WO2021241830A1 - Deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function - Google Patents

Deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function Download PDF

Info

Publication number
WO2021241830A1
WO2021241830A1 PCT/KR2020/019362 KR2020019362W WO2021241830A1 WO 2021241830 A1 WO2021241830 A1 WO 2021241830A1 KR 2020019362 W KR2020019362 W KR 2020019362W WO 2021241830 A1 WO2021241830 A1 WO 2021241830A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural network
deep neural
retinal image
abnormality
renal function
Prior art date
Application number
PCT/KR2020/019362
Other languages
French (fr)
Korean (ko)
Inventor
이용훈
이기원
남상민
한현욱
Original Assignee
주식회사 스파이더코어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스파이더코어 filed Critical 주식회사 스파이더코어
Publication of WO2021241830A1 publication Critical patent/WO2021241830A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • A61B5/201Assessing renal or kidney functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the following embodiments relate to a deep neural network-based retinal image analysis method and apparatus for detecting renal function abnormalities, and more specifically, by analyzing retinal images with artificial intelligence, a doctor for renal function abnormalities that could not be obtained with the naked eye. It relates to a method and apparatus for analyzing a retinal image based on a deep neural network that provides information.
  • Deep neural networks are being used for various medical image analysis.
  • retinal imaging there is a study to diagnose diabetic retinopathy. After learning with Inception-v3 (Non-Patent Document 1) using 128,175 photos obtained from 69,573 patients, it showed a diagnostic accuracy similar to that of an ophthalmologist. Recently, a study of predicting not only retinal disease but also cardiovascular disease with retinal imaging using a deep neural network has been reported.
  • Korean Patent No. 10-2058883 describes a method of analyzing iris images and retinal images with artificial intelligence to diagnose diabetes and prognostic symptoms.
  • the prior art has proposed an artificial intelligence technology for diagnosing diabetic retinopathy through retinal images. This is a technique that a doctor can do with the naked eye, and the algorithm shows performance results similar to that of a doctor. Accordingly, there is a need for a technology to diagnose kidney abnormalities through retinal images through specialized technology of artificial intelligence that cannot be judged with the naked eye of a doctor.
  • Non-Patent Document 1 Christian Szegedy, et. al. "Rethinking the inception architecture for computer vision.” In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp. 2818-2826, 2016.
  • Non-Patent Document 2 Kaiming He, et. al. "Deep residual learning for image recognition.” In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). 2016.
  • Non-Patent Document 3 Sergey Zagoruyko, and Nikos Komodakis. "Wide residual networks.” In Proceedings of the British Machine Vision Conference (BMVC), 2016.
  • the embodiments describe a method and apparatus for analyzing a retinal image based on a deep neural network for detecting abnormalities in renal function, and more specifically, by analyzing retinal images with artificial intelligence, information on abnormalities in renal function that a doctor could not obtain with the naked eye. provide the technology provided.
  • the embodiments provide a deep neural network structure and learning method that can non-invasively diagnose kidney disease by using retinal images and patient medical information, so that simple image shooting without specialized personnel, samples, analysis equipment, etc. required for blood collection and blood analysis, etc.
  • An object of the present invention is to provide a method and apparatus for analyzing a retinal image based on a deep neural network for detecting a renal function abnormality, which can detect a renal function abnormality only with only one.
  • a deep neural network-based retinal image analysis method using a computer-implemented deep neural network-based retinal image analysis apparatus includes the steps of: preprocessing a retinal image to detect abnormalities in renal function using a retinal image; learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and reporting the presence or absence of abnormality in renal function using the learned deep neural network, reporting the presence or absence of abnormality in renal function, and providing a reporting basis to help the user's judgment.
  • a deep neural network-based retinal image analysis apparatus includes: a preprocessor for preprocessing a retinal image in order to detect abnormalities in renal function using a retinal image; a learning unit for learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and a determination unit for reporting abnormalities in renal function using the learned deep neural network, reporting the presence or absence of abnormalities in renal function, and providing a report basis to help the user in judgment.
  • a deep neural network structure and learning method that can non-invasively diagnose kidney disease using retinal images and patient medical information, simple It is possible to provide a method and apparatus for analyzing a retinal image based on a deep neural network that detects renal function abnormality, which can detect renal function abnormality only by imaging.
  • a deep neural network-based retinal image analysis method and apparatus may be provided.
  • FIG. 1 is a flowchart illustrating a method for analyzing a retinal image based on a deep neural network according to an embodiment.
  • FIG. 2 is a diagram illustrating a block diagram of an apparatus for analyzing a retinal image based on a deep neural network according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of a structure of a deep neural network according to an embodiment.
  • FIG. 4 is a diagram illustrating a method of embedding medical information according to an exemplary embodiment.
  • FIG. 5 is a diagram illustrating a pre-processing of photo size adjustment according to an exemplary embodiment.
  • 6A and 6B are diagrams illustrating an eGFR 60 reference ROC curve according to an embodiment.
  • FIGS. 7A and 7B are diagrams illustrating an eGFR 30 reference ROC curve according to an embodiment.
  • FIGS. 8A and 8B are diagrams illustrating an attention map of a deep neural network according to an embodiment.
  • 9A and 9B are diagrams illustrating a future renal function prognosis/prediction ROC curve according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of a photo that is difficult to read by a deep neural network according to an embodiment.
  • the following examples are intelligent reading systems and digital diagnostic devices that utilize deep neural network (DNN)-based artificial intelligence. It is a health technology that makes
  • the embodiments relate to a method and apparatus for analyzing a retinal image based on a deep neural network for detecting abnormalities in renal function, and proposed an artificial intelligence technology for diagnosing kidney abnormalities through retinal images, which is an artificial intelligence that cannot be determined with the naked eye of a doctor. It is its own specialized technology. According to embodiments, not only a retinal image but also medical information of a patient may be used.
  • FIG. 1 is a flowchart illustrating a method for analyzing a retinal image based on a deep neural network according to an embodiment.
  • the deep neural network-based retinal image analysis method in order to detect abnormalities in renal function using the retinal image, the step of preprocessing the retinal image (S110), using the preprocessed retinal image Including the step (S120) of learning the presence or absence of abnormality in kidney function through the deep neural network, and the step (S130) of reporting the presence or absence of abnormality in kidney function using the learned deep neural network, reporting the presence or absence of abnormality in kidney function, it can help users make decisions by providing reporting grounds.
  • kidney dysfunction by providing a deep neural network structure and learning method that can non-invasively diagnose kidney disease using retinal images and patient medical information, simple Imaging alone can detect kidney dysfunction.
  • the deep neural network-based retinal image analysis method according to an embodiment may be performed by a computer system, for example, by a component that a processor of the computer system may include.
  • a processor of the computer system As an example of the processor of the computer system, the deep neural network-based retinal image analysis method according to the embodiment may be described in more detail by taking the deep neural network-based retinal image analysis apparatus according to the embodiment.
  • FIG. 2 is a diagram illustrating a block diagram of an apparatus for analyzing a retinal image based on a deep neural network according to an embodiment.
  • the apparatus 200 for analyzing a retinal image based on a deep neural network may include a preprocessor 210 , a learner 220 , and a determiner 230 .
  • the preprocessor 210 may preprocess the retinal image to detect abnormalities in renal function using the retinal image.
  • the preprocessor 210 unifies the resolution of retinal images to use the retinal image in the deep neural network, measures the brightness, and removes the retinal image having a low brightness below a preset standard, thereby providing a high-quality retinal image. can be selected. Also, the preprocessor 210 may adjust the shape of the edge of the photo to be the same. And, the preprocessor 210 may search for the retina part, adjust the size so that the diameter of the searched retina becomes the same pixel, and then cut it out and use it.
  • step S120 the learning unit 220 may learn whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image.
  • the learning unit 220 may learn together with the deep neural network by combining medical information data of at least one patient among age, sex, diabetes, and hypertension.
  • the learning unit 220 may learn a convolutional neural network (CNN) to predict the patient's medical information data along with the presence or absence of renal function abnormality.
  • CNN convolutional neural network
  • the learning unit 220 may learn by combining the patient's age information with a feature vector of a convolutional neural network (CNN).
  • the learner 220 may embed the patient's medical information data in the same size as the feature vector and mask the feature vector.
  • the learning unit 220 may use the patient's medical information data as a label or use it as a channel of an input image.
  • age information since age information has a continuous value, it can always be used by combining it with a feature vector of a convolutional neural network (CNN).
  • the learning unit 220 calculates the value and label obtained by passing the finally obtained feature vector through a fully-connected layer as cross-entropy to define and minimize the loss function to learn the neural network. have.
  • the learning unit 220 may use an estimated Glomerular Filtration Rate (eGFR) value calculated by a CKD (Chronic Kidney Disease) calculation method from a serum creatinine concentration as a criterion for determining whether there is an abnormality in renal function.
  • eGFR Glomerular Filtration Rate
  • CKD Choronic Kidney Disease
  • the determination unit 230 may report the presence or absence of abnormality in renal function using the learned deep neural network. In this case, when determining whether the renal function is abnormal, the determination unit 230 may collect the results of the left and right eyes and report whether the renal function of the patient is abnormal. The determination unit 230 may report the presence or absence of abnormality in renal function, and may assist the user in determining by providing a report basis.
  • the determination unit 230 may threshold the output value (predicted probability value) of the deep neural network indicating the kidney abnormality probability to evaluate the reliability of the fundus photo reading or report it as unreadable.
  • the determination unit 230 may analyze the retinal image through a deep neural network to report a prognosis and prediction for a future renal function as well as a current state of renal function.
  • the determination unit 230 may report three pieces of information simultaneously through one neural network, rather than independently reporting the prognosis and prediction of early abnormality, intermediate stage abnormality, and future renal function of the current renal function.
  • the determination unit 230 may calculate the gradient of the retina image used when learning the deep neural network, and display the portion carefully observed by the deep neural network on the retina image.
  • FIG. 3 is a diagram illustrating an example of a structure of a deep neural network according to an embodiment.
  • the embodiments propose a deep neural network structure and a learning method capable of non-invasively diagnosing a kidney disease by using a retinal image and medical information of a patient.
  • the deep neural network structure used is based on the Wide Residual Network (WRN) (Non-Patent Document 3) that has improved the ResNet (Non-Patent Document 2) structure.
  • WRN Wide Residual Network
  • Non-Patent Document 3 Non-Patent Document 3
  • the WRN structure may be composed of a residual block composed of several convolutional layers.
  • the deep neural network structure may be configured based on WRN, and an example of the WRN structure may be shown as shown in FIG. 3 .
  • the patient's medical information data such as age, gender, presence of diabetes, and presence of hypertension can additionally be used. Additional information of the patient's medical information data may be utilized in various ways.
  • FIG. 4 is a diagram illustrating a method of embedding medical information according to an exemplary embodiment.
  • the patient's medical information data may be combined (Type 1) with a feature vector of a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the patient's medical information data may be age, gender, presence or absence of diabetes, and presence or absence of hypertension.
  • the convolutional neural network (CNN) may be replaced with a deep neural network structure such as a recurrent neural network (RNN).
  • RNN recurrent neural network
  • the patient's medical information data may be embedded in the same size as the feature vector and masked (Type 2) in the feature vector.
  • the patient's medical information data may be used as a label (Type 3), and as shown in FIG. 4D , the patient's medical information data is used as a channel of the input image (Type 4) ) can be Among them, age information has a continuous value, so it can always be used in combination with a feature vector of a convolutional neural network (CNN).
  • CNN convolutional neural network
  • a neural network can be trained by defining and minimizing the loss function by calculating the value and label obtained by passing the finally obtained vector through a fully-connected layer as cross-entropy.
  • the deep neural network may include a function of displaying on the retina image the carefully looked at when determining whether there is a kidney abnormality.
  • a pixel having a gradient value greater than or equal to a specific threshold may be displayed.
  • the threshold may be adaptively applied according to the brightness of a given retinal image.
  • a deep neural network for diagnosing kidney disease was learned using retinal images and patient medical information, and the performance of the learned neural network was confirmed.
  • the data consisted of 266,579 retinal photographs of 75,663 patients. Additionally, there is medical information for each patient, and the information it contains is as follows.
  • the entire data was randomly divided into a development set and a test set at a ratio of 9:1 based on the patient for the experiment.
  • the development set contains 68,096 patients and the test set contains 7,567 patients.
  • the development set was again divided into a training set and a validation set at a ratio of 8:2, and learning was performed in a 5-cross validation method.
  • the collected retinal images were pre-processed to be used in deep neural networks. Since the resolution of retinal photos differs slightly depending on the device in which they were taken, the work of unifying the resolution was performed. First, the retina part was searched for through Hough transform, and the size was adjusted so that the diameter of the searched retina was 400 pixels, and then cut out and used. As a result, all photos were scaled to 400x400 size.
  • FIG. 5 is a diagram illustrating a pre-processing of photo size adjustment according to an exemplary embodiment.
  • a pre-processing process for photo size adjustment can be summarized. Additionally, pictures that could not be obtained information due to low brightness were removed. The distribution was obtained by measuring the brightness of all pictures, and pictures having brightness lower than (mean) - 2 (standard deviation) were removed based on the brightness.
  • Renal function is calculated by calculating an estimated Glomerular Filtration Rate (eGFR) value from serum creatinine concentration.
  • eGFR Glomerular Filtration Rate
  • Scr serum creatinine concentration
  • A, B, and C are given in Table 2 below.
  • Table 2 shows parameter values in the CKD scheme.
  • the learned neural network structure was applied to the test patient group to measure AUC (Area Under the Curve) performance.
  • FIGS. 6A and 6B are diagrams illustrating an eGFR 60 reference ROC curve according to an embodiment. More specifically, Figure 6a shows the eGFR 60 reference ROC curve, Figure 6b shows the eGFR 60 reference ROC curve for the diabetic or hypertension patient group.
  • FIG. 7A and 7B are diagrams illustrating an eGFR 30 reference ROC curve according to an embodiment. More specifically, FIG. 7A shows an eGFR 30 reference ROC curve, and FIG. 7B shows an eGFR 30 reference ROC curve for a diabetic or hypertensive patient group.
  • FIGS. 8A and 8B are diagrams illustrating an attention map of a deep neural network according to an embodiment.
  • FIGS. 8A and 8B an example of an attention map is shown in which the learned deep neural network reads the presence or absence of kidney abnormality, which is carefully examined.
  • 9A and 9B are diagrams illustrating a future renal function prognosis/prediction ROC curve according to an embodiment.
  • FIGS. 9A and 9B data on patients who visited the hospital twice or more were additionally collected to predict/predict future renal function as well as the current status of renal function. Renal function at visit 1 was compared with renal function at visit 2, and data were labeled as maintained versus worsened.
  • the prognostic/predictive function of future renal function obtained an AUC result of 92.81% (95% confidence interval: 90.93% to 94.68%), and 87.05% (95% confidence interval: 83.29% to 90.81%) for the diabetic group. ) of AUC results were obtained.
  • FIG. 10 is a diagram illustrating an example of a photo that is difficult to read by a deep neural network according to an embodiment.
  • the neural network output value representing the probability of kidney abnormality was thresholded (0.45 ⁇ y ⁇ 0.55).
  • Embodiments are health care technology that enables detection of abnormal kidney function belonging to nephrology in the field of health care through retinal images belonging to sensory science. According to embodiments, it is possible to detect kidney function abnormality only by simple imaging without professional personnel, samples, analysis equipment, etc. required for blood collection and blood analysis. In addition, it is possible to simultaneously detect a decrease in renal function due to diabetic nephropathy through fundus imaging, which is regularly performed in diabetic patients, so that diabetic complications can be managed more effectively.
  • the device described above may be implemented as a hardware component, a software component, and/or a combination of the hardware component and the software component.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to execution of the software.
  • OS operating system
  • the processing device may also access, store, manipulate, process, and generate data in response to execution of the software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that can include For example, the processing device may include a plurality of processors or one processor and one controller. Other processing configurations are also possible, such as parallel processors.
  • the software may comprise a computer program, code, instructions, or a combination of one or more thereof, which configures a processing device to operate as desired or is independently or collectively processed You can command the device.
  • the software and/or data may be any kind of machine, component, physical device, virtual equipment, computer storage medium or apparatus, to be interpreted by or to provide instructions or data to the processing device. may be embodied in The software may be distributed over networked computer systems, and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.

Abstract

Proposed is a deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function. A deep neural network-based retinal image analysis method, according to one embodiment, comprises the steps of: pre-processing a retinal image so as to detect abnormalities in kidney function by using the retinal image; learning whether there are abnormalities in kidney function through a deep neural network by using the pre-processed retinal image; and reporting whether there are abnormalities in kidney function by using the learned deep neural network. The method reports whether there are abnormalities in kidney function and provides report grounds, thereby being able to help a user make a decision.

Description

신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치Deep neural network-based retinal image analysis method and device to detect renal dysfunction
아래의 실시예들은 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치에 관한 것으로, 더욱 상세하게는 망막 영상을 인공지능으로 분석하여 의사가 육안으로는 획득할 수 없었던 신장 기능 이상에 대한 정보를 제공하는 심층 신경망 기반 망막 영상 분석 방법 및 장치에 관한 것이다.The following embodiments relate to a deep neural network-based retinal image analysis method and apparatus for detecting renal function abnormalities, and more specifically, by analyzing retinal images with artificial intelligence, a doctor for renal function abnormalities that could not be obtained with the naked eye. It relates to a method and apparatus for analyzing a retinal image based on a deep neural network that provides information.
심층 신경망은 다양한 의료 영상 분석에 이용되고 있다. 망막 영상에 대해서는 당뇨병성 망막증을 진단하는 연구가 있는데, 69,573명의 환자에서 얻은 128,175장의 사진을 사용해서 Inception-v3(비특허문헌 1)로 학습한 후 안과 전문의와 비슷한 수준의 진단 정확도를 보였다. 최근에는 심층 신경망을 이용해 망막 영상으로 망막 질환뿐 아니라 심혈관 질환을 예측하는 연구도 보고되었다.Deep neural networks are being used for various medical image analysis. Regarding retinal imaging, there is a study to diagnose diabetic retinopathy. After learning with Inception-v3 (Non-Patent Document 1) using 128,175 photos obtained from 69,573 patients, it showed a diagnostic accuracy similar to that of an ophthalmologist. Recently, a study of predicting not only retinal disease but also cardiovascular disease with retinal imaging using a deep neural network has been reported.
한국등록특허 10-2058883호는 이러한 당뇨병 및 전조 증상을 진단하기 위해 홍채 영상 및 망막 영상을 인공지능으로 분석하는 방법을 기재하고 있다.Korean Patent No. 10-2058883 describes a method of analyzing iris images and retinal images with artificial intelligence to diagnose diabetes and prognostic symptoms.
종래 기술은 망막 영상을 통해 당뇨성 망막 변증을 진단하는 인공지능 기술을 제안하였다. 이는 의사가 육안으로도 가능한 기술로, 해당 알고리즘은 의사와 비슷한 성능 결과를 보인다. 이에 따라 의사의 육안으로는 판단할 수 없는 인공지능만의 특화된 기술을 통해 망막 영상을 통해 신장 이상을 진단하는 기술이 요구된다.The prior art has proposed an artificial intelligence technology for diagnosing diabetic retinopathy through retinal images. This is a technique that a doctor can do with the naked eye, and the algorithm shows performance results similar to that of a doctor. Accordingly, there is a need for a technology to diagnose kidney abnormalities through retinal images through specialized technology of artificial intelligence that cannot be judged with the naked eye of a doctor.
<선행기술문헌><Prior art literature>
<특허문헌><Patent Literature>
한국등록특허 10-2058883호Korean Patent No. 10-2058883
<비특허문헌><Non-patent literature>
(비특허문헌 1) Christian Szegedy, et. al. "Rethinking the inception architecture for computer vision." In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp. 2818-2826, 2016.(Non-Patent Document 1) Christian Szegedy, et. al. "Rethinking the inception architecture for computer vision." In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). pp. 2818-2826, 2016.
(비특허문헌 2) Kaiming He, et. al. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). 2016.(Non-Patent Document 2) Kaiming He, et. al. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). 2016.
(비특허문헌 3) Sergey Zagoruyko, and Nikos Komodakis. "Wide residual networks." In Proceedings of the British Machine Vision Conference (BMVC), 2016.(Non-Patent Document 3) Sergey Zagoruyko, and Nikos Komodakis. "Wide residual networks." In Proceedings of the British Machine Vision Conference (BMVC), 2016.
실시예들은 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치에 관하여 기술하며, 보다 구체적으로 망막 영상을 인공지능으로 분석하여 의사가 육안으로는 획득할 수 없었던 신장 기능 이상에 대한 정보를 제공하는 기술을 제공한다.The embodiments describe a method and apparatus for analyzing a retinal image based on a deep neural network for detecting abnormalities in renal function, and more specifically, by analyzing retinal images with artificial intelligence, information on abnormalities in renal function that a doctor could not obtain with the naked eye. provide the technology provided.
실시예들은 망막 영상 및 환자의 의료 정보를 활용하여 신장 질환을 비침습적으로 진단할 수 있는 심층 신경망 구조 및 학습법을 제공함으로써, 채혈과 혈액분석 등에 필요한 전문 인력, 시료, 분석 장비 등 없이 간단한 영상 촬영만으로 신장 기능 이상을 검출할 수 있는, 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치를 제공하는데 있다.The embodiments provide a deep neural network structure and learning method that can non-invasively diagnose kidney disease by using retinal images and patient medical information, so that simple image shooting without specialized personnel, samples, analysis equipment, etc. required for blood collection and blood analysis, etc. An object of the present invention is to provide a method and apparatus for analyzing a retinal image based on a deep neural network for detecting a renal function abnormality, which can detect a renal function abnormality only with only one.
컴퓨터로 구현된 심층 신경망 기반 망막 영상 분석 장치를 이용한 심층 신경망 기반 망막 영상 분석 방법은, 망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해, 망막 영상을 전처리하는 단계; 전처리된 상기 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계; 및 학습된 상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계를 포함하고, 상기 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 도울 수 있다.A deep neural network-based retinal image analysis method using a computer-implemented deep neural network-based retinal image analysis apparatus includes the steps of: preprocessing a retinal image to detect abnormalities in renal function using a retinal image; learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and reporting the presence or absence of abnormality in renal function using the learned deep neural network, reporting the presence or absence of abnormality in renal function, and providing a reporting basis to help the user's judgment.
다른 실시예에 따른 심층 신경망 기반 망막 영상 분석 장치는, 망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해, 망막 영상을 전처리하는 전처리부; 전처리된 상기 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 학습부; 및 학습된 상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 판단부를 포함하고, 상기 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 도울 수 있다.A deep neural network-based retinal image analysis apparatus according to another embodiment includes: a preprocessor for preprocessing a retinal image in order to detect abnormalities in renal function using a retinal image; a learning unit for learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and a determination unit for reporting abnormalities in renal function using the learned deep neural network, reporting the presence or absence of abnormalities in renal function, and providing a report basis to help the user in judgment.
실시예들에 따르면 망막 영상 및 환자의 의료 정보를 활용하여 신장 질환을 비침습적으로 진단할 수 있는 심층 신경망 구조 및 학습법을 제공함으로써, 채혈과 혈액분석 등에 필요한 전문 인력, 시료, 분석 장비 등 없이 간단한 영상 촬영만으로 신장 기능 이상을 검출할 수 있는, 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치를 제공할 수 있다.According to embodiments, by providing a deep neural network structure and learning method that can non-invasively diagnose kidney disease using retinal images and patient medical information, simple It is possible to provide a method and apparatus for analyzing a retinal image based on a deep neural network that detects renal function abnormality, which can detect renal function abnormality only by imaging.
또한, 실시예들에 따르면 당뇨병 환자에서 정기적으로 시행하고 있는 안저 촬영을 통해 당뇨병성 신증에 의한 신장 기능 저하를 동시에 검출할 수 있어 당뇨병성 합병증을 보다 효과적으로 관리할 수 있는, 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치를 제공할 수 있다.In addition, according to embodiments, it is possible to simultaneously detect a decrease in renal function due to diabetic nephropathy through fundus imaging, which is regularly performed in diabetic patients, so that it is possible to more effectively manage diabetic complications. A deep neural network-based retinal image analysis method and apparatus may be provided.
도 1은 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method for analyzing a retinal image based on a deep neural network according to an embodiment.
도 2는 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 장치의 블록도를 나타내는 도면이다.2 is a diagram illustrating a block diagram of an apparatus for analyzing a retinal image based on a deep neural network according to an embodiment.
도 3은 일 실시예에 따른 심층 신경망 구조에 대한 예시를 나타내는 도면이다.3 is a diagram illustrating an example of a structure of a deep neural network according to an embodiment.
도 4는 일 실시예에 따른 의료 정보 임베딩 방식을 나타내는 도면이다.4 is a diagram illustrating a method of embedding medical information according to an exemplary embodiment.
도 5는 일 실시예에 따른 사진 사이즈 조절 전처리 과정을 나타내는 도면이다.5 is a diagram illustrating a pre-processing of photo size adjustment according to an exemplary embodiment.
도 6a 및 도 6b는 일 실시예에 따른 eGFR 60 기준 ROC 곡선을 나타내는 도면이다.6A and 6B are diagrams illustrating an eGFR 60 reference ROC curve according to an embodiment.
도 7a 및 도 7b는 일 실시예에 따른 eGFR 30 기준 ROC 곡선을 나타내는 도면이다.7A and 7B are diagrams illustrating an eGFR 30 reference ROC curve according to an embodiment.
도 8a 및 도 8b는 일 실시예에 따른 심층 신경망의 Attention Map을 나타내는 도면이다.8A and 8B are diagrams illustrating an attention map of a deep neural network according to an embodiment.
도 9a 및 도 9b는 일 실시예에 따른 미래 신장 기능 예후/예측 ROC 곡선을 나타내는 도면이다.9A and 9B are diagrams illustrating a future renal function prognosis/prediction ROC curve according to an embodiment.
도 10은 일 실시예에 따른 심층 신경망으로 판독하기 어려운 사진의 예시를 나타내는 도면이다.10 is a diagram illustrating an example of a photo that is difficult to read by a deep neural network according to an embodiment.
이하, 첨부된 도면을 참조하여 실시예들을 설명한다. 그러나, 기술되는 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명되는 실시예들에 의하여 한정되는 것은 아니다. 또한, 여러 실시예들은 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Hereinafter, embodiments will be described with reference to the accompanying drawings. However, the described embodiments may be modified in various other forms, and the scope of the present invention is not limited by the embodiments described below. In addition, various embodiments are provided in order to more completely explain the present invention to those of ordinary skill in the art. The shapes and sizes of elements in the drawings may be exaggerated for clearer description.
아래의 실시예들은 심층 신경망(Deep Neural Network, DNN) 기반 인공지능을 활용하는 지능형 판독시스템이자 디지털 진단기기로, 보건의료 분야 중 신장학에 속하는 신장 기능 이상을 감각기학에 속하는 망막 영상을 통해 검출할 수 있게 해주는 보건의료기술이다.The following examples are intelligent reading systems and digital diagnostic devices that utilize deep neural network (DNN)-based artificial intelligence. It is a health technology that makes
실시예들은 신장 기능 이상을 검출하는 심층 신경망 기반 망막 영상 분석 방법 및 장치에 관한 것으로, 망막 영상을 통해 신장 이상을 진단하는 인공지능 기술을 제안하였고, 이는 의사의 육안으로는 판단할 수 없는 인공지능만의 특화된 기술이다. 실시예들에 따르면 망막 영상뿐만 아니라 환자의 의료 정보를 함께 활용할 수 있다.The embodiments relate to a method and apparatus for analyzing a retinal image based on a deep neural network for detecting abnormalities in renal function, and proposed an artificial intelligence technology for diagnosing kidney abnormalities through retinal images, which is an artificial intelligence that cannot be determined with the naked eye of a doctor. It is its own specialized technology. According to embodiments, not only a retinal image but also medical information of a patient may be used.
도 1은 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method for analyzing a retinal image based on a deep neural network according to an embodiment.
도 1을 참조하면, 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법은, 망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해, 망막 영상을 전처리하는 단계(S110), 전처리된 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계(S120), 및 학습된 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계(S130)를 포함하고, 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 도울 수 있다.Referring to Figure 1, the deep neural network-based retinal image analysis method according to an embodiment, in order to detect abnormalities in renal function using the retinal image, the step of preprocessing the retinal image (S110), using the preprocessed retinal image Including the step (S120) of learning the presence or absence of abnormality in kidney function through the deep neural network, and the step (S130) of reporting the presence or absence of abnormality in kidney function using the learned deep neural network, reporting the presence or absence of abnormality in kidney function, , it can help users make decisions by providing reporting grounds.
실시예들에 따르면 망막 영상 및 환자의 의료 정보를 활용하여 신장 질환을 비침습적으로 진단할 수 있는 심층 신경망 구조 및 학습법을 제공함으로써, 채혈과 혈액분석 등에 필요한 전문 인력, 시료, 분석 장비 등 없이 간단한 영상 촬영만으로 신장 기능 이상을 검출할 수 있다.According to embodiments, by providing a deep neural network structure and learning method that can non-invasively diagnose kidney disease using retinal images and patient medical information, simple Imaging alone can detect kidney dysfunction.
아래에서 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법의 각 단계를 설명한다.Below, each step of the deep neural network-based retinal image analysis method according to an embodiment will be described.
일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법은 컴퓨터 시스템에 의해 수행될 수 있으며, 예를 들어 컴퓨터 시스템의 프로세서가 포함할 수 있는 구성요소에 의해 수행될 수 있다. 컴퓨터 시스템의 프로세서의 예로써, 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 장치를 예를 들어 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 방법을 보다 상세히 설명할 수 있다.The deep neural network-based retinal image analysis method according to an embodiment may be performed by a computer system, for example, by a component that a processor of the computer system may include. As an example of the processor of the computer system, the deep neural network-based retinal image analysis method according to the embodiment may be described in more detail by taking the deep neural network-based retinal image analysis apparatus according to the embodiment.
도 2는 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 장치의 블록도를 나타내는 도면이다.2 is a diagram illustrating a block diagram of an apparatus for analyzing a retinal image based on a deep neural network according to an embodiment.
도 2를 참조하면, 일 실시예에 따른 심층 신경망 기반 망막 영상 분석 장치(200)는 전처리부(210), 학습부(220) 및 판단부(230)를 포함하여 이루어질 수 있다.Referring to FIG. 2 , the apparatus 200 for analyzing a retinal image based on a deep neural network according to an embodiment may include a preprocessor 210 , a learner 220 , and a determiner 230 .
단계(S110)에서, 전처리부(210)는 망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해 망막 영상을 전처리 할 수 있다.In step S110 , the preprocessor 210 may preprocess the retinal image to detect abnormalities in renal function using the retinal image.
보다 구체적으로, 전처리부(210)는 망막 영상을 심층 신경망에 사용하기 위해 망막 영상들의 해상도를 통일하고, 명도를 측정하여 기설정된 기준 이하의 낮은 명도를 가지는 망막 영상을 제거함으로써 품질이 좋은 망막 영상을 선별할 수 있다. 또한, 전처리부(210)는 사진 가장자리 모양을 동일하게 조정할 수 있다. 그리고 전처리부(210)는 망막 부분을 탐색한 후, 탐색된 망막의 지름이 동일한 픽셀이 되도록 사이즈를 조절한 후 잘라내어 사용할 수 있다.More specifically, the preprocessor 210 unifies the resolution of retinal images to use the retinal image in the deep neural network, measures the brightness, and removes the retinal image having a low brightness below a preset standard, thereby providing a high-quality retinal image. can be selected. Also, the preprocessor 210 may adjust the shape of the edge of the photo to be the same. And, the preprocessor 210 may search for the retina part, adjust the size so that the diameter of the searched retina becomes the same pixel, and then cut it out and use it.
단계(S120)에서, 학습부(220)는 전처리된 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습할 수 있다.In step S120 , the learning unit 220 may learn whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image.
학습부(220)는 심층 신경망의 성능을 향상시키기 위해 나이, 성별, 당뇨병 유무 및 고혈압 유무 중 적어도 어느 하나 이상의 환자의 의료 정보 데이터를 심층 신경망과 결합하여 함께 학습할 수 있다. 학습부(220)는 환자의 의료 정보 데이터를 신장 기능 이상 유무와 함께 예측하도록 합성곱 신경망(Convolutional Neural Network, CNN)을 학습할 수 있다. 예를 들어, 학습부(220)는 환자의 나이 정보를 합성곱 신경망(CNN)의 특징 벡터에 결합하여 학습할 수 있다. 또한, 학습부(220)는 환자의 의료 정보 데이터를 특징 벡터와 같은 사이즈로 임베딩하여 특징 벡터에 마스킹할 수 있다. 그리고, 학습부(220)는 환자의 의료 정보 데이터를 레이블로 활용하거나, 입력 이미지의 채널로 사용할 수도 있다. 이 때, 나이에 대한 정보는 연속적인 값을 가지므로 언제나 합성곱 신경망(CNN)의 특징 벡터에 결합시켜 사용할 수 있다.In order to improve the performance of the deep neural network, the learning unit 220 may learn together with the deep neural network by combining medical information data of at least one patient among age, sex, diabetes, and hypertension. The learning unit 220 may learn a convolutional neural network (CNN) to predict the patient's medical information data along with the presence or absence of renal function abnormality. For example, the learning unit 220 may learn by combining the patient's age information with a feature vector of a convolutional neural network (CNN). Also, the learner 220 may embed the patient's medical information data in the same size as the feature vector and mask the feature vector. Also, the learning unit 220 may use the patient's medical information data as a label or use it as a channel of an input image. At this time, since age information has a continuous value, it can always be used by combining it with a feature vector of a convolutional neural network (CNN).
학습부(220)는 최종적으로 얻어진 특징 벡터를 완전연결(fully-connected) 레이어를 통과시켜 얻어진 값과 레이블을 교차 엔트로피(cross-entropy)로 계산하여 손실 함수를 정의하고 최소화하여 신경망을 학습할 수 있다.The learning unit 220 calculates the value and label obtained by passing the finally obtained feature vector through a fully-connected layer as cross-entropy to define and minimize the loss function to learn the neural network. have.
또한, 학습부(220)는 신장 기능의 이상 유무의 판단 기준으로 혈청 크레아티닌 농도로부터 CKD(Chronic Kidney Disease) 계산법에 의해 산출된 eGFR(estimated Glomerular Filtration Rate) 값을 이용할 수 있다. 이 때, eGFR 값이 60보다 낮을 때는 조기 이상으로 보고하고, eGFR 값이 30보다 낮을 때는 중기 이상으로 보고할 수 있다.Also, the learning unit 220 may use an estimated Glomerular Filtration Rate (eGFR) value calculated by a CKD (Chronic Kidney Disease) calculation method from a serum creatinine concentration as a criterion for determining whether there is an abnormality in renal function. At this time, when the eGFR value is lower than 60, it can be reported as early abnormality, and when the eGFR value is lower than 30, it can be reported as intermediate stage abnormality.
단계(S130)에서, 판단부(230)는 학습된 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고할 수 있다. 이 때, 판단부(230)는 신장 기능의 이상 유무의 판단 시, 좌안과 우안의 결과를 취합하여 해당 환자의 신장 기능 이상 여부를 보고할 수 있다. 이러한 판단부(230)는 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 도울 수 있다.In step S130 , the determination unit 230 may report the presence or absence of abnormality in renal function using the learned deep neural network. In this case, when determining whether the renal function is abnormal, the determination unit 230 may collect the results of the left and right eyes and report whether the renal function of the patient is abnormal. The determination unit 230 may report the presence or absence of abnormality in renal function, and may assist the user in determining by providing a report basis.
전처리 과정에서 사진의 명도가 낮아서 판독하기 어려운 사진을 제거하였지만, 추가적으로 사진의 질이 낮아 판독하기 어려운 경우가 있다. 이에 따라 판단부(230)는 신장 이상 확률을 나타내는 심층 신경망의 출력값(예측 확률치)을 스레싱홀딩(thresholding)하여 안저 사진 판독에 대한 신뢰성을 평가하거나 판독 불가로 보고할 수 있다.In the pre-processing process, pictures that are difficult to read due to low brightness were removed, but there are cases in which it is difficult to read due to the low quality of the pictures. Accordingly, the determination unit 230 may threshold the output value (predicted probability value) of the deep neural network indicating the kidney abnormality probability to evaluate the reliability of the fundus photo reading or report it as unreadable.
판단부(230)는 망막 영상을 심층 신경망을 통해 분석하여, 신장 기능의 현재 상태뿐만 아니라, 미래의 신장 기능에 대한 예후 및 예측을 보고할 수 있다. 여기서, 판단부(230)는 현재 신장 기능의 조기 이상, 중기 이상 그리고 미래의 신장 기능에 대한 예후 및 예측을 독립적으로 보고하는 것이 아니라, 3가지 정보를 하나의 신경망을 통해 동시에 보고할 수 있다.The determination unit 230 may analyze the retinal image through a deep neural network to report a prognosis and prediction for a future renal function as well as a current state of renal function. Here, the determination unit 230 may report three pieces of information simultaneously through one neural network, rather than independently reporting the prognosis and prediction of early abnormality, intermediate stage abnormality, and future renal function of the current renal function.
또한, 판단부(230)는 심층 신경망의 학습 시 사용된 망막 영상의 기울기를 계산하여 심층 신경망이 주의 깊게 살펴본 부분을 망막 영상 위에 표시할 수 있다.In addition, the determination unit 230 may calculate the gradient of the retina image used when learning the deep neural network, and display the portion carefully observed by the deep neural network on the retina image.
도 3은 일 실시예에 따른 심층 신경망 구조에 대한 예시를 나타내는 도면이다.3 is a diagram illustrating an example of a structure of a deep neural network according to an embodiment.
실시예들은 망막 영상 및 환자의 의료 정보를 활용하여 신장 질환을 비침습적으로 진단할 수 있는 심층 신경망 구조와 학습법에 대해서 제안한다. 사용된 심층 신경망 구조는 ResNet(비특허문헌 2) 구조를 개선한 Wide Residual Network(WRN)(비특허문헌 3)을 기반으로 한다. WRN 구조는 여러 개의 순환층(convolutional layer)으로 구성된 잔차 블록(residual block)으로 구성될 수 있다.The embodiments propose a deep neural network structure and a learning method capable of non-invasively diagnosing a kidney disease by using a retinal image and medical information of a patient. The deep neural network structure used is based on the Wide Residual Network (WRN) (Non-Patent Document 3) that has improved the ResNet (Non-Patent Document 2) structure. The WRN structure may be composed of a residual block composed of several convolutional layers.
일 실시예에 따른 심층 신경망 구조는 WRN을 기반으로 구성될 수 있으며, WRN 구조에 대한 예시를 도 3에 도시된 바와 같이 나타낼 수 있다.The deep neural network structure according to an embodiment may be configured based on WRN, and an example of the WRN structure may be shown as shown in FIG. 3 .
심층 신경망 학습을 더 잘 학습시키기 위해 나이, 성별, 당뇨 유무, 고혈압 유무와 같은 환자의 의료 정보 데이터를 부가적으로 사용할 수 있다. 환자의 의료 정보 데이터의 부가 정보는 다양한 방법으로 활용될 수 있다.In order to better train the deep neural network learning, the patient's medical information data such as age, gender, presence of diabetes, and presence of hypertension can additionally be used. Additional information of the patient's medical information data may be utilized in various ways.
도 4는 일 실시예에 따른 의료 정보 임베딩 방식을 나타내는 도면이다.4 is a diagram illustrating a method of embedding medical information according to an exemplary embodiment.
도 4a 내지 도 4d를 참조하면, 일 실시예에 따른 환자의 의료 정보 데이터의 사용 예시, 즉 의료 정보 임베딩 방식을 나타낸다. 도 4a에 도시된 바와 같이, 예를 들어, 환자의 의료 정보 데이터를 합성곱 신경망(Convolutional Neural Network, CNN)의 특징 벡터에 결합(Type 1)시킬 수 있다. 여기서, 환자의 의료 정보 데이터는, 앞에서 설명한 바와 같이, 나이, 성별, 당뇨 유무, 고혈압 유무 등이 될 수 있다. 그리고, 합성곱 신경망(CNN)은 순환 신경망(Recurrent Neural Network, RNN) 등의 심층 신경망 구조로 대체될 수 있다. 도 4b에 도시된 바와 같이, 환자의 의료 정보 데이터는 특징 벡터와 같은 사이즈로 임베딩되어 특징 벡터에 마스킹(Type 2)될 수 있다. 또한, 도 4c에 도시된 바와 같이, 환자의 의료 정보 데이터는 레이블로 활용(Type 3)될 수 있으며, 도 4d에 도시된 바와 같이, 환자의 의료 정보 데이터는 입력 이미지의 채널로 사용(Type 4)될 수 있다. 이 중, 나이에 대한 정보는 연속적인 값을 가지므로 언제나 합성곱 신경망(CNN)의 특징 벡터에 결합되어 사용될 수 있다.4A to 4D , examples of use of patient's medical information data, ie, a medical information embedding method, are shown according to an embodiment. As shown in FIG. 4A , for example, the patient's medical information data may be combined (Type 1) with a feature vector of a convolutional neural network (CNN). Here, as described above, the patient's medical information data may be age, gender, presence or absence of diabetes, and presence or absence of hypertension. In addition, the convolutional neural network (CNN) may be replaced with a deep neural network structure such as a recurrent neural network (RNN). As shown in FIG. 4B , the patient's medical information data may be embedded in the same size as the feature vector and masked (Type 2) in the feature vector. In addition, as shown in FIG. 4C , the patient's medical information data may be used as a label (Type 3), and as shown in FIG. 4D , the patient's medical information data is used as a channel of the input image (Type 4) ) can be Among them, age information has a continuous value, so it can always be used in combination with a feature vector of a convolutional neural network (CNN).
최종적으로 얻어진 벡터를 완전연결(fully-connected) 레이어를 통과시켜 얻어진 값과 레이블을 교차 엔트로피(cross-entropy)로 계산하여 손실 함수를 정의하고 최소화하여 신경망을 학습할 수 있다.A neural network can be trained by defining and minimizing the loss function by calculating the value and label obtained by passing the finally obtained vector through a fully-connected layer as cross-entropy.
추가적으로, 전문의의 최종 판단을 돕기 위해 심층 신경망이 신장 이상 유무를 판단할 때 주의 깊게 살펴본 부분을 망막 영상에 표시하는 기능을 포함할 수 있다. 심층 신경망의 최종 출력에 대한 입력 사진의 기울기(gradient)를 계산하여, 기울기 값이 특정 스레시홀드(threshold) 이상의 값을 가지는 픽셀을 표시할 수 있다. 스레시홀드는 주어진 망막 영상의 밝기에 따라 적응적(adaptive)으로 적용될 수 있다.Additionally, in order to help the final judgment of the specialist, the deep neural network may include a function of displaying on the retina image the carefully looked at when determining whether there is a kidney abnormality. By calculating the gradient of the input picture with respect to the final output of the deep neural network, a pixel having a gradient value greater than or equal to a specific threshold may be displayed. The threshold may be adaptively applied according to the brightness of a given retinal image.
실시예Example
망막 영상과 환자의 의료 정보를 활용하여 신장 질환을 진단하는 심층 신경망을 학습하고, 학습된 신경망의 성능을 확인하였다. 데이터는 75,663명의 환자에 대한 266,579장의 망막 사진으로 구성되어 있다. 추가적으로 각 환자에 대한 의료 정보가 존재하며, 포함하고 있는 정보는 다음과 같다.A deep neural network for diagnosing kidney disease was learned using retinal images and patient medical information, and the performance of the learned neural network was confirmed. The data consisted of 266,579 retinal photographs of 75,663 patients. Additionally, there is medical information for each patient, and the information it contains is as follows.
[표 1][Table 1]
Figure PCTKR2020019362-appb-img-000001
Figure PCTKR2020019362-appb-img-000001
전체 데이터를 실험을 위해 환자를 기준으로 랜덤하게 9:1의 비율로 Development set과 Test set으로 나누었다. 이 경우 Development set에는 68,096명의 환자가 포함되고, Test set에는 7,567명의 환자가 포함된다. 그리고 Development set을 다시 8:2의 비율로 Training set과 Validation set으로 나누어 5-cross validation 방식으로 학습을 수행하였다.The entire data was randomly divided into a development set and a test set at a ratio of 9:1 based on the patient for the experiment. In this case, the development set contains 68,096 patients and the test set contains 7,567 patients. Then, the development set was again divided into a training set and a validation set at a ratio of 8:2, and learning was performed in a 5-cross validation method.
수집된 망막 사진을 심층 신경망에 사용할 수 있도록 전처리 과정을 거쳤다. 망막 사진의 해상도가 촬영된 기기에 따라 조금씩 다르므로 해상도를 통일하는 작업을 수행하였다. 우선, 허프 변환(Hough transform)을 통해 망막 부분을 탐색하고, 탐색된 망막의 지름이 400 픽셀이 되도록 사이즈를 조절한 후 잘라내어 사용하였다. 결과적으로 모든 사진은 400x400 사이즈로 조정되었다.The collected retinal images were pre-processed to be used in deep neural networks. Since the resolution of retinal photos differs slightly depending on the device in which they were taken, the work of unifying the resolution was performed. First, the retina part was searched for through Hough transform, and the size was adjusted so that the diameter of the searched retina was 400 pixels, and then cut out and used. As a result, all photos were scaled to 400x400 size.
도 5는 일 실시예에 따른 사진 사이즈 조절 전처리 과정을 나타내는 도면이다.5 is a diagram illustrating a pre-processing of photo size adjustment according to an exemplary embodiment.
도 5에 도시된 바와 같이, 사진 사이즈 조절에 대한 전처리 과정을 요약할 수 있다. 추가적으로 사진의 명도가 낮아서 정보를 얻을 수 없는 사진을 제거하였다. 모든 사진의 명도를 측정하여 분포를 구하고, 명도를 기준으로 (평균) - 2 (표준편차) 보다 낮은 명도를 가지는 사진을 제거하였다.As shown in FIG. 5 , a pre-processing process for photo size adjustment can be summarized. Additionally, pictures that could not be obtained information due to low brightness were removed. The distribution was obtained by measuring the brightness of all pictures, and pictures having brightness lower than (mean) - 2 (standard deviation) were removed based on the brightness.
신장 기능은 eGFR(estimated Glomerular Filtration Rate) 값을 혈청 크레아티닌 농도로부터 계산하는데, 본 실시예에서는 다음 식과 같은 CKD(Chronic Kidney Disease) 계산법을 채택하였다.Renal function is calculated by calculating an estimated Glomerular Filtration Rate (eGFR) value from serum creatinine concentration.
[수학식 1][Equation 1]
Figure PCTKR2020019362-appb-img-000002
Figure PCTKR2020019362-appb-img-000002
여기서, Scr은 혈청 크레아티닌 농도를 의미하고, A, B, C는 다음 표 2와 같이 주어진다.Here, Scr means serum creatinine concentration, and A, B, and C are given in Table 2 below.
표 2는 CKD 방식에서의 파라미터 값을 나타낸다.Table 2 shows parameter values in the CKD scheme.
[표 2][Table 2]
Figure PCTKR2020019362-appb-img-000003
Figure PCTKR2020019362-appb-img-000003
신장 기능 조기 이상 검출을 위해 eGFR < 60을, 중기 이상을 진단하기 위해서는 eGFR < 30을 설정한 후, 학습된 신경망 구조를 가지고 테스트 환자 군에 적용하여 AUC(Area Under the Curve) 성능을 측정하였다.After setting eGFR < 60 for early detection of kidney function abnormalities and eGFR < 30 for diagnosing mid-stage abnormalities, the learned neural network structure was applied to the test patient group to measure AUC (Area Under the Curve) performance.
도 6a 및 도 6b는 일 실시예에 따른 eGFR 60 기준 ROC 곡선을 나타내는 도면이다. 보다 구체적으로, 도 6a는 eGFR 60 기준 ROC 곡선을 나타내고, 도 6b는 당뇨 또는 고혈압 환자 군에 대한 eGFR 60 기준 ROC 곡선을 나타낸다.6A and 6B are diagrams illustrating an eGFR 60 reference ROC curve according to an embodiment. More specifically, Figure 6a shows the eGFR 60 reference ROC curve, Figure 6b shows the eGFR 60 reference ROC curve for the diabetic or hypertension patient group.
도 6a에 도시된 바와 같이, eGFR 60을 기준으로 했을 때 93.09%(95% 신뢰 구간: 92.59%-93.60%)의 결과를 얻었다.As shown in Fig. 6a, based on eGFR 60, a result of 93.09% (95% confidence interval: 92.59%-93.60%) was obtained.
또한, 도 6b에 도시된 바와 같이, 당뇨 또는 고혈압 환자 군에 대해서는 86.66%(95% 신뢰 구간: 85.53%-87.78%)의 결과를 얻었다.In addition, as shown in FIG. 6B , a result of 86.66% (95% confidence interval: 85.53%-87.78%) was obtained for the diabetic or hypertension patient group.
도 7a 및 도 7b는 일 실시예에 따른 eGFR 30 기준 ROC 곡선을 나타내는 도면이다. 보다 구체적으로, 도 7a는 eGFR 30 기준 ROC 곡선을 나타내고, 도 7b는 당뇨 또는 고혈압 환자 군에 대한 eGFR 30 기준 ROC 곡선을 나타낸다.7A and 7B are diagrams illustrating an eGFR 30 reference ROC curve according to an embodiment. More specifically, FIG. 7A shows an eGFR 30 reference ROC curve, and FIG. 7B shows an eGFR 30 reference ROC curve for a diabetic or hypertensive patient group.
도 7a에 도시된 바와 같이, eGFR 30을 기준으로 했을 때 96.67%(95% 신뢰 구간:96.10%-97.24%)의 결과를 얻었다.As shown in Fig. 7a, a result of 96.67% (95% confidence interval: 96.10%-97.24%) was obtained based on eGFR 30.
또한, 도 7b에 도시된 바와 같이, 당뇨 또는 고혈압 환자 군에 대해서는 93.87%(95% 신뢰 구간: 92.67%-95.07%)의 결과를 얻었다.In addition, as shown in FIG. 7B , a result of 93.87% (95% confidence interval: 92.67%-95.07%) was obtained for the diabetic or hypertension patient group.
도 8a 및 도 8b는 일 실시예에 따른 심층 신경망의 Attention Map을 나타내는 도면이다.8A and 8B are diagrams illustrating an attention map of a deep neural network according to an embodiment.
도 8a 및 도 8b를 참조하면, 학습된 심층 신경망이 신장 이상 유무를 판독할 때 주의 깊게 살펴보는 부분을 표시한 Attention Map의 예시를 나타낸다.Referring to FIGS. 8A and 8B , an example of an attention map is shown in which the learned deep neural network reads the presence or absence of kidney abnormality, which is carefully examined.
도 9a 및 도 9b는 일 실시예에 따른 미래 신장 기능 예후/예측 ROC 곡선을 나타내는 도면이다.9A and 9B are diagrams illustrating a future renal function prognosis/prediction ROC curve according to an embodiment.
도 9a 및 도 9b를 참조하면, 추가적으로 신장 기능의 현재 상태뿐만 아니라, 미래의 신장 기능을 예후/예측하기 위해 두 번 이상 병원을 방문한 환자에 대한 데이터를 수집하였다. 첫 번째 방문 시의 신장 기능과 두 번째 방문 시의 신장 기능을 비교하여 신장 기능이 유지되는 경우와 악화되는 경우로 데이터를 레이블링하였다.Referring to FIGS. 9A and 9B , data on patients who visited the hospital twice or more were additionally collected to predict/predict future renal function as well as the current status of renal function. Renal function at visit 1 was compared with renal function at visit 2, and data were labeled as maintained versus worsened.
자체 테스트 결과, 미래 신장 기능 예후/예측 기능은 92.81% (95% 신뢰구간: 90.93%~94.68%)의 AUC 결과를 얻었고, 당뇨 환자 군에 대해서는 87.05% (95% 신뢰구간: 83.29%~90.81%)의 AUC 결과를 얻었다.As a result of self-test, the prognostic/predictive function of future renal function obtained an AUC result of 92.81% (95% confidence interval: 90.93% to 94.68%), and 87.05% (95% confidence interval: 83.29% to 90.81%) for the diabetic group. ) of AUC results were obtained.
도 10은 일 실시예에 따른 심층 신경망으로 판독하기 어려운 사진의 예시를 나타내는 도면이다.10 is a diagram illustrating an example of a photo that is difficult to read by a deep neural network according to an embodiment.
도 10을 참조하면, 전처리 과정에서 사진의 명도가 낮아서 판독하기 어려운 사진을 제거하였지만, 추가적으로 사진의 질이 낮아 판독하기 어려운 경우가 있다. 이러한 사진들을 제거하기 위해 신장 이상 확률을 나타내는 신경망 출력 값을 스레싱홀딩(thresholding)하였다(0.45≤y≤0.55).Referring to FIG. 10 , in the pre-processing process, a photo that is difficult to read due to a low brightness of the photo is removed. In order to remove these pictures, the neural network output value representing the probability of kidney abnormality was thresholded (0.45≤y≤0.55).
실시예들은 보건의료 분야 중 신장학에 속하는 신장 기능 이상을 감각기학에 속하는 망막 영상을 통해 검출할 수 있게 해주는 보건의료기술이다. 실시예들에 따르면 채혈과 혈액분석 등에 필요한 전문 인력, 시료, 분석 장비 등 없이 간단한 영상촬영만으로 신장 기능 이상을 검출할 수 있다. 또한, 당뇨병 환자에서 정기적으로 시행하고 있는 안저 촬영을 통해 당뇨병성 신증에 의한 신장 기능 저하를 동시에 검출할 수 있어 당뇨병성 합병증을 보다 효과적으로 관리할 수 있다.Embodiments are health care technology that enables detection of abnormal kidney function belonging to nephrology in the field of health care through retinal images belonging to sensory science. According to embodiments, it is possible to detect kidney function abnormality only by simple imaging without professional personnel, samples, analysis equipment, etc. required for blood collection and blood analysis. In addition, it is possible to simultaneously detect a decrease in renal function due to diabetic nephropathy through fundus imaging, which is regularly performed in diabetic patients, so that diabetic complications can be managed more effectively.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The device described above may be implemented as a hardware component, a software component, and/or a combination of the hardware component and the software component. For example, devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. The processing device may execute an operating system (OS) and one or more software applications running on the operating system. The processing device may also access, store, manipulate, process, and generate data in response to execution of the software. For convenience of understanding, although one processing device is sometimes described as being used, one of ordinary skill in the art will recognize that the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that can include For example, the processing device may include a plurality of processors or one processor and one controller. Other processing configurations are also possible, such as parallel processors.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.The software may comprise a computer program, code, instructions, or a combination of one or more thereof, which configures a processing device to operate as desired or is independently or collectively processed You can command the device. The software and/or data may be any kind of machine, component, physical device, virtual equipment, computer storage medium or apparatus, to be interpreted by or to provide instructions or data to the processing device. may be embodied in The software may be distributed over networked computer systems, and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software. Examples of the computer readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floppy disks. - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with reference to the limited embodiments and drawings, various modifications and variations are possible from the above description by those skilled in the art. For example, the described techniques are performed in a different order than the described method, and/or the described components of the system, structure, apparatus, circuit, etc. are combined or combined in a different form than the described method, or other components Or substituted or substituted by equivalents may achieve an appropriate result.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다. Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.

Claims (15)

  1. 컴퓨터로 구현된 심층 신경망 기반 망막 영상 분석 장치를 이용한 심층 신경망 기반 망막 영상 분석 방법에 있어서,In the deep neural network-based retinal image analysis method using a computer-implemented deep neural network-based retinal image analysis device,
    망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해, 망막 영상을 전처리하는 단계;Pre-processing the retinal image to detect abnormalities in renal function using the retinal image;
    전처리된 상기 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계; 및learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and
    학습된 상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계Reporting the presence or absence of abnormality in renal function using the learned deep neural network
    를 포함하고,including,
    상기 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 돕는 것Reporting the presence or absence of abnormalities in the renal function and providing a basis for reporting to help the user's judgment
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  2. 제1항에 있어서,According to claim 1,
    상기 망막 영상을 전처리하는 단계는,The step of pre-processing the retina image,
    상기 망막 영상을 상기 심층 신경망에 사용하기 위해, 상기 망막 영상들의 해상도를 통일하고, 명도를 측정하여 기설정된 기준 이하의 낮은 명도를 가지는 망막 영상을 제거하는 것In order to use the retinal image in the deep neural network, unifying the resolution of the retinal images, measuring the brightness, and removing the retinal image having a low brightness below a preset standard
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  3. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계는,The step of learning whether there is an abnormality in kidney function through the deep neural network,
    상기 심층 신경망의 성능을 향상시키기 위해 나이, 성별, 당뇨병 유무 및 고혈압 유무 중 적어도 어느 하나 이상의 환자의 의료 정보 데이터를 상기 심층 신경망과 결합하여 함께 학습하는 것In order to improve the performance of the deep neural network, combining medical information data of at least one patient among age, sex, diabetes and hypertension with the deep neural network and learning together
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계는,The step of learning whether there is an abnormality in kidney function through the deep neural network,
    상기 환자의 의료 정보 데이터를 신장 기능 이상 유무와 함께 예측하도록 합성곱 신경망(Convolutional Neural Network, CNN)을 학습하는 것Learning the convolutional neural network (CNN) to predict the patient's medical information data along with the presence or absence of renal function abnormality
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계는,The step of learning whether there is an abnormality in kidney function through the deep neural network,
    상기 환자의 나이 정보를 합성곱 신경망(Convolutional Neural Network, CNN)의 특징 벡터에 결합하여 학습하는 것Learning by combining the patient's age information with a feature vector of a convolutional neural network (CNN)
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  6. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 단계는,The step of learning whether there is an abnormality in kidney function through the deep neural network,
    상기 신장 기능의 이상 유무의 판단 기준으로 혈청 크레아티닌 농도로부터 CKD(Chronic Kidney Disease) 계산법에 의해 산출된 eGFR(estimated Glomerular Filtration Rate) 값을 이용하는 것Using the estimated Glomerular Filtration Rate (eGFR) value calculated by the CKD (Chronic Kidney Disease) calculation method from the serum creatinine concentration as a criterion for determining whether the renal function is abnormal
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    상기 eGFR 값이 60보다 낮을 때는 조기 이상으로 보고하고, 상기 eGFR 값이 30보다 낮을 때는 중기 이상으로 보고하는 것When the eGFR value is lower than 60, it is reported as early abnormality, and when the eGFR value is lower than 30, it is reported as intermediate stage abnormality
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  8. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    상기 심층 신경망의 학습 시 사용된 상기 망막 영상의 기울기를 계산하여 상기 심층 신경망이 주의 깊게 살펴본 부분을 상기 망막 영상 위에 표시하는 것Calculating the gradient of the retinal image used during learning of the deep neural network and displaying the part carefully looked at by the deep neural network on the retina image
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    신장 이상 확률을 나타내는 상기 심층 신경망의 출력값을 스레싱홀딩(thresholding)하여 사진 판독에 대한 신뢰성을 평가하거나 판독 불가로 보고하는 것Thresholding the output value of the deep neural network indicating the probability of kidney abnormality to evaluate the reliability of the picture reading or to report it as unreadable
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  10. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    상기 신장 기능의 이상 유무의 판단 시, 좌안과 우안의 결과를 취합하여 환자의 신장 기능 이상 여부를 보고하는 것When judging whether there is an abnormality in the renal function, collecting the results of the left and right eyes and reporting the abnormality of the renal function of the patient
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  11. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    상기 망막 영상을 상기 심층 신경망을 통해 분석하여, 신장 기능의 현재 상태 및 미래의 신장 기능에 대한 예후 및 예측을 보고하는 것Analyzing the retinal image through the deep neural network, reporting the prognosis and prediction for the current state of renal function and future renal function
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  12. 제1항에 있어서,According to claim 1,
    상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 단계는,The step of reporting the abnormality of kidney function using the deep neural network is,
    현재 신장 기능의 조기 이상, 중기 이상, 및 미래의 신장 기능에 대한 예후 및 예측에 대한 3가지 정보를 하나의 상기 심층 신경망을 통해 동시에 보고하는 것To simultaneously report three pieces of information on the prognosis and prediction of early abnormality, intermediate stage abnormality, and future renal function of current renal function through one deep neural network.
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 방법.Characterized in, a deep neural network-based retinal image analysis method.
  13. 망막 영상을 이용하여 신장 기능의 이상을 검출하기 위해, 망막 영상을 전처리하는 전처리부;In order to detect abnormalities in renal function using the retinal image, a preprocessor for preprocessing the retinal image;
    전처리된 상기 망막 영상을 이용하여 심층 신경망을 통해 신장 기능의 이상 유무를 학습하는 학습부; 및a learning unit for learning whether there is an abnormality in renal function through a deep neural network using the pre-processed retinal image; and
    학습된 상기 심층 신경망을 이용하여 신장 기능의 이상 유무를 보고하는 판단부Determination unit for reporting abnormalities in renal function using the learned deep neural network
    를 포함하고,including,
    상기 신장 기능의 이상 유무를 보고하고, 보고 근거를 제공하여 사용자의 판단을 돕는 것Reporting the presence or absence of abnormalities in the renal function and providing a basis for reporting to help the user's judgment
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 장치.Characterized in, a deep neural network-based retinal image analysis device.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 학습부는,The learning unit,
    상기 심층 신경망의 성능을 향상시키기 위해 나이, 성별, 당뇨병 유무 및 고혈압 유무 중 적어도 어느 하나 이상의 환자의 의료 정보 데이터를 상기 심층 신경망과 결합하여 함께 학습하는 것In order to improve the performance of the deep neural network, combining medical information data of at least one patient among age, sex, diabetes and hypertension with the deep neural network and learning together
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 장치.Characterized in, a deep neural network-based retinal image analysis device.
  15. 제13항에 있어서,14. The method of claim 13,
    상기 학습부는,The learning unit,
    상기 신장 기능의 이상 유무의 판단 기준으로 혈청 크레아티닌 농도로부터 CKD(Chronic Kidney Disease) 계산법에 의해 산출된 eGFR(estimated Glomerular Filtration Rate) 값을 이용하는 것Using the estimated Glomerular Filtration Rate (eGFR) value calculated by the CKD (Chronic Kidney Disease) calculation method from the serum creatinine concentration as a criterion for determining whether the renal function is abnormal
    을 특징으로 하는, 심층 신경망 기반 망막 영상 분석 장치.Characterized in, a deep neural network-based retinal image analysis device.
PCT/KR2020/019362 2020-05-27 2020-12-30 Deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function WO2021241830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0063816 2020-05-27
KR1020200063816A KR102410292B1 (en) 2020-05-27 2020-05-27 Deep Neural Network based Retinal Image Analysis Method and Apparatus for Detection of Abnormal Kidney Function

Publications (1)

Publication Number Publication Date
WO2021241830A1 true WO2021241830A1 (en) 2021-12-02

Family

ID=78744987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019362 WO2021241830A1 (en) 2020-05-27 2020-12-30 Deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function

Country Status (2)

Country Link
KR (1) KR102410292B1 (en)
WO (1) WO2021241830A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031099A1 (en) * 2015-08-20 2017-02-23 Ohio University Devices and methods for classifying diabetic and macular degeneration
KR20190115713A (en) * 2018-04-03 2019-10-14 고려대학교 산학협력단 Device for vessel detection and retinal edema diagnosis using multi-functional neurlal network and method for detecting and diagnosing same
KR102058883B1 (en) * 2019-04-11 2019-12-24 주식회사 홍복 Method of analyzing iris image and retina image for diagnosing diabetes and pre-symptom in artificial intelligence
KR20200005412A (en) * 2018-07-06 2020-01-15 연세대학교 산학협력단 Cardiovascular disease diagnosis assistant method and apparatus
KR20200011033A (en) * 2017-10-27 2020-01-31 메디비콘 아이엔씨. How kidney function is measured

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101977645B1 (en) * 2017-08-25 2019-06-12 주식회사 메디웨일 Eye image analysis method
JP2020036835A (en) * 2018-09-05 2020-03-12 株式会社クレスコ Ophthalmologic diagnostic support apparatus, ophthalmologic diagnostic support method, and ophthalmologic diagnostic support program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017031099A1 (en) * 2015-08-20 2017-02-23 Ohio University Devices and methods for classifying diabetic and macular degeneration
KR20200011033A (en) * 2017-10-27 2020-01-31 메디비콘 아이엔씨. How kidney function is measured
KR20190115713A (en) * 2018-04-03 2019-10-14 고려대학교 산학협력단 Device for vessel detection and retinal edema diagnosis using multi-functional neurlal network and method for detecting and diagnosing same
KR20200005412A (en) * 2018-07-06 2020-01-15 연세대학교 산학협력단 Cardiovascular disease diagnosis assistant method and apparatus
KR102058883B1 (en) * 2019-04-11 2019-12-24 주식회사 홍복 Method of analyzing iris image and retina image for diagnosing diabetes and pre-symptom in artificial intelligence

Also Published As

Publication number Publication date
KR20210146690A (en) 2021-12-06
KR102410292B1 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2020207377A1 (en) Method, device, and system for image recognition model training and image recognition
US11612311B2 (en) System and method of otoscopy image analysis to diagnose ear pathology
WO2021093448A1 (en) Image processing method and apparatus, server, medical image processing device and storage medium
WO2017022908A1 (en) Method and program for bone age calculation using deep neural networks
WO2019103440A1 (en) Method for supporting reading of medical image of subject and device using same
WO2020248387A1 (en) Face recognition method and apparatus based on multiple cameras, and terminal and storage medium
WO2011028023A2 (en) Apparatus and method for detecting eye state
WO2013129825A1 (en) Method and device for notification of facial recognition environment, and computer-readable recording medium for executing method
WO2020138925A1 (en) Artificial intelligence-based method and system for classification of blood flow section
WO2013048159A1 (en) Method, apparatus and computer readable recording medium for detecting a location of a face feature point using an adaboost learning algorithm
WO2019231104A1 (en) Method for classifying images by using deep neural network and apparatus using same
WO2019098415A1 (en) Method for determining whether subject has developed cervical cancer, and device using same
KR102078876B1 (en) Method and system for detecting pneumothorax
WO2021071288A1 (en) Fracture diagnosis model training method and device
WO2019189972A1 (en) Method for analyzing iris image by artificial intelligence so as to diagnose dementia
CN109460717A (en) Alimentary canal Laser scanning confocal microscope lesion image-recognizing method and device
Li et al. Computer-aided diagnosis of COVID-19 CT scans based on spatiotemporal information fusion
KR20190082149A (en) Method for predicting glaucoma
WO2019132588A1 (en) Image analysis device and method based on image feature and context
WO2023273297A1 (en) Multi-modality-based living body detection method and apparatus, electronic device, and storage medium
WO2024005542A1 (en) Method and device for predicting disease through wrinkle detection
WO2021241830A1 (en) Deep neural network-based retinal image analysis method and apparatus for detection of abnormal kidney function
WO2021002669A1 (en) Apparatus and method for constructing integrated lesion learning model, and apparatus and method for diagnosing lesion by using integrated lesion learning model
CN1462884A (en) Method of recognizing image of lung cancer cells with high accuracy and low rate of false negative
WO2021177799A1 (en) Image-based coronavirus infection quantitative classification method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937590

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 10.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20937590

Country of ref document: EP

Kind code of ref document: A1