WO2021244421A1 - Antibodies specifically recognizing pseudomonas pcrv and uses thereof - Google Patents
Antibodies specifically recognizing pseudomonas pcrv and uses thereof Download PDFInfo
- Publication number
- WO2021244421A1 WO2021244421A1 PCT/CN2021/096719 CN2021096719W WO2021244421A1 WO 2021244421 A1 WO2021244421 A1 WO 2021244421A1 CN 2021096719 W CN2021096719 W CN 2021096719W WO 2021244421 A1 WO2021244421 A1 WO 2021244421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- seq
- acid sequence
- cdr3
- cdr2
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/104—Pseudomonadales, e.g. Pseudomonas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/40—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum bacterial
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1203—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
- C07K16/1214—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Pseudomonadaceae (F)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- This application pertains to antibodies that specifically recognize PcrV from Pseudomonas aeruginosa, and methods of manufacture and uses thereof, including methods of treating and preventing Pseudomonas infections.
- Pseudomonas aeruginosa is an obligately aerobic gram negative bacillus being widely existing in the natural world. Although its pathogenicity is usually low, it is a pathogen that causes opportunistic infections, often occurring in patients suffering from various pre-existing diseases such as cancer, diabetes, immunodeficiency diseases and patients administered with pharmaceuticals exhibiting immune-inhibitory action. Patients with breached skin mucous membrane are prone to P. aeruginosa infections while it also poses considerable risk to patients with chronic structural lung diseases (such as COPD or cystic fibrosis) . P. aeruginosa may often cause pneumonia, urinary tract infection, sepsis, and the like, and often leading to severe results.
- P. aeruginosa infection is considered as one of the most difficult infections to be treated not only because P. aeruginosa has inherently low sensitivity to existent antibiotics, but also because of its high tendency to acquire resistance to various antibiotics. Thus, the strategy of developing an arsenal of antibiotics has limited merits in combating P. aeruginosa infections.
- Pseudomonas aeruginosa is a major cause of hospital-acquired infections, particularly in mechanically ventilated patients, and it is the leading cause of death in cystic fibrosis patients.
- a key virulence factor associated with disease severity is the P. aeruginosa type III secretion system (T3SS) , which injects bacterial toxins directly into the cytoplasm of host cells. High cytotoxicity of Pseudomonas aeruginosa is exerted by injection of toxin into a eukaryotic cell via a type III exotoxin secretion system (T3SS) .
- PcrV is a protein of 294 residues (NCBI Accession No.
- AAC45935, SEQ NO: 80) constituting the type III exotoxin secretion system, and an operon sequence encoding the same is open to the public (US 6,551,795, Yahr, T.L. et al., J. Bacteriol., 1997, vol. 179, p. 7165) .
- the PcrV protein, located at the tip of the T3SS injectisome complex, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa.
- the P. aeruginosa T3SS is a well-validated target for intervention in infections caused by this opportunistic pathogen.
- aeruginosa respiratory infections in mechanically ventilated patients. While effective in blocking P. aeruginosa T3SS in vitro, MAb166 requires relatively high antibody doses for protection in animal models.
- the present application provides novel anti-PcrV mAbs that showed potent inhibition of PcrV in vitro and in vivo.
- the present application provides an isolated anti-PcrV antibody that specifically binds to an epitope on Pseudomonas PcrV, and methods of use thereof for treating Pseudomonas infections.
- the present application provides an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1 EX 2 SX 3 SYADSVKG (SEQ ID NO: 50) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, T, N, L, I, S, V, A or H; X 2 is S, T, N, D, G or R; and X 3 is I or T; and an HC-CDR3 comprising DGX 1 X 2 X 3 X 4 X 5 DX 6 (SEQ ID NO: 51) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is P, Y or
- an isolated anti-PcrV antibody comprising a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1 EX 2 SISYADSVKG (SEQ ID NO: 45) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, N, I, L or V, X 2 is S, T, R, G or N; and an HC-CDR3 comprising DGPYDX 1 X 2 DI (SEQ ID NO: 46) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, A or T, X 2 is F or L; and a light chain variable domain (VL) comprising: a light chain complementarity
- an isolated anti-PcrV antibody wherein the anti-PcrV antibody binds to the Pseudomonas PcrV with a Kd from about 0.1 pM to about 1 nM.
- an isolated anti-PcrV antibody wherein the anti-PcrV antibody comprises a VH comprising an HC-CDR1, an HC-CDR2, and an HC-CDR3 of the VH comprising the amino acid sequence of any one of SEQ ID NOs: 52-64; and a VL comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the VL comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- the anti-PcrV antibody comprises: a VH comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NOs: 1, or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, or a variant thereof comprising up to about 3 amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13, or a variant thereof comprising up to about 3 amino acid substitutions; and a VL comprising a LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14-25, or a variant thereof comprising up to about 3 amino acid substitutions; a LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26-29, or a variant thereof comprising up to about 3 amino acid substitutions; and a LC-CDR3 comprising
- the anti-PcrV antibody comprises: (i) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (ii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 compris
- the isolated anti-PcrV antibody comprises: a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 65-79.
- the isolated anti-PcrV antibody comprises: (i) a V H comprising the amino acid sequence of SEQ ID NO: 52 and a V L comprising the amino acid sequence of SEQ ID NO: 65; (ii) a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 65; (iii) a V H comprising the amino acid sequence of SEQ ID NO: 53 and a V L comprising the amino acid sequence of SEQ ID NO: 66; (iv) a V H comprising the amino acid sequence of SEQ ID NO: 62 and a V L comprising the amino acid sequence of SEQ ID NO: 74; (v) a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 67; (vi) a V H comprising the amino acid sequence of SEQ ID NO: 55 and a V L comprising the amino acid sequence of SEQ ID NO: 67;
- an isolated anti-PcrV antibody that specifically binds to PcrV competitively with the isolated anti-PcrV antibody of any one of isolated anti-PcrV antibodies described above. In some embodiments, there is provided an isolated anti-PcrV antibody that specifically binds to the same epitope as any one of isolated anti-PcrV antibodies as described above.
- the anti-PcrV antibody comprises an Fc fragment.
- the anti-PcrV antibody is a full-length IgG antibody.
- the anti-PcrV antibody is a full-length IgG1 or IgG4 antibody.
- the anti-PcrV antibody is chimeric, human, or humanized.
- the anti-PcrV antibody is an antigen binding fragment selected from the group consisting of a Fab, a Fab’, a F (ab) ’2, a Fab’-SH, a single-chain Fv (scFv) , an Fv fragment, a dAb, a Fd or a diabody.
- nucleic acid molecule that encodes any one of the anti-PcrV antibodies described above.
- a vector comprising any one of the nucleic acid molecules described above.
- a host cell comprising any one of the anti-PcrV antibodies described above, any one of the nucleic acid molecules described above, or any one of the vectors described above.
- a method of producing an anti-PcrV antibody comprising: a) culturing any one of the host cells described above under conditions effective to express the anti-PcrV antibody; and b) obtaining the expressed anti-PcrV antibody from the host cell.
- a method of treating a disease or condition in an individual in need thereof comprising administering to the individual an effective amount of any one of the anti-PcrV antibodies described above, or a pharmaceutical composition comprising any one of the anti-PcrV antibodies described above.
- provided is the use of any one of the anti-PcrV antibodies described above, or a pharmaceutical composition comprising any one of the anti-PcrV antibodies described above in the manufacture of a medicament for treating a disease or condition.
- the disease or condition is a pathogenic infection.
- the infection is a gram-negative bacterial infection.
- the bacterium is Pseudomonas aeruginosa.
- the disease or condition comprises one or more symptoms caused by Pseudomonas aeruginosa infection.
- the symptom comprises one or more of fever, chills, fatigues, muscle and joint pain, swelling of joints, headache, diarrhea, skin rashes, pus in wounds, bacteremia, acute pneumonia, or intraperitoneal infection.
- the method further comprises administering one or more therapeutic agents.
- at least one of the therapeutic agents is an antibiotic.
- the antibiotic is one or more of Imipenem, Tobramycin, Ciprofloxacin, Meropenem or Aztreonam.
- compositions, kits and articles of manufacture comprising any one of the anti-PcrV antibodies, nucleic acids, vectors, isolated host cells described above.
- FIGS. 1A and 1B show the ability of the lead optimized antibodies in inhibiting RBC lysis compared to the parental PA49 mAb and the reference antibody V2L2-MD.
- FIGS. 2A and 2B show the ability of the lead optimized antibodies in inhibiting A549 cell lysis or U937 cell lysis.
- FIG. 3 shows the cross-reactivity of the lead optimized antibodies to BV particles compared to reference antibody V2L2-MD, as measured by ELISA.
- FIG. 4A to 4C show the cross-reactivity of the optimized antibody 5F3, 9C7 or the reference antibody V2L2-MD to PcrV-negative HEK293 cells, as measured by FACS.
- FIG. 5A shows the ability of the optimized antibody 11E9, 9C7, 5F3, or 7H5 in inhibiting RBC lysis caused by O1-52/66
- FIG. 5B shows the ability of the optimized antibody 5B4, 4A2, 2A5, or 11E9 in inhibiting RBC lysis caused by O11-PA103
- FIG. 5C shows the ability of optimized antibody 9C7, 5F3, 7H5 or the reference antibody V2L2-MD in inhibiting RBC lysis caused by O6-57/66.
- FIG. 6A to 6C show the ability of the parental PA49 mAb and the optimized antibody 6G12, 4A2, 10D8, 7H5, 11E9, 6G4, 2A5, 9C7, or 5F3 to improve survival prophylactically in mouse acute pneumonia model.
- FIG. 6A shows the ability of PA49 or 6G12 at 2*LD90 ( ⁇ 1.6 ⁇ 10 6 CFU) of P. aeruginosa (PA103 strain) inoculation to improve survival prophylactically in mouse acute pneumonia model;
- FIG. 6B shows the ability of 4A2, 10D8, 7H5, or 11E9 at 1*LD90 ( ⁇ 8 ⁇ 10 5 CFU) of P.
- FIG. 6C shows the ability of 6G4, 2A5, 9C7, or 5F3 at 2*LD90 ( ⁇ 1.6 ⁇ 10 6 CFU) of P. aeruginosa (PA103 strain) inoculation to improve survival prophylactically in mouse acute pneumonia model.
- FIG. 7 shows the ability of the optimized antibody 4A2, 9C7, 11E9, 5F3, 7H5, or 2A5 in prophylactically reducing organ burden in an acute pneumonia model.
- FIG. 8 shows the ability of the optimized anti-PcrV antibody 6G4 or 10D8 to improve survival prophylactically in a mouse intraperitoneal infection model.
- FIG. 9 shows the ability of the optimized anti-PcrV antibody 4A2, 2A5, 9C7, 6G12 or PA49 to improve survival therapeutically in a mouse acute pneumonia model.
- FIG. 10 shows the ability of the optimized anti-PcrV antibody 9C7 or 4A2 to improve survival prophylactically in a mouse intraperitoneal infection model, alone or when combined with antibiotics Meropenem (MEM) .
- FIG. 11A and 11B show the pharmacokinetic profiles in rat for the optimized antibody 5F3, 9C7, 7H5 or reference antibody V2L2-MD, when administered intravenously at 3 mg/kg or 30 mg/kg doses, respectively.
- FIGS. 12A-12B show the sequence alignments of the variable domain sequences of the anti-PcrV antibodies.
- the complementarity determining regions (Kabat) are denoted.
- FIG. 12A shows the sequence alignments of the heavy chain variable domain sequences.
- FIG. 12B shows the sequence alignments of the light chain variable domain sequences.
- the present application in one aspect provides anti-PcrV antibodies.
- anti-PcrV antibodies By using a combination of selections on scFv phage libraries, affinity maturation and appropriately designed biochemical and biological assays, we have identified highly potent antibody molecules that bind to PcrV which inhibit the action of red blood cell, A549 cell and U937 cell lysis, and which provide both therapeutic and prophylactic in vivo protection against Pseudomonas aeruginosa.
- the results presented herein indicate that our antibodies bind to a different region or epitope of PcrV when compared with the known anti-PcrV antibody V2L2-MD, and surprisingly are even more potent than the known anti-PcrV antibodies, as demonstrated in a variety of biological assays.
- anti-PcrV antibodies provided by the present application include, for example, full-length anti-PcrV antibodies, anti-PcrV scFvs, anti-PcrV Fc fusion proteins, multi-specific (such as bispecific) anti-PcrV antibodies, anti-PcrV immunoconjugates, and the like.
- anti-PcrV antibodies having specific sequences and antibodies that compete with or bind to the same epitope as such antibodies.
- nucleic acids encoding the anti-PcrV antibodies are also provided.
- compositions comprising the anti-PcrV antibodies are also provided.
- treatment is an approach for obtaining beneficial or desired results, including clinical results.
- beneficial or desired clinical results include, but are not limited to, one or more of the following: alleviating one or more symptoms resulting from the disease, diminishing the extent of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease) , preventing or delaying the spread (e.g., systemic spread of a pathogen) of the disease, preventing or delaying the recurrence of the disease, delaying or slowing the progression of the disease, ameliorating the disease state, providing a remission (partial or total) of the disease, decreasing the dose of one or more other medications required to treat the disease, delaying the progression of the disease, increasing or improving the quality of life, increasing weight gain, and/or prolonging survival.
- treatment is a reduction of pathological consequence of infection (such as, for example, host cell lysis or necrosis) .
- prevention, ” and similar words such as “prevented, ” “preventing, ” “prevention” etc., indicate an approach for preventing, inhibiting, or reducing the likelihood of the occurrence or recurrence of, a disease or condition, e.g., a pathogenic infection. It also refers to delaying the occurrence or recurrence of a disease or condition, or delaying the occurrence or recurrence of the symptoms of a disease or condition. As used herein, “prevention” and similar words also include reducing the intensity, effect, symptoms and/or burden of a disease or condition prior to occurrence or recurrence of the disease or condition. As used herein, “prevention” and similar words also include reducing the risk and susceptibility to occurrence or recurrence of the disease or condition, e.g., a pathogenic infection.
- antibody includes full-length antibodies and antigen-binding fragments thereof.
- a full-length antibody comprises two heavy chains and two light chains.
- the variable regions of the light and heavy chains are responsible for antigen binding.
- the variable regions in both chains generally contain three highly variable loops called the complementarity determining regions (CDRs) (light chain (LC) CDRs including LC-CDR1, LC-CDR2, and LC-CDR3, heavy chain (HC) CDRs including HC-CDR1, HC-CDR2, and HC-CDR3) .
- CDRs complementarity determining regions
- CDR boundaries for the antibodies and antigen-binding fragments disclosed herein may be defined or identified by the conventions of Kabat, Chothia, or Al-Lazikani (Al-Lazikani 1997; Chothia 1985; Chothia 1987; Chothia 1989; Kabat 1987; Kabat 1991) .
- the three CDRs of the heavy or light chains are interposed between flanking stretches known as framework regions (FRs) , which are more highly conserved than the CDRs and form a scaffold to support the hypervariable loops.
- FRs framework regions
- the constant regions of the heavy and light chains are not involved in antigen binding, but exhibit various effector functions.
- Antibodies are assigned to classes based on the amino acid sequence of the constant region of their heavy chain.
- the five major classes or isotypes of antibodies are IgA, IgD, IgE, IgG, and IgM, which are characterized by the presence of ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ heavy chains, respectively.
- IgG1 ( ⁇ 1 heavy chain) IgG2 ( ⁇ 2 heavy chain)
- IgG3 ( ⁇ 3 heavy chain) IgG4 ( ⁇ 4 heavy chain)
- IgA1 ( ⁇ 1 heavy chain) ⁇ 2 heavy chain
- IgA2 ( ⁇ 2 heavy chain) Several of the major antibody classes are divided into subclasses such as IgG1 ( ⁇ 1 heavy chain) , IgG2 ( ⁇ 2 heavy chain) , IgG3 ( ⁇ 3 heavy chain) , IgG4 ( ⁇ 4 heavy chain) , IgA1 ( ⁇ 1 heavy chain) , or IgA2 ( ⁇ 2 heavy chain) .
- antigen-binding fragment refers to an antibody fragment including, for example, a diabody, a Fab, a Fab’, a F (ab’) 2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2, a bispecific dsFv (dsFv-dsFv’) , a disulfide stabilized diabody (ds diabody) , a single-chain Fv (scFv) , an scFv dimer (bivalent diabody) , a multispecific antibody formed from a portion of an antibody comprising one or more CDRs, a camelized single domain antibody, a nanobody, a domain antibody, a bivalent domain antibody, or any other antibody fragments that bind to an antigen but do not comprise a complete antibody structure.
- an antigen-binding fragment is capable of binding to the same antigen to which the parent antibody or a parent antibody fragment (e.g., a parent scFv) binds.
- an antigen-binding fragment may comprise one or more CDRs from a particular human antibody grafted to a framework region from one or more different human antibodies.
- epitope refers to the specific group of atoms or amino acids on an antigen to which an antibody or antibody moiety binds. Two antibodies or antibody moieties may bind the same epitope within an antigen if they exhibit competitive binding for the antigen.
- a first antibody “competes” for binding to a target PcrV with a second antibody when the first antibody inhibits target PcrV binding of the second antibody by at least about 50% (such as at least about any of 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%or 99%) in the presence of an equimolar concentration of the first antibody, or vice versa.
- a high throughput process for “binning” antibodies based upon their cross-competition is described in PCT Publication No. WO 03/48731.
- the term “specifically binds, ” “specifically recognizing, ” or “is specific for” refers to measurable and reproducible interactions, such as binding between a target and an antibody, that is determinative of the presence of the target in the presence of a heterogeneous population of molecules, including biological molecules.
- an antibody that specifically recognizes a target (which can be an epitope) is an antibody that binds to this target with greater affinity, avidity, more readily, and/or with greater duration than its bindings to other targets.
- an antibody that specifically recognizes an antigen reacts with one or more antigenic determinants of the antigen with a binding affinity that is at least about 10 times its binding affinity for other targets.
- an “isolated” anti-PcrV antibody as used herein refers to an anti-PcrV antibody that (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, (3) is expressed by a cell from a different species, or, (4) does not occur in nature.
- isolated nucleic acid as used herein is intended to mean a nucleic acid of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the “isolated nucleic acid” (1) is not associated with all or a portion of a polynucleotide in which the “isolated nucleic acid” is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
- CDR complementarity determining region
- CDR complementarity determining region
- chimeric antibody refers to a antibody in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit a biological activity of this application (see U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984) ) .
- “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy-and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the heavy and light chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
- Single-chain Fv also abbreviated as “sFv” or “scFv, ” are antibody fragments that comprise the V H and V L antibody domains connected into a single polypeptide chain.
- the scFv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the scFv to form the desired structure for antigen binding.
- diabodies refers to small antibody fragments prepared by constructing scFv fragments (see preceding paragraph) typically with short linkers (such as about 5 to about 10 residues) between the V H and V L domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites.
- Bispecific diabodies are heterodimers of two “crossover” scFv fragments in which the V H and V L domains of the two antibodies are present on different polypeptide chains.
- Diabodies are described more fully in, for example, EP 404, 097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993) .
- “Humanized” forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody.
- humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (HVR) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability.
- donor antibody such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability.
- framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- humanized antibodies can comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance.
- the humanized antibody will comprise substantially at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc) , typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- Percent (%) amino acid sequence identity or “homology” with respect to the polypeptide and antibody sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the polypeptide being compared, after aligning the sequences considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skilled in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, Megalign (DNASTAR) , or MUSCLE software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared.
- %amino acid sequence identity values are generated using the sequence comparison computer program MUSCLE (Edgar, R.C., Nucleic Acids Research 32 (5) : 1792-1797, 2004; Edgar, R.C., BMC Bioinformatics 5 (1) : 113, 2004) .
- Fc receptor or “FcR” are used to describe a receptor that binds to the Fc region of an antibody.
- an FcR of this application is one that binds to an IgG antibody (a ⁇ receptor) and includes receptors of the Fc ⁇ RI, Fc ⁇ RII, and Fc ⁇ RIII subclasses, including allelic variants and alternatively spliced forms of these receptors.
- Fc ⁇ RII receptors include Fc ⁇ RIIA (an “activating receptor” ) and Fc ⁇ RIIB (an “inhibiting receptor” ) , which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof.
- Activating receptor Fc ⁇ RIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain.
- Inhibiting receptor Fc ⁇ RIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain (see review M. in Annu. Rev. Immunol. 15: 203-234 (1997) ) .
- the term includes allotypes, such as Fc ⁇ RIIIA allotypes: Fc ⁇ RIIIA-Phe158, Fc ⁇ RIIIA-Val158, Fc ⁇ RIIA-R131 and/or Fc ⁇ RIIA-H131.
- FcRs are reviewed in Ravetch and Kinet, Annu. Rev.
- FcR neonatal receptor
- FcRn refers to the neonatal Fc receptor (FcRn) .
- FcRn is structurally similar to major histocompatibility complex (MHC) and consists of an ⁇ -chain noncovalently bound to ⁇ 2-microglobulin.
- MHC major histocompatibility complex
- FcRn plays a role in the passive delivery of immunoglobulin IgGs from mother to young and the regulation of serum IgG levels.
- FcRn can act as a salvage receptor, binding and transporting pinocytosed IgGs in intact form both within and across cells, and rescuing them from a default degradative pathway.
- the “CH1 domain” of a human IgG Fc region usually extends from about amino acid 118 to about amino acid 215 (EU numbering system) .
- Hinge region is generally defined as stretching from Glu216 to Pro230 of human IgG1 (Burton, Molec. Immunol. 22: 161-206 (1985) ) . Hinge regions of other IgG isotypes may be aligned with the IgG1 sequence by placing the first and last cysteine residues forming inter-heavy chain S-Sbonds in the same positions.
- the “CH2 domain” of a human IgG Fc region usually extends from about amino acid 231 to about amino acid 340.
- the CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain.
- the “CH3 domain” comprises the stretch of residues of C-terminal to a CH2 domain in an Fc region (i.e. from about amino acid residue 341 to the C-terminal end of an antibody sequence, typically at amino acid residue 446 or 447 of an IgG) .
- a “functional Fc fragment” possesses an “effector function” of a native sequence Fc region.
- effector functions include C1q binding; complement dependent cytotoxicity (CDC) ; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC) ; phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR) , etc.
- CDC complement dependent cytotoxicity
- ADCC antibody-dependent cell-mediated cytotoxicity
- phagocytosis e.g. B cell receptor; BCR
- Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays known in the art.
- An antibody with a variant IgG Fc with “altered” FcR binding affinity or ADCC activity is one which has either enhanced or diminished FcR binding activity (e.g., Fc ⁇ R or FcRn) and/or ADCC activity compared to a parent polypeptide or to a polypeptide comprising a native sequence Fc region.
- the variant Fc which “exhibits increased binding” to an FcR binds at least one FcR with higher affinity (e.g., lower apparent Kd or IC 50 value) than the parent polypeptide or a native sequence IgG Fc.
- the improvement in binding compared to a parent polypeptide is about 3 fold, such as about any of 5, 10, 25, 50, 60, 100, 150, 200, or up to 500 fold, or about 25%to 1000%improvement in binding.
- the polypeptide variant which “exhibits decreased binding” to an FcR binds at least one FcR with lower affinity (e.g., higher apparent Kd or higher IC 50 value) than a parent polypeptide.
- the decrease in binding compared to a parent polypeptide may be about 40%or more decrease in binding.
- ADCC antibody-dependent cell-mediated cytotoxicity
- FcRs Fc receptors
- cytotoxic cells e.g., Natural Killer (NK) cells, neutrophils, and macrophages
- NK cells Natural Killer cells
- neutrophils neutrophils
- macrophages cytotoxic cells
- the antibodies “arm” the cytotoxic cells and are required for such killing.
- the primary cells for mediating ADCC, NK cells express Fc ⁇ RIII only, whereas monocytes express Fc ⁇ RI, Fc ⁇ RII and Fc ⁇ RIII.
- FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9: 457-92(1991) .
- an in vitro ADCC assay such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed.
- Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- PBMC peripheral blood mononuclear cells
- NK Natural Killer
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. PNAS (USA) 95: 652-656 (1998) .
- the polypeptide comprising a variant Fc region which “exhibits increased ADCC” or mediates ADCC in the presence of human effector cells more effectively than a polypeptide having wild type IgG Fc or a parent polypeptide is one which in vitro or in vivo is substantially more effective at mediating ADCC, when the amounts of polypeptide with variant Fc region and the polypeptide with wild type Fc region (or the parent polypeptide) in the assay are essentially the same.
- such variants will be identified using any in vitro ADCC assay known in the art, such as assays or methods for determining ADCC activity, e.g., in an animal model etc.
- the variant is from about 5 fold to about 100 fold, e.g. from about 25 to about 50 fold, more effective at mediating ADCC than the wild type Fc (or parent polypeptide) .
- “Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen.
- C1q the first component of the complement system
- a CDC assay e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202: 163 (1996) .
- Polypeptide variants with altered Fc region amino acid sequences and increased or decreased C1q binding capability are described in US patent No. 6,194,551B1 and WO99/51642. The contents of those patent publications are specifically incorporated herein by reference. See also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000) .
- nucleotide sequence encoding an amino acid sequence includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.
- the phrase nucleotide sequence that encodes a protein or an RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron (s) .
- operably linked refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter.
- a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.
- “Homologous” refers to the sequence similarity or sequence identity between two polypeptides or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position.
- the percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared times 100. For example, if 6 of 10 of the positions in two sequences are matched or homologous then the two sequences are 60%homologous.
- the DNA sequences ATTGCC and TATGGC share 50%homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.
- an “effective amount” of an anti-PcrV antibody or composition as disclosed herein is an amount sufficient to carry out a specifically stated purpose.
- An “effective amount” can be determined empirically and by known methods relating to the stated purpose.
- the term “therapeutically effective amount” refers to an amount of an anti-PcrV antibody or composition as disclosed herein, effective to “treat” a disease or disorder in an individual.
- the therapeutically effective amount of the anti-PcrV antibody or composition as disclosed herein can reduce the number of infected cells; inhibit (i.e., slow to some extent and preferably stop) the spread of infection; and/or relieve to some extent one or more of the symptoms associated with the infection.
- the anti-PcrV antibody or composition as disclosed herein can prevent P. aeruginosa growth and/or kill P. aeruginosa in an infection, the anti-PcrV can be cytostatic and/or cytotoxic.
- the therapeutically effective amount is an amount that inhibits infection in a patient.
- the therapeutically effective amount is an amount that completely eradicates infection in a patient.
- pharmaceutically acceptable or “pharmacologically compatible” is meant a material that is not biological or otherwise undesirable, e.g., the material may be incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.
- Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and manufacturing testing and/or are included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.
- references to “about” a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to “about X” includes description of “X” .
- reference to “not” a value or parameter generally means and describes “other than” a value or parameter.
- the method is not used to treat infection of type X means the method is used to treat infection of types other than X.
- the present application provides anti-PcrV antibodies that specifically bind to PcrV.
- Anti-PcrV antibodies include, but are not limited to, humanized antibodies, chimeric antibodies, mouse antibodies, human antibodies, and antibodies comprising the heavy chain and/or light chain CDRs discussed herein.
- the application provides isolated antibodies that bind to PcrV.
- Contemplated anti-PcrV antibodies include, for example, full-length anti-PcrV antibodies (e.g., full-length IgG1, IgG2 or IgG4) , anti-PcrV scFvs, multi-specific (such as bispecific) anti-PcrV antibodies, anti-PcrV immunoconjugates, and the like.
- the anti-PcrV antibody is a Fab, a Fab’, a F (ab) ’2, a Fab’-SH, a single-chain Fv (scFv) , an Fv fragment, a dAb, a Fd, or a diabody.
- reference to an antibody that specifically binds to PcrV means that the antibody binds to PcrV with an affinity that is at least about 10 times (including for example at least about any of 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , or 10 7 times) its binding affinity for non-target.
- the non-target is an antigen that is not PcrV.
- Binding affinity can be determined by methods known in the art, such as ELISA, fluorescence activated cell sorting (FACS) analysis, or radioimmunoprecipitation assay (RIA) .
- Kd can be determined by methods known in the art, such as surface plasmon resonance (SPR) assay or biolayer interferometry (BLI) .
- the anti-PcrV antibody or antigen-binding fragment thereof that specifically binds to Pseudomonas PcrV (a) promotes, mediates, or enhances opsonophagocytic killing (OPK) of P. aeruginosa, and/or (b) disrupts the activity of the type III toxin secretion system.
- non-human anti-PcrV antibodies containing human sequences (e.g., human heavy and light chain variable domain sequences comprising human CDR sequences) are extensively discussed herein, non-human anti-PcrV antibodies are also contemplated.
- non-human anti-PcrV antibodies comprise human CDR sequences from an anti-PcrV antibody as described herein and non-human framework sequences.
- Non-human framework sequences include, in some embodiments, any sequence that can be used for generating synthetic heavy and/or light chain variable domains using one or more human CDR sequences as described herein, including, e.g., mammals, e.g., mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo) , deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey) , etc.
- mammals e.g., mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo) , deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey) , etc.
- a non-human anti-PcrV antibody includes an anti-PcrV antibody generated by grafting one or more human CDR sequences as described herein onto a non-human framework sequence (e.g., a mouse or chicken framework sequence) .
- a non-human framework sequence e.g., a mouse or chicken framework sequence
- the complete amino acid sequence of an exemplary PcrV protein comprises or consists of the amino acid sequence of SEQ ID NO: 80.
- the anti-PcrV antibody described herein specifically recognizes an epitope within Pseudomonas PcrV.
- the anti-PcrV antibody is specific for Pseudomonas PcrV and does not exhibit species cross-reactivity or other types of non-Pseudomonas protein cross-reactivity.
- the anti-PcrV antibody comprises an antibody heavy chain constant region and an antibody light chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG1 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG2 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG3 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG4 heavy chain constant region. In some embodiments, the IgG is a human IgG. In some embodiments, the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82.
- the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83.
- the anti-PcrV comprises a lambda light chain constant region.
- the anti-PcrV antibody comprises a kappa light chain constant region.
- the light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81.
- the anti-PcrV antibody comprises an antibody heavy chain variable domain and an antibody light chain variable domain.
- the present application provides an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1 EX 2 SX 3 SYADSVKG (SEQ ID NO: 50) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, T, N, L, I, S, V, A or H; X 2 is S, T, N, D, G or R; and X 3 is I or T; and an HC-CDR3 comprising DGX 1 X 2 X 3 X 4 X 5 DX 6 (SEQ ID NO: 51) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is P, Y or
- an isolated anti-PcrV antibody comprising a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1 EX 2 SISYADSVKG (SEQ ID NO: 45) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, N, I, L or V, X 2 is S, T, R, G or N; and an HC-CDR3 comprising DGPYDX 1 X 2 DI (SEQ ID NO: 46) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, A or T, X 2 is F or L; and a light chain variable domain (VL) comprising: a light chain complementarity
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NOs: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25 ; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- the anti-PcrV is a full-length antibody. In some embodiments, the anti-PcrV antibody comprises IgG1 constant domains. In some embodiments, the IgG1 is human IgG1. In some embodiments, the anti-PcrV antibody comprises IgG4 constant domains. In some embodiments, the IgG4 is human IgG4. In some embodiments, the anti-PcrV heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82. In some embodiments, the anti-PcrV heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83. In some embodiments, the anti-PcrV light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 52, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 52 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 52; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 65.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 56; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 65.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 53, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 66, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 53 and a V L comprising the amino acid sequence of SEQ ID NO: 66.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 53; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 66.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 62 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 62; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NO: 74.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 67, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 67.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 54; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 67.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 55, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 68, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 55 and a V L comprising the amino acid sequence of SEQ ID NO: 68.
- the anti- PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 55; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 68.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 69, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 69.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 56; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 69.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 64, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 64 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 64; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 78.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 70, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 70.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 56; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 70.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 71, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 71.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 57; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 71.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 72, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 72.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 54; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 72.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 73, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 73.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 56; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 73.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 58 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 58; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 74.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 59, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 75, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 59 and a V L comprising the amino acid sequence of SEQ ID NO: 75.
- the anti- PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 59; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 75.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 76, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 76.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 57; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 76.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 77.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 60; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 77.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 60; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 78.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 79, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 79.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 56; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 79.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 61, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 61 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 61; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 74.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- the anti-PcrV antibody comprises a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that specifically competes with an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 63, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 63 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- the anti-PcrV antibody comprises a V H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V H comprising the amino acid sequence of SEQ ID NO: 63; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of SEQ ID NOs: 78.
- competition assays may be used to identify a monoclonal antibody that competes with an anti-PcrV antibody described herein for binding to PcrV.
- Competition assays can be used to determine whether two antibodies bind the same epitope by recognizing identical or sterically overlapping epitopes or one antibody competitively inhibits binding of another antibody to the antigen. In certain embodiments, such a competing antibody binds to the same epitope that is bound by an antibody described herein.
- Exemplary competition assays include, but are not limited to, routine assays such as those provided in Harlow and Lane (1988) Antibodies: A Laboratory Manual ch. 14 (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. ) .
- mapping an epitope to which an antibody binds are provided in Morris (1996) "Epitope Mapping Protocols, " in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, N.J. ) .
- two antibodies are said to bind to the same epitope if each blocks binding of the other by 50%or more.
- the antibody that competes with an anti-PcrV antibody described herein is a chimeric, humanized, or human antibody.
- Anti-PcrV antibody sequences are shown in Tables 2 and 3. Those skilled in the art will recognize that many algorithms are known for prediction of CDR positions and for delimitation of antibody heavy chain and light chain variable regions. Anti-PcrV antibodies comprising CDRs, V H and/or V L sequences from antibodies described herein, but based on prediction algorithms other than those exemplified in the tables below, are within the scope of this invention.
- Binding affinity can be indicated by Kd, Koff, Kon, or Ka.
- Koff is intended to refer to the off-rate constant for dissociation of an antibody from the antibody /antigen complex, as determined from a kinetic selection set up.
- Kon is intended to refer to the on-rate constant for association of an antibody to the antigen to form the antibody/antigen complex.
- dissociation constant “Kd” refers to the dissociation constant of a particular antibody-antigen interaction, and describes the concentration of antigen required to occupy one half of all of the antibody-binding domains present in a solution of antibody molecules at equilibrium, and is equal to Koff/Kon.
- Kd The measurement of Kd presupposes that all binding agents are in solution.
- the antibody is tethered to a cell wall, e.g., in a yeast expression system
- the corresponding equilibrium rate constant is expressed as EC50, which gives a good approximation of Kd.
- the affinity constant, Ka is the inverse of the dissociation constant, Kd.
- the dissociation constant (Kd) is used as an indicator showing affinity of antibody moieties to antigens.
- Kd dissociation constant
- An antibody that specifically binds to a target may have a Kd of, for example, ⁇ 10 -7 M, ⁇ 10 -8 M, ⁇ 10 -9 M, ⁇ 10 -10 M, ⁇ 10 -11 M, ⁇ 10 -12 M, or ⁇ 10 -13 M.
- Binding specificity of the antibody can be determined experimentally by methods known in the art. Such methods comprise, but are not limited to, Western blots, ELISA-, RIA-, ECL-, IRMA-, EIA-, BIAcore-tests and peptide scans.
- the anti-PcrV antibody specifically binds to a target PcrV with a Kd of about 10 -7 M to about 10 -13 M (such as about 10 -7 M to about 10 -13 M, about 10 -8 M to about 10 -13 M, about 10 -9 M to about 10 -13 M, or about 10 -10 M to about 10 -12 M) .
- the Kd of the binding between the anti-PcrV antibody and PcrV is about 10 -7 M to about 10 -13 M, about 1 ⁇ 10 -7 M to about 5 ⁇ 10 -13 M, about 10 -7 M to about 10 -12 M, about 10 -7 M to about 10 -11 M, about 10 -7 M to about 10 -10 M, about 10 -7 M to about 10 -9 M, about 10 -8 M to about 10 -13 M, about 1 ⁇ 10 -8 M to about 5 ⁇ 10 -13 M, about 10 -8 M to about 10 -12 M, about 10 -8 M to about 10 -11 M, about 10 -8 M to about 10 -10 M, about 10 -8 M to about 10 -9 M, about 5 ⁇ 10 -9 M to about 1 ⁇ 10 -13 M, about 5 ⁇ 10 -9 M to about 1 ⁇ 10 -12 M, about 5 ⁇ 10 -9 M to about 1 ⁇ 10 -11 M, about 5 ⁇ 10 -9 M to about 1 ⁇ 10 -10 M, about 10 -9 M to about 10 -13 M
- the Kd of the binding between the anti-PcrV antibody and a non-target is higher than the Kd of the binding between the anti-PcrV antibody and the target, and is herein referred to in some embodiments as the binding affinity of the anti-PcrV antibody to the target (e.g., PcrV) is higher than that to a non-target.
- the non-target is an antigen that is not PcrV.
- the Kd of the binding between the anti-PcrV antibody (against PcrV) and a non-PcrV target can be at least about 10 times, such as about 10-100 times, about 100-1000 times, about 10 3 -10 4 times, about 10 4 -10 5 times, about 10 5 -10 6 times, about 10 6 -10 7 times, about 10 7 -10 8 times, about 10 8 -10 9 times, about 10 9 -10 10 times, about 10 10 -10 11 times, or about 10 11 -10 12 times of the Kd of the binding between the anti-PcrV antibody and a target PcrV.
- nucleic acid molecules encoding the anti-PcrV antibodies are also contemplated.
- a nucleic acid (or a set of nucleic acids) encoding a full-length anti-PcrV antibody including any of the full-length anti-PcrV antibodies described herein.
- the nucleic acid (or a set of nucleic acids) encoding the anti-PcrV antibody described herein may further comprises a nucleic acid sequence encoding a peptide tag (such as protein purification tag, e.g., His-tag, HA tag) .
- a peptide tag such as protein purification tag, e.g., His-tag, HA tag
- isolated host cells comprising an anti-PcrV antibody, an isolated nucleic acid encoding the polypeptide components of the anti-PcrV antibody, or a vector comprising a nucleic acid encoding the polypeptide components of the anti-PcrV antibody described herein.
- the present application also includes variants to these nucleic acid sequences.
- the variants include nucleotide sequences that hybridize to the nucleic acid sequences encoding the anti-PcrV antibodies of the present application under at least moderately stringent hybridization conditions.
- the present application also provides vectors in which a nucleic acid of the present application is inserted.
- an anti-PcrV antibody e.g., full-length anti-PcrV antibody
- a natural or synthetic nucleic acid encoding the anti-PcrV antibody can be achieved by inserting the nucleic acid into an appropriate expression vector, such that the nucleic acid is operably linked to 5’ and 3’ regulatory elements, including for example a promoter (e.g., a lymphocyte-specific promoter) and a 3’ untranslated region (UTR) .
- the vectors can be suitable for replication and integration in eukaryotic host cells. Typical cloning and expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.
- nucleic acids of the present application may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346; 5,580,859; 5,589,466, incorporated by reference herein in their entireties.
- the application provides a gene therapy vector.
- the nucleic acid can be cloned into a number of types of vectors.
- the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid.
- Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
- the expression vector may be provided to a cell in the form of a viral vector.
- Viral vector technology is well known in the art and is described, for example, in Green and Sambrook (2013, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York) , and in other virology and molecular biology manuals.
- Viruses which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses.
- a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers (see, e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193) .
- retroviruses provide a convenient platform for gene delivery systems.
- a selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art.
- the recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo.
- retroviral systems are known in the art.
- adenovirus vectors are used.
- a number of adenovirus vectors are known in the art.
- lentivirus vectors are used.
- Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells.
- Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses such as murine leukemia viruses in that they can transduce non-proliferating cells, such as hepatocytes. They also have the added advantage of low immunogenicity.
- promoter elements e.g., enhancers
- promoters regulate the frequency of transcriptional initiation.
- these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well.
- the spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another.
- tk thymidine kinase
- the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline.
- a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence.
- CMV immediate early cytomegalovirus
- This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto.
- Another example of a suitable promoter is Elongation Growth Factor-1 ⁇ (EGF-1 ⁇ ) .
- constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV) , human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the application should not be limited to the use of constitutive promoters.
- inducible promoters are also contemplated as part of the application.
- the use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired.
- inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.
- the expression of the anti-PcrV antibody is inducible.
- a nucleic acid sequence encoding the anti-PcrV antibody is operably linked to an inducible promoter, including any inducible promoter described herein. Inducible promoters
- an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired.
- exemplary inducible promoter systems for use in eukaryotic cells include, but are not limited to, hormone-regulated elements (e.g., see Mader, S. and White, J.H. (1993) Proc. Natl. Acad. Sci. USA 90: 5603-5607) , synthetic ligand-regulated elements (see, e.g., Spencer, D.M. et al 1993) Science 262: 1019-1024) and ionizing radiation-regulated elements (e.g., see Manome, Y. et al.
- inducible promoter system for use to express the anti-PcrV antibody is the Tet system.
- inducible promoter system for use to express the anti-PcrV antibody is the lac repressor system from E. coli.
- an exemplary inducible promoter system for use in the present application is the Tet system.
- Tet system Such systems are based on the Tet system described by Gossen et al. (1993) .
- a polynucleotide of interest is under the control of a promoter that comprises one or more Tet operator (TetO) sites.
- TetO Tet operator
- TetR Tet repressor
- the inducing agent causes release of TetR from TetO, thereby allowing transcription to take place.
- Doxycycline is a member of the tetracycline family of antibiotics having the chemical name of 1-dimethylamino-2, 4a, 5, 7, 12-pentahydroxy-11-methyl-4, 6-dioxo-1, 4a, 11, 11a, 12, 12a-hexahydrotetracene-3-carboxamide.
- a TetR is codon-optimized for expression in mammalian cells, e.g., murine or human cells.
- Most amino acids are encoded by more than one codon due to the degeneracy of the genetic code, allowing for substantial variations in the nucleotide sequence of a given nucleic acid without any alteration in the amino acid sequence encoded by the nucleic acid.
- many organisms display differences in codon usage, also known as “codon bias” (i.e., bias for use of a particular codon (s) for a given amino acid) . Codon bias often correlates with the presence of a predominant species of tRNA for a particular codon, which in turn increases efficiency of mRNA translation.
- a coding sequence derived from a particular organism e.g., a prokaryote
- Tet-Off transcription is inactive in the presence of Tc or Dox.
- tTA tetracycline-controlled transactivator protein
- TRE tetracycline-responsive promoter element
- the TRE is made up of TetO sequence concatamers fused to a promoter (commonly the minimal promoter sequence derived from the human cytomegalovirus (hCMV) immediate-early promoter) .
- a promoter commonly the minimal promoter sequence derived from the human cytomegalovirus (hCMV) immediate-early promoter
- tTA binds to the TRE and activates transcription of the target gene.
- Tc or Dox In the presence of Tc or Dox, tTA cannot bind to the TRE, and expression from the target gene remains inactive.
- rtTA is a reverse tetracycline-controlled transactivator, rtTA.
- rtTA is a fusion protein comprised of the TetR repressor and the VP16 transactivation domain.
- a four amino acid change in the TetR DNA binding moiety alters rtTA's binding characteristics such that it can only recognize the tetO sequences in the TRE of the target transgene in the presence of Dox.
- transcription of the TRE-regulated target gene is stimulated by rtTA only in the presence of Dox.
- lac repressor system Another inducible promoter system is the lac repressor system from E. coli (See Brown et al., Cell 49: 603-612 (1987) ) .
- the lac repressor system functions by regulating transcription of a polynucleotide of interest operably linked to a promoter comprising the lac operator (lacO) .
- lacO lac operator
- lacR lac repressor
- lacR lacR
- Expression of the polynucleotide of interest is induced by a suitable inducing agent, e.g., isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) .
- IPTG isopropyl- ⁇ -D-thiogalactopyranoside
- the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors.
- the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells.
- Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.
- Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences.
- a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells.
- Suitable reporter genes may include genes encoding luciferase, ⁇ -galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tel et al., 2000 FEBS Letters 479: 79-82) .
- Suitable expression systems are well known and may be prepared using known techniques or obtained commercially.
- the construct with the minimal 5’ flanking region showing the highest level of expression of reporter gene is identified as the promoter.
- Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.
- nucleic acid encoding a full-length anti-PcrV antibody according to any of the full-length anti-PcrV antibodies described herein.
- the nucleic acid comprises one or more nucleic acid sequences encoding the heavy and light chains of the full-length anti-PcrV antibody.
- each of the one or more nucleic acid sequences is contained in separate vectors.
- at least some of the nucleic acid sequences are contained in the same vector.
- all of the nucleic acid sequences are contained in the same vector.
- Vectors may be selected, for example, from the group consisting of mammalian expression vectors and viral vectors (such as those derived from retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses) .
- mammalian expression vectors such as those derived from retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses.
- the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art.
- the expression vector can be transferred into a host cell by physical, chemical, or biological means.
- Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Green and Sambrook (2013, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York) . In some embodiments, the introduction of a polynucleotide into a host cell is carried out by calcium phosphate transfection.
- Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors.
- Viral vectors, and especially retroviral vectors have become the most widely used method of inserting genes into mammalian, e.g., human cells.
- Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus 1, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and 5,585,362.
- Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- colloidal dispersion systems such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g., an artificial membrane vesicle) .
- an exemplary delivery vehicle is a liposome.
- lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo) .
- the nucleic acid may be associated with a lipid.
- the nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid.
- Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution.
- Lipids are fatty substances which may be naturally occurring or synthetic lipids.
- lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.
- assays include, for example, “molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR; “biochemical” assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the application.
- molecular biological assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR
- biochemical assays such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the application.
- the anti-PcrV antibody is a monoclonal antibody or derived from a monoclonal antibody. In some embodiments, the anti-PcrV antibody comprises V H and V L domains, or variants thereof, from the monoclonal antibody. In some embodiments, the anti-PcrV antibody further comprises C H 1 and C L domains, or variants thereof, from the monoclonal antibody.
- Monoclonal antibodies can be prepared, e.g., using known methods in the art, including hybridoma methods, yeast display, phage display methods, or using recombinant DNA methods. Additionally, exemplary yeast display and phage display methods are described herein and in the Examples below.
- a hamster, mouse, or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent.
- the lymphocytes can be immunized in vitro.
- the immunizing agent can include a polypeptide or a fusion protein of the protein of interest.
- peripheral blood lymphocytes “PBLs” are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired.
- the lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell.
- a suitable fusing agent such as polyethylene glycol
- Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine, and human origin. Usually, rat or mouse myeloma cell lines are employed.
- the hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells.
- the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ( “HAT medium” ) , which prevents the growth of HGPRT-deficient cells.
- the immortalized cell lines fuse efficiently, support stable high-level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
- the immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies.
- the culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the polypeptide.
- the binding specificity of monoclonal antibodies produced by the hybridoma cells can be determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) . Such techniques and assays are known in the art.
- the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107: 220 (1980) .
- the clones can be sub-cloned by limiting dilution procedures and grown by standard methods. Goding, supra. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.
- the monoclonal antibodies secreted by the sub-clones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
- the anti-PcrV antibody comprises sequences from a clone selected from an antibody library (such as a phage library presenting scFv or Fab fragments) .
- the clone may be identified by screening combinatorial libraries for antibody fragments with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics.
- repertoires of V H and V L genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994) .
- Phages typically display antibody fragments, either as scFv fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas.
- naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self-antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993) .
- naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992) .
- Patent publications describing human antibody phage libraries include, for example: U.S. Pat. No. 5,750,373, and US Patent Publication Nos. 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936, and 2009/0002360.
- the anti-PcrV antibodies can be prepared using phage display to screen libraries for anti-PcrV antibody moieties specific to the target PcrV.
- the library can be a human scFv phage display library having a diversity of at least 1 ⁇ 10 9 (such as at least about any of 1 ⁇ 10 9 , 2.5 ⁇ 10 9 , 5 ⁇ 10 9 , 7.5 ⁇ 10 9 , 1 ⁇ 10 10 , 2.5 ⁇ 10 10 , 5 ⁇ 10 10 , 7.5 ⁇ 10 10 , or 1 ⁇ 10 11 ) unique human antibody fragments.
- the library is a human library constructed from DNA extracted from human PMBCs and spleens from healthy donors, encompassing all human heavy and light chain subfamilies.
- the library is a human library constructed from DNA extracted from PBMCs isolated from patients with various diseases, such as patients with autoimmune diseases, cancer patients, and patients with infectious diseases.
- the library is a semi-synthetic human library, wherein heavy chain CDR3 is completely randomized, with all amino acids (with the exception of cysteine) equally likely to be present at any given position (see, e.g., Hoet, R.M. et al., Nat. Biotechnol. 23 (3) : 344-348, 2005) .
- the heavy chain CDR3 of the semi-synthetic human library has a length from about 5 to about 24 (such as about any of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24) amino acids.
- the library is a fully-synthetic phage display library.
- the library is a non-human phage display library.
- Phage clones that bind to the target PcrV with high affinity can be selected by iterative binding of phage to the target PcrV, which is bound to a solid support (such as, for example, beads for solution panning or mammalian cells for cell panning) , followed by removal of non-bound phage and by elution of specifically bound phage. The bound phage clones are then eluted and used to infect an appropriate host cell, such as E. coli XL1-Blue, for expression and purification.
- a solid support such as, for example, beads for solution panning or mammalian cells for cell panning
- the panning can be performed for multiple (such as about any of 2, 3, 4, 5, 6 or more) rounds with solution panning, cell panning, or a combination of both, to enrich for phage clones binding specifically to the target PcrV.
- Enriched phage clones can be tested for specific binding to the target PcrV by any methods known in the art, including for example ELISA and FACS.
- Monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567.
- DNA encoding the monoclonal antibodies of the application can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies) .
- Hybridoma cells as described above or PcrV-specific phage clones of the application can serve as a source of such DNA.
- the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
- the DNA also can be modified, for example, by substituting the coding sequence for human heavy-and light-chain constant domains and/or framework regions in place of the homologous non-human sequences (U.S. Patent No. 4,816,567; Morrison et al., supra) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.
- non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the application, or can be substituted for the variable domains of one antigen-combining site of an antibody of the application to create a chimeric bivalent antibody.
- the antibodies can be monovalent antibodies.
- Methods for preparing monovalent antibodies are known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain.
- the heavy chain is truncated generally at any point in the Fc region so as to prevent heavy-chain crosslinking.
- the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.
- In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using any method known in the art.
- Antibody variable domains with the desired binding specificities can be fused to immunoglobulin constant-domain sequences.
- the fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions.
- the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding is present in at least one of the fusions.
- the anti-PcrV antibodies can be humanized antibodies or human antibodies.
- Humanized forms of non-human (e.g., murine) antibody moieties are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab’, F (ab’) 2 , scFv, or other antigen-binding subsequences of antibodies) that typically contain minimal sequence derived from non-human immunoglobulin.
- Humanized antibody moieties include human immunoglobulins, immunoglobulin chains, or fragments thereof (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity.
- donor antibody such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity.
- Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues.
- Humanized antibody moieties can also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences.
- the humanized antibody can comprise substantially at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin, and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
- a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain.
- humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986) ; Riechmann et al., Nature, 332: 323-327 (1988) ; Verhoeyen et al., Science, 239: 1534-1536 (1988) ) , by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
- humanized antibody moieties are antibody moieties (U.S. Patent No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
- humanized antibody moieties are typically human antibody moieties in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- human antibody moieties can be generated.
- transgenic animals e.g., mice
- JH antibody heavy-chain joining region
- human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated.
- Human antibodies may also be generated by in vitro activated B cells (see U.S. Patents 5,567,610 and 5,229,275) or by using various techniques known in the art, including phage display libraries. Hoogenboom and Winter, J. Mol. Biol., 227: 381 (1991) ; Marks et al., J. Mol. Biol., 222: 581 (1991) . The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies. Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147 (1) : 86-95 (1991) .
- amino acid sequence of the anti-PcrV antibody variants (e.g., full-length anti-PcrV antibody) provided herein are contemplated.
- Amino acid sequence of an antibody variant may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen-binding.
- anti-PcrV antibody variants having one or more amino acid substitutions are provided.
- Sites of interest for substitutional mutagenesis include the HVRs and FRs.
- Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g., improved bioactivity, retained/improved antigen binding, decreased immunogenicity, or improved opsonophagocytic killing (OPK) of pathogens, such as P. aeruginosa.
- a desired activity e.g., improved bioactivity, retained/improved antigen binding, decreased immunogenicity, or improved opsonophagocytic killing (OPK) of pathogens, such as P. aeruginosa.
- OPK opsonophagocytic killing
- Amino acids may be grouped into different classes according to common side-chain properties:
- Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
- An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques. Briefly, one or more CDR residues are mutated and the variant antibody moieties displayed on phage and screened for a particular biological activity (e.g., bioactivity based on RBC lysis inhibition assay or binding affinity) . Alterations (e.g., substitutions) may be made in HVRs, e.g., to improve bioactivity based on RBC lysis inhibition assay or antibody affinity.
- HVR “hotspots, ” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008) ) , and/or specificity determining residues (SDRs) , with the resulting variant V H and V L being tested for binding affinity.
- SDRs specificity determining residues
- variable genes chosen for maturation are introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis) .
- a secondary library is then created. The library is then screened to identify any antibody variants with the desired affinity.
- Another method to introduce diversity involves HVR-directed approaches, in which several HVR residues (e.g., 4-6 residues at a time) are randomized. HVR residues involved in antigen binding may be specifically identified, e.g., using alanine scanning mutagenesis or modeling. CDR-H3 and CDR-L3 in particular are often targeted.
- substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen.
- conservative alterations e.g., conservative substitutions as provided herein
- Such alterations may be outside of HVR “hotspots” or SDRs.
- each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.
- a useful method for identification of residues or regions of an antibody that may be targeted for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells (1989) Science, 244: 1081-1085.
- a residue or group of target residues e.g., charged residues such as arg, asp, his, lys, and glu
- a neutral or negatively charged amino acid e.g., alanine or glu
- Further substitutions may be introduced at the amino acid locations to demonstrate functional sensitivity to the initial substitutions.
- a crystal structure of an antigen-antibody complex can be determined to identify contact points between the antibody and antigen. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution.
- Variants may be screened to determine whether they contain the desired properties.
- Amino acid sequence insertions include amino-and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
- terminal insertions include an antibody with an N-terminal methionyl residue.
- Other insertional variants of the antibody molecule include the fusion to the N-or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
- one or more amino acid modifications may be introduced into the Fc region of an antibody (e.g., a full-length anti-PcrV antibody or anti-PcrV Fc fusion protein) provided herein, thereby generating an Fc region variant.
- the Fc region variant has enhanced ADCC effector function, often related to binding to Fc receptors (FcRs) .
- the Fc region variant has decreased ADCC effector function.
- ADCC Antibody-Dependent Cell-Mediated Cytotoxicity
- a target cell e.g., an infected cell
- a target cell e.g., an infected cell
- specific antibodies e.g., an anti-PcrV antibody
- the typical ADCC involves activation of NK cells by antibodies.
- An NK cell expresses CD16 which is an Fc receptor. This receptor recognizes, and binds to, the Fc portion of an antibody bound to the surface of a target cell.
- the most common Fc receptor on the surface of an NK cell is called CD16 or Fc ⁇ RIII. Binding of the Fc receptor to the Fc region of an antibody results in NK cell activation, release of cytolytic granules and consequent target cell apoptosis.
- the application contemplates an anti-PcrV antibody variant (such as a full-length anti-PcrV antibody variant) comprising an Fc region that possesses some but not all effector functions, which makes it a desirable candidate for applications in which the half-life of the anti-PcrV antibody in vivo is important yet certain effector functions (such as CDC and ADCC) are unnecessary or deleterious.
- In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities.
- Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks Fc ⁇ R binding (hence likely lacking ADCC activity) , but retains FcRn binding ability.
- NK cells express Fc ⁇ RIII only, whereas monocytes express Fc ⁇ RI, Fc ⁇ RII and Fc ⁇ RIII.
- FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991) .
- Non-limiting examples of in vitro assays to assess ADCC activity of a molecule of interest is described in U.S. Pat. No. 5,500,362 (see, e.g. Hellstrom, I. et al. Proc. Nat'l Acad. Sci. USA 83: 7059-7063 (1986) ) and Hellstrom, I et al., Proc.
- non-radioactive assay methods may be employed (see, for example, ACTI TM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, Calif.; and CytoTox 96 TM non-radioactive cytotoxicity assay (Promega, Madison, Wis. ) .
- Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
- ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. Proc. Nat'l Acad. Sci. USA 95: 652-656 (1998) .
- C1q binding assays may also be carried out to confirm that the antibody is unable to bind C1q and hence lacks CDC activity. See, e.g., C1q and C3c binding ELISA in WO 2006/029879 and WO 2005/100402.
- a CDC assay may be performed (see, for example, Gazzano-Santoro et al., J. Immunol.
- FcRn binding and in vivo clearance/half-life determinations can also be performed using methods known in the art (see, e.g., Petkova, S.B. et al., Int'l. Immunol. 18 (12) : 1759-1769 (2006) ) .
- Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 (U.S. Pat. No. 6,737,056) .
- Such Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called “DANA” Fc mutant with substitution of residues 265 and 297 to alanine (U.S. Pat. No. 7,332,581) .
- alterations are made in the Fc region that result in altered (i.e., either improved or diminished) opsonization, e.g. such as described in Moore et al., MAbs. 2 (2) : 181–189 (2010) .
- an anti-PcrV antibody (such as a full-length anti-PcrV antibody) variant comprising a variant Fc region comprising one or more amino acid substitutions which increase half-life and/or improve binding to the neonatal Fc receptor (FcRn) .
- Antibodies with increased half-lives and improved binding to FcRn are described in US2005/0014934A1 (Hinton et al. ) .
- Those antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn.
- Such Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 (U.S. Pat. No. 7,371,826) .
- Anti-PcrV antibodies (such as full-length anti-PcrV antibodies) comprising any of the Fc variants described herein, or combinations thereof, are contemplated.
- an anti-PcrV antibody (such as a full-length anti-PcrV antibody) provided herein is altered to increase or decrease the extent to which the anti-PcrV antibody is glycosylated. Addition or deletion of glycosylation sites to an anti-PcrV antibody may be conveniently accomplished by altering the amino acid sequence of the anti-PcrV antibody or polypeptide portion thereof such that one or more glycosylation sites are created or removed.
- the carbohydrate attached thereto may be altered.
- Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al., TIBTECH 15: 26-32 (1997) .
- the oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc) , galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the “stem” of the biantennary oligosaccharide structure.
- modifications of the oligosaccharide in an anti-PcrV antibody of the application may be made in order to create anti-PcrV antibody variants with certain improved properties.
- N-glycans attached to the CH2 domain of Fc is heterogeneous.
- Antibodies or Fc fusion proteins generated in CHO cells are fucosylated by fucosyltransferase activity. See Shoji-Hosaka et al., J. Biochem. 2006, 140: 777-83. Normally, a small percentage of naturally occurring afucosylated IgGs may be detected in human serum.
- N-glycosylation of the Fc is important for binding to Fc ⁇ R; and afucosylation of the N-glycan increases Fc's binding capacity to Fc ⁇ RIIIa. Increased Fc ⁇ RIIIa binding can enhance ADCC, which can be advantageous in certain antibody therapeutic applications in which cytotoxicity is desirable.
- an enhanced effector function can be detrimental when Fc-mediated cytotoxicity is undesirable.
- the Fc fragment or CH2 domain is not glycosylated.
- the N-glycosylation site in the CH2 domain is mutated to prevent from glycosylation.
- anti-PcrV antibody such as a full-length anti-PcrV antibody
- anti-PcrV antibody variants comprising an Fc region wherein a carbohydrate structure attached to the Fc region has reduced fucose or lacks fucose, which may improve ADCC function.
- anti-PcrV antibodies are contemplated herein that have reduced fucose relative to the amount of fucose on the same anti-PcrV antibody produced in a wild-type CHO cell.
- the anti-PcrV antibody is one wherein less than about 50%, 40%, 30%, 20%, 10%, or 5%of the N-linked glycans thereon comprise fucose.
- the amount of fucose in such an anti-PcrV antibody may be from 1%to 80%, from 1%to 65%, from 5%to 65%or from 20%to 40%.
- the anti-PcrV antibody is one wherein none of the N-linked glycans thereon comprise fucose, i.e., wherein the anti-PcrV antibody is completely without fucose, or has no fucose or is afucosylated.
- the amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e.g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546, for example.
- Asn297 refers to the asparagine residue located at about position 297 in the Fc region (EU numbering of Fc region residues) ; however, Asn297 may also be located about ⁇ 3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L. ) ; US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd) .
- Examples of publications related to “defucosylated” or “fucose-deficient” antibody variants include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US 2003/0115614; US 2002/0164328; US 2004/0093621; US 2004/0132140; US 2004/0110704; US 2004/0110282; US 2004/0109865; WO 2003/085119; WO 2003/084570; WO 2005/035586; WO 2005/035778; WO2005/053742; WO2002/031140; Okazaki et al. J. Mol. Biol. 336: 1239-1249 (2004) ; Yamane-Ohnuki et al. Biotech.
- Examples of cell lines capable of producing defucosylated antibodies include Lec13 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. Biophys. 249: 533-545 (1986) ; US Pat Appl No US 2003/0157108 A1, Presta, L; and WO 2004/056312 A1, Adams et al., especially at Example 11) , and knockout cell lines, such as ⁇ -1, 6-fucosyltransferase gene, FUT8, knockout CHO cells (see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004) ; Kanda, Y. et al., Biotechnol. Bioeng., 94 (4) : 680-688 (2006) ; and WO2003/085107) .
- Anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the anti-PcrV antibody is bisected by GlcNAc.
- Such anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet et al. ) ; U.S. Pat. No. 6,602,684 (Umana et al.
- Anti-PcrV antibody (such as full-length anti-PcrV antibody) variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided.
- Such anti-PcrV antibody variants may have improved CDC function.
- Such antibody variants are described, e.g., in WO 1997/30087 (Patel et al. ) ; WO 1998/58964 (Raju, S. ) ; and WO 1999/22764 (Raju, S. ) .
- the anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants comprising an Fc region are capable of binding to an Fc ⁇ RIII.
- the anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants comprising an Fc region have ADCC activity in the presence of human effector cells (e.g., T cell) or have increased ADCC activity in the presence of human effector cells compared to the otherwise same anti-PcrV antibody (such as a full-length anti-PcrV antibody) comprising a human wild-type Fc region.
- cysteine engineered anti-PcrV antibodies such as a full-length anti-PcrV antibody
- the substituted residues occur at accessible sites of the anti-PcrV antibody.
- reactive thiol groups are thereby positioned at accessible sites of the anti-PcrV antibody and may be used to conjugate the anti-PcrV antibody to other moieties, such as drug moieties or linker-drug moieties, to create an anti-PcrV immunoconjugate, as described further herein.
- Cysteine engineered anti-PcrV antibodies e.g., full-length anti-PcrV antibodies
- an anti-PcrV antibody (such as a full-length anti-PcrV antibody) provided herein may be further modified to contain additional non-proteinaceous moieties that are known in the art and readily available.
- the moieties suitable for derivatization of the anti-PcrV antibody include but are not limited to water soluble polymers.
- Non-limiting examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG) , copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1, 3-dioxolane, poly-1, 3, 6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers) , and dextran or poly (n-vinyl pyrrolidone) polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol) , polyvinyl alcohol, and mixtures thereof.
- PEG polyethylene glycol
- copolymers of ethylene glycol/propylene glycol carboxymethylcellulose
- dextran polyvinyl alcohol
- Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.
- the polymer may be of any molecular weight, and may be branched or unbranched.
- the number of polymers attached to the anti-PcrV antibody may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of anti-PcrV antibody to be improved, whether the anti-PcrV antibody derivative will be used in a therapy under defined conditions, etc.
- conjugates of an anti-PcrV antibody such as a full-length anti-PcrV antibody
- nonproteinaceous moiety that may be selectively heated by exposure to radiation
- the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005) ) .
- the radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the anti-PcrV antibody-nonproteinaceous moiety are killed.
- compositions comprising any of the anti-PcrV antibodies (such as a full-length anti-PcrV antibody) , nucleic acids encoding the antibodies, vectors comprising the nucleic acids encoding the antibodies, or host cells comprising the nucleic acids or vectors described herein.
- a pharmaceutical composition comprising any one of the anti-PcrV antibodies described herein and a pharmaceutically acceptable carrier.
- Suitable formulations of the anti-PcrV antibodies are obtained by mixing an anti-PcrV antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) ) , in the form of lyophilized formulations or aqueous solutions.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propylparaben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol) ; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, his
- Zn-protein complexes Zn-protein complexes
- non-ionic surfactants such as TWEEN TM , PLURONICS TM or polyethylene glycol (PEG) .
- Exemplary formulations are described in WO98/56418, expressly incorporated herein by reference.
- Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the individual to be treated herein.
- Lipofectins or liposomes can be used to deliver the anti-PcrV antibodies of this application into cells.
- the formulation herein may also contain one or more active compounds in addition to the anti-PcrV antibody (such as a full-length anti-PcrV antibody) as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
- active compounds such as a full-length anti-PcrV antibody
- Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
- the effective amount of such other agents depends on the amount of anti-PcrV antibody present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99%of the heretofore employed dosages.
- the anti-PcrV antibodies may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly- (methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Sustained-release preparations may be prepared.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- Sustained-release preparations may be prepared.
- sustained-release preparations of the anti-PcrV antibodies can be prepared.
- suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody (or fragment thereof) , which matrices are in the form of shaped articles, e.g., films, or microcapsules.
- sustained-release matrices include polyesters, hydrogels (for example, poly (2-hydroxyethyl-methacrylate ) , or poly (vinylalcohol) ) , polylactides (U.S. Pat. No.
- copolymers of L-glutamic acid and ethyl-L-glutamate non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate) , and poly-D (-) -3-hydroxybutyric acid.
- LUPRON DEPOT TM injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate
- poly-D (-) -3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydro gels release proteins for shorter time periods.
- encapsulated antibody When encapsulated antibody remain in the body for a long time, they can denature or aggregate as a result of exposure to moisture at 37 °C, resulting in a loss of biological activity and possible changes in immunogenicity.
- Rational strategies can be devised for stabilization of anti-PcrV antibodies depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-Sbond formation through thio-disulfide interchange, stabilization can be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
- the anti-PcrV antibody (such as a full-length anti-PcrV antibody) is formulated in a buffer comprising a citrate, NaCl, acetate, succinate, glycine, polysorbate 80 (Tween 80) , or any combination of the foregoing.
- the anti-PcrV antibody is formulated in a buffer comprising about 100 mM to about 150 mM glycine.
- the anti-PcrV antibody is formulated in a buffer comprising about 50mM to about 100 mM NaCl.
- the anti-PcrV antibody is formulated in a buffer comprising about 10mM to about 50 mM acetate.
- the anti-PcrV antibody is formulated in a buffer comprising about 10mM to about 50 mM succinate. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 0.005%to about 0.02%polysorbate 80. In some embodiments, the anti-PcrV antibody is formulated in a buffer having a pH between about 5.1 and 5.6. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising 10 mM citrate, 100 mM NaCl, 100mM glycine, and 0.01%polysorbate 80, wherein the formulation is at pH 5.5.
- the formulations to be used for in vivo administration must be sterile. This is readily accomplished by, e.g., filtration through sterile filtration membranes.
- a method of treating a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising any of the anti-PcrV antibodies described herein.
- the method of treating a Pseudomonas infection further provides therapeutic or prophylactic effect on diseases and/or conditions associated with Pseudomonas infection.
- a method of preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising any of the anti-PcrV antibodies described herein.
- Diseases and/or conditions associated with Pseudomonas infection include, but are not limited to fever, chills, fatigues, muscle and joint pain, swelling of joints, headache, diarrhea, skin rashes, pus in wounds, bacteremia, acute pneumonia, intraperitoneal infection.
- Further exemplary diseases include, but are not limited to, respiratory tract infections, bacteremia, septic shock, suppurative arthritis, enteritis, skin and soft tissue infections (such as burn wound infections) , urinary tract infections, intestinal infections, ulcerative keratitis, chronic suppurative otitis media, mastoiditis, sinusitis, and endocarditis.
- the method of treating or preventing a Pseudomonas infection reduces rate of mortality resulting from the Pseudomonas infection.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody.
- the anti-PcrV antibody specifically binds to a linear epitope within Pseudomonas PcrV.
- the anti-PcrV described herein specifically binds to a nonlinear epitope within Pseudomonas PcrV.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody comprises a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody comprises a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 52 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 52 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 52, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 52; and a V L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 65.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 53 and a V L comprising the amino acid sequence of SEQ ID NO: 66.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 53 and a V L comprising the amino acid sequence of SEQ ID NO: 66.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 53, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 53, and a V L comprising the amino acid sequence of SEQ ID NO: 66, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 66.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 62 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 62 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 62; and a V L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74.
- the method prevents a Pseudomonas infection in an individual.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 67.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 67.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 54; and a V L comprising the amino acid sequence of SEQ ID NO: 67, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 67.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 55 and a V L comprising the amino acid sequence of SEQ ID NO: 68.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 55 and a V L comprising the amino acid sequence of SEQ ID NO: 68.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 55, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 55; and a V L comprising the amino acid sequence of SEQ ID NO: 68, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 68.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 69.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 69.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V L comprising the amino acid sequence of SEQ ID NO: 69, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 69.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 64 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 64 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 64, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 64; and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 70.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 70.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V L comprising the amino acid sequence of SEQ ID NO: 70, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 70.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 71.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 71.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 57; and a V L comprising the amino acid sequence of SEQ ID NO: 71, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 71.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 72.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 72.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 54; and a V L comprising the amino acid sequence of SEQ ID NO: 72, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 72.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 73.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 73.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V L comprising the amino acid sequence of SEQ ID NO: 73, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 73.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 58 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 58 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody provided herein comprises a V H comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74; and a V L comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 59 and a V L comprising the amino acid sequence of SEQ ID NO: 75.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 59 and a V L comprising the amino acid sequence of SEQ ID NO: 75.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 59, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 59; and a V L comprising the amino acid sequence of SEQ ID NO: 75, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 75.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 76.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 76.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 57; and a V L comprising the amino acid sequence of SEQ ID NO: 76, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 76.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 77.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 77.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 60; and a V L comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 77.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 60; and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC- CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V L comprising the amino acid sequence of SEQ ID NO: 79, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 79.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 61 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 61 and a V L comprising the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 61, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 61; and a V L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 63 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V H comprising the amino acid sequence of SEQ ID NO: 63 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to 5 amino acid substitutions; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions.
- the anti-PcrV antibody comprises a V H comprising the amino acid sequence of SEQ ID NO: 63, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 63; and a V L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
- the anti-PcrV antibody comprises an antibody heavy chain constant region and an antibody light chain constant region.
- the anti-PcrV antibody comprises an IgG1 heavy chain constant region.
- the anti-PcrV antibody comprises an IgG2 heavy chain constant region.
- the anti-PcrV antibody comprises an IgG3 heavy chain constant region.
- the anti-PcrV antibody comprises an IgG4 heavy chain constant region.
- the IgG is a human IgG.
- the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82.
- the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83.
- the anti-PcrV comprises a lambda light chain constant region.
- the anti-PcrV antibody comprises a kappa light chain constant region.
- the light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81.
- the anti-PcrV antibody comprises an antibody heavy chain variable domain and an antibody light chain variable domain.
- the method further provides therapeutic or prophylactic effect on diseases and/or conditions associated with Pseudomonas infection. In some embodiments, the method prevents a Pseudomonas infection in an individual.
- the individual is a mammal (e.g., human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc. ) .
- the individual is a human.
- the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc.
- the individual is younger than about 60 years old (including for example younger than about any of 50, 40, 30, 25, 20, 15, or 10 years old) .
- the individual is older than about 60 years old (including for example older than about any of 70, 80, 90, or 100 years old) .
- the individual has one or more risk factors associated with P. aeruginosa infection.
- the individual has exposed or breached skin mucuous layer.
- the individual has one or more burn wounds.
- the individual has one or more surgery wounds.
- the individual has skin disease.
- the individual is inserted with a foreign body, such as, but not limited to a mechanical ventilator or catheter.
- the individual is diagnosed with or genetically prone to immunodeficiency diseases, including but not limited to HIV infection, AIDS and/or neutrophil deficiency.
- the individual has received one or more forms of chemotherapy.
- the individual has received one or more forms of glucocorticoid treatment. In some embodiments, the individual has received one or more forms of chemotherapy. In some embodiments, the individual is diagnosed with or genetically prone to cancer, diabetes and/or chronic structural lung diseases (such as cystic fibrosis or COPD) . In some embodiments, the individual is diagnosed with or genetically prone to flora imbalance in digestive system and/or in other organs. In some embodiments, the individual has one or more risk factors associated with one or more diseases or disorders described herein.
- the present application in some embodiments provides a method of delivering an anti-PcrV antibody (such as any one of the anti-PcrV antibodies described herein, e.g., an isolated anti-PcrV antibody) to a cell infected by a pathogen in an individual, the method comprising administering to the individual a composition comprising the anti-PcrV antibody.
- an anti-PcrV antibody such as any one of the anti-PcrV antibodies described herein, e.g., an isolated anti-PcrV antibody
- the method further comprises administering one or more additional therapeutic agents.
- at least one of the therapeutic agents is an antibiotic.
- the antibiotic is a penicillin, a cephalosporin, a carbapenem, a fluoroquinolone, an aminoglycoside, a monobactam, a polymyxin, an antibiotic combination containing ⁇ -lactamase inhibitor, or any combinations thereof.
- the antibiotic is Cefepim, Ceftazidime, Cefpirome, Imipenem, Meropenem, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Aztreonam, Tobramycin, Gentamicin, Amikacin, Ciprofloxacin, Levofloxacin, Cefoperazon-Sulbactam, Piperacillin-Tazobactam, Fosfomycin, or any combinations thereof.
- the antibiotic is one or more of Imipenem, Tobramycin, Ciprofloxacin, Meropenem or Aztreonam.
- the antibiotic is one or more of Gentamycin, Ampicillin or Kanamycin.
- the anti-PcrV antibodies e.g., full-length anti-PcrV antibodies
- compositions of the application are administered in combination with a second, third, or fourth agent (including, e.g., an antibiotic) to treat or prevent diseases or disorders involving PcrV -expressing pathogens.
- a second, third, or fourth agent including, e.g., an antibiotic
- the dose of the anti-PCRV antibody (such as isolated anti-PCRV antibody) compositions administered to an individual may vary with the particular composition, the mode of administration, and the type of disease being treated.
- the amount of the composition (such as composition comprising isolated anti-PCRV antibody) is effective to result in an objective response (such as a partial response or a complete response) in the treatment or prevention of Pseudomonas infections.
- the amount of the anti-PcrV antibody composition is sufficient to result in a complete response in the individual.
- the amount of the anti-PcrV antibody composition is sufficient to result in a partial response in the individual.
- the amount of the anti-PcrV antibody composition administered is sufficient to produce an overall response rate of more than about any of 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 64%, 65%, 70%, 75%, 80%, 85%, or 90%among a population of individuals treated with the anti-PCRV antibody composition.
- Responses of an individual to the treatment or prevention by the methods described herein can be determined, for example, based on detection of Pseudomonas by methods such as by Gram stains or other phenotypic tests.
- the amount of the composition is sufficient to prolong progress-free survival of the individual. In some embodiments, the amount of the composition is sufficient to prolong overall survival of the individual. In some embodiments, the amount of the composition (for example when administered along) is sufficient to produce clinical benefit of more than about any of 50%, 60%, 70%, or 77%among a population of individuals treated with the anti-PcrV antibody composition.
- the amount of the composition (such as composition comprising isolated anti-PcrV antibody) , alone or in combination with a second, third, and/or fourth agent, is an amount sufficient to decrease the number of Pseudomonas organ burden by at least about any of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%or 100%compared to the corresponding organ burden in the same subject prior to treatment or compared to the corresponding activity in other subjects not receiving the treatment. Standard methods can be used to measure the magnitude of this effect, such as in vitro assays with purified enzyme, cell-based assays, animal models, or human testing.
- the amount of the anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is below the level that induces a toxicological effect (i.e., an effect above a clinically acceptable level of toxicity) or is at a level where a potential side effect can be controlled or tolerated when the composition is administered to the individual.
- the amount of the composition is close to a maximum tolerated dose (MTD) of the composition following the same dosing regimen. In some embodiments, the amount of the composition is more than about any of 80%, 90%, 95%, or 98%of the MTD.
- MTD maximum tolerated dose
- the amount of an anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is included in a range of about 0.001 ⁇ g to about 1000 ⁇ g.
- the composition or method further comprises one or more antibiotics.
- the amount of an antibiotic such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin
- an antibiotic such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin
- the effective amount of anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is in the range of about 0.1 ⁇ g/kg to about 100 mg/kg of total body weight.
- the effective amount of antibiotic (such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin) in the composition is in the range of about 0.1 ⁇ g/kg to about 100 mg/kg of total body weight.
- antibiotic such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin
- the anti-PcrV antibody compositions can be administered to an individual (such as human) via various routes, including, for example, intravenous, intra-arterial, intraperitoneal, intrapulmonary, oral, inhalation, intravesicular, intramuscular, intra-tracheal, subcutaneous, intraocular, intrathecal, transmucosal, or transdermal.
- sustained continuous release formulation of the composition may be used.
- the composition is administered intravenously.
- the composition is administered intraportally.
- the composition is administered intraarterially.
- the composition is administered intraperitoneally.
- the composition is administered intrahepatically.
- the composition is administered by hepatic arterial infusion.
- the administration is to an injection site distal to a first disease site.
- an article of manufacture containing materials useful for treating or preventing a Pseudomonas infection in an individual, or for delivering an anti-PcrV antibody (such as a full-length anti-PcrV antibody) to a cell attached by a pathogen expressing PcrV.
- the article of manufacture can comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic.
- the container holds a composition which is effective for treating a disease or disorder described herein, and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle) .
- At least one active agent in the composition is an anti-PcrV antibody of the application.
- the label or package insert indicates that the composition is used for treating the particular condition.
- the label or package insert will further comprise instructions for administering the anti-PcrV antibody composition to the patient.
- Articles of manufacture and kits comprising combinatorial therapies described herein are also contemplated.
- Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
- the package insert indicates that the composition is used for treating bacterial infections.
- the package insert indicates that the composition is used for treating Pseudomonas infections.
- the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
- a pharmaceutically-acceptable buffer such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution or dextrose solution.
- Kits are also provided that are useful for various purposes, e.g., useful for treating or preventing a Pseudomonas infection in an individual, or for delivering an anti-PcrV antibody (such as a full-length anti-PcrV antibody) to a cell attached by a pathogen expressing PcrV, optionally in combination with the articles of manufacture.
- Kits of the application include one or more containers comprising anti-PcrV antibody composition (or unit dosage form and/or article of manufacture) , and in some embodiments, further comprise another agent (such as the agents described herein) and/or instructions for use in accordance with any of the methods described herein.
- the kit may further comprise a description of selection of individuals suitable for treatment. Instructions supplied in the kits of the application are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit) , but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.
- the kit comprises a composition comprising an anti-PcrV antibody (such as a full-length anti-PcrV antibody) .
- the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, and b) an effective amount of at least one other agent, wherein the other agent enhances the effect (e.g., treatment effect, detecting effect) of the anti-PcrV antibody.
- the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, and b) instructions for administering the anti-PcrV antibody composition to an individual for treating a Pseudomonas infection in an individual.
- the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, b) an effective amount of at least one other agent, wherein the other agent enhances the effects (e.g., treatment effect, detecting effect) of the anti-PcrV antibody, and c) instructions for administering the anti-PcrV antibody composition and the other agent (s) to an individual for useful for treating a Pseudomonas infection in an individual.
- the anti-PcrV antibody and the other agent (s) can be present in separate containers or in a single container.
- the kit may comprise one distinct composition or two or more compositions wherein one composition comprises an anti-PcrV antibody and another composition comprises another agent.
- the kit comprises a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody (such as a full-length anti-PcrV antibody) .
- the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, and b) a host cell for expressing the nucleic acid (or set of nucleic acids) .
- the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, and b) instructions for i) expressing the anti-PcrV antibody in a host cell, ii) preparing a composition comprising the anti-PcrV antibody, and iii) administering the composition comprising the anti-PcrV antibody to an individual for treating or preventing a Pseudomonas infection in an individual.
- a nucleic acid or set of nucleic acids
- the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, b) a host cell for expressing the nucleic acid (or set of nucleic acids) , and c) instructions for i) expressing the anti-PcrV antibody in the host cell, ii) preparing a composition comprising the anti-PcrV antibody, and iii) administering the composition comprising the anti-PcrV antibody to an individual for treating or preventing a Pseudomonas infection in an individual.
- kits of the application are in suitable packaging.
- suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags) , and the like. Kits may optionally provide additional components such as buffers and interpretative information.
- the present application thus also provides articles of manufacture, which include vials (such as sealed vials) , bottles, jars, flexible packaging, and the like.
- kits may be provided that contain sufficient dosages of an anti-PcrV antibody (such as a full-length anti-PcrV antibody) as disclosed herein to provide effective treatment of an individual for an extended period, such as any of a week, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 5 months, 7 months, 8 months, 9 months, or more. Kits may also include multiple unit doses of the anti-PcrV antibody and pharmaceutical compositions and instructions for use and packaged in quantities sufficient for storage and use in pharmacies, for example, hospital pharmacies and compounding pharmacies.
- Example 1 Generation of recombinant Pseudomonas PcrV and selection of anti-PcrV scFv antibodies
- PcrV The full-length sequence of PcrV (PAO1) was synthesized (Generay, Shanghai) and subcloned into the expression vector pET using restriction enzyme recognition sites NdeI and BamHI. His-tag or other conventionally used tags were used to tag PcrV.
- Expression vectors pET-6His -PcrV, pET-6His-Avi-PcrV were generated. In these constructs, “His” stands for His-tag, and “Avi” stands for Avi-tag.
- the expression and purification of recombinant PcrV including pET-6His -PcrV, pET-6His-Avi-PcrV were carried out according to manufacturer’s protocol. Briefly, E.
- Coli cells were transformed with the expression vectors, and the cells were induced with IPTG and cultured at 25°C, and 220rpm overnight. Subsequently, the E. Coli cells were sonicated, the cell debris were pelleted and removed, and the proteins were separated by centrifugation.
- Proteins with His-tag were then purified using Ni Sepharose purification according to manufacturer’s protocol.
- the Qiagen Ni-NTA superflow cartridges were used for immobilized metal affinity chromatography (IMAC) analysis.
- the cartridges were first equilibrated with buffer A1 (50mM Na 3 PO 4 , 0.15M NaCl, pH 7.2) with a flow rate of 150cm/h.
- buffer A1 (6 times the volume of the cartridges) was used to equilibrate the cartridges with a flow rate of 150cm/h.
- a 50mM PB solution (0.15M NaCl and 0.2M Imidazole, pH 7.2) with a volume that is 10 times that of the cartridges was used to wash the cartridges and the elution was collected.
- Biotinylation of 6His-Avi-PcrV using the biotin ligase B0101A was carried out according to the manufacturer’s protocol. Briefly, buffer A ⁇ B and Biotin Ligase were added to 6His-Avi-PcrV, followed by 1 hour of incubation at 30°C. The biotinylated PcrV is referred to as Bhavi-PcrV hereafter. The efficiency of biotinylation was measured using ELISA.
- Bhavi-PcrV was removed by incubating with magnetic beads (Dynabeads TM MyOne TM Streptavidin T1) , and the concentration of 6His-Avi-PcrV in supernatant was quantified by ELISA, using 6His-Avi-PcrV with known concentration as a standard material. The biotinylation efficiency was determined to be 90%.
- yeast scFv antibody display library RNAs collected from 2000 human blood samples were reverse-transcribed into cDNA, and the VH and VK fragments were amplified using VH-and VK-specific primers. Upon gel extraction and purification, scFv was generated by linking VH and VK via a linker. These scFvs were cloned into the yeast display plasmid PYD1, which were then electroporated into yeasts to generate the yeast scFv antibody display library.
- the scFvs which recognized PcrV were isolated from the yeast display library. Briefly, magnetic-activated cell sorting (MACS) was used to enrich cells expressing anti-PcrV scFv antibodies. Bhavi-PcrV was mixed with magnetic beads (Dynabeads TM MyOne TM Streptavidin T1) overnight to coat magnetic beads with the biotinylated PcrV, according to manufacturer’s protocol. The scFv antibody yeast library was then mixed with the PcrV-coated beads for enriching yeasts that display PcrV-recognizing antibodies, whereas the non-binders are washed away in washing steps.
- MCS magnetic-activated cell sorting
- yeast cells were labeled with PcrV proteins, and sorted by FACS to select yeast displaying antibodies with high affinity to PcrV.
- the FACS-mediated selection was repeated 2-3 cycles.
- the selected yeast library cells were plated on agar, and single colonies were picked and assayed by further FACS analysis.
- each scFV gene was extracted, fused with a 6-His tag and subcloned into a prokaryotic expression vector.
- the His-labeled scFvs were then purified using Ni Sepharose purification as described above.
- a panel of positive scFv antibodies were obtained at the end of the selection process, and subjected to functional testing for the ability to inhibit RBC lysis caused by P. aeruginosa.
- RBCs red blood cells
- PBS phosphate-buffered saline
- Washed RBCs (2.5% [vol/vol] final) in Dulbecco's modified Eagle's medium (DMEM) plus 10%fetal bovine serum (FBS) (Gibco) and purified anti-PcrV antibodies diluted in PBS were combined into wells of a round-bottom 96-well plate. Strain 57/66 (O6) P.
- aeruginosa was grown to mid-log phase in 2 ⁇ YT medium (Oxford) , harvested by centrifugation, and resuspended in DMEM-fetal bovine serum (FBS) at an optical density at 600 nm (OD600) of 0.15.10 ⁇ Lof bacterial suspension was added to the RBC-antibody mixture, mixed by agitation, and incubated for 3 hours at 37°C and 5%CO 2 .
- the plates were briefly centrifuged (1000 rpm, 1 min) to pellet the intact RBCs, the supernatants were transferred to a flat-bottom 96-well plate, and the OD405 was measured to detect lysis, from which the relative amount of lysis inhibition was calculated and plotted. IC 50 values for the antibodies were also determined.
- Example 2 Generation and characterization of full-length human anti-PcrV antibodies
- the most potent scFv antibodies were reformatted as human IgG1 antibody molecules with a human IgG1 heavy chain constant domain, and a human kappa light chain constant domain.
- VL and VH were amplified from the prokaryotic expression vector and introduced into eukaryotic expression vectors pTT5-L (containing kappa constant domain) and pTT5-H1 (containing IgG1 heavy chain constant domain) , respectively. Plasmids expressing the light or heavy chains were extracted and used to co-transfect 293F cells. After the cells were cultured at 37°C, 8%CO 2 and 120rpm for 5 days, the antibodies in the culture media were purified using Protein A affinity chromatography.
- Protein A column was first equilibrated with a PBS buffer containing 50mM PBS and 0.15M NaCl (pH7.2) , at a flow rate of 150cm/h and with a volume that is six times the volume of the column.
- the supernatant of the culture media (pH was adjusted to 7.2) passed through the column at the flow rate of 150cm/h.
- the column was washed using 50mM sodium citrate (pH3.5) and the elution containing anti-PcrV antibodies was collected.
- the full-length antibodies were functionally characterized for the ability to inhibit RBC lysis (see Example 1 for reference) , A549/U937 cell lysis, as well as to improve survival in an acute pneumonia mouse model, according to the methods in Example 1 and the methods described below.
- the candidate anti-PcrV antibodies were added to human bronchoepithelial cell line A549 or human lymphoma cell line U937 seeded in white 96-well plates (Nunc Nunclon Delta) in DMEM plus 10%fetal bovine serum.
- Log-phase strain PA103 (O11) P. aeruginosa was added at a multiplicity of infection (MOI) of 10 and incubated for 2 h at 37°C and 5%CO2, followed by 20 minutes of equilibration at room temperature.
- Lactate dehydrogenase (LDH) released from lysed cells was quantified using the CytoTox-ONE kit (Promega) , to assay membrane integrity. The relative amount of lysis inhibition was plotted accordingly. IC 50 values for the antibodies were also determined.
- the candidate anti-PcrV antibodies were assayed for the ability to improve survival in a mouse acute pneumonia model.
- a prophylactic model 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with the candidate antibodies or PBS intraperitoneally (i.p. ) 24 hr before infection, at doses of 1, 5, 10 or 25 mg/kg mouse weight.
- PBS intraperitoneally
- aeruginosa PA103 strain suspended in a 40 ⁇ l inoculum at the lethal dose, or double lethal dose (at 8 ⁇ 10 5 -1.6 ⁇ 10 6 CFU; 1*or 2*LD90) .
- Mouse survival was recorded for up to 7 days post-infection.
- a monoclonal antibody PA49 was selected as the lead parent antibody, as determined by its ability to inhibit RBC lysis, A549 or U937 cell lysis, as well as the ability to improve survival in an acute pneumonia mouse model.
- Example 3 Generation and characterization of optimized full-length anti-PcrV antibodies
- PA49 was selected as the lead parental antibody for further optimization.
- PA49 was optimized to improve affinity and biological activity.
- the "Augmented Binary Substitution” technology See Sue Townsend, et al, 2015, PNAS vol. 112, 15354–15359) was used to design the combinatorial library.
- LC-CDR1, LC-CDR2, HC-CDR1 and HC-CDR2 the binary substitution CDR cassettes were inserted into frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position.
- the HC-CDR3 was also augmented with 1 ⁇ 1 random substitution per clone, that is, NNK mutation (encoding all 20 amino acids) was applied to the randomly picking 2 positions out of 9 (overall length of HC-CDR3) .
- NNK mutation encoding all 20 amino acids
- this technology lowered non-germ-line sequence content in CDRs, thereby, minimized immunogenicity risk in the final molecules.
- a phage scFv display library containing mutations in the CDR regions was generated as described above. Variants that were able to bind PcrV with high affinity and low dissociation rate were identified using BLI, and their functions were tested for inhibition on RBC lysis, A549 cell lysis or U937 cell lysis.
- the optimized full length antibodies were then functionally characterized for the ability to inhibit RBC lysis, A549 cell lysis or U937 cell lysis, according to the methods described in Examples 1 and 2.
- Optimized anti-PcrV antibodies inhibit RBC, A549 or U937 cell lysis caused by P. aeruginosa
- 6G4, 5F3, 9C7, 11E9, 7H5, 6G12, 2A5, 4A2, 5B4, 10D8, 2B4, the reference antibody V2L2-MD, the negative control antibody Tildrakizumab, or the positive control antibody Lenzilumab was further characterized for their non-specificity in BV ELISA or 293 cells cross-reactivity assay.
- the non-specificity of the optimized anti-PcrV antibodies was characterized by measuring cross-reactivity to BV particles and to PcrV-negative 293 cells.
- Example 5 Optimized full-length anti-PcrV antibodies broadly neutralize P. aeruginosa strains
- the optimized anti-PcrV mAb clone 11E9, 9C7, 5F3 or 7H5 was analyzed for their abilities to inhibit red blood cell lysis caused by strain of P. aeruginosa O1-52/66; while 5B4, 4A2, 2A5 or 11E9 was analyzed for inhibition on strain of P. aeruginosa O11-PA103; 9C7, 5F3, 7H5 or the reference antibody V2L2-MD was analyzed for inhibition on strain of P. aeruginosa O6-57/66.
- RBC lysis inhibition assay was performed as described in Example 1.
- PcrV sequences were randomly selected from Genebank database. In contrast to the wild type sequence as shown in SEQ ID No: 80, 13%of the selected sequences contained R, G, or K at position 225 (as compared of S in the wild type sequence SEQ No: 80) .
- Optimized 9C7, 5F3, 4A2, 2A5, 5B4, 11E9 or 7H5 antibody was characterized for their affinity and specificity in binding to these PcrV mutants, and found to strongly bind to these mutants as well (data not shown) . These findings further illustrate that the optimized anti-PcrV antibodies could neutralize a broad spectrum of P. aeruginosa strains, which might express various forms of PcrV mutants.
- Example 6 Optimized anti-PcrV antibodies as prophylactic treatment for P. aeruginosa infection
- BALB/c mice In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with antibodies intraperitoneally (i.p. ) 24 h before infection, at doses of 1 or 10 mg/kg mouse weight. To induce acute pneumonia, the BALB/c mice were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40 ⁇ l inoculum at the lethal dose (1*LD 90 ) or at double lethal dose (2*LD 90 ) (8 ⁇ 10 5 ⁇ 1.6 ⁇ 10 6 CFU) . Mouse survival was recorded for up to 7 days post-infection. The results were represented as Kaplan-Meier survival curves.
- HIV-10E8 was used as a negative control.
- mice In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with antibodies intraperitoneally (i.p. ) 24 hr before infection, at 10 mg/kg mouse weight. To induce acute pneumonia, the BALB/c mice were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40 ⁇ l inoculum at half lethal dose (0.5*LD 90 ; 3x10 5 CFU) . 24 hours post-infection, mice were euthanized and the lungs, spleens and kidneys were extracted, homogenized, and diluted before plating on agar to measure the viable bacteria units (in CFU) , which represented the P. aeruginosa burden in the respective organ sample.
- P. aeruginosa P. aeruginosa
- the ability of the optimized anti-PcrV antibody 6G4 or 10D8 to improve survival in a mouse intraperitoneal infection model was evaluated. HIV-10E8 was used as negative control.
- the mouse intraperitoneal infection model was generated as described previously (See Warrener et al., 2014, Antimicrob. Agents Chemother., 58, 4384–4391) .
- BALB/c mice (Vital River Laboratory) were administered with antibodies by intraperitoneal (i. p. ) injection 24 h before infection, at doses of 10 mg/kg mouse weight.
- intraperitoneal injection 24 h before infection
- Mouse survival was recorded for up to 7 days post-infection.
- Example 7 Optimized anti-PcrV antibodies as therapeutic treatment for P. aeruginosa infection
- Antibodies or PBS were administered intravenously (i. v. ) at 1 h post-infection, at a dose of 2mg/kg mouse weight. Mouse survival was recorded for up to 7 days post-infection.
- Example 8 Combination treatment of P. aeruginosa infection using optimized anti-PcrV antibodies with antibiotics
- the ability of the optimized anti-PcrV antibody 9C7 or 4A2 to improve survival in a mouse intraperitoneal infection model was evaluated in comparison to antibiotics Meropenem, and also in comparison to combination treatment of 9C7 with Meropenem or 4A2 with Meropenem. HIV-10E8 was used as negative control.
- P. aeruginosa 57/66 strain
- the plasma levels of 5F3, 9C7, 7H5 or the reference antibody V2L2-MD in rat were measured over time.
- Pharmacokinetic profile in rat 32 healthy adult rats (about 0.2kg by weight) were divided equally into two groups, where each group registered similar average weight. One group was injected intravenously with 30mg/kg of 5F3, 9C7, 7H5 or V2L2-MD and the other group was injected intravenously with 3 mg/kg of 5F3, 9C7, 7H5 or V2L2-MD. Blood was collected at 0 hour, 0.5 hour, 2 hour, 8 hour, 1 day, 3 days, 7 days, 11 days, 17 days, 23 days, 31 days, 41 days or 52 days after injection. After centrifugation, the plasma was used for analyzing antibody concentration using ELISA.
- the half-lives of 5F3, 9C7, or 7H5 at both high and low i.v. dosages (3 mg/kg or 30 mg/kg) were longer than that of the reference antibody V2L2-MD, indicating that the optimized antibodies displayed more stable pharmacokinetic profiles at various doses as compared to the reference antibody V2L2-MD.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The antibodies including antigen-binding fragment thereof that specifically recognizing Pseudomonas PcrV. Also the methods of making and using these antibodies.
Description
SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: PcrV ANTIBODY Sequence List. TXT, date recorded: July 30, 2019, size: 52.5 KB) .
FIELD OF THE APPLICATION
This application pertains to antibodies that specifically recognize PcrV from Pseudomonas aeruginosa, and methods of manufacture and uses thereof, including methods of treating and preventing Pseudomonas infections.
BACKGROUND OF THE APPLICATION
Pseudomonas aeruginosa is an obligately aerobic gram negative bacillus being widely existing in the natural world. Although its pathogenicity is usually low, it is a pathogen that causes opportunistic infections, often occurring in patients suffering from various pre-existing diseases such as cancer, diabetes, immunodeficiency diseases and patients administered with pharmaceuticals exhibiting immune-inhibitory action. Patients with breached skin mucous membrane are prone to P. aeruginosa infections while it also poses considerable risk to patients with chronic structural lung diseases (such as COPD or cystic fibrosis) . P. aeruginosa may often cause pneumonia, urinary tract infection, sepsis, and the like, and often leading to severe results. Up to 10%of nosocomial infections are attributed to P. aeruginosa, with mortality rates approaching 40%in patients with P. aeruginosa bacteremia. In clinical fields, P. aeruginosa infection is considered as one of the most difficult infections to be treated not only because P. aeruginosa has inherently low sensitivity to existent antibiotics, but also because of its high tendency to acquire resistance to various antibiotics. Thus, the strategy of developing an arsenal of antibiotics has limited merits in combating P. aeruginosa infections.
Pseudomonas aeruginosa is a major cause of hospital-acquired infections, particularly in mechanically ventilated patients, and it is the leading cause of death in cystic fibrosis patients. A key virulence factor associated with disease severity is the P. aeruginosa type III secretion system (T3SS) , which injects bacterial toxins directly into the cytoplasm of host cells. High cytotoxicity of Pseudomonas aeruginosa is exerted by injection of toxin into a eukaryotic cell via a type III exotoxin secretion system (T3SS) . PcrV is a protein of 294 residues (NCBI Accession No. AAC45935, SEQ NO: 80) constituting the type III exotoxin secretion system, and an operon sequence encoding the same is open to the public (US 6,551,795, Yahr, T.L. et al., J. Bacteriol., 1997, vol. 179, p. 7165) . The PcrV protein, located at the tip of the T3SS injectisome complex, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. The P. aeruginosa T3SS is a well-validated target for intervention in infections caused by this opportunistic pathogen. Both active vaccination with T3SS component proteins and passive immunotherapy targeting PcrV strongly attenuate P. aeruginosa disease in animal models. Since control for PcrV can possibly lead a therapeutic means in controlling Pseudomonas aeruginosa infection (T. Sawa et al., Nature Medicine, 1999, vol. 5, p. 392) , polyclonal antibodies (Shime N et al., J. Immunol. 2001, vol. 167, p. 5880, Imamura Y et al., Eur. Respir. J., 2007, Vol. 29, p. 965) and monoclonal antibodies (WO2002064161A2, Karine Faure et al., J. Immune. Based. Therapies and Vaccines, 2003, Vol. 1, Dara W. Frank et al., J. Infect. Disease, 2002, Vol. 186, p. 64) against PcrV having neutralizing activity are reported. However, polyclonal antibodies are difficult to be humanized and to be used as pharmaceutical compositions because of the difficulty in improving antigenicity. An antibody against PcrV, designated V2L2-MD, is described in Warrener et al., 2014, Antimicrob. Agents Chemother., 58, 4384–4391. A pegylated Fab fragment of an anti-PcrV Mab, based on the PcrV-specific mouse monoclonal antibody MAb166, is inactive for preventing P. aeruginosa respiratory infections in mechanically ventilated patients. While effective in blocking P. aeruginosa T3SS in vitro, MAb166 requires relatively high antibody doses for protection in animal models. The present application provides novel anti-PcrV mAbs that showed potent inhibition of PcrV in vitro and in vivo.
The disclosures of all publications, patents, patent applications and published patent applications referred to herein are hereby incorporated herein by reference in their entirety.
BRIEF SUMMARY OF THE APPLICATION
The present application provides an isolated anti-PcrV antibody that specifically binds to an epitope on Pseudomonas PcrV, and methods of use thereof for treating Pseudomonas infections.
In one aspect, the present application provides an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX
1EX
2SX
3SYADSVKG (SEQ ID NO: 50) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, T, N, L, I, S, V, A or H; X
2 is S, T, N, D, G or R; and X
3 is I or T; and an HC-CDR3 comprising DGX
1X
2X
3X
4X
5DX
6 (SEQ ID NO: 51) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is P, Y or A, X
2 is Y or W, X
3 is D, T or N, X
4 is S, T or A, X
5 is L, F or M, X
6 is I, V, A, S, L or W; and a light chain variable domain (VL) comprising a light chain complementarity determining region (LC-CDR) 1 comprising RASQX
1VX
2X
3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, N, D or G, X
2 is S, K, N, R or T, X
3 is N, S, D or G; a LC-CDR2 comprising X
1ASSRAT (SEQ ID NO: 85) , or a variant thereof comprising up to about 3 amino acid substitutions; wherein X
1 is D, N, H, A or S; and a LC-CDR3 comprising QQYGX
1X
2PX
3T (SEQ ID NO: 86) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, A, T, E, D, H, N, Q, G, L, Y, M, R or V, X
2 is S, Q, V, E, T, D, M, Y, G, H, L, N, A, F or P, and X
3 is I, L or V.
In some embodiments, there is provided an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX
1EX
2SISYADSVKG (SEQ ID NO: 45) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, N, I, L or V, X
2 is S, T, R, G or N; and an HC-CDR3 comprising DGPYDX
1X
2DI (SEQ ID NO: 46) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, A or T, X
2 is F or L; and a light chain variable domain (VL) comprising: a light chain complementarity determining region (LC-CDR) 1 comprising RASQX
1VX
2X
3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is N, G, D or S, X2 is K, R, S, N or T, X3 is N, G, S or D; a LC-CDR2 comprising X
1ASSRAT (SEQ ID NO: 48) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, N, H or A; and a LC-CDR3 comprising QQYGX
1X
2PX
3T (SEQ ID NO: 49) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, T, E, H, N, A, D, M or L, X
2 is S, Q, E, T, D, G, H, L, N, V or Y, and X
3 is I, L or V.
In some embodiments, there is provided an isolated anti-PcrV antibody, wherein the anti-PcrV antibody binds to the Pseudomonas PcrV with a Kd from about 0.1 pM to about 1 nM. In some embodiments, there is provided an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a VH comprising an HC-CDR1, an HC-CDR2, and an HC-CDR3 of the VH comprising the amino acid sequence of any one of SEQ ID NOs: 52-64; and a VL comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the VL comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
In some embodiments according to any one of the isolated anti-PcrV antibody described above, the anti-PcrV antibody comprises: a VH comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NOs: 1, or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, or a variant thereof comprising up to about 3 amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13, or a variant thereof comprising up to about 3 amino acid substitutions; and a VL comprising a LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14-25, or a variant thereof comprising up to about 3 amino acid substitutions; a LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26-29, or a variant thereof comprising up to about 3 amino acid substitutions; and a LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44, or a variant thereof comprising up to about 3 amino acid substitutions.
In some embodiments according to any one of the isolated anti-PcrV antibody described above, the anti-PcrV antibody comprises: (i) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (ii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (iii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (iv) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (v) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (vi) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (vii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (viii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (ix) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (x) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising n LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xi) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xiii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xiv) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xv) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xvi) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xvii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xviii) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; (xix) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; or (xx) a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments according to any one of the isolated anti-PcrV antibodies described above, the isolated anti-PcrV antibody comprises: a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 65-79. In some embodiments, the isolated anti-PcrV antibody comprises: (i) a V
H comprising the amino acid sequence of SEQ ID NO: 52 and a V
L comprising the amino acid sequence of SEQ ID NO: 65; (ii) a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 65; (iii) a V
H comprising the amino acid sequence of SEQ ID NO: 53 and a V
L comprising the amino acid sequence of SEQ ID NO: 66; (iv) a V
H comprising the amino acid sequence of SEQ ID NO: 62 and a V
L comprising the amino acid sequence of SEQ ID NO: 74; (v) a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 67; (vi) a V
H comprising the amino acid sequence of SEQ ID NO: 55 and a V
L comprising the amino acid sequence of SEQ ID NO: 68; (vii) a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 69; (viii) a V
H comprising the amino acid sequence of SEQ ID NO: 64 and a V
L comprising the amino acid sequence of SEQ ID NO: 78 (ix) a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 70; (x) a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 71; (xi) a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 72; (xii) a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 73; (xiii) a V
H comprising the amino acid sequence of SEQ ID NO: 58 and a V
L comprising the amino acid sequence of SEQ ID NO: 74; (xiv) a V
H comprising the amino acid sequence of SEQ ID NO: 59 and a V
L comprising the amino acid sequence of SEQ ID NO: 75; (xv) a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 76; (xvi) a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 77; (xvii) a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 78; (xviii) a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 79; (xix) a V
H comprising the amino acid sequence of SEQ ID NO: 61 and a V
L comprising the amino acid sequence of SEQ ID NO: 74; or (xx) a V
H comprising the amino acid sequence of SEQ ID NO: 63 and a V
L comprising the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided an isolated anti-PcrV antibody that specifically binds to PcrV competitively with the isolated anti-PcrV antibody of any one of isolated anti-PcrV antibodies described above. In some embodiments, there is provided an isolated anti-PcrV antibody that specifically binds to the same epitope as any one of isolated anti-PcrV antibodies as described above.
In some embodiments according to any one of the isolated anti-PcrV antibodies described above, the anti-PcrV antibody comprises an Fc fragment. In some embodiments, the anti-PcrV antibody is a full-length IgG antibody. In some embodiments, the anti-PcrV antibody is a full-length IgG1 or IgG4 antibody. In some embodiments, the anti-PcrV antibody is chimeric, human, or humanized. In some embodiments, the anti-PcrV antibody is an antigen binding fragment selected from the group consisting of a Fab, a Fab’, a F (ab) ’2, a Fab’-SH, a single-chain Fv (scFv) , an Fv fragment, a dAb, a Fd or a diabody.
In some embodiments, there is provided isolated nucleic acid molecule (s) that encodes any one of the anti-PcrV antibodies described above. In some embodiments, there is provided a vector comprising any one of the nucleic acid molecules described above. In some embodiments, there is provided a host cell comprising any one of the anti-PcrV antibodies described above, any one of the nucleic acid molecules described above, or any one of the vectors described above. In some embodiments, there is provided a method of producing an anti-PcrV antibody, comprising: a) culturing any one of the host cells described above under conditions effective to express the anti-PcrV antibody; and b) obtaining the expressed anti-PcrV antibody from the host cell.
In some embodiments, there is provided a method of treating a disease or condition in an individual in need thereof, comprising administering to the individual an effective amount of any one of the anti-PcrV antibodies described above, or a pharmaceutical composition comprising any one of the anti-PcrV antibodies described above. In some embodiments, provided is the use of any one of the anti-PcrV antibodies described above, or a pharmaceutical composition comprising any one of the anti-PcrV antibodies described above in the manufacture of a medicament for treating a disease or condition. In some embodiments, the disease or condition is a pathogenic infection. In some embodiments, the infection is a gram-negative bacterial infection. In some embodiments, the bacterium is Pseudomonas aeruginosa. In some embodiments, the disease or condition comprises one or more symptoms caused by Pseudomonas aeruginosa infection. In some embodiments, the symptom comprises one or more of fever, chills, fatigues, muscle and joint pain, swelling of joints, headache, diarrhea, skin rashes, pus in wounds, bacteremia, acute pneumonia, or intraperitoneal infection.
In some embodiments according to any one of the methods of treatment described above, the method further comprises administering one or more therapeutic agents. In some embodiments, at least one of the therapeutic agents is an antibiotic. In some embodiments, the antibiotic is one or more of Imipenem, Tobramycin, Ciprofloxacin, Meropenem or Aztreonam.
Also provided are pharmaceutical compositions, kits and articles of manufacture comprising any one of the anti-PcrV antibodies, nucleic acids, vectors, isolated host cells described above.
FIGS. 1A and 1B show the ability of the lead optimized antibodies in inhibiting RBC lysis compared to the parental PA49 mAb and the reference antibody V2L2-MD.
FIGS. 2A and 2B show the ability of the lead optimized antibodies in inhibiting A549 cell lysis or U937 cell lysis.
FIG. 3 shows the cross-reactivity of the lead optimized antibodies to BV particles compared to reference antibody V2L2-MD, as measured by ELISA.
FIG. 4A to 4C show the cross-reactivity of the optimized antibody 5F3, 9C7 or the reference antibody V2L2-MD to PcrV-negative HEK293 cells, as measured by FACS.
FIG. 5A shows the ability of the optimized antibody 11E9, 9C7, 5F3, or 7H5 in inhibiting RBC lysis caused by O1-52/66; FIG. 5B shows the ability of the optimized antibody 5B4, 4A2, 2A5, or 11E9 in inhibiting RBC lysis caused by O11-PA103; and FIG. 5C shows the ability of optimized antibody 9C7, 5F3, 7H5 or the reference antibody V2L2-MD in inhibiting RBC lysis caused by O6-57/66.
FIG. 6A to 6C show the ability of the parental PA49 mAb and the optimized antibody 6G12, 4A2, 10D8, 7H5, 11E9, 6G4, 2A5, 9C7, or 5F3 to improve survival prophylactically in mouse acute pneumonia model. FIG. 6A shows the ability of PA49 or 6G12 at 2*LD90 (~1.6×10
6 CFU) of P. aeruginosa (PA103 strain) inoculation to improve survival prophylactically in mouse acute pneumonia model; FIG. 6B shows the ability of 4A2, 10D8, 7H5, or 11E9 at 1*LD90 (~8×10
5 CFU) of P. aeruginosa (PA103 strain) inoculation to improve survival prophylactically in mouse acute pneumonia model; FIG. 6C shows the ability of 6G4, 2A5, 9C7, or 5F3 at 2*LD90 (~1.6×10
6 CFU) of P. aeruginosa (PA103 strain) inoculation to improve survival prophylactically in mouse acute pneumonia model.
FIG. 7 shows the ability of the optimized antibody 4A2, 9C7, 11E9, 5F3, 7H5, or 2A5 in prophylactically reducing organ burden in an acute pneumonia model.
FIG. 8 shows the ability of the optimized anti-PcrV antibody 6G4 or 10D8 to improve survival prophylactically in a mouse intraperitoneal infection model.
FIG. 9 shows the ability of the optimized anti-PcrV antibody 4A2, 2A5, 9C7, 6G12 or PA49 to improve survival therapeutically in a mouse acute pneumonia model.
FIG. 10 shows the ability of the optimized anti-PcrV antibody 9C7 or 4A2 to improve survival prophylactically in a mouse intraperitoneal infection model, alone or when combined with antibiotics Meropenem (MEM) .
FIG. 11A and 11B show the pharmacokinetic profiles in rat for the optimized antibody 5F3, 9C7, 7H5 or reference antibody V2L2-MD, when administered intravenously at 3 mg/kg or 30 mg/kg doses, respectively.
FIGS. 12A-12B show the sequence alignments of the variable domain sequences of the anti-PcrV antibodies. The complementarity determining regions (Kabat) are denoted. FIG. 12A shows the sequence alignments of the heavy chain variable domain sequences. FIG. 12B shows the sequence alignments of the light chain variable domain sequences.
DETAILED DESCRIPTION OF THE APPLICATION
The present application in one aspect provides anti-PcrV antibodies. By using a combination of selections on scFv phage libraries, affinity maturation and appropriately designed biochemical and biological assays, we have identified highly potent antibody molecules that bind to PcrV which inhibit the action of red blood cell, A549 cell and U937 cell lysis, and which provide both therapeutic and prophylactic in vivo protection against Pseudomonas aeruginosa. The results presented herein indicate that our antibodies bind to a different region or epitope of PcrV when compared with the known anti-PcrV antibody V2L2-MD, and surprisingly are even more potent than the known anti-PcrV antibodies, as demonstrated in a variety of biological assays.
The anti-PcrV antibodies provided by the present application include, for example, full-length anti-PcrV antibodies, anti-PcrV scFvs, anti-PcrV Fc fusion proteins, multi-specific (such as bispecific) anti-PcrV antibodies, anti-PcrV immunoconjugates, and the like.
Also provided are anti-PcrV antibodies having specific sequences and antibodies that compete with or bind to the same epitope as such antibodies.
Also provided are nucleic acids encoding the anti-PcrV antibodies, compositions comprising the anti-PcrV antibodies, and methods of making and using the anti-PcrV antibodies.
Definitions
As used herein, “treatment” or “treating” is an approach for obtaining beneficial or desired results, including clinical results. For purposes of this application, beneficial or desired clinical results include, but are not limited to, one or more of the following: alleviating one or more symptoms resulting from the disease, diminishing the extent of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease) , preventing or delaying the spread (e.g., systemic spread of a pathogen) of the disease, preventing or delaying the recurrence of the disease, delaying or slowing the progression of the disease, ameliorating the disease state, providing a remission (partial or total) of the disease, decreasing the dose of one or more other medications required to treat the disease, delaying the progression of the disease, increasing or improving the quality of life, increasing weight gain, and/or prolonging survival. Also encompassed by “treatment” is a reduction of pathological consequence of infection (such as, for example, host cell lysis or necrosis) . The methods of the application contemplate any one or more of these aspects of treatment.
The term “prevent, ” and similar words such as “prevented, ” “preventing, ” “prevention” etc., indicate an approach for preventing, inhibiting, or reducing the likelihood of the occurrence or recurrence of, a disease or condition, e.g., a pathogenic infection. It also refers to delaying the occurrence or recurrence of a disease or condition, or delaying the occurrence or recurrence of the symptoms of a disease or condition. As used herein, “prevention” and similar words also include reducing the intensity, effect, symptoms and/or burden of a disease or condition prior to occurrence or recurrence of the disease or condition. As used herein, “prevention” and similar words also include reducing the risk and susceptibility to occurrence or recurrence of the disease or condition, e.g., a pathogenic infection.
The term “antibody” includes full-length antibodies and antigen-binding fragments thereof. A full-length antibody comprises two heavy chains and two light chains. The variable regions of the light and heavy chains are responsible for antigen binding. The variable regions in both chains generally contain three highly variable loops called the complementarity determining regions (CDRs) (light chain (LC) CDRs including LC-CDR1, LC-CDR2, and LC-CDR3, heavy chain (HC) CDRs including HC-CDR1, HC-CDR2, and HC-CDR3) . CDR boundaries for the antibodies and antigen-binding fragments disclosed herein may be defined or identified by the conventions of Kabat, Chothia, or Al-Lazikani (Al-Lazikani 1997; Chothia 1985; Chothia 1987; Chothia 1989; Kabat 1987; Kabat 1991) . The three CDRs of the heavy or light chains are interposed between flanking stretches known as framework regions (FRs) , which are more highly conserved than the CDRs and form a scaffold to support the hypervariable loops. The constant regions of the heavy and light chains are not involved in antigen binding, but exhibit various effector functions. Antibodies are assigned to classes based on the amino acid sequence of the constant region of their heavy chain. The five major classes or isotypes of antibodies are IgA, IgD, IgE, IgG, and IgM, which are characterized by the presence of α, δ, ε, γ, and μ heavy chains, respectively. Several of the major antibody classes are divided into subclasses such as IgG1 (γ1 heavy chain) , IgG2 (γ2 heavy chain) , IgG3 (γ3 heavy chain) , IgG4 (γ4 heavy chain) , IgA1 (α1 heavy chain) , or IgA2 (α2 heavy chain) .
The term “antigen-binding fragment” as used herein refers to an antibody fragment including, for example, a diabody, a Fab, a Fab’, a F (ab’) 2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2, a bispecific dsFv (dsFv-dsFv’) , a disulfide stabilized diabody (ds diabody) , a single-chain Fv (scFv) , an scFv dimer (bivalent diabody) , a multispecific antibody formed from a portion of an antibody comprising one or more CDRs, a camelized single domain antibody, a nanobody, a domain antibody, a bivalent domain antibody, or any other antibody fragments that bind to an antigen but do not comprise a complete antibody structure. An antigen-binding fragment is capable of binding to the same antigen to which the parent antibody or a parent antibody fragment (e.g., a parent scFv) binds. In some embodiments, an antigen-binding fragment may comprise one or more CDRs from a particular human antibody grafted to a framework region from one or more different human antibodies.
The term “epitope” as used herein refers to the specific group of atoms or amino acids on an antigen to which an antibody or antibody moiety binds. Two antibodies or antibody moieties may bind the same epitope within an antigen if they exhibit competitive binding for the antigen.
As used herein, a first antibody “competes” for binding to a target PcrV with a second antibody when the first antibody inhibits target PcrV binding of the second antibody by at least about 50% (such as at least about any of 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%or 99%) in the presence of an equimolar concentration of the first antibody, or vice versa. A high throughput process for “binning” antibodies based upon their cross-competition is described in PCT Publication No. WO 03/48731.
As use herein, the term “specifically binds, ” “specifically recognizing, ” or “is specific for” refers to measurable and reproducible interactions, such as binding between a target and an antibody, that is determinative of the presence of the target in the presence of a heterogeneous population of molecules, including biological molecules. For example, an antibody that specifically recognizes a target (which can be an epitope) is an antibody that binds to this target with greater affinity, avidity, more readily, and/or with greater duration than its bindings to other targets. In some embodiments, an antibody that specifically recognizes an antigen reacts with one or more antigenic determinants of the antigen with a binding affinity that is at least about 10 times its binding affinity for other targets.
An “isolated” anti-PcrV antibody as used herein refers to an anti-PcrV antibody that (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, (3) is expressed by a cell from a different species, or, (4) does not occur in nature.
The term “isolated nucleic acid” as used herein is intended to mean a nucleic acid of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the “isolated nucleic acid” (1) is not associated with all or a portion of a polynucleotide in which the “isolated nucleic acid” is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
As used herein, the term “CDR” or “complementarity determining region” is intended to mean the non-contiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. These particular regions have been described by Kabat et al., J. Biol. Chem. 252: 6609-6616 (1977) ; Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of proteins of immunological interest” (1991) ; Chothia et al., J. Mol. Biol. 196: 901-917 (1987) ; Al-Lazikani B. et al., J. Mol. Biol., 273: 927-948 (1997) ; MacCallum et al., J. Mol. Biol. 262: 732-745 (1996) ; Abhinandan and Martin, Mol. Immunol., 45: 3832-3839 (2008) ; Lefranc M.P. et al., Dev. Comp. Immunol., 27: 55-77 (2003) ; and Honegger and Plückthun, J. Mol. Biol., 309: 657-670 (2001) , where the definitions include overlapping or subsets of amino acid residues when compared against each other. Nevertheless, application of either definition to refer to a CDR of an antibody or grafted antibodies or variants thereof is intended to be within the scope of the term as defined and used herein. The amino acid residues which encompass the CDRs as defined by each of the above cited references are set forth below in Table 1 as a comparison. CDR prediction algorithms and interfaces are known in the art, including, for example, Abhinandan and Martin, Mol. Immunol., 45: 3832-3839 (2008) ; Ehrenmann F. et al., Nucleic Acids Res., 38: D301-D307 (2010) ; and Adolf-Bryfogle J. et al., Nucleic Acids Res., 43: D432-D438 (2015) . The contents of the references cited in this paragraph are incorporated herein by reference in their entireties for use in the present application and for possible inclusion in one or more claims herein.
TABLE 1: CDR DEFINITIONS
1Residue numbering follows the nomenclature of Kabat et al., supra
2Residue numbering follows the nomenclature of Chothia et al., supra
3Residue numbering follows the nomenclature of MacCallum et al., supra
4Residue numbering follows the nomenclature of Lefranc et al., supra
5Residue numbering follows the nomenclature of Honegger and Plückthun, supra
The term “chimeric antibody” refers to a antibody in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain (s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit a biological activity of this application (see U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984) ) .
“Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy-and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the heavy and light chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
“Single-chain Fv, ” also abbreviated as “sFv” or “scFv, ” are antibody fragments that comprise the V
H and V
L antibody domains connected into a single polypeptide chain. In some embodiments, the scFv polypeptide further comprises a polypeptide linker between the V
H and V
L domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994) .
The term “diabodies” refers to small antibody fragments prepared by constructing scFv fragments (see preceding paragraph) typically with short linkers (such as about 5 to about 10 residues) between the V
H and V
L domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two “crossover” scFv fragments in which the V
H and V
L domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404, 097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993) .
“Humanized” forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (HVR) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies can comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc) , typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321: 522-525 (1986) ; Riechmann et al., Nature 332: 323-329 (1988) ; and Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992) .
“Percent (%) amino acid sequence identity” or “homology” with respect to the polypeptide and antibody sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the polypeptide being compared, after aligning the sequences considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skilled in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, Megalign (DNASTAR) , or MUSCLE software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. For purposes herein, however, %amino acid sequence identity values are generated using the sequence comparison computer program MUSCLE (Edgar, R.C., Nucleic Acids Research 32 (5) : 1792-1797, 2004; Edgar, R.C., BMC Bioinformatics 5 (1) : 113, 2004) .
The terms “Fc receptor” or “FcR” are used to describe a receptor that binds to the Fc region of an antibody. In some embodiments, an FcR of this application is one that binds to an IgG antibody (aγ receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an “activating receptor” ) and FcγRIIB (an “inhibiting receptor” ) , which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain (see review M. in
Annu. Rev. Immunol. 15: 203-234 (1997) ) . The term includes allotypes, such as FcγRIIIA allotypes: FcγRIIIA-Phe158, FcγRIIIA-Val158, FcγRIIA-R131 and/or FcγRIIA-H131. FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9: 457-92 (1991) ; Capel et al., Immunomethods 4: 25-34 (1994) ; and de Haas et al., J. Lab. Clin. Med. 126: 330-41 (1995) . Other FcRs, including those to be identified in the future, are encompassed by the term “FcR” herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117: 587 (1976) and Kim et al., J. Immunol. 24: 249 (1994) ) .
The term “FcRn” refers to the neonatal Fc receptor (FcRn) . FcRn is structurally similar to major histocompatibility complex (MHC) and consists of an α-chain noncovalently bound to β2-microglobulin. The multiple functions of the neonatal Fc receptor FcRn are reviewed in Ghetie and Ward (2000) Annu. Rev. Immunol. 18, 739-766. FcRn plays a role in the passive delivery of immunoglobulin IgGs from mother to young and the regulation of serum IgG levels. FcRn can act as a salvage receptor, binding and transporting pinocytosed IgGs in intact form both within and across cells, and rescuing them from a default degradative pathway.
The “CH1 domain” of a human IgG Fc region usually extends from about amino acid 118 to about amino acid 215 (EU numbering system) .
“Hinge region” is generally defined as stretching from Glu216 to Pro230 of human IgG1 (Burton, Molec. Immunol. 22: 161-206 (1985) ) . Hinge regions of other IgG isotypes may be aligned with the IgG1 sequence by placing the first and last cysteine residues forming inter-heavy chain S-Sbonds in the same positions.
The “CH2 domain” of a human IgG Fc region usually extends from about amino acid 231 to about amino acid 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain. Burton, Molec Immunol. 22: 161-206 (1985) .
The “CH3 domain” comprises the stretch of residues of C-terminal to a CH2 domain in an Fc region (i.e. from about amino acid residue 341 to the C-terminal end of an antibody sequence, typically at amino acid residue 446 or 447 of an IgG) .
A “functional Fc fragment” possesses an “effector function” of a native sequence Fc region. Exemplary “effector functions” include C1q binding; complement dependent cytotoxicity (CDC) ; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC) ; phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR) , etc. Such effector functions generally require the Fc region to be combined with a binding domain (e.g. an antibody variable domain) and can be assessed using various assays known in the art.
An antibody with a variant IgG Fc with “altered” FcR binding affinity or ADCC activity is one which has either enhanced or diminished FcR binding activity (e.g., FcγR or FcRn) and/or ADCC activity compared to a parent polypeptide or to a polypeptide comprising a native sequence Fc region. The variant Fc which “exhibits increased binding” to an FcR binds at least one FcR with higher affinity (e.g., lower apparent Kd or IC
50 value) than the parent polypeptide or a native sequence IgG Fc. According to some embodiments, the improvement in binding compared to a parent polypeptide is about 3 fold, such as about any of 5, 10, 25, 50, 60, 100, 150, 200, or up to 500 fold, or about 25%to 1000%improvement in binding. The polypeptide variant which “exhibits decreased binding” to an FcR, binds at least one FcR with lower affinity (e.g., higher apparent Kd or higher IC
50 value) than a parent polypeptide. The decrease in binding compared to a parent polypeptide may be about 40%or more decrease in binding.
“Antibody-dependent cell-mediated cytotoxicity” or “ADCC” refers to a form of cytotoxicity in which secreted Ig bound to Fc receptors (FcRs) present on certain cytotoxic cells (e.g., Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies “arm” the cytotoxic cells and are required for such killing. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9: 457-92(1991) . To assess ADCC activity of a molecule of interest, an in vitro ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. PNAS (USA) 95: 652-656 (1998) .
The polypeptide comprising a variant Fc region which “exhibits increased ADCC” or mediates ADCC in the presence of human effector cells more effectively than a polypeptide having wild type IgG Fc or a parent polypeptide is one which in vitro or in vivo is substantially more effective at mediating ADCC, when the amounts of polypeptide with variant Fc region and the polypeptide with wild type Fc region (or the parent polypeptide) in the assay are essentially the same. Generally, such variants will be identified using any in vitro ADCC assay known in the art, such as assays or methods for determining ADCC activity, e.g., in an animal model etc. In some embodiments, the variant is from about 5 fold to about 100 fold, e.g. from about 25 to about 50 fold, more effective at mediating ADCC than the wild type Fc (or parent polypeptide) .
“Complement dependent cytotoxicity” or “CDC” refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202: 163 (1996) , may be performed. Polypeptide variants with altered Fc region amino acid sequences and increased or decreased C1q binding capability are described in US patent No. 6,194,551B1 and WO99/51642. The contents of those patent publications are specifically incorporated herein by reference. See also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000) .
Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or an RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron (s) .
The term “operably linked” refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.
“Homologous” refers to the sequence similarity or sequence identity between two polypeptides or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous at that position. The percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared times 100. For example, if 6 of 10 of the positions in two sequences are matched or homologous then the two sequences are 60%homologous. By way of example, the DNA sequences ATTGCC and TATGGC share 50%homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.
An “effective amount” of an anti-PcrV antibody or composition as disclosed herein, is an amount sufficient to carry out a specifically stated purpose. An “effective amount” can be determined empirically and by known methods relating to the stated purpose.
The term “therapeutically effective amount” refers to an amount of an anti-PcrV antibody or composition as disclosed herein, effective to “treat” a disease or disorder in an individual. In the case of P. aeruginosa infection, the therapeutically effective amount of the anti-PcrV antibody or composition as disclosed herein can reduce the number of infected cells; inhibit (i.e., slow to some extent and preferably stop) the spread of infection; and/or relieve to some extent one or more of the symptoms associated with the infection. To the extent the anti-PcrV antibody or composition as disclosed herein can prevent P. aeruginosa growth and/or kill P. aeruginosa in an infection, the anti-PcrV can be cytostatic and/or cytotoxic. In some embodiments, the therapeutically effective amount is an amount that inhibits infection in a patient. In some embodiments, the therapeutically effective amount is an amount that completely eradicates infection in a patient.
As used herein, by “pharmaceutically acceptable” or “pharmacologically compatible” is meant a material that is not biological or otherwise undesirable, e.g., the material may be incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained. Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and manufacturing testing and/or are included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.
It is understood that embodiments of the application described herein include “consisting” and/or “consisting essentially of” embodiments.
Reference to “about” a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to “about X” includes description of “X” .
As used herein, reference to “not” a value or parameter generally means and describes “other than” a value or parameter. For example, the method is not used to treat infection of type X means the method is used to treat infection of types other than X.
As used herein and in the appended claims, the singular forms “a, ” “or, ” and “the” include plural referents unless the context clearly dictates otherwise.
Anti-PcrV Antibodies
In one aspect, the present application provides anti-PcrV antibodies that specifically bind to PcrV. Anti-PcrV antibodies include, but are not limited to, humanized antibodies, chimeric antibodies, mouse antibodies, human antibodies, and antibodies comprising the heavy chain and/or light chain CDRs discussed herein. In one aspect, the application provides isolated antibodies that bind to PcrV. Contemplated anti-PcrV antibodies include, for example, full-length anti-PcrV antibodies (e.g., full-length IgG1, IgG2 or IgG4) , anti-PcrV scFvs, multi-specific (such as bispecific) anti-PcrV antibodies, anti-PcrV immunoconjugates, and the like. In some embodiments, the anti-PcrV antibody is a Fab, a Fab’, a F (ab) ’2, a Fab’-SH, a single-chain Fv (scFv) , an Fv fragment, a dAb, a Fd, or a diabody. In some embodiments, reference to an antibody that specifically binds to PcrV means that the antibody binds to PcrV with an affinity that is at least about 10 times (including for example at least about any of 10, 10
2, 10
3, 10
4, 10
5, 10
6, or 10
7 times) its binding affinity for non-target. In some embodiments, the non-target is an antigen that is not PcrV. Binding affinity can be determined by methods known in the art, such as ELISA, fluorescence activated cell sorting (FACS) analysis, or radioimmunoprecipitation assay (RIA) . Kd can be determined by methods known in the art, such as surface plasmon resonance (SPR) assay or biolayer interferometry (BLI) .
In certain aspects, the anti-PcrV antibody or antigen-binding fragment thereof that specifically binds to Pseudomonas PcrV (a) promotes, mediates, or enhances opsonophagocytic killing (OPK) of P. aeruginosa, and/or (b) disrupts the activity of the type III toxin secretion system.
Although anti-PcrV antibodies containing human sequences (e.g., human heavy and light chain variable domain sequences comprising human CDR sequences) are extensively discussed herein, non-human anti-PcrV antibodies are also contemplated. In some embodiments, non-human anti-PcrV antibodies comprise human CDR sequences from an anti-PcrV antibody as described herein and non-human framework sequences. Non-human framework sequences include, in some embodiments, any sequence that can be used for generating synthetic heavy and/or light chain variable domains using one or more human CDR sequences as described herein, including, e.g., mammals, e.g., mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo) , deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey) , etc. In some embodiments, a non-human anti-PcrV antibody includes an anti-PcrV antibody generated by grafting one or more human CDR sequences as described herein onto a non-human framework sequence (e.g., a mouse or chicken framework sequence) .
The complete amino acid sequence of an exemplary PcrV protein comprises or consists of the amino acid sequence of SEQ ID NO: 80. In some embodiments, the anti-PcrV antibody described herein specifically recognizes an epitope within Pseudomonas PcrV. In some embodiments, the anti-PcrV antibody is specific for Pseudomonas PcrV and does not exhibit species cross-reactivity or other types of non-Pseudomonas protein cross-reactivity.
In some embodiments, the anti-PcrV antibody comprises an antibody heavy chain constant region and an antibody light chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG1 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG2 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG3 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG4 heavy chain constant region. In some embodiments, the IgG is a human IgG. In some embodiments, the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82. In some embodiments, the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83. In some embodiments, the anti-PcrV comprises a lambda light chain constant region. In some embodiments, the anti-PcrV antibody comprises a kappa light chain constant region. In some embodiments, the light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81. In some embodiments, the anti-PcrV antibody comprises an antibody heavy chain variable domain and an antibody light chain variable domain.
In one aspect, the present application provides an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX
1EX
2SX
3SYADSVKG (SEQ ID NO: 50) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, T, N, L, I, S, V, A or H; X
2 is S, T, N, D, G or R; and X
3 is I or T; and an HC-CDR3 comprising DGX
1X
2X
3X
4X
5DX
6 (SEQ ID NO: 51) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is P, Y or A, X
2 is Y or W, X
3 is D, T or N, X
4 is S, T or A, X
5 is L, F or M, X
6 is I, V, A, S, L or W; and a light chain variable domain (VL) comprising a light chain complementarity determining region (LC-CDR) 1 comprising RASQX
1VX
2X
3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, N, D or G, X
2 is S, K, N, R or T, X
3 is N, S, D or G; a LC-CDR2 comprising X
1ASSRAT (SEQ ID NO: 85) , or a variant thereof comprising up to about 3 amino acid substitutions; wherein X
1 is D, N, H, A or S; and a LC-CDR3 comprising QQYGX
1X
2PX
3T (SEQ ID NO: 86) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, A, T, E, D, H, N, Q, G, L, Y, M, R or V, X
2 is S, Q, V, E, T, D, M, Y, G, H, L, N, A, F or P, and X
3 is I, L or V.
In some embodiments, there is provided an isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises a heavy chain variable domain (VH) comprising: a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX
1EX
2SISYADSVKG (SEQ ID NO: 45) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, N, I, L or V, X
2 is S, T, R, G or N; and an HC-CDR3 comprising DGPYDX
1X
2DI (SEQ ID NO: 46) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, A or T, X
2 is F or L; and a light chain variable domain (VL) comprising: a light chain complementarity determining region (LC-CDR) 1 comprising RASQX
1VX
2X
3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is N, G, D or S, X
2 is K, R, S, N or T, X
3 is N, G, S or D; a LC-CDR2 comprising X
1ASSRAT (SEQ ID NO: 48) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is D, N, H or A; and a LC-CDR3 comprising QQYGX
1X
2PX
3T (SEQ ID NO: 49) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X
1 is S, T, E, H, N, A, D, M or L, X
2 is S, Q, E, T, D, G, H, L, N, V or Y, and X
3 is I, L or V.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NOs: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25 ; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
In some embodiments, the anti-PcrV is a full-length antibody. In some embodiments, the anti-PcrV antibody comprises IgG1 constant domains. In some embodiments, the IgG1 is human IgG1. In some embodiments, the anti-PcrV antibody comprises IgG4 constant domains. In some embodiments, the IgG4 is human IgG4. In some embodiments, the anti-PcrV heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82. In some embodiments, the anti-PcrV heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83. In some embodiments, the anti-PcrV light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V
L comprising: an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 52, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 52 and a V
L comprising the amino acid sequence of SEQ ID NO: 65. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 52; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 65.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 65. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 56; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 65.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 53, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 66, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 53 and a V
L comprising the amino acid sequence of SEQ ID NO: 66. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 53; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 66.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 62 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 62; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NO: 74.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 67, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 67. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 54; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 67.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 55, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 68, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 55 and a V
L comprising the amino acid sequence of SEQ ID NO: 68. In some embodiments, the anti- PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 55; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 68.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 69, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 69. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 56; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 69.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 64, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 64 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 64; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 78.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 70, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 70. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 56; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 70.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 71, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 71. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 57; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 71.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 72, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 72. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 54; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 72.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 73, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 73. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 56; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 73.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 58 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 58; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 74.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 59, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 75, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 59 and a V
L comprising the amino acid sequence of SEQ ID NO: 75. In some embodiments, the anti- PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 59; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 75.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 76, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 76. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 57; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 76.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 77. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 60; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 77.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 60; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 78.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 79, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 79. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 56; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 79.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 61, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 61 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 61; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 74.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that specifically competes with an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided an anti-PcrV antibody that binds to the same epitope as an antibody comprising a V
H comprising: an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 63, or a variant thereof having at least about 90% (for example at least about any of 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) sequence identity, and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least about 90%sequence identity. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 63 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the anti-PcrV antibody comprises a V
H comprising an HC-CDR1, an HC-CDR2 and an HC-CDR3 of the V
H comprising the amino acid sequence of SEQ ID NO: 63; and a V
L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V
L comprising the amino acid sequence of SEQ ID NOs: 78.
In some embodiments, competition assays may be used to identify a monoclonal antibody that competes with an anti-PcrV antibody described herein for binding to PcrV. Competition assays can be used to determine whether two antibodies bind the same epitope by recognizing identical or sterically overlapping epitopes or one antibody competitively inhibits binding of another antibody to the antigen. In certain embodiments, such a competing antibody binds to the same epitope that is bound by an antibody described herein. Exemplary competition assays include, but are not limited to, routine assays such as those provided in Harlow and Lane (1988) Antibodies: A Laboratory Manual ch. 14 (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. ) . Detailed exemplary methods for mapping an epitope to which an antibody binds are provided in Morris (1996) "Epitope Mapping Protocols, " in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, N.J. ) . In some embodiments, two antibodies are said to bind to the same epitope if each blocks binding of the other by 50%or more. In some embodiments, the antibody that competes with an anti-PcrV antibody described herein is a chimeric, humanized, or human antibody.
Exemplary anti-PcrV antibody sequences are shown in Tables 2 and 3. Those skilled in the art will recognize that many algorithms are known for prediction of CDR positions and for delimitation of antibody heavy chain and light chain variable regions. Anti-PcrV antibodies comprising CDRs, V
H and/or V
L sequences from antibodies described herein, but based on prediction algorithms other than those exemplified in the tables below, are within the scope of this invention.
Binding affinity
Binding affinity can be indicated by Kd, Koff, Kon, or Ka. The term “Koff” , as used herein, is intended to refer to the off-rate constant for dissociation of an antibody from the antibody /antigen complex, as determined from a kinetic selection set up. The term “Kon” , as used herein, is intended to refer to the on-rate constant for association of an antibody to the antigen to form the antibody/antigen complex. The term dissociation constant “Kd” , as used herein, refers to the dissociation constant of a particular antibody-antigen interaction, and describes the concentration of antigen required to occupy one half of all of the antibody-binding domains present in a solution of antibody molecules at equilibrium, and is equal to Koff/Kon. The measurement of Kd presupposes that all binding agents are in solution. In the case where the antibody is tethered to a cell wall, e.g., in a yeast expression system, the corresponding equilibrium rate constant is expressed as EC50, which gives a good approximation of Kd. The affinity constant, Ka, is the inverse of the dissociation constant, Kd.
The dissociation constant (Kd) is used as an indicator showing affinity of antibody moieties to antigens. For example, easy analysis is possible by the Scatchard method using antibodies marked with a variety of marker agents, as well as by using Biacore (made by Amersham Biosciences) , analysis of biomolecular interactions by surface plasmon resonance, according to the user's manual and attached kit. The Kd value that can be derived using these methods is expressed in units of M. An antibody that specifically binds to a target may have a Kd of, for example, ≤ 10
-7 M, ≤ 10
-8 M, ≤ 10
-9 M, ≤ 10
-10 M, ≤ 10
-11 M, ≤ 10
-12 M, or ≤ 10
-13 M.
Binding specificity of the antibody can be determined experimentally by methods known in the art. Such methods comprise, but are not limited to, Western blots, ELISA-, RIA-, ECL-, IRMA-, EIA-, BIAcore-tests and peptide scans.
In some embodiments, the anti-PcrV antibody specifically binds to a target PcrV with a Kd of about 10
-7 M to about 10
-13 M (such as about 10
-7 M to about 10
-13 M, about 10
-8 M to about 10
-13 M, about 10
-9 M to about 10
-13 M, or about 10
-10 M to about 10
-12 M) . Thus in some embodiments, the Kd of the binding between the anti-PcrV antibody and PcrV, is about 10
-7 M to about 10
-13 M, about 1×10
-7 M to about 5×10
-13 M, about 10
-7 M to about 10
-12 M, about 10
-7 M to about 10
-11 M, about 10
-7 M to about 10
-10 M, about 10
-7 M to about 10
-9 M, about 10
-8 M to about 10
-13 M, about 1×10
-8 M to about 5×10
-13 M, about 10
-8 M to about 10
-12 M, about 10
-8 M to about 10
-11 M, about 10
-8 M to about 10
-10 M, about 10
-8 M to about 10
-9 M, about 5×10
-9 M to about 1×10
-13 M, about 5×10
-9 M to about 1×10
-12 M, about 5×10
-9 M to about 1×10
-11 M, about 5×10
-9 M to about 1×10
-10 M, about 10
-9 M to about 10
-13 M, about 10
-9 M to about 10
-12 M, about 10
-9 M to about 10
-11 M, about 10
-9 M to about 10
-10 M, about 5×10
-10 M to about 1×10
-13 M, about 5×10
-10 M to about 1×10
-12 M, about 5×10
-10 M to about 1×10
-11 M, about 10
-10 M to about10
-13 M, about 1×10
-10 M to about 5×10
-13 M, about 1×10
-10 M to about 1×10
-12 M, about 1×10
-10 M to about 5×10
-12 M, about 1×10
-10 M to about 1×10
-11 M, about 10
-11 M to about 10
-13 M, about 1×10
-11 M to about 5×10
-13 M, about 10
-11 M to about 10
-12 M, or about 10
-12 M to about 10
-13 M. In some embodiments, the Kd of the binding between the anti-PcrV antibody and a PcrV is about 10
-7 M to about 10
-13 M.
In some embodiments, the Kd of the binding between the anti-PcrV antibody and a non-target is higher than the Kd of the binding between the anti-PcrV antibody and the target, and is herein referred to in some embodiments as the binding affinity of the anti-PcrV antibody to the target (e.g., PcrV) is higher than that to a non-target. In some embodiments, the non-target is an antigen that is not PcrV. In some embodiments, the Kd of the binding between the anti-PcrV antibody (against PcrV) and a non-PcrV target can be at least about 10 times, such as about 10-100 times, about 100-1000 times, about 10
3-10
4 times, about 10
4-10
5 times, about 10
5-10
6 times, about 10
6-10
7 times, about 10
7-10
8 times, about 10
8-10
9 times, about 10
9-10
10 times, about 10
10-10
11 times, or about 10
11-10
12 times of the Kd of the binding between the anti-PcrV antibody and a target PcrV.
Nucleic Acids
Nucleic acid molecules encoding the anti-PcrV antibodies are also contemplated. In some embodiments, there is provided a nucleic acid (or a set of nucleic acids) encoding a full-length anti-PcrV antibody, including any of the full-length anti-PcrV antibodies described herein. In some embodiments, the nucleic acid (or a set of nucleic acids) encoding the anti-PcrV antibody described herein may further comprises a nucleic acid sequence encoding a peptide tag (such as protein purification tag, e.g., His-tag, HA tag) .
Also contemplated here are isolated host cells comprising an anti-PcrV antibody, an isolated nucleic acid encoding the polypeptide components of the anti-PcrV antibody, or a vector comprising a nucleic acid encoding the polypeptide components of the anti-PcrV antibody described herein.
The present application also includes variants to these nucleic acid sequences. For example, the variants include nucleotide sequences that hybridize to the nucleic acid sequences encoding the anti-PcrV antibodies of the present application under at least moderately stringent hybridization conditions.
The present application also provides vectors in which a nucleic acid of the present application is inserted.
In brief summary, the expression of an anti-PcrV antibody (e.g., full-length anti-PcrV antibody) by a natural or synthetic nucleic acid encoding the anti-PcrV antibody can be achieved by inserting the nucleic acid into an appropriate expression vector, such that the nucleic acid is operably linked to 5’ and 3’ regulatory elements, including for example a promoter (e.g., a lymphocyte-specific promoter) and a 3’ untranslated region (UTR) . The vectors can be suitable for replication and integration in eukaryotic host cells. Typical cloning and expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.
The nucleic acids of the present application may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346; 5,580,859; 5,589,466, incorporated by reference herein in their entireties. In some embodiments, the application provides a gene therapy vector.
The nucleic acid can be cloned into a number of types of vectors. For example, the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
Further, the expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Green and Sambrook (2013, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York) , and in other virology and molecular biology manuals. Viruses which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses. In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers (see, e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193) .
A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems are known in the art. In some embodiments, adenovirus vectors are used. A number of adenovirus vectors are known in the art. In some embodiments, lentivirus vectors are used. Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses such as murine leukemia viruses in that they can transduce non-proliferating cells, such as hepatocytes. They also have the added advantage of low immunogenicity.
Additional promoter elements, e.g., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline.
One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. Another example of a suitable promoter is Elongation Growth Factor-1α(EGF-1α) . However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV) , human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the application should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the application. The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.
In some embodiments, the expression of the anti-PcrV antibody is inducible. In some embodiments, a nucleic acid sequence encoding the anti-PcrV antibody is operably linked to an inducible promoter, including any inducible promoter described herein. Inducible promoters
The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Exemplary inducible promoter systems for use in eukaryotic cells include, but are not limited to, hormone-regulated elements (e.g., see Mader, S. and White, J.H. (1993) Proc. Natl. Acad. Sci. USA 90: 5603-5607) , synthetic ligand-regulated elements (see, e.g., Spencer, D.M. et al 1993) Science 262: 1019-1024) and ionizing radiation-regulated elements (e.g., see Manome, Y. et al. (1993) Biochemistry 32: 10607-10613; Datta, R. et al. (1992) Proc. Natl. Acad. Sci. USA 89: 1014-10153) . Further exemplary inducible promoter systems for use in in vitro or in vivo mammalian systems are reviewed in Gingrich et al. (1998) Annual Rev. Neurosci 21: 377-405. In some embodiments, the inducible promoter system for use to express the anti-PcrV antibody is the Tet system. In some embodiments, the inducible promoter system for use to express the anti-PcrV antibody is the lac repressor system from E. coli.
An exemplary inducible promoter system for use in the present application is the Tet system. Such systems are based on the Tet system described by Gossen et al. (1993) . In an exemplary embodiment, a polynucleotide of interest is under the control of a promoter that comprises one or more Tet operator (TetO) sites. In the inactive state, Tet repressor (TetR) will bind to the TetO sites and repress transcription from the promoter. In the active state, e.g., in the presence of an inducing agent such as tetracycline (Tc) , anhydrotetracycline, doxycycline (Dox) , or an active analog thereof, the inducing agent causes release of TetR from TetO, thereby allowing transcription to take place. Doxycycline is a member of the tetracycline family of antibiotics having the chemical name of 1-dimethylamino-2, 4a, 5, 7, 12-pentahydroxy-11-methyl-4, 6-dioxo-1, 4a, 11, 11a, 12, 12a-hexahydrotetracene-3-carboxamide.
In one embodiment, a TetR is codon-optimized for expression in mammalian cells, e.g., murine or human cells. Most amino acids are encoded by more than one codon due to the degeneracy of the genetic code, allowing for substantial variations in the nucleotide sequence of a given nucleic acid without any alteration in the amino acid sequence encoded by the nucleic acid. However, many organisms display differences in codon usage, also known as “codon bias” (i.e., bias for use of a particular codon (s) for a given amino acid) . Codon bias often correlates with the presence of a predominant species of tRNA for a particular codon, which in turn increases efficiency of mRNA translation. Accordingly, a coding sequence derived from a particular organism (e.g., a prokaryote) may be tailored for improved expression in a different organism (e.g., a eukaryote) through codon optimization.
Other specific variations of the Tet system include the following “Tet-Off” and “Tet-On” systems. In the Tet-Off system, transcription is inactive in the presence of Tc or Dox. In that system, a tetracycline-controlled transactivator protein (tTA) , which is composed of TetR fused to the strong transactivating domain of VP16 from Herpes simplex virus, regulates expression of a target nucleic acid that is under transcriptional control of a tetracycline-responsive promoter element (TRE) . The TRE is made up of TetO sequence concatamers fused to a promoter (commonly the minimal promoter sequence derived from the human cytomegalovirus (hCMV) immediate-early promoter) . In the absence of Tc or Dox, tTA binds to the TRE and activates transcription of the target gene. In the presence of Tc or Dox, tTA cannot bind to the TRE, and expression from the target gene remains inactive.
Conversely, in the Tet-On system, transcription is active in the presence of Tc or Dox. The Tet-On system is based on a reverse tetracycline-controlled transactivator, rtTA. Like tTA, rtTA is a fusion protein comprised of the TetR repressor and the VP16 transactivation domain. However, a four amino acid change in the TetR DNA binding moiety alters rtTA's binding characteristics such that it can only recognize the tetO sequences in the TRE of the target transgene in the presence of Dox. Thus, in the Tet-On system, transcription of the TRE-regulated target gene is stimulated by rtTA only in the presence of Dox.
Another inducible promoter system is the lac repressor system from E. coli (See Brown et al., Cell 49: 603-612 (1987) ) . The lac repressor system functions by regulating transcription of a polynucleotide of interest operably linked to a promoter comprising the lac operator (lacO) . The lac repressor (lacR) binds to LacO, thus preventing transcription of the polynucleotide of interest. Expression of the polynucleotide of interest is induced by a suitable inducing agent, e.g., isopropyl-β-D-thiogalactopyranoside (IPTG) .
In order to assess the expression of a polypeptide or portions thereof, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.
Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, β-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tel et al., 2000 FEBS Letters 479: 79-82) . Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5’ flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.
In some embodiments, there is provided nucleic acid encoding a full-length anti-PcrV antibody according to any of the full-length anti-PcrV antibodies described herein. In some embodiments, the nucleic acid comprises one or more nucleic acid sequences encoding the heavy and light chains of the full-length anti-PcrV antibody. In some embodiments, each of the one or more nucleic acid sequences is contained in separate vectors. In some embodiments, at least some of the nucleic acid sequences are contained in the same vector. In some embodiments, all of the nucleic acid sequences are contained in the same vector. Vectors may be selected, for example, from the group consisting of mammalian expression vectors and viral vectors (such as those derived from retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses) .
Methods of introducing and expressing genes into a cell are known in the art. In the context of an expression vector, the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art. For example, the expression vector can be transferred into a host cell by physical, chemical, or biological means.
Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Green and Sambrook (2013, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York) . In some embodiments, the introduction of a polynucleotide into a host cell is carried out by calcium phosphate transfection.
Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors. Viral vectors, and especially retroviral vectors, have become the most widely used method of inserting genes into mammalian, e.g., human cells. Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus 1, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and 5,585,362.
Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g., an artificial membrane vesicle) .
In the case where a non-viral delivery system is utilized, an exemplary delivery vehicle is a liposome. The use of lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo) . In another aspect, the nucleic acid may be associated with a lipid. The nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid. Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution. For example, they may be present in a bilayer structure, as micelles, or with a “collapsed” structure. They may also simply be interspersed in a solution, possibly forming aggregates that are not uniform in size or shape. Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.
Regardless of the method used to introduce exogenous nucleic acids into a host cell or otherwise expose a cell to the inhibitor of the present application, in order to confirm the presence of the recombinant DNA sequence in the host cell, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR; “biochemical” assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the application.
Preparation of anti-PcrV antibodies
In some embodiments, the anti-PcrV antibody is a monoclonal antibody or derived from a monoclonal antibody. In some embodiments, the anti-PcrV antibody comprises V
H and V
L domains, or variants thereof, from the monoclonal antibody. In some embodiments, the anti-PcrV antibody further comprises C
H1 and C
L domains, or variants thereof, from the monoclonal antibody. Monoclonal antibodies can be prepared, e.g., using known methods in the art, including hybridoma methods, yeast display, phage display methods, or using recombinant DNA methods. Additionally, exemplary yeast display and phage display methods are described herein and in the Examples below.
In a hybridoma method, a hamster, mouse, or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent can include a polypeptide or a fusion protein of the protein of interest. Generally, peripheral blood lymphocytes ( “PBLs” ) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine, and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT) , the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ( “HAT medium” ) , which prevents the growth of HGPRT-deficient cells.
In some embodiments, the immortalized cell lines fuse efficiently, support stable high-level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. In some embodiments, the immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies.
The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the polypeptide. The binding specificity of monoclonal antibodies produced by the hybridoma cells can be determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA) . Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107: 220 (1980) .
After the desired hybridoma cells are identified, the clones can be sub-cloned by limiting dilution procedures and grown by standard methods. Goding, supra. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.
The monoclonal antibodies secreted by the sub-clones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
In some embodiments, according to any of the anti-PcrV antibodies described herein, the anti-PcrV antibody comprises sequences from a clone selected from an antibody library (such as a phage library presenting scFv or Fab fragments) . The clone may be identified by screening combinatorial libraries for antibody fragments with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al., Methods in Molecular Biology 178: 1-37 (O'Brien et al., ed., Human Press, Totowa, N.J., 2001) and further described, e.g., in McCafferty et al., Nature 348: 552-554; Clackson et al., Nature 352: 624-628 (1991) ; Marks et al., J. Mol. Biol. 222: 581-597 (1992) ; Marks and Bradbury, Methods in Molecular Biology 248: 161-175 (Lo, ed., Human Press, Totowa, N.J., 2003) ; Sidhu et al., J. Mol. Biol. 338 (2) : 299-310 (2004) ; Lee et al., J. Mol. Biol. 340 (5) : 1073-1093 (2004) ; Fellouse, Proc. Natl. Acad. Sci. USA 101 (34) : 12467-12472 (2004) ; and Lee et al., J. Immunol. Methods 284 (1-2) : 119-132 (2004) .
In certain phage display methods, repertoires of V
H and V
L genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994) . Phages typically display antibody fragments, either as scFv fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self-antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993) . Finally, naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992) . Patent publications describing human antibody phage libraries include, for example: U.S. Pat. No. 5,750,373, and US Patent Publication Nos. 2005/0079574, 2005/0119455, 2005/0266000, 2007/0117126, 2007/0160598, 2007/0237764, 2007/0292936, and 2009/0002360.
The anti-PcrV antibodies can be prepared using phage display to screen libraries for anti-PcrV antibody moieties specific to the target PcrV. The library can be a human scFv phage display library having a diversity of at least 1 × 10
9 (such as at least about any of 1 ×10
9, 2.5 × 10
9, 5 × 10
9, 7.5 × 10
9, 1 × 10
10, 2.5 × 10
10, 5 × 10
10, 7.5 × 10
10, or 1 × 10
11) unique human antibody fragments. In some embodiments, the library is a
human library constructed from DNA extracted from human PMBCs and spleens from healthy donors, encompassing all human heavy and light chain subfamilies. In some embodiments, the library is a
human library constructed from DNA extracted from PBMCs isolated from patients with various diseases, such as patients with autoimmune diseases, cancer patients, and patients with infectious diseases. In some embodiments, the library is a semi-synthetic human library, wherein heavy chain CDR3 is completely randomized, with all amino acids (with the exception of cysteine) equally likely to be present at any given position (see, e.g., Hoet, R.M. et al., Nat. Biotechnol. 23 (3) : 344-348, 2005) . In some embodiments, the heavy chain CDR3 of the semi-synthetic human library has a length from about 5 to about 24 (such as about any of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24) amino acids. In some embodiments, the library is a fully-synthetic phage display library. In some embodiments, the library is a non-human phage display library.
Phage clones that bind to the target PcrV with high affinity can be selected by iterative binding of phage to the target PcrV, which is bound to a solid support (such as, for example, beads for solution panning or mammalian cells for cell panning) , followed by removal of non-bound phage and by elution of specifically bound phage. The bound phage clones are then eluted and used to infect an appropriate host cell, such as E. coli XL1-Blue, for expression and purification. The panning can be performed for multiple (such as about any of 2, 3, 4, 5, 6 or more) rounds with solution panning, cell panning, or a combination of both, to enrich for phage clones binding specifically to the target PcrV. Enriched phage clones can be tested for specific binding to the target PcrV by any methods known in the art, including for example ELISA and FACS.
Monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the application can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies) . Hybridoma cells as described above or PcrV-specific phage clones of the application can serve as a source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy-and light-chain constant domains and/or framework regions in place of the homologous non-human sequences (U.S. Patent No. 4,816,567; Morrison et al., supra) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the application, or can be substituted for the variable domains of one antigen-combining site of an antibody of the application to create a chimeric bivalent antibody.
The antibodies can be monovalent antibodies. Methods for preparing monovalent antibodies are known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy-chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.
In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using any method known in the art.
Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant-domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. In some embodiments, the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding is present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism.
Human and Humanized Antibodies
The anti-PcrV antibodies (e.g., full-length anti-PcrV antibodies) can be humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibody moieties are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab’, F (ab’)
2, scFv, or other antigen-binding subsequences of antibodies) that typically contain minimal sequence derived from non-human immunoglobulin. Humanized antibody moieties include human immunoglobulins, immunoglobulin chains, or fragments thereof (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibody moieties can also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody can comprise substantially at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin, and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. According to some embodiments, humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986) ; Riechmann et al., Nature, 332: 323-327 (1988) ; Verhoeyen et al., Science, 239: 1534-1536 (1988) ) , by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibody moieties are antibody moieties (U.S. Patent No. 4,816,567) , wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibody moieties are typically human antibody moieties in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
As an alternative to humanization, human antibody moieties can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., PNAS USA, 90: 2551 (1993) ; Jakobovits et al., Nature, 362: 255-258 (1993) ; Bruggemann et al., Year in Immunol., 7: 33 (1993) ; U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669; 5,545,807; and WO 97/17852. Alternatively, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed that closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016, and Marks et al., Bio/Technology, 10: 779-783 (1992) ; Lonberg et al., Nature, 368: 856-859 (1994) ; Morrison, Nature, 368: 812-813 (1994) ; Fishwild et al., Nature Biotechnology, 14: 845-851 (1996) ; Neuberger, Nature Biotechnology, 14: 826 (1996) ; Lonberg and Huszar, Intern. Rev. Immunol., 13: 65-93 (1995) .
Human antibodies may also be generated by in vitro activated B cells (see U.S. Patents 5,567,610 and 5,229,275) or by using various techniques known in the art, including phage display libraries. Hoogenboom and Winter, J. Mol. Biol., 227: 381 (1991) ; Marks et al., J. Mol. Biol., 222: 581 (1991) . The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies. Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147 (1) : 86-95 (1991) .
Anti-PcrV antibody variants
In some embodiments, amino acid sequence of the anti-PcrV antibody variants (e.g., full-length anti-PcrV antibody) provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence of an antibody variant may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen-binding.
In some embodiments, anti-PcrV antibody variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the HVRs and FRs. Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g., improved bioactivity, retained/improved antigen binding, decreased immunogenicity, or improved opsonophagocytic killing (OPK) of pathogens, such as P. aeruginosa.
Conservative substitutions are shown in Table 5 below.
Amino acids may be grouped into different classes according to common side-chain properties:
a. hydrophobic: Norleucine, Met, Ala, Val, Leu, Ile;
b. neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
c. acidic: Asp, Glu;
d. basic: His, Lys, Arg;
e. residues that influence chain orientation: Gly, Pro;
f. aromatic: Trp, Tyr, Phe.
Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques. Briefly, one or more CDR residues are mutated and the variant antibody moieties displayed on phage and screened for a particular biological activity (e.g., bioactivity based on RBC lysis inhibition assay or binding affinity) . Alterations (e.g., substitutions) may be made in HVRs, e.g., to improve bioactivity based on RBC lysis inhibition assay or antibody affinity. Such alterations may be made in HVR “hotspots, ” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008) ) , and/or specificity determining residues (SDRs) , with the resulting variant V
H and V
L being tested for binding affinity. Affinity maturation by constructing and reselecting from secondary libraries has been described, e.g., in Hoogenboom et al. in Methods in Molecular Biology 178: 1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, (2001) . )
In some embodiments of affinity maturation, diversity is introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis) . A secondary library is then created. The library is then screened to identify any antibody variants with the desired affinity. Another method to introduce diversity involves HVR-directed approaches, in which several HVR residues (e.g., 4-6 residues at a time) are randomized. HVR residues involved in antigen binding may be specifically identified, e.g., using alanine scanning mutagenesis or modeling. CDR-H3 and CDR-L3 in particular are often targeted.
In some embodiments, substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen. For example, conservative alterations (e.g., conservative substitutions as provided herein) that do not substantially reduce binding affinity may be made in HVRs. Such alterations may be outside of HVR “hotspots” or SDRs. In some embodiments of the variant VH and VL sequences provided above, each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.
A useful method for identification of residues or regions of an antibody that may be targeted for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells (1989) Science, 244: 1081-1085. In this method, a residue or group of target residues (e.g., charged residues such as arg, asp, his, lys, and glu) are identified and replaced by a neutral or negatively charged amino acid (e.g., alanine or glu) to determine whether the interaction of the antibody with antigen is affected. Further substitutions may be introduced at the amino acid locations to demonstrate functional sensitivity to the initial substitutions. Alternatively, or additionally, a crystal structure of an antigen-antibody complex can be determined to identify contact points between the antibody and antigen. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution. Variants may be screened to determine whether they contain the desired properties.
Amino acid sequence insertions include amino-and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue. Other insertional variants of the antibody molecule include the fusion to the N-or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
Fc Region Variants
In some embodiments, one or more amino acid modifications may be introduced into the Fc region of an antibody (e.g., a full-length anti-PcrV antibody or anti-PcrV Fc fusion protein) provided herein, thereby generating an Fc region variant. In some embodiments, the Fc region variant has enhanced ADCC effector function, often related to binding to Fc receptors (FcRs) . In some embodiments, the Fc region variant has decreased ADCC effector function. There are many examples of changes or mutations to Fc sequences that can alter effector function. For example, WO 00/42072 and Shields et al. J Biol. Chem. 9 (2) : 6591-6604 (2001) describe antibody variants with improved or diminished binding to FcRs. The contents of those publications are specifically incorporated herein by reference.
Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is a mechanism of action of therapeutic antibodies against tumor cells. ADCC is a cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell (e.g., an infected cell) , whose membrane-surface antigens have been bound by specific antibodies (e.g., an anti-PcrV antibody) . The typical ADCC involves activation of NK cells by antibodies. An NK cell expresses CD16 which is an Fc receptor. This receptor recognizes, and binds to, the Fc portion of an antibody bound to the surface of a target cell. The most common Fc receptor on the surface of an NK cell is called CD16 or FcγRIII. Binding of the Fc receptor to the Fc region of an antibody results in NK cell activation, release of cytolytic granules and consequent target cell apoptosis.
In some embodiments, the application contemplates an anti-PcrV antibody variant (such as a full-length anti-PcrV antibody variant) comprising an Fc region that possesses some but not all effector functions, which makes it a desirable candidate for applications in which the half-life of the anti-PcrV antibody in vivo is important yet certain effector functions (such as CDC and ADCC) are unnecessary or deleterious. In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities. For example, Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks FcγR binding (hence likely lacking ADCC activity) , but retains FcRn binding ability. The primary cells for mediating ADCC, NK cells, express FcγRIII only, whereas monocytes express FcγRI, FcγRII and FcγRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991) . Non-limiting examples of in vitro assays to assess ADCC activity of a molecule of interest is described in U.S. Pat. No. 5,500,362 (see, e.g. Hellstrom, I. et al. Proc. Nat'l Acad. Sci. USA 83: 7059-7063 (1986) ) and Hellstrom, I et al., Proc. Nat'l Acad. Sci. USA 82: 1499-1502 (1985) ; U.S. Pat. No. 5,821,337 (see Bruggemann, M. et al., J. Exp. Med. 166: 1351-1361 (1987) ) . Alternatively, non-radioactive assay methods may be employed (see, for example, ACTI
TM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, Calif.; and CytoTox 96
TM non-radioactive cytotoxicity assay (Promega, Madison, Wis. ) . Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed in Clynes et al. Proc. Nat'l Acad. Sci. USA 95: 652-656 (1998) . C1q binding assays may also be carried out to confirm that the antibody is unable to bind C1q and hence lacks CDC activity. See, e.g., C1q and C3c binding ELISA in WO 2006/029879 and WO 2005/100402. To assess complement activation, a CDC assay may be performed (see, for example, Gazzano-Santoro et al., J. Immunol. Methods 202: 163 (1996) ; Cragg, M.S. et al., Blood 101: 1045-1052 (2003) ; and Cragg, M.S. and M. J. Glennie, Blood 103: 2738-2743 (2004) ) . FcRn binding and in vivo clearance/half-life determinations can also be performed using methods known in the art (see, e.g., Petkova, S.B. et al., Int'l. Immunol. 18 (12) : 1759-1769 (2006) ) .
Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 (U.S. Pat. No. 6,737,056) . Such Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called “DANA” Fc mutant with substitution of residues 265 and 297 to alanine (U.S. Pat. No. 7,332,581) .
Certain antibody variants with improved or diminished binding to FcRs are described. (See, e.g., U.S. Pat. No. 6,737,056; WO 2004/056312, and Shields et al., J. Biol. Chem. 9 (2) : 6591-6604 (2001) . )
In some embodiments, alterations are made in the Fc region that result in altered (i.e., either improved or diminished) opsonization, e.g. such as described in Moore et al., MAbs. 2 (2) : 181–189 (2010) .
In some embodiments, there is provided an anti-PcrV antibody (such as a full-length anti-PcrV antibody) variant comprising a variant Fc region comprising one or more amino acid substitutions which increase half-life and/or improve binding to the neonatal Fc receptor (FcRn) . Antibodies with increased half-lives and improved binding to FcRn are described in US2005/0014934A1 (Hinton et al. ) . Those antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn. Such Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 (U.S. Pat. No. 7,371,826) .
See also Duncan &Winter, Nature 322: 738-40 (1988) ; U.S. Pat. No. 5,648,260; U.S. Pat. No. 5,624,821; and WO 94/29351 concerning other examples of Fc region variants.
Anti-PcrV antibodies (such as full-length anti-PcrV antibodies) comprising any of the Fc variants described herein, or combinations thereof, are contemplated.
Glycosylation Variants
In some embodiments, an anti-PcrV antibody (such as a full-length anti-PcrV antibody) provided herein is altered to increase or decrease the extent to which the anti-PcrV antibody is glycosylated. Addition or deletion of glycosylation sites to an anti-PcrV antibody may be conveniently accomplished by altering the amino acid sequence of the anti-PcrV antibody or polypeptide portion thereof such that one or more glycosylation sites are created or removed.
Where the anti-PcrV antibody comprises an Fc region, the carbohydrate attached thereto may be altered. Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al., TIBTECH 15: 26-32 (1997) . The oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc) , galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the “stem” of the biantennary oligosaccharide structure. In some embodiments, modifications of the oligosaccharide in an anti-PcrV antibody of the application may be made in order to create anti-PcrV antibody variants with certain improved properties.
The N-glycans attached to the CH2 domain of Fc is heterogeneous. Antibodies or Fc fusion proteins generated in CHO cells are fucosylated by fucosyltransferase activity. See Shoji-Hosaka et al., J. Biochem. 2006, 140: 777-83. Normally, a small percentage of naturally occurring afucosylated IgGs may be detected in human serum. N-glycosylation of the Fc is important for binding to FcγR; and afucosylation of the N-glycan increases Fc's binding capacity to FcγRIIIa. Increased FcγRIIIa binding can enhance ADCC, which can be advantageous in certain antibody therapeutic applications in which cytotoxicity is desirable.
In some embodiments, an enhanced effector function can be detrimental when Fc-mediated cytotoxicity is undesirable. In some embodiments, the Fc fragment or CH2 domain is not glycosylated. In some embodiments, the N-glycosylation site in the CH2 domain is mutated to prevent from glycosylation.
In some embodiments, anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants are provided comprising an Fc region wherein a carbohydrate structure attached to the Fc region has reduced fucose or lacks fucose, which may improve ADCC function. Specifically, anti-PcrV antibodies are contemplated herein that have reduced fucose relative to the amount of fucose on the same anti-PcrV antibody produced in a wild-type CHO cell. That is, they are characterized by having a lower amount of fucose than they would otherwise have if produced by native CHO cells (e.g., a CHO cell that produce a native glycosylation pattern, such as, a CHO cell containing a native FUT8 gene) . In some embodiments, the anti-PcrV antibody is one wherein less than about 50%, 40%, 30%, 20%, 10%, or 5%of the N-linked glycans thereon comprise fucose. For example, the amount of fucose in such an anti-PcrV antibody may be from 1%to 80%, from 1%to 65%, from 5%to 65%or from 20%to 40%. In some embodiments, the anti-PcrV antibody is one wherein none of the N-linked glycans thereon comprise fucose, i.e., wherein the anti-PcrV antibody is completely without fucose, or has no fucose or is afucosylated. The amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e.g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546, for example. Asn297 refers to the asparagine residue located at about position 297 in the Fc region (EU numbering of Fc region residues) ; however, Asn297 may also be located about ±3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L. ) ; US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd) . Examples of publications related to “defucosylated” or “fucose-deficient” antibody variants include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US 2003/0115614; US 2002/0164328; US 2004/0093621; US 2004/0132140; US 2004/0110704; US 2004/0110282; US 2004/0109865; WO 2003/085119; WO 2003/084570; WO 2005/035586; WO 2005/035778; WO2005/053742; WO2002/031140; Okazaki et al. J. Mol. Biol. 336: 1239-1249 (2004) ; Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004) . Examples of cell lines capable of producing defucosylated antibodies include Lec13 CHO cells deficient in protein fucosylation (Ripka et al. Arch. Biochem. Biophys. 249: 533-545 (1986) ; US Pat Appl No US 2003/0157108 A1, Presta, L; and WO 2004/056312 A1, Adams et al., especially at Example 11) , and knockout cell lines, such asα-1, 6-fucosyltransferase gene, FUT8, knockout CHO cells (see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004) ; Kanda, Y. et al., Biotechnol. Bioeng., 94 (4) : 680-688 (2006) ; and WO2003/085107) .
Anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the anti-PcrV antibody is bisected by GlcNAc. Such anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet et al. ) ; U.S. Pat. No. 6,602,684 (Umana et al. ) ; US 2005/0123546 (Umana et al. ) , and Ferrara et al., Biotechnology and Bioengineering, 93 (5) : 851-861 (2006) . Anti-PcrV antibody (such as full-length anti-PcrV antibody) variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided. Such anti-PcrV antibody variants may have improved CDC function. Such antibody variants are described, e.g., in WO 1997/30087 (Patel et al. ) ; WO 1998/58964 (Raju, S. ) ; and WO 1999/22764 (Raju, S. ) .
In some embodiments, the anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants comprising an Fc region are capable of binding to an FcγRIII. In some embodiments, the anti-PcrV antibody (such as a full-length anti-PcrV antibody) variants comprising an Fc region have ADCC activity in the presence of human effector cells (e.g., T cell) or have increased ADCC activity in the presence of human effector cells compared to the otherwise same anti-PcrV antibody (such as a full-length anti-PcrV antibody) comprising a human wild-type Fc region.
Cysteine Engineered Variants
In some embodiments, it may be desirable to create cysteine engineered anti-PcrV antibodies (such as a full-length anti-PcrV antibody) in which one or more amino acid residues are substituted with cysteine residues. In some embodiments, the substituted residues occur at accessible sites of the anti-PcrV antibody. By substituting those residues with cysteine, reactive thiol groups are thereby positioned at accessible sites of the anti-PcrV antibody and may be used to conjugate the anti-PcrV antibody to other moieties, such as drug moieties or linker-drug moieties, to create an anti-PcrV immunoconjugate, as described further herein. Cysteine engineered anti-PcrV antibodies (e.g., full-length anti-PcrV antibodies) may be generated as described, e.g., in U.S. Pat. No. 7,521,541.
Derivatives
In some embodiments, an anti-PcrV antibody (such as a full-length anti-PcrV antibody) provided herein may be further modified to contain additional non-proteinaceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the anti-PcrV antibody include but are not limited to water soluble polymers. Non-limiting examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG) , copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1, 3-dioxolane, poly-1, 3, 6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers) , and dextran or poly (n-vinyl pyrrolidone) polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol) , polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight, and may be branched or unbranched. The number of polymers attached to the anti-PcrV antibody may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of anti-PcrV antibody to be improved, whether the anti-PcrV antibody derivative will be used in a therapy under defined conditions, etc.
In some embodiments, conjugates of an anti-PcrV antibody (such as a full-length anti-PcrV antibody) and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided. In some embodiments, the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005) ) . The radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the anti-PcrV antibody-nonproteinaceous moiety are killed.
Pharmaceutical Compositions
Also provided herein are compositions (such as pharmaceutical compositions, also referred to herein as formulations) comprising any of the anti-PcrV antibodies (such as a full-length anti-PcrV antibody) , nucleic acids encoding the antibodies, vectors comprising the nucleic acids encoding the antibodies, or host cells comprising the nucleic acids or vectors described herein. In some embodiments, there is provided a pharmaceutical composition comprising any one of the anti-PcrV antibodies described herein and a pharmaceutically acceptable carrier.
Suitable formulations of the anti-PcrV antibodies are obtained by mixing an anti-PcrV antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980) ) , in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propylparaben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol) ; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes) ; and/or non-ionic surfactants such as TWEEN
TM, PLURONICS
TM or polyethylene glycol (PEG) . Exemplary formulations are described in WO98/56418, expressly incorporated herein by reference. Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the individual to be treated herein. Lipofectins or liposomes can be used to deliver the anti-PcrV antibodies of this application into cells.
The formulation herein may also contain one or more active compounds in addition to the anti-PcrV antibody (such as a full-length anti-PcrV antibody) as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide an anti-neoplastic agent, a growth inhibitory agent, a cytotoxic agent, or a chemotherapeutic agent in addition to the anti-PcrV antibody. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The effective amount of such other agents depends on the amount of anti-PcrV antibody present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99%of the heretofore employed dosages.
The anti-PcrV antibodies (e.g., full-length anti-PcrV antibodies) may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly- (methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Sustained-release preparations may be prepared.
Sustained-release preparations of the anti-PcrV antibodies (e.g., full-length anti-PcrV antibodies) can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody (or fragment thereof) , which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly (2-hydroxyethyl-methacrylate ) , or poly (vinylalcohol) ) , polylactides (U.S. Pat. No. 3,773,919) , copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT
TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate) , and poly-D (-) -3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydro gels release proteins for shorter time periods. When encapsulated antibody remain in the body for a long time, they can denature or aggregate as a result of exposure to moisture at 37 ℃, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization of anti-PcrV antibodies depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-Sbond formation through thio-disulfide interchange, stabilization can be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
In some embodiments, the anti-PcrV antibody (such as a full-length anti-PcrV antibody) is formulated in a buffer comprising a citrate, NaCl, acetate, succinate, glycine, polysorbate 80 (Tween 80) , or any combination of the foregoing. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 100 mM to about 150 mM glycine. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 50mM to about 100 mM NaCl. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 10mM to about 50 mM acetate. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 10mM to about 50 mM succinate. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising about 0.005%to about 0.02%polysorbate 80. In some embodiments, the anti-PcrV antibody is formulated in a buffer having a pH between about 5.1 and 5.6. In some embodiments, the anti-PcrV antibody is formulated in a buffer comprising 10 mM citrate, 100 mM NaCl, 100mM glycine, and 0.01%polysorbate 80, wherein the formulation is at pH 5.5.
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by, e.g., filtration through sterile filtration membranes.
Methods of treatment or prevention using anti-PcrV antibodies
In certain aspects, there is provided a method of treating a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising any of the anti-PcrV antibodies described herein. In some embodiments, the method of treating a Pseudomonas infection further provides therapeutic or prophylactic effect on diseases and/or conditions associated with Pseudomonas infection. In some aspects, there is provided a method of preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising any of the anti-PcrV antibodies described herein. In some embodiments, use of the anti-PcrV antibody according to any one of the anti-PcrV antibodies described above, or a pharmaceutical composition comprising an anti-PcrV antibody according to any one of the pharmaceutical compositions described above in the manufacture of a medicament for treating a disease or condition.
Diseases and/or conditions associated with Pseudomonas infection include, but are not limited to fever, chills, fatigues, muscle and joint pain, swelling of joints, headache, diarrhea, skin rashes, pus in wounds, bacteremia, acute pneumonia, intraperitoneal infection. Further exemplary diseases include, but are not limited to, respiratory tract infections, bacteremia, septic shock, suppurative arthritis, enteritis, skin and soft tissue infections (such as burn wound infections) , urinary tract infections, intestinal infections, ulcerative keratitis, chronic suppurative otitis media, mastoiditis, sinusitis, and endocarditis. In some embodiments, the method of treating or preventing a Pseudomonas infection reduces rate of mortality resulting from the Pseudomonas infection.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody. In some embodiments, the anti-PcrV antibody specifically binds to a linear epitope within Pseudomonas PcrV. In some embodiments, the anti-PcrV described herein specifically binds to a nonlinear epitope within Pseudomonas PcrV.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody comprises a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, and a V
L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 52 and a V
L comprising the amino acid sequence of SEQ ID NO: 65. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 52 and a V
L comprising the amino acid sequence of SEQ ID NO: 65.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 52, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 52; and a V
L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 65.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 65. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 65.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V
L comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 65.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 53 and a V
L comprising the amino acid sequence of SEQ ID NO: 66. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 53 and a V
L comprising the amino acid sequence of SEQ ID NO: 66.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 53, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 53, and a V
L comprising the amino acid sequence of SEQ ID NO: 66, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 66.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 62 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 62 and a V
L comprising the amino acid sequence of SEQ ID NO: 74.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 62; and a V
L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74. In some embodiments, the method prevents a Pseudomonas infection in an individual.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 67. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 67.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 54; and a V
L comprising the amino acid sequence of SEQ ID NO: 67, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 67.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 55 and a V
L comprising the amino acid sequence of SEQ ID NO: 68. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 55 and a V
L comprising the amino acid sequence of SEQ ID NO: 68.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 55, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 55; and a V
L comprising the amino acid sequence of SEQ ID NO: 68, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 68.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 69. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 69.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V
L comprising the amino acid sequence of SEQ ID NO: 69, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 69.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 64 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 64 and a V
L comprising the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 64, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 64; and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 70. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 70.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V
L comprising the amino acid sequence of SEQ ID NO: 70, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 70.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 71. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 71.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 57; and a V
L comprising the amino acid sequence of SEQ ID NO: 71, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 71.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 72. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 54 and a V
L comprising the amino acid sequence of SEQ ID NO: 72.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 54, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 54; and a V
L comprising the amino acid sequence of SEQ ID NO: 72, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 72.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 73. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 73.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V
L comprising the amino acid sequence of SEQ ID NO: 73, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 73.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 58 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 58 and a V
L comprising the amino acid sequence of SEQ ID NO: 74.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody provided herein comprises a V
H comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74; and a V
L comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 59 and a V
L comprising the amino acid sequence of SEQ ID NO: 75. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 59 and a V
L comprising the amino acid sequence of SEQ ID NO: 75.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 59, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 59; and a V
L comprising the amino acid sequence of SEQ ID NO: 75, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 75.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 76. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 57 and a V
L comprising the amino acid sequence of SEQ ID NO: 76.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 57; and a V
L comprising the amino acid sequence of SEQ ID NO: 76, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 76.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 77. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 77.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 60; and a V
L comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 77.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 60 and a V
L comprising the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 60; and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 79. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 56 and a V
L comprising the amino acid sequence of SEQ ID NO: 79.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC- CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 56, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 56; and a V
L comprising the amino acid sequence of SEQ ID NO: 79, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 79.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 61 and a V
L comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 61 and a V
L comprising the amino acid sequence of SEQ ID NO: 74.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 61, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 61; and a V
L comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 74.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody competes with an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 63 and a V
L comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody, wherein the anti-PcrV antibody binds to the same epitope as an antibody comprising: a V
H comprising the amino acid sequence of SEQ ID NO: 63 and a V
L comprising the amino acid sequence of SEQ ID NO: 78.
In some embodiments, there is provided a method of treating or preventing a Pseudomonas infection in an individual comprising administering to the individual an effective amount of a composition comprising an anti-PcrV antibody comprising: a V
H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to 5 amino acid substitutions; and a V
L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to 5 amino acid substitutions. In some embodiments, the anti-PcrV antibody comprises a V
H comprising the amino acid sequence of SEQ ID NO: 63, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 63; and a V
L comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof having at least 90%sequence identity to the amino acid sequence of SEQ ID NO: 78.
In some embodiments according to any of the methods of treatment or prevention described herein, the anti-PcrV antibody comprises an antibody heavy chain constant region and an antibody light chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG1 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG2 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG3 heavy chain constant region. In some embodiments, the anti-PcrV antibody comprises an IgG4 heavy chain constant region. In some embodiments, the IgG is a human IgG. In some embodiments, the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 82. In some embodiments, the heavy chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 83. In some embodiments, the anti-PcrV comprises a lambda light chain constant region. In some embodiments, the anti-PcrV antibody comprises a kappa light chain constant region. In some embodiments, the light chain constant region comprises or consists of the amino acid sequence of SEQ ID NO: 81. In some embodiments, the anti-PcrV antibody comprises an antibody heavy chain variable domain and an antibody light chain variable domain.
In some embodiments according to any of the methods of treatment or prevention described herein, the method further provides therapeutic or prophylactic effect on diseases and/or conditions associated with Pseudomonas infection. In some embodiments, the method prevents a Pseudomonas infection in an individual.
In some embodiments, the individual is a mammal (e.g., human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc. ) . In some embodiments, the individual is a human. In some embodiments, the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc. In some embodiments, the individual is younger than about 60 years old (including for example younger than about any of 50, 40, 30, 25, 20, 15, or 10 years old) . In some embodiments, the individual is older than about 60 years old (including for example older than about any of 70, 80, 90, or 100 years old) .
In some embodiments, the individual has one or more risk factors associated with P. aeruginosa infection. For example, in some embodiments, the individual has exposed or breached skin mucuous layer. In some embodiments, the individual has one or more burn wounds. In some embodiments, the individual has one or more surgery wounds. In some embodiments, the individual has skin disease. In some embodiments, the individual is inserted with a foreign body, such as, but not limited to a mechanical ventilator or catheter. In some embodiments, the individual is diagnosed with or genetically prone to immunodeficiency diseases, including but not limited to HIV infection, AIDS and/or neutrophil deficiency. In some embodiments, the individual has received one or more forms of chemotherapy. In some embodiments, the individual has received one or more forms of glucocorticoid treatment. In some embodiments, the individual has received one or more forms of chemotherapy. In some embodiments, the individual is diagnosed with or genetically prone to cancer, diabetes and/or chronic structural lung diseases (such as cystic fibrosis or COPD) . In some embodiments, the individual is diagnosed with or genetically prone to flora imbalance in digestive system and/or in other organs. In some embodiments, the individual has one or more risk factors associated with one or more diseases or disorders described herein.
The present application in some embodiments provides a method of delivering an anti-PcrV antibody (such as any one of the anti-PcrV antibodies described herein, e.g., an isolated anti-PcrV antibody) to a cell infected by a pathogen in an individual, the method comprising administering to the individual a composition comprising the anti-PcrV antibody.
In some embodiments according to any one of the methods described herein, the method further comprises administering one or more additional therapeutic agents. In some embodiments, at least one of the therapeutic agents is an antibiotic. In some embodiments, the antibiotic is a penicillin, a cephalosporin, a carbapenem, a fluoroquinolone, an aminoglycoside, a monobactam, a polymyxin, an antibiotic combination containing β-lactamase inhibitor, or any combinations thereof. In some embodiments, the antibiotic is Cefepim, Ceftazidime, Cefpirome, Imipenem, Meropenem, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Aztreonam, Tobramycin, Gentamicin, Amikacin, Ciprofloxacin, Levofloxacin, Cefoperazon-Sulbactam, Piperacillin-Tazobactam, Fosfomycin, or any combinations thereof. In some embodiments, the antibiotic is one or more of Imipenem, Tobramycin, Ciprofloxacin, Meropenem or Aztreonam. In some embodiments, the antibiotic is one or more of Gentamycin, Ampicillin or Kanamycin.
Many diagnostic methods for infectious agents exhibiting PcrV expression and the clinical delineation of those diseases are known in the art. Such methods include, but are not limited to, e.g., immunohistochemistry, PCR, and fluorescent in situ hybridization (FISH) .
In some embodiments, the anti-PcrV antibodies (e.g., full-length anti-PcrV antibodies) and/or compositions of the application are administered in combination with a second, third, or fourth agent (including, e.g., an antibiotic) to treat or prevent diseases or disorders involving PcrV -expressing pathogens.
Dosing and Method of Administering the anti-PCRV antibodies
The dose of the anti-PCRV antibody (such as isolated anti-PCRV antibody) compositions administered to an individual (such as a human) may vary with the particular composition, the mode of administration, and the type of disease being treated. In some embodiments, the amount of the composition (such as composition comprising isolated anti-PCRV antibody) is effective to result in an objective response (such as a partial response or a complete response) in the treatment or prevention of Pseudomonas infections. In some embodiments, the amount of the anti-PcrV antibody composition is sufficient to result in a complete response in the individual. In some embodiments, the amount of the anti-PcrV antibody composition is sufficient to result in a partial response in the individual. In some embodiments, the amount of the anti-PcrV antibody composition administered (for example when administered alone) is sufficient to produce an overall response rate of more than about any of 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 64%, 65%, 70%, 75%, 80%, 85%, or 90%among a population of individuals treated with the anti-PCRV antibody composition. Responses of an individual to the treatment or prevention by the methods described herein can be determined, for example, based on detection of Pseudomonas by methods such as by Gram stains or other phenotypic tests.
In some embodiments, the amount of the composition (such as composition comprising isolated anti-PcrV antibody) is sufficient to prolong progress-free survival of the individual. In some embodiments, the amount of the composition is sufficient to prolong overall survival of the individual. In some embodiments, the amount of the composition (for example when administered along) is sufficient to produce clinical benefit of more than about any of 50%, 60%, 70%, or 77%among a population of individuals treated with the anti-PcrV antibody composition.
In some embodiments, the amount of the composition (such as composition comprising isolated anti-PcrV antibody) , alone or in combination with a second, third, and/or fourth agent, is an amount sufficient to decrease the number of Pseudomonas organ burden by at least about any of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%or 100%compared to the corresponding organ burden in the same subject prior to treatment or compared to the corresponding activity in other subjects not receiving the treatment. Standard methods can be used to measure the magnitude of this effect, such as in vitro assays with purified enzyme, cell-based assays, animal models, or human testing.
In some embodiments, the amount of the anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is below the level that induces a toxicological effect (i.e., an effect above a clinically acceptable level of toxicity) or is at a level where a potential side effect can be controlled or tolerated when the composition is administered to the individual.
In some embodiments, the amount of the composition is close to a maximum tolerated dose (MTD) of the composition following the same dosing regimen. In some embodiments, the amount of the composition is more than about any of 80%, 90%, 95%, or 98%of the MTD.
In some embodiments, the amount of an anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is included in a range of about 0.001 μg to about 1000 μg.
In some embodiments, the composition or method further comprises one or more antibiotics. In some embodiments, the amount of an antibiotic (such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin) in the composition is included in a range of about 0.001 μg to about 1000 μg.
In some embodiments of any of the above aspects, the effective amount of anti-PcrV antibody (such as a full-length anti-PcrV antibody) in the composition is in the range of about 0.1 μg/kg to about 100 mg/kg of total body weight.
In some embodiments of any of the above aspects, the effective amount of antibiotic (such as Imipenem, Tobramycin, Ciprofloxacin, Meropenem, Aztreonam, Ticarcillin, Piperacillin, Azlocillin, Carbenicillin, Mezlocillin, Gentamycin or Amikacin) in the composition is in the range of about 0.1 μg/kg to about 100 mg/kg of total body weight.
The anti-PcrV antibody compositions can be administered to an individual (such as human) via various routes, including, for example, intravenous, intra-arterial, intraperitoneal, intrapulmonary, oral, inhalation, intravesicular, intramuscular, intra-tracheal, subcutaneous, intraocular, intrathecal, transmucosal, or transdermal. In some embodiments, sustained continuous release formulation of the composition may be used. In some embodiments, the composition is administered intravenously. In some embodiments, the composition is administered intraportally. In some embodiments, the composition is administered intraarterially. In some embodiments, the composition is administered intraperitoneally. In some embodiments, the composition is administered intrahepatically. In some embodiments, the composition is administered by hepatic arterial infusion. In some embodiments, the administration is to an injection site distal to a first disease site.
Articles of Manufacture and Kits
In some embodiments of the application, there is provided an article of manufacture containing materials useful for treating or preventing a Pseudomonas infection in an individual, or for delivering an anti-PcrV antibody (such as a full-length anti-PcrV antibody) to a cell attached by a pathogen expressing PcrV. The article of manufacture can comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. Generally, the container holds a composition which is effective for treating a disease or disorder described herein, and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle) . At least one active agent in the composition is an anti-PcrV antibody of the application. The label or package insert indicates that the composition is used for treating the particular condition. The label or package insert will further comprise instructions for administering the anti-PcrV antibody composition to the patient. Articles of manufacture and kits comprising combinatorial therapies described herein are also contemplated.
Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In some embodiments, the package insert indicates that the composition is used for treating bacterial infections. In some embodiments, the package insert indicates that the composition is used for treating Pseudomonas infections.
Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
Kits are also provided that are useful for various purposes, e.g., useful for treating or preventing a Pseudomonas infection in an individual, or for delivering an anti-PcrV antibody (such as a full-length anti-PcrV antibody) to a cell attached by a pathogen expressing PcrV, optionally in combination with the articles of manufacture. Kits of the application include one or more containers comprising anti-PcrV antibody composition (or unit dosage form and/or article of manufacture) , and in some embodiments, further comprise another agent (such as the agents described herein) and/or instructions for use in accordance with any of the methods described herein. The kit may further comprise a description of selection of individuals suitable for treatment. Instructions supplied in the kits of the application are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit) , but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.
For example, in some embodiments, the kit comprises a composition comprising an anti-PcrV antibody (such as a full-length anti-PcrV antibody) . In some embodiments, the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, and b) an effective amount of at least one other agent, wherein the other agent enhances the effect (e.g., treatment effect, detecting effect) of the anti-PcrV antibody. In some embodiments, the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, and b) instructions for administering the anti-PcrV antibody composition to an individual for treating a Pseudomonas infection in an individual. In some embodiments, the kit comprises a) a composition comprising any one of the anti-PcrV antibodies described herein, b) an effective amount of at least one other agent, wherein the other agent enhances the effects (e.g., treatment effect, detecting effect) of the anti-PcrV antibody, and c) instructions for administering the anti-PcrV antibody composition and the other agent (s) to an individual for useful for treating a Pseudomonas infection in an individual. The anti-PcrV antibody and the other agent (s) can be present in separate containers or in a single container. For example, the kit may comprise one distinct composition or two or more compositions wherein one composition comprises an anti-PcrV antibody and another composition comprises another agent.
In some embodiments, the kit comprises a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody (such as a full-length anti-PcrV antibody) . In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, and b) a host cell for expressing the nucleic acid (or set of nucleic acids) . In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, and b) instructions for i) expressing the anti-PcrV antibody in a host cell, ii) preparing a composition comprising the anti-PcrV antibody, and iii) administering the composition comprising the anti-PcrV antibody to an individual for treating or preventing a Pseudomonas infection in an individual. In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-PcrV antibody, b) a host cell for expressing the nucleic acid (or set of nucleic acids) , and c) instructions for i) expressing the anti-PcrV antibody in the host cell, ii) preparing a composition comprising the anti-PcrV antibody, and iii) administering the composition comprising the anti-PcrV antibody to an individual for treating or preventing a Pseudomonas infection in an individual.
The kits of the application are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags) , and the like. Kits may optionally provide additional components such as buffers and interpretative information. The present application thus also provides articles of manufacture, which include vials (such as sealed vials) , bottles, jars, flexible packaging, and the like.
The instructions relating to the use of the anti-PcrV antibody compositions generally include information as to dosage, dosing schedule, and route of administration for the intended treatment. The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. For example, kits may be provided that contain sufficient dosages of an anti-PcrV antibody (such as a full-length anti-PcrV antibody) as disclosed herein to provide effective treatment of an individual for an extended period, such as any of a week, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 5 months, 7 months, 8 months, 9 months, or more. Kits may also include multiple unit doses of the anti-PcrV antibody and pharmaceutical compositions and instructions for use and packaged in quantities sufficient for storage and use in pharmacies, for example, hospital pharmacies and compounding pharmacies.
Those skilled in the art will recognize that several embodiments are possible within the scope and spirit of this application. The application will now be described in greater detail by reference to the following non-limiting examples. The following examples further illustrate the application but, of course, should not be construed as in any way limiting its scope.
EXAMPLES
Example 1: Generation of recombinant Pseudomonas PcrV and selection of anti-PcrV scFv antibodies
Generation of recombinant Pseudomonas PcrV
The full-length sequence of PcrV (PAO1) was synthesized (Generay, Shanghai) and subcloned into the expression vector pET using restriction enzyme recognition sites NdeI and BamHI. His-tag or other conventionally used tags were used to tag PcrV. Expression vectors pET-6His -PcrV, pET-6His-Avi-PcrV were generated. In these constructs, “His” stands for His-tag, and “Avi” stands for Avi-tag. The expression and purification of recombinant PcrV including pET-6His -PcrV, pET-6His-Avi-PcrV were carried out according to manufacturer’s protocol. Briefly, E. Coli cells were transformed with the expression vectors, and the cells were induced with IPTG and cultured at 25℃, and 220rpm overnight. Subsequently, the E. Coli cells were sonicated, the cell debris were pelleted and removed, and the proteins were separated by centrifugation.
Proteins with His-tag were then purified using Ni Sepharose purification according to manufacturer’s protocol. Specifically, the Qiagen Ni-NTA superflow cartridges were used for immobilized metal affinity chromatography (IMAC) analysis. The cartridges were first equilibrated with buffer A1 (50mM Na
3PO
4, 0.15M NaCl, pH 7.2) with a flow rate of 150cm/h. The supernatant of the culture media, whose pH was adjusted to 7.2, flowed through the cartridges at room temperature with the flow rate of 150cm/h. Next, buffer A1 (6 times the volume of the cartridges) was used to equilibrate the cartridges with a flow rate of 150cm/h. A 50mM PB solution (0.15M NaCl and 0.2M Imidazole, pH 7.2) with a volume that is 10 times that of the cartridges was used to wash the cartridges and the elution was collected.
Generation of biotinylated PcrV antigen
Biotinylation of 6His-Avi-PcrV using the biotin ligase B0101A (GENECOPOEIA
TM) was carried out according to the manufacturer’s protocol. Briefly, buffer A\B and Biotin Ligase were added to 6His-Avi-PcrV, followed by 1 hour of incubation at 30℃. The biotinylated PcrV is referred to as Bhavi-PcrV hereafter. The efficiency of biotinylation was measured using ELISA. Briefly, Bhavi-PcrV was removed by incubating with magnetic beads (Dynabeads
TM MyOne
TM Streptavidin T1) , and the concentration of 6His-Avi-PcrV in supernatant was quantified by ELISA, using 6His-Avi-PcrV with known concentration as a standard material. The biotinylation efficiency was determined to be 90%.
Selection of anti-PcrV scFv antibodies
Generation of yeast scFv antibody display library: RNAs collected from 2000 human blood samples were reverse-transcribed into cDNA, and the VH and VK fragments were amplified using VH-and VK-specific primers. Upon gel extraction and purification, scFv was generated by linking VH and VK via a linker. These scFvs were cloned into the yeast display plasmid PYD1, which were then electroporated into yeasts to generate the yeast scFv antibody display library.
Selection of anti-PcrV scFv antibodies as determined by PcrV binding
The scFvs which recognized PcrV were isolated from the yeast display library. Briefly, magnetic-activated cell sorting (MACS) was used to enrich cells expressing anti-PcrV scFv antibodies. Bhavi-PcrV was mixed with magnetic beads (Dynabeads
TM MyOne
TMStreptavidin T1) overnight to coat magnetic beads with the biotinylated PcrV, according to manufacturer’s protocol. The scFv antibody yeast library was then mixed with the PcrV-coated beads for enriching yeasts that display PcrV-recognizing antibodies, whereas the non-binders are washed away in washing steps. Subsequently, the collected yeast cells were labeled with PcrV proteins, and sorted by FACS to select yeast displaying antibodies with high affinity to PcrV. The FACS-mediated selection was repeated 2-3 cycles. The selected yeast library cells were plated on agar, and single colonies were picked and assayed by further FACS analysis. From yeast clones that exhibited positive binding to PcrV, each scFV gene was extracted, fused with a 6-His tag and subcloned into a prokaryotic expression vector. The His-labeled scFvs were then purified using Ni Sepharose purification as described above. A panel of positive scFv antibodies were obtained at the end of the selection process, and subjected to functional testing for the ability to inhibit RBC lysis caused by P. aeruginosa.
Analysis of anti-PcrV scFv candidates as determined by RBC lysis inhibition
Monoclonal scFv antibodies were selected and assessed for biological activity by RBC lysis assay. Briefly, red blood cells (RBCs) were prepared from fresh whole human or rabbit blood by centrifugation, supplemented with EDTA and rinsed for several times with phosphate-buffered saline (PBS) . Washed RBCs (2.5% [vol/vol] final) in Dulbecco's modified Eagle's medium (DMEM) plus 10%fetal bovine serum (FBS) (Gibco) and purified anti-PcrV antibodies diluted in PBS were combined into wells of a round-bottom 96-well plate. Strain 57/66 (O6) P. aeruginosa was grown to mid-log phase in 2× YT medium (Oxford) , harvested by centrifugation, and resuspended in DMEM-fetal bovine serum (FBS) at an optical density at 600 nm (OD600) of 0.15.10μLof bacterial suspension was added to the RBC-antibody mixture, mixed by agitation, and incubated for 3 hours at 37℃ and 5%CO
2. The plates were briefly centrifuged (1000 rpm, 1 min) to pellet the intact RBCs, the supernatants were transferred to a flat-bottom 96-well plate, and the OD405 was measured to detect lysis, from which the relative amount of lysis inhibition was calculated and plotted. IC
50 values for the antibodies were also determined.
Example 2: Generation and characterization of full-length human anti-PcrV antibodies
Generation of full-length anti-PcrV antibodies
The most potent scFv antibodies were reformatted as human IgG1 antibody molecules with a human IgG1 heavy chain constant domain, and a human kappa light chain constant domain. VL and VH were amplified from the prokaryotic expression vector and introduced into eukaryotic expression vectors pTT5-L (containing kappa constant domain) and pTT5-H1 (containing IgG1 heavy chain constant domain) , respectively. Plasmids expressing the light or heavy chains were extracted and used to co-transfect 293F cells. After the cells were cultured at 37℃, 8%CO
2 and 120rpm for 5 days, the antibodies in the culture media were purified using Protein A affinity chromatography.
Briefly, Protein A column was first equilibrated with a PBS buffer containing 50mM PBS and 0.15M NaCl (pH7.2) , at a flow rate of 150cm/h and with a volume that is six times the volume of the column. The supernatant of the culture media (pH was adjusted to 7.2) passed through the column at the flow rate of 150cm/h. Upon further equilibration, the column was washed using 50mM sodium citrate (pH3.5) and the elution containing anti-PcrV antibodies was collected. The full-length antibodies were functionally characterized for the ability to inhibit RBC lysis (see Example 1 for reference) , A549/U937 cell lysis, as well as to improve survival in an acute pneumonia mouse model, according to the methods in Example 1 and the methods described below.
Analysis of anti-PcrV candidates as determined by A549 or U937 lysis inhibition
To assay for ability to inhibit cytotoxicity and cell lysis caused by P. aeruginosa, the candidate anti-PcrV antibodies were added to human bronchoepithelial cell line A549 or human lymphoma cell line U937 seeded in white 96-well plates (Nunc Nunclon Delta) in DMEM plus 10%fetal bovine serum. Log-phase strain PA103 (O11) P. aeruginosa was added at a multiplicity of infection (MOI) of 10 and incubated for 2 h at 37℃ and 5%CO2, followed by 20 minutes of equilibration at room temperature. Lactate dehydrogenase (LDH) released from lysed cells was quantified using the CytoTox-ONE kit (Promega) , to assay membrane integrity. The relative amount of lysis inhibition was plotted accordingly. IC
50 values for the antibodies were also determined.
Analysis of anti-PcrV candidates as determined in a mouse acute pneumonia model
The candidate anti-PcrV antibodies were assayed for the ability to improve survival in a mouse acute pneumonia model. In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with the candidate antibodies or PBS intraperitoneally (i.p. ) 24 hr before infection, at doses of 1, 5, 10 or 25 mg/kg mouse weight. To generate an acute pneumonia model, which was performed as described previously (DiGiandomenico et al., 2007, Proc. Natl. Acad. Sci. U.S.A., 104: 4624–4629) , the BALB/c mice were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40μl inoculum at the lethal dose, or double lethal dose (at 8×10
5 -1.6×10
6 CFU; 1*or 2*LD90) . Mouse survival was recorded for up to 7 days post-infection.
PA49 mAb as lead antibody for further optimization
Out of the full-length antibodies that were generated, a monoclonal antibody PA49 was selected as the lead parent antibody, as determined by its ability to inhibit RBC lysis, A549 or U937 cell lysis, as well as the ability to improve survival in an acute pneumonia mouse model.
Example 3: Generation and characterization of optimized full-length anti-PcrV antibodies
Out of the full-length antibodies that were generated, PA49 was selected as the lead parental antibody for further optimization. In particular, PA49 was optimized to improve affinity and biological activity. The "Augmented Binary Substitution" technology (See Sue Townsend, et al, 2015, PNAS vol. 112, 15354–15359) was used to design the combinatorial library. In LC-CDR1, LC-CDR2, HC-CDR1 and HC-CDR2, the binary substitution CDR cassettes were inserted into frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The HC-CDR3 was also augmented with 1 ± 1 random substitution per clone, that is, NNK mutation (encoding all 20 amino acids) was applied to the randomly picking 2 positions out of 9 (overall length of HC-CDR3) . Along with the affinity maturation of the parental antibody, this technology lowered non-germ-line sequence content in CDRs, thereby, minimized immunogenicity risk in the final molecules.
Starting with the scFv of PA49, a phage scFv display library containing mutations in the CDR regions was generated as described above. Variants that were able to bind PcrV with high affinity and low dissociation rate were identified using BLI, and their functions were tested for inhibition on RBC lysis, A549 cell lysis or U937 cell lysis. The scFv antibodies optimized from PA49 showing comparable or improved biological activity compared to the parental scFv were used to generate full-length antibodies. A panel of optimized full-length antibodies were obtained at the end of the selection.
The binding kinetics and affinity of optimized anti-PcrV mAb clones and the reference antibody V2L2-MD to PcrV were tested by BLI and shown in Table 6.
The optimized full length antibodies were then functionally characterized for the ability to inhibit RBC lysis, A549 cell lysis or U937 cell lysis, according to the methods described in Examples 1 and 2.
Optimized anti-PcrV antibodies inhibit RBC, A549 or U937 cell lysis caused by P. aeruginosa
RBC lysis inhibition by optimized anti-PcrV antibodies
The ability of optimized anti-PcrV mAb clones to inhibit red blood cell lysis was compared to the parental PA49 mAb and the reference antibody V2L2-MD. RBC lysis inhibition assay was performed as described in Example 1.
As shown in FIG. 1A, FIG. 1B and Table 7, all antibodies optimized from PA49 exhibited better or comparable efficacies in inhibiting RBC lysis as the parental PA49 mAb and the reference antibody V2L2-MD.
A549 cell lysis or U937 cell lysis inhibition by optimized anti-PcrV antibodies
The ability of optimized anti-PcrV antibodies to inhibit A549 or U937 cell lysis was also evaluated. A549 and U937 cell lysis inhibition assay was performed as described in Example 2.
As shown in FIG. 2A and 2B, all antibodies optimized from PA49 exhibited high efficacies in inhibiting A549 or U937 cell lysis at 100μg/ml or lower doses, and the inhibition efficacy is dose-dependent.
Example 4: Characterizing non-specificity and affinity of optimized anti-PcrV antibodies
Of the optimized antibody, 6G4, 5F3, 9C7, 11E9, 7H5, 6G12, 2A5, 4A2, 5B4, 10D8, 2B4, the reference antibody V2L2-MD, the negative control antibody Tildrakizumab, or the positive control antibody Lenzilumab was further characterized for their non-specificity in BV ELISA or 293 cells cross-reactivity assay.
Non-specificity of anti-PcrV antibodies
The non-specificity of the optimized anti-PcrV antibodies was characterized by measuring cross-reactivity to BV particles and to PcrV-negative 293 cells.
Cross-reactivity to BV particles: Using ELISA, optimized antibody 6G4, 5F3, 9C7, 11E9, 7H5, 6G12, 2A5, 4A2, 5B4, 10D8, 2B4, the reference antibody V2L2-MD, the negative control antibody Tildrakizumab, or the positive control antibody Lenzilumab was tested for cross-reactivity to BV particles according to the methods described previously (See
I, et al, 2012, mAbs 4: 6, 753–760) . As shown in FIG. 3, positive control Lenzilumab displayed a high level of non-specific binding to BV particles. In contrast, the optimized antibodies displayed low levels of non-specific binding, similar with V2L2-MD.
Cross-reactivity to 293 cells: Using FACS, optimized antibodies 5F3, 9C7, or V2L2-MD was tested for cross-reactivity to PcrV-negative 293 cells. As shown in FIGS. 4A-4C, the positive control Lenzilumab displayed a high level of non-specific binding to 293 cells, the optimized antibodies 5F3 or 9C7 all displayed similarly low levels of 293 binding as negative control (without any antibody) or V2L2-MD, while a positive control antibody Lenzilumab specific to GM-CSF on 293 cells displayed a higher level of binding to 293 cells.
Taken together, these results indicated that optimized antibodies 5F3 and 9C7 displayed similarly low non-specific binding as the reference antibody V2L2-MD.
Example 5: Optimized full-length anti-PcrV antibodies broadly neutralize P. aeruginosa strains
To examine whether the optimized anti-PcrV antibodies can neutralize a broad spectrum of P. aeruginosa strains, the ability of optimized anti-PcrV antibodies to inhibit RBC cell lysis caused by several clinically relevant P. aeruginosa strains (O1, O11, O6) , which presented the majority of the clinical cases of P. aeruginosa infections, was investigated.
RBC lysis inhibition by optimized anti-PcrV antibodies
The optimized anti-PcrV mAb clone 11E9, 9C7, 5F3 or 7H5 was analyzed for their abilities to inhibit red blood cell lysis caused by strain of P. aeruginosa O1-52/66; while 5B4, 4A2, 2A5 or 11E9 was analyzed for inhibition on strain of P. aeruginosa O11-PA103; 9C7, 5F3, 7H5 or the reference antibody V2L2-MD was analyzed for inhibition on strain of P. aeruginosa O6-57/66. RBC lysis inhibition assay was performed as described in Example 1.
As shown in in FIG. 5A-5C and Table 8A-8C, all the optimized mAb clones exhibited high efficacy in inhibiting RBC lysis caused by strain O1-52/66 or strain O11-PA103, 9C7, 5F3 or 7H5 was better than the reference antibody V2L2-MD in that caused by strain O6-57/66.
To further illustrate whether the optimized antibodies could broadly neutralize P. aeruginosa strains, the abilities of these antibodies to bind various forms of PcrV mutants were tested. Briefly, 100 PcrV sequences were randomly selected from Genebank database. In contrast to the wild type sequence as shown in SEQ ID No: 80, 13%of the selected sequences contained R, G, or K at position 225 (as compared of S in the wild type sequence SEQ No: 80) .
Optimized 9C7, 5F3, 4A2, 2A5, 5B4, 11E9 or 7H5 antibody was characterized for their affinity and specificity in binding to these PcrV mutants, and found to strongly bind to these mutants as well (data not shown) . These findings further illustrate that the optimized anti-PcrV antibodies could neutralize a broad spectrum of P. aeruginosa strains, which might express various forms of PcrV mutants.
Example 6: Optimized anti-PcrV antibodies as prophylactic treatment for P. aeruginosa infection
The ability of the optimized anti-PcrV antibodies in protecting against P. aeruginosa infection prophylactically was demonstrated with survival improvement in mouse pneumonia model and intraperitoneal infection model.
Survival improvement in mouse pneumonia model by anti-PcrV antibodies
The ability of the parental anti-PcrV antibody PA49, the optimized antibody 6G12, 4A2, 10D8, 7H5, 11E9, 6G4, 2A5, 9C7, 5F3 or the reference antibody V2L2-MD to improve survival in mouse pneumonia model was evaluated in comparison to HIV-10E8 (negative control) , a broadly neutralizing antibody against HIV described previously (See Huang J, et al, 2012, Nature 491: 406) .
In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with antibodies intraperitoneally (i.p. ) 24 h before infection, at doses of 1 or 10 mg/kg mouse weight. To induce acute pneumonia, the BALB/c mice were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40μl inoculum at the lethal dose (1*LD
90) or at double lethal dose (2*LD
90) (8×10
5~ 1.6×10
6 CFU) . Mouse survival was recorded for up to 7 days post-infection. The results were represented as Kaplan-Meier survival curves.
As shown by Kaplan-Meier survival curves in FIG. 6A-6C, at both 1× and 2× lethal doses (1*LD
90 or 2*LD
90; 8×10
5~ 1.6×10
6 CFU) of P. aeruginosa inoculation, all anti-PcrV antibodies exhibited significant survival improvement compared to negative control.
Differences in survival were calculated by the log rank test.
Organ burden in mouse pneumonia model administered with anti-PcrV antibodies
The ability of the optimized anti-PcrV antibody 4A2, 9C7, 11E9, 5F3, 7H5, or 2A5 to reduce organ burden in an acute pneumonia model was further evaluated. HIV-10E8 was used as a negative control.
In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with antibodies intraperitoneally (i.p. ) 24 hr before infection, at 10 mg/kg mouse weight. To induce acute pneumonia, the BALB/c mice were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40μl inoculum at half lethal dose (0.5*LD
90; 3x10
5 CFU) . 24 hours post-infection, mice were euthanized and the lungs, spleens and kidneys were extracted, homogenized, and diluted before plating on agar to measure the viable bacteria units (in CFU) , which represented the P. aeruginosa burden in the respective organ sample.
As shown in FIG. 7, all the optimized anti-PcrV antibodies exhibited higher efficacy in reducing organ burden in the lung, spleen, and kidney of the mouse pneumonia model, as compared to the negative control HIV-10E8. Differences in survival were calculated by the log rank test.
Survival improvement in mouse intraperitoneal infection model using anti-PcrV antibodies
The ability of the optimized anti-PcrV antibody 6G4 or 10D8 to improve survival in a mouse intraperitoneal infection model was evaluated. HIV-10E8 was used as negative control. The mouse intraperitoneal infection model was generated as described previously (See Warrener et al., 2014, Antimicrob. Agents Chemother., 58, 4384–4391) .
In a prophylactic model, 7-8 weeks old BALB/c mice (Vital River Laboratory) were administered with antibodies by intraperitoneal (i. p. ) injection 24 h before infection, at doses of 10 mg/kg mouse weight. To induce intraperitoneal infection, the BALB/c mice were intraperitoneally inoculated with P. aeruginosa (O6-57/66 strain) suspended in a 300μl inoculum at quadruple lethal dose (4*LD90 = 1×10
6 CFU) . Mouse survival was recorded for up to 7 days post-infection.
As shown in FIG. 8, at quadruple lethal dose (4*LD
90) of P. aeruginosa inoculation, all anti-PcrV antibodies exhibited significant survival improvement compared to negative control at the 10mg/kg antibody dose. Differences in survival were calculated by the log rank test.
Taken together, these results show that the anti-PcrV antibodies disclosed herein can be employed to neutralize P. aeruginosa infection prophylactically in a mouse pneumonia model and mouse intraperitoneal infection model.
Example 7: Optimized anti-PcrV antibodies as therapeutic treatment for P. aeruginosa infection
The ability of the optimized anti-PcrV antibodies in neutralizing P. aeruginosa infection therapeutically was demonstrated with survival improvement in a mouse pneumonia model.
Survival improvement in mouse pneumonia model by optimized anti-PcrV antibodies
The ability of the optimized anti-PcrV antibody 4A2, 2A5, 9C7, 6G12 and PA49 to improve survival in mouse acute pneumonia model was evaluated. HIV-10E8 was used as negative control.
In a therapeutic model, to induce acute pneumonia, 7-8 week old BALB/c mice (Vital River Laboratory) were intranasally inoculated with P. aeruginosa (PA103 strain) suspended in a 40μl inoculum at a lethal dose (1*LD90 = 8x10
5 CFU) . Antibodies or PBS were administered intravenously (i. v. ) at 1 h post-infection, at a dose of 2mg/kg mouse weight. Mouse survival was recorded for up to 7 days post-infection.
As shown in FIG. 9, at the lethal dose (1*LD
90) of P. aeruginosa inoculation, all the anti-PcrV antibodies exhibited significant survival improvement compared to negative control. Also, the optimized antibody 4A2, 2A5, 9C7 or 6G12 displayed survival improvement comparable to the parental antibody PA49. Differences in survival were calculated by the log rank test. The results show that the anti-PcrV antibodies disclosed herein can be employed to neutralize P. aeruginosa infection therapeutically.
Example 8: Combination treatment of P. aeruginosa infection using optimized anti-PcrV antibodies with antibiotics
Survival improvement in mouse intraperitoneal infection model by anti-PcrV antibodies in combination with antibiotics
The ability of the optimized anti-PcrV antibody 9C7 or 4A2 to improve survival in a mouse intraperitoneal infection model was evaluated in comparison to antibiotics Meropenem, and also in comparison to combination treatment of 9C7 with Meropenem or 4A2 with Meropenem. HIV-10E8 was used as negative control.
In a prophylactic model for anti-PcrV testing, 7-8 week old BALB/c mice (Vital River Laboratory) were intraperitoneally injected with antibody 24h before infection or with antibiotic 2h post infection. Specifically, the mice were administered with either optimized anti-PcrV antibody clone 9C7 or4A2 (5mg/kg) , Meropenem (6mg/kg) , or a combination of 9C7 (5mg/kg) with Meropenem (6mg/kg) or a combination of 4A2 (5mg/kg) with Meropenem (6mg/kg) . To induce intraperitoneal infection, the BALB/c mice were intraperitoneally inoculated with P. aeruginosa (57/66 strain) suspended in a 300μl inoculum at triple lethal dose (3*LD90=7x10
5 CFU) . Mouse survival was recorded for up to 5 days post-infection.
As shown in FIG. 10, at the lethal dose of 3*LD
90 of P. aeruginosa (57/66 stain) inoculation, when using the optimized antibodies 9C7 (5mg/kg) or 4A2 (5mg/kg) or the antibiotics Meropenem (6mg/kg) alone, all of them cannot provide 100%protection. When combining antibody with antibiotics, both the combination of 9C7 (5mg/kg) with antibiotics Meropenem (6mg/kg) , and 4A2 (5mg/kg) with antibiotics Meropenem (6mg/kg) , exhibited enhanced survival improvement as compared to either the antibody treatment alone or the respective antibiotic treatment alone (p < 0.05) . Differences in survival were calculated by the log rank test. These results here demonstrate the clinical potential of using the anti-PcrV antibodies disclosed herein combined with antibiotics in neutralizing P. aeruginosa.
Example 9: Pharmacokinetic profile of Optimized anti-PcrV antibodies
To investigate the in vivo pharmacokinetics of the optimized anti-PcrV antibodies, the plasma levels of 5F3, 9C7, 7H5 or the reference antibody V2L2-MD in rat were measured over time.
Pharmacokinetic profile in rat: 32 healthy adult rats (about 0.2kg by weight) were divided equally into two groups, where each group registered similar average weight. One group was injected intravenously with 30mg/kg of 5F3, 9C7, 7H5 or V2L2-MD and the other group was injected intravenously with 3 mg/kg of 5F3, 9C7, 7H5 or V2L2-MD. Blood was collected at 0 hour, 0.5 hour, 2 hour, 8 hour, 1 day, 3 days, 7 days, 11 days, 17 days, 23 days, 31 days, 41 days or 52 days after injection. After centrifugation, the plasma was used for analyzing antibody concentration using ELISA. For the ELISA experiment, synthetic PcrV was used to coat the wells of a 96-well plate. On the following day, after washing with PBST, blocking with 200μL PBS-milk for 1 hour, and washing again with PBST, the plasma was added to the plate and incubated for 1 hour at 37℃. The plate was washed with 0.1%TBST for 6 times before 100μL of Goat-anti-human Fc antibody-AP (1: 3000 in PBS) was added to each well and incubated for 1 hour. After washing with 0.1%TBST for 6 times, 50μL of pNPP was added to each well and color was developed for 10-20 minutes at 37 ℃. The signals were read by a microplate reader at 410nm.
As shown in FIGS. 11A and 11B, the half-lives of 5F3, 9C7, or 7H5 at both high and low i.v. dosages (3 mg/kg or 30 mg/kg) were longer than that of the reference antibody V2L2-MD, indicating that the optimized antibodies displayed more stable pharmacokinetic profiles at various doses as compared to the reference antibody V2L2-MD.
Claims (28)
- An isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises:a heavy chain variable domain (V H) comprising a heavy chain complementarity determining region (HC-CDR) 1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1EX 2SX 3SYADSVKG (SEQ ID NO: 50) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, T, N, L, I, S, V, A or H; X 2 is S, T, N, D, G or R; and X 3 is I or T; and an HC-CDR3 comprising DGX 1X 2X 3X 4X 5DX 6 (SEQ ID NO: 51) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is P, Y or A, X 2 is Y or W, X 3 is D, T or N, X 4 is S, T or A, X 5 is L, F or M, X 6 is I, V, A, S, L or W;and a light chain variable domain (V L) comprising a light chain complementarity determining region (LC-CDR) 1 comprising RASQX 1VX 2X 3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, N, D or G, X 2 is S, K, N, R or T, X 3 is N, S, D or G; a LC-CDR2 comprising X 1ASSRAT (SEQ ID NO: 85) , or a variant thereof comprising up to about 3 amino acid substitutions;wherein X 1 is D, N, H, A or S; and a LC-CDR3 comprising QQYGX 1X 2PX 3T (SEQ ID NO: 86) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, A, T, E, D, H, N, Q, G, L, Y, M, R or V, X 2 is S, Q, V, E, T, D, M, Y, G, H, L, N, A, F or P, and X 3 is I, L or V.
- An isolated anti-PcrV antibody, wherein the anti-PcrV antibody comprises:a V H comprising a HC-CDR1 comprising SYWMH (SEQ ID NO: 1) , or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising RINEX 1EX 2SISYADSVKG (SEQ ID NO: 45) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, N, I, L or V, X 2 is S, T, R, G or N; andan HC-CDR3 comprising DGPYDX 1X 2DI (SEQ ID NO: 46) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, A or T, X 2 is F or L;and a V L comprising a LC-CDR1 comprising RASQX 1VX 2X 3NLA (SEQ ID NO: 47) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is N, G, D or S, X2 is K, R, S, N or T, X3 is N, G, S or D; a LC-CDR2 comprising X 1ASSRAT (SEQ ID NO: 48) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is D, N, H or A; and a LC-CDR3 comprising QQYGX 1X 2PX 3T (SEQ ID NO: 49) , or a variant thereof comprising up to about 3 amino acid substitutions, wherein X 1 is S, T, E, H, N, A, D, M or L, X 2 is S, Q, E, T, D, G, H, L, N, V or Y, and X 3 is I, L or V.
- The isolated anti-PcrV antibody of any one of claims 1-2, wherein the anti-PcrV antibody binds to the Pseudomonas PcrV with a Kd from about 0.1 pM to about 1 nM.
- An isolated anti-PcrV antibody, comprising:a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, or a variant thereof comprising up to about 3 amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 2-9, or a variant thereof comprising up to about 3 amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 10-13, or a variant thereof comprising up to about 3 amino acid substitutions; anda V L comprising a LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 14-25, or a variant thereof comprising up to about 3 amino acid substitutions; a LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 26-29, or a variant thereof comprising up to about 3 amino acid substitutions; and a LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 30-44, or a variant thereof comprising up to about 3 amino acid substitutions.
- An isolated anti-PcrV antibody, comprising a V H comprising an HC-CDR1, an HC-CDR2, and an HC-CDR3 of the V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V L comprising a LC-CDR1, a LC-CDR2, and a LC-CDR3 of the V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79.
- The isolated anti-PcrV antibody of any one of claims 1-5, comprising:(i) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 10, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(ii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 14, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 26, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 30, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(iii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 3, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 15, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 31, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(iv) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(v) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 16, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 32, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(vi) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 5, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 33, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(vii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 18, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 34, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(viii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 13, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(ix) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 19, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 35, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(x) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 20, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 36, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xi) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 4, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 37, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 22, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 38, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xiii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xiv) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 8, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 21, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 40, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xv) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 6, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 24, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 28, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 41, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xvi) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 25, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 29, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 42, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xvii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xviii) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 2, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 11, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 44, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs;(xix) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 7, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 23, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 39, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs; or(xx) a V H comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 1, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 9, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 12, or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDRs; and a V L comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 17, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 27, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 43, or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDRs.
- The isolated anti-PcrV antibody of any one of claims 1-6, comprising:a V H comprising the amino acid sequence of any one of SEQ ID NOs: 52-64, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 52-64; and a V L comprising the amino acid sequence of any one of SEQ ID NOs: 65-79, or a variant thereof having at least about 90%sequence identity to the amino acid sequence of any one of SEQ ID NOs: 65-79.
- The isolated anti-PcrV antibody of claim 7, comprising:(i) a V H comprising the amino acid sequence of SEQ ID NO: 52 and a VL comprising the amino acid sequence of SEQ ID NO: 65;(ii) a V H comprising the amino acid sequence of SEQ ID NO: 56 and a VL comprising the amino acid sequence of SEQ ID NO: 65;(iii) a V H comprising the amino acid sequence of SEQ ID NO: 53 and a V L comprising the amino acid sequence of SEQ ID NO: 66;(iv) a V H comprising the amino acid sequence of SEQ ID NO: 62 and a V L comprising the amino acid sequence of SEQ ID NO: 74;(v) a V H comprising the amino acid sequence of SEQ ID NO: 54 and a V L comprising the amino acid sequence of SEQ ID NO: 67;(vi) a V H comprising the amino acid sequence of SEQ ID NO: 55 and a V L comprising the amino acid sequence of SEQ ID NO: 68;(vii) a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 69;(viii) a V H comprising the amino acid sequence of SEQ ID NO: 64 and a V L comprising the amino acid sequence of SEQ ID NO: 78;(ix) a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 70;(x) a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 71;(xi) a VH comprising the amino acid sequence of SEQ ID NO: 54 and a VL comprising the amino acid sequence of SEQ ID NO: 72;(xii) a VH comprising the amino acid sequence of SEQ ID NO: 56 and a VL comprising the amino acid sequence of SEQ ID NO: 73;(xiii) a V H comprising the amino acid sequence of SEQ ID NO: 58 and a V L comprising the amino acid sequence of SEQ ID NO: 74;(xiv) a V H comprising the amino acid sequence of SEQ ID NO: 59 and a V L comprising the amino acid sequence of SEQ ID NO: 75;(xv) a V H comprising the amino acid sequence of SEQ ID NO: 57 and a V L comprising the amino acid sequence of SEQ ID NO: 76;(xvi) a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 77;(xvii) a V H comprising the amino acid sequence of SEQ ID NO: 60 and a V L comprising the amino acid sequence of SEQ ID NO: 78;(xviii) a V H comprising the amino acid sequence of SEQ ID NO: 56 and a V L comprising the amino acid sequence of SEQ ID NO: 79;(xix) a V H comprising the amino acid sequence of SEQ ID NO: 61 and a V L comprising the amino acid sequence of SEQ ID NO: 74; or(xx) a V H comprising the amino acid sequence of SEQ ID NO: 63 and a V L comprising the amino acid sequence of SEQ ID NO: 78.
- An isolated anti-PcrV antibody that specifically binds to PcrV competitively with the isolated anti-PcrV antibody of any one of claims 1-8, or specifically binds to the same epitope as the isolated anti-PcrV antibody of any one of claims 1-8.
- The isolated anti-PcrV antibody according to any one of claims 1-9, wherein the anti-PcrV antibody comprises an Fc fragment.
- The isolated anti-PcrV antibody of claim 10, wherein the anti-PcrV antibody is a full-length IgG antibody.
- The isolated anti-PcrV antibody of claim 11, wherein the anti-PcrV antibody is a full-length IgG1 or IgG4 antibody.
- The isolated anti-PcrV antibody of any one of claims 1-12, wherein the anti-PcrV antibody is chimeric, human, or humanized.
- The isolated anti-PcrV antibody according to any one of claims 1-9, wherein the anti-PcrV antibody is an antigen binding fragment selected from the group consisting of a Fab, a Fab’, a F (ab) ’2, a Fab’-SH, a single-chain Fv (scFv) , an Fv fragment, a dAb, a Fd, or a diabody.
- An isolated nucleic acid molecule that encodes the isolated anti-PcrV antibody according to any one of claims 1-14.
- A vector comprising the nucleic acid molecule of claim 15.
- An isolated host cell comprising the isolated anti-PcrV antibody of any one of claims 1-14, the isolated nucleic acid of claim 15, or the vector of claim 16.
- A method of producing an isolated anti-PcrV antibody, comprising:a) culturing the host cell of claim 17 under conditions effective to express the anti-PcrV antibody; andb) obtaining the expressed anti-PcrV antibody from the host cell.
- A pharmaceutical composition comprising the anti-PcrV antibody according to any one of claims 1-14, the nucleic acid of claim 15, the vector of claim 16, or the isolated host cell of claim 17, and a pharmaceutically acceptable carrier.
- A method of treating a disease or condition in an individual in need thereof, comprising administering to the individual an effective amount of the pharmaceutical composition of claim 19.
- The method of claim 20, wherein the disease or condition is a pathogenic infection.
- The method of claim 21, wherein the infection is a gram-negative bacterial infection.
- The method of claim 22, wherein the bacterium is Pseudomonas aeruginosa.
- The method of any one of claims 20-23, wherein the disease or condition comprises one or more symptoms caused by Pseudomonas aeruginosa infection.
- The method of claim 24, wherein the symptom comprises one or more of fever, chills, fatigues, muscle and joint pain, swelling of joints, headache, diarrhea, skin rashes, pus in wounds, bacteremia, acute pneumonia, intraperitoneal infection, respiratory tract infections, septic shock, suppurative arthritis, enteritis, skin and soft tissue infections, urinary tract infections, intestinal infections, ulcerative keratitis, chronic suppurative otitis media, mastoiditis, sinusitis, or endocarditis.
- The method of any one of claims 20-25, wherein the method further comprises administering one or more therapeutic agents.
- The method of claim 26, wherein at least one of the therapeutic agents is an antibiotic.
- The method of claim 27, wherein the antibiotic is one or more of Imipenem, Tobramycin, Ciprofloxacin, Meropenem or Aztreonam.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180001864.3A CN114072145B (en) | 2020-06-01 | 2021-05-28 | Antibodies specifically recognizing pseudomonas PCRV and uses thereof |
CN202410837772.4A CN118620074A (en) | 2020-06-01 | 2021-05-28 | Antibodies specifically recognizing pseudomonas PCRV and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2020/093702 | 2020-06-01 | ||
CN2020093702 | 2020-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021244421A1 true WO2021244421A1 (en) | 2021-12-09 |
Family
ID=78830719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/096719 WO2021244421A1 (en) | 2020-06-01 | 2021-05-28 | Antibodies specifically recognizing pseudomonas pcrv and uses thereof |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN114072145B (en) |
TW (1) | TW202204399A (en) |
WO (1) | WO2021244421A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010091189A1 (en) * | 2009-02-04 | 2010-08-12 | Kalobios Pharmaceuticals, Inc. | Combination antibiotic and antibody therapy for the treatment of pseudomonas aeruginosa infection |
CN101910197A (en) * | 2007-11-30 | 2010-12-08 | 卡罗拜奥斯制药公司 | Antibodies to the PCRV antigen of pseudomonas aeruginosa |
WO2011087799A1 (en) * | 2009-12-22 | 2011-07-21 | Kalobios Pharmaceuticals, Inc. | A method of treating a staphylococcus infection in a patient having a low-level pathogenic pseudomonas aeruginosa infection |
CN102137870A (en) * | 2008-01-10 | 2011-07-27 | 盐野义制药株式会社 | Antibody directed against PcrV |
CN104136042A (en) * | 2011-11-07 | 2014-11-05 | 米迪缪尼有限公司 | Combination therapies using anti-pseudomonas psl and pcrv binding molecules |
CN104995209A (en) * | 2012-11-06 | 2015-10-21 | 米迪缪尼有限公司 | Combination therapies using anti-pseudomonas psl and pcrv binding molecules |
CN110072554A (en) * | 2016-05-05 | 2019-07-30 | 宾夕法尼亚大学理事会 | DNA antibody construct for resisting pseudomonas aeruginosa |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009132660A1 (en) * | 2008-04-30 | 2009-11-05 | Recepticon Aps | Agents binding to megalin or sex hormone binding globulin and compositions therof for treatment of steroid dependent cancers |
MX2011009100A (en) * | 2009-03-11 | 2011-09-27 | Shionogi & Co | Humanized pcrv antibody having anti-pseudomonal activity. |
WO2019207115A1 (en) * | 2018-04-26 | 2019-10-31 | Statens Serum Institut | Improved immunoassays |
-
2021
- 2021-05-28 CN CN202180001864.3A patent/CN114072145B/en active Active
- 2021-05-28 CN CN202410837772.4A patent/CN118620074A/en active Pending
- 2021-05-28 WO PCT/CN2021/096719 patent/WO2021244421A1/en active Application Filing
- 2021-06-01 TW TW110119775A patent/TW202204399A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101910197A (en) * | 2007-11-30 | 2010-12-08 | 卡罗拜奥斯制药公司 | Antibodies to the PCRV antigen of pseudomonas aeruginosa |
CN102137870A (en) * | 2008-01-10 | 2011-07-27 | 盐野义制药株式会社 | Antibody directed against PcrV |
WO2010091189A1 (en) * | 2009-02-04 | 2010-08-12 | Kalobios Pharmaceuticals, Inc. | Combination antibiotic and antibody therapy for the treatment of pseudomonas aeruginosa infection |
WO2011087799A1 (en) * | 2009-12-22 | 2011-07-21 | Kalobios Pharmaceuticals, Inc. | A method of treating a staphylococcus infection in a patient having a low-level pathogenic pseudomonas aeruginosa infection |
CN104136042A (en) * | 2011-11-07 | 2014-11-05 | 米迪缪尼有限公司 | Combination therapies using anti-pseudomonas psl and pcrv binding molecules |
CN104995209A (en) * | 2012-11-06 | 2015-10-21 | 米迪缪尼有限公司 | Combination therapies using anti-pseudomonas psl and pcrv binding molecules |
CN110072554A (en) * | 2016-05-05 | 2019-07-30 | 宾夕法尼亚大学理事会 | DNA antibody construct for resisting pseudomonas aeruginosa |
Non-Patent Citations (2)
Title |
---|
NAGAOKA,K.ETAL: "Anti-PcrV titers in non-cystic fibrosis patients with Pseudomonas aeruginosa respiratory tract infection", INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, vol. 87, 13 August 2019 (2019-08-13), pages 54 - 59, XP085855676, DOI: 10.1016/j.ijid.2019.08.008 * |
YASUMOTO HIROAKI, KATOH HIDEYA, KINOSHITA MAO, SHIMIZU MASARU, HAMAOKA SAEKO, AKIYAMA KOICHI, NAITO YOSHIFUMI, SAWA TEIJI: "Epidemiological analysis of serum anti- Pseudomonas aeruginosa PcrV titers in adults : Serum anti- P. aeruginosa PcrV titers", MICROBIOLOGY AND IMMUNOLOGY, vol. 60, no. 2, 1 February 2016 (2016-02-01), JP , pages 114 - 120, XP055876164, ISSN: 0385-5600, DOI: 10.1111/1348-0421.12353 * |
Also Published As
Publication number | Publication date |
---|---|
CN114072145A9 (en) | 2023-01-20 |
CN114072145B (en) | 2024-06-11 |
CN118620074A (en) | 2024-09-10 |
CN114072145A (en) | 2022-02-18 |
TW202204399A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020311511B2 (en) | Antibodies specifically recognizing Pseudomonas PcrV and uses thereof | |
US20230002496A1 (en) | Antibodies specifically recognizing granulocyte-macrophage colony stimulating factor receptor alpha and uses thereof | |
US20230257454A1 (en) | Antibodies specifically recognizing c5a and uses thereof | |
EP4288454A1 (en) | Antibodies specifically recognizing thymic stromal lymphopoietin and uses thereof | |
WO2021244421A1 (en) | Antibodies specifically recognizing pseudomonas pcrv and uses thereof | |
WO2022028444A1 (en) | Antibodies specifically recognizing pseudomonas psl and uses thereof | |
WO2022105818A1 (en) | Combinations of antibodies and bispecific antibodies comprising antigen-binding specifically recognizing pseudomonas pcrv and psl | |
WO2023025173A1 (en) | Antibody capable of specifically recognizing klebsiella pneumoniae o1 antigen and use thereof | |
EP4445911A1 (en) | Bispecific antibody that specifically binds to klebsiella pneumoniae o2 and o1 antigens, and composition | |
WO2023129870A2 (en) | ANTIBODIES SPECIFICALLY RECOGNIZING C5aR1 AND USES THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817439 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21817439 Country of ref document: EP Kind code of ref document: A1 |