WO2021241626A1 - Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles - Google Patents

Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles Download PDF

Info

Publication number
WO2021241626A1
WO2021241626A1 PCT/JP2021/019961 JP2021019961W WO2021241626A1 WO 2021241626 A1 WO2021241626 A1 WO 2021241626A1 JP 2021019961 W JP2021019961 W JP 2021019961W WO 2021241626 A1 WO2021241626 A1 WO 2021241626A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
nanoparticles
heterocyclic amine
amine skeleton
compound
Prior art date
Application number
PCT/JP2021/019961
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 関口
雄介 加川
崇光 本白水
正照 伊藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021538742A priority Critical patent/JPWO2021241626A1/ja
Publication of WO2021241626A1 publication Critical patent/WO2021241626A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides

Definitions

  • the present invention relates to nanoparticles of cerium oxide whose surface is coated with a vinyl polymer or polyamide, an antibacterial agent containing the nanoparticles, an antiviral agent, and a method for producing the nanoparticles.
  • titanium oxide has the property of oxidatively decomposing organic substances due to its photocatalytic properties.
  • oxidative decomposition characteristics are expected to be used as antibacterial agents for inactivating microorganisms such as viruses, bacteria, molds and yeasts, as well as for decomposing low molecules such as acetaldehyde and ammonia and harmful substances such as allergens. ing.
  • nanoparticles of cerium oxide have the same catalytic activity as oxidases such as oxidase and peroxidase, and are expected to be applied as antibacterial agents utilizing the oxidizing action. Since these catalytic activities do not require a special light source such as ultraviolet rays, they can be expected to be used for applications different from titanium oxide.
  • metal oxides have the property of being positively charged, and nanoparticles of cerium oxide are also positively charged in the acidic to neutral pH range.
  • positively charged cerium oxide nanoparticles have a problem of non-specific adsorption with serum proteins.
  • Non-Patent Document 1 discloses that nanoceria whose surface is covered with polyacrylic acid has antibacterial activity.
  • Non-Patent Document 2 discloses that cerium oxide produced by using ethylenediaminetetraacetic acid (EDTA) as a stabilizer has antibacterial activity.
  • EDTA ethylenediaminetetraacetic acid
  • the present inventors evaluated the antibacterial action of nanoparticles of cerium oxide using polyacrylic acid described in Non-Patent Document 1 and EDTA described in Non-Patent Document 2 as a stabilizer. However, it cannot be said that the growth inhibition rate of Escherichia coli was sufficient in either case. Therefore, further studies were conducted with the task of finding nanoparticles of cerium oxide having higher antibacterial activity.
  • the present inventors have made a compound having a heterocyclic amine skeleton in addition to polyacrylic acid and polyvalent carboxylic acid including EDTA, and surface of nanoparticles of cerium oxide. It was found that the antibacterial activity was improved by coating with. We also found that nanoparticles of cerium oxide whose surface was coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton also improved antiviral performance, and completed the present invention.
  • the present invention comprises the following aspects. (1) Cerium oxide nanoparticles whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton. (2) The cerium oxide nanoparticles according to (1), wherein the polyvalent carboxylic acid has a valence of trivalent or higher. (3) The cerium oxide nanoparticles according to (1) or (2), wherein the compound having a heterocyclic amine skeleton is a vinyl polymer or polyamide having a heterocyclic amine skeleton in the main chain or side chain. (4) The cerium oxide nanoparticles according to any one of (1) to (3), wherein the heterocyclic amine skeleton is composed of any of piperazine, pyridine, imidazole or carbazole.
  • the compound having a heterocyclic amine skeleton is a monocyclic or bicyclic aromatic heterocyclic compound having a 5-membered ring and / or a 6-membered ring structure, (1) or (2).
  • X represents NR 2 , O, S, and R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms.
  • the aminoalkyl group of the above, or the alkyl sulfonate group having 1 to 4 carbon atoms is shown.
  • R 1 and R 2 may be the same or different.
  • the antibacterial agent containing the nanoparticles of cerium oxide according to any one of (1) to (8).
  • the antiviral agent containing the nanoparticles of cerium oxide according to any one of (1) to (8).
  • (11) A method for producing nanoparticles of cerium oxide whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton, which is a polyvalent carboxylic acid and a vinyl-based compound having a heterocyclic amine skeleton.
  • a method for producing nanoparticles of cerium oxide which comprises a step A of preparing a solution containing a polymer or a polyamide and cerium (III) ions, and a step B of adding an oxidizing agent to the solution obtained in the step A.
  • the surface of the cerium oxide nanoparticles of the present invention is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton.
  • Polycarboxylic acids and compounds having a heterocyclic amine skeleton are used in the present invention as stabilizers for nanoparticles of cerium oxide.
  • the polyvalent carboxylic acid is a carboxylic acid having a plurality of carboxyl groups or a salt thereof, or a mixture of the carboxylic acid and the salt thereof.
  • Preferred polyvalent carboxylic acids are trivalent or higher carboxylic acids and / or salts thereof.
  • the trivalent carboxylic acid is citric acid, nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), and the tetravalent carboxylic acid is ethylenediaminetetraacetic acid (EDTA), ethylenediaminediaminedic acid (EDDS), glycol ether.
  • Diaminetetraacetic acid EGTA
  • HEDTA hydroxyethylethylenediaminetetraacetic acid
  • DTPA hydroxyethylethylenediaminetetraacetic acid
  • TTHA triethylenetetraminehexacetic acid
  • carboxylic acid of 7 or more valence Includes polyacrylic acid and / or salts thereof.
  • Examples of the compound having a heterocyclic amine skeleton used in the present invention include aromatic heterocyclic compounds, alicyclic amines, and vinyl polymers or polyamides having a heterocyclic amine skeleton in the main chain or side chain. can.
  • aromatic heterocyclic compound used in the present invention a monocyclic or bicyclic aromatic heterocyclic compound having a 5-membered ring and / or a 6-membered ring structure is preferable, and for example, pyridine, pyridazine, pyrimidine, and imidazole are preferable. , Pyrazole, benzoimidazole, carbazole and the like are exemplified.
  • the aromatic heterocyclic compound may have a substituent.
  • the substituent here is an alkyl group, an acetyl group, a hydroxyl group, an amino group, a cyano group, a carboxyl group, an ester group, an aldehyde group, an amide group, an ether group, a ketone group, a halogen group, a sulfonic acid group or a phosphoric acid group. Is preferable.
  • the number of substituents may be singular or plural.
  • alicyclic amine used in the present invention an alicyclic amine represented by the general formula (I) is exemplified.
  • X represents NR 2 , O, S, and R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms.
  • the aminoalkyl group of the above, or the alkyl sulfonate group having 1 to 4 carbon atoms is shown.
  • R 1 and R 2 may be the same or different.
  • X represents NR 2 and O
  • R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 2 carbon atoms, and 2 to 2 carbon atoms. It shows a hydroxyalkyl group of 3, an aminoalkyl group having 2 to 3 carbon atoms, and an alkyl sulfonate group having 2 to 3 carbon atoms.
  • R 1 and R 2 may be the same or different.
  • alicyclic amine examples include piperazine, 1-methylpiperazine, N, N'-dimethylpiperazine, 1-ethylpiperazine, N, N'-diethylpiperazine, 1- (2-hydroxyethyl) piperazine, and 1,4-bis.
  • the vinyl-based polymer or polyamide having a heterocyclic amine skeleton in the main chain or side chain (hereinafter, may be abbreviated as "polymer having a heterocyclic amine skeleton") used in the present invention includes pyrrolidine, pyrrol, pyrazole, and the like.
  • Those having a heterocyclic amine skeleton such as piperazine, pyridine, diazine, imidazole or carbazole in the main chain or side chain, and those having piperazine, pyridine, imidazole or carbazole in the main chain or side chain are preferable.
  • the vinyl polymer or polyamide having the heterocyclic amine skeleton of the present invention may have a substituent at any position on the main chain or side chain, or may have a substituent at any position on the heterocyclic amine skeleton. May have.
  • a polymer having a heterocyclic amine skeleton in the main chain and a substituent in the side chain a polymer having a heterocyclic amine skeleton having a substituent in the main chain, and a substituent in the side chain.
  • examples thereof include a polymer having a heterocyclic amine skeleton and a polymer having a heterocyclic amine skeleton in a side chain via a substituent.
  • the substituent here is an alkyl group, an acetyl group, a hydroxyl group, an amino group, a cyano group, a carboxyl group, an ester group, an aldehyde group, an amide group, an ether group, a ketone group, a halogen group, a sulfonic acid group or a phosphoric acid group. Is preferable.
  • the number of substituents may be singular or plural.
  • the vinyl-based polymer having a heterocyclic amine skeleton used in the present invention is a polymer (polyvinyl) having a polyethylene structure in which a vinyl-based monomer is condensed as a monomer in the main chain.
  • a vinyl polymer having a piperazine skeleton in the main chain or side chain is shown in the following general formulas (II) and (III).
  • general formula (II) when the piperazine skeleton is contained in the main chain, the piperazine skeleton is provided as a part of the polyethylene structure of the main chain.
  • heterocyclic amine skeleton such as pyridine, imidazole or carbazole skeleton
  • the heterocyclic amine skeleton is also provided as a part of the polyethylene structure of the main chain, as in the general formula (II).
  • n represents an arbitrary integer.
  • n represents an arbitrary integer.
  • the piperazine skeleton may be directly bonded to the polyethylene main chain.
  • the piperazine skeleton may be bonded via an alkylene group, an amino group, or the like.
  • another heterocyclic amine skeleton such as pyridine, imidazole or carbazole skeleton
  • pyridine, imidazole or carbazole skeleton etc. are attached to the polyethylene main chain.
  • the heterocyclic amine skeleton of the above may be directly bonded, or may be bonded via an alkylene group, an amino group, or the like.
  • the vinyl polymer having a heterocyclic amine skeleton used in the present invention is preferably a vinyl polymer having a piperazine, pyridine, imidazole or carbazole skeleton in the side chain.
  • a vinyl-based polymer having a piperazine, pyridine, imidazole or carbazole skeleton on the side chain is obtained by a polymerization reaction of a vinyl-based monomer having a piperazine, pyridine, imidazole or carbazole skeleton.
  • vinyl-based monomer examples include 1-vinylpiperazin, (4-vinylpiperazin-1-yl) methaneamine, 2- (4-vinylpiperazin-1-yl) ethane-1-amine, and 2-vinyl.
  • the vinyl-based monomer may have a substituent at any position other than the vinyl group, and may have, for example, a methyl group or a cyano group as a substituent.
  • the vinyl-based polymer having a heterocyclic amine skeleton used in the present invention may be a homopolymer or a copolymer made from two or more kinds of vinyl-based monomers.
  • Preferred specific examples of the vinyl polymer used in the present invention are poly (1-vinylpiperazin), poly ((4-vinylpiperazin-1-yl) methaneamine), poly (2- (4-vinylpiperazin-1-yl)).
  • Etan-1-amine poly (2-vinylpyridine), poly (3-vinylpyridine), poly (4-vinylpyridine), poly (1-vinylimidazole), poly (2-vinylimidazole), poly (4) -Vinylimidazole), poly (9-vinylcarbazole).
  • the polyamide having a heterocyclic amine skeleton used in the present invention is a polymer having an amide bond in the main chain and has a heterocyclic amine skeleton such as piperazine, pyridine, imidazole or carbazole skeleton in the main chain or side chain.
  • a heterocyclic amine skeleton such as piperazine, pyridine, imidazole or carbazole skeleton in the main chain or side chain.
  • the following general formula (IV) shows the structure of a polyamide having a piperazine skeleton as a heterocyclic amine bone in the main chain.
  • it has a piperazine skeleton as a part of the amide structure which is the main chain, and nitrogen and a carbonyl group in the heterocycle of the piperazine skeleton form an amide bond.
  • the heterocyclic amine is used as a part of the amide structure as in the general formula (IV).
  • n represents an arbitrary integer.
  • the piperazine skeleton may be directly bonded to the polyamide main chain as shown in the following general formula (V).
  • the piperazine skeleton may be bonded via an alkyl group, an amino group, or the like.
  • a complex such as pyridine, imidazole or carbazole skeleton is used in the polyamide backbone.
  • the cyclic amine skeleton may be directly bonded, or may be bonded via an alkylene group, an amino group, or the like.
  • n represents an arbitrary integer.
  • polyamide having a heterocyclic amine skeleton used in the present invention a polymer having a heterocyclic amine skeleton such as a piperazine skeleton represented by the general formula (IV) in the main chain is preferable.
  • the polyamide having a piperazine skeleton in the main chain used in the present invention is obtained by a condensation reaction between an amine having a heterocyclic amine skeleton such as a piperazine skeleton and a dicarboxylic acid.
  • amines having a heterocyclic amine skeleton are piperazine, (aminomethyl) piperazine, (aminoethyl) piperazine, (aminopropyl) piperazine, (aminobutyl) piperazine, 1,4-bis (aminomethyl) piperazine.
  • (aminoethyl) piperazine and 1,4-bis (3-aminopropyl) piperazine are more preferable.
  • these amines may have a substituent at any position other than nitrogen which can form an amide bond.
  • dicarboxylic acid 1H-imidazole-2,4-dicarboxylic acid, 1H-imidazole-2,5-dicarboxylic acid, 1H-imidazole-4,5-dicarboxylic acid, pyridine-2,3- Dicarboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-3,4-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, adipic acid , Sevacinic acid, dodecadicarboxylic acid, terephthalic acid, isophthalic acid and the like.
  • these dicarboxylic acids may have a substituent at any position other than the carboxyl group capable of forming an amide bond.
  • the polyamide having a heterocyclic amine skeleton used in the present invention a polyamide obtained by combining the above amine and a dicarboxylic acid can be preferably used, and a polyamide obtained by combining (aminoethyl) piperazin and adipic acid is particularly preferable. ..
  • the polyamide having a heterocyclic amine skeleton used in the present invention may have a polyalkylene glycol structure in a part of the polyamide main chain. Specific examples thereof include polyamides having a skeleton of (aminoethyl) piperazine, adipic acid, and bis (aminopropyl) polyethylene glycol.
  • the polyamide having a heterocyclic amine skeleton used in the present invention may be a copolymer of a polyamide having a heterocyclic amine skeleton such as piperazine, pyridine, imidazole or carbazole and another polymer.
  • specific examples of other polymers include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), and polypentamethylene adipamide (nylon).
  • Polypentamethylene sebacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon) 66 / 6T), Polyhexamethylene adipamide / Polyhexamethylene terephthalamide / Polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I), Polyhexamethylene terephthalamide / Polyhexamethylene isophthalamide copolymer (Nylon 6T / 6I) ), Polyxylylene adipamide (nylon XD6) and the like.
  • the molecular weight of the vinyl polymer or polyamide having a heterocyclic amine skeleton used in the present invention is preferably 3000 or more and 1,000,000 or less, and more preferably 10,000 or more and 50,000 or less.
  • Cerium oxide nanoparticles of the present invention Ce 2 O 3 and (the particles, called. "Central nucleus” hereinafter) cerium oxide particles constituted of a mixture of CeO 2 as the center and the surface polycarboxylic acid , And a structure coated with a compound having a heterocyclic amine skeleton.
  • the particle size of the central core is preferably about 1 nm or more and 100 nm or less.
  • the particle size can be calculated by measuring two or more of the major axis diameter, the minor axis diameter, and the directional diameter using a transmission electron microscope, and calculating the average value as the particle diameter.
  • Ce 2 O 3 and CeO 2 in the ratio of the central core can be calculated cerium (III) and as the ratio of the cerium (IV).
  • the nanoparticles of cerium oxide of the present invention may be dried and calculated by X-ray photoelectron spectroscopy (XPS).
  • the particle size of the nanoparticles of cerium oxide of the present invention is preferably 200 nm or less as the hydrodynamic diameter including the compound layer on the surface.
  • the hydrodynamic diameter is analyzed by the Marquart method, in which nanoparticles of cerium oxide of the present invention are dissolved in any solvent such as water and ethanol, dynamic light scattering is measured to derive an autocorrelation function, and the autocorrelation function is derived. Then, it is calculated as the average particle size from the number conversion histogram.
  • ELS-Z manufactured by Otsuka Electronics Co., Ltd. is used for the measurement of dynamic light scattering.
  • the cerium oxide nanoparticles of the present invention are used in step A for obtaining a solution containing a polyvalent carboxylic acid, a compound having a heterocyclic amine skeleton, and cerium (III) ion, and an oxidizing agent in the solution obtained in step A.
  • the method for producing nanoparticles of cerium oxide of the present invention will be described for each step.
  • a polyvalent carboxylic acid including an ion or salt of the polyvalent carboxylic acid
  • a compound having a heterocyclic amine skeleton, and a cerium (III) ion including a cerium (III) salt
  • the polyvalent carboxylic acid used in the step A can be used as a solution in which the above-mentioned polyvalent carboxylic acid or a salt thereof is dissolved in an arbitrary solvent.
  • the solvent is preferably water or a solvent compatible with water. If the polyvalent carboxylic acid is difficult to dissolve in the solvent, it may be dissolved by heating or sonication, or the pH may be adjusted with an acid or a base.
  • the compound having a heterocyclic amine skeleton used in the step A can be used as a solution by dissolving the above-mentioned compound having a heterocyclic amine skeleton in an arbitrary solvent.
  • the solvent is preferably water or a solvent compatible with water.
  • the compound having a heterocyclic amine skeleton is difficult to dissolve in a solvent, it may be dissolved by heating or sonication, or the pH may be adjusted with an acid or a base.
  • solvents for polyvalent carboxylic acids and compounds having a heterocyclic amine skeleton include, for example, methanol, ethanol, propanol, isopropanol, butanol, tetrahydrofuran, glycerol, ethylene glycol, acetone, dimethylformamide (DMF), dimethyl.
  • solvents for polyvalent carboxylic acids and compounds having a heterocyclic amine skeleton include, for example, methanol, ethanol, propanol, isopropanol, butanol, tetrahydrofuran, glycerol, ethylene glycol, acetone, dimethylformamide (DMF), dimethyl.
  • examples include sulfoxide (DMSO), triethylamine, pyridine and the like.
  • the cerium (III) ion (including the cerium (III) salt) used in step A can be dissolved in any solvent and used as a solution.
  • the cerium (III) salt for example, cerium nitrate (III) hexahydrate may be used.
  • the mixing method of the solution containing the polyvalent carboxylic acid or the salt of the polyvalent carboxylic acid, the solution of the compound having a heterocyclic amine skeleton, and the solution containing the cerium (III) ion or the cerium (III) salt is not particularly limited.
  • a method of adding a solution containing cerium (III) ions or a cerium (III) salt to a solution containing ions of a polyvalent carboxylic acid and a polymer having a heterocyclic amine skeleton is preferably used.
  • a method of mixing a solution containing an ion of a polyvalent carboxylic acid and a solution of a compound having a heterocyclic amine skeleton and adding a solution containing a cerium (III) ion or a cerium (III) salt, a heterocyclic amine is preferably used.
  • a method of mixing a solution containing an ion of a polyvalent carboxylic acid and a solution of a compound having a heterocyclic amine skeleton and adding a solution containing a cerium (III) ion or a cerium (III) salt, a heterocyclic amine.
  • a solution containing cerium (III) ions or a cerium (III) salt examples thereof include a method of dissolving in a solution of a compound having a skeleton and adding a solution containing cerium (III) ion or a cerium (III) salt.
  • the solvent of the mixed solution may be finally water or a solvent compatible with the above water containing 10% or more of water.
  • the concentration of the polyvalent carboxylic acid is preferably 0.05 molar equivalents or more and 5 molar equivalents or less with respect to cerium (III) ions when the valence is trivalent or more and hexavalent or less. , 0.1 molar equivalent or more and 1 molar equivalent or less is more preferable.
  • the mass concentration is preferably 0.01% or more and 5% or less, and more preferably 0.1% or more and 1% or less.
  • the concentration of the solution of the compound having a heterocyclic amine skeleton is preferably 0.01% or more and 5% or less, more preferably 0.1% or more and 2% or less in terms of mass concentration.
  • the concentration of cerium (III) is the concentration of cerium (III) / hexahydrate for the compound having a heterocyclic amine skeleton when cerium (III) nitrate / hexahydrate is used. It is preferable to mix so that the mass ratio is 0.1 or more and 5.0 or less.
  • the mixed solution is preferably mixed for at least 5 minutes until the solution becomes uniform.
  • Step B is a step of adding an oxidizing agent to the solution obtained in step A.
  • the oxidizing agents used in step B include nitric acid, potassium nitrate, hypochloric acid, chloric acid, chloric acid, perchloric acid, halogen, hydrogen halide, permanganate, chromic acid, dichromic acid, oxalic acid, and sulfide. Examples include hydrogen, sulfur dioxide, sodium thiosulfate, nitric acid, hydrogen peroxide and the like. Of these, hydrogen peroxide is particularly preferable.
  • the addition amount may be 0.1 equivalent or more and 10 equivalent or less, preferably 0.5 equivalent or more and 2 equivalent or less, as a molar equivalent with respect to the cerium (III) ion.
  • cerium (III) ions are oxidized to cerium (IV), Ce 2 O 3 and cerium oxide particles constituted of a mixture of CeO 2 (the central core)
  • cerium (III) ions are oxidized to cerium (IV), Ce 2 O 3 and cerium oxide particles constituted of a mixture of CeO 2 (the central core)
  • the pH of the dispersion may be adjusted.
  • the pH may be adjusted in step A, or after purification of the dispersion liquid such as filtration with an ultrafiltration membrane described later or dialysis with a semipermeable membrane.
  • the pH of the dispersion liquid of the present invention may be in the range of pH 2 to 12.
  • the pH may be adjusted by adding a buffer solution, or may be adjusted by adding an acid such as nitric acid, sulfuric acid or hydrochloric acid, or a base such as sodium hydroxide or potassium hydroxide.
  • the zeta potential of the nanoparticles of cerium oxide of the present invention has a feature that it is higher than that using a polyvalent carboxylic acid as a stabilizer and smaller than that using a compound having a heterocyclic amine skeleton as a stabilizer.
  • the zeta potential can be adjusted by the concentration of the polyvalent carboxylic acid and the compound having a heterocyclic amine skeleton, and if the concentration of the polyvalent carboxylic acid is increased, the data potential of the particles is small, and the compound having a heterocyclic amine skeleton Increasing the concentration increases the zeta potential of the particles.
  • the nanoparticles of cerium oxide of the present invention may be stored in the dispersion after the reaction is completed, or the nanoparticles of cerium oxide of the present invention may be taken out from the dispersion after the reaction and stored in a dried state. You may. When storing in dispersion, refrigerated storage is preferable. When drying the nanoparticles of cerium oxide of the present invention, first, the solution after completion of the reaction is filtered with an ultrafiltration membrane or dialyzed with a translucent membrane, and remains in the dispersion after completion of the reaction. The unreacted polyvalent carboxylic acid, oxidizing agent, cerium (III) ion and excess compound may be removed and dried using an evaporator or a freeze-dryer.
  • the ionic components that can be added to the dispersion of cerium oxide nanoparticles of the present invention after completion of the reaction include acetic acid, phthalic acid, succinic acid, carbonic acid, and Tris (hydroxymethyl) aminomethane (Tris) as components that impart buffering performance.
  • 2-Morphorinoethanesulphonic acid monohydrate (MES), Bis (2-hydroxythyl) iminotris (hydroxymethyl) meshane (Biz-Tris), N- (2-Acetamido) imidoid -Ethanesulphonic acid (PIPES), N- (2-Acetamido) -2-aminoethanesulphonic acid (ACES), 2-Hydroxy-3-morpholinopropanesulphonic acid (MOPSO), N, N-Biz (2-thyro) acid (BES), 3-Morphorinopropanesulphonic acid (MOPS), N-Tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES), 2- [4- (2-Hydroxymethyl) -1-pipher) 2-Hydroxy-N-tris (hydroxymethyl) metyl-3-aminopropanesulphonic (TAPSO), Piperazine-1,4-bis (2-hydroxy-3-propa
  • ionic components can be added so that the final concentration is in the range of 0.1 mM to 1 M.
  • These ionic components may be added to the dispersion after the reaction is completed, may be added after filtering the dispersion with an ultrafiltration membrane, may be used as a dialysate, or may be added to the dispersion after dialysis. You may. It may be added to dried cerium oxide nanoparticles to form a dispersion.
  • the dispersion of cerium oxide nanoparticles of the present invention may be sterilized before use.
  • Examples of the sterilization method include a method of passing through a sterilization filter.
  • antibacterial refers to suppressing the growth of microorganisms such as viruses, bacteria, and fungi in general, and kills microorganisms (killing of microorganisms), sterilizes them (removal of microorganisms), and sterilizes them. It includes bacteriostatic (microbiostasis), bactericidal (control of microbe) or growth inhibition (microbial inhibition).
  • the nanoparticles of cerium oxide of the present invention can be used as an antibacterial agent.
  • a method for evaluating the performance as an antibacterial agent for example, a method of mixing a microbial suspension and a test solution, culturing in an agar medium and observing the growth state, and observing suppression of growth in an agar medium containing the test solution. And the method of measuring the growth inhibition circle. Another method is to add a test solution to a liquid medium and measure the suppression of growth.
  • the medium component can contain a nutrient source such as glucose, peptone derived from milk casein or soybean, and an extract derived from fish meat or yeast in order to promote the growth of microorganisms.
  • a method of adding a test solution to a liquid medium and observing suppression of growth is preferably used for evaluation of antibacterial activity.
  • the method of adding a test solution to a liquid medium to suppress the growth of microorganisms is used as an index of antibacterial activity as an effect of suppressing the growth of microorganisms.
  • the microbial growth inhibition rate of the nanoparticles of cerium oxide of the present invention is calculated as follows.
  • a solution of nanoparticles of cerium oxide of the present invention is mixed with a liquid medium, and microorganisms such as Escherichia coli are inoculated.
  • microorganisms such as Escherichia coli are inoculated.
  • the turbidity (OD600 value) of the solution is measured before the start of culture. Cultivate the microorganisms at a predetermined temperature and time while stirring using a shaker or the like. After culturing, the turbidity (OD600 value) of all the solutions is measured. For each solution, take the difference between the turbidity after culturing and the turbidity before culturing.
  • the difference between the turbidity difference (I c ) of the control and the turbidity difference (I) of the solution containing the nanoparticles of cerium oxide is taken, and the ratio to the turbidity difference (I c ) of the control is calculated as the growth inhibition rate.
  • Examples of the target microorganism in which the nanoparticles of cerium oxide of the present invention exhibit antibacterial activity include the following.
  • Examples of the bacterium include Gram-positive bacteria and Gram-negative bacteria.
  • Examples of gram-negative bacteria include Escherichia bacteria such as Escherichia coli, Salmonella bacteria such as Salmonella, Pseudomonas bacteria such as Shigella, Shigella bacteria such as Shigella, and Klebsiella such as Klebsiella pneumoniae.
  • Bacteria of the genus Regionella such as Regionella pneumophylla can be mentioned.
  • Examples of gram-positive bacteria include bacteria of the genus Staphylococcus such as Staphylococcus, bacteria of the genus Bacillus such as Bacillus subtilis, and bacteria of the genus Mycobacterium such as tuberculosis.
  • Examples of fungi include fungi and yeast.
  • Examples of fungi include filamentous fungi of the genus Aspergillus such as black stag beetle, filamentous fungi of the genus Penicillium such as blue mold, filamentous fungi of the genus Cladosporium such as black mold, filamentous fungi of the genus Alternaria such as suscabi, and trichoderma such as tucia okabi.
  • Examples include filamentous fungi of the genus, filamentous fungi of the genus Ketomium such as Ketama mold.
  • yeasts include yeasts of the genus Saccharomyces such as baker's yeast and beer yeast, and yeasts of the genus Candida such as Candida albicans.
  • the virus include poliovirus, rotavirus, norovirus, enterovirus, sapovirus, influenza virus, RS virus, adenovirus, herpesvirus and the like.
  • the nanoparticles of the present invention show particularly high antibacterial activity against bacteria.
  • the nanoparticles of cerium oxide of the present invention By making the nanoparticles of cerium oxide of the present invention into a dispersion, for example, they can be added to pools, bathtubs, hot springs, etc. as disinfectants, or used as body soaps, hand-washing detergents, disinfectants, mouthwashes, mouthwashes, etc. It can be used or used as a disinfectant for cleaning clothes, tableware, kitchens, toilets, washrooms, bathrooms, desks, chairs, tables, beds, medical equipment, etc.
  • the dispersion liquid of the nanoparticles of cerium oxide may contain other components having a sterilizing, sterilizing, sterilizing, bacteriostatic, bacteriostatic, and growth inhibitory action.
  • solvent components such as ethanol and isopropyl alcohol
  • oxidizing agent components such as hydrogen peroxide, povidone iodine and sodium hypochlorite
  • surfactant components such as benzalkonium chloride, benzethonium chloride and alkylpolyaminoethylglycine are used.
  • solvent components such as ethanol and isopropyl alcohol
  • oxidizing agent components such as hydrogen peroxide, povidone iodine and sodium hypochlorite
  • surfactant components such as benzalkonium chloride, benzethonium chloride and alkylpolyaminoethylglycine
  • the nanoparticles of cerium oxide of the present invention are added at the time of molding of fibers, tubes, beads, rubber, films, plastics and the like as additives for imparting antibacterial activity, or are applied to the surfaces thereof. Therefore, it can be used for antibacterial processing.
  • the cerium oxide dispersion of the present invention that can be antibacterial processed include a drainage chrysanthemum crack cover for a kitchen sink, a drainage plug, a packing for fixing a window glass, a packing for fixing a mirror, a bathroom, and a washbasin.
  • the cerium oxide nanoparticles of the present invention or a dispersion thereof can be used as an antiviral agent.
  • the amount of virus is quantified after contacting or mixing the nanoparticles of cerium oxide of the present invention or a dispersion thereof with the virus.
  • a method for quantifying a virus a method for measuring the amount of virus antigen by the ELISA method, a method for quantifying the viral nucleic acid by PCR, a method for measuring the infectious titer by the plaque method, and a method for measuring the infectious titer by the 50% infectious dose measuring method. The method etc. can be mentioned.
  • the antiviral performance a method of measuring the infectious titer by a plaque method or a 50% infection amount measuring method is preferably used.
  • the unit of virus infectious titer is TCID 50 (Tissue culture infectious dose 50) when tested on cultured cells, EID 50 (Egg infectious dose 50) when using hatched chicken eggs, and animals. Then, it is expressed by LD 50 (Lethal dose 50).
  • LD 50 Lethal dose 50
  • the 50% infection amount measurement method there are Reed-Muench method, Behrens-Kaeber method, Spearman-Karber method and the like as a method of calculating the infection titer from the obtained data, but in the present invention, the Reed-Muench method is used.
  • the criteria for determining the antiviral performance are generally that the logarithmic reduction value of the infectious titer is 2.0 or more with respect to the infectious titer before the nanoparticle of cerium oxide of the present invention is allowed to act or the control containing no nanoparticles of the present invention. If so, the antiviral performance is determined to be effective.
  • the virus that can be inactivated by the nanoparticles of cerium oxide of the present invention or a dispersion thereof is, for example, rhinovirus, poliovirus, mouth-foot disease virus, rotavirus, norovirus, enterovirus, hepatvirus, astrovirus, sapovirus, hepatitis E virus.
  • the nanoparticles of cerium oxide of the present invention or a dispersion thereof are kneaded into materials such as fibers, tubes, beads, rubber, films, and plastics as additives, or applied to the surface of these materials. It can be used as a rubber.
  • materials such as fibers, tubes, beads, rubber, films, and plastics as additives, or applied to the surface of these materials. It can be used as a rubber.
  • Various fields as interior materials for buildings such as hospitals, interior materials for trains and automobiles, seats for vehicles, blinds, chairs, sofas, equipment for handling viruses, doors, ceiling boards, floor boards, windows, etc. Can be used for.
  • Luria Broth Base was obtained from Thermo Fisher Co., Ltd.
  • Escherichia coli (DH5 ⁇ ) was obtained from Takara Bio Co., Ltd. and used.
  • Other reagents were purchased from Fujifilm Wako Pure Chemical Industries, Ltd., Tokyo Kasei Co., Ltd., and Sigma-Aldrich Japan GK, and used as they were without any particular purification.
  • polyamide (1) having (aminoethyl) piperazine and adipic acid as structural units, (aminoethyl) piperazine and bis (aminopropyl).
  • polyamide (2) A polymer having polyethylene glycol and adipic acid as structural units was used, and these polymers were prepared with reference to JP-A-11-166121.
  • the LB liquid medium was prepared by dissolving Luria Bouillon Base at a concentration of 25 g / l and sterilizing it in an autoclave.
  • M9 liquid medium was prepared by mixing sterile distilled water 890ml, 10 ⁇ M9 Minimal Salts100ml, 1M MgSO 4 1ml, 20% glucose 10 ml, a 1M CaCl 2 100 [mu] l.
  • Otsuka Electronics Co., Ltd.'s zeta potential / particle measurement system ELS-Z was used to measure the hydrodynamic diameter and zeta potential of cerium oxide nanoparticles, and Beckman Coulter's DU530 was used to measure the OD600 value.
  • the shaker used was TAITEC BIO-SHAKER BR-40LF.
  • Example 1 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and poly (1-vinylimidazole) 5 ml of 1% by mass sodium polyacrylate aqueous solution and 5 ml of 1% by mass polyvinyl imidazole aqueous solution were mixed. 200 ⁇ l of a 10 mass% cerium nitrate (III) hexahydrate aqueous solution was added, and the mixture was stirred for 15 minutes. Then, 200 ⁇ l of a 1.2 mass% hydrogen peroxide aqueous solution was added, and the mixture was reacted at room temperature for 1 hour. The reaction solution was purified with a 30 kD ultrafiltration membrane to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 2 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and polyamide (1)
  • a 1% by mass polyamide (1) aqueous solution was used instead of 5 ml of a 1% by mass polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 except that the above was used to obtain an orange aqueous solution containing nanoparticles of cerium oxide.
  • Example 3 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and polyamide (2)
  • a 1% by mass polyamide (2) aqueous solution was used instead of 5 ml of a 1% by mass polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 except that the above was used to obtain an orange aqueous solution containing nanoparticles of cerium oxide.
  • Example 4 Synthesis of nanoparticles of cerium oxide coated with EDTA and poly (1-vinylimidazole)
  • a 0.5 mass% polyvinyl imidazole aqueous solution 47 ⁇ l of a 0.5 M EDTA / 2Na aqueous solution was added.
  • 200 ⁇ l of a 10 mass% cerium nitrate (III) hexahydrate aqueous solution was added, and the mixture was stirred for 15 minutes.
  • 200 ⁇ l of a 1.2 mass% hydrogen peroxide aqueous solution was added, and the mixture was reacted at room temperature for 1 hour.
  • the reaction solution was purified with a 30 kD ultrafiltration membrane to obtain a brown dispersion containing nanoparticles of cerium oxide.
  • Example 5 Synthesis of EDTA and polyamide (1) -coated nanoparticles of cerium oxide
  • 0.5% by mass of polyamide (1) was used instead of 10 ml of 0.5% by mass of polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 4 except that the aqueous solution was used to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
  • Example 6 Synthesis of EDTA and polyamide (2) -coated nanoparticles of cerium oxide
  • 0.5% by mass of polyamide (2) was used instead of 10 ml of 0.5% by mass of polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 4 except that the aqueous solution was used to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
  • Example 7 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and piperazine
  • a 24.6 mg / 5 ml piperazine aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 except that a yellow aqueous solution containing nanoparticles of cerium oxide was obtained.
  • Example 8 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and N- (2-aminoethyl) piperazin
  • Example 1 instead of 5 ml of 1 mass% polyvinyl imidazole aqueous solution, 20 mg / 5 ml The reaction was carried out under the same conditions as in Example 1 except that an N- (2-aminoethyl) piperazine aqueous solution was used to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
  • Example 9 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid
  • Example 1 1% by mass of polyvinylimidazole
  • the reaction was carried out under the same conditions as in Example 1 except that 36.8 mg / 5 ml of 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid aqueous solution was used instead of 5 ml of the aqueous solution.
  • a yellow aqueous solution containing nanoparticles of cerium oxide was obtained.
  • Example 10 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and morpholine
  • 27 mg / 5 ml of morpholine aqueous solution was used instead of 5 ml of 1 mass% polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
  • Example 11 Synthesis of nanoparticles of cerium oxide coated with EDTA and piperazine
  • a 24.6 mg / 10 ml piperazine aqueous solution was used instead of 10 ml of a 0.5 mass% polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 4 except that a brown aqueous solution containing nanoparticles of cerium oxide was obtained.
  • Example 12 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and pyridine Except that in Example 1, a 12 mg / 5 ml piperazine aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
  • Example 13 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and imidazole
  • a 10 mg / 5 ml imidazole aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
  • Example 14 Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and benzimidazole
  • an 18 mg / 5 ml benzimidazole aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution.
  • the reaction was carried out under the same conditions as in Example 1 except that a yellow aqueous solution containing nanoparticles of benzyloxide was obtained.
  • Example 15 Synthesis of nanoparticles of cerium oxide coated with EDTA and pyridine Except that in Example 4, a 12 mg / 10 ml pyridine aqueous solution was used instead of 10 ml of a 0.5 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 4 to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
  • Comparative Example 2 Synthesis of EDTA-coated nanoparticles of cerium oxide
  • 10 ml of a 2.35 mM EDTA / 2Na aqueous solution was used instead of 10 ml of a 0.5 mass% sodium polyacrylate aqueous solution. Except for this, the reaction was carried out under the same conditions as in Comparative Example 1 to obtain a brown dispersion containing nanoparticles of cerium oxide.
  • Comparative Example 3 Synthesis of nanoparticles of cerium oxide coated with poly (1-vinylimidazole
  • Comparative Example 1 0.5% by mass was used instead of 10 ml of a 0.5% by mass sodium polyacrylate aqueous solution.
  • the reaction was carried out under the same conditions as in Comparative Example 1 except that 10 ml of a poly (1-vinylimidazole) aqueous solution was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 16 Measurement of hydrodynamic diameter of nanoparticles of cerium oxide Dynamic light scattering (DLS) is the hydrodynamic diameter of nanoparticles of cerium oxide prepared in Examples 1 to 15 and Comparative Examples 1 to 3. Measured by. The solvent at the time of measurement was M9 medium, and the average particle size of the hydrodynamic diameter was obtained by number conversion. The obtained values are shown in Table 1. It was confirmed that the particles obtained in Examples 1 to 15 were nanoparticles having an average particle size of 3.3 to 18.2 nm. Further, it was confirmed that the particles obtained in Comparative Examples 1, 2 and 3 were nanoparticles having an average particle diameter of 5.0 nm, 3.0 nm and 12.4 nm, respectively.
  • Example 17 Suppression of Escherichia coli growth of cerium oxide nanoparticles As an evaluation of the antibacterial activity of the cerium oxide nanoparticles of the present invention, evaluation of suppression of Escherichia coli growth was performed. Solutions of nanoparticles of cerium oxide prepared in Examples 1 to 15 and Comparative Examples 1 and 2 were prepared at a concentration of 2 mg / ml, respectively, and passed through a 0.2 ⁇ m ultrafiltration membrane. The flow-through solution was used to evaluate the suppression of E. coli growth. As a preculture, Escherichia coli was inoculated into an LB liquid medium and cultured at 32 ° C. for 24 hours while stirring at 200 rpm using a shaker.
  • the supernatant was removed by centrifugation (4000 rpm, 5 minutes), and the pellets of E. coli were washed with 2 ml of physiological saline. This wash was performed once more and the pellet was resuspended in 2 ml of M9 liquid medium. 9.5 ml of M9 liquid medium and 500 ⁇ l of a solution of 2 mg / ml cerium oxide nanoparticles were mixed, and 25 ⁇ l of the resuspended E. coli suspension was added. As a control, a solution in which physiological saline was added instead of a solution of nanoparticles of cerium oxide was also prepared. The cells were cultured at 32 ° C.
  • the OD600 value of each solution at the start of culture was 0.033.
  • the analysis of the growth inhibition rate was performed by taking a difference of 0.033, which is an initial value, from the control after culturing and the OD600 value of each example. The difference between the OD600 value of the control and the OD600 value of each example was taken, and the ratio of the control to the OD600 value was calculated as the growth suppression rate. The results obtained are shown in Table 2.
  • Example 18 Virus inactivation of cerium oxide nanoparticles Virus in 0.9 ml of dispersion of cerium oxide nanoparticles prepared in Examples 1 to 15 and Comparative Examples 1 to 3 prepared to be 5 mg / ml.
  • 0.1 ml of the solution influenza virus, ATCC, VR-1679, Influenza A virus (H3N2) was mixed and allowed to act for 1 hour. Then, PBS was added as an action-stopping solution to stop the action on the virus.
  • the infectious titer was measured by a plaque measurement method using this solution as a stock solution of a sample for virus titer measurement.
  • Table 3 shows the logarithmic reduction value of the infectious titer with respect to the infectious titer before the nanoparticle of cerium oxide was allowed to act. From this result, it was found that the nanoparticles of cerium oxide of Comparative Examples 1 and 2 had no antiviral activity, and the nanoparticles of cerium oxide of Comparative Example 3 had antiviral activity. It was confirmed that the antiviral activity of the cerium oxide nanoparticles of Examples 1 to 15 was relatively higher than that of the cerium oxide nanoparticles of Comparative Example 3.

Abstract

The present invention addresses the problem of providing cerium oxide nanoparticles having high antibacterial activity and antiviral activity. The present invention pertains to cerium oxide nanoparticles that are surface-coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine structure.

Description

酸化セリウムのナノ粒子、抗菌剤、抗ウイルス剤および酸化セリウムのナノ粒子の製造方法Methods for Producing Cerium Oxide Nanoparticles, Antibacterial Agents, Antiviral Agents and Cerium Oxide Nanoparticles
 本発明は、ビニル系ポリマーまたはポリアミドで表面が被覆された酸化セリウムのナノ粒子、当該ナノ粒子を含む抗菌剤、抗ウイルス剤及び当該ナノ粒子の製造方法に関する。 The present invention relates to nanoparticles of cerium oxide whose surface is coated with a vinyl polymer or polyamide, an antibacterial agent containing the nanoparticles, an antiviral agent, and a method for producing the nanoparticles.
 近年、安全や衛生管理に対する意識が高まる中で、微生物や有害物質を分解する抗菌技術が注目されている。例えば、酸化チタンは光触媒特性によって有機物を酸化分解する特性を有している。このような酸化分解特性は、抗菌剤としてウイルス、細菌、カビ、酵母といった微生物を不活化する用途の他、アセトアルデヒドやアンモニアなどの低分子やアレルゲンといった有害物質を分解する用途への利用が期待されている。 In recent years, with increasing awareness of safety and hygiene management, antibacterial technology that decomposes microorganisms and harmful substances has been attracting attention. For example, titanium oxide has the property of oxidatively decomposing organic substances due to its photocatalytic properties. Such oxidative decomposition characteristics are expected to be used as antibacterial agents for inactivating microorganisms such as viruses, bacteria, molds and yeasts, as well as for decomposing low molecules such as acetaldehyde and ammonia and harmful substances such as allergens. ing.
 一方、酸化セリウムのナノ粒子(ナノセリア)は、オキシダーゼやペルオキシダーゼ等の酸化酵素と同様の触媒活性を有しており、酸化作用を利用した抗菌剤としての応用が期待されている。これらの触媒活性には紫外線等の特別な光源を必要としないことから、酸化チタンとは異なる用途への利用が期待できる。
 一般に金属酸化物は正に帯電する性質を有しており、酸化セリウムのナノ粒子も酸性~中性のpH領域では正に帯電している。しかしながら、正電荷の酸化セリウムのナノ粒子は血清タンパク質と非特異吸着してしまう課題がある。抗菌加工が医療器具に施され、生体内で使用する場合、抗菌活性の低下につながる非特異的な吸着を抑制する必要がある。このような非特異的な吸着抑制には、粒子表面を安定化剤でコートする方法が検討されている。
 例えば、非特許文献1には、ポリアクリル酸で表面を被服したナノセリアが抗菌活性を有することが開示されている。また、非特許文献2には、エチレンジアミン四酢酸(EDTA)を安定化剤として製造した酸化セリウムが抗菌活性を有することが開示されている。
On the other hand, nanoparticles of cerium oxide (nanoceria) have the same catalytic activity as oxidases such as oxidase and peroxidase, and are expected to be applied as antibacterial agents utilizing the oxidizing action. Since these catalytic activities do not require a special light source such as ultraviolet rays, they can be expected to be used for applications different from titanium oxide.
In general, metal oxides have the property of being positively charged, and nanoparticles of cerium oxide are also positively charged in the acidic to neutral pH range. However, positively charged cerium oxide nanoparticles have a problem of non-specific adsorption with serum proteins. When antibacterial processing is applied to medical devices and used in vivo, it is necessary to suppress non-specific adsorption that leads to a decrease in antibacterial activity. For such non-specific adsorption suppression, a method of coating the particle surface with a stabilizer has been studied.
For example, Non-Patent Document 1 discloses that nanoceria whose surface is covered with polyacrylic acid has antibacterial activity. Further, Non-Patent Document 2 discloses that cerium oxide produced by using ethylenediaminetetraacetic acid (EDTA) as a stabilizer has antibacterial activity.
 本発明者らは、安定化剤として非特許文献1に記載のポリアクリル酸や非特許文献2に記載のEDTAを使用した酸化セリウムのナノ粒子の抗菌作用について評価した。しかしながら、いずれも大腸菌の増殖抑制率が十分なものとはいえなかった。そこで、より高い抗菌活性を有する酸化セリウムのナノ粒子を見出すことを課題としてさらに検討を行った。 The present inventors evaluated the antibacterial action of nanoparticles of cerium oxide using polyacrylic acid described in Non-Patent Document 1 and EDTA described in Non-Patent Document 2 as a stabilizer. However, it cannot be said that the growth inhibition rate of Escherichia coli was sufficient in either case. Therefore, further studies were conducted with the task of finding nanoparticles of cerium oxide having higher antibacterial activity.
 本発明者らは、上記課題を解決するために検討を行った結果、ポリアクリル酸やEDTAを含む多価カルボン酸に加え、さらに複素環式アミン骨格を有する化合物で酸化セリウムのナノ粒子の表面を被覆することにより、抗菌活性が向上することを見出した。また、多価カルボン酸、および複素環式アミン骨格を有する化合物で表面が被覆された酸化セリウムのナノ粒子は、抗ウイルス性能も向上することを見出し、本発明を完成させた。 As a result of studies to solve the above problems, the present inventors have made a compound having a heterocyclic amine skeleton in addition to polyacrylic acid and polyvalent carboxylic acid including EDTA, and surface of nanoparticles of cerium oxide. It was found that the antibacterial activity was improved by coating with. We also found that nanoparticles of cerium oxide whose surface was coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton also improved antiviral performance, and completed the present invention.
 本発明は以下の態様により構成される。
(1)多価カルボン酸、および複素環式アミン骨格を有する化合物により表面が被覆された酸化セリウムのナノ粒子。
(2)前記多価カルボン酸の価数が3価以上である、(1)に記載の酸化セリウムのナノ粒子。
(3)前記複素環式アミン骨格を有する化合物が、複素環式アミン骨格を主鎖または側鎖に有するビニル系ポリマーまたはポリアミドである(1)または(2)に記載の酸化セリウムのナノ粒子。
(4)前記複素環式アミン骨格は、ピペラジン、ピリジン、イミダゾールまたはカルバゾールのいずれかにより構成される、(1)~(3)のいずれか一つに記載の酸化セリウムのナノ粒子。
(5)前記ビニル系ポリマーが、前記複素環式アミン骨格を側鎖に有するポリマーである、(3)または(4)に記載の酸化セリウムのナノ粒子。
(6)前記ポリアミドが、前記複素環式アミン骨格を主鎖に有するポリマーである、(3)または(4)に記載の酸化セリウムのナノ粒子。
(7)前記複素環式アミン骨格を有する化合物が、5員環および/または6員環構造を有する単環式または二環式芳香族のヘテロ環式化合物である、(1)または(2)に記載の酸化セリウムのナノ粒子。
The present invention comprises the following aspects.
(1) Cerium oxide nanoparticles whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton.
(2) The cerium oxide nanoparticles according to (1), wherein the polyvalent carboxylic acid has a valence of trivalent or higher.
(3) The cerium oxide nanoparticles according to (1) or (2), wherein the compound having a heterocyclic amine skeleton is a vinyl polymer or polyamide having a heterocyclic amine skeleton in the main chain or side chain.
(4) The cerium oxide nanoparticles according to any one of (1) to (3), wherein the heterocyclic amine skeleton is composed of any of piperazine, pyridine, imidazole or carbazole.
(5) The nanoparticles of cerium oxide according to (3) or (4), wherein the vinyl-based polymer is a polymer having the heterocyclic amine skeleton in the side chain.
(6) The nanoparticles of cerium oxide according to (3) or (4), wherein the polyamide is a polymer having the heterocyclic amine skeleton in the main chain.
(7) The compound having a heterocyclic amine skeleton is a monocyclic or bicyclic aromatic heterocyclic compound having a 5-membered ring and / or a 6-membered ring structure, (1) or (2). The nanoparticles of cerium oxide described in.
(8)前記複素環式アミン骨格を有する化合物が、一般式(I)で表される化合物である、(1)または(2)に記載の酸化セリウムのナノ粒子。
Figure JPOXMLDOC01-appb-C000002
 式(I)中、XはNR、O、Sを示し、RおよびRは水素原子、炭素数1~4のアルキル基、炭素数1~4のヒドロキシアルキル基、炭素数1~4のアミノアルキル基、または炭素数1~4のスルホン酸アルキル基を示す。R及びRは同一であっても異なっていても良い。
(9)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子を含む抗菌剤。
(10)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子を含む抗ウイルス剤。
(11)多価カルボン酸、および、複素環式アミン骨格を有する化合物により表面が被覆された酸化セリウムのナノ粒子の製造方法であって、多価カルボン酸、複素環式アミン骨格を有するビニル系ポリマーまたはポリアミドおよびセリウム(III)イオンを含む溶液を調製する工程A、および、前記工程Aで得られた溶液に酸化剤を添加する工程Bを含む、酸化セリウムのナノ粒子の製造方法。
(8) The cerium oxide nanoparticles according to (1) or (2), wherein the compound having a heterocyclic amine skeleton is a compound represented by the general formula (I).
Figure JPOXMLDOC01-appb-C000002
In formula (I), X represents NR 2 , O, S, and R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms. The aminoalkyl group of the above, or the alkyl sulfonate group having 1 to 4 carbon atoms is shown. R 1 and R 2 may be the same or different.
(9) The antibacterial agent containing the nanoparticles of cerium oxide according to any one of (1) to (8).
(10) The antiviral agent containing the nanoparticles of cerium oxide according to any one of (1) to (8).
(11) A method for producing nanoparticles of cerium oxide whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton, which is a polyvalent carboxylic acid and a vinyl-based compound having a heterocyclic amine skeleton. A method for producing nanoparticles of cerium oxide, which comprises a step A of preparing a solution containing a polymer or a polyamide and cerium (III) ions, and a step B of adding an oxidizing agent to the solution obtained in the step A.
 本発明により、高い抗菌活性および抗ウイルス性能を有する酸化セリウムのナノ粒子を得ることが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it becomes possible to obtain nanoparticles of cerium oxide having high antibacterial activity and antiviral performance.
 本発明の酸化セリウムのナノ粒子は、多価カルボン酸、および、複素環式アミン骨格を有する化合物により、その表面が被覆されたものである。多価カルボン酸、および、複素環式アミン骨格を有する化合物は、本発明において酸化セリウムのナノ粒子の安定化剤として用いられる。 The surface of the cerium oxide nanoparticles of the present invention is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton. Polycarboxylic acids and compounds having a heterocyclic amine skeleton are used in the present invention as stabilizers for nanoparticles of cerium oxide.
 多価カルボン酸は、複数のカルボキシル基を有するカルボン酸またはその塩、または当該カルボン酸とその塩との混合物である。好ましい多価カルボン酸としては、3価以上のカルボン酸および/またはそれらの塩である。3価のカルボン酸としてはクエン酸、ニトリロ三酢酸(NTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、4価のカルボン酸としてはエチレンジアミン四酢酸(EDTA)、エチレンジアミン二コハク酸(EDDS)、グリコールエーテルジアミン四酢酸(EGTA)、5価のカルボン酸としてはヒドロキシエチルエチレンジアミン四酢酸(HEDTA)、(DTPA)、6価のカルボン酸としてはトリエチレンテトラミン六酢酸(TTHA)、7価以上のカルボン酸としてはポリアクリル酸および/またはそれらの塩が挙げられる。 The polyvalent carboxylic acid is a carboxylic acid having a plurality of carboxyl groups or a salt thereof, or a mixture of the carboxylic acid and the salt thereof. Preferred polyvalent carboxylic acids are trivalent or higher carboxylic acids and / or salts thereof. The trivalent carboxylic acid is citric acid, nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), and the tetravalent carboxylic acid is ethylenediaminetetraacetic acid (EDTA), ethylenediaminediaminedic acid (EDDS), glycol ether. Diaminetetraacetic acid (EGTA), hydroxyethylethylenediaminetetraacetic acid (HEDTA), (DTPA) as pentavalent carboxylic acid, triethylenetetraminehexacetic acid (TTHA) as hexavalent carboxylic acid, as carboxylic acid of 7 or more valence Includes polyacrylic acid and / or salts thereof.
 本発明で用いる複素環式アミン骨格を有する化合物としては、芳香族ヘテロ環式化合物、脂環式アミン、複素環式アミン骨格を主鎖または側鎖に有するビニル系ポリマーまたはポリアミドを例示することができる。 Examples of the compound having a heterocyclic amine skeleton used in the present invention include aromatic heterocyclic compounds, alicyclic amines, and vinyl polymers or polyamides having a heterocyclic amine skeleton in the main chain or side chain. can.
 本発明で用いる芳香族ヘテロ環式化合物としては、5員環および/または6員環構造を有する単環式または二環式芳香族ヘテロ環式化合物が好ましく、例えば、ピリジン、ピリダジン、ピリミジン、イミダゾール、ピラゾール、ベンゾイミダゾール、カルバゾール等が例示される。芳香族ヘテロ環式化合物は、置換基を有していてもよい。ここでいう置換基は、アルキル基、アセチル基、ヒドロキシル基、アミノ基、シアノ基、カルボキシル基、エステル基、アルデヒド基、アミド基、エーテル基、ケトン基、ハロゲン基、スルホン酸基またはリン酸基が好ましい。置換基の数は単数でも複数でもよい。 As the aromatic heterocyclic compound used in the present invention, a monocyclic or bicyclic aromatic heterocyclic compound having a 5-membered ring and / or a 6-membered ring structure is preferable, and for example, pyridine, pyridazine, pyrimidine, and imidazole are preferable. , Pyrazole, benzoimidazole, carbazole and the like are exemplified. The aromatic heterocyclic compound may have a substituent. The substituent here is an alkyl group, an acetyl group, a hydroxyl group, an amino group, a cyano group, a carboxyl group, an ester group, an aldehyde group, an amide group, an ether group, a ketone group, a halogen group, a sulfonic acid group or a phosphoric acid group. Is preferable. The number of substituents may be singular or plural.
 本発明で用いる脂環式アミンとしては、一般式(I)で表される脂環式アミンが例示される。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、XはNR、O、Sを示し、RおよびRは水素原子、炭素数1~4のアルキル基、炭素数1~4のヒドロキシアルキル基、炭素数1~4のアミノアルキル基、または炭素数1~4のスルホン酸アルキル基を示す。R及びRは同一であっても異なっていても良い。
As the alicyclic amine used in the present invention, an alicyclic amine represented by the general formula (I) is exemplified.
Figure JPOXMLDOC01-appb-C000003
In formula (I), X represents NR 2 , O, S, and R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms. The aminoalkyl group of the above, or the alkyl sulfonate group having 1 to 4 carbon atoms is shown. R 1 and R 2 may be the same or different.
 脂環式アミンのより好ましい実施形態としては、上記化学式(I)において、XはNR、Oを示し、RおよびRが水素原子、炭素数1~2のアルキル基、炭素数2~3のヒドロキシアルキル基、炭素数2~3のアミノアルキル基、炭素数2~3のスルホン酸アルキル基を示すものである。R及びRは同一であっても異なっていても良い。 As a more preferable embodiment of the alicyclic amine, in the above chemical formula (I), X represents NR 2 and O, R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 2 carbon atoms, and 2 to 2 carbon atoms. It shows a hydroxyalkyl group of 3, an aminoalkyl group having 2 to 3 carbon atoms, and an alkyl sulfonate group having 2 to 3 carbon atoms. R 1 and R 2 may be the same or different.
 脂環式アミンとしては、ピペラジン、1-メチルピペラジン、N,N‘-ジメチルピペラジン、1-エチルピペラジン、N,N‘-ジエチルピペラジン、1-(2-ヒドロキシエチル)ピペラジン、1,4-ビス(2-ヒドロキシエチル)ピペラジン、N-(2-アミノエチル)ピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸、ピペラジン-1,4-ビス(2-エタンスルホン酸)、モルホリン、4-メチルモルホリン、4-エチルモルホリン、4-(2-アミノエチル)モルホリン、4-(2-ヒドロキシエチル)モルホリン、2-モルホリノエタンスルホン酸、3-モルホリノプロパンスルホン酸が挙げられる。 Examples of the alicyclic amine include piperazine, 1-methylpiperazine, N, N'-dimethylpiperazine, 1-ethylpiperazine, N, N'-diethylpiperazine, 1- (2-hydroxyethyl) piperazine, and 1,4-bis. (2-Hydroxyethyl) piperazine, N- (2-aminoethyl) piperazine, 1,4-bis (2-aminoethyl) piperazine, 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid , Piperazin-1,4-bis (2-ethanesulfonic acid), morpholine, 4-methylmorpholine, 4-ethylmorpholine, 4- (2-aminoethyl) morpholine, 4- (2-hydroxyethyl) morpholine, 2- Examples thereof include morpholinoethanesulfonic acid and 3-morpholinopropanesulfonic acid.
 本発明で用いる複素環式アミン骨格を主鎖もしくは側鎖に有するビニル系ポリマーまたはポリアミド(以下、「複素環式アミン骨格を有するポリマー」と略する場合がある)は、ピロリジン、ピロール、ピラゾール、ピペラジン、ピリジン、ジアジン、イミダゾールまたはカルバゾール等の複素環式アミン骨格を主鎖または側鎖に有するものであり、ピペラジン、ピリジン、イミダゾールまたはカルバゾールを主鎖または側鎖に有するものが好ましい。本発明の複素環式アミン骨格を有するビニル系ポリマーまたはポリアミドは、主鎖や側鎖の任意の位置に置換基を有していてもよいし、複素環式アミン骨格の任意の位置に置換基を有していてもよい。例えば、主鎖に複素環式アミン骨格を有しかつ側鎖に置換基を有しているポリマー、主鎖に置換基を有する複素環式アミン骨格を有しているポリマー、側鎖に置換基を有する複素環式アミン骨格を有しているポリマー、側鎖に置換基を介して複素環式アミン骨格を有しているポリマーを挙げることができる。ここでいう置換基は、アルキル基、アセチル基、ヒドロキシル基、アミノ基、シアノ基、カルボキシル基、エステル基、アルデヒド基、アミド基、エーテル基、ケトン基、ハロゲン基、スルホン酸基またはリン酸基が好ましい。置換基の数は単数でも複数でもよい。 The vinyl-based polymer or polyamide having a heterocyclic amine skeleton in the main chain or side chain (hereinafter, may be abbreviated as "polymer having a heterocyclic amine skeleton") used in the present invention includes pyrrolidine, pyrrol, pyrazole, and the like. Those having a heterocyclic amine skeleton such as piperazine, pyridine, diazine, imidazole or carbazole in the main chain or side chain, and those having piperazine, pyridine, imidazole or carbazole in the main chain or side chain are preferable. The vinyl polymer or polyamide having the heterocyclic amine skeleton of the present invention may have a substituent at any position on the main chain or side chain, or may have a substituent at any position on the heterocyclic amine skeleton. May have. For example, a polymer having a heterocyclic amine skeleton in the main chain and a substituent in the side chain, a polymer having a heterocyclic amine skeleton having a substituent in the main chain, and a substituent in the side chain. Examples thereof include a polymer having a heterocyclic amine skeleton and a polymer having a heterocyclic amine skeleton in a side chain via a substituent. The substituent here is an alkyl group, an acetyl group, a hydroxyl group, an amino group, a cyano group, a carboxyl group, an ester group, an aldehyde group, an amide group, an ether group, a ketone group, a halogen group, a sulfonic acid group or a phosphoric acid group. Is preferable. The number of substituents may be singular or plural.
 本発明で用いる複素環式アミン骨格を有するビニル系ポリマーは、単量体としてビニル系モノマーが縮合したポリエチレン構造を主鎖に有しているポリマー(ポリビニル)である。例として、ピペラジン骨格を主鎖または側鎖に有するビニル系ポリマーの構造を下記の一般式(II)、(III)に示す。
 一般式(II)に示すように、ピペラジン骨格を主鎖に有する場合、主鎖のポリエチレン構造の一部としてピペラジン骨格を有する。ピリジン、イミダゾールまたはカルバゾール骨格等の他の複素環式アミン骨格を主鎖に有する場合についても、一般式(II)と同様に、主鎖のポリエチレン構造の一部として複素環式アミン骨格を有する。
Figure JPOXMLDOC01-appb-C000004
 式(II)中、nは任意の整数を示す。
The vinyl-based polymer having a heterocyclic amine skeleton used in the present invention is a polymer (polyvinyl) having a polyethylene structure in which a vinyl-based monomer is condensed as a monomer in the main chain. As an example, the structure of a vinyl polymer having a piperazine skeleton in the main chain or side chain is shown in the following general formulas (II) and (III).
As shown in the general formula (II), when the piperazine skeleton is contained in the main chain, the piperazine skeleton is provided as a part of the polyethylene structure of the main chain. When another heterocyclic amine skeleton such as pyridine, imidazole or carbazole skeleton is contained in the main chain, the heterocyclic amine skeleton is also provided as a part of the polyethylene structure of the main chain, as in the general formula (II).
Figure JPOXMLDOC01-appb-C000004
In formula (II), n represents an arbitrary integer.
Figure JPOXMLDOC01-appb-C000005
 式(III)中、nは任意の整数を示す。
Figure JPOXMLDOC01-appb-C000005
In formula (III), n represents an arbitrary integer.
 本発明で用いる複素環式アミン骨格を有するビニル系ポリマーが側鎖にピペラジン骨格を有する場合、例えば、一般式(III)に示すように、ポリエチレン主鎖にピペラジン骨格直接が結合していてもよいし、アルキレン基、アミノ基等を介してピペラジン骨格が結合していてもよい。ピリジン、イミダゾールまたはカルバゾール骨格等の他の複素環式アミン骨格を有する場合についても、一般式(II)に示すピぺラジン骨格を有する場合と同様に、ポリエチレン主鎖にピリジン、イミダゾールまたはカルバゾール骨格等の複素環式アミン骨格が直接結合していてもよいし、アルキレン基、アミノ基等を介して結合していてもよい。 When the vinyl polymer having a heterocyclic amine skeleton used in the present invention has a piperazine skeleton in the side chain, for example, as shown in the general formula (III), the piperazine skeleton may be directly bonded to the polyethylene main chain. However, the piperazine skeleton may be bonded via an alkylene group, an amino group, or the like. In the case of having another heterocyclic amine skeleton such as pyridine, imidazole or carbazole skeleton, the same as the case of having the piperazine skeleton represented by the general formula (II), pyridine, imidazole or carbazole skeleton etc. are attached to the polyethylene main chain. The heterocyclic amine skeleton of the above may be directly bonded, or may be bonded via an alkylene group, an amino group, or the like.
 本発明で用いる複素環式アミン骨格を有するビニル系ポリマーは、側鎖にピペラジン、ピリジン、イミダゾールまたはカルバゾール骨格を有するビニル系ポリマーが好ましい。側鎖にピペラジン、ピリジン、イミダゾールまたはカルバゾール骨格を有するビニル系ポリマーは、ピペラジン、ピリジン、イミダゾールまたはカルバゾール骨格を有するビニル系モノマーの重合反応によって得られる。 The vinyl polymer having a heterocyclic amine skeleton used in the present invention is preferably a vinyl polymer having a piperazine, pyridine, imidazole or carbazole skeleton in the side chain. A vinyl-based polymer having a piperazine, pyridine, imidazole or carbazole skeleton on the side chain is obtained by a polymerization reaction of a vinyl-based monomer having a piperazine, pyridine, imidazole or carbazole skeleton.
 この場合のビニル系モノマーの具体例としては、1-ビニルピペラジン、(4-ビニルピペラジン-1-イル)メタンアミン、2-(4-ビニルピペラジン-1-イル)エタン-1-アミン、2-ビニルピペラジン、(3-ビニルピペラジン-1-イル)メタンアミン、2-(3-ビニルピペラジン-1-イル)エタン-1-アミン、(2-ビニルピペラジン-1-イル)メタンアミン、2-(2-ビニルピペラジン-1-イル)エタン-1-アミン、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、1-ビニルイミダゾール、2-ビニルイミダゾール、4-ビニルイミダゾール、9-ビニルカルバゾールなどが挙げられる。また、上記ビニル系モノマーは、ビニル基以外の任意の位置に、置換基を有していてもよく、例えば、メチル基やシアノ基を置換基として有していてもよい。 Specific examples of the vinyl-based monomer in this case include 1-vinylpiperazin, (4-vinylpiperazin-1-yl) methaneamine, 2- (4-vinylpiperazin-1-yl) ethane-1-amine, and 2-vinyl. Piperazine, (3-vinylpiperazin-1-yl) methaneamine, 2- (3-vinylpiperazin-1-yl) ethane-1-amine, (2-vinylpiperazin-1-yl) methaneamine, 2- (2-vinyl) Piperazin-1-yl) ethane-1-amine, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, 2-vinylimidazole, 4-vinylimidazole, 9-vinylcarbazole and the like can be mentioned. .. Further, the vinyl-based monomer may have a substituent at any position other than the vinyl group, and may have, for example, a methyl group or a cyano group as a substituent.
 本発明で用いる複素環式アミン骨格を有するビニル系ポリマーは、ホモポリマーであってもよいし、2種類以上のビニル系モノマーを原料としたコポリマーであってもよい。
 本発明で用いるビニル系ポリマーの好ましい具体例は、ポリ(1-ビニルピペラジン)、ポリ((4-ビニルピペラジン-1-イル)メタンアミン)、ポリ(2-(4-ビニルピペラジン-1-イル)エタン-1-アミン)、ポリ(2-ビニルピリジン)、ポリ(3-ビニルピリジン)、ポリ(4-ビニルピリジン)、ポリ(1-ビニルイミダゾール)、ポリ(2-ビニルイミダゾール)、ポリ(4-ビニルイミダゾール)、ポリ(9-ビニルカルバゾール)である。
The vinyl-based polymer having a heterocyclic amine skeleton used in the present invention may be a homopolymer or a copolymer made from two or more kinds of vinyl-based monomers.
Preferred specific examples of the vinyl polymer used in the present invention are poly (1-vinylpiperazin), poly ((4-vinylpiperazin-1-yl) methaneamine), poly (2- (4-vinylpiperazin-1-yl)). Etan-1-amine), poly (2-vinylpyridine), poly (3-vinylpyridine), poly (4-vinylpyridine), poly (1-vinylimidazole), poly (2-vinylimidazole), poly (4) -Vinylimidazole), poly (9-vinylcarbazole).
 本発明で用いる複素環式アミン骨格を有するポリアミドは、主鎖にアミド結合を有しているポリマーであって、主鎖または側鎖にピペラジン、ピリジン、イミダゾールまたはカルバゾール骨格等の複素環式アミン骨格を有する。下記の一般式(IV)に、複素環式アミン骨としてピペラジン骨格を主鎖に有する場合のポリアミドの構造を示す。ここでは、主鎖であるアミド構造の一部としてピペラジン骨格を有し、ピペラジン骨格の複素環中の窒素とカルボニル基がアミド結合を構成している。置換基としてアミノ基を有するピリジン、イミダゾールまたはカルバゾール骨格等の他の複素環式アミン骨格を主鎖に有する場合についても、一般式(IV)と同様に、アミド構造の一部として複素環式アミン骨格を有する。
Figure JPOXMLDOC01-appb-C000006
 式(IV)中、nは任意の整数を示す。
The polyamide having a heterocyclic amine skeleton used in the present invention is a polymer having an amide bond in the main chain and has a heterocyclic amine skeleton such as piperazine, pyridine, imidazole or carbazole skeleton in the main chain or side chain. Has. The following general formula (IV) shows the structure of a polyamide having a piperazine skeleton as a heterocyclic amine bone in the main chain. Here, it has a piperazine skeleton as a part of the amide structure which is the main chain, and nitrogen and a carbonyl group in the heterocycle of the piperazine skeleton form an amide bond. In the case where the main chain has another heterocyclic amine skeleton such as a pyridine, imidazole or carbazole skeleton having an amino group as a substituent, the heterocyclic amine is used as a part of the amide structure as in the general formula (IV). Has a skeleton.
Figure JPOXMLDOC01-appb-C000006
In equation (IV), n represents an arbitrary integer.
 本発明で用いる複素環式アミン骨格を有するポリアミドの側鎖にピペラジン骨格を有する場合、例えば、下記の一般式(V)に示すように、ポリアミド主鎖にピペラジン骨格が直接結合していてもよいし、アルキル基、アミノ基等を介してピペラジン骨格が結合していてもよい。ピリジン、イミダゾールまたはカルバゾール骨格等の他の複素環式アミン骨格を有する場合についても、一般式(V)に示すピペラジン骨格を有する場合と同様に、ポリアミド主鎖にピリジン、イミダゾールまたはカルバゾール骨格等の複素環式アミン骨格が直接結合していてもよいし、アルキレン基、アミノ基等を介して結合していてもよい。
Figure JPOXMLDOC01-appb-C000007
 式(V)中、nは任意の整数を示す。
When the piperazine skeleton is provided in the side chain of the polyamide having the heterocyclic amine skeleton used in the present invention, for example, the piperazine skeleton may be directly bonded to the polyamide main chain as shown in the following general formula (V). However, the piperazine skeleton may be bonded via an alkyl group, an amino group, or the like. In the case of having another heterocyclic amine skeleton such as pyridine, imidazole or carbazole skeleton, as in the case of having a piperazine skeleton represented by the general formula (V), a complex such as pyridine, imidazole or carbazole skeleton is used in the polyamide backbone. The cyclic amine skeleton may be directly bonded, or may be bonded via an alkylene group, an amino group, or the like.
Figure JPOXMLDOC01-appb-C000007
In equation (V), n represents an arbitrary integer.
 本発明で用いる複素環式アミン骨格を有するポリアミドは、一般式(IV)に示す、ピペラジン骨格等の複素環式アミン骨格を主鎖に有するポリマーが好ましい。
 本発明で用いる主鎖にピペラジン骨格を有するポリアミドは、ピペラジン骨格等の複素環式アミン骨格を有するアミンとジカルボン酸との縮合反応によって得られる。
As the polyamide having a heterocyclic amine skeleton used in the present invention, a polymer having a heterocyclic amine skeleton such as a piperazine skeleton represented by the general formula (IV) in the main chain is preferable.
The polyamide having a piperazine skeleton in the main chain used in the present invention is obtained by a condensation reaction between an amine having a heterocyclic amine skeleton such as a piperazine skeleton and a dicarboxylic acid.
 複素環式アミン骨格を有するアミンの好ましい例としては、ピペラジン、(アミノメチル)ピペラジン、(アミノエチル)ピペラジン、(アミノプロピル)ピペラジン、(アミノブチル)ピペラジン、1,4-ビス(アミノメチル)ピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、1,4-ビス(4-アミノブチル)ピペラジン、ジアミノピリジン、アミノイミダゾール、アミノカルバゾールなどが挙げられる。これらの中でも、(アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジンがより好ましい。また、これらのアミンは、アミド結合を形成し得る窒素以外の任意の位置に、置換基を有していてもよい。 Preferred examples of amines having a heterocyclic amine skeleton are piperazine, (aminomethyl) piperazine, (aminoethyl) piperazine, (aminopropyl) piperazine, (aminobutyl) piperazine, 1,4-bis (aminomethyl) piperazine. , 1,4-Bis (2-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, 1,4-bis (4-aminobutyl) piperazine, diaminopyridine, aminoimidazole, aminocarbazole, etc. Can be mentioned. Among these, (aminoethyl) piperazine and 1,4-bis (3-aminopropyl) piperazine are more preferable. Further, these amines may have a substituent at any position other than nitrogen which can form an amide bond.
 また、上記ジカルボン酸の好ましい例としては、1H-イミダゾール-2,4-ジカルボン酸、1H-イミダゾール-2,5-ジカルボン酸、1H-イミダゾール-4,5-ジカルボン酸、ピリジン-2,3-ジカルボン酸、ピリジン-2,4-ジカルボン酸、ピリジン-2,5-ジカルボン酸、ピリジン-2,6-ジカルボン酸、ピリジン-3,4-ジカルボン酸、ピリジン-3,5-ジカルボン酸、アジピン酸、セバシン酸、ドデカジカルボン酸、テレフタル酸、イソフタル酸などが挙げられる。また、これらのジカルボン酸は、アミド結合を形成し得るカルボキシル基以外の任意の位置に、置換基を有していてもよい。 Further, as a preferable example of the above dicarboxylic acid, 1H-imidazole-2,4-dicarboxylic acid, 1H-imidazole-2,5-dicarboxylic acid, 1H-imidazole-4,5-dicarboxylic acid, pyridine-2,3- Dicarboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-3,4-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, adipic acid , Sevacinic acid, dodecadicarboxylic acid, terephthalic acid, isophthalic acid and the like. Further, these dicarboxylic acids may have a substituent at any position other than the carboxyl group capable of forming an amide bond.
 本発明で用いる複素環式アミン骨格を有するポリアミドは、上記のアミンとジカルボン酸の組み合わせで得られるポリアミドを好ましく用いることができ、(アミノエチル)ピペラジンとアジピン酸の組み合わせで得られるポリアミドが特に好ましい。
 また、本発明で用いる複素環式アミン骨格を有するポリアミドは、ポリアミド主鎖の一部にポリアルキレングリコールの構造を有していてもよい。具体的には、(アミノエチル)ピペラジン、アジピン酸、およびビス(アミノプロピル)ポリエチレングリコールの骨格を有するポリアミドが挙げられる。
As the polyamide having a heterocyclic amine skeleton used in the present invention, a polyamide obtained by combining the above amine and a dicarboxylic acid can be preferably used, and a polyamide obtained by combining (aminoethyl) piperazin and adipic acid is particularly preferable. ..
Further, the polyamide having a heterocyclic amine skeleton used in the present invention may have a polyalkylene glycol structure in a part of the polyamide main chain. Specific examples thereof include polyamides having a skeleton of (aminoethyl) piperazine, adipic acid, and bis (aminopropyl) polyethylene glycol.
 また、本発明で用いる複素環式アミン骨格を有するポリアミドは、ピペラジン、ピリジン、イミダゾールまたはカルバゾール等の複素環式アミン骨格を有するポリアミドと、その他のポリマーとの共重合体であってもよい。この場合、その他のポリマーの具体例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリペンタメチレンアジパミド(ナイロン56)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)などが挙げられる。 Further, the polyamide having a heterocyclic amine skeleton used in the present invention may be a copolymer of a polyamide having a heterocyclic amine skeleton such as piperazine, pyridine, imidazole or carbazole and another polymer. In this case, specific examples of other polymers include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), and polypentamethylene adipamide (nylon). 56), Polypentamethylene sebacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon) 66 / 6T), Polyhexamethylene adipamide / Polyhexamethylene terephthalamide / Polyhexamethylene isophthalamide copolymer (nylon 66 / 6T / 6I), Polyhexamethylene terephthalamide / Polyhexamethylene isophthalamide copolymer (Nylon 6T / 6I) ), Polyxylylene adipamide (nylon XD6) and the like.
 本発明で用いる複素環式アミン骨格を有するビニル系ポリマーやポリアミドの分子量は、3000以上1000000以下であることが好ましく、10000以上50000以下であることがより好ましい。 The molecular weight of the vinyl polymer or polyamide having a heterocyclic amine skeleton used in the present invention is preferably 3000 or more and 1,000,000 or less, and more preferably 10,000 or more and 50,000 or less.
 本発明の酸化セリウムのナノ粒子は、CeとCeOの混合物で構成される酸化セリウム粒子(当該粒子を、以下「中心核」という。)を中心として、その表面が多価カルボン酸、および複素環式アミン骨格を有する化合物で被覆された構造を有する。中心核の粒径は、1nm以上100nm以下程度であることが好ましい。当該粒子径は、透過型電子顕微鏡を使って、長軸径、短軸径、定方向径のうち2つ以上の長さを測定し、その平均値を粒子径として算出できる。 Cerium oxide nanoparticles of the present invention, Ce 2 O 3 and (the particles, called. "Central nucleus" hereinafter) cerium oxide particles constituted of a mixture of CeO 2 as the center and the surface polycarboxylic acid , And a structure coated with a compound having a heterocyclic amine skeleton. The particle size of the central core is preferably about 1 nm or more and 100 nm or less. The particle size can be calculated by measuring two or more of the major axis diameter, the minor axis diameter, and the directional diameter using a transmission electron microscope, and calculating the average value as the particle diameter.
 中心核のCeとCeOの比率は、セリウム(III)とセリウム(IV)の比として算出することができる。比を算出する際には、本発明の酸化セリウムのナノ粒子を乾燥させ、X線光電子分光法(XPS)により算出すればよい。 Ce 2 O 3 and CeO 2 in the ratio of the central core can be calculated cerium (III) and as the ratio of the cerium (IV). When calculating the ratio, the nanoparticles of cerium oxide of the present invention may be dried and calculated by X-ray photoelectron spectroscopy (XPS).
 本発明の酸化セリウムのナノ粒子の粒径は、表面の化合物層を含めて、流体力学的直径として、200nm以下が好ましい。流体力学的直径は、本発明の酸化セリウムのナノ粒子を、水、エタノールなどの任意の溶媒に溶解し、動的光散乱を測定して自己相関関数を導き、マルカート法(Marquadt法)によって解析し、個数変換ヒストグラムから平均粒子径として算出する。動的光散乱の測定には、大塚電子株式会社のELS-Zを用いる。 The particle size of the nanoparticles of cerium oxide of the present invention is preferably 200 nm or less as the hydrodynamic diameter including the compound layer on the surface. The hydrodynamic diameter is analyzed by the Marquart method, in which nanoparticles of cerium oxide of the present invention are dissolved in any solvent such as water and ethanol, dynamic light scattering is measured to derive an autocorrelation function, and the autocorrelation function is derived. Then, it is calculated as the average particle size from the number conversion histogram. ELS-Z manufactured by Otsuka Electronics Co., Ltd. is used for the measurement of dynamic light scattering.
 本発明の酸化セリウムのナノ粒子は、多価カルボン酸、複素環式アミン骨格を有する化合物、およびセリウム(III)イオンを含む溶液を得る工程A、および、工程Aで得られた溶液に酸化剤を添加する工程B、を含む、酸化セリウムのナノ粒子の製造方法によって製造することができる。以下、本発明の酸化セリウムのナノ粒子の製造方法を工程別に説明する。 The cerium oxide nanoparticles of the present invention are used in step A for obtaining a solution containing a polyvalent carboxylic acid, a compound having a heterocyclic amine skeleton, and cerium (III) ion, and an oxidizing agent in the solution obtained in step A. Can be produced by a method for producing nanoparticles of cerium oxide, which comprises the step B of adding cerium oxide. Hereinafter, the method for producing nanoparticles of cerium oxide of the present invention will be described for each step.
 工程Aは、多価カルボン酸(多価カルボン酸のイオンまたは塩を含む)、複素環式アミン骨格を有する化合物、セリウム(III)イオン(セリウム(III)塩を含む)を混合して混合溶液を得る工程である。
 工程Aで用いる多価カルボン酸は、上記の多価カルボン酸またはそれらの塩を任意の溶媒に溶解した溶液として用いることができる。この場合の溶媒は、水または水と相溶性のある溶媒が好ましい。多価カルボン酸が溶媒に溶解しにくい場合、加温や超音波処理をして溶解してもよく、酸や塩基でpHを調節しても良い。
In step A, a polyvalent carboxylic acid (including an ion or salt of the polyvalent carboxylic acid), a compound having a heterocyclic amine skeleton, and a cerium (III) ion (including a cerium (III) salt) are mixed and mixed. Is the process of obtaining.
The polyvalent carboxylic acid used in the step A can be used as a solution in which the above-mentioned polyvalent carboxylic acid or a salt thereof is dissolved in an arbitrary solvent. In this case, the solvent is preferably water or a solvent compatible with water. If the polyvalent carboxylic acid is difficult to dissolve in the solvent, it may be dissolved by heating or sonication, or the pH may be adjusted with an acid or a base.
 工程Aで用いる複素環式アミン骨格を有する化合物は、上記の複素環式アミン骨格を有する化合物を任意の溶媒に溶解して溶液として用いることができる。溶媒は、水または水と相溶性のある溶媒が好ましい。複素環式アミン骨格を有する化合物が溶媒に溶解しにくい場合、加温や超音波処理をして溶解してもよく、酸や塩基でpHを調節しても良い。
 多価カルボン酸、および複素環式アミン骨格を有する化合物の溶媒の具体例としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、テトラヒドロフラン、グリセロール、エチレングリコール、アセトン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、トリエチルアミン、ピリジンなどが挙げられる。
The compound having a heterocyclic amine skeleton used in the step A can be used as a solution by dissolving the above-mentioned compound having a heterocyclic amine skeleton in an arbitrary solvent. The solvent is preferably water or a solvent compatible with water. When the compound having a heterocyclic amine skeleton is difficult to dissolve in a solvent, it may be dissolved by heating or sonication, or the pH may be adjusted with an acid or a base.
Specific examples of solvents for polyvalent carboxylic acids and compounds having a heterocyclic amine skeleton include, for example, methanol, ethanol, propanol, isopropanol, butanol, tetrahydrofuran, glycerol, ethylene glycol, acetone, dimethylformamide (DMF), dimethyl. Examples include sulfoxide (DMSO), triethylamine, pyridine and the like.
 工程Aで用いるセリウム(III)イオン(セリウム(III)塩を含む)は、任意の溶媒に溶解して溶液として用いることができる。セリウム(III)塩として、例えば硝酸セリウム(III)・六水和物を用いればよい。
 多価カルボン酸を含む溶液または多価カルボン酸の塩、複素環式アミン骨格を有する化合物の溶液、およびセリウム(III)イオンを含む溶液またはセリウム(III)塩の混合方法は、特に限定されない。例えば、多価カルボン酸のイオンと複素環式アミン骨格を有するポリマーを含む溶液に、セリウム(III)イオンを含む溶液またはセリウム(III)塩を添加する方法が好ましく用いられる。かかる場合、多価カルボン酸のイオンを含む溶液と複素環式アミン骨格を有する化合物の溶液を混合し、セリウム(III)イオンを含む溶液またはセリウム(III)塩を添加する方法、複素環式アミン骨格を有する化合物を多価カルボン酸のイオンを含む溶液に加えて溶解し、セリウム(III)イオンを含む溶液またはセリウム(III)塩を添加する方法、多価カルボン酸の塩を複素環式アミン骨格を有する化合物の溶液に溶解し、セリウム(III)イオンを含む溶液またはセリウム(III)塩を添加する方法が挙げられる。このとき、セリウム塩を溶解させるため、混合溶液の溶媒は、最終的に水または水を10%以上含む上記水と相溶性のある溶媒となればよい。
The cerium (III) ion (including the cerium (III) salt) used in step A can be dissolved in any solvent and used as a solution. As the cerium (III) salt, for example, cerium nitrate (III) hexahydrate may be used.
The mixing method of the solution containing the polyvalent carboxylic acid or the salt of the polyvalent carboxylic acid, the solution of the compound having a heterocyclic amine skeleton, and the solution containing the cerium (III) ion or the cerium (III) salt is not particularly limited. For example, a method of adding a solution containing cerium (III) ions or a cerium (III) salt to a solution containing ions of a polyvalent carboxylic acid and a polymer having a heterocyclic amine skeleton is preferably used. In such a case, a method of mixing a solution containing an ion of a polyvalent carboxylic acid and a solution of a compound having a heterocyclic amine skeleton and adding a solution containing a cerium (III) ion or a cerium (III) salt, a heterocyclic amine. A method in which a compound having a skeleton is added to a solution containing polyvalent carboxylic acid ions to dissolve the solution, and a solution containing cerium (III) ions or a cerium (III) salt is added. Examples thereof include a method of dissolving in a solution of a compound having a skeleton and adding a solution containing cerium (III) ion or a cerium (III) salt. At this time, in order to dissolve the cerium salt, the solvent of the mixed solution may be finally water or a solvent compatible with the above water containing 10% or more of water.
 工程Aで得られる混合溶液において、多価カルボン酸の濃度は、その価数が3価以上6価以下の場合、セリウム(III)イオンに対して0.05モル当量以上5モル当量以下が好ましく、0.1モル当量以上1モル当量以下がより好ましい。また、価数が7価以上の場合は、質量濃度で、0.01%以上5%以下が好ましく、0.1%以上1%以下がより好ましい。 In the mixed solution obtained in step A, the concentration of the polyvalent carboxylic acid is preferably 0.05 molar equivalents or more and 5 molar equivalents or less with respect to cerium (III) ions when the valence is trivalent or more and hexavalent or less. , 0.1 molar equivalent or more and 1 molar equivalent or less is more preferable. When the valence is 7 or more, the mass concentration is preferably 0.01% or more and 5% or less, and more preferably 0.1% or more and 1% or less.
 また、混合溶液において、複素環式アミン骨格を有する化合物の溶液の濃度は、質量濃度で、0.01%以上5%以下が好ましく、0.1%以上2%以下がより好ましい。
 また、混合溶液において、セリウム(III)の濃度は、硝酸セリウム(III)・六水和物を用いる場合には、複素環式アミン骨格を有する化合物に対する硝酸セリウム(III)・六水和物の質量比が、0.1以上5.0以下になるように混合することが好ましい。混合溶液は、溶液が均一になるまで5分以上混合することが好ましい。
Further, in the mixed solution, the concentration of the solution of the compound having a heterocyclic amine skeleton is preferably 0.01% or more and 5% or less, more preferably 0.1% or more and 2% or less in terms of mass concentration.
Further, in the mixed solution, the concentration of cerium (III) is the concentration of cerium (III) / hexahydrate for the compound having a heterocyclic amine skeleton when cerium (III) nitrate / hexahydrate is used. It is preferable to mix so that the mass ratio is 0.1 or more and 5.0 or less. The mixed solution is preferably mixed for at least 5 minutes until the solution becomes uniform.
 工程Bは、工程Aで得られた溶液に酸化剤を添加する工程である。
 工程Bで用いる酸化剤としては、硝酸、硝酸カリウム、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、ハロゲン、ハロゲン化水素、過マンガン酸塩、クロム酸、ニクロム酸、シュウ酸、硫化水素、二酸化硫黄、チオ硫酸ナトリウム、硫酸、過酸化水素などが挙げられる。これらの中でも特に過酸化水素が好ましい。添加量は、セリウム(III)イオンに対してモル当量として、0.1当量以上10当量以下であればよく、好ましくは0.5当量以上2当量以下である。
Step B is a step of adding an oxidizing agent to the solution obtained in step A.
The oxidizing agents used in step B include nitric acid, potassium nitrate, hypochloric acid, chloric acid, chloric acid, perchloric acid, halogen, hydrogen halide, permanganate, chromic acid, dichromic acid, oxalic acid, and sulfide. Examples include hydrogen, sulfur dioxide, sodium thiosulfate, nitric acid, hydrogen peroxide and the like. Of these, hydrogen peroxide is particularly preferable. The addition amount may be 0.1 equivalent or more and 10 equivalent or less, preferably 0.5 equivalent or more and 2 equivalent or less, as a molar equivalent with respect to the cerium (III) ion.
 工程Aで得られた溶液に酸化剤を添加すると、セリウム(III)イオンがセリウム(IV)に酸化され、CeとCeOの混合物で構成される酸化セリウム粒子(中心核)を中心として、その表面が上記の多価カルボン酸と複素環式アミン骨格を有する化合物で被覆された粒子の形成反応が開始される。工程Aで得られた溶液に酸化剤を添加すると、本発明の酸化セリウムのナノ粒子の形成反応が始まる。また、その反応の際には、溶液が黄色、橙色、赤色、褐色などに着色する。これは、セリウム(III)イオンが、セリウム(IV)に変化することによる呈色であり、着色度合いは、酸化セリウムのナノ粒子の表面に存在するセリウム(III)とセリウム(IV)の比で決定する。反応終了は色の変化がなくなった点で判断することができる。通常30分~1時間程度で反応は終了する。 Center The addition of oxidizing agent to the solution obtained in step A, cerium (III) ions are oxidized to cerium (IV), Ce 2 O 3 and cerium oxide particles constituted of a mixture of CeO 2 (the central core) As a result, the formation reaction of particles whose surface is coated with the above-mentioned polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton is started. When an oxidizing agent is added to the solution obtained in step A, the reaction of forming nanoparticles of cerium oxide of the present invention begins. In the reaction, the solution is colored yellow, orange, red, brown or the like. This is the coloration caused by the conversion of cerium (III) ions to cerium (IV), and the degree of coloring is the ratio of cerium (III) and cerium (IV) present on the surface of the nanoparticles of cerium oxide. decide. The end of the reaction can be judged by the point where the color change disappears. The reaction is usually completed in about 30 minutes to 1 hour.
 例えば、0.5質量%のポリビニルイミダゾール水溶液10mlに対し、0.5MのEDTA溶液を47μl加え、10質量%の硝酸セリウム(III)六水和物水溶液を200μl添加して混合し、その後、1.2質量%の過酸化水素水溶液を200μl添加して25℃で攪拌すると、溶液が最初は黄色に変化し、その後徐々に黄色が濃くなり、最終的に褐色に変化して反応が終了する。 For example, 47 μl of 0.5 M EDTA solution is added to 10 ml of 0.5 mass% polyvinyl imidazole aqueous solution, 200 μl of 10 mass% cerium nitrate (III) hexahydrate aqueous solution is added and mixed, and then 1 When 200 μl of a 2% by mass aqueous hydrogen hydrogen solution is added and stirred at 25 ° C., the solution first turns yellow, then gradually becomes darker yellow, and finally turns brown to complete the reaction.
 反応終了後、分散液のpH調整を行ってもよい。pH調整は、工程Aで行ってもよく、後述する限外ろ過膜での濾過や、半透膜での透析等の分散液の精製後に行ってもよい。本発明の分散液のpHは、pH2~12の範囲であればよい。pHは緩衝液を加えて調整しても良く、硝酸、硫酸、塩酸などの酸、水酸化ナトリウム、水酸化カリウムなどの塩基を加えて調整しても良い。 After the reaction is completed, the pH of the dispersion may be adjusted. The pH may be adjusted in step A, or after purification of the dispersion liquid such as filtration with an ultrafiltration membrane described later or dialysis with a semipermeable membrane. The pH of the dispersion liquid of the present invention may be in the range of pH 2 to 12. The pH may be adjusted by adding a buffer solution, or may be adjusted by adding an acid such as nitric acid, sulfuric acid or hydrochloric acid, or a base such as sodium hydroxide or potassium hydroxide.
 本発明の酸化セリウムのナノ粒子のゼータ電位は、多価カルボン酸を安定化剤としたものよりも高く、複素環式アミン骨格を有する化合物を安定化剤としたものより小さくなる特徴を有する。多価カルボン酸と複素環式アミン骨格を有する化合物の濃度によってゼータ電位は調整することができ、多価カルボン酸の濃度を上げれば粒子のデータ電位は小さく、複素環式アミン骨格を有する化合物の濃度を上げれば粒子のゼータ電位は大きくなる。 The zeta potential of the nanoparticles of cerium oxide of the present invention has a feature that it is higher than that using a polyvalent carboxylic acid as a stabilizer and smaller than that using a compound having a heterocyclic amine skeleton as a stabilizer. The zeta potential can be adjusted by the concentration of the polyvalent carboxylic acid and the compound having a heterocyclic amine skeleton, and if the concentration of the polyvalent carboxylic acid is increased, the data potential of the particles is small, and the compound having a heterocyclic amine skeleton Increasing the concentration increases the zeta potential of the particles.
 本発明の酸化セリウムのナノ粒子は、反応終了後の分散液中で保存してもよいし、本発明の酸化セリウムのナノ粒子を反応終了後の分散液から取り出して、乾燥させた状態で保存してもよい。分散中で保存する場合、冷蔵保存が好ましい。本発明の酸化セリウムのナノ粒子を乾燥させる場合には、まず、反応終了後の溶液を限外ろ過膜で濾過したり、半透明膜で透析したりして、反応終了後の分散中に残存している未反応の多価カルボン酸、酸化剤およびセリウム(III)イオン並びに余分な化合物を除去し、エバポレーターや凍結乾燥機などを用いて乾燥させればよい。 The nanoparticles of cerium oxide of the present invention may be stored in the dispersion after the reaction is completed, or the nanoparticles of cerium oxide of the present invention may be taken out from the dispersion after the reaction and stored in a dried state. You may. When storing in dispersion, refrigerated storage is preferable. When drying the nanoparticles of cerium oxide of the present invention, first, the solution after completion of the reaction is filtered with an ultrafiltration membrane or dialyzed with a translucent membrane, and remains in the dispersion after completion of the reaction. The unreacted polyvalent carboxylic acid, oxidizing agent, cerium (III) ion and excess compound may be removed and dried using an evaporator or a freeze-dryer.
 反応終了後の本発明の酸化セリウムナノ粒子の分散液に添加することができるイオン成分としては、緩衝性能を付与する成分として、酢酸、フタル酸、コハク酸、炭酸、Tris(hydroxymethyl)aminomethane(Tris)、2-Morpholinoethanesulfonic acid、 monohydrate(MES)、Bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane(Bis-Tris)、N-(2-Acetamido)iminodiacetic acid(ADA)、Piperazine-1,4-bis(2-ethanesulfonic acid)(PIPES)、N-(2-Acetamido)-2-aminoethanesulfonic acid(ACES)、2-Hydroxy-3-morpholinopropanesulfonic acid(MOPSO)、N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid(BES)、3-Morpholinopropanesulfonic acid(MOPS)、N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid(TES)、2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid(HEPES)、2-Hydroxy-N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic(TAPSO)、Piperazine-1,4-bis(2-hydroxy-3-propanesulfonic acid)(POPSO)、2-Hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid(HEPSO)、3-[4-(2-Hydroxyethyl)-1-piperazinyl]propanesulfonic acid(HEPPS)、(Tricine)、N,N-Bis(2-hydroxyethyl)glycine(Bicine)、N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS)が挙げられ、緩衝性能を付与しない成分として塩化ナトリウム、塩化カリウムが挙げられる。これらのイオン成分は終濃度で0.1mM~1Mの範囲となるように添加することができる。これらのイオン成分は、反応終了後の分散液に加えても良く、分散液を限外ろ過膜で濾過した後に加えても良く、透析液として使用しても良く、透析後の分散液に添加しても良い。乾燥した酸化セリウムのナノ粒子に添加して分散体にしても良い。 The ionic components that can be added to the dispersion of cerium oxide nanoparticles of the present invention after completion of the reaction include acetic acid, phthalic acid, succinic acid, carbonic acid, and Tris (hydroxymethyl) aminomethane (Tris) as components that impart buffering performance. , 2-Morphorinoethanesulphonic acid, monohydrate (MES), Bis (2-hydroxythyl) iminotris (hydroxymethyl) meshane (Biz-Tris), N- (2-Acetamido) imidoid -Ethanesulphonic acid (PIPES), N- (2-Acetamido) -2-aminoethanesulphonic acid (ACES), 2-Hydroxy-3-morpholinopropanesulphonic acid (MOPSO), N, N-Biz (2-thyro) acid (BES), 3-Morphorinopropanesulphonic acid (MOPS), N-Tris (hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES), 2- [4- (2-Hydroxymethyl) -1-pipher) 2-Hydroxy-N-tris (hydroxymethyl) metyl-3-aminopropanesulphonic (TAPSO), Piperazine-1,4-bis (2-hydroxy-3-propanesulphonic acid (POPSO), 2-Hyd 2-hydroxythyl) -1-piperazinyl] propanesulphonic acid (HEPSO), 3- [4- (2-Hydroxythyl) -1-piperazinyl] propanesulphonic acid (HEPPS), (Trisyl), (Trisyl), (Trisyl) glycine (Bicine), N-Tris (hydroxymethyl) metyl-3-aminopropanesulphonic aci d (TAPS) can be mentioned, and sodium chloride and potassium chloride can be mentioned as components that do not impart buffering performance. These ionic components can be added so that the final concentration is in the range of 0.1 mM to 1 M. These ionic components may be added to the dispersion after the reaction is completed, may be added after filtering the dispersion with an ultrafiltration membrane, may be used as a dialysate, or may be added to the dispersion after dialysis. You may. It may be added to dried cerium oxide nanoparticles to form a dispersion.
 本発明の酸化セリウムのナノ粒子の分散液は、使用前に滅菌してもよい。滅菌の方法としては滅菌フィルターを通過させる方法が挙げられる。 The dispersion of cerium oxide nanoparticles of the present invention may be sterilized before use. Examples of the sterilization method include a method of passing through a sterilization filter.
 本発明において抗菌(antimicrobial)とは、ウイルス、細菌、真菌といった微生物の増殖を抑制すること全般を意味し、微生物を殺菌(killing of microbe)、除菌(removal of microbe)、滅菌(sterilization)、静菌(microbiostasis)、制菌(control of microbe)又は増殖阻害(microbial inhibition)することが含まれる。 In the present invention, antibacterial refers to suppressing the growth of microorganisms such as viruses, bacteria, and fungi in general, and kills microorganisms (killing of microorganisms), sterilizes them (removal of microorganisms), and sterilizes them. It includes bacteriostatic (microbiostasis), bactericidal (control of microbe) or growth inhibition (microbial inhibition).
 本発明の酸化セリウムのナノ粒子は、抗菌剤として用いることができる。
 抗菌剤としての性能を評価する方法としては、例えば、微生物懸濁液と試験液を混合し、寒天培地で培養し発育状態を観察する方法、試験液を含有した寒天培地で生育の抑制を観察する方法や生育阻止円を測定する方法が挙げられる。他には、液体培地に試験液を添加して増殖の抑制を測定する方法が挙げられる。これらの評価において、培地成分は微生物の育成促進のため、グルコース等の栄養源、ミルクカゼインや大豆由来のペプトン、魚肉や酵母由来のエキスを含有することができる。抗菌活性が認められる場合、寒天培地上では試験液の存在する領域で微生物の発育状態が悪くなってコロニーの大きさや数が減少する。また、液体培地中であれば微生物増殖に伴う濁度増加がなくなる。本発明において、抗菌活性の評価には、液体培地に試験液を添加して増殖の抑制を観察する方法が好ましく用いられる。
 液体培地に試験液を添加して微生物の増殖を抑制する方法は、微生物の増殖抑制効果として抗菌活性の指標として用いられる。具体的には、本発明の酸化セリウムのナノ粒子の微生物増殖抑制率は以下のように算出する。まず本発明の酸化セリウムのナノ粒子の溶液と液体培地を混合し、大腸菌等の微生物を植菌する。コントロールとして、酸化セリウムのナノ粒子を含まない液体培地に対しても同様の処理を行う。培養開始前に溶液の濁度(OD600値)を測定する。シェーカーなどを使って攪拌しながら、所定の温度、時間で微生物を培養する。培養後、全ての溶液の濁度(OD600値)を測定する。それぞれの溶液について、培養後の濁度と培養前の濁度の差を取る。コントロールの濁度差(I)と酸化セリウムのナノ粒子を含んだ溶液の濁度差(I)の差を取り、コントロールの濁度差(I)に対する割合を増殖抑制率として算出する。
The nanoparticles of cerium oxide of the present invention can be used as an antibacterial agent.
As a method for evaluating the performance as an antibacterial agent, for example, a method of mixing a microbial suspension and a test solution, culturing in an agar medium and observing the growth state, and observing suppression of growth in an agar medium containing the test solution. And the method of measuring the growth inhibition circle. Another method is to add a test solution to a liquid medium and measure the suppression of growth. In these evaluations, the medium component can contain a nutrient source such as glucose, peptone derived from milk casein or soybean, and an extract derived from fish meat or yeast in order to promote the growth of microorganisms. When antibacterial activity is observed, the growth state of microorganisms deteriorates in the region where the test solution is present on the agar medium, and the size and number of colonies decrease. Further, if it is in a liquid medium, the increase in turbidity due to the growth of microorganisms disappears. In the present invention, a method of adding a test solution to a liquid medium and observing suppression of growth is preferably used for evaluation of antibacterial activity.
The method of adding a test solution to a liquid medium to suppress the growth of microorganisms is used as an index of antibacterial activity as an effect of suppressing the growth of microorganisms. Specifically, the microbial growth inhibition rate of the nanoparticles of cerium oxide of the present invention is calculated as follows. First, a solution of nanoparticles of cerium oxide of the present invention is mixed with a liquid medium, and microorganisms such as Escherichia coli are inoculated. As a control, the same treatment is performed on a liquid medium containing no nanoparticles of cerium oxide. The turbidity (OD600 value) of the solution is measured before the start of culture. Cultivate the microorganisms at a predetermined temperature and time while stirring using a shaker or the like. After culturing, the turbidity (OD600 value) of all the solutions is measured. For each solution, take the difference between the turbidity after culturing and the turbidity before culturing. The difference between the turbidity difference (I c ) of the control and the turbidity difference (I) of the solution containing the nanoparticles of cerium oxide is taken, and the ratio to the turbidity difference (I c ) of the control is calculated as the growth inhibition rate.
 本発明の酸化セリウムのナノ粒子が抗菌活性を示す対象となる微生物としては、以下のようなものを挙げることができる。細菌としては、グラム陽性菌やグラム陰性菌を挙げることができる。グラム陰性細菌としては、例えば、大腸菌などのエシェリキア属の細菌、サルモネラ菌などのサルモネラ属の細菌、緑膿菌などのシュードモナス属の細菌、赤痢菌などのシゲラ属の細菌、クレブシエラ・ニューモニエなどのクレブシエラ属の細菌、レジオネラ・ニューモフィラなどのレジオネラ属の細菌などを挙げることができる。グラム陽性細菌としては、例えば、ブドウ球菌などのスタフィロコッカス属の細菌、枯草菌などのバシラス属の細菌、結核菌などのマイコバクテリウム属の細菌などを挙げることができる。真菌としては、菌類や酵母を挙げることができる。菌類としては、例えば、黒コウジカビなどのアスペルギルス属の糸状菌、アオカビなどのペニシリウム属の糸状菌、クロカビなどのクラドスポリウム属の糸状菌、ススカビなどのアルテルナリア属の糸状菌、ツチアオカビなどのトリコデルマ属の糸状菌、ケタマカビなどのケトミウム属の糸状菌などを挙げることができる。酵母類としては、例えば、パン酵母及びビール酵母などのサッカロミセス属の酵母及びカンジダ・アルビカンスなどのカンジダ属の酵母などを挙げることができる。ウイルスとしては、例えば、ポリオウイルス、ロタウイルス、ノロウイルス、エンテロウイルス、サポウイルス、インフルエンザウイルス、RSウイルス、アデノウイルス、ヘルペスウイルスなどを挙げることができる。本発明のナノ粒子は、この中でも特に細菌に対して高い抗菌活性を示す。 Examples of the target microorganism in which the nanoparticles of cerium oxide of the present invention exhibit antibacterial activity include the following. Examples of the bacterium include Gram-positive bacteria and Gram-negative bacteria. Examples of gram-negative bacteria include Escherichia bacteria such as Escherichia coli, Salmonella bacteria such as Salmonella, Pseudomonas bacteria such as Shigella, Shigella bacteria such as Shigella, and Klebsiella such as Klebsiella pneumoniae. Bacteria of the genus Regionella such as Regionella pneumophylla can be mentioned. Examples of gram-positive bacteria include bacteria of the genus Staphylococcus such as Staphylococcus, bacteria of the genus Bacillus such as Bacillus subtilis, and bacteria of the genus Mycobacterium such as tuberculosis. Examples of fungi include fungi and yeast. Examples of fungi include filamentous fungi of the genus Aspergillus such as black stag beetle, filamentous fungi of the genus Penicillium such as blue mold, filamentous fungi of the genus Cladosporium such as black mold, filamentous fungi of the genus Alternaria such as suscabi, and trichoderma such as tucia okabi. Examples include filamentous fungi of the genus, filamentous fungi of the genus Ketomium such as Ketama mold. Examples of yeasts include yeasts of the genus Saccharomyces such as baker's yeast and beer yeast, and yeasts of the genus Candida such as Candida albicans. Examples of the virus include poliovirus, rotavirus, norovirus, enterovirus, sapovirus, influenza virus, RS virus, adenovirus, herpesvirus and the like. The nanoparticles of the present invention show particularly high antibacterial activity against bacteria.
 本発明の酸化セリウムのナノ粒子は、分散体とすることで、例えば、殺菌剤としてプール、浴槽、温泉などに添加したり、ボディーソープ、手洗い洗剤、消毒薬、うがい薬、洗口液などとして用いたり、除菌剤として衣類、食器、台所、トイレ、洗面所、風呂場、机、椅子、テーブル、ベッド、医療器具などの洗浄に使用することができる。このとき、酸化セリウムのナノ粒子の分散液は、殺菌、除菌、滅菌、静菌、制菌、増殖阻害作用のある他の成分を含んでもよい。具体的には、エタノール、イソプロピルアルコールなどの溶媒成分、過酸化水素、ポビドンヨード、次亜塩素酸ナトリウムなどの酸化剤成分、塩化ベンザルコニウム、塩化ベンゼトニウム、アルキルポリアミノエチルグリシンなどの界面活性剤成分が挙げられる。 By making the nanoparticles of cerium oxide of the present invention into a dispersion, for example, they can be added to pools, bathtubs, hot springs, etc. as disinfectants, or used as body soaps, hand-washing detergents, disinfectants, mouthwashes, mouthwashes, etc. It can be used or used as a disinfectant for cleaning clothes, tableware, kitchens, toilets, washrooms, bathrooms, desks, chairs, tables, beds, medical equipment, etc. At this time, the dispersion liquid of the nanoparticles of cerium oxide may contain other components having a sterilizing, sterilizing, sterilizing, bacteriostatic, bacteriostatic, and growth inhibitory action. Specifically, solvent components such as ethanol and isopropyl alcohol, oxidizing agent components such as hydrogen peroxide, povidone iodine and sodium hypochlorite, and surfactant components such as benzalkonium chloride, benzethonium chloride and alkylpolyaminoethylglycine are used. Can be mentioned.
 他には、本発明の酸化セリウムのナノ粒子は、抗菌活性を付与するための添加剤として、繊維、チューブ、ビーズ、ゴム、フイルム、プラスチック等の成型時に添加したり、これらの表面に塗布することで抗菌加工に用いることができる。本発明の酸化セリウムの分散液で抗菌加工可能なものとしては、例えば、台所流し台用の排水口菊割れカバー、排水口栓、窓ガラス固定用パッキン、鏡固定用のパッキン、風呂場、洗面台や台所の防水パッキン、冷蔵庫のドア内張りパッキン、バスマット、洗面器やいすのすべり止めゴム、ホース、シャワーヘッド、浄水器に使用されるパッキン、浄水器のプラスチック製品、洗濯機に使用されるパッキン、洗濯機のプラスチック製品、マスク、医療用キャップ、医療用シューズカバー、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、エアコンのフィン、エアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン等、カーエアコンのフィン、カーエアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、壁紙や窓、ブラインド、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、ブラインド、椅子、ソファー、ウイルスを扱う設備、ドア、天井板、床板、窓などの建装材などが挙げられる。このように、本発明の酸化セリウムのナノ粒子の分散液で加工した製品は、衛生材料として様々な分野に利用することができる。 In addition, the nanoparticles of cerium oxide of the present invention are added at the time of molding of fibers, tubes, beads, rubber, films, plastics and the like as additives for imparting antibacterial activity, or are applied to the surfaces thereof. Therefore, it can be used for antibacterial processing. Examples of the cerium oxide dispersion of the present invention that can be antibacterial processed include a drainage chrysanthemum crack cover for a kitchen sink, a drainage plug, a packing for fixing a window glass, a packing for fixing a mirror, a bathroom, and a washbasin. And kitchen waterproof packing, refrigerator door lining packing, bath mat, washbasin and chair non-slip rubber, hose, shower head, packing used for water purifier, plastic products of water purifier, packing used for washing machine, Washing machine plastic products, masks, medical caps, medical shoe covers, air conditioner filters, air purifier filters, vacuum cleaner filters, ventilation fan filters, vehicle filters, air conditioner filters, air conditioner fins, air conditioner blowouts Plastic parts such as mouth louvers and blower fans, car air conditioner fins, car air conditioner outlet louvers and other plastic parts, blower fans, clothing, bedding, nets for net doors, nets for chicken houses, nets such as mosquito shops, wallpapers Air conditioners, windows, blinds, interior materials for buildings such as hospitals, interior materials for trains and automobiles, seats for vehicles, blinds, chairs, sofas, equipment for handling viruses, doors, ceiling boards, floor boards, windows and other building materials. And so on. As described above, the product processed with the dispersion liquid of the nanoparticles of cerium oxide of the present invention can be used in various fields as a sanitary material.
 また、本発明の酸化セリウムのナノ粒子またはその分散液は、抗ウイルス剤として用いることができる。抗ウイルス剤としての性能を評価する方法としては、本発明の酸化セリウムのナノ粒子またはその分散液をウイルスと接触または混合させた後、ウイルス量を定量する。ウイルスを定量する方法としては、ELISA法によりウイルス抗原量を測定する方法、PCRによりウイルス核酸を定量する方法、プラーク法により感染価を測定する方法、50%感染量測定法により感染価を測定する方法などが挙げられる。本発明において抗ウイルス性能は、プラーク法や50%感染量測定法により感染価を測定する方法が好ましく用いられる。ウイルス感染価の単位は、50%感染量測定法においては、培養細胞を対象に試験した場合TCID50(Tissue culture infectious dose 50)、孵化鶏卵を用いた場合EID50(Egg infectious dose 50)、動物ではLD50(Lethal dose 50)で表記する。また、50%感染量測定法においては得られたデータから感染価を算出する方法としてReed-Muench法やBehrens-Kaeber法、Spearman―Karber法などがあるが、本発明ではReed-Muench法を用いることが好ましい。抗ウイルス性能の判定基準は、一般に、本発明の酸化セリウムのナノ粒子を作用させる前の感染価や本発明のナノ粒子を含まない対照に対し、感染価の対数減少値が2.0以上となれば、抗ウイルス性能は有効と判定される。 Further, the cerium oxide nanoparticles of the present invention or a dispersion thereof can be used as an antiviral agent. As a method for evaluating the performance as an antiviral agent, the amount of virus is quantified after contacting or mixing the nanoparticles of cerium oxide of the present invention or a dispersion thereof with the virus. As a method for quantifying a virus, a method for measuring the amount of virus antigen by the ELISA method, a method for quantifying the viral nucleic acid by PCR, a method for measuring the infectious titer by the plaque method, and a method for measuring the infectious titer by the 50% infectious dose measuring method. The method etc. can be mentioned. In the present invention, as the antiviral performance, a method of measuring the infectious titer by a plaque method or a 50% infection amount measuring method is preferably used. In the 50% infectious dose measurement method, the unit of virus infectious titer is TCID 50 (Tissue culture infectious dose 50) when tested on cultured cells, EID 50 (Egg infectious dose 50) when using hatched chicken eggs, and animals. Then, it is expressed by LD 50 (Lethal dose 50). Further, in the 50% infection amount measurement method, there are Reed-Muench method, Behrens-Kaeber method, Spearman-Karber method and the like as a method of calculating the infection titer from the obtained data, but in the present invention, the Reed-Muench method is used. Is preferable. The criteria for determining the antiviral performance are generally that the logarithmic reduction value of the infectious titer is 2.0 or more with respect to the infectious titer before the nanoparticle of cerium oxide of the present invention is allowed to act or the control containing no nanoparticles of the present invention. If so, the antiviral performance is determined to be effective.
 本発明の酸化セリウムのナノ粒子またはその分散液で不活性化できるウイルスは、例えば、ライノウイルス、ポリオウイルス、口蹄疫ウイルス、ロタウイルス、ノロウイルス、エンテロウイルス、ヘパトウイルス、アストロウイルス、サポウイルス、E型肝炎ウイルス、A型、B型、C型インフルエンザウイルス、パラインフルエンザウイルス、ムンプスウイルス(おたふくかぜ)、麻疹ウイルス、ヒトメタニューモウイルス、RSウイルス、ニパウイルス、ヘンドラウイルス、黄熱ウイルス、デングウイルス、日本脳炎ウイルス、ウエストナイルウイルス、B型、C型肝炎ウイルス、東部および西部馬脳炎ウイルス、オニョンニョンウイルス、風疹ウイルス、ラッサウイルス、フニンウイルス、マチュポウイルス、グアナリトウイルス、サビアウイルス、クリミアコンゴ出血熱ウイルス、スナバエ熱、ハンタウイルス、シンノンブレウイルス、狂犬病ウイルス、エボラウイルス、マーブルグウイルス、コウモリリッサウイルス、ヒトT細胞白血病ウイルス、ヒト免疫不全ウイルス、ヒトコロナウイルス、SARSコロナウイルス、SARSコロナウイルス2、ヒトポルボウイルス、ポリオーマウイルス、ヒトパピローマウイルス、アデノウイルス、ヘルペスウイルス、水痘帯状発疹ウイルス、EBウイルス、サイトメガロウイルス、天然痘ウイルス、サル痘ウイルス、牛痘ウイルス、モラシポックスウイルス、パラポックスウイルスなどが挙げられる。 The virus that can be inactivated by the nanoparticles of cerium oxide of the present invention or a dispersion thereof is, for example, rhinovirus, poliovirus, mouth-foot disease virus, rotavirus, norovirus, enterovirus, hepatvirus, astrovirus, sapovirus, hepatitis E virus. , A, B, C influenza virus, parainfluenza virus, mumps virus (Otafukukaze), measles virus, human metapneumovirus, RS virus, nipavirus, Hendra virus, yellow fever virus, dengue virus, Japanese encephalitis virus, West Nile virus, hepatitis B, C hepatitis virus, eastern and western horse encephalitis virus, onyonnyon virus, ruin virus, lassa virus, funin virus, machupo virus, guanaritovirus, savia virus, crimia congo hemorrhagic fever virus, snail Fever, Hunter virus, Shinnonbre virus, Mad dog disease virus, Ebola virus, Marburg virus, Bat morilissa virus, Human T-cell leukemia virus, Human immunodeficiency virus, Human corona virus, SARS corona virus, SARS corona virus 2, Human porbo Examples include viruses, polyomavirus, human papillomavirus, adenovirus, herpesvirus, varicella-like rash virus, EB virus, cytomegalovirus, natural pox virus, monkey pox virus, bovine pox virus, morasipox virus, parapox virus, etc. ..
 抗ウイルス剤として用いる場合、本発明の酸化セリウムのナノ粒子またはその分散液を、繊維、チューブ、ビーズ、ゴム、フィルム、プラスチック等の材料に添加剤として練り込んだり、これらの材料の表面に塗布したりして用いることができる。例えば、マスク、医療用キャップ、医療用シューズカバー、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、エアコンのフィン、エアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン等、カーエアコンのフィン、カーエアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、壁紙や窓、ブラインド、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、ブラインド、椅子、ソファー、ウイルスを扱う設備、ドア、天井板、床板、窓などの建装材として様々な分野に利用することができる。 When used as an antiviral agent, the nanoparticles of cerium oxide of the present invention or a dispersion thereof are kneaded into materials such as fibers, tubes, beads, rubber, films, and plastics as additives, or applied to the surface of these materials. It can be used as a rubber. For example, masks, medical caps, medical shoe covers, air conditioner filters, air conditioner filters, vacuum cleaner filters, ventilation fan filters, vehicle filters, air conditioner filters, air conditioner fins, air conditioner outlet louvers, etc. Plastic parts and blower fans, car air conditioner fins, car air conditioner outlet louvers and other plastic parts, blower fans, clothing, bedding, nets for net doors, chicken house nets, nets such as mosquito houses, wallpapers, windows, blinds , Various fields as interior materials for buildings such as hospitals, interior materials for trains and automobiles, seats for vehicles, blinds, chairs, sofas, equipment for handling viruses, doors, ceiling boards, floor boards, windows, etc. Can be used for.
 本発明を以下の実施例によってさらに具体的に説明する。
 <材料と方法>
 ポリアクリル酸ナトリウムとM9 Minimal Saltsはメルク株式会社より、ポリ(1-ビニルイミダゾール)は丸善石油化学株式会社より、硝酸セリウム(III)六水和物と30質量%過酸化水素水は富士フイルム和光純薬株式会社より、Luria Broth Baseはサーモフィッシャー株式会社より、大腸菌(DH5α)はタカラバイオ株式会社より入手して用いた。
 その他の試薬については、富士フイルム和光純薬株式会社、東京化成株式会社、シグマーアルドリッチジャパン合同会社から購入し、特に精製することなくそのまま用いた。
The present invention will be described in more detail with reference to the following examples.
<Materials and methods>
Sodium polyacrylate and M9 Minimal Salts from Merck Co., Ltd., Poly (1-vinylimidazole) from Maruzen Petrochemical Co., Ltd., Cerium nitrate (III) hexahydrate and 30% by mass hydrogen peroxide solution from Fujifilm. Luria Broth Base was obtained from Thermo Fisher Co., Ltd., and Escherichia coli (DH5α) was obtained from Takara Bio Co., Ltd. and used.
Other reagents were purchased from Fujifilm Wako Pure Chemical Industries, Ltd., Tokyo Kasei Co., Ltd., and Sigma-Aldrich Japan GK, and used as they were without any particular purification.
 以下の実施例では、複素環式アミン骨格を主鎖に有するポリアミドとして、(アミノエチル)ピペラジンとアジピン酸を構造単位として有するポリマー(ポリアミド(1))、(アミノエチル)ピペラジンとビス(アミノプロピル)ポリエチレングリコールとアジピン酸を構造単位として有するポリマー(ポリアミド(2))を使用し、これらのポリマーは、特開平11-166121を参考に調製した。 In the following examples, as the polyamide having a heterocyclic amine skeleton in the main chain, a polymer (polyamide (1)) having (aminoethyl) piperazine and adipic acid as structural units, (aminoethyl) piperazine and bis (aminopropyl). ) A polymer having polyethylene glycol and adipic acid as structural units (polyamide (2)) was used, and these polymers were prepared with reference to JP-A-11-166121.
 LB液体培地は、Luria Broth Baseを25g/lの濃度で溶解し、オートクレーブで滅菌して調製した。M9液体培地は滅菌済みの蒸留水890ml、10×M9 Minimal Salts100ml、1M MgSO 1ml、20%グルコース 10ml、1M CaCl 100μlを混合して調製した。
 酸化セリウムのナノ粒子の流体力学的直径とゼータ電位の測定には、大塚電子株式会社のゼータ電位・粒子測定システムELS-Zを用い、OD600値の測定にはベックマンコールターのDU530を用い、大腸菌培養のシェーカーはTAITEC BIO―SHAKER BR-40LFを用いた。
The LB liquid medium was prepared by dissolving Luria Bouillon Base at a concentration of 25 g / l and sterilizing it in an autoclave. M9 liquid medium was prepared by mixing sterile distilled water 890ml, 10 × M9 Minimal Salts100ml, 1M MgSO 4 1ml, 20% glucose 10 ml, a 1M CaCl 2 100 [mu] l.
Otsuka Electronics Co., Ltd.'s zeta potential / particle measurement system ELS-Z was used to measure the hydrodynamic diameter and zeta potential of cerium oxide nanoparticles, and Beckman Coulter's DU530 was used to measure the OD600 value. The shaker used was TAITEC BIO-SHAKER BR-40LF.
(実施例1)ポリアクリル酸とポリ(1-ビニルイミダゾール)で被覆された酸化セリウムのナノ粒子の合成
 1質量%のポリアクリル酸ナトリウム水溶液5mlと1質量%のポリビニルイミダゾール水溶液5mlを混合し、10質量%の硝酸セリウム(III)六水和物水溶液を200μl添加して15分間攪拌した。その後、1.2質量%の過酸化水素水溶液を200μl添加し、室温で1時間反応させた。反応溶液を30kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(Example 1) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and poly (1-vinylimidazole) 5 ml of 1% by mass sodium polyacrylate aqueous solution and 5 ml of 1% by mass polyvinyl imidazole aqueous solution were mixed. 200 μl of a 10 mass% cerium nitrate (III) hexahydrate aqueous solution was added, and the mixture was stirred for 15 minutes. Then, 200 μl of a 1.2 mass% hydrogen peroxide aqueous solution was added, and the mixture was reacted at room temperature for 1 hour. The reaction solution was purified with a 30 kD ultrafiltration membrane to obtain an orange dispersion containing nanoparticles of cerium oxide.
(実施例2)ポリアクリル酸とポリアミド(1)で被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、1質量%のポリアミド(1)水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色水溶液を得た。
(Example 2) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and polyamide (1) In Example 1, a 1% by mass polyamide (1) aqueous solution was used instead of 5 ml of a 1% by mass polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 except that the above was used to obtain an orange aqueous solution containing nanoparticles of cerium oxide.
(実施例3)ポリアクリル酸とポリアミド(2)で被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、1質量%のポリアミド(2)水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色水溶液を得た。
(Example 3) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and polyamide (2) In Example 1, a 1% by mass polyamide (2) aqueous solution was used instead of 5 ml of a 1% by mass polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 except that the above was used to obtain an orange aqueous solution containing nanoparticles of cerium oxide.
(実施例4)EDTAとポリ(1-ビニルイミダゾール)で被覆された酸化セリウムのナノ粒子の合成
 0.5質量%のポリビニルイミダゾール水溶液10mlに対し、0.5MのEDTA・2Na水溶液を47μl加え、10質量%の硝酸セリウム(III)六水和物水溶液を200μl添加して15分間攪拌した。その後、1.2質量%の過酸化水素水溶液を200μl添加し、室温で1時間反応させた。反応溶液を30kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む褐色分散液を得た。
(Example 4) Synthesis of nanoparticles of cerium oxide coated with EDTA and poly (1-vinylimidazole) To 10 ml of a 0.5 mass% polyvinyl imidazole aqueous solution, 47 μl of a 0.5 M EDTA / 2Na aqueous solution was added. 200 μl of a 10 mass% cerium nitrate (III) hexahydrate aqueous solution was added, and the mixture was stirred for 15 minutes. Then, 200 μl of a 1.2 mass% hydrogen peroxide aqueous solution was added, and the mixture was reacted at room temperature for 1 hour. The reaction solution was purified with a 30 kD ultrafiltration membrane to obtain a brown dispersion containing nanoparticles of cerium oxide.
(実施例5)EDTAとポリアミド(1)で被覆された酸化セリウムのナノ粒子の合成
 実施例4において、0.5質量%のポリビニルイミダゾール水溶液10mlの代わりに、0.5質量%のポリアミド(1)水溶液を用いたこと以外は、実施例4と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色水溶液を得た。
(Example 5) Synthesis of EDTA and polyamide (1) -coated nanoparticles of cerium oxide In Example 4, 0.5% by mass of polyamide (1) was used instead of 10 ml of 0.5% by mass of polyvinyl imidazole aqueous solution. ) The reaction was carried out under the same conditions as in Example 4 except that the aqueous solution was used to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
(実施例6)EDTAとポリアミド(2)で被覆された酸化セリウムのナノ粒子の合成
 実施例4において、0.5質量%のポリビニルイミダゾール水溶液10mlの代わりに、0.5質量%のポリアミド(2)水溶液を用いたこと以外は、実施例4と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色水溶液を得た。
(Example 6) Synthesis of EDTA and polyamide (2) -coated nanoparticles of cerium oxide In Example 4, 0.5% by mass of polyamide (2) was used instead of 10 ml of 0.5% by mass of polyvinyl imidazole aqueous solution. ) The reaction was carried out under the same conditions as in Example 4 except that the aqueous solution was used to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
(実施例7)ポリアクリル酸とピペラジンで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、24.6mg/5mlのピペラジン水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 7) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and piperazine In Example 1, a 24.6 mg / 5 ml piperazine aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 except that a yellow aqueous solution containing nanoparticles of cerium oxide was obtained.
(実施例8)ポリアクリル酸とN-(2-アミノエチル)ピペラジンで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、20mg/5mlのN-(2-アミノエチル)ピペラジン水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 8) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and N- (2-aminoethyl) piperazin In Example 1, instead of 5 ml of 1 mass% polyvinyl imidazole aqueous solution, 20 mg / 5 ml The reaction was carried out under the same conditions as in Example 1 except that an N- (2-aminoethyl) piperazine aqueous solution was used to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
(実施例9)ポリアクリル酸と2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸で被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、36.8mg/5mlの2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 9) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid In Example 1, 1% by mass of polyvinylimidazole The reaction was carried out under the same conditions as in Example 1 except that 36.8 mg / 5 ml of 2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid aqueous solution was used instead of 5 ml of the aqueous solution. , A yellow aqueous solution containing nanoparticles of cerium oxide was obtained.
(実施例10)ポリアクリル酸とモルホリンで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、27mg/5mlのモルホリン水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 10) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and morpholine In Example 1, 27 mg / 5 ml of morpholine aqueous solution was used instead of 5 ml of 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
(実施例11)EDTAとピペラジンで被覆された酸化セリウムのナノ粒子の合成
 実施例4において、0.5質量%のポリビニルイミダゾール水溶液10mlの代わりに、24.6mg/10mlのピペラジン水溶液を用いたこと以外は、実施例4と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色水溶液を得た。
(Example 11) Synthesis of nanoparticles of cerium oxide coated with EDTA and piperazine In Example 4, a 24.6 mg / 10 ml piperazine aqueous solution was used instead of 10 ml of a 0.5 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 4 except that a brown aqueous solution containing nanoparticles of cerium oxide was obtained.
(実施例12)ポリアクリル酸とピリジンで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、12mg/5mlのピペラジン水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 12) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and pyridine Except that in Example 1, a 12 mg / 5 ml piperazine aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
(実施例13)ポリアクリル酸とイミダゾールで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、10mg/5mlのイミダゾール水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 13) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and imidazole In Example 1, a 10 mg / 5 ml imidazole aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 to obtain a yellow aqueous solution containing nanoparticles of cerium oxide.
(実施例14)ポリアクリル酸とベンゾイミダゾールで被覆された酸化セリウムのナノ粒子の合成
 実施例1において、1質量%のポリビニルイミダゾール水溶液5mlの代わりに、18mg/5mlのベンゾイミダゾール水溶液を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色水溶液を得た。
(Example 14) Synthesis of nanoparticles of cerium oxide coated with polyacrylic acid and benzimidazole In Example 1, an 18 mg / 5 ml benzimidazole aqueous solution was used instead of 5 ml of a 1 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 1 except that a yellow aqueous solution containing nanoparticles of benzyloxide was obtained.
(実施例15)EDTAとピリジンで被覆された酸化セリウムのナノ粒子の合成
 実施例4において、0.5質量%のポリビニルイミダゾール水溶液10mlの代わりに、12mg/10mlのピリジン水溶液を用いたこと以外は、実施例4と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色水溶液を得た。
(Example 15) Synthesis of nanoparticles of cerium oxide coated with EDTA and pyridine Except that in Example 4, a 12 mg / 10 ml pyridine aqueous solution was used instead of 10 ml of a 0.5 mass% polyvinyl imidazole aqueous solution. The reaction was carried out under the same conditions as in Example 4 to obtain a brown aqueous solution containing nanoparticles of cerium oxide.
(比較例1)ポリアクリル酸で被覆された酸化セリウムの合成
 非特許文献1を参考に、抗菌活性の比較のため、酸化セリウムのナノ粒子を作製した。
 0.5質量%のポリアクリル酸ナトリウム水溶液10mlに対し、10質量%の硝酸セリウム(III)六水和物水溶液を200μl添加し、室温で5分間攪拌した。その後、1.2質量%の過酸化水素水溶液を200μl添加し、40℃に加温して1時間反応させた。反応溶液を30kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む黄色分散液を得た。
(Comparative Example 1) Synthesis of cerium oxide coated with polyacrylic acid With reference to Non-Patent Document 1, nanoparticles of cerium oxide were prepared for comparison of antibacterial activity.
To 10 ml of a 0.5 mass% sodium polyacrylate aqueous solution, 200 μl of a 10 mass% cerium (III) nitrate hexahydrate aqueous solution was added, and the mixture was stirred at room temperature for 5 minutes. Then, 200 μl of a 1.2% by mass hydrogen peroxide aqueous solution was added, and the mixture was heated to 40 ° C. and reacted for 1 hour. The reaction solution was purified with a 30 kD ultrafiltration membrane to obtain a yellow dispersion containing nanoparticles of cerium oxide.
(比較例2)EDTAで被覆された酸化セリウムのナノ粒子の合成
 比較例1において、0.5質量%のポリアクリル酸ナトリウム水溶液10mlの代わりに、2.35mMのEDTA・2Na水溶液10mlを用いたこと以外は、比較例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色分散液を得た。
(Comparative Example 2) Synthesis of EDTA-coated nanoparticles of cerium oxide In Comparative Example 1, 10 ml of a 2.35 mM EDTA / 2Na aqueous solution was used instead of 10 ml of a 0.5 mass% sodium polyacrylate aqueous solution. Except for this, the reaction was carried out under the same conditions as in Comparative Example 1 to obtain a brown dispersion containing nanoparticles of cerium oxide.
(比較例3)ポリ(1-ビニルイミダゾール)で被覆された酸化セリウムのナノ粒子の合成
 比較例1において、0.5質量%のポリアクリル酸ナトリウム水溶液10mlの代わりに、0.5質量%のポリ(1-ビニルイミダゾール)水溶液10mlを用いたこと以外は、比較例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(Comparative Example 3) Synthesis of nanoparticles of cerium oxide coated with poly (1-vinylimidazole) In Comparative Example 1, 0.5% by mass was used instead of 10 ml of a 0.5% by mass sodium polyacrylate aqueous solution. The reaction was carried out under the same conditions as in Comparative Example 1 except that 10 ml of a poly (1-vinylimidazole) aqueous solution was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
(実施例16)酸化セリウムのナノ粒子の流体力学的直径の測定
 実施例1~15、および比較例1~3で調製した酸化セリウムのナノ粒子の流体力学的直径を動的光散乱(DLS)によって測定した。測定時の溶媒はM9培地とし、個数換算により流体力学直径の平均粒子径を得た。得られた値を表1に示す。
 実施例1から15で得られた粒子は、平均粒子径が3.3~18.2nmであるナノ粒子であることが確認された。また、比較例1、2および3で得られた粒子は、平均粒子径がそれぞれ、5.0nm、3.0nm、12.4nmであるナノ粒子であることが確認された。
(Example 16) Measurement of hydrodynamic diameter of nanoparticles of cerium oxide Dynamic light scattering (DLS) is the hydrodynamic diameter of nanoparticles of cerium oxide prepared in Examples 1 to 15 and Comparative Examples 1 to 3. Measured by. The solvent at the time of measurement was M9 medium, and the average particle size of the hydrodynamic diameter was obtained by number conversion. The obtained values are shown in Table 1.
It was confirmed that the particles obtained in Examples 1 to 15 were nanoparticles having an average particle size of 3.3 to 18.2 nm. Further, it was confirmed that the particles obtained in Comparative Examples 1, 2 and 3 were nanoparticles having an average particle diameter of 5.0 nm, 3.0 nm and 12.4 nm, respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例17)酸化セリウムのナノ粒子の大腸菌増殖抑制
 本発明の酸化セリウムのナノ粒子が有する抗菌活性の評価として、大腸菌増殖抑制の評価を行った。
 実施例1~15、および比較例1、2で調製した酸化セリウムのナノ粒子の溶液をそれぞれ2mg/mlの濃度に調製し、0.2μmの限外ろ過膜を通過させた。フロースルー溶液を大腸菌増殖抑制の評価に用いた。
 前培養として、大腸菌をLB液体培地に植菌し、シェーカーを使って200rpmで攪拌しながら32℃、24時間培養した。培養後、遠心(4000rpm、5分)して上清を除き、2mlの生理食塩水で大腸菌のペレットを洗浄した。この洗浄をさらにもう一度行い、ペレットを2mlのM9液体培地に再懸濁した。
 M9液体培地9.5mlと2mg/mlの各酸化セリウムのナノ粒子の溶液500μlを混合し、再懸濁した大腸菌の懸濁液を25μl添加した。コントロールとして、酸化セリウムのナノ粒子の溶液の代わりに生理食塩水を添加したものも用意した。シェーカーを使って200rpmで攪拌しながら32℃、24時間培養し、OD600値を測定した。いずれの溶液も培養開始時点のOD600値は0.033であった。
 増殖抑制率の解析は、培養後のコントロールと各実施例のOD600値から、初期値である0.033の差を取って行った。コントロールのOD600値と各実施例のOD600値の差を取り、コントロールのOD600値に対する割合を増殖抑制率として算出した。得られた結果を表2に示す。
(Example 17) Suppression of Escherichia coli growth of cerium oxide nanoparticles As an evaluation of the antibacterial activity of the cerium oxide nanoparticles of the present invention, evaluation of suppression of Escherichia coli growth was performed.
Solutions of nanoparticles of cerium oxide prepared in Examples 1 to 15 and Comparative Examples 1 and 2 were prepared at a concentration of 2 mg / ml, respectively, and passed through a 0.2 μm ultrafiltration membrane. The flow-through solution was used to evaluate the suppression of E. coli growth.
As a preculture, Escherichia coli was inoculated into an LB liquid medium and cultured at 32 ° C. for 24 hours while stirring at 200 rpm using a shaker. After culturing, the supernatant was removed by centrifugation (4000 rpm, 5 minutes), and the pellets of E. coli were washed with 2 ml of physiological saline. This wash was performed once more and the pellet was resuspended in 2 ml of M9 liquid medium.
9.5 ml of M9 liquid medium and 500 μl of a solution of 2 mg / ml cerium oxide nanoparticles were mixed, and 25 μl of the resuspended E. coli suspension was added. As a control, a solution in which physiological saline was added instead of a solution of nanoparticles of cerium oxide was also prepared. The cells were cultured at 32 ° C. for 24 hours with stirring at 200 rpm using a shaker, and the OD600 value was measured. The OD600 value of each solution at the start of culture was 0.033.
The analysis of the growth inhibition rate was performed by taking a difference of 0.033, which is an initial value, from the control after culturing and the OD600 value of each example. The difference between the OD600 value of the control and the OD600 value of each example was taken, and the ratio of the control to the OD600 value was calculated as the growth suppression rate. The results obtained are shown in Table 2.
 本実施例1~15と後述する比較例1および2を比較すると、多価カルボン酸のみで被覆された酸化セリウムのナノ粒子と比べて、本発明の多価カルボン酸および複素環式アミン骨格を有するビニル系ポリマーまたはポリアミドで表面が被覆された酸化セリウムのナノ粒子は、その大腸菌の増殖抑制率がいずれも95%以上であり、抗菌活性が大きく向上していることが明らかとなった。 Comparing Examples 1 to 15 with Comparative Examples 1 and 2 described later, the polyvalent carboxylic acid and the heterocyclic amine skeleton of the present invention are compared with the nanoparticles of cerium oxide coated only with the polyvalent carboxylic acid. It was clarified that the nanoparticles of cerium oxide whose surface was coated with the vinyl-based polymer or polyamide having the nanoparticles had a growth inhibition rate of 95% or more for all of the E. coli, and the antibacterial activity was greatly improved.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(実施例18)酸化セリウムのナノ粒子のウイルス不活化
 5mg/mlになるように調製した実施例1~15および比較例1~3で調製した酸化セリウムのナノ粒子の分散液0.9mlにウイルス液(インフルエンザウイルス, ATCC, VR-1679, Infuruenza A virus(H3N2))0.1mlを混合し、1時間作用させた。その後、PBSを作用停止液として加え、ウイルスに対する作用を停止させた。この溶液をウイルス価測定用試料の原液としてプラーク測定法で感染価を測定した。
 酸化セリウムのナノ粒子を作用させる前の感染価に対する感染価の対数減少値を表3に示した。本結果から、比較例1と2の酸化セリウムのナノ粒子には抗ウイルス活性はなく、比較例3の酸化セリウムのナノ粒子には抗ウイルス活性があることがわかった。そして、実施例1~15の酸化セリウムのナノ粒子の抗ウイルス活性は、比較例3の酸化セリウムのナノ粒子と比べて相対的に高いことが確認された。
(Example 18) Virus inactivation of cerium oxide nanoparticles Virus in 0.9 ml of dispersion of cerium oxide nanoparticles prepared in Examples 1 to 15 and Comparative Examples 1 to 3 prepared to be 5 mg / ml. 0.1 ml of the solution (influenza virus, ATCC, VR-1679, Influenza A virus (H3N2)) was mixed and allowed to act for 1 hour. Then, PBS was added as an action-stopping solution to stop the action on the virus. The infectious titer was measured by a plaque measurement method using this solution as a stock solution of a sample for virus titer measurement.
Table 3 shows the logarithmic reduction value of the infectious titer with respect to the infectious titer before the nanoparticle of cerium oxide was allowed to act. From this result, it was found that the nanoparticles of cerium oxide of Comparative Examples 1 and 2 had no antiviral activity, and the nanoparticles of cerium oxide of Comparative Example 3 had antiviral activity. It was confirmed that the antiviral activity of the cerium oxide nanoparticles of Examples 1 to 15 was relatively higher than that of the cerium oxide nanoparticles of Comparative Example 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (11)

  1.  多価カルボン酸、および複素環式アミン骨格を有する化合物により表面が被覆された酸化セリウムのナノ粒子。 Cerium oxide nanoparticles whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton.
  2.  前記多価カルボン酸の価数が3価以上である、請求項1に記載の酸化セリウムのナノ粒子。 The cerium oxide nanoparticles according to claim 1, wherein the polyvalent carboxylic acid has a valence of trivalent or higher.
  3.  前記複素環式アミン骨格を有する化合物が、複素環式アミン骨格を主鎖または側鎖に有するビニル系ポリマーまたはポリアミドである請求項1または2に記載の酸化セリウムのナノ粒子。 The cerium oxide nanoparticles according to claim 1 or 2, wherein the compound having a heterocyclic amine skeleton is a vinyl polymer or polyamide having a heterocyclic amine skeleton in the main chain or side chain.
  4.  前記複素環式アミン骨格は、ピペラジン、ピリジン、イミダゾールまたはカルバゾールのいずれかにより構成される、請求項1~3のいずれか一つに記載の酸化セリウムのナノ粒子。 The cerium oxide nanoparticles according to any one of claims 1 to 3, wherein the heterocyclic amine skeleton is composed of any of piperazine, pyridine, imidazole or carbazole.
  5.  前記ビニル系ポリマーが、前記複素環式アミン骨格を側鎖に有するポリマーである、請求項3または4に記載の酸化セリウムのナノ粒子。 The nanoparticles of cerium oxide according to claim 3 or 4, wherein the vinyl-based polymer is a polymer having the heterocyclic amine skeleton in the side chain.
  6.  前記ポリアミドが、前記複素環式アミン骨格を主鎖に有するポリマーである、請求項3または4に記載の酸化セリウムのナノ粒子。 The nanoparticles of cerium oxide according to claim 3 or 4, wherein the polyamide is a polymer having the heterocyclic amine skeleton in the main chain.
  7.  前記複素環式アミン骨格を有する化合物が、5員環および/または6員環構造を有する単環式または二環式芳香族ヘテロ環式化合物である、請求項1または2に記載の酸化セリウムのナノ粒子。 The cerium oxide according to claim 1 or 2, wherein the compound having a heterocyclic amine skeleton is a monocyclic or bicyclic aromatic heterocyclic compound having a 5-membered ring and / or a 6-membered ring structure. Nanoparticles.
  8.  前記複素環式アミン骨格を有する化合物が、一般式(I)で表される化合物である、請求項1または2に記載の酸化セリウムのナノ粒子。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(I)中、XはNR、O、Sを示し、RおよびRは水素原子、炭素数1~4のアルキル基、炭素数1~4のヒドロキシアルキル基、炭素数1~4のアミノアルキル基、または炭素数1~4のスルホン酸アルキル基を示す。R及びRは同一であっても異なっていても良い。)
    The nanoparticles of cerium oxide according to claim 1 or 2, wherein the compound having a heterocyclic amine skeleton is a compound represented by the general formula (I).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (I), X represents NR 2 , O, S, R 1 and R 2 are hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 1 to 4 carbon atoms, and 1 to 4 carbon atoms. It indicates an aminoalkyl group of 4 or an alkyl sulfonate group having 1 to 4 carbon atoms. R 1 and R 2 may be the same or different.)
  9.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子を含む抗菌剤。 An antibacterial agent containing nanoparticles of cerium oxide according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子を含む抗ウイルス剤。 An antiviral agent containing cerium oxide nanoparticles according to any one of claims 1 to 8.
  11.  多価カルボン酸、および、複素環式アミン骨格を有する化合物により表面が被覆された酸化セリウムのナノ粒子の製造方法であって、
     多価カルボン酸、複素環式アミン骨格を有する化合物およびセリウム(III)イオンを含む溶液を調製する工程A、および前記工程Aで得られた溶液に酸化剤を添加する工程B、
     を含む、酸化セリウムのナノ粒子の製造方法。
    A method for producing nanoparticles of cerium oxide whose surface is coated with a polyvalent carboxylic acid and a compound having a heterocyclic amine skeleton.
    Step A to prepare a solution containing a polyvalent carboxylic acid, a compound having a heterocyclic amine skeleton, and cerium (III) ions, and step B to add an oxidizing agent to the solution obtained in the step A.
    A method for producing nanoparticles of cerium oxide, including.
PCT/JP2021/019961 2020-05-27 2021-05-26 Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles WO2021241626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021538742A JPWO2021241626A1 (en) 2020-05-27 2021-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-092671 2020-05-27
JP2020092671 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241626A1 true WO2021241626A1 (en) 2021-12-02

Family

ID=78744599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019961 WO2021241626A1 (en) 2020-05-27 2021-05-26 Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles

Country Status (2)

Country Link
JP (1) JPWO2021241626A1 (en)
WO (1) WO2021241626A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197195A (en) * 2011-03-18 2012-10-18 Tohoku Univ Method for modification-treating metal oxide surface in supercritical water
JP2015525228A (en) * 2012-06-13 2015-09-03 セリオン エンタープライジズ リミテッド ライアビリティ カンパニー Nanoceria for the treatment of oxidative stress
JP2017043531A (en) * 2015-01-20 2017-03-02 日揮触媒化成株式会社 Silica-based composite fine particle-dispersed liquid, method for producing the same, and slurry for polishing containing silica-based composite fine particle-dispersed liquid
JP2019081672A (en) * 2017-10-30 2019-05-30 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP2019089670A (en) * 2017-11-13 2019-06-13 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP2019127405A (en) * 2018-01-23 2019-08-01 日揮触媒化成株式会社 Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197195A (en) * 2011-03-18 2012-10-18 Tohoku Univ Method for modification-treating metal oxide surface in supercritical water
JP2015525228A (en) * 2012-06-13 2015-09-03 セリオン エンタープライジズ リミテッド ライアビリティ カンパニー Nanoceria for the treatment of oxidative stress
JP2017043531A (en) * 2015-01-20 2017-03-02 日揮触媒化成株式会社 Silica-based composite fine particle-dispersed liquid, method for producing the same, and slurry for polishing containing silica-based composite fine particle-dispersed liquid
JP2019081672A (en) * 2017-10-30 2019-05-30 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP2019089670A (en) * 2017-11-13 2019-06-13 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP2019127405A (en) * 2018-01-23 2019-08-01 日揮触媒化成株式会社 Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion

Also Published As

Publication number Publication date
JPWO2021241626A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US20050164913A1 (en) Disinfecting composition
JP2003508604A (en) Antimicrobial additives
CA2594261A1 (en) Method for transformation of conventional and commercially important polymers into durable and rechargeable antimicrobial polymeric materials
Murphy et al. Impact of thermal and biocidal treatments on lactococcal 936-type phages
Mitra et al. Scalable aqueous-based process for coating polymer and metal substrates with stable quaternized chitosan antibacterial coatings
WO2021241626A1 (en) Cerium oxide nanoparticles, antibacterial agent, antiviral agent and method for producing cerium oxide nanoparticles
Alam et al. Highly sustained release of bactericides from complex coacervates
WO2020129963A1 (en) Cerium oxide nanoparticles, method for analyzing nucleic acid, method for analyzing polypeptide, method for manufacturing cerium oxide nanoparticles, oxidizing agent, antioxidant, antifungal agent, and antiviral agent
Gentili et al. Transparent polymeric formulations effective against SARS-CoV-2 infection
JP2002544346A (en) Method for producing an endogenous microbicidal polymer surface
JPH10513376A (en) Articles, compositions and methods for cleaning surfaces by using a catalyst on the surface
US20220046912A1 (en) Biocidal polyamide-compositions, methods for preparing the same and uses thereof
JPWO2020066912A1 (en) Water-dispersible fine particles
WO2015171514A1 (en) Antimicrobial surface coatings
JP4413465B2 (en) Silver antibacterial agent
WO2002063963A1 (en) Antibacterial composition
Kenawy et al. New trends in antimicrobial polymers: a state-of-the-art review
WO2021132643A1 (en) Cerium oxide nanoparticles, dispersion, oxidant, antioxidant and method for producing cerium oxide nanoparticles
WO2021246507A1 (en) Cerium oxide nanoparticles, liquid dispersion, antioxidant agent, oxidizing agent, and method for producing cerium oxide nanoparticles
WO2021241490A1 (en) Nanoparticles of cerium oxide, dispersion including nanoparticles of cerium oxide, oxidizing agent, antiviral agent, and antibacterial agent
JP2004523563A (en) Bactericidal fluid system using antibacterial polymer
WO2023054456A1 (en) Cerium oxide nanoparticles, dispersion, antiviral agent, antimicrobial agent, resin composition, resin product, fiber material, fiber product, and method for producing cerium oxide nanoparticles
WO2021132628A1 (en) Cerium oxide nanoparticles, dispersion, oxidizing agent, antioxidant, and method for manufacturing cerium oxide nanoparticles
KR20240067898A (en) Nanoparticles of cerium oxide, dispersions, antiviral agents, antibacterial agents, resin compositions, resin products, textile materials, textile products and methods for producing nanoparticles of cerium oxide
CN117882736A (en) Compound disinfectant and preparation method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538742

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813059

Country of ref document: EP

Kind code of ref document: A1