中,所述元素数据生成模块,包括:元素组成部件设置单元、元素展示表面获取单元及元素数据生成单元;其中,
所述元素组成部件设置单元,与所述元素展示表面获取单元相连接,预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与所述元素的形式之间对应的元素组成关系;
所述元素展示表面获取单元,与所述元素数据生成单元相连接,根据所述元素的形式及元素组成关系获取所选取元素的组成部件;
根据所述墙面的尺寸及类型、所述元素的安装框及组成部件,结合三维空间的楼型平面图计算出所述元素在所述墙面上的展示表面;
所述元素数据生成单元,与所述建筑立面图生成模块相连接,根据所述元素的形式、对应安装框的尺寸及所述元素的展示表面在所述安装框内生成对应的所述元素数据。
本发明的自动生成建筑立面图的方法及装置,基于存储有建筑数据的平台,基于建筑楼型设计及用户选择自动生成对应的建筑立面图,减少了用户 操作,能直观地看到住宅立面,就有助于普通用户甄选住宅楼型;支持建筑方案内的住宅建筑立面生成,就有助于用户预估建筑方案的实际效果,从而更好地筛选出最优的建筑方案,或者调整建筑方案,提升了用户使用体验。
可以快速获取并且数据精准,由于是计算机自动生成,所以输出的各种数据都十分精准。对CAD等绘图程序本身没有依赖,所有的计算可以发生在云端,客户不需要CAD程序就能完成设计,并且可以快速输出各种格式的数据,通过输出的建筑立面图可以方便的进行二次开发。而且由于会根据策略生成特定的元素使得建筑立面图更丰富,还可以对现有好的配色方案进行快速的复用。
本方案的方法可以在云端操作,不依赖于固定平台,方便高效。同时,基于纯算法模型,可以在几秒内出大量符合用户格式需求的建筑立面图,极大的压缩了设计的时间。再次,本方案的方法不会犯错,更不会累,所以生成的质量和效率非常高。没有错误,准确性更强,可以最大限度符合当地规范,具有多样性,可以找到人没有想到的更优的方案。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中一种自动生成建筑立面图的方法的流程示意图;
图2是本发明实施例中第二种自动生成建筑立面图的方法的流程示意图;
图3是本发明实施例中第三种自动生成建筑立面图的方法的流程示意图;
图4是本发明实施例中第四种自动生成建筑立面图的方法的流程示意图;
图5是本发明实施例中第五种自动生成建筑立面图的方法的流程示意图;
图6是本发明实施例中一种应用楼型的建筑方案的楼型平面示意图;
图7是应用本发明实施例中方法得到楼型的建筑方案的示意图;
图8是应用本发明实施例中方法得到楼型的建筑方案内的住宅的立面图示意图;
图9是本发明实施例中一种自动生成建筑立面图的装置的示意图;
图10是本发明实施例中第二种自动生成建筑立面图的装置的示意图;
图11是本发明实施例中第三种自动生成建筑立面图的装置的示意图;
图12是本发明实施例中第四种自动生成建筑立面图的装置的示意图;
图13是本发明实施例中第五种自动生成建筑立面图的装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例中自动生成建筑立面图的方法,利用云端平台和CAD绘图程序里面的建筑平面图信息数据可以快速和精准地生成建筑立面图所需的数据 参数,在建筑平面图的基础上创建三维空间建筑图。如图1至8所示,图1是本实施例中一种自动生成建筑立面图的方法的流程示意图;图2是本实施例中第二种自动生成建筑立面图的方法的流程示意图;图3是本实施例中第三种自动生成建筑立面图的方法的流程示意图;图4是本实施例中第四种自动生成建筑立面图的方法的流程示意图;图5是本实施例中第五种自动生成建筑立面图的方法的流程示意图;图6是本实施例中一种应用楼型的建筑方案的楼型平面示意图;图7是应用本实施例中方法得到楼型的建筑方案的示意图;图8是应用本实施例中方法得到楼型的建筑方案内的住宅的立面图示意图。具体地,该方法包括如下步骤:
步骤101、获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将楼型平面图转换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成楼型中每层的墙面数据。
步骤102、根据楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成元素的安装框。
步骤103、根据元素的形式及对应安装框的尺寸在安装框内生成对应的元素数据。
步骤104、在完成楼型中所有墙面上元素数据时,将楼型方案数据以三维空间的楼型方案数据进行存储。
本实施例的自动生成建筑立面图的方法所要解决的技术问题是现有计算只是单纯地把CAD转换为二维立面图,不能自由直观地看到建筑立面情况。所以要更详细地观察建筑立面,就应该进行三维建模,使得用户能在任意角度上观察建筑的立面。
为达到上述目的,本方案提供了从建筑数据存储管理的平台(可以是云端平台)获得建筑方案,把方案里的楼型平面图信息计算生成为三维立面的方法,其包括:能生成门、窗、墙、栏杆等构件,并在三维空间下进行建模,得到对应的住宅立面,并且支持整个建筑方案的住宅立面生成。
在三维空间下的建模,有利于用户直观地看到住宅模型,在住宅平面图到三维模型中,门、窗、墙等构件都是算法上生成的,无需用户手动调整。比如生成墙上的窗,通过楼型平面图信息的楼型外轮廓、采光面、层数等数据,计算找到需要生成窗的墙面,先根据墙面大小决定窗的大小与类型,在墙面上留下窗洞,然后根据窗洞进行窗的模型数据生成计算:根据这个窗洞的位置,计算窗的内部组件的位置,如玻璃、窗框、窗衬等,然后把这些组件的能看得见的表面都计算出来,这些表面拼合就得到这个窗洞对应的窗的模型数据。支持建筑方案的住宅立面生成,能够查看建筑方案里的所有住宅立面,有利于判断建筑方案内的住宅建筑之间的协调性。
在一些可选的实施例中,该方法还包括:
步骤201、预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和楼层层数的楼型数据构成楼型方案数据。
步骤202、结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成楼型平面图信息数据。
在一些可选的实施例中,该方法还包括:
步骤301、预设各个墙面类型对应的墙面颜色及墙面上各个元素类型对应的元素颜色。
步骤302、根据墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对墙面/元素进行配色。
在一些可选的实施例中,该方法还包括:
步骤401、预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系。
步骤402、接收所选取的采光适宜度,根据墙面的尺寸、类型及墙面采光安置对应关系,得到与墙面对应的安置元素及其尺寸、安装位置及安装形式。
在一些可选的实施例中,根据元素的形式及对应安装框的尺寸在安装框内生成对应的元素数据,为:
步骤501、预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与元素的形式之间对应的元素组成关系。
步骤502、根据元素的形式及元素组成关系获取所选取元素的组成部件。
步骤503、根据墙面的尺寸及类型、元素的安装框及组成部件,结合三维空间的楼型平面图计算出元素在墙面上的展示表面。
步骤504、根据元素的形式、对应安装框的尺寸及元素的展示表面在安装框内生成对应的元素数据。
结合图6至8中,需要从建筑数据存储管理平台上获得建筑方案,此处用一个简单的例子,如图6和图7所示,这个建筑方案内有两个建筑,一个建筑相对于另一个建筑旋转了180°,两个建筑的层数都是10。
建筑的楼型平面图如图6所示,一共有4个户,面积分别为106、93、93、113,有两个阳台和一个核心筒,每个户都至少有一个采光面,图中的标识线601表示采光面。采光面Lighting Face是指为了建筑物内部得到适宜的光线而需要设计门窗的墙面。
图7的建筑方案进行立面生成后,就得到图8的立面结果。图8中,住宅建筑的第一层生成了门,采光面对应的墙上生成了窗,阳台外轮廓有栏杆, 核心筒可为白色的墙,这些都是根据楼型平面图信息设计生成的,不需要用户手动调整这些构件的位置。从图7到图8,用户能更直观地看到图6的建筑立面图,图8也能预估为图7施工后的实际效果图。
本实施中还提供自动生成建筑立面图的装置,用于实施上述的自动生成建筑立面图的方法,如图9至13所示,图9是本实施例中一种自动生成建筑立面图的装置的示意图;图10是本实施例中第二种自动生成建筑立面图的装置的示意图;图11是本实施例中第三种自动生成建筑立面图的装置的示意图;图12是本实施例中第四种自动生成建筑立面图的装置的示意图;图13是本实施例中第五种自动生成建筑立面图的装置的示意图。
具体地,该装置包括:建筑立面墙面生成模块901、元素安装框生成模块902、元素数据生成模块903及建筑立面图生成模块904。
其中,建筑立面墙面生成模块901,与元素安装框生成模块902相连接,获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将楼型平面图转换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成楼型中每层的墙面数据。
元素安装框生成模块902,与元素数据生成模块903相连接,根据楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成元素的安装框。
元素数据生成模块903,与建筑立面图生成模块904相连接,根据元素的形式及对应安装框的尺寸在安装框内生成对应的元素数据。
建筑立面图生成模块904,在完成楼型中所有墙面上元素数据时,将楼型方案数据以三维空间的楼型方案数据进行存储。
在一些可选的实施例中,该装置还可以包括:楼型平面图信息设置模块1001,与建筑立面墙面生成模块901相连接,预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和楼层层数的楼型数据构成楼型方案数据。
结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成楼型平面图信息数据。
在一些可选的实施例中,该装置还可以包括:建筑立面图配色模块1101,与建筑立面图生成模块904相连接,预设各个墙面类型对应的墙面颜色及墙面上各个元素类型对应的元素颜色。
根据墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对墙面/元素进行配色。
在一些可选的实施例中,该装置还可以包括:墙面安置元素设置模块1201,与元素安装框生成模块903相连接,预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系。
接收所选取的采光适宜度,根据墙面的尺寸、类型及墙面采光安置对应关系,得到与墙面对应的安置元素及其尺寸、安装位置及安装形式。
在一些可选的实施例中,元素数据生成模块904,包括:元素组成部件设置单元941、元素展示表面获取单元942及元素数据生成单元943。
其中,元素组成部件设置单元941,与元素展示表面获取单元942相连接,预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与元素的形式之间对应的元素组成关系。
元素展示表面获取单元942,与元素数据生成单元943相连接,根据元素的形式及元素组成关系获取所选取元素的组成部件。
根据墙面的尺寸及类型、元素的安装框及组成部件,结合三维空间的楼型平面图计算出元素在墙面上的展示表面。
元素数据生成单元943,与建筑立面图生成模块904相连接,根据元素的形式、对应安装框的尺寸及元素的展示表面在安装框内生成对应的元素数据。
本实施例中自动生成建筑立面图的装置可以用在客户端上,结合存储建筑数据的云端通信和运算,展现用户请求下载参数选取的界面,用户选取好合适的参数和格式,点击下载或者预览即可输出总图对应格式的文件。
在本实施例中,还可以包括一种计算机设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述自动生成建筑立面图的方法的步骤。
一种可读存储介质,可读存储介质存储有计算机程序,其特征在于,计算机程序被处理器执行时实现如上述自动生成住宅建筑平面的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、 存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种自动生成建筑立面图的方法,其特征在于,包括:
    获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将所述楼型平面图转换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成所述楼型中每层的墙面数据;
    根据所述楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取所述墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成所述元素的安装框;
    根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据;
    在完成所述楼型中所有墙面上所述元素数据时,将所述楼型方案数据以三维空间的楼型方案数据进行存储。
  2. 根据权利要求1所述的自动生成建筑立面图的方法,其特征在于,还包括:
    预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和楼层层数的楼型数据构成所述楼型方案数据;
    结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成所述楼型平面图信息数据。
  3. 根据权利要求1所述的自动生成建筑立面图的方法,其特征在于,还包括:
    预设各个墙面类型对应的墙面颜色及墙面上各个所述元素类型对应的元素颜色;
    根据所述墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对所述墙面/元素进行配色。
  4. 根据权利要求1所述的自动生成建筑立面图的方法,其特征在于,还包括:
    预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系;
    接收所选取的采光适宜度,根据所述墙面的尺寸、类型及墙面采光安置对应关系,得到与所述墙面对应的安置元素及其尺寸、安装位置及安装形式。
  5. 根据权利要求1所述的自动生成建筑立面图的方法,其特征在于,根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据,为:
    预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与所述元素的形式之间对应的元素组成关系;
    根据所述元素的形式及元素组成关系获取所选取元素的组成部件;
    根据所述墙面的尺寸及类型、所述元素的安装框及组成部件,结合三维空间的楼型平面图计算出所述元素在所述墙面上的展示表面;
    根据所述元素的形式、对应安装框的尺寸及所述元素的展示表面在所述安装框内生成对应的所述元素数据。
  6. 一种自动生成建筑立面图的装置,其特征在于,包括:建筑立面墙面生成模块、元素安装框生成模块、元素数据生成模块及建筑立面图生成模块;其中,
    所述建筑立面墙面生成模块,与所述元素安装框生成模块相连接,获取建筑的楼型方案数据,分析得到楼型平面图信息数据,将所述楼型平面图转 换为三维空间的楼型平面图,基于预设的户型平面图与墙面对应策略,在三维空间中生成所述楼型中每层的墙面数据;
    所述元素安装框生成模块,与所述元素数据生成模块相连接,根据所述楼型方案数据中楼型平面图信息与墙面上元素对应关系,得到各个墙面所包括的元素信息;获取所述墙面的尺寸及类型,基于预设的墙面特性与元素尺寸、安装位置及安装形式的对应策略生成所述元素的安装框;
    所述元素数据生成模块,与所述建筑立面图生成模块相连接,根据所述元素的形式及对应安装框的尺寸在所述安装框内生成对应的所述元素数据;
    所述建筑立面图生成模块,在完成所述楼型中所有墙面上所述元素数据时,将所述楼型方案数据以三维空间的楼型方案数据进行存储。
  7. 根据权利要求6所述的自动生成建筑立面图的装置,其特征在于,还包括:楼型平面图信息设置模块,与所述建筑立面墙面生成模块相连接,
    预设楼型外轮廓、尺寸与楼型平面户型的对应关系,结合包括采光面和楼层层数的楼型数据构成所述楼型方案数据;
    结合采光面和楼层层数预设楼型平面户型中各个位置所对应的墙面数据,构成所述楼型平面图信息数据。
  8. 根据权利要求6所述的自动生成建筑立面图的装置,其特征在于,还包括:建筑立面图配色模块,与所述建筑立面图生成模块相连接,
    预设各个墙面类型对应的墙面颜色及墙面上各个所述元素类型对应的元素颜色;
    根据所述墙面的类型/元素的类型获取对应的墙面颜色/元素颜色,对应地对所述墙面/元素进行配色。
  9. 根据权利要求6所述的自动生成建筑立面图的装置,其特征在于,还 包括:墙面安置元素设置模块,与所述元素安装框生成模块相连接,
    预设各种采光面信息、墙面大小、采光元素及采光适宜度之间的墙面采光安置对应关系;
    接收所选取的采光适宜度,根据所述墙面的尺寸、类型及墙面采光安置对应关系,得到与所述墙面对应的安置元素及其尺寸、安装位置及安装形式。
  10. 根据权利要求6所述的自动生成建筑立面图的装置,其特征在于,所述元素数据生成模块,包括:元素组成部件设置单元、元素展示表面获取单元及元素数据生成单元;其中,
    所述元素组成部件设置单元,与所述元素展示表面获取单元相连接,预设元素的组成部件类型、各个组成部件之间的位置关系,及组成部件类型与所述元素的形式之间对应的元素组成关系;
    所述元素展示表面获取单元,与所述元素数据生成单元相连接,根据所述元素的形式及元素组成关系获取所选取元素的组成部件;
    根据所述墙面的尺寸及类型、所述元素的安装框及组成部件,结合三维空间的楼型平面图计算出所述元素在所述墙面上的展示表面;
    所述元素数据生成单元,与所述建筑立面图生成模块相连接,根据所述元素的形式、对应安装框的尺寸及所述元素的展示表面在所述安装框内生成对应的所述元素数据。
PCT/CN2021/100417 2020-06-05 2021-06-16 一种自动生成建筑立面图的方法及装置 WO2021244664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010507131.4A CN111914318A (zh) 2020-06-05 2020-06-05 一种自动生成建筑立面图的方法及装置
CN202010507131.4 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244664A1 true WO2021244664A1 (zh) 2021-12-09

Family

ID=73237479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100417 WO2021244664A1 (zh) 2020-06-05 2021-06-16 一种自动生成建筑立面图的方法及装置

Country Status (2)

Country Link
CN (1) CN111914318A (zh)
WO (1) WO2021244664A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115712943A (zh) * 2022-11-24 2023-02-24 中国建筑设计研究院有限公司 一种基于图像识别的乡村住宅户型平面生成方法和系统
CN117475084A (zh) * 2023-11-27 2024-01-30 五矿瑞和(上海)建设有限公司 一种幕墙三维线框模型的生成方法及系统
CN117745997A (zh) * 2024-02-21 2024-03-22 上海盎维信息技术有限公司 基于ai技术的平立面图数据处理方法及处理终端

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111914318A (zh) * 2020-06-05 2020-11-10 深圳小库科技有限公司 一种自动生成建筑立面图的方法及装置
CN112507436B (zh) * 2020-12-07 2021-09-28 杭州聚玻科技有限公司 一种自动测算幕墙玻璃尺寸的方法
CN112487539A (zh) * 2020-12-08 2021-03-12 深圳小库科技有限公司 一种智能的建筑模型生成方法、电子设备及存储介质
CN113536408B (zh) * 2021-07-01 2022-12-13 华蓝设计(集团)有限公司 基于cad外部参照协同模式的住宅核心筒面积计算方法
CN115292793B (zh) * 2022-09-29 2023-04-07 深圳小库科技有限公司 一种户型设计方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180075168A1 (en) * 2015-03-24 2018-03-15 Carrier Corporation System and method for capturing and analyzing multidimensional building information
CN109710963A (zh) * 2018-11-05 2019-05-03 陈树铭 基于建筑二维cad图纸的三维快速建模系统及方法
CN109993827A (zh) * 2019-03-29 2019-07-09 宁波睿峰信息科技有限公司 一种将建筑图纸转换为三维bim模型的立面图识别方法
CN110210063A (zh) * 2019-04-29 2019-09-06 广东工业大学建筑设计研究院 一种基于cad快速生成建筑立面图的方法
CN111914318A (zh) * 2020-06-05 2020-11-10 深圳小库科技有限公司 一种自动生成建筑立面图的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180075168A1 (en) * 2015-03-24 2018-03-15 Carrier Corporation System and method for capturing and analyzing multidimensional building information
CN109710963A (zh) * 2018-11-05 2019-05-03 陈树铭 基于建筑二维cad图纸的三维快速建模系统及方法
CN109993827A (zh) * 2019-03-29 2019-07-09 宁波睿峰信息科技有限公司 一种将建筑图纸转换为三维bim模型的立面图识别方法
CN110210063A (zh) * 2019-04-29 2019-09-06 广东工业大学建筑设计研究院 一种基于cad快速生成建筑立面图的方法
CN111914318A (zh) * 2020-06-05 2020-11-10 深圳小库科技有限公司 一种自动生成建筑立面图的方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115712943A (zh) * 2022-11-24 2023-02-24 中国建筑设计研究院有限公司 一种基于图像识别的乡村住宅户型平面生成方法和系统
CN115712943B (zh) * 2022-11-24 2024-01-30 中国建筑设计研究院有限公司 一种基于图像识别的乡村住宅户型平面生成方法和系统
CN117475084A (zh) * 2023-11-27 2024-01-30 五矿瑞和(上海)建设有限公司 一种幕墙三维线框模型的生成方法及系统
CN117745997A (zh) * 2024-02-21 2024-03-22 上海盎维信息技术有限公司 基于ai技术的平立面图数据处理方法及处理终端

Also Published As

Publication number Publication date
CN111914318A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021244664A1 (zh) 一种自动生成建筑立面图的方法及装置
CN109408907B (zh) 一种制造三维建筑实物模型的方法和装置
US11721069B2 (en) Processing of 2D images to generate 3D digital representations from which accurate building element measurement information can be extracted
US8774525B2 (en) Systems and methods for estimation of building floor area
CN108765545B (zh) 一种基于bim技术的厨卫阳房间装饰深化设计方法
US9576184B2 (en) Detection of a perimeter of a region of interest in a floor plan document
CN108257203B (zh) 一种家装效果图构建渲染方法、平台
US20160300293A1 (en) Device, system and method for designing a space
Bhavani et al. Advanced Lighting Simulation Tools for Daylighting Purpose: powerful features and related issues
US20220262086A1 (en) Home visualization tool
US20200258317A1 (en) Distributed computing systems, graphical user interfaces, and processor-executable logic for selection management and visualization engines for real property construction
Shih et al. 3D scan for the digital preservation of a historical temple in Taiwan
CN113268797A (zh) 基于bim的室内装修工程智能管理方法及系统
Alexandrou et al. Heritage-BIM for energy simulation: a data exchange method for improved interoperability
CN110390116B (zh) 模型连接处理方法、装置、计算机设备和可读存储介质
Iommi The natural light in the Italian rationalist architecture of Ex GIL of Mario Ridolfi in Macerata. The virtual reconstruction and the daylight analysis of the original building
US20240161159A1 (en) System and method of providing exterior work estimate
WO2024102457A1 (en) System and method of providing exterior work estimate
Garwood Closing the Performance Gap in Building Energy Modelling through Digital Survey methods and Automated Reconstruction
US20240112420A1 (en) Augmented reality enhanced building model viewer
Smirnov The comparison of the architectural design softwares
US20240111914A1 (en) Markers for selective access to a building model
US20240111929A1 (en) Interface for virtual building model
AU2021201068A1 (en) Building system and design and assessment therefor
CZ34870U1 (cs) Systém pro vizualizaci stavebních úprav

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21818289

Country of ref document: EP

Kind code of ref document: A1