WO2021242148A1 - Индивидуальные и мобильные устройства биологической защиты посредством облучения проточного воздуха ультрафиолетовым излучением - Google Patents
Индивидуальные и мобильные устройства биологической защиты посредством облучения проточного воздуха ультрафиолетовым излучением Download PDFInfo
- Publication number
- WO2021242148A1 WO2021242148A1 PCT/RU2021/050149 RU2021050149W WO2021242148A1 WO 2021242148 A1 WO2021242148 A1 WO 2021242148A1 RU 2021050149 W RU2021050149 W RU 2021050149W WO 2021242148 A1 WO2021242148 A1 WO 2021242148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- chamber
- slot
- radiation
- respiratory
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 32
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 16
- 230000000241 respiratory effect Effects 0.000 claims abstract description 13
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 11
- 210000000056 organ Anatomy 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000005086 pumping Methods 0.000 claims description 7
- 244000052769 pathogen Species 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000000415 inactivating effect Effects 0.000 claims 1
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 9
- 244000005700 microbiome Species 0.000 abstract description 3
- 230000001717 pathogenic effect Effects 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 230000000007 visual effect Effects 0.000 abstract 1
- 230000002779 inactivation Effects 0.000 description 26
- 210000002845 virion Anatomy 0.000 description 15
- 241000700605 Viruses Species 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 8
- 239000000443 aerosol Substances 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 210000002345 respiratory system Anatomy 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 210000004400 mucous membrane Anatomy 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000249 desinfective effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000006385 ozonation reaction Methods 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B9/00—Component parts for respiratory or breathing apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/006—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort with pumps for forced ventilation
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B18/00—Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
- A62B18/08—Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
- A62B18/10—Valves
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B23/00—Filters for breathing-protection purposes
- A62B23/02—Filters for breathing-protection purposes for respirators
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B7/00—Respiratory apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2209/00—Aspects relating to disinfection, sterilisation or deodorisation of air
- A61L2209/10—Apparatus features
- A61L2209/12—Lighting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2209/00—Aspects relating to disinfection, sterilisation or deodorisation of air
- A61L2209/10—Apparatus features
- A61L2209/14—Filtering means
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B23/00—Filters for breathing-protection purposes
Definitions
- the invention can be used to create mobile air recirculators and personal protective equipment for the respiratory system (RPE) and vision from contact with their mucous membranes of pathogens, primarily viruses that spread by air and aerosol.
- RPE respiratory system
- the ultraviolet dose for 90% inactivation was: 339 - 423 ⁇ Wxs / cm 2 for single-stranded RNA, 444 - 494 ⁇ Wxs / cm 2 for single-stranded DNA, 662 - 863 ⁇ Wxs / cm 2 for double-stranded RNA and 910 - 1196 ⁇ Wxs / cm 2 for double-stranded DNA.
- SOUSH-19 "pneumonia of Wuhan" contains single-stranded RNA, which corresponds to an irradiation dose of 339 - 423 ⁇ Whs / cm 2 of ultraviolet radiation with a wavelength of 254 nm (90% air disinfection). Accordingly, 700 - 850 ⁇ Whs / cm 2 provide 99% disinfection, and 1400 - 1700 ⁇ W> ⁇ s / cm 2 provide 99.9% disinfection according to SOSH-19.
- UVC - LEDs with wavelengths close to the spectrum of mercury and other discharge UV lamps, together with their small dimensions and power consumption (low-voltage direct current from 6 V) gave impetus to the development of all kinds of RPE circuits with built-in emitters that increase the efficiency of protection against viral infections.
- Examples of such designs are masks in which the UV emitter is placed directly in the breathing zone [3] or in some apparatus connected to this mask by a branch pipe [4].
- utility models and various designs of RPE devices with UV emitters at the moment they are not used anywhere in the world. The reason for the lack of implemented inventions of this kind lies in the calculation of the effectiveness of UV irradiation of contaminated air in small flow chambers.
- the photon flux per unit time through the specified volume and its average cross-sectional area (1 / cm 3 and 1 / cm 2 ) is many orders of magnitude greater than the concentration of virions, as well as events of absorption of photons by virions and damage to these virions. That is, the absolute and overwhelming number of photons from the lamps simply leaves the volume without participating in the inactivation of virions. Moreover, over time, the probability of effective destruction of a virion decreases exponentially with a decrease in the concentration of living, unaffected virions [1, 2].
- this result can be easily explained by the exponential dependence of the probability of a photon hitting a living virion with an increase in the wave propagation volume. That is, in a large volume, a photon travels a longer path until it is absorbed by the wall (or leaves the interaction system). In a 5 x 5 x 3 meter room, its lifetime is about 10 ns, and the average path length in an environment is about 3 meters. In the flask of the experimental setup, this is 0.1 ns and about 3 cm.
- the E cet parameter is extremely important, since it can be used to determine the required power of the radiation source for disinfection of a specific flowing volume of air.
- ⁇ êt (Vo) and Vo we can obtain the required power of the radiation source for the RPE in relation to the size of its irradiation chamber and the air flow through it.
- E v W> . ⁇ t / V, where W> . is the power of the optical field in the irradiation chamber, t is the irradiation time, V is the volume of the chamber.
- ⁇ D - the power of the optical field in the irradiation chamber - is numerically equal to the radiation power of the source passing through the chamber volume until the total loss of photons (going outside the chamber, absorption).
- the authors are solving the problem of creating affordable and highly effective means of personal biological protection (primarily of the respiratory system) based on point sources of UV radiation, including mobile recirculators with UV emitters for transport and small premises with autonomous or onboard low-voltage power supply based on UVC-LEDs, etc.
- the technical result achieved by solving such a problem is to increase the level of bactericidal effectiveness of respiratory protection devices, etc. air disinfection devices.
- a Device for inactivation of pathogens in an air stream is declared, hereinafter - a Device made in the form of a flow chamber having an internal volume and at least one wall limiting such an internal volume, at least in the internal volume of the chamber is located one ultraviolet light-emitting diode, wherein the entire inner surface of at least one specified wall is covered or made of a material that reflects ultraviolet radiation to form a multi-pass optical system, at least one specified wall has at least two through slots or openings, one of which is essentially inlet, the second - outlet from the condition of air flow through the internal volume of the chamber.
- the device can be optionally equipped with a means of powering the LED, and the camera is made of a cylindrical or spherical or hemispherical shape or a simple or complex geometric shape with the intersection of curved surfaces.
- the ratio of the sum of the areas of all slots or openings to the entire area of the inner surface of at least one specified wall of the chamber is minimal from the condition of the passage of air flow during inhalation / exhalation or pumping.
- a personal respiratory protection device is also claimed, made in the form of a mask that covers at least the respiratory organs, with at least one respiratory channel and a nozzle mounted on the mask, which is made or contains the above Device from the condition, that the exit through slot or hole of such a Device faces the respiratory canal, and the inlet through slit or opening faces the surrounding atmosphere and is closed with an air-permeable filter.
- an air-permeable membrane or filter can be additionally located between the mask and the outlet through slot or hole, and the inlet through slot or hole can be additionally closed with a breathing valve.
- an air disinfection device comprising a means for air intake and forced air pumping, an exhaust funnel and the above-mentioned Device, with an inlet through slot or opening facing the air intake and pumping means, an outlet slot or opening toward the exhaust funnel.
- FIG. 1. shows a universal schematic diagram of the design of the claimed Device
- FIG. 2. is a schematic structural diagram of a personal respiratory protection device (RPE) based on the Device according to FIG. 1.
- FIG. 3. power supply circuit of the RPE
- Fig. 4. is a schematic structural diagram of a device for (mobile) air disinfection with forced recirculation based on the device according to FIG. 1.
- the claimed group of the invention is based on the principle of treatment of contaminated air with ultraviolet radiation with a wavelength of 200-280 nm (UVC spectrum), well known from existing scientific and technical practice.
- a fundamental difference from the existing technical solutions is the use of the declared devices of a multi-pass optical system (multi-pass chamber for irradiation of an air flow) as the main unit (element), which makes it possible to obtain in the internal volume of the chamber of the inactivation device the intensity of the source of the optical field, which is multiply increased relative to the primary, as a result, by reducing the power requirements of the UV source.
- R is the reflection coefficient of the inner mirror surface, which determines the loss of photons for absorption by the walls in each reflected generation before they leave the camera on the n-pass (for an average photon).
- R is the reflection coefficient of the inner mirror surface, which determines the loss of photons for absorption by the walls in each reflected generation before they leave the camera on the n-pass (for an average photon).
- R is the reflection coefficient of the inner mirror surface, which determines the loss of photons for absorption by the walls in each reflected generation before they leave the camera on the n-pass (for an average photon).
- the irradiation chamber surface area calculation model to be 2tgs1 2/4 + LAN1 ⁇
- the inactivation device consists of a housing 1 with side walls and end walls 2, a UV LED 3, a UV reflective coating on the walls 4 and air-conducting slots / holes 5 in the end walls.
- Figure 1 shows, in essence, a variant of a cylindrical device, the most technologically advanced from the point of view of practical manufacturing ..
- the specific shape of the device chamber from the point of view of operability and achievement of the set result is optional, and is determined by essentially, the technical and technological capabilities of a particular production.
- Table 1 clearly shows that it is industrially feasible to use UV reflectors with a reflectance of up to 99%.
- the inactivation device as part of the RPE can be made, for example, in the form of a nozzle on the respiratory part of the respirator device in the region of the nasolabial triangle.
- Inactivation device can also be made in the form of a replaceable cartridge installed in a nozzle located on the mask (body) of the RPE.
- the inhaled air flows through the external filter 8 to the air gap, located by analogy with the flange to reduce radiation losses during scattering and reflection from the volume of the irradiation chamber.
- a similar circular slit serves for the entry of irradiated air into the respiratory system. When exhaling, the flow goes in the opposite direction through the same chamber, i.e. both inhaled and exhaled air are disinfected with almost equal efficiency.
- the RPE with an inactivation device can also be performed with a visor and two valves for inhalation behind the inlet filter and for exhalation through a separate air duct with the outlet of disinfected air from the irradiation chamber upwards under the transparent visor.
- a constant flow of UV-treated exhaled air under the visor creates a protective layer (increased pressure of the stagnant flow) for the mucous membranes of the eyes under conditions of a leaky cover.
- the visor itself serves as an obstacle to direct contact of contaminated aerosol into the eyes, as well as a means of forming a protective layer of irradiated exhaled air with increased pressure.
- a mask with complete closure of the face contour with a plastic or glass transparent window filtering analogs: STALKER-25, ZM 6900 filter 6057, etc.
- air supply through a respiratory-type device (as described above) or through the upper branch pipe with a vertical irradiation chamber, similar to swimming masks.
- the latest version with a vertical nozzle can be equipped with a larger multi-pass irradiation chamber, an exhalation valve and a blower fan for increased comfort when wearing the device for a long time.
- the air inlet / outlet has an area of about 3 cm 2 . This means that this device provides two slots of 6 cm 2 each.
- the total area of possible radiation loss (leakage) is about 12 cm 2 . This makes it possible to estimate the average number of photon passes before leaving the multi-pass camera as the ratio of the area of the entire reflecting surface to the area of the leak holes. That is, and ⁇ 225/12 ⁇ 18 - 19 reflections (passes through the camera).
- a practical option for the application of the claimed inactivation device can also be a small-sized air recirculation UV device with low energy consumption, with high technological and cost accessibility for use in transport (metro and railway cars, interiors of buses and minibuses, cabins and interiors of water and air transport, personal vehicles, military and special equipment).
- Schematic diagram of such the device is shown in FIG. 4, where the following positions are designated: 10 - electric motor, 11 - fan, 12, 13 - air intake and exhaust sockets, respectively, 14 - radiation shield, 15 - removable filter, 16 - support legs.
- the device is based on the inactivation device of FIG. 1.with multi-pass chamber U F-irradiation of the air flow.
- This device is designed for a fairly high constant air flow rate, with forced circulation by means of a fan and an electric motor.
- the flow rate is calculated based on considerations of an acceptable time for air disinfection in a given empty room (volume) for an acceptable time; as well as from the calculation of the people in the room, subject to the rhythm of their breathing, depending on the type of occupation and on the condition that this device will inactivate at least the same number of virions of a certain type in a unit of time, which can be emitted by all those present in the event of infection ...
- a multilevel operation mode with several air flow rates and several UV sources in the irradiation chamber can be implemented in it.
- the principle of organization of the irradiation chamber is no different from the previous RPE device. This is a multi-pass optical cavity with slit holes along the flanges for air circulation.
- the device consumes about 20 - 25 W of electricity. Its main share falls on the fan (about 60 - 70%).
- the device can operate from an on-board (6, 12, 24 V) or common electrical network with an adapter, an on-board battery or its own autonomous energy source.
- the same bactericidal efficiency would require 5–7 W of light power of lamp recirculators without a multi-pass irradiation chamber (calculated according to [5]), and the power consumption would be about 100 W ( ⁇ 70% for powering the emitters).
- the weight and dimensions of such a device would become much larger.
- Patent for invention RU 2644097 dated 02/07/2018.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Pulmonology (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21813251.2A EP4159285A4 (en) | 2020-05-29 | 2021-05-28 | PERSONAL AND MOBILE DEVICES FOR PROVIDING BIOLOGICAL PROTECTION BY ULTRAVIOLET IRRADIATION OF RECIPROCATED AIR |
BR112022023961A BR112022023961A2 (pt) | 2020-05-29 | 2021-05-28 | Dispositivos pessoal e móvel para fornecer proteção biológica pela irradiação ultravioleta do ar recirculado |
CN202180038846.2A CN115776911A (zh) | 2020-05-29 | 2021-05-28 | 通过循环空气的紫外线照射提供生物保护的个人和移动设备 |
US17/928,559 US20230248877A1 (en) | 2020-05-29 | 2021-05-28 | Personal and mobile devices for providing biological protection by the ultraviolet irradiation of recirculated air |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020117832 | 2020-05-29 | ||
RU2020117832A RU2729292C1 (ru) | 2020-05-29 | 2020-05-29 | Индивидуальные и мобильные устройства биологической защиты посредством облучения проточного воздуха ультрафиолетовым излучением |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021242148A1 true WO2021242148A1 (ru) | 2021-12-02 |
Family
ID=72085406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2021/050149 WO2021242148A1 (ru) | 2020-05-29 | 2021-05-28 | Индивидуальные и мобильные устройства биологической защиты посредством облучения проточного воздуха ультрафиолетовым излучением |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230248877A1 (ru) |
EP (1) | EP4159285A4 (ru) |
CN (1) | CN115776911A (ru) |
BR (1) | BR112022023961A2 (ru) |
RU (1) | RU2729292C1 (ru) |
WO (1) | WO2021242148A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113041373A (zh) * | 2021-04-29 | 2021-06-29 | 北京航天三发高科技有限公司 | 一种切削液紫外线消毒装置及其消毒效率的确定方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11806558B2 (en) | 2020-06-26 | 2023-11-07 | Clear Blew | Body-worn air-treatment devices and methods of deactivating pathogens |
WO2022060238A1 (ru) * | 2020-09-17 | 2022-03-24 | Михаил Юрьевич ВИНОКУРОВ | Устройство для обеззараживания воздуха |
RU201261U1 (ru) * | 2020-09-21 | 2020-12-07 | Олег Леонидович Грицай | Портативное устройство для обработки воздуха |
US11744913B2 (en) * | 2020-11-05 | 2023-09-05 | Bolb Inc. | Fluid conduit disinfector |
RU2749123C1 (ru) * | 2020-12-17 | 2021-06-04 | Остаров Юрий Юсуфович | Защитная маска с бактерицидной обработкой воздуха |
RU202443U1 (ru) * | 2021-01-22 | 2021-02-18 | Николай Николаевич Лебедь | Портативный дезинфектор воздуха |
RU2769221C1 (ru) * | 2021-11-15 | 2022-03-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" | Индивидуальная многоразовая защитная маска с ультрафиолетовым облучателем воздуха |
WO2023154965A2 (en) * | 2022-02-14 | 2023-08-17 | XCMR Inc. | Symmetrical flow respirator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165395A (en) * | 1992-02-14 | 1992-11-24 | Ricci Mark R | Ultra-violet germicidal mask system |
RU46664U1 (ru) | 2004-10-21 | 2005-07-27 | Новожилов Алексей Александрович | Респиратор |
RU2404816C1 (ru) * | 2009-09-29 | 2010-11-27 | Открытое акционерное общество "DOMO" | Средство индивидуальной защиты от вирусной инфекции |
US20140360496A1 (en) * | 2013-06-06 | 2014-12-11 | Harvey Reese | Personal health device |
CN206587294U (zh) * | 2017-03-02 | 2017-10-27 | 张利峰 | 一种空气净化杀菌防雾霾口罩 |
RU2644097C1 (ru) | 2016-09-28 | 2018-02-07 | Александр Федорович Смотров | Дыхательное устройство, маска индивидуальная защитная (варианты), портативное устройство обработки воздуха |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6497840B1 (en) * | 1992-10-09 | 2002-12-24 | Richard P. Palestro | Ultraviolet germicidal system |
US7326387B2 (en) * | 2002-05-20 | 2008-02-05 | Theodore A. M. Arts | Air decontamination devices |
CN2643897Y (zh) * | 2003-06-20 | 2004-09-29 | 重庆中电大宇卫星应用技术研究所 | 携带式消毒灭菌空气净化器 |
GB0706507D0 (en) * | 2007-04-03 | 2007-05-09 | Medi Immune Ltd | Protective device |
CN102281933A (zh) * | 2008-12-19 | 2011-12-14 | 北卡罗来纳大学夏洛特分校 | 用于使用点辐射源进行流体的细菌消毒的系统和方法 |
CN202209742U (zh) * | 2011-08-25 | 2012-05-02 | 佛山柯维光电股份有限公司 | 一种高效的空气消毒杀菌装置 |
CN102327637B (zh) * | 2011-08-25 | 2014-11-05 | 佛山柯维光电股份有限公司 | 一种多功能led紫外空气消毒装置 |
JP5812970B2 (ja) * | 2012-11-19 | 2015-11-17 | 株式会社トクヤマ | 空気清浄装置 |
RU144349U1 (ru) * | 2013-11-22 | 2014-08-20 | Закрытое акционерное общество Производственная компания "Лаборатория импульсной техники" | Устройство обеззараживания воздуха |
US10335618B2 (en) * | 2014-07-03 | 2019-07-02 | Ling Zhou | Breathing apparatus with ultraviolet light emitting diode |
WO2016057881A1 (en) * | 2014-10-10 | 2016-04-14 | The Johns Hopkins University | Clean air pillow |
JP6124956B2 (ja) * | 2015-07-22 | 2017-05-10 | 株式会社トクヤマ | 衛生マスクシステム |
RU173502U1 (ru) * | 2017-03-22 | 2017-08-29 | Общество с ограниченной ответственностью "Нижегородский институт прикладных технологий" | Защитная медицинская маска |
CN106890402B (zh) * | 2017-05-08 | 2023-01-24 | 东方万佳科技有限公司 | 有害颗粒状污染物过滤口罩 |
CN209967465U (zh) * | 2019-05-15 | 2020-01-21 | 青岛优威迪光电科技有限公司 | 一种紫外消毒口罩 |
-
2020
- 2020-05-29 RU RU2020117832A patent/RU2729292C1/ru active
-
2021
- 2021-05-28 BR BR112022023961A patent/BR112022023961A2/pt unknown
- 2021-05-28 CN CN202180038846.2A patent/CN115776911A/zh active Pending
- 2021-05-28 US US17/928,559 patent/US20230248877A1/en active Pending
- 2021-05-28 EP EP21813251.2A patent/EP4159285A4/en active Pending
- 2021-05-28 WO PCT/RU2021/050149 patent/WO2021242148A1/ru active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165395A (en) * | 1992-02-14 | 1992-11-24 | Ricci Mark R | Ultra-violet germicidal mask system |
RU46664U1 (ru) | 2004-10-21 | 2005-07-27 | Новожилов Алексей Александрович | Респиратор |
RU2404816C1 (ru) * | 2009-09-29 | 2010-11-27 | Открытое акционерное общество "DOMO" | Средство индивидуальной защиты от вирусной инфекции |
US20140360496A1 (en) * | 2013-06-06 | 2014-12-11 | Harvey Reese | Personal health device |
RU2644097C1 (ru) | 2016-09-28 | 2018-02-07 | Александр Федорович Смотров | Дыхательное устройство, маска индивидуальная защитная (варианты), портативное устройство обработки воздуха |
CN206587294U (zh) * | 2017-03-02 | 2017-10-27 | 张利峰 | 一种空气净化杀菌防雾霾口罩 |
Non-Patent Citations (3)
Title |
---|
"Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation", ARTICLE IN AEROSOL SCIENCE AND TECHNOLOGY, December 2005 (2005-12-01) |
CHRISTOPHER M, WALKER GWANGPYO KO EFFECT OF ULTRAVIOLET GERMICIDAL IRRADIATION ON VIRAL AEROSOLS, 2007 |
See also references of EP4159285A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113041373A (zh) * | 2021-04-29 | 2021-06-29 | 北京航天三发高科技有限公司 | 一种切削液紫外线消毒装置及其消毒效率的确定方法 |
CN113041373B (zh) * | 2021-04-29 | 2023-09-08 | 北京航天三发高科技有限公司 | 一种切削液紫外线消毒装置及其消毒效率的确定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4159285A1 (en) | 2023-04-05 |
EP4159285A4 (en) | 2024-04-10 |
US20230248877A1 (en) | 2023-08-10 |
RU2729292C1 (ru) | 2020-08-05 |
CN115776911A (zh) | 2023-03-10 |
BR112022023961A2 (pt) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2729292C1 (ru) | Индивидуальные и мобильные устройства биологической защиты посредством облучения проточного воздуха ультрафиолетовым излучением | |
US11648331B2 (en) | Systems, apparatus and methods for purifying air | |
US20050163648A1 (en) | Method and apparatus for sterilizing air in large volumes by radiation of ultraviolet rays | |
RU173502U1 (ru) | Защитная медицинская маска | |
US20210372637A1 (en) | Methods and Systems for Air Management to Reduce or Block Exposure to Airborne Pathogens | |
WO2007035907A2 (en) | Germicidal lamp | |
US11911538B2 (en) | Instantaneous sterilization system for ventilation and air conditioning | |
JP2022034539A (ja) | セントラル空調用の殺ウイルス及び滅菌装置 | |
US20210330851A1 (en) | Face mask with enhanced uv-c sterilization flow path and low resistance to inhalation | |
CN116157162A (zh) | 紫外线空气消毒器 | |
US20220170651A1 (en) | Method and system for air ventilation, sterilization and filtration | |
RU2746515C1 (ru) | Защитная медицинская маска с ультрафиолетовым обеззараживателем | |
CN212700128U (zh) | 便携式紫外线消毒呼吸防护设备 | |
US11844883B2 (en) | Disinfecting fluid using disinfection light | |
ES1249340U (es) | Desinfeccion de salas mediante ultravioleta germicida | |
JP2017136191A (ja) | オゾンガス消毒器 | |
JP2022181188A (ja) | Uvc led除菌装置 | |
CN211751890U (zh) | 一种消毒呼吸器及其气体紫外线消毒装置 | |
JP2022113611A (ja) | 空間浄化システム | |
CN115397478A (zh) | 空气消毒装置和利用空气消毒装置的方法 | |
TR202011095A2 (tr) | Kanalsiz kli̇ma si̇stemleri̇ i̇ç üni̇teleri̇ i̇çi̇n uvc hava dezenfeksi̇yon ci̇hazi | |
US20230302188A1 (en) | Expandable system for purification and disinfection of air | |
JP7471635B2 (ja) | 送風殺菌装置 | |
Sandle | Shining (invisible) light on viral pathogens: Virucidal contamination control strategies using UV-C light | |
KR102319481B1 (ko) | 복합 살균기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813251 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022023961 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217070981 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 112022023961 Country of ref document: BR Kind code of ref document: A2 Effective date: 20221124 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021813251 Country of ref document: EP Effective date: 20230102 |