WO2021243599A1 - 电量检测系统、信息获取系统、方法、装置和设备 - Google Patents

电量检测系统、信息获取系统、方法、装置和设备 Download PDF

Info

Publication number
WO2021243599A1
WO2021243599A1 PCT/CN2020/094134 CN2020094134W WO2021243599A1 WO 2021243599 A1 WO2021243599 A1 WO 2021243599A1 CN 2020094134 W CN2020094134 W CN 2020094134W WO 2021243599 A1 WO2021243599 A1 WO 2021243599A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
waveform
power
control unit
micro
Prior art date
Application number
PCT/CN2020/094134
Other languages
English (en)
French (fr)
Inventor
张其睿
李龙
周瑜
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/094134 priority Critical patent/WO2021243599A1/zh
Publication of WO2021243599A1 publication Critical patent/WO2021243599A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/24Reminder alarms, e.g. anti-loss alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones

Definitions

  • the embodiments of the present application relate to the field of power detection, in particular to power detection systems, information acquisition systems, methods, devices, and equipment.
  • the power cords of many electrical equipment have only two positive and negative wires, and no other signal wires.
  • the discharge curve of power sources such as batteries and battery packs is a non-linear curve, and there is usually a large error in inversely calculating the power of the power source through the magnitude of the voltage.
  • the load of the electrical equipment changes, the current will change. Due to the impedance of the power line, the voltage of the input port of the electrical equipment will also change, resulting in a large deviation in the power information calculated by the voltage inverse. . Therefore, the prior art cannot obtain accurate power information.
  • the embodiment of the present application proposes a power detection system, an information acquisition system, a method, a device, and a device to solve the technical problem of low power detection accuracy in the prior art.
  • the embodiment of the present application provides a power detection system, including: power management equipment and power consumption equipment, the power management equipment includes a power supply and an electrical connector; the electrical connector is used to electrically connect the power supply and the power consumption Between electrical equipment, so that the power supply and the electrical equipment can form an electrical connection through the electrical connector; the electrical connector includes a first micro-control unit and a voltage regulating circuit, the first micro-control unit , Used to obtain the first power information of the power supply, determine the first voltage waveform corresponding to the first power information, and control the voltage regulating circuit to output voltage with the first voltage waveform; In connection with the voltage regulating circuit, the electrical equipment includes a second micro-control unit; the second micro-control unit is used to sample the voltage output by the voltage regulating circuit, determine the second voltage waveform, and The second power information of the power supply is determined based on the second voltage waveform.
  • the embodiment of the present application also provides a voltage control method, which is applied to a power management device, the power management device includes an electrical connector, the electrical connector includes a first micro-control unit and a voltage regulating circuit, the first micro The control unit is in communication connection with a power source, and the power source is connected to the voltage regulating circuit, including: acquiring first power information of the power source; determining a first voltage waveform corresponding to the first power information; controlling the voltage regulation The circuit outputs a voltage in the first voltage waveform.
  • the embodiment of the present application also provides a power detection method, which is applied to a power-consuming device, and the power-consuming device is used to connect with a power management device to obtain power information of the power management device, including: The voltage output by the management device is sampled to determine a second voltage waveform; the second power information of the power management device is determined based on the second voltage waveform; the second power information is displayed.
  • An embodiment of the present application also provides a power management device, which is characterized by comprising: an electrical connector, the electrical connector including a first micro-control unit and a voltage regulating circuit; and, a power supply, the first micro-control unit In communication with the power supply, the power supply is connected with the voltage regulating circuit; wherein, the first micro-control unit is used to obtain the first power information of the power supply, and is used to determine that the first power information corresponds to And is used to control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • An embodiment of the present application also provides an electric device, which is used to connect with a power management device to obtain second power information of the power management device;
  • the power device includes: a second micro
  • the second micro-control unit is configured to sample the voltage output by the power management device, determine a second voltage waveform, and determine second power information of the power management device based on the second voltage waveform.
  • An embodiment of the present application also provides a power management device for connecting to a power source, including: an electrical connector, the electrical connector including a first micro-control unit and a voltage regulating circuit; the first micro-control unit is used to communicate with The power source is in communication connection, and the power source is connected to the voltage regulating circuit; wherein, the first micro-control unit is used to obtain the first power information of the power source, and is used to determine the information corresponding to the first power information A first voltage waveform, and for controlling the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the embodiment of the present application also provides a voltage control device, which is applied to a first micro-control unit, the first micro-control unit is in communication connection with a power supply, the power supply is connected with a voltage regulating circuit, and the device includes: an acquisition unit , Configured to obtain first power information of the power supply; a determining unit configured to determine a first voltage waveform corresponding to the first power information; a control unit configured to control the voltage regulating circuit to perform the first voltage waveform A voltage waveform output voltage.
  • An embodiment of the present application also provides a power detection device, which is applied to a power-consuming device, the power-consuming device is connected to a power source through a voltage regulating circuit, and includes: a sampling unit configured to output a voltage to the power management device Sampling is performed to determine a second voltage waveform; a determining unit is configured to determine second power information of the power supply based on the second voltage waveform; a display unit is configured to display the second power information.
  • the embodiment of the present application also provides a power management device, including a processor and a memory; the memory is used to store instructions; the processor is used to call the instructions to perform the following steps: obtain the first power of the power supply Information; determine the first voltage waveform corresponding to the first power information; control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the embodiment of the present application also provides a power-consuming device, including a processor and a memory; the memory is used to store instructions; the processor is used to call the instructions to perform the following steps: The voltage is sampled to determine the second voltage waveform; the second power information of the power supply is determined based on the second voltage waveform; the second power information is displayed.
  • An embodiment of the present application also provides an information acquisition system.
  • the system includes: a first information acquisition device and a second information acquisition device.
  • the first information acquisition device includes a power supply and an electrical connector; the electrical connector is used for Is electrically connected between the power supply and the second information acquisition device, so that the power supply and the second information acquisition device can form an electrical connection through the electrical connector;
  • the electrical connector includes a first micro A control unit and a voltage regulating circuit, the first micro-control unit is configured to obtain first information, determine a first voltage waveform corresponding to the first information, and control the voltage regulating circuit to output with the first voltage waveform Voltage;
  • the second information acquisition device is used to connect to the voltage regulation circuit, the second information acquisition device includes a second micro-control unit; the second micro-control unit is used to output the voltage regulation circuit The voltage of the sample is sampled, the second voltage waveform is determined, and the second information is determined based on the second voltage waveform.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, it implements, for example, a voltage control method or a power detection method.
  • the first micro-control unit in the power management device obtains the first power information of the power supply, determines the first voltage waveform corresponding to the first power information, and controls the voltage regulating circuit to output the voltage with the first voltage waveform, Therefore, it is possible to characterize the power information based on the voltage waveform.
  • the second micro-control unit in the electrical equipment samples the voltage output by the voltage regulating circuit in the first voltage waveform, and determines the second power information of the power supply based on the sampled data, so that the power information can be restored through the voltage waveform.
  • the process of determining the power information through the voltage waveform does not need to use a specific voltage value, it can avoid detection errors caused by factors such as voltage value changes, and improve The fault tolerance of power detection improves the accuracy of power detection.
  • Figure 1(a) is an exemplary system architecture diagram in which the embodiments of the present application can be applied;
  • Figure 1(b) is an application scenario diagram of an embodiment of this application.
  • Figure 2 is a schematic diagram of the interaction process between devices of the power detection system of the present application.
  • FIG. 3 is a schematic diagram of the corresponding relationship between the first power information and the first voltage waveform of the present application
  • FIG. 4 is a schematic diagram of the corresponding relationship between the first power information and the first voltage waveform of the present application
  • Fig. 5 is a schematic diagram of the first voltage waveform of the present application.
  • Fig. 6 is a flowchart of an embodiment of a voltage control method according to the present application.
  • FIG. 7 is a flowchart of an embodiment of the power detection method according to the present application.
  • Fig. 8 is a flowchart of an embodiment of a voltage control device according to the present application.
  • Fig. 9 is a flowchart of an embodiment of the power detection device according to the present application.
  • FIG. 1(a) shows an exemplary system architecture diagram in which the embodiments of the present application can be applied.
  • the power detection system, power detection method, voltage control method, power management equipment, power consumption equipment, voltage control device, power detection device, information acquisition system and other embodiments of the present application can be applied to this exemplary system architecture.
  • the system architecture can include power management equipment and power-consuming equipment.
  • the power management device includes a power supply and an electrical connector.
  • the electrical connector is used for electrical connection between the power supply and the electrical equipment, so that the power supply and the electrical equipment can be electrically connected through the electrical connector.
  • the electrical connector may include a first micro-control unit and a voltage regulating circuit. Electric equipment can be connected to the above-mentioned voltage regulating circuit.
  • the powered device may include a second micro-control unit.
  • Microcontroller Unit also known as single-chip microcomputer or single-chip microcomputer, is to appropriately reduce the frequency and specifications of the central processing unit (CPU), and integrate memory, counters, and USB (Universal Serial Bus). Universal serial bus), analog-to-digital conversion, UART (Universal Asynchronous Receiver/Transmitter, Universal Asynchronous Receiver/Transmitter), PLC (Programmable Logic Controller), DMA (Direct Memory Access, direct memory access) and other peripherals
  • the interface is integrated on a single chip to form a chip-level computer for different combinations of control for different applications.
  • the first micro-control unit and the second micro-control unit can have certain data processing capabilities and control capabilities, and can perform operations such as signal sampling and analog-to-digital conversion.
  • the voltage regulating circuit may be a direct current voltage regulating circuit (ie, a direct current voltage conversion circuit).
  • This circuit is a conversion circuit that converts the DC voltage into an adjustable DC voltage.
  • the basic principle is to use power electronic switching devices to periodically turn on and off to change the output voltage. It is also called a switching type DC/DC (Direct Curren/Direct Curren, direct current/direct current) conversion circuit, also known as a chopper circuit (Choppter).
  • the average voltage of the circuit is controlled by the duty cycle of the circuit. By changing the value of the duty cycle, the average output voltage of the circuit can be changed.
  • the system can also include other components.
  • the electrical equipment also includes devices such as loads, voltage stabilizing circuits, voltage dividing circuits, and voltage dividing resistors, which are not limited here.
  • the electrical equipment can be unmanned aerial vehicles, handheld pan/tilts, pan/tilt carts, robots, remote controls, flying glasses and other equipment, which is not limited here.
  • the power management device described above may not include a power source.
  • the power supply can be connected to the power management device as a device independent of the power management device.
  • FIG. 1(b) shows an application scenario diagram of an embodiment of the present application.
  • the flying glasses are electric equipment
  • the glasses charging and discharging integrated box is the power management equipment
  • the power source is the battery.
  • the glasses charging and discharging integrated box may include a battery compartment for accommodating the battery.
  • the glasses charging and discharging integrated box can carry out the battery power and protection push, charge and discharge management, etc., and can also be equipped with a fast charging handshake chip, so as to connect to the charger through the Type-C interface to charge the battery.
  • the glasses charging and discharging integrated box can obtain the power information from the battery, and then output the voltage with the voltage waveform corresponding to the power through the voltage regulating circuit, and provide the power to the flying glasses through the DC power cord.
  • the flying glasses rely on a DC power cord to supply power.
  • the flying glasses can sample the voltage through an ADC (Analog-to-Digital Converter) to restore the voltage waveform, and then determine the power information corresponding to the voltage waveform.
  • ADC Analog-to-Digital Converter
  • the level relationship in the voltage waveform is not affected by the load change, and the process of determining the power information through the voltage waveform does not need to use a specific voltage value, it can avoid the detection error caused by the voltage value change and other factors, and make the flight
  • the glasses can obtain accurate battery power, so that they can be used to reasonably plan the use time of the flying glasses.
  • the power detection system includes power management equipment and power-consuming equipment.
  • the power management device includes a power supply and an electrical connector.
  • the electrical connector is used for electrical connection between the power supply and the electrical equipment, so that the power supply and the electrical equipment can be electrically connected through the electrical connector.
  • the electrical connector may include a first micro-control unit and a voltage regulating circuit. Electric equipment can be connected to the voltage regulating circuit.
  • the powered device may include a second micro-control unit.
  • the interaction process of each device of the above-mentioned power detection system includes:
  • Step 201 The first micro-control unit obtains first power information of the power supply.
  • the first micro-control unit may be communicatively connected with the power supply, so as to obtain the first power information of the power supply.
  • the first power information here may include the state of charge (SOC) of the power supply.
  • SOC state of charge
  • Step 202 The first micro-control unit determines a first voltage waveform corresponding to the first power information, and controls the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the first micro-control unit may set the first voltage waveform based on the first power information, such as the state of charge of the power supply, and control the voltage regulating circuit to output the voltage with the first voltage waveform.
  • first power information such as the state of charge of the power supply
  • different first power information can be set to different first voltage waveforms.
  • the first micro-control unit may determine the foregoing first voltage waveform through the following steps:
  • the first step is to determine the duty cycle based on the first power information.
  • the duty ratio refers to the ratio of the duration of the high level to the total time in a pulse cycle.
  • the pulse cycle can refer to the waveform transformation cycle, and the duration of the cycle can be preset.
  • the high level duration in the waveform conversion period is 1 microsecond
  • the waveform conversion period is 4 microseconds
  • the duty cycle is 0.25, that is, 25%.
  • the duty cycle is different.
  • the value of the state of charge in the first power information can be directly used as the duty cycle. Specifically, when the power is 100%, the duty cycle is 100%; when the power is 90%, the duty cycle is 90%; when the power is 80%, the duty cycle is 80%. When the power is at each value, it corresponds to a duty cycle, which will not be listed here.
  • the second step is to determine the first voltage waveform based on the above-mentioned duty cycle.
  • the high-level duration and the low-level duration in the pulse cycle can be set based on the duty cycle. For example, if the duty cycle is 25% and the waveform conversion period is 4 microseconds, the high level duration can be set to 1 microsecond, and the low level duration can be set to 3 microseconds. Thus, the first voltage waveform is obtained.
  • FIG. 3 shows a corresponding relationship diagram between the first power information and the first voltage waveform.
  • the duty cycle is different, and thus the first voltage waveform is different.
  • the first voltage waveforms shown in FIG. 3 are all waveforms of two waveform transformation cycles.
  • the specific values of the high level and the low level can be variously set as required, and are not limited here. For example, set the high level to 16V (volts), set the low level to 13V, and so on.
  • the corresponding relationship between the first power information and the first voltage waveform is not limited to that shown in FIG. 3, and any value of the power has a corresponding first voltage waveform.
  • the first micro-control unit may also determine the first voltage waveform through the following steps:
  • the first step is to obtain the binary number corresponding to the first power information.
  • the value of the state of charge in the first power information may be obtained first, and the value is a decimal number. Then, the decimal number is converted to a binary number. For example, when the power is 100%, the decimal number is 100, and the corresponding binary number is 01100100. When the power is 90%, the decimal number is 90, and the corresponding binary number is 01011010. When the power is 80%, the decimal number is 80, and the corresponding binary number is 01010000. When the power is at each value, it corresponds to a binary number, which will not be listed here.
  • the second step is to determine the first voltage waveform based on the binary number.
  • the first voltage waveform can be determined based on the binary number.
  • FIG. 4 shows a corresponding relationship diagram between the first power information and the first voltage waveform.
  • the binary number is different, and thus the first voltage waveform is different.
  • the first voltage waveforms shown in FIG. 4 are all waveforms of one waveform conversion period.
  • the corresponding relationship between the first power information and the first voltage waveform is not limited to that shown in FIG. 4, and any value of the power has a corresponding first voltage waveform.
  • the first voltage waveform determined based on the binary number may also adopt other forms, and is not limited to a square wave form.
  • FIG. 5 shows the first voltage waveform when the power is 88% and the binary number is 1011000.
  • a starting waveform is first presented. When the value of the binary bit is 0, it is at a low level. When the value of the binary digit is 1, a triangular wave appears.
  • the electric equipment By sequentially determining the binary number corresponding to the first power information, and then determining the waveform corresponding to the binary number, it is possible to output voltages with different voltage waveforms when the power of the power source is different. Thus, it is convenient for the electric equipment to infer the electric quantity information based on the voltage waveform. Since different power information corresponds to different voltage waveforms, the power information deduced by the user equipment is more accurate. Take the scenario shown in Figure 1(b) as an example.
  • the flying glasses only have a power cord, not a signal line. By reconfiguring the glasses charging and discharging integrated box, it will output the voltage with the first voltage waveform through the original power cord.
  • the power consumption information is deduced by the electric equipment based on the waveform of the voltage, and the accurate battery power can be obtained by using the electric equipment without changing the power cord and without changing the hardware of the flying glasses.
  • Step 203 The second micro-control unit samples the voltage output by the voltage regulating circuit in the first voltage waveform to determine the second voltage waveform.
  • the second micro-control unit may have an ADC, which may support analog signal sampling.
  • the second micro-control unit can sample the voltage output by the voltage regulating circuit with the first voltage waveform, and determine the second voltage waveform output by the voltage regulating circuit.
  • the second micro-control unit may first sample the voltage output by the voltage regulating circuit with the first voltage waveform through the ADC in a certain sampling period to obtain an analog signal. Then, the sampled model signals are converted into digital signals, and the voltage of each sample is determined, thereby obtaining the second voltage waveform.
  • the second micro-control unit may be connected to the above-mentioned voltage regulation circuit through a voltage divider circuit. Through the voltage divider circuit, the voltage at both ends of the second micro-control unit can be reduced to be within the working range of the second micro-control unit, so as to prevent the second micro-control unit from being damaged due to excessive voltage.
  • the second micro-control unit may first sample the voltage across the voltage divider circuit, and determine the waveform of the voltage across the voltage divider circuit based on the sampled data. Then, based on the waveform of the voltage across the voltage divider circuit, the second voltage waveform of the voltage output by the voltage regulator circuit can be determined.
  • one end of the voltage divider circuit can be grounded, and the other end can be connected to the output terminal of the voltage regulator circuit. Therefore, the voltage at both ends of the voltage divider circuit is the voltage output by the voltage regulator circuit, and the waveform of the voltage at both ends of the voltage divider circuit is the second voltage. Waveform.
  • the aforementioned voltage divider circuit includes a voltage divider resistor for voltage division.
  • the voltage across the voltage dividing resistor may be the terminal voltage of the second micro-control unit.
  • the second micro-control unit may first sample the voltage across the voltage dividing resistor to determine the waveform of the voltage across the voltage dividing resistor. Then, based on the waveform of the voltage across the voltage divider resistor, the second voltage waveform of the voltage output by the voltage regulating circuit is determined.
  • the ratio of the voltage divider resistance to the total resistance in the voltage divider circuit can be determined first, and then the voltage across the voltage divider resistor is divided by the ratio to obtain the voltage across the voltage divider circuit.
  • One end of the voltage divider circuit can be grounded, and the other end can be connected to the output terminal of the voltage regulator circuit. Therefore, the voltage at both ends of the voltage divider circuit is the voltage output by the voltage regulator circuit.
  • the waveform of the voltage across the voltage divider resistor is first transformed into two voltage divider circuits.
  • the second voltage waveform can be obtained by the waveform of the voltage at the terminal.
  • Step 204 Determine the second power information of the power supply based on the second voltage waveform.
  • the power information can be deduced through the second voltage waveform, and the power information deduced can be used as the second power information. Since the voltage regulating circuit outputs the voltage with the first voltage waveform and transmits the electric energy to the electric equipment through the power line, and the voltage sampled by the second micro-control unit is the voltage input from the power line to the input terminal of the electric equipment, the first voltage waveform It is basically the same as the second voltage waveform. Therefore, the second power information is basically the same as the first power information, and the accuracy of power detection is improved without replacing the power cord.
  • the second micro-control unit may determine the second power information through the following steps:
  • the first step is to determine the type of voltage output by the voltage regulating circuit and the duration of each type of voltage based on the second voltage waveform, the types include high level and low level.
  • the second step is to determine the duty ratio of the second voltage waveform of the voltage output by the voltage regulation circuit based on the type of voltage output by the voltage regulation circuit and the duration of each type of voltage.
  • the duty ratio of the second voltage waveform of the voltage output by the voltage regulating circuit can be determined by calculating the ratio of the duration of the high level to the total duration of the waveform conversion period.
  • the third step is to determine the second power information based on the duty cycle of the second voltage waveform.
  • the power information corresponding to the duty cycle here can be determined, and the power information can be used as the second power information.
  • the voltage regulating circuit outputs the voltage with the first voltage waveform and transmits the electric energy to the electric equipment through the power line
  • the voltage sampled by the second micro-control unit is the voltage input from the power line to the input terminal of the electric equipment
  • the first voltage waveform It is basically the same as the second voltage waveform. Since the same voltage waveform has the same duty cycle, and the voltage waveforms of the same duty cycle correspond to the same power information, the second power information calculated by determining the duty cycle of the second voltage waveform is basically the same as the first power information. Same, so that accurate power information can be obtained.
  • the flying glasses only have a power cord, not a signal line.
  • the glasses charging and discharging integrated box By reconfiguring the glasses charging and discharging integrated box, it will output the voltage with the first voltage waveform through the original power cord.
  • the power consumption information is deduced by the electric equipment based on the waveform of the voltage, and the accurate battery power can be obtained by using the electric equipment without changing the power cord and without changing the hardware of the flying glasses.
  • the duration of each type of voltage may be greater than the sampling period of the second micro-control unit, so as to ensure that the waveform determined based on the sampled data is more accurate.
  • the second micro-control unit can determine the second power information through the following steps: First, determine the binary number corresponding to the second voltage waveform .
  • the binary number corresponding to the second voltage waveform can be determined according to the preset correspondence relationship between the voltage waveform and the binary number.
  • the binary number corresponding to the second voltage waveform is converted into a decimal number, and the second power information is determined based on the decimal number.
  • a decimal number may be used as the value of the state of charge, and the value of the state of charge may be used as the second power information.
  • the voltage regulating circuit outputs the voltage with the first voltage waveform and transmits the electric energy to the electric equipment through the power line
  • the voltage sampled by the second micro-control unit is the voltage input from the power line to the input terminal of the electric equipment
  • the first voltage waveform It is basically the same as the second voltage waveform. Since the same voltage waveform corresponds to the same binary number, and the same binary number corresponds to the same power information, the second power information calculated by determining the binary number corresponding to the second voltage waveform is basically the same as the first power information, so that we can get Accurate battery information.
  • the flying glasses only have a power cord, not a signal line.
  • the glasses charging and discharging integrated box By reconfiguring the glasses charging and discharging integrated box, it will output the voltage with the first voltage waveform through the original power cord.
  • the power consumption information is deduced by the electric equipment based on the waveform of the voltage, and the accurate battery power can be obtained by using the electric equipment without changing the power cord and without changing the hardware of the flying glasses.
  • the binary number corresponding to the second voltage waveform can be determined according to the following steps: First, the initial waveform used to indicate the beginning of the waveform transformation period in the second voltage waveform is obtained, as shown in the “initial waveform” in FIG. 5. Then, based on the initial waveform, the waveform transformation period of the target voltage model can be determined. Afterwards, each preset unit duration in the waveform conversion period may correspond to a binary bit, and the value of each binary bit, such as 1 or 0, may be determined based on the waveform within each preset unit duration. Finally, based on the value of each binary bit, the binary number corresponding to the second voltage waveform is determined.
  • the preset unit duration may be greater than the sampling period of the second micro-control unit, so as to ensure that the waveform determined based on the sampled data is more accurate.
  • the electrical equipment may further include a display device. After the second micro-control unit determines the second power information, the display unit may obtain the second power information from the second micro-control unit and display the second power information. As a result, it is convenient for the user to view the power of the electrical equipment in real time.
  • the electrical equipment may also include a voltage stabilizing circuit and a load device.
  • the voltage regulating circuit and the load equipment are connected via a voltage stabilizing circuit.
  • the output voltage of the voltage regulator circuit is within the operating voltage range of the voltage regulator circuit.
  • the power supply and the electrical connector may be designed as an integral part.
  • the power supply can be detachably connected to the electrical connector.
  • the power source may include a battery.
  • the electrical connector may include at least one of the following: a flying glasses charging box, and a battery manager.
  • the first micro-control unit in the power management device obtains the first power information of the power supply, determines the first voltage waveform corresponding to the first power information, and controls the voltage regulating circuit to use the first voltage waveform The output voltage can be based on the voltage waveform characterizing power information. Then, the second micro-control unit in the electrical equipment samples the voltage output by the voltage regulating circuit in the first voltage waveform, and determines the second power information of the power supply based on the sampled data, so that the power information can be restored through the voltage waveform.
  • the flight glasses Since the level relationship in the voltage waveform is not affected by the load change, and the process of determining the power information through the voltage waveform does not need to use a specific voltage value, it can avoid detection errors caused by factors such as voltage value changes, and improve The fault tolerance of power detection improves the accuracy of power detection.
  • the flight glasses only have a power cord, but not a signal line. This method does not need to replace the hardware and power cord of the flight glasses, and accurate power information can be obtained.
  • the software upgrade of the flying glasses is required, and the logic of converting the sampled second voltage waveform into the second power information is added to the second micro-control unit, so that the existing flying glasses can obtain accurate power. Information function.
  • the voltage control method can be applied to power management equipment.
  • the power management device includes an electrical connector.
  • the electrical connector includes a first micro-control unit and a voltage regulating circuit.
  • the first micro-control unit is in communication connection with the power supply, and the power supply is connected with the voltage regulating circuit.
  • the voltage control method includes the following steps:
  • Step 601 Acquire first power information of the power supply.
  • the execution subject of the voltage control method (such as the first micro-control unit in the above-mentioned power management device) can obtain the first power information of the power supply.
  • Step 602 Determine a first voltage waveform corresponding to the first power information.
  • the above-mentioned execution subject may set the first voltage waveform based on the first power information, such as the state of charge of the power supply. Different first power information can set different first voltage waveforms.
  • the above-mentioned execution subject may first determine the duty cycle based on the first power information. Then, the first voltage waveform may be determined based on the duty ratio.
  • the above-mentioned execution subject may first obtain the binary number corresponding to the above-mentioned first power information. Then, the first voltage waveform can be determined based on the binary number.
  • Step 603 Control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the power supply and the electrical connector may be designed as an integral part.
  • the power supply can be detachably connected to the electrical connector.
  • the power source may include a battery.
  • the electrical connector may include at least one of the following: a flying glasses charging box, and a battery manager.
  • the first micro-control unit in the power management device obtains the first power information of the power supply, and then determines the first voltage waveform corresponding to the first power information, and finally controls the voltage regulating circuit Using the above-mentioned first voltage waveform output voltage, it is possible to output different first voltage waveforms under different power conditions, so that the first voltage waveform is used to characterize power information, which is convenient for electrical equipment to reversely derive accurate power by sampling the voltage information.
  • FIG. 7 shows a flowchart of the voltage control method according to the present application.
  • the voltage control method is applied to electrical equipment.
  • the power-consuming device is used to connect with the power management device to obtain power information of the power management device.
  • the voltage control method includes the following steps:
  • Step 701 Sample the voltage output by the power management device to determine a second voltage waveform.
  • the execution subject of the voltage control method can first sample the voltage output by the power management device with the first voltage waveform through the ADC in a certain sampling period. , Get the analog signal. Then, the sampled model signals are converted into digital signals, and the voltage of each sample is determined, thereby obtaining the second voltage waveform.
  • the power-consuming device may be connected to the above-mentioned power management device through a voltage divider circuit.
  • the execution subject may first sample the voltage across the voltage divider circuit, and determine the waveform of the voltage across the voltage divider circuit based on the sampled data; then, determine the power management device based on the waveform of the voltage across the voltage divider circuit The second voltage waveform of the output voltage.
  • the aforementioned voltage divider circuit may include a voltage divider resistor.
  • the execution subject may first sample the voltage across the voltage divider resistor to determine the waveform of the voltage across the voltage divider resistor; then, based on the waveform of the voltage across the voltage divider resistor, determine the second value of the voltage output by the power management device Voltage waveform.
  • Step 702 Determine second power information of the power management device based on the second voltage waveform.
  • the power information can be deduced through the second voltage waveform, and the power information deduced can be used as the second power information. Since the power management device outputs the voltage with the first voltage waveform and transmits the power to the electrical device via the power line, and the voltage sampled by the execution subject is the voltage input from the power line to the input terminal of the electrical device, the first voltage waveform is the same as the first voltage waveform. The two voltage waveforms are basically the same. Therefore, the second power information is basically the same as the first power information, and the accuracy of power detection is improved without replacing the power cord.
  • the second power information can be determined by the following steps: First, based on the second voltage waveform, determine the type of voltage output by the power management device and the duration of each type of voltage, The above types include high level and low level. Then, based on the type of voltage output by the power management device and the duration of each type of voltage, the duty ratio of the second voltage waveform is determined. Finally, based on the duty ratio of the second voltage waveform, the second power information is determined.
  • the duration of each type of voltage can be greater than the sampling period of the above-mentioned execution subject, so as to ensure that the waveform determined based on the sampled data is more accurate.
  • the second power information can be determined through the following steps: First, determine the binary number corresponding to the second voltage waveform. Then, the binary number corresponding to the second voltage waveform is converted into a decimal number, and the second power information is determined based on the decimal number.
  • the binary number corresponding to the second voltage waveform can be determined by the following steps: First, the initial waveform used to indicate the beginning of the waveform conversion period in the second voltage waveform is detected. Then, based on the above-mentioned initial waveform, the waveform transformation period of the above-mentioned target voltage model is determined. Afterwards, each preset unit duration in the waveform conversion period is corresponding to one binary bit, and the value of each binary bit is determined based on the waveform within each preset unit duration. Finally, based on the value of each binary bit, the binary number corresponding to the second voltage waveform is determined.
  • the preset unit duration is greater than the sampling period of the execution subject, so as to ensure that the waveform determined based on the sampled data is more accurate.
  • the above-mentioned electrical equipment further includes a voltage stabilizing circuit and a load device, and the above-mentioned power management device and the above-mentioned load device are connected via the above-mentioned voltage stabilizing circuit; and, the voltage output by the above-mentioned power management device Located within the working voltage range of the above-mentioned voltage stabilizing circuit.
  • Step 703 Display the second power information.
  • the second voltage waveform is determined by sampling the voltage output by the power management device, and then the second power information of the power management device is determined based on the second voltage waveform, thereby displaying the first 2.
  • Electricity information Because different voltage waveforms correspond to different power information, and the relationship between high and low levels in the voltage waveform is not affected by load changes, the voltage waveform is used to infer the power information, which is compared to the direct use of the voltage to inverse the battery power. In this way, the fault tolerance of power detection can be improved, thereby improving the accuracy of power detection.
  • the flight glasses only have a power cord, but not a signal line.
  • This method does not need to replace the hardware and power cord of the flight glasses, and accurate power information can be obtained.
  • only the software upgrade of the flying glasses is required, and the logic of converting the sampled second voltage waveform into the second power information is added to the second micro-control unit, so that the existing flying glasses can obtain accurate power. Information function.
  • this application provides an embodiment of a voltage control device, which is applied to a first micro-control unit, and the first micro-control unit is in communication connection with a power supply.
  • the power supply is connected to the voltage regulating circuit.
  • This device embodiment corresponds to the method embodiment shown in FIG. 6.
  • the voltage control device 800 of this embodiment includes: an acquiring unit 801, configured to acquire the first power information of the above-mentioned power supply; and a determining unit 802, configured to determine the first voltage corresponding to the above-mentioned first power information. Waveform;
  • the control unit 803 is configured to control the above-mentioned voltage regulating circuit to output a voltage with the above-mentioned first voltage waveform.
  • the determination unit 802 is further configured to: determine a duty cycle based on the first power information; and determine the first voltage waveform based on the duty cycle.
  • the determination unit 802 is further configured to: obtain a binary number corresponding to the first power information; and determine the first voltage waveform based on the binary number.
  • the above-mentioned power supply and the above-mentioned electrical connector are integrally designed.
  • the above-mentioned power supply is detachably connected to the above-mentioned electrical connector.
  • the above-mentioned power supply includes a battery.
  • the above-mentioned electrical connector includes at least one of the following: a flying glasses charging box, and a battery manager.
  • the voltage control device obtained by the foregoing embodiment of the present application obtains the first power information of the power supply through the first micro-control unit in the power management device, and then determines the first voltage waveform corresponding to the first power information, and finally controls the adjustment
  • the voltage circuit outputs the voltage with the above-mentioned first voltage waveform, which can output different first voltage waveforms under different power conditions, so that the first voltage waveform is used to characterize the power information, which is convenient for electrical equipment to sample the voltage to infer accurate Battery information.
  • this application provides an embodiment of a power detection device, which is applied to electrical equipment, and the electrical equipment is connected to a power supply through a voltage regulating circuit.
  • This device embodiment corresponds to the method embodiment shown in FIG. 7.
  • the above-mentioned power detection device 900 of this embodiment includes: a sampling unit 901 configured to sample the voltage output by the above-mentioned power management device to determine a second voltage waveform; and the determining unit 902 is configured to be based on the above-mentioned The second voltage waveform determines the second power information of the power supply; the display unit 903 is configured to display the second power information.
  • the above-mentioned electric device is connected to the above-mentioned power management device through a voltage divider circuit; and, the above-mentioned sampling unit 901 is further configured to: Sampling, based on the sampled data, determines the waveform of the voltage across the voltage divider circuit; based on the waveform of the voltage across the voltage divider circuit, determines the second voltage waveform of the voltage output by the power management device.
  • the voltage divider circuit includes a voltage divider resistor; and, the sampling unit 901 is further configured to: sample the voltage across the voltage divider resistor to determine the voltage divider resistor The waveform of the voltage at both ends; based on the waveform of the voltage at both ends of the voltage dividing resistor, the second voltage waveform of the voltage output by the power management device is determined.
  • the determining unit 902 is further configured to determine the type of voltage output by the power management device and the duration of each type of voltage based on the second voltage waveform. Including high level and low level; determining the duty cycle of the second voltage waveform based on the type of voltage output by the power management device and the duration of each type of voltage; determining the duty cycle of the second voltage waveform based on the duty cycle of the second voltage waveform The second power information.
  • the duration of each type of voltage is greater than the sampling period of the foregoing electrical equipment.
  • the determining unit 902 is further configured to: determine a binary number corresponding to the second voltage waveform; convert the binary number corresponding to the second voltage waveform into a decimal number, and Based on the decimal number, the second power information is determined.
  • the determination unit 902 is further configured to: detect the initial waveform used to indicate the beginning of the waveform transformation period in the second voltage waveform; and determine the initial waveform based on the initial waveform.
  • the waveform transformation period of the target voltage model; each preset unit duration in the above-mentioned waveform transformation period corresponds to a binary bit, and the value of each binary bit is determined based on the waveform within each preset unit duration; based on the value of each binary bit, Determine the binary number corresponding to the second voltage waveform.
  • the foregoing preset unit duration is greater than the sampling period of the foregoing electrical equipment.
  • the above-mentioned electrical equipment further includes a voltage stabilizing circuit and a load device, and the above-mentioned power management device and the above-mentioned load device are connected via the above-mentioned voltage stabilizing circuit; and, the voltage output by the above-mentioned power management device Located within the working voltage range of the above-mentioned voltage stabilizing circuit.
  • the power detection device determines the second voltage waveform by sampling the voltage output by the power management device, and then determines the second power information of the power management device based on the second voltage waveform, thereby displaying The above-mentioned second power information. Because different voltage waveforms correspond to different power information, and the relationship between high and low levels in the voltage waveform is not affected by load changes, the voltage waveform is used to infer the power information, which is compared to the direct use of the voltage to inverse the battery power. In this way, the fault tolerance of power detection can be improved, thereby improving the accuracy of power detection.
  • the power management device includes an electrical connector, and the electrical connector includes a first micro-control unit and a voltage regulating circuit.
  • the power supply, the first micro-control unit is in communication connection with the power supply, and the power supply is connected with the voltage regulating circuit.
  • the first micro-control unit is used to obtain the first power information of the power supply, and is used to determine the first voltage waveform corresponding to the first power information, and is used to control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the first micro-control unit is configured to determine the first voltage waveform through the following steps: determine the duty cycle based on the first power information; determine the first voltage based on the duty cycle Waveform.
  • the first micro-control unit is configured to determine the first voltage waveform through the following steps: acquiring a binary number corresponding to the first power information; and determining the first voltage waveform based on the binary number.
  • the power supply and the electrical connector are designed as an integral part.
  • the power supply and the electrical connector are detachably connected.
  • the power source includes a battery.
  • the electrical connector includes at least one of the following: a flying glasses charging box, and a battery manager.
  • the power management device can output different first voltage waveforms under different power conditions, so that the first voltage waveform is used to characterize power information, so that the power-consuming device can reversely derive accurate power information by sampling the voltage.
  • the power-consuming device is used to connect with the power management device to obtain the second power information of the power management device.
  • the electrical equipment includes: a second micro-control unit, the second micro-control unit is used to sample the voltage output by the power management device, determine a second voltage waveform, and based on the second voltage waveform to determine the power management device The second power information.
  • the above-mentioned second micro-control unit may be connected to the above-mentioned power management device through a voltage divider circuit.
  • the second micro-control unit is configured to determine the second voltage waveform through the following steps: sampling the voltage across the voltage dividing circuit, and determining the waveform of the voltage across the voltage dividing circuit based on the sampled data; based on the voltage dividing circuit The waveform of the voltage across the circuit determines the second voltage waveform of the voltage output by the power management device.
  • the voltage divider circuit includes a voltage divider resistor; and, the second micro-control unit is configured to determine the second voltage waveform through the following steps: The voltage is sampled to determine the waveform of the voltage across the voltage dividing resistor; based on the waveform of the voltage across the voltage dividing resistor, the second voltage waveform of the voltage output by the power management device is determined.
  • the second micro-control unit is configured to determine the second power information through the following steps: based on the second voltage waveform, determine the type and type of the voltage output by the power management device circuit The duration of each type of voltage, the above types include high level and low level; based on the type of voltage output by the power management device circuit and the duration of each type of voltage, the duty cycle of the second voltage waveform is determined; based on the above first The duty ratio of the second voltage waveform determines the above-mentioned second power information.
  • the duration of each type of voltage is greater than the sampling period of the foregoing second micro-control unit.
  • the second micro-control unit is configured to determine the second electric quantity information through the following steps: determine the binary number corresponding to the second voltage waveform; and correspond to the second voltage waveform The binary number of is converted into a decimal number, and the above-mentioned second power information is determined based on the above-mentioned decimal number.
  • the above-mentioned second micro-control unit is configured to determine the binary number corresponding to the above-mentioned second voltage waveform through the following steps: obtaining the above-mentioned second voltage waveform to indicate the beginning of the waveform transformation period Determine the waveform transformation period of the target voltage model based on the above-mentioned initial waveform; correspond to a binary bit for each preset unit duration in the waveform transformation period, and determine based on the waveform within each preset unit duration The value of each binary bit; based on the value of each binary bit, the binary number corresponding to the second voltage waveform is determined.
  • the foregoing preset unit duration is greater than the sampling period of the foregoing second micro-control unit.
  • the power-consuming device determines the second voltage waveform by sampling the voltage output by the power management device, and then determines the second power information of the power management device based on the second voltage waveform, thereby displaying the second power information. Because different voltage waveforms correspond to different power information, and the relationship between high and low levels in the voltage waveform is not affected by load changes, the voltage waveform is used to infer the power information, which is compared to the direct use of the voltage to inverse the battery power. In this way, the fault tolerance of power detection can be improved, thereby improving the accuracy of power detection. As shown in the scenario shown in Figure 1(b), the flight glasses only have a power cord, but not a signal line.
  • This method does not require replacement of the hardware and power cord of the flight glasses, and accurate power information can be obtained.
  • only the software upgrade of the flight glasses is required, and the logic of converting the sampled second voltage waveform into the second power information is added to the second micro-control unit, so that the existing flight glasses can obtain accurate power. Information function.
  • the power management device is used to connect to a power source.
  • the power management device includes an electrical connector, the electrical connector includes a first micro-control unit and a voltage regulating circuit; the first micro-control unit is used to communicate with the power supply, and the power supply is connected to the voltage regulating circuit.
  • the first micro-control unit is used to obtain the first power information of the power supply, and is used to determine the first voltage waveform corresponding to the first power information, and is used to control the voltage regulating circuit to output voltage with the first voltage waveform .
  • the micro-control unit is configured to determine the voltage waveform through the following steps: determine the duty cycle based on the first electric quantity information; determine the first voltage based on the duty cycle Waveform.
  • the above-mentioned micro-control unit is configured to determine the above-mentioned first voltage waveform through the following steps: obtain a binary number corresponding to the above-mentioned first power information; and determine the above-mentioned first voltage based on the above-mentioned binary number. Waveform.
  • the above-mentioned power supply and the above-mentioned electrical connector are integrally designed.
  • the above-mentioned power supply is detachably connected to the above-mentioned electrical connector.
  • the above-mentioned power supply includes a battery.
  • the above-mentioned electrical connector includes at least one of the following: a flying glasses charging box, and a battery manager.
  • the power management device can output different first voltage waveforms under different power conditions, so that the first voltage waveform is used to characterize power information, so that the power-consuming device can reversely derive accurate power information by sampling the voltage.
  • the power management device may specifically include: a processor and a memory.
  • the above-mentioned memory can be used to store program instructions.
  • the above-mentioned processor may be used to execute the program instructions stored in the above-mentioned memory.
  • the above-mentioned processor may be used to perform the following steps: obtain the first power information of the power supply; determine the first power information corresponding to the first power information. Voltage waveform; controlling the voltage regulating circuit to output voltage with the above-mentioned first voltage waveform.
  • the above-mentioned processor is further configured to: determine a duty cycle based on the above-mentioned first power information; and determine the above-mentioned first voltage waveform based on the above-mentioned duty cycle.
  • the above-mentioned processor is further configured to: obtain a binary number corresponding to the above-mentioned first power information; and determine the above-mentioned first voltage waveform based on the above-mentioned binary number.
  • the electronic device obtained by the above-mentioned embodiment of the present application obtains the first power information of the power supply, and then determines the first voltage waveform corresponding to the first power information, and finally controls the voltage regulating circuit to output the voltage with the first voltage waveform.
  • Different first voltage waveforms are output under the power condition, so that the first voltage waveform is used to characterize the power information, which is convenient for the electrical equipment to derive accurate power information by sampling the voltage.
  • the electrical equipment may specifically include a processor and a memory.
  • the above-mentioned memory can be used to store program instructions.
  • the foregoing processor may be used to execute program instructions stored in the foregoing memory.
  • the foregoing processor may be configured to perform the following steps: sampling the voltage output by the power management device to determine the second voltage waveform; based on the foregoing The second voltage waveform determines the second power information of the power management device; and displays the second power information.
  • the above-mentioned electric device is connected to the above-mentioned power management device through a voltage divider circuit; and the above-mentioned processor is further configured to: sample the voltage at both ends of the above-mentioned voltage divider circuit, Based on the sampled data, the waveform of the voltage across the voltage divider circuit is determined; based on the waveform of the voltage across the voltage divider circuit, the second voltage waveform of the voltage output by the power management device is determined.
  • the voltage divider circuit includes a voltage divider resistor; and, the processor is further configured to: sample the voltage across the voltage divider resistor to determine the voltage at both ends of the voltage divider resistor. The waveform of the voltage; based on the waveform of the voltage across the voltage divider resistor, the second voltage waveform of the voltage output by the power management device is determined.
  • the above-mentioned processor is further configured to: based on the above-mentioned second voltage waveform, determine the type of voltage output by the above-mentioned power management device and the duration of each type of voltage, and the above-mentioned types include High level and low level; determine the duty cycle of the second voltage waveform based on the type of voltage output by the power management device and the duration of each type of voltage; determine the duty cycle of the second voltage waveform based on the duty cycle of the second voltage waveform 2. Electricity information.
  • the duration of each type of voltage is greater than the sampling period of the foregoing electrical equipment.
  • the foregoing processor is further configured to: determine a binary number corresponding to the second voltage waveform; convert the binary number corresponding to the second voltage waveform into a decimal number, and based on The above-mentioned decimal number determines the above-mentioned second power information.
  • the above-mentioned processor is further configured to: detect the initial waveform used to indicate the beginning of the waveform transformation period in the second voltage waveform; and determine the above-mentioned target based on the above-mentioned initial waveform The waveform transformation period of the voltage model; each preset unit duration in the above-mentioned waveform transformation period corresponds to a binary digit, and the value of each binary digit is determined based on the waveform within each preset unit duration; the value of each binary digit is determined based on the value of each binary digit The binary number corresponding to the second voltage waveform.
  • the foregoing preset unit duration is greater than the sampling period of the foregoing electrical equipment.
  • the above-mentioned electrical equipment further includes a voltage stabilizing circuit and a load device, and the above-mentioned power management device and the above-mentioned load device are connected via the above-mentioned voltage stabilizing circuit; and, the voltage output by the above-mentioned power management device Located within the working voltage range of the above-mentioned voltage stabilizing circuit.
  • the information acquisition system includes: a first information acquisition device and a second information acquisition device.
  • the first information acquisition device includes a power source and an electrical connector.
  • the electrical connector is used for electrical connection between the power source and the second information acquiring device, so that the power source and the second information acquiring device can form an electrical connection through the electrical connector.
  • the electrical connector includes a first micro-control unit and a voltage regulating circuit.
  • the first micro-control unit is used to obtain the first information, determine the first voltage waveform corresponding to the first information, and control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the second information acquisition device is used to connect with the above-mentioned voltage regulating circuit.
  • the second information acquisition device includes a second micro-control unit.
  • the second micro-control unit is used to sample the voltage output by the voltage regulating circuit, determine the second voltage waveform, and determine the second information based on the second voltage waveform.
  • the first information and the second information may be various information, such as power information, environmental temperature, humidity, motor speed, alarm information, abnormal information, commands, and so on.
  • the above-mentioned second information acquisition device further includes a display device; and, the above-mentioned display device is configured to acquire the above-mentioned second information from the above-mentioned second micro-control unit and display the above-mentioned second information. information.
  • the first micro-control unit is configured to determine the first voltage waveform through the following steps: determine the duty cycle based on the first information; determine the duty cycle based on the duty cycle The above-mentioned first voltage waveform.
  • different first information may correspond to different duty ratios.
  • the first information is a command
  • different commands can correspond to different duty cycles.
  • the first information is alarm information
  • different alarm information may correspond to different duty ratios. I will not list them all here.
  • the above-mentioned second micro-control unit is configured to determine the above-mentioned second information through the following steps: based on the above-mentioned second voltage waveform, determine the type and each of the voltage output by the above-mentioned voltage regulation circuit The duration of the type voltage, the above types include high level and low level; based on the type of voltage output by the voltage regulating circuit and the duration of each type of voltage, the duty cycle of the second voltage waveform is determined; based on the second voltage The duty cycle of the waveform determines the above-mentioned second information.
  • the duration of each type of voltage is greater than the sampling period of the foregoing second micro-control unit.
  • the above-mentioned first micro-control unit is configured to determine the above-mentioned first voltage waveform through the following steps: obtaining a binary number corresponding to the above-mentioned first information; and determining the above-mentioned first voltage waveform based on the above-mentioned binary number. A voltage waveform.
  • the second micro-control unit is configured to determine the second information through the following steps: determine the binary number corresponding to the second voltage waveform; The binary number is converted into a decimal number, and the above-mentioned second information is determined based on the above-mentioned decimal number.
  • the above-mentioned second micro-control unit is configured to determine the binary number corresponding to the above-mentioned second voltage waveform through the following steps: obtaining the above-mentioned second voltage waveform to indicate the beginning of the waveform transformation period Determine the waveform transformation period of the target voltage model based on the above-mentioned initial waveform; correspond to a binary bit for each preset unit duration in the waveform transformation period, and determine based on the waveform within each preset unit duration The value of each binary bit; based on the value of each binary bit, the binary number corresponding to the second voltage waveform is determined.
  • the foregoing preset unit duration is greater than the sampling period of the foregoing second micro-control unit.
  • the above-mentioned second micro-control unit is connected to the above-mentioned voltage regulation circuit through a voltage divider circuit; and, the above-mentioned second micro-control unit is configured to determine the second voltage waveform through the following steps : Sampling the voltage across the voltage divider circuit, based on the sampled data, determine the waveform of the voltage across the voltage divider circuit; based on the waveform of the voltage across the voltage divider circuit, determine the second of the voltage output by the voltage regulator circuit Voltage waveform.
  • the voltage divider circuit includes a voltage divider resistor; and, the second micro-control unit is configured to determine the second voltage waveform through the following steps: The voltage is sampled to determine the waveform of the voltage across the voltage dividing resistor; based on the waveform of the voltage across the voltage dividing resistor, the second voltage waveform of the voltage output by the voltage regulating circuit is determined.
  • the second information acquisition device further includes a voltage regulator circuit and a load device, and the voltage regulator circuit and the load device are connected via the voltage regulator circuit; and, the voltage regulator circuit outputs The voltage is within the operating voltage range of the above-mentioned voltage stabilizing circuit.
  • the above-mentioned power supply and the above-mentioned electrical connector are integrally designed.
  • the above-mentioned power supply is detachably connected to the above-mentioned electrical connector.
  • the above-mentioned power supply includes a battery.
  • the above-mentioned electrical connector includes at least one of the following: a flying glasses charging box, and a battery manager.
  • the information acquisition system acquires first information through the first micro-control unit in the first information acquisition device, determines the first voltage waveform corresponding to the first information, and controls the voltage regulating circuit to output voltage with the first voltage waveform , Thereby being able to characterize the first information based on the voltage waveform. Then, the second micro-control unit in the electrical equipment samples the voltage output by the voltage regulating circuit, so as to determine the second information based on the sampled data. Since the output first voltage waveform and the sampled second voltage waveform are the same or very similar, and the information corresponding to the same waveform is the same, the acquired information can be restored through the voltage waveform. As a result, an information acquisition method can be provided, and the acquired information has high accuracy.
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored.
  • a computer program is executed by a processor, each process of the above-mentioned voltage control method or power detection method embodiment is realized, and can achieve The same technical effect.
  • the various processes of the above-mentioned method embodiments are implemented, which will not be repeated here.
  • the first information acquisition device includes a power source and an electrical connector.
  • the electrical connector is used for electrical connection between the power source and the second information acquiring device, so that the power source and the second information acquiring device can form an electrical connection through the electrical connector.
  • the electrical connector includes a first micro-control unit and a voltage regulating circuit.
  • the first micro-control unit is used to obtain the first information, determine the first voltage waveform corresponding to the first information, and control the voltage regulating circuit to output a voltage with the first voltage waveform.
  • the second information acquisition device is used to connect with the above-mentioned voltage regulating circuit.
  • the second information acquisition device includes a second micro-control unit.
  • the second micro-control unit is used to sample the voltage output by the voltage regulating circuit, determine the second voltage waveform, and determine the second information based on the second voltage waveform.
  • the first information and the second information may be various information, such as power information, ambient temperature, humidity, motor speed, alarm information, abnormal information, commands, and so on.
  • the embodiment of the present application also provides a voltage information control method, which is applied to an information management device.
  • the information management device includes an electrical connector.
  • the electrical connector includes a first micro-control unit and a voltage regulating circuit.
  • the micro-control unit is communicatively connected with a power source, and the power source is connected to the voltage regulating circuit, including: acquiring first information of the power source; determining a first voltage waveform corresponding to the first information; controlling the voltage regulating circuit The voltage is output in the first voltage waveform.
  • the first information may be various information, such as power information, ambient temperature, humidity, motor speed, alarm information, abnormal information, commands, and so on.
  • the embodiment of the application also provides an information detection method, which is applied to an information detection device, and the information detection device is used to connect with an information management device to obtain information of the information management device, including: outputting to the information management device Sample the voltage of, determine the second voltage waveform; determine the second information of the information management device based on the second voltage waveform; display the second information.
  • the second information may be various information, such as power information, ambient temperature, humidity, motor speed, alarm information, abnormal information, commands, and so on.
  • this application can be provided as methods, devices, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer readable media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer readable media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing terminal equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the instruction device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operation steps are executed on the computer or other programmable terminal equipment to produce computer-implemented processing, so that the computer or other programmable terminal equipment
  • the instructions executed above provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

电量检测系统、信息获取系统、方法、装置和设备。电量检测系统包括:电量管理设备和用电设备,电量管理设备包括电源以及电连接器;电连接器用于电连接于电源与用电设备之间,以使电源与用电设备能够通过电连接器形成电连接;电连接器包括第一微控单元以及调压电路,第一微控单元,用于获取电源的第一电量信息,确定第一电量信息对应的第一电压波形,并控制调压电路以第一电压波形输出电压;用电设备用于与调压电路相连接,用电设备包括第二微控单元;第二微控单元用于对调压电路输出的电压进行采样,确定第二电压波形,并基于第二电压波形确定电源的第二电量信息。该系统提高了电量检测的准确性。

Description

电量检测系统、信息获取系统、方法、装置和设备 技术领域
本申请实施例涉及电量检测领域,具体涉及电量检测系统、信息获取系统、方法、装置和设备。
背景技术
随着技术发展,用电设备越来越丰富多样。在对用电设备供电时,通常使用电源线连接电源和用电设备两端,使电能从电源传输至用电设备。用户在使用用电设备的过程中,需要查看电源的电量,以便于合理使用用电设备。
传统技术中,很多用电设备的电源线只有正负两根线,无其他信号线。此时,若需获取电源的电量信息,首先需要检测用电设备输入端口的电压,进而通过该电压粗略地反算出电源的电量。然而,电池、电池组等电源的放电曲线是非线性曲线,通过电压大小反算电源的电量通常存在较大误差。同时,当用电设备的负载发生变化时,电流则会发生变化,由于电源线的阻抗的存在,用电设备的输入端口电压也会发生变化,导致通过电压反算出的电量信息存在较大偏差。由此,现有技术无法得到准确的电量信息。
发明内容
本申请实施例提出了电量检测系统、信息获取系统、方法、装置和设备,以解决现有技术中电量检测准确性性低的技术问题。
本申请实施例提供了一种电量检测系统,包括:电量管理设备和用电设备,所述电量管理设备包括电源以及电连接器;所述电连接器用于电连接于所述电源与所述用电设备之间,以使所述电源与所述用电设备能够通过所述电连接器形成电连接;所述电连接器包括第一微控单元以及调压电路,所述第一微控单元,用于获取所述电源的第一电量信息,确定所述第一电量信息对应的第一电压波形,并控制所述调压电路以所述第一电压波形输出电压;所述用电设备用于与所述调压电路相连接,所述用电设备包括第二微控单元;所述第二微控单元用于对所述调压电路输出的电压进行采样,确定第二电压波形,并基于所述第二电压波形确定所述电源的第二电量信息。
本申请实施例还提供了一种电压控制方法,应用于电量管理设备,所述电量管理设备包括电连接器,所述电连接器包括第一微控单元以及调压电路,所述第一微控单元与电源通信连接,所述电源与所述调压电路相连接,包括:获取所述电源的第一电量信息;确定所述第一电量信息对应的第一电压波形;控制所述调压电路以所述第一电压波形输出电压。
本申请实施例还提供了一种电量检测方法,应用于用电设备,所述用电设备用于与电量管理设备相连接,以获取所述电量管理设备的电量信息,包括:对所述电量管理设备输出的电压进行采样,确定第二电压波形;基于所述第二电压波形确定所述电量管理设备的第二电量信息;显示所述第二电量信息。
本申请实施例还提供了一种电量管理设备,其特征在于,包括:电连接器,所述电连接器包括第一微控单元以及调压电路;以及,电源,所述第一微控单元与所述电源通信连接,所述电源与所述调压电路相连接;其中,所述第一微控单元用于获取所述电源的第一电量信息,并用于确定所述第一电量信息对应的第一电压波形,以及用于控制所述调压电路以所述第一电压波形输出电压。
本申请实施例还提供了一种用电设备,所述用电设备用于与电量管理设备相连接,以获取所述电量管理设备的第二电量信息;所述用电设备包括:第二微控单元,所述第二微控单元用于对所述电量管理设备输出的电压进行采样,确定第二电压波形,并基于所述第二电压波形确定所述电量管理设备的第二电量信息。
本申请实施例还提供了一种电量管理设备,用于连接电源,包括:电连接器,所述电连接器包括第一微控单元以及调压电路;所述第一微控单元用于与所述电源通信连接,所述电源与所述调压电路相连接;其中,所述第一微控单元用于获取所述电源的第一电量信息,并用于确定所述第一电量信息对应的第一电压波形,以及用于控制所述调压电路以所述第一电压波形输出电压。
本申请实施例还提供了一种电压控制装置,应用于第一微控单元,所述第一微控单元与电源通信连接,所述电源与调压电路相连接,所述装置包括:获取单元,被配置成获取所述电源的第一电量信息;确定单元,被配置成确定所述第一电量信息对应的第一电压波形;控制单元,被配置成控制所述调压电路以所述第一电压波形输出电压。
本申请实施例还提供了一种电量检测装置,应用于用电设备,所述用电设备通过调压电路与电源相连接,包括:采样单元,被配置成对所述电量管理设备输出的电压进行采样,确定第二电压波形;确定单元,被配置成基于所述第二电压波形确定所述电源的第二电量信息;显示单元,被配置成显示所述第二电量信息。
本申请实施例还提供了一种电量管理设备,包括处理器和存储器;所述存储器,用于存储指令;所述处理器,用于调用所述指令以执行如下步骤:获取电源的第一电量信息;确定所述第一电量信息对应的第一电压波形;控制调压电路以所述第一电压波形输出电压。
本申请实施例还提供了一种用电设备,包括处理器和存储器;所述存储器,用于存储指令;所述处理器,用于调用所述指令以执行如下步骤:对电量管理设备输出的电压进行采样,确定第二电压波形;基于所述第二电压波形确定所述电源的第二电量信息;显示所述第二电量信息。
本申请实施例还提供了一种信息获取系统,所述系统包括:第一信息获取设备和第二信息获取设备,所述第一信息获取设备包括电源以及电连接器;所述电连接器用于电连接于所述电源与所述第二信息获取设备之间,以使所述电源与所述第二信息获取设备能够通过所述电连接器形成电连接;所述电连接器包括第一微控单元以及调压电路,所述第一微控单元,用于获取第一信息,确定所述第一信息对应的第一电压波形,并控制所述调压电路以所述第一电压波形输出电压;所述第二信息获取设备用于与所述调压电路相连接,所述第二信息获取设备包括第二微控单元;所述第二微控单元用于对所述调压电路输出的电压进行采样,确定第二电压波形,并基于所述第二电压波形确定第二信息。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如电压控制方法或电量检测方法。
本申请实施例中,通过电量管理设备中的第一微控单元获取电源的第一电量信息,确定第一电量信息对应的第一电压波形,并控制调压电路以第一电压波形输出电压,从而能够基于以电压波形表征电量信息。而后通过用电设备中的第二微控单元对调压电路以第一电压波形输出的电压进行采样,并基于采样的数据确定电源的第二电量信息,从而能够通过电压波形还原出电量信息。由于电压波形中的电平的高低关系不受负载变化的影响,且通过电压波形确定电量信息的过程不需要使用具体的电压值,因而能够避免因电压值变化等因素造成的检测误差,提高了电量检测 的容错性,从而提高了电量检测的准确性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1(a)是本申请的实施例可以应用于其中的示例性系统架构图;
图1(b)为本申请的实施例的应用场景图;
图2是本申请的电量检测系统的装置间交互过程示意图;
图3是本申请的第一电量信息与第一电压波形的对应关系示意图;
图4是本申请的第一电量信息与第一电压波形的对应关系示意图;
图5是本申请的第一电压波形的示意图;
图6是根据本申请的电压控制方法的一个实施例的流程图;
图7是根据本申请的电量检测方法的一个实施例的流程图;
图8是根据本申请的电压控制装置的一个实施例的流程图;
图9是根据本申请的电量检测装置的一个实施例的流程图。
具体实施例
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
请参考图1(a),其示出了本申请的实施例可以应用于其中的示例性系统架构图。本申请的电量检测系统、电量检测方法、电压控制方法、电量管理设备、用电设备、电压控制装置、电量检测装置、信息获取系统等实施例可以应用于该示例性系统架构中。
如图1(a)所示,系统架构可以包括电量管理设备和用电设备。电量管理设备包括电源以及电连接器。上述电连接器用于电连接于上述电源与上述用电设备之间,以使上述电源与上述用电设备能够通过上述电连接器形成电连接。电连接器可以包括第一微控单元以及调压电路。用电设备可以与上述调压电路相连接。用电设备可以包括第二微控单元。
微控单元(Microcontroller Unit,MCU)又称单片微型计算机或者单片机,是把中央处理器(Central Process Unit,CPU)的频率与规格做适当缩减,并将内存、计数器、USB(Universal Serial Bus,通用串行总线)、模数转换、UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)、PLC(Programmable Logic Controller,可编程逻辑控制器)、DMA(Direct Memory Access,直接存储器访问)等周边接口整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。由此,第一微控单元、第二微控单元可具备一定数据处理能力和控制能力,以及可进行信号采样以及模数转换等操作。
由于电池、电池组等常用电源通常输出直流电,因而此处的调压电路可以是直流调压电路(即直流电压变换电路)。该电路为将直流电压变成大小可调的直流电压的变换电路。基本原理是利用电力电子开关器件周期性地开通与关断从而改变输出电压的大小。也称为开关型DC/DC(Direct Curren/Direct Curren,直流/直流)变换电路,也称斩波电路(Choppter)。该电路的电压平均值受电路的占空比的控制, 通过改变占空比的值,即可改变电路的输出电压平均值。
需要说明的是,系统除包含以上部件外,还可以包含其他部件。例如,用电设备中还包括负载、稳压电路、分压电路、分压电阻等设备,此处不作限定。用电设备可以是无人机、手持云台、云台车、机器人、遥控器、飞行眼镜等设备,在此不做限定。
需要指出的是,上述电量管理设备中也可以不包含电源。此时,电源可作为独立于电量管理设备的装置与电量管理设备相连接。
请参考图1(b),其示出了本申请的实施例的应用场景图。如图1(b)所示,飞行眼镜为用电设备,眼镜充放电一体盒为电量管理设备,电源为电池。眼镜充放电一体盒可包含电池仓,用于容纳电池。眼镜充放电一体盒可以对电池进行电量及保护推送、充放电管理等,还可以配置有快充握手芯片,从而通过Type-C接口与充电器相连接,为电池充电。
眼镜充放电一体盒可以从电池获取电量信息,然后通过调压电路,以电量对应的电压波形输出电压,通过DC电源线将电能提供给飞行眼镜。飞行眼镜依赖DC电源线供电,同时,飞行眼镜可以通过ADC(Analog-to-Digital Converter,模/数转换器)采样该电压,从而还原出电压波形,进而确定出该电压波形对应的电量信息。
由于电压波形中的电平的高低关系不受负载变化的影响,且通过电压波形确定电量信息的过程不需要使用具体的电压值,因而能够避免因电压值变化等因素造成的检测误差,使飞行眼镜能够得到准确的电池电量,从而便于用于合理规划飞行眼镜的使用时间。
请参考图2,其示出了本申请提供的电量检测系统的一个实施例中各装置交互过程的示意图。该电量检测系统包括电量管理设备和用电设备。电量管理设备包括电源以及电连接器。电连接器用于电连接于电源与用电设备之间,以使电源与用电设备能够通过电连接器形成电连接。电连接器可以包括第一微控单元以及调压电路。用电设备可以与调压电路相连接。用电设备可以包括第二微控单元。
上述电量检测系统的各装置交互过程包括:
步骤201,第一微控单元获取电源的第一电量信息。
在本实施例中,第一微控单元可以与电源通信连接,从而获取电源的第一电量信息。此处的第一电量信息可以包括电源的荷电状态(State of Charge,SOC)。其中,荷电状态为电源的剩余容量与其完全充电状态的容量的比值,常用百分数表示。其取值范围为[0,1],当SOC=0时表示电源放电完全,当SOC=1时表示电源完全充满。
步骤202,第一微控单元确定第一电量信息对应的第一电压波形,并控制调压电路以第一电压波形输出电压。
在本实施例中,第一微控单元可以基于第一电量信息,如电源的荷电状态,设定第一电压波形,并控制调压电路以第一电压波形输出电压。其中,不同的第一电量信息,可设定不同的第一电压波形。
在本实施例的一些可选的实现方式中,第一微控单元可通过如下步骤确定上述第一电压波形:
第一步,基于第一电量信息,确定占空比。
其中,占空比(Duty Ratio)指在一个脉冲循环内,高电平持续时间相对于总时间所占的比例。其中,脉冲循环可以指波形变换周期,该周期的时长可以预先设定。例如波形变换周期内高电平持续时间为1微秒,波形变换周期为4微秒,则占空比为0.25,即25%。
此处,第一电量信息不同时,占空比不同。例如,可直接将第一电量信息中的荷电状态的数值作为占空比。具体地,电量为100%时,占空比为100%;电量为90%时,占空比为90%;电量为80%时,占空比为80%。电量处于每一个数值时,均对应一个占空比,此处不再一一列举。
第二步,基于上述占空比,确定第一电压波形。
由于占空比为指在一个脉冲循环内高电平持续时间相对于总时间所占的比例,因而,可基于占空比设定脉冲循环内的高电平持续时间和低电平持续时间。例如,占空比为25%,波形变换周期为4微秒,则可以设定高电平持续时间为1微秒,低电平持续时间为3微秒。由此得到第一电压波形。
作为示例,图3示出了第一电量信息与第一电压波形的对应关系图。如图3所示,第一电量信息不同时,占空比不同,从而第一电压波形不同。图3所示的第一电压波形均为两个波形变换周期的波形。
需要说明的是,高电平和低电平的具体取值可根据需要进行各种设定,此处不作限定。例如,将高电平设置为16V(伏特),将低电平设置为13V等。此外,第一电量信息与第一电压波形的对应关系不限于图3所示,电量为任一数值时均具有相对应的第一电压波形。
通过依次确定第一电量信息对应的占空比,而后确定该占空比对应的波形,可以在电源电量不同时输出不同电压波形的电压。从而便于用电设备基于电压波形反推出电量信息。由于不同电量信息对应不同的电压波形,因而用户设备反推出的电量信息的准确性较高。以图1(b)所示的场景为例,飞行眼镜仅具备电源线,不具备信号线,通过重新配置眼镜充放电一体盒,使之通过原有的电源线以第一电压波形输出电压,由用电设备基于该电压的波形反推出电量信息,可在不更换电源线以及不更改飞行眼镜的硬件的情况下,使用电设备得到准确的电池电量。
在本实施例的一些可选的实现方式中,第一微控单元还可通过如下步骤确定第一电压波形:
第一步,获取第一电量信息对应的二进制数。
具体地,可首先获取第一电量信息中的荷电状态的数值,该数值为十进制数。而后,将该十进制数转换为二进制数。例如,电量为100%时,十进制数为100,对应的二进制数为01100100。电量为90%时,十进制数为90,对应的二进制数为01011010。电量为80%时,十进制数为80,对应的二进制数为01010000。电量处于每一个数值时,均对应一个二进制数,此处不再一一列举。
第二步,基于二进制数,确定第一电压波形。
此处,对于二进制数的每一个二进制位,当该二进制位的数值为1时,表示高电平;当该二进制位的数值为0时,表示低电平。由此,可基于二进制数确定出第一电压波形。
作为示例,图4示出了第一电量信息与第一电压波形的对应关系图。如图4所示,第一电量信息不同时,二进制数不同,从而第一电压波形不同。图4所示的第一电压波形均为一个波形变换周期的波形。此外,第一电量信息与第一电压波形的对应关系不限于图4所示,电量为任一数值时均具有相对应的第一电压波形。
需要说明的是,基于二进制数确定的第一电压波形也可采用其他形式,不限于方波形式。作为示例,图5示出了电量为88%、二进制数为1011000时的第一电压波形。此波形中,在波形变换周期起始时,首先呈现一个起始波形。当二进制位的数值为0时,处于低电平。当二进制位的数值为1时,呈现三角波。
通过依次确定第一电量信息对应的二进制数,而后确定该二进制数对应的波形, 可以在电源电量不同时输出不同电压波形的电压。从而便于用电设备基于电压波形反推出电量信息。由于不同电量信息对应不同的电压波形,因而用户设备反推出的电量信息的准确性较高。以图1(b)所示的场景为例,飞行眼镜仅具备电源线,不具备信号线,通过重新配置眼镜充放电一体盒,使之通过原有的电源线以第一电压波形输出电压,由用电设备基于该电压的波形反推出电量信息,可在不更换电源线以及不更改飞行眼镜的硬件的情况下,使用电设备得到准确的电池电量。
步骤203,第二微控单元对调压电路以第一电压波形输出的电压进行采样,确定第二电压波形。
在本实施例中,第二微控单元可以具有ADC,可支持模拟信号采样。由此,第二微控单元可以对调压电路以第一电压波形输出的电压进行采样,确定出调压电路输出的第二电压波形。具体地,第二微控单元可首先通过ADC以某一采样周期对调压电路以第一电压波形输出的电压进行采样,得到模拟信号。而后,将采样的各模型信号转换为数字信号,确定出每次采样的电压的,从而得到第二电压波形。
在本实施例的一些可选的实现方式中,第二微控单元可以通过分压电路与上述调压电路相连接。通过分压电路,可降低第二微控单元的两端电压处于第二微控单元的工作范围内,避免第二微控单元因电压过高而损坏。第二微控单元可以首先对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形。而后,可以基于上述分压电路两端的电压的波形,确定上述调压电路输出的电压的第二电压波形。此处,分压电路一端可以接地,另一端可以接调压电路的输出端,因而分压电路两端的电压即为调压电路输出的电压,分压电路两端的电压的波形即为第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路包括分压电阻,用于进行分压。分压电阻两端的电压可以是第二微控单元的端电压。上述第二微控单元可首先对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形。而后,基于上述分压电阻两端的电压的波形,确定上述调压电路输出的电压的第二电压波形。具体地,可首先确定分压电阻与分压电路中的总电阻的比值,而后,将分压电阻两端的电压除以该比值,得到分压电路两端的电压。分压电路一端可以接地,另一端可以接调压电路的输出端,因而分压电路两端的电压即为调压电路输出的电压,将分压电阻两端的电压的波形先变换为分压电路两端的电压的波形,即可得到第二电压波形。
步骤204,基于第二电压波形确定电源的第二电量信息。
在本实施例中,由于不同的电量信息可使调压电路输出不同电压波形的电压,因而可通过第二电压波形,反推出电量信息,将反推出的电量信息作为第二电量信息。由于调压电路以第一电压波形输出电压并经电源线将电能传输至用电设备,而第二微控单元采样的电压为电源线输入至用电设备的输入端的电压,因而第一电压波形与第二电压波形基本相同。由此,第二电量信息与第一电量信息基本相同,在不更换电源线的情况下,提高了电量检测的准确性。
在本实施例的一些可选的实现方式中,当第一电压波形基于占空比确定时,第二微控单元可以通过如下步骤确定第二电量信息:
第一步,基于第二电压波形,确定调压电路输出的电压的类型和各类型电压的持续时间,类型包括高电平和低电平。
第二步,基于调压电路输出的电压的类型和各类型电压的持续时间,确定调压电路输出的电压的第二电压波形的占空比。
此处,可通过计算高电平持续时间与波形变换周期的总时长的比值,确定出调 压电路输出的电压的第二电压波形的占空比。
第三步,基于第二电压波形的占空比,确定第二电量信息。
此处,可基于步骤102中所描述的占空比与第一电量信息的对应关系,确定出此处的占空比对应的电量信息,并将该电量信息作为第二电量信息。
由于调压电路以第一电压波形输出电压并经电源线将电能传输至用电设备,而第二微控单元采样的电压为电源线输入至用电设备的输入端的电压,因而第一电压波形与第二电压波形基本相同。由于相同的电压波形具有相同占空比,相同占空比的电压波形对应相同的电量信息,因而通过确定第二电压波形的占空比所计算出的第二电量信息,与第一电量信息基本相同,从而能够得到准确的电量信息。
以图1(b)所示的场景为例,飞行眼镜仅具备电源线,不具备信号线,通过重新配置眼镜充放电一体盒,使之通过原有的电源线以第一电压波形输出电压,由用电设备基于该电压的波形反推出电量信息,可在不更换电源线以及不更改飞行眼镜的硬件的情况下,使用电设备得到准确的电池电量。
需要说明的是,当第一电压波形基于占空比确定时,各类型电压的持续时间可以大于第二微控单元的采样周期,从而保证基于采样的数据所确定的波形更准确。
在本实施例的一些可选的实现方式中,当第一电压波形基于二进制数确定时,第二微控单元可以通过如下步骤确定第二电量信息:首先,确定第二电压波形对应的二进制数。此处,由于不同二进制数对应不同的电压波形,因而,可以根据预先设定的电压波形与二进制数的对应关系,确定出第二电压波形对应的二进制数。而后将第二电压波形对应的二进制数转换为十进制数,并基于十进制数,确定第二电量信息。例如,可将十进制数作为荷电状态的数值,并将该荷电状态的数值作为第二电量信息。
由于调压电路以第一电压波形输出电压并经电源线将电能传输至用电设备,而第二微控单元采样的电压为电源线输入至用电设备的输入端的电压,因而第一电压波形与第二电压波形基本相同。由于相同的电压波形对应相同的二进制数,相同二进制数对应相同的电量信息,因而通过确定第二电压波形对应的二进制数计算出的第二电量信息,与第一电量信息基本相同,从而能够得到准确的电量信息。
以图1(b)所示的场景为例,飞行眼镜仅具备电源线,不具备信号线,通过重新配置眼镜充放电一体盒,使之通过原有的电源线以第一电压波形输出电压,由用电设备基于该电压的波形反推出电量信息,可在不更换电源线以及不更改飞行眼镜的硬件的情况下,使用电设备得到准确的电池电量。
可选的,可按照如下步骤确定第二电压波形对应的二进制数:首先,获取第二电压波形中用于表示波形变换周期开始的起始波形,如图5中的“起始波形”。而后,可以基于上述起始波形,确定上述目标电压模型的波形变换周期。之后,可以将波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值,如1或0。最后,基于各二进制位的数值,确定第二电压波形对应的二进制数。
需要说明的是,预设单位时长可以大于第二微控单元的采样周期,从而保证基于采样的数据所确定的波形更准确。
在本实施例的一些可选的实现方式中,用电设备还可以包括显示装置。在第二微控单元确定出第二电量信息后,显示单元可以从第二微控单元获取第二电量信息,并显示第二电量信息。由此,可便于用户实时查看用电设备的电量。
在本实施例的一些可选的实现方式中,用电设备还可以包括稳压电路和负载设备。调压电路与负载设备经稳压电路连接。调压电路输出的电压位于稳压电路的工 作电压范围内。
在本实施例的一些可选的实现方式中,电源可以与电连接器为一体设计。
在本实施例的一些可选的实现方式中,电源可以与电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,电源可以包括电池。
在本实施例的一些可选的实现方式中,电连接器可以包括如下至少一种:飞行眼镜充电盒、电池管家。
本实施例提供的电量检测系统,通过电量管理设备中的第一微控单元获取电源的第一电量信息,确定第一电量信息对应的第一电压波形,并控制调压电路以第一电压波形输出电压,从而能够基于以电压波形表征电量信息。而后通过用电设备中的第二微控单元对调压电路以第一电压波形输出的电压进行采样,并基于采样的数据确定电源的第二电量信息,从而能够通过电压波形还原出电量信息。由于电压波形中的电平的高低关系不受负载变化的影响,且通过电压波形确定电量信息的过程不需要使用具体的电压值,因而能够避免因电压值变化等因素造成的检测误差,提高了电量检测的容错性,从而提高了电量检测的准确性。如图1(b)所示的场景,飞行眼镜仅具备电源线,不具备信号线,此方式不需要更换飞行眼镜的硬件以及电源线,即可获取到准确的电量信息。此过程中,仅需要对飞行眼镜进行软件升级,在第二微控单元中添加将采样的第二电压波形转换为第二电量信息的逻辑,就可使现有的飞行眼镜具备获取准确的电量信息的功能。
进一步参考图6,其示出了根据本申请的电压控制方法的流程图。该电压控制方法可以应用于电量管理设备。电量管理设备包括电连接器。电连接器包括第一微控单元以及调压电路。第一微控单元与电源通信连接,电源与调压电路相连接。
该电压控制方法,包括以下步骤:
步骤601,获取电源的第一电量信息。
在本实施例中,电压控制方法的执行主体(如上述电量管理设备中的第一微控单元)可以获取电源的第一电量信息。
步骤602,确定第一电量信息对应的第一电压波形。
在本实施例中,上述执行主体可以基于第一电量信息,如电源的荷电状态,设定第一电压波形。不同的第一电量信息,可设定不同的第一电压波形。
在本实施例的一些可选的实现方式中,上述执行主体可以首先基于第一电量信息,确定占空比。而后,可以基于上述占空比,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述执行主体可以首先获取上述第一电量信息对应的二进制数。而后,可以基于上述二进制数,确定上述第一电压波形。
步骤603,控制调压电路以第一电压波形输出电压。
在本实施例的一些可选的实现方式中,电源可以与电连接器为一体设计。
在本实施例的一些可选的实现方式中,电源可以与电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,电源可以包括电池。
在本实施例的一些可选的实现方式中,电连接器可以包括如下至少一种:飞行眼镜充电盒、电池管家。
本实施例各步骤与上述实施例对应步骤描述类似,具体可参见上述实施例的描述。
本申请的上述实施例提供的方法,通过电量管理设备中的第一微控单元获取上述电源的第一电量信息,而后确定上述第一电量信息对应的第一电压波形,最后控制上述调压电路以上述第一电压波形输出电压,可以在不同电量情况下输出不同的 第一电压波形,从而使用第一电压波形表征电量信息,便于用电设备通过对电压进行采样从而反向推导出准确的电量信息。
进一步参考图7,其示出了根据本申请的电压控制方法的流程图。该电压控制方法应用于用电设备。用电设备用于与电量管理设备相连接,以获取电量管理设备的电量信息。
该电压控制方法包括以下步骤:
步骤701,对电量管理设备输出的电压进行采样,确定第二电压波形。
在本实施例中,电压控制方法的执行主体(如用电设备或用电设备中的微控单元)可首先通过ADC以某一采样周期对电量管理设备以第一电压波形输出的电压进行采样,得到模拟信号。而后,将采样的各模型信号转换为数字信号,确定出每次采样的电压的,从而得到第二电压波形。
在本实施例的一些可选的实现方式中,用电设备可以通过分压电路与上述电量管理设备相连接。上述执行主体可以首先对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形;而后,基于上述分压电路两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路可以包括分压电阻。上述执行主体可以首先对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形;而后基于上述分压电阻两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
步骤702,基于第二电压波形确定电量管理设备的第二电量信息。
在本实施例中,由于不同的电量信息可使电量管理设备输出不同电压波形的电压,因而可通过第二电压波形,反推出电量信息,将反推出的电量信息作为第二电量信息。由于电量管理设备以第一电压波形输出电压并经电源线将电能传输至用电设备,而上述执行主体采样的电压为电源线输入至用电设备的输入端的电压,因而第一电压波形与第二电压波形基本相同。由此,第二电量信息与第一电量信息基本相同,在不更换电源线的情况下,提高了电量检测的准确性。
在本实施例的一些可选的实现方式中,可通过如下步骤确定第二电量信息:首先,基于上述第二电压波形,确定上述电量管理设备输出的电压的类型和各类型电压的持续时间,上述类型包括高电平和低电平。而后,基于上述电量管理设备输出的电压的类型和各类型电压的持续时间,确定上述第二电压波形的占空比。最后,基于上述第二电压波形的占空比,确定上述第二电量信息。
其中,各类型电压的持续时间可以大于上述执行主体的采样周期,从而保证基于采样的数据所确定的波形更准确。
在本实施例的一些可选的实现方式中,可通过如下步骤确定第二电量信息:首先,确定上述第二电压波形对应的二进制数。而后,将上述第二电压波形对应的二进制数转换为十进制数,并基于上述十进制数,确定上述第二电量信息。
在一些示例中,可通过如下步骤确定上述第二电压波形对应的二进制数:首先,检测上述第二电压波形中用于表示波形变换周期开始的起始波形。而后,基于上述起始波形,确定上述目标电压模型的波形变换周期。之后,将上述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值。最后,基于各二进制位的数值,确定上述第二电压波形对应的二进制数。
其中,上述预设单位时长大于上述执行主体的采样周期,从而保证基于采样的 数据所确定的波形更准确。
在本实施例的一些可选的实现方式中,上述用电设备还包括稳压电路和负载设备,上述电量管理设备与上述负载设备经上述稳压电路连接;以及,上述电量管理设备输出的电压位于上述稳压电路的工作电压范围内。
步骤703,显示第二电量信息。
本实施例各步骤与上述实施例对应步骤描述类似,具体可参见上述实施例的描述。
本申请的上述实施例提供的方法,通过对上述电量管理设备输出的电压进行采样,确定第二电压波形,而后基于上述第二电压波形确定上述电量管理设备的第二电量信息,从而显示上述第二电量信息。由于不同电压波形对应不同电量信息,且电压波形中的高低电平的关系不受负载变化的影响,因而采用电压波形反推出电量信息的方式,相较于直接使用电压大小反算电池的电量的方式,能够提高电量检测的容错性,从而提高了电量检测的准确性。如图1(b)所示的场景,飞行眼镜仅具备电源线,不具备信号线,此方式不需要更换飞行眼镜的硬件以及电源线,即可获取到准确的电量信息。此过程中,仅需要对飞行眼镜进行软件升级,在第二微控单元中添加将采样的第二电压波形转换为第二电量信息的逻辑,就可使现有的飞行眼镜具备获取准确的电量信息的功能。
进一步参考图8,作为对上述各图所示方法的实现,本申请提供了一种电压控制装置的一个实施例,应用于第一微控单元,上述第一微控单元与电源通信连接,上述电源与调压电路相连接。该装置实施例与图6所示的方法实施例相对应。
如图8所示,本实施例的电压控制装置800包括:获取单元801,被配置成获取上述电源的第一电量信息;确定单元802,被配置成确定上述第一电量信息对应的第一电压波形;控制单元803,被配置成控制上述调压电路以上述第一电压波形输出电压。
在本实施例的一些可选的实现方式中,上述确定单元802,进一步被配置成:基于上述第一电量信息,确定占空比;基于上述占空比,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述确定单元802,进一步被配置成:获取上述第一电量信息对应的二进制数;基于上述二进制数,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器为一体设计。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,上述电源包括电池。
在本实施例的一些可选的实现方式中,上述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
本申请的上述实施例提供的电压控制装置,通过电量管理设备中的第一微控单元获取上述电源的第一电量信息,而后确定上述第一电量信息对应的第一电压波形,最后控制上述调压电路以上述第一电压波形输出电压,可以在不同电量情况下输出不同的第一电压波形,从而使用第一电压波形表征电量信息,便于用电设备通过对电压进行采样从而反向推导出准确的电量信息。
进一步参考图9,作为对上述各图所示方法的实现,本申请提供了一种电量检测装置的一个实施例,应用于用电设备,上述用电设备通过调压电路与电源相连接。该装置实施例与图7所示的方法实施例相对应。
如图9所示,本实施例上述的电量检测装置900包括:采样单元901,被配置成 对上述电量管理设备输出的电压进行采样,确定第二电压波形;确定单元902,被配置成基于上述第二电压波形确定上述电源的第二电量信息;显示单元903,被配置成显示上述第二电量信息。
在本实施例的一些可选的实现方式中,上述用电设备通过分压电路与上述电量管理设备相连接;以及,上述采样单元901,进一步被配置成:对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形;基于上述分压电路两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路包括分压电阻;以及,上述采样单元901,进一步被配置成:对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形;基于上述分压电阻两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述确定单元902,进一步被配置成:基于上述第二电压波形,确定上述电量管理设备输出的电压的类型和各类型电压的持续时间,上述类型包括高电平和低电平;基于上述电量管理设备输出的电压的类型和各类型电压的持续时间,确定上述第二电压波形的占空比;基于上述第二电压波形的占空比,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,各类型电压的持续时间大于上述用电设备的采样周期。
在本实施例的一些可选的实现方式中,上述确定单元902,进一步被配置成:确定上述第二电压波形对应的二进制数;将上述第二电压波形对应的二进制数转换为十进制数,并基于上述十进制数,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,上述确定单元902,进一步被配置成:检测上述第二电压波形中用于表示波形变换周期开始的起始波形;基于上述起始波形,确定上述目标电压模型的波形变换周期;将上述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;基于各二进制位的数值,确定上述第二电压波形对应的二进制数。
在本实施例的一些可选的实现方式中,上述预设单位时长大于上述用电设备的采样周期。
在本实施例的一些可选的实现方式中,上述用电设备还包括稳压电路和负载设备,上述电量管理设备与上述负载设备经上述稳压电路连接;以及,上述电量管理设备输出的电压位于上述稳压电路的工作电压范围内。
本申请的上述实施例提供的电量检测装置,通过对上述电量管理设备输出的电压进行采样,确定第二电压波形,而后基于上述第二电压波形确定上述电量管理设备的第二电量信息,从而显示上述第二电量信息。由于不同电压波形对应不同电量信息,且电压波形中的高低电平的关系不受负载变化的影响,因而采用电压波形反推出电量信息的方式,相较于直接使用电压大小反算电池的电量的方式,能够提高电量检测的容错性,从而提高了电量检测的准确性。
本申请还提供了一种电量管理设备的实施例。该电量管理设备包括:电连接器,电连接器包括第一微控单元以及调压电路。电源,第一微控单元与电源通信连接,电源与调压电路相连接。其中,第一微控单元用于获取电源的第一电量信息,并用于确定第一电量信息对应的第一电压波形,以及用于控制调压电路以第一电压波形输出电压。
在本实施例的一些可选的实现方式中,第一微控单元用于可以通过如下步骤确 定第一电压波形:基于第一电量信息,确定占空比;基于占空比,确定第一电压波形。
在本实施例的一些可选的实现方式中,第一微控单元用于可以通过如下步骤确定第一电压波形:获取第一电量信息对应的二进制数;基于二进制数,确定第一电压波形。
在本实施例的一些可选的实现方式中,电源与电连接器为一体设计。
在本实施例的一些可选的实现方式中,电源与电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,电源包括电池。
在本实施例的一些可选的实现方式中,电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
该电量管理设备可以在不同电量情况下输出不同的第一电压波形,从而使用第一电压波形表征电量信息,便于用电设备通过对电压进行采样从而反向推导出准确的电量信息。
本申请还提供了一种用电设备的实施例。该用电设备用于与电量管理设备相连接,以获取上述电量管理设备的第二电量信息。该用电设备包括:第二微控单元,上述第二微控单元用于对上述电量管理设备输出的电压进行采样,确定第二电压波形,并基于上述第二电压波形确定上述电量管理设备的第二电量信息。
在本实施例的一些可选的实现方式中,上述第二微控单元可以通过分压电路与上述电量管理设备相连接。上述第二微控单元,用于通过如下步骤确定上述第二电压波形:对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形;基于上述分压电路两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路包括分压电阻;以及,上述第二微控单元,用于通过如下步骤确定上述第二电压波形:对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形;基于上述分压电阻两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述第二微控单元用于通过如下步骤确定上述第二电量信息:基于上述第二电压波形,确定上述电量管理设备电路输出的电压的类型和各类型电压的持续时间,上述类型包括高电平和低电平;基于上述电量管理设备电路输出的电压的类型和各类型电压的持续时间,确定上述第二电压波形的占空比;基于上述第二电压波形的占空比,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,各类型电压的持续时间大于上述第二微控单元的采样周期。
在本实施例的一些可选的实现方式中,上述第二微控单元,用于通过如下步骤确定上述第二电量信息:确定上述第二电压波形对应的二进制数;将上述第二电压波形对应的二进制数转换为十进制数,并基于上述十进制数,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,上述第二微控单元,用于通过如下步骤确定上述第二电压波形对应的二进制数:获取上述第二电压波形中用于表示波形变换周期开始的起始波形;基于上述起始波形,确定上述目标电压模型的波形变换周期;将上述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;基于各二进制位的数值,确定上述第二电压波形对应的二进制数。
在本实施例的一些可选的实现方式中,上述预设单位时长大于上述第二微控单元的采样周期。
该用电设备通过对上述电量管理设备输出的电压进行采样,确定第二电压波形,而后基于上述第二电压波形确定上述电量管理设备的第二电量信息,从而显示上述第二电量信息。由于不同电压波形对应不同电量信息,且电压波形中的高低电平的关系不受负载变化的影响,因而采用电压波形反推出电量信息的方式,相较于直接使用电压大小反算电池的电量的方式,能够提高电量检测的容错性,从而提高了电量检测的准确性。如图1(b)所示的场景,飞行眼镜仅具备电源线,不具备信号线,此方式不需要更换飞行眼镜的硬件以及电源线,即可获取到准确的电量信息。此过程中,仅需要对飞行眼镜进行软件升级,在第二微控单元中添加将采样的第二电压波形转换为第二电量信息的逻辑,就可使现有的飞行眼镜具备获取准确的电量信息的功能。
本申请还提供了一种电量管理设备的实施例。该电量管理设备用于连接电源。电量管理设备包括:电连接器,上述电连接器包括第一微控单元以及调压电路;上述第一微控单元用于与上述电源通信连接,上述电源与上述调压电路相连接。其中,上述第一微控单元用于获取上述电源的第一电量信息,并用于确定上述第一电量信息对应的第一电压波形,以及用于控制上述调压电路以上述第一电压波形输出电压。
在本实施例的一些可选的实现方式中,述微控单元用于通过如下步骤确定上述电压波形:基于上述第一电量信息,确定占空比;基于上述占空比,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述微控单元用于通过如下步骤确定上述第一电压波形:获取上述第一电量信息对应的二进制数;基于上述二进制数,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器为一体设计。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,上述电源包括电池。
在本实施例的一些可选的实现方式中,上述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
该电量管理设备可以在不同电量情况下输出不同的第一电压波形,从而使用第一电压波形表征电量信息,便于用电设备通过对电压进行采样从而反向推导出准确的电量信息。
本申请提供了一种电量管理设备的一个实施例,该实施例与图6所示的方法实施例相对应。该电量管理设备具体可以包括:处理器和存储器。
上述存储器,可以用于存储程序指令。
上述处理器,可以用于执行上述存储器存储的程序指令,当程序指令被执行时,上述处理器可以用于执行如下步骤:获取电源的第一电量信息;确定上述第一电量信息对应的第一电压波形;控制调压电路以上述第一电压波形输出电压。
在本实施例的一些可选的实现方式中,上述处理器,进一步用于:基于上述第一电量信息,确定占空比;基于上述占空比,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述处理器,进一步用于:获取上述第一电量信息对应的二进制数;基于上述二进制数,确定上述第一电压波形。
本申请的上述实施例所提供的电子设备,通过获取电源的第一电量信息,而后 确定第一电量信息对应的第一电压波形,最后控制调压电路以第一电压波形输出电压,可以在不同电量情况下输出不同的第一电压波形,从而使用第一电压波形表征电量信息,便于用电设备通过对电压进行采样从而反向推导出准确的电量信息。
对于电量管理设备的实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请提供了一种用电设备的一个实施例,该实施例与图7所示的方法实施例相对应。该用电设备具体可以包括:处理器和存储器。
上述存储器,可以用于存储程序指令。
上述处理器,可以用于执行上述存储器存储的程序指令,当程序指令被执行时,上述处理器可以用于执行如下步骤:对电量管理设备输出的电压进行采样,确定第二电压波形;基于上述第二电压波形确定上述电量管理设备的第二电量信息;显示上述第二电量信息。
在本实施例的一些可选的实现方式中,上述用电设备通过分压电路与上述电量管理设备相连接;以及,上述处理器,进一步用于:对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形;基于上述分压电路两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路包括分压电阻;以及,上述处理器,进一步用于:对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形;基于上述分压电阻两端的电压的波形,确定上述电量管理设备输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述上述处理器,进一步用于:基于上述第二电压波形,确定上述电量管理设备输出的电压的类型和各类型电压的持续时间,上述类型包括高电平和低电平;基于上述电量管理设备输出的电压的类型和各类型电压的持续时间,确定上述第二电压波形的占空比;基于上述第二电压波形的占空比,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,各类型电压的持续时间大于上述用电设备的采样周期。
在本实施例的一些可选的实现方式中,上述上述处理器,进一步用于:确定上述第二电压波形对应的二进制数;将上述第二电压波形对应的二进制数转换为十进制数,并基于上述十进制数,确定上述第二电量信息。
在本实施例的一些可选的实现方式中,上述上述处理器,进一步用于:检测上述第二电压波形中用于表示波形变换周期开始的起始波形;基于上述起始波形,确定上述目标电压模型的波形变换周期;将上述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;基于各二进制位的数值,确定上述第二电压波形对应的二进制数。
在本实施例的一些可选的实现方式中,上述预设单位时长大于上述用电设备的采样周期。
在本实施例的一些可选的实现方式中,上述用电设备还包括稳压电路和负载设备,上述电量管理设备与上述负载设备经上述稳压电路连接;以及,上述电量管理设备输出的电压位于上述稳压电路的工作电压范围内。
对于用电设备的实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请还提供了一种信息获取系统的实施例。该信息获取系统包括:第一信息获取设备和第二信息获取设备。第一信息获取设备包括电源以及电连接器。电连接器用于电连接于电源与第二信息获取设备之间,以使电源与第二信息获取设备能够通过电连接器形成电连接。
电连接器包括第一微控单元以及调压电路。第一微控单元,用于获取第一信息,确定第一信息对应的第一电压波形,并控制上述调压电路以第一电压波形输出电压。
第二信息获取设备用于与上述调压电路相连接。第二信息获取设备包括第二微控单元。第二微控单元用于对调压电路输出的电压进行采样,确定第二电压波形,并基于第二电压波形确定第二信息。
在本实施例中,第一信息和第二信息可以是各种信息,如电量信息、环境温度、湿度、电机转速、告警信息、异常信息、命令等。
在本实施例的一些可选的实现方式中,上述第二信息获取设备还包括显示装置;以及,上述显示装置,用于从上述第二微控单元获取上述第二信息,并显示上述第二信息。
在本实施例的一些可选的实现方式中,上述第一微控单元,用于通过如下步骤确定上述第一电压波形:基于上述第一信息,确定占空比;基于上述占空比,确定上述第一电压波形。此处,不同的第一信息可以对应不同的占空比。例如,若第一信息为命令,则不同的命令可以对应不同的占空比。再例如,若第一信息为告警信息,则不同的告警信息可以对应不同的占空比。此处不再一一列举。
在本实施例的一些可选的实现方式中,上述第二微控单元,用于通过如下步骤确定上述第二信息:基于上述第二电压波形,确定上述调压电路输出的电压的类型和各类型电压的持续时间,上述类型包括高电平和低电平;基于上述调压电路输出的电压的类型和各类型电压的持续时间,确定上述第二电压波形的占空比;基于上述第二电压波形的占空比,确定上述第二信息。
在本实施例的一些可选的实现方式中,各类型电压的持续时间大于上述第二微控单元的采样周期。
在本实施例的一些可选的实现方式中,上述第一微控单元,用于通过如下步骤确定上述第一电压波形:获取上述第一信息对应的二进制数;基于上述二进制数,确定上述第一电压波形。
在本实施例的一些可选的实现方式中,上述第二微控单元,用于通过如下步骤确定上述第二信息:确定上述第二电压波形对应的二进制数;将上述第二电压波形对应的二进制数转换为十进制数,并基于上述十进制数,确定上述第二信息。
在本实施例的一些可选的实现方式中,上述第二微控单元,用于通过如下步骤确定上述第二电压波形对应的二进制数:获取上述第二电压波形中用于表示波形变换周期开始的起始波形;基于上述起始波形,确定上述目标电压模型的波形变换周期;将上述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;基于各二进制位的数值,确定上述第二电压波形对应的二进制数。
在本实施例的一些可选的实现方式中,上述预设单位时长大于上述第二微控单元的采样周期。
在本实施例的一些可选的实现方式中,上述第二微控单元通过分压电路与上述调压电路相连接;以及,上述第二微控单元,用于通过如下步骤确定第二电压波形:对上述分压电路两端的电压进行采样,基于采样的数据,确定上述分压电路两端的电压的波形;基于上述分压电路两端的电压的波形,确定上述调压电路输出的电压 的第二电压波形。
在本实施例的一些可选的实现方式中,上述分压电路包括分压电阻;以及,上述第二微控单元,用于通过如下步骤确定上述第二电压波形:对上述分压电阻两端的电压进行采样,确定上述分压电阻两端的电压的波形;基于上述分压电阻两端的电压的波形,确定上述调压电路输出的电压的第二电压波形。
在本实施例的一些可选的实现方式中,上述第二信息获取设备还包括稳压电路和负载设备,上述调压电路与上述负载设备经上述稳压电路连接;以及,上述调压电路输出的电压位于上述稳压电路的工作电压范围内。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器为一体设计。
在本实施例的一些可选的实现方式中,上述电源与上述电连接器可拆卸连接。
在本实施例的一些可选的实现方式中,上述电源包括电池。
在本实施例的一些可选的实现方式中,上述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
本实施例提供的信息获取系统,通过第一信息获取设备中的第一微控单元获取第一信息,确定第一信息对应的第一电压波形,并控制调压电路以第一电压波形输出电压,从而能够基于以电压波形表征第一信息。而后通过用电设备中的第二微控单元对调压电路输出的电压进行采样,从而基于采样的数据确定第二信息。由于输出的第一电压波形与采样的第二电压波形是相同或极为相似的,而相同波形所对应的信息相同,从而能够通过电压波形还原出所获取的信息。由此,能够提供一种信息获取方式,且所获取的信息具有较高的准确性。
本申请实施例还提供一种计算机可读介质,计算机可读介质上存储有计算机程序,该计算机程序被处理器执行时实现上述电压控制方法或电量检测方法的实施例的各个过程,且能达到相同的技术效果。为避免重复,该计算机程序被处理器执行时实现上述各方法的实施例的各个过程,这里不再赘述。
本申请还提供了一种第一信息获取设备的实施例,以及第二信息获取设备的实施例。第一信息获取设备包括电源以及电连接器。电连接器用于电连接于电源与第二信息获取设备之间,以使电源与第二信息获取设备能够通过电连接器形成电连接。
电连接器包括第一微控单元以及调压电路。第一微控单元,用于获取第一信息,确定第一信息对应的第一电压波形,并控制上述调压电路以第一电压波形输出电压。
第二信息获取设备用于与上述调压电路相连接。第二信息获取设备包括第二微控单元。第二微控单元用于对调压电路输出的电压进行采样,确定第二电压波形,并基于第二电压波形确定第二信息。
在上述实施例中,第一信息和第二信息可以是各种信息,如电量信息、环境温度、湿度、电机转速、告警信息、异常信息、命令等。
本申请实施例还提供了一种电压信息控制方法,应用于信息管理设备,所述信息管理设备包括电连接器,所述电连接器包括第一微控单元以及调压电路,所述第一微控单元与电源通信连接,所述电源与所述调压电路相连接,包括:获取所述电源的第一信息;确定所述第一信息对应的第一电压波形;控制所述调压电路以所述第一电压波形输出电压。
在上述实施例中,第一信息可以是各种信息,如电量信息、环境温度、湿度、电机转速、告警信息、异常信息、命令等。
本申请实施例还提供了一种信息检测方法,应用于信息检测设备,信息检测设备用于与信息管理设备相连接,以获取所述信息管理设备的信息,包括:对所述信 息管理设备输出的电压进行采样,确定第二电压波形;基于所述第二电压波形确定所述信息管理设备的第二信息;显示所述第二信息。
在上述实施例中,第二信息可以是各种信息,如电量信息、环境温度、湿度、电机转速、告警信息、异常信息、命令等。
本说明书中的重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请的实施例可提供为方法、装置、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的电量检测系统、信息获取系统、方法、装置、和设备等进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (75)

  1. 一种电量检测系统,其特征在于,所述系统包括:电量管理设备和用电设备,所述电量管理设备包括电源以及电连接器;
    所述电连接器用于电连接于所述电源与所述用电设备之间,以使所述电源与所述用电设备能够通过所述电连接器形成电连接;
    所述电连接器包括第一微控单元以及调压电路,所述第一微控单元,用于获取所述电源的第一电量信息,确定所述第一电量信息对应的第一电压波形,并控制所述调压电路以所述第一电压波形输出电压;
    所述用电设备用于与所述调压电路相连接,所述用电设备包括第二微控单元;所述第二微控单元用于对所述调压电路输出的电压进行采样,确定第二电压波形,并基于所述第二电压波形确定所述电源的第二电量信息。
  2. 根据权利要求1所述的系统,其特征在于,所述用电设备还包括显示装置;以及,
    所述显示装置,用于从所述第二微控单元获取所述第二电量信息,并显示所述第二电量信息。
  3. 根据权利要求1所述的系统,其特征在于,所述第一微控单元,用于通过如下步骤确定所述第一电压波形:
    基于所述第一电量信息,确定占空比;
    基于所述占空比,确定所述第一电压波形。
  4. 根据权利要求3所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电量信息:
    基于所述第二电压波形,确定所述调压电路输出的电压的类型和各类型电压的持续时间,所述类型包括高电平和低电平;
    基于所述调压电路输出的电压的类型和各类型电压的持续时间,确定所述第二电压波形的占空比;
    基于所述第二电压波形的占空比,确定所述第二电量信息。
  5. 根据权利要求4所述的系统,其特征在于,各类型电压的持续时间大于所述第二微控单元的采样周期。
  6. 根据权利要求1所述的系统,其特征在于,所述第一微控单元,用于通过如下步骤确定所述第一电压波形:
    获取所述第一电量信息对应的二进制数;
    基于所述二进制数,确定所述第一电压波形。
  7. 根据权利要求6所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电量信息:
    确定所述第二电压波形对应的二进制数;
    将所述第二电压波形对应的二进制数转换为十进制数,并基于所述十进制数,确定所述第二电量信息。
  8. 根据权利要求7所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电压波形对应的二进制数:
    获取所述第二电压波形中用于表示波形变换周期开始的起始波形;
    基于所述起始波形,确定所述目标电压模型的波形变换周期;
    将所述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;
    基于各二进制位的数值,确定所述第二电压波形对应的二进制数。
  9. 根据权利要求8所述的系统,其特征在于,所述预设单位时长大于所述第二微控单元的采样周期。
  10. 根据权利要求1所述的系统,其特征在于,所述第二微控单元通过分压电路与所述调压电路相连接;以及,
    所述第二微控单元,用于通过如下步骤确定第二电压波形:
    对所述分压电路两端的电压进行采样,基于采样的数据,确定所述分压电路两端的电压的波形;
    基于所述分压电路两端的电压的波形,确定所述调压电路输出的电压的第二电压波形。
  11. 根据权利要求10所述的系统,其特征在于,所述分压电路包括分压电阻;以及
    所述第二微控单元,用于通过如下步骤确定所述第二电压波形:
    对所述分压电阻两端的电压进行采样,确定所述分压电阻两端的电压的波形;
    基于所述分压电阻两端的电压的波形,确定所述调压电路输出的电压的第二电压波形。
  12. 根据权利要求1所述的系统,其特征在于,所述用电设备还包括稳压电路和负载设备,所述调压电路与所述负载设备经所述稳压电路连接;以及,所述调压电路输出的电压位于所述稳压电路的工作电压范围内。
  13. 根据权利要求1所述的系统,其特征在于,所述电源与所述电连接器为一体设计。
  14. 根据权利要求1所述的系统,其特征在于,所述电源与所述电连接器可拆卸连接。
  15. 根据权利要求1所述的系统,其特征在于,所述电源包括电池。
  16. 根据权利要求1所述的系统,其特征在于,所述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
  17. 一种电压控制方法,其特征在于,应用于电量管理设备,所述电量管理设备包括电连接器,所述电连接器包括第一微控单元以及调压电路,所述第一微控单元与电源通信连接,所述电源与所述调压电路相连接,所述方法包括:
    获取所述电源的第一电量信息;
    确定所述第一电量信息对应的第一电压波形;
    控制所述调压电路以所述第一电压波形输出电压。
  18. 根据权利要求17所述的方法,其特征在于,所述确定所述第一电量信息对应的第一电压波形,包括:
    基于所述第一电量信息,确定占空比;
    基于所述占空比,确定所述第一电压波形。
  19. 根据权利要求17所述的方法,其特征在于,所述确定所述第一电量信息对应的第一电压波形,包括:
    获取所述第一电量信息对应的二进制数;
    基于所述二进制数,确定所述第一电压波形。
  20. 根据权利要求17所述的方法,其特征在于,所述电源与所述电连接器为一体设计。
  21. 根据权利要求17所述的方法,其特征在于,所述电源与所述电连接器可拆卸连接。
  22. 根据权利要求17所述的方法,其特征在于,所述电源包括电池。
  23. 根据权利要求17所述的方法,其特征在于,所述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
  24. 一种电量检测方法,其特征在于,应用于用电设备,所述用电设备用于与电量管理设备相连接,以获取所述电量管理设备的电量信息,所述方法包括:
    对所述电量管理设备输出的电压进行采样,确定第二电压波形;
    基于所述第二电压波形确定所述电量管理设备的第二电量信息;
    显示所述第二电量信息。
  25. 根据权利要求24所述的方法,其特征在于,所述用电设备通过分压电路与所述电量管理设备相连接;以及,
    所述对所述电量管理设备输出的电压进行采样,确定第二电压波形,包括:
    对所述分压电路两端的电压进行采样,基于采样的数据,确定所述分压电路两端的电压的波形;
    基于所述分压电路两端的电压的波形,确定所述电量管理设备输出的电压的第二电压波形。
  26. 根据权利要求25所述的方法,其特征在于,所述分压电路包括分压电阻;以及
    所述对所述电量管理设备输出的电压进行采样,确定第二电压波形,包括:
    对所述分压电阻两端的电压进行采样,确定所述分压电阻两端的电压的波形;
    基于所述分压电阻两端的电压的波形,确定所述电量管理设备输出的电压的第 二电压波形。
  27. 根据权利要求24所述的方法,其特征在于,所述基于所述第二电压波形确定所述电量管理设备的第二电量信息,包括:
    基于所述第二电压波形,确定所述电量管理设备输出的电压的类型和各类型电压的持续时间,所述类型包括高电平和低电平;
    基于所述电量管理设备输出的电压的类型和各类型电压的持续时间,确定所述第二电压波形的占空比;
    基于所述第二电压波形的占空比,确定所述第二电量信息。
  28. 根据权利要求27所述的方法,其特征在于,各类型电压的持续时间大于所述用电设备的采样周期。
  29. 根据权利要求24所述的方法,其特征在于,所述基于所述第二电压波形确定所述电量管理设备的第二电量信息,包括:
    确定所述第二电压波形对应的二进制数;
    将所述第二电压波形对应的二进制数转换为十进制数,并基于所述十进制数,确定所述第二电量信息。
  30. 根据权利要求29所述的方法,其特征在于,所述确定所述第二电压波形对应的二进制数,包括:
    检测所述第二电压波形中用于表示波形变换周期开始的起始波形;
    基于所述起始波形,确定所述目标电压模型的波形变换周期;
    将所述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;
    基于各二进制位的数值,确定所述第二电压波形对应的二进制数。
  31. 根据权利要求30所述的方法,其特征在于,所述预设单位时长大于所述用电设备的采样周期。
  32. 根据权利要求24所述的方法,其特征在于,所述用电设备还包括稳压电路和负载设备,所述电量管理设备与所述负载设备经所述稳压电路连接;以及,所述电量管理设备输出的电压位于所述稳压电路的工作电压范围内。
  33. 一种电量管理设备,其特征在于,包括:
    电连接器,所述电连接器包括第一微控单元以及调压电路;以及,
    电源,所述第一微控单元与所述电源通信连接,所述电源与所述调压电路相连接;
    其中,所述第一微控单元用于获取所述电源的第一电量信息,并用于确定所述第一电量信息对应的第一电压波形,以及用于控制所述调压电路以所述第一电压波形输出电压。
  34. 根据权利要求33所述的电量管理设备,其特征在于,所述第一微控单元用于通过如下步骤确定所述第一电压波形:
    基于所述第一电量信息,确定占空比;
    基于所述占空比,确定所述第一电压波形。
  35. 根据权利要求33所述的电量管理设备,其特征在于,所述第一微控单元用于通过如下步骤确定所述第一电压波形:
    获取所述第一电量信息对应的二进制数;
    基于所述二进制数,确定所述第一电压波形。
  36. 根据权利要求33所述的电量管理设备,其特征在于,所述电源与所述电连接器为一体设计。
  37. 根据权利要求33所述的电量管理设备,其特征在于,所述电源与所述电连接器可拆卸连接。
  38. 根据权利要求33所述的电量管理设备,其特征在于,所述电源包括电池。
  39. 根据权利要求33所述的电量管理设备,其特征在于,所述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
  40. 一种用电设备,其特征在于,所述用电设备用于与电量管理设备相连接,以获取所述电量管理设备的第二电量信息;
    所述用电设备包括:第二微控单元,所述第二微控单元用于对所述电量管理设备输出的电压进行采样,确定第二电压波形,并基于所述第二电压波形确定所述电量管理设备的第二电量信息。
  41. 根据权利要求40所述的用电设备,其特征在于,所述第二微控单元通过分压电路与所述电量管理设备相连接;以及,
    所述第二微控单元,用于通过如下步骤确定所述第二电压波形:
    对所述分压电路两端的电压进行采样,基于采样的数据,确定所述分压电路两端的电压的波形;
    基于所述分压电路两端的电压的波形,确定所述电量管理设备输出的电压的第二电压波形。
  42. 根据权利要求41所述的用电设备,其特征在于,所述分压电路包括分压电阻;以及
    所述第二微控单元,用于通过如下步骤确定所述第二电压波形:
    对所述分压电阻两端的电压进行采样,确定所述分压电阻两端的电压的波形;
    基于所述分压电阻两端的电压的波形,确定所述电量管理设备输出的电压的第二电压波形。
  43. 根据权利要求40所述的用电设备,其特征在于,所述第二微控单元用于通过如下步骤确定所述第二电量信息:
    基于所述第二电压波形,确定所述电量管理设备电路输出的电压的类型和各类型电压的持续时间,所述类型包括高电平和低电平;
    基于所述电量管理设备电路输出的电压的类型和各类型电压的持续时间,确定所述第二电压波形的占空比;
    基于所述第二电压波形的占空比,确定所述第二电量信息。
  44. 根据权利要求43所述的用电设备,其特征在于,各类型电压的持续时间大于所述第二微控单元的采样周期。
  45. 根据权利要求40所述的用电设备,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电量信息:
    确定所述第二电压波形对应的二进制数;
    将所述第二电压波形对应的二进制数转换为十进制数,并基于所述十进制数,确定所述第二电量信息。
  46. 根据权利要求45所述的用电设备,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电压波形对应的二进制数:
    获取所述第二电压波形中用于表示波形变换周期开始的起始波形;
    基于所述起始波形,确定所述目标电压模型的波形变换周期;
    将所述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;
    基于各二进制位的数值,确定所述第二电压波形对应的二进制数。
  47. 根据权利要求46所述的用电设备,其特征在于,所述预设单位时长大于所述第二微控单元的采样周期。
  48. 一种电量管理设备,其特征在于,用于连接电源,包括:
    电连接器,所述电连接器包括第一微控单元以及调压电路;所述第一微控单元用于与所述电源通信连接,所述电源与所述调压电路相连接;
    其中,所述第一微控单元用于获取所述电源的第一电量信息,并用于确定所述第一电量信息对应的第一电压波形,以及用于控制所述调压电路以所述第一电压波形输出电压。
  49. 根据权利要求48所述的电量管理设备,其特征在于,所述微控单元用于通过如下步骤确定所述电压波形:
    基于所述第一电量信息,确定占空比;
    基于所述占空比,确定所述第一电压波形。
  50. 根据权利要求48所述的电量管理设备,其特征在于,所述微控单元用于通过如下步骤确定所述第一电压波形:
    获取所述第一电量信息对应的二进制数;
    基于所述二进制数,确定所述第一电压波形。
  51. 根据权利要求48所述的电量管理设备,其特征在于,所述电源与所述电连接器为一体设计。
  52. 根据权利要求48所述的电量管理设备,其特征在于,所述电源与所述电连接器可拆卸连接。
  53. 根据权利要求48所述的电量管理设备,其特征在于,所述电源包括电池。
  54. 根据权利要求48所述的电量管理设备,其特征在于,所述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
  55. 一种电压控制装置,其特征在于,应用于第一微控单元,所述第一微控单元与电源通信连接,所述电源与调压电路相连接,所述装置包括:
    获取单元,被配置成获取所述电源的第一电量信息;
    确定单元,被配置成确定所述第一电量信息对应的第一电压波形;
    控制单元,被配置成控制所述调压电路以所述第一电压波形输出电压。
  56. 一种电量检测装置,其特征在于,应用于用电设备,所述用电设备通过调压电路与电源相连接,所述装置包括:
    采样单元,被配置成对所述电量管理设备输出的电压进行采样,确定第二电压波形;
    确定单元,被配置成基于所述第二电压波形确定所述电源的第二电量信息;
    显示单元,被配置成显示所述第二电量信息。
  57. 一种电量管理设备,其特征在于,包括处理器和存储器;
    所述存储器,用于存储指令;
    所述处理器,用于调用所述指令以执行如下步骤:
    获取电源的第一电量信息;
    确定所述第一电量信息对应的第一电压波形;
    控制调压电路以所述第一电压波形输出电压。
  58. 一种用电设备,其特征在于,包括处理器和存储器;
    所述存储器,用于存储指令;
    所述处理器,用于调用所述指令以执行如下步骤:
    对电量管理设备输出的电压进行采样,确定第二电压波形;
    基于所述第二电压波形确定所述电源的第二电量信息;
    显示所述第二电量信息。
  59. 一种信息获取系统,其特征在于,所述系统包括:第一信息获取设备和第二信息获取设备,所述第一信息获取设备包括电源以及电连接器;
    所述电连接器用于电连接于所述电源与所述第二信息获取设备之间,以使所述电源与所述第二信息获取设备能够通过所述电连接器形成电连接;
    所述电连接器包括第一微控单元以及调压电路,所述第一微控单元,用于获取第一信息,确定所述第一信息对应的第一电压波形,并控制所述调压电路以所述第一电压波形输出电压;
    所述第二信息获取设备用于与所述调压电路相连接,所述第二信息获取设备包括第二微控单元;所述第二微控单元用于对所述调压电路输出的电压进行采样,确 定第二电压波形,并基于所述第二电压波形确定第二信息。
  60. 根据权利要求59所述的系统,其特征在于,所述第二信息获取设备还包括显示装置;以及,
    所述显示装置,用于从所述第二微控单元获取所述第二信息,并显示所述第二信息。
  61. 根据权利要求59所述的系统,其特征在于,所述第一微控单元,用于通过如下步骤确定所述第一电压波形:
    基于所述第一信息,确定占空比;
    基于所述占空比,确定所述第一电压波形。
  62. 根据权利要求60所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二信息:
    基于所述第二电压波形,确定所述调压电路输出的电压的类型和各类型电压的持续时间,所述类型包括高电平和低电平;
    基于所述调压电路输出的电压的类型和各类型电压的持续时间,确定所述第二电压波形的占空比;
    基于所述第二电压波形的占空比,确定所述第二信息。
  63. 根据权利要求62所述的系统,其特征在于,各类型电压的持续时间大于所述第二微控单元的采样周期。
  64. 根据权利要求59所述的系统,其特征在于,所述第一微控单元,用于通过如下步骤确定所述第一电压波形:
    获取所述第一信息对应的二进制数;
    基于所述二进制数,确定所述第一电压波形。
  65. 根据权利要求64所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二信息:
    确定所述第二电压波形对应的二进制数;
    将所述第二电压波形对应的二进制数转换为十进制数,并基于所述十进制数,确定所述第二信息。
  66. 根据权利要求65所述的系统,其特征在于,所述第二微控单元,用于通过如下步骤确定所述第二电压波形对应的二进制数:
    获取所述第二电压波形中用于表示波形变换周期开始的起始波形;
    基于所述起始波形,确定所述目标电压模型的波形变换周期;
    将所述波形变换周期中的每一预设单位时长对应一个二进制位,基于各预设单位时长内的波形,确定各二进制位的数值;
    基于各二进制位的数值,确定所述第二电压波形对应的二进制数。
  67. 根据权利要求66所述的系统,其特征在于,所述预设单位时长大于所述第二微控单元的采样周期。
  68. 根据权利要求59所述的系统,其特征在于,所述第二微控单元通过分压电路与所述调压电路相连接;以及,
    所述第二微控单元,用于通过如下步骤确定第二电压波形:
    对所述分压电路两端的电压进行采样,基于采样的数据,确定所述分压电路两端的电压的波形;
    基于所述分压电路两端的电压的波形,确定所述调压电路输出的电压的第二电压波形。
  69. 根据权利要求68所述的系统,其特征在于,所述分压电路包括分压电阻;以及
    所述第二微控单元,用于通过如下步骤确定所述第二电压波形:
    对所述分压电阻两端的电压进行采样,确定所述分压电阻两端的电压的波形;
    基于所述分压电阻两端的电压的波形,确定所述调压电路输出的电压的第二电压波形。
  70. 根据权利要求59所述的系统,其特征在于,所述第二信息获取设备还包括稳压电路和负载设备,所述调压电路与所述负载设备经所述稳压电路连接;以及,所述调压电路输出的电压位于所述稳压电路的工作电压范围内。
  71. 根据权利要求59所述的系统,其特征在于,所述电源与所述电连接器为一体设计。
  72. 根据权利要求59所述的系统,其特征在于,所述电源与所述电连接器可拆卸连接。
  73. 根据权利要求59所述的系统,其特征在于,所述电源包括电池。
  74. 根据权利要求59所述的系统,其特征在于,所述电连接器包括如下至少一种:飞行眼镜充电盒、电池管家。
  75. 一种计算机可读介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求17-32中任一所述的方法。
PCT/CN2020/094134 2020-06-03 2020-06-03 电量检测系统、信息获取系统、方法、装置和设备 WO2021243599A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094134 WO2021243599A1 (zh) 2020-06-03 2020-06-03 电量检测系统、信息获取系统、方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094134 WO2021243599A1 (zh) 2020-06-03 2020-06-03 电量检测系统、信息获取系统、方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2021243599A1 true WO2021243599A1 (zh) 2021-12-09

Family

ID=78831647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094134 WO2021243599A1 (zh) 2020-06-03 2020-06-03 电量检测系统、信息获取系统、方法、装置和设备

Country Status (1)

Country Link
WO (1) WO2021243599A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147159A1 (en) * 2005-12-28 2007-06-28 Lee Young-Dae Standby leakage current reduction circuit and semiconductor memory device comprising the standby leakage current reduction circuit
CN103869251A (zh) * 2012-12-17 2014-06-18 横河电机株式会社 二次电池最大容量测量装置
CN109600509A (zh) * 2018-11-22 2019-04-09 惠州Tcl移动通信有限公司 提醒移动终端的状态的方法及系统、充电设备及存储介质
CN110126755A (zh) * 2019-05-13 2019-08-16 深圳市锐明技术股份有限公司 一种车载电源监控装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147159A1 (en) * 2005-12-28 2007-06-28 Lee Young-Dae Standby leakage current reduction circuit and semiconductor memory device comprising the standby leakage current reduction circuit
CN103869251A (zh) * 2012-12-17 2014-06-18 横河电机株式会社 二次电池最大容量测量装置
CN109600509A (zh) * 2018-11-22 2019-04-09 惠州Tcl移动通信有限公司 提醒移动终端的状态的方法及系统、充电设备及存储介质
CN110126755A (zh) * 2019-05-13 2019-08-16 深圳市锐明技术股份有限公司 一种车载电源监控装置

Similar Documents

Publication Publication Date Title
US6856922B1 (en) System and method for battery management using host processing
CN101694595B (zh) 发现外部总线上的电源的方法和系统
CN103208850B (zh) 可变充电电压的usb充电系统、充电器及智能终端
KR102369249B1 (ko) 모델-독립적 배터리 수명 및 성능 예측기
JP7094289B2 (ja) 直列接続電池セルのための監視システム
CN102708077B (zh) 状态识别方法及设备
US9146261B2 (en) Electronic device and method of electronic device for determining power source device
CN109991554B (zh) 一种电池电量检测方法、装置及终端设备
JPH10503882A (ja) インテリジェントなバッテリ管理を行うためのアナログ前置回路を備えるマイクロコントローラ
EP3264566A1 (en) Method and apparatus for controlling output voltage and adaptor
JPH0695768A (ja) 電池モニタ及びセル極性逆転保護回路を有する電池作動コンピュータ
CN111308354A (zh) 电池健康度状态的检测方法、装置、电子设备及存储介质
CN109901082A (zh) 便携式电能系统及其测量方法
US20120215468A1 (en) Method and system for detecting power supply source electrical current capacity
WO2022000999A1 (zh) 电池电量补偿方法、装置、设备及可读存储介质
WO2014043888A1 (zh) 电动车辆动力电池充放电工况模拟系统和方法
CN102680908B (zh) 电池状态检测记录分析仪的内部控制方法
CN106712228A (zh) 一种电动汽车充电桩控制系统
WO2021243599A1 (zh) 电量检测系统、信息获取系统、方法、装置和设备
CN212808554U (zh) 一种电池电量的显示装置
CN204089176U (zh) 电池组保护板电路、电池组保护板、电池组件
EP2493048A9 (en) Method and system for detecting power supply source electrical current capacity
CN116325422A (zh) 用于现场决定电池充电电流的系统和方法
CN109904903A (zh) 电源装置及充电方法
US20120166114A1 (en) Saved power measuring circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939435

Country of ref document: EP

Kind code of ref document: A1