WO2021241607A1 - Method for producing liquid crystalline resin - Google Patents

Method for producing liquid crystalline resin Download PDF

Info

Publication number
WO2021241607A1
WO2021241607A1 PCT/JP2021/019894 JP2021019894W WO2021241607A1 WO 2021241607 A1 WO2021241607 A1 WO 2021241607A1 JP 2021019894 W JP2021019894 W JP 2021019894W WO 2021241607 A1 WO2021241607 A1 WO 2021241607A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
liquid crystal
crystal resin
salt
raw material
Prior art date
Application number
PCT/JP2021/019894
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 齊藤
智之 多田
桂一 加中
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2021556780A priority Critical patent/JP7072733B1/en
Publication of WO2021241607A1 publication Critical patent/WO2021241607A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides

Definitions

  • the present invention relates to a method for producing a liquid crystal resin.
  • Liquid crystal resins represented by liquid crystal polyester resins and liquid crystal polyester amide resins are widely used in various fields because they are excellent in high fluidity, low burr property, reflow resistance and the like.
  • the liquid crystal resin is obtained by appropriately combining and selecting raw material monomers such as aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, and aromatic diol so as to obtain a liquid crystal resin having desired physical properties, and polycondensing them. Be done.
  • a mixture of raw material monomers is pre-acylated with an acylating agent (acetic anhydride or the like), and then the acylated raw material monomers are subjected to a polycondensation reaction (for example, Patent Documents 1 and 2).
  • Japanese Unexamined Patent Publication No. 2020-19866 International Publication No. 2020/026746 Japanese Unexamined Patent Publication No. 2020-19866 International Publication No. 2020/026746
  • the present inventor conducts a polycondensation reaction with at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic having one or more nitrogen atoms. It has been found that the reduction of gas generation and the improvement of the polycondensation rate can be achieved at the same time and the decrease in the brightness of the liquid crystal resin can be suppressed by carrying out in the presence of a salt with the basic compound.
  • an acid anhydride such as acetic anhydride
  • Patent Documents 1 and 2 an acid anhydride
  • acid anhydrides are expensive, there is a demand for a method for producing a liquid crystal resin at a lower cost.
  • a carboxylic acid such as acetic acid is generally cheaper than an acid anhydride, and if it can be used as an acylating agent, a liquid crystal resin can be produced at low cost.
  • the acylation reaction of the raw material monomer does not proceed sufficiently.
  • the present inventor performs the acylation reaction in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. It has been found that the acylation reaction rate of the raw material monomer can be increased even when a carboxylic acid is used as the agent.
  • a common object of the present invention is to provide a method for producing a liquid crystal resin using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. That is.
  • a further problem in the first aspect of the present invention is the production of a liquid crystal resin capable of increasing the reaction rate, suppressing the generation of gas when the liquid crystal resin is melted, and obtaining a liquid crystal resin having high brightness.
  • a further object of the second aspect of the present invention is to provide a method for producing a liquid crystal resin at a lower cost than before.
  • a liquid crystal resin comprising reacting a raw material monomer in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms.
  • Manufacturing method comprises (A) acylating the raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acidifying the raw material monomer and the carboxylic acid.
  • a method for producing a liquid crystal resin which comprises reacting at least one acidic compound having a dissociation constant pKa of 1 or less with at least one organic base compound having 1 or more nitrogen atoms in the presence of a salt (a1).
  • the first aspect of the present invention relates to the following.
  • a liquid crystal resin comprising reacting a raw material monomer in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Manufacturing method.
  • [3] The method for producing a liquid crystal resin according to [1] or [2], wherein the organic base compound constituting the salt has an amino group.
  • [4] The method for producing a liquid crystal resin according to any one of [1] to [3], wherein the acid dissociation constant pKa of the acidic compound constituting the salt is 0.65 or less.
  • [5] The method for producing a liquid crystal resin according to any one of [1] to [4], wherein the acid dissociation constant pKa of the conjugate acid of the organic base compound constituting the salt is less than 13.0.
  • [6] The method for producing a liquid crystal resin according to any one of [1] to [5], wherein the acidic compound constituting the salt contains a halogenated alkyl sulfonic acid.
  • [7] The method for producing a liquid crystal resin according to any one of [1] to [6], wherein the organic base compound constituting the salt contains a halogenated aromatic amine.
  • the second aspect of the present invention relates to the following.
  • Acylation comprises (A) acylating the raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acidifying the raw material monomer and the carboxylic acid.
  • a method for producing a liquid crystal resin which comprises reacting at least one acidic compound having a dissociation constant pKa of 1 or less with at least one organic base compound having 1 or more nitrogen atoms in the presence of a salt (a1).
  • Acylation (A) causes the reaction of the raw material monomer and the carboxylic acid (a1), and then the acid anhydride is added to the reaction solution to react the unreacted raw material monomer with the acid anhydride.
  • [3] The method for producing a liquid crystal resin according to [1] or [2], wherein the polycondensation (B) comprises polycondensing the acylated raw material monomer in the presence of the salt.
  • the amount of the acid anhydride added in (a2) of adding the acid anhydride and reacting the unreacted raw material monomer with the acid anhydride is 0.01 to 0.
  • a method for producing a liquid crystal resin using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. can.
  • a method for producing a liquid crystal resin which can increase the reaction rate, suppress the generation of gas when the liquid crystal resin is melted, and can obtain a liquid crystal resin having high brightness.
  • the raw material monomer is in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Including reacting with. More specifically, as described in Examples described later, the method for producing a liquid crystal resin according to an embodiment uses a raw material monomer, at least one acidic compound having an acid dissociation constant pKa of 1 or less, and a nitrogen atom. It comprises performing an acylation reaction and / or a polycondensation reaction in the presence of a salt with at least one organic base compound having one or more.
  • the polycondensation reaction preferably the acylation reaction and the polycondensation reaction
  • at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base having one or more nitrogen atoms It describes what to do in the presence of a salt with the compound.
  • the acylation reaction preferably the acylation reaction and the polycondensation reaction
  • the raw material monomer is in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Including reacting with.
  • the polycondensation rate can be increased and gas such as carbon dioxide is generated when the liquid crystal resin is melted. Can be further reduced than before.
  • the liquid crystal resin can be produced in a shorter time than before, and the cost can be reduced. Since the generation of gas when the liquid crystal resin is melted can be further reduced, the swelling (blister) of the molded product due to the generated gas can be suppressed. Since it is possible to prevent a decrease in the brightness of the liquid crystal resin, it is possible to produce a liquid crystal resin that gives a molded product having an excellent appearance.
  • Liquid crystal means having a property of being able to form an optically anisotropic molten phase.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope.
  • a resin having liquid crystallinity normally transmits polarized light even in a molten stationary state when inspected between orthogonal polarizing elements, and exhibits optical anisotropy.
  • the raw material monomer preferably contains at least one compound selected from the group consisting of aromatic hydroxycarboxylic acids and polymerizable derivatives thereof.
  • the aromatic hydroxycarboxylic acid and its polymerizable derivative are not particularly limited, and are, for example, p-hydroxybenzoic acid (4-hydroxybenzoic acid: HBA), 6-hydroxy-2-naphthoic acid, m-hydroxybenzoic acid.
  • the raw material monomer further preferably satisfies the following (1) or (2).
  • the alicyclic dicarboxylic acid is not particularly limited, and examples thereof include 1,4-cyclohexanedicarboxylic acid and 1,3-cyclopentanedicarboxylic acid.
  • the polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
  • the aromatic diol is not particularly limited, and is, for example, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl (BP), hydroquinone, resorcin, represented by the following general formula (II). Examples thereof include compounds represented by the following general formula (III).
  • the alicyclic diol is not particularly limited, and examples thereof include 1,4-cyclohexanedimethanol and 1,4-cyclohexanediol.
  • the polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
  • the aromatic hydroxyamine is not particularly limited, and examples thereof include p-aminophenol and m-aminophenol.
  • the alicyclic hydroxyamine is not particularly limited, and examples thereof include 4-hydroxycyclohexanecarboxylic acid and 3-hydroxycyclopentanecarboxylic acid.
  • the polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
  • Examples of the aromatic diamine include p-phenylenediamine and the like.
  • the alicyclic diamine is not particularly limited, and examples thereof include 1,4-cyclohexanediamine and 1,3-cyclopentanediamine.
  • the polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
  • raw material monomers include, for example, (I) (a) Containing or containing at least one compound selected from the group consisting of aromatic hydroxycarboxylic acids and polymerizable derivatives thereof. (II) A group consisting of at least one compound selected from the group consisting of (a) aromatic hydroxycarboxylic acid and a polymerizable derivative thereof, and (b) a group consisting of an aromatic or alicyclic dicarboxylic acid and a polymerizable derivative thereof. At least one compound selected from, and (c) at least one compound selected from the group consisting of aromatic or alicyclic diols, aromatic hydroxyamines, aromatic diamines, and polymerizable derivatives thereof. Can be a combination including. Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
  • the above-mentioned raw material monomer is preferably subjected to an acylation reaction described later, and then referred to as at least one acidic compound having an acid dissociation constant pKa of 1 or less (hereinafter, also simply referred to as “acid compound”).
  • a polycondensation reaction is carried out by melt polymerization in the presence of a salt with at least one organic base compound having one or more nitrogen atoms (hereinafter, also simply referred to as “organic base compound”).
  • organic base compound organic base compound having one or more nitrogen atoms
  • the salt of the acidic compound and the organic base compound is composed of an anion of the acidic compound and a cation of the organic base compound.
  • the salt in addition to using the salt itself, the salt may be formed by coexisting the acidic compound and the organic base compound in the reaction system.
  • the acidic compound and the organic base compound can form a salt by an acid-base reaction in the reaction system.
  • the acidic compound (anionic component) has an acid dissociation constant pKa of 1 or less, preferably 0.65 or less, more preferably -14.0 to 0.65, and further preferably -14.0 to-. It is 2.0. If the acid dissociation constant pKa of the acidic compound exceeds 1, the effect of improving the polycondensation reaction rate may decrease, which is not preferable.
  • the above pKa means pKa in an aqueous solution at 25 ° C.
  • the acidic compounds, organic acid compounds include, for example, a sulfonic acid group (-SO 3 H), a sulfonyl group (-SO 2 -) organic acid compounds having at least one one or more functional groups selected from the listed , One or more selected from these can be used. That is, the salt preferably contains one or more anion components selected from sulfonic acid anions and sulfonylimide anions. In one embodiment, the acidic compound has a sulfonic acid group.
  • the acidic compound preferably contains a sulfonic acid in terms of acidity or ease of handling at room temperature.
  • the sulfonic acid include an alkyl sulfonic acid which may have a substituent and an aryl sulfonic acid which may have a substituent.
  • the alkyl sulfonic acid include methane sulfonic acid (pKa: -2.6) and the like.
  • aryl sulfonic acid examples include benzene sulfonic acid (pKa: 0.7), p-toluene sulfonic acid (pKa: -2.8), naphthalene sulfonic acid (pKa: 0.17), and dodecylbenzene sulfonic acid (pKa). : -0.45), 1.3-benzenedisulfonic acid (pKa: -1.4) and the like.
  • the acidic compound preferably contains a halogenated sulfonic acid and / or a halogenated alkyl sulfonic acid in terms of adjusting the acidity or lowering the boiling point.
  • halogenated sulfonic acid and / or the halogenated alkyl sulfonic acid examples include fluorosulfonic acid (pKa: -10), difluoromethanesulfonic acid (pKa: -2.0), and trifluoromethanesulfonic acid (pKa: -14.0).
  • fluorosulfonic acid pKa: -10
  • difluoromethanesulfonic acid pKa: -2.0
  • trifluoromethanesulfonic acid pKa: -14.0
  • Perfluorobutane sulfonic acid pKa: -13.2
  • perfluorohexane sulfonic acid pKa: -12.3
  • trifluoromethanesulfonic acid is most preferable.
  • the acidic compound comprises a halogenated alkyl sulfonic acid.
  • a compound capable of generating the acidic compound anion in the reaction system in addition to using the acidic compound as it is (or using the salt of the acidic compound and an organic base compound described later as it is), a compound capable of generating the acidic compound anion in the reaction system. Can be used. By generating the acidic compound in the reaction system, the same effect as the effect when the acidic compound (or the salt of the acidic compound and the organic base compound) can be obtained can be obtained.
  • Compounds that can generate an organic acid compound having at least one sulfonic acid group in the reaction system include mono, di or trifluoromethanesulfonic acid trimethylsilyl, mono, di or trifluoromethanesulfonic acid tert-butylsilyl, mono, di or trifluo. Examples thereof include lomethanesulfonyl halide and trifluoromethanesulfonic acid metal salt. These compounds can generate mono, di or trifluoromethanesulfonic acid anions in the reaction system due to the presence of carboxylic acid or heating.
  • the organic base compound is a compound that generates an organic onium cation and has one or more nitrogen atoms. That is, the salt contains at least a nitrogen cation.
  • the organic base compound (cationic component) preferably has an acid dissociation constant pKa of the conjugate acid of less than 13.0, preferably -10.0 to 8.0, in terms of the basicity of the organic base compound. Is more preferable, and ⁇ 8.0 to 6.0 is even more preferable.
  • the acid dissociation constant pKa of the conjugate acid of the organic base compound means pKa in an aqueous solution at 25 ° C.
  • Examples of the organic base compound having one or more nitrogen atoms include alkylamines, aromatic amines, alicyclic amines, nitrogen-containing heterocyclic compounds and the like, which may have a substituent. That is, the salt has an alkylammonium cation that may have a substituent, an aromatic ammonium cation that may have a substituent, an alicyclic ammonium cation that may have a substituent, and a substituent.
  • a nitrogen-containing heterocyclic compound may contain one or more selected from cations.
  • alkylamine examples include N, N-diisopropylethylamine (acid dissociation constant of conjugated acid pKa: 11.0), trimethylamine (acid dissociation constant of conjugated acid pKa: 9.8), and triethylamine (acid dissociation constant of conjugated acid pKa:: 10.8) and the like.
  • aromatic amine examples include diphenylamine (acid dissociation constant of conjugated acid pKa: 0.7), aniline (acid dissociation constant of conjugated acid pKa: 4.6), and triphenylamine (acid dissociation constant of conjugated acid pKa: -3). .0) and the like.
  • Examples of the alicyclic amine include cyclopentylamine (acid dissociation constant of conjugated acid pKa: 10.7), cyclohexylamine (acid dissociation constant of conjugated acid pKa: 10.7) and the like.
  • Examples of the nitrogen-containing heterocyclic compound include 2,5-dimethylpyrrolidine (acid dissociation constant of conjugated acid pKa: 11.4), N, N-dimethylpiperazine (acid dissociation constant of conjugated acid pKa: 4.6), N-.
  • Methylmorpholin (acid dissociation constant of conjugated acid pKa: 7.38), N-acetylmorpholin (acid dissociation constant of conjugated acid pKa: -0.7), dimethylaminopyridine-N-oxide / hydrate (of conjugated acid) Acid dissociation constant pKa: 3.9), N, N-dimethyl-4-aminopyridine (DMAP, acid dissociation constant of conjugated acid pKa: 9.7), 4-methoxypyridine-N-oxide (MPO, (conjugated acid) Acid dissociation constant pKa: 2.3) and the like.
  • DMAP acid dissociation constant of conjugated acid pKa: 9.7
  • MPO 4-methoxypyridine-N-oxide
  • the organic base compound preferably has an amino group in terms of basicity, and more preferably contains a halogenated aromatic amine in terms of adjusting the acid dissociation constant pKa of the conjugate acid or lowering the boiling point.
  • the halogenated aromatic amine include pentafluoroaniline (acid dissociation constant of conjugated acid pKa: ⁇ 0.16), 2-fluoropyridine (acid dissociation constant of conjugated acid pKa: ⁇ 0.44) and the like.
  • the organic base compound preferably contains one or more selected from diphenylamine and pentafluoroaniline. That is, the salt preferably contains one or more selected from a diphenylammonium cation, a pentafluoroanillium cation, and a 2-fluorodimethylaminopyridinium cation.
  • salt of the acidic compound and the organic base compound include, for example, the following compounds:
  • the salts of the acidic compound and the organic base compound are the above-mentioned (pentafluorophenyl) ammonium trifluoromethanesulfonate (PFBAT), (pentafluorophenyl) ammonium bis (trifluoromethanesulfonyl) imide and diphenylammonium trifluoromethanesulfonate (DPAT). It is preferable to include 1 or more selected from. It is preferable to use the above-mentioned salt of the acidic compound and the organic base compound as a catalyst in the polycondensation reaction step.
  • the amount of the salt added to the acidic compound and the organic base compound is not particularly limited as long as it does not adversely affect acylation or polycondensation, but is generally based on the theoretical yield of the liquid liquid resin obtained. It is preferably 50 to 5000 ppm, more preferably 100 to 3000 ppm.
  • the amount of the acidic compound and the organic base compound added when the salt of the acidic compound and the organic base compound is generated by coexisting the acidic compound and the organic base compound in the reaction system is, for example, the acidic compound (or in the reaction system).
  • the addition amount of (a compound capable of generating an acidic compound) is [(molecular weight of acidic compound / molecular weight of produced salt) ⁇ 50] to [(molecular weight of acidic compound / molecular weight of produced salt) ⁇ 5000] ppm.
  • the amount of the organic base compound added is preferably 0.8 to 1.2 equivalents with respect to the acid moiety of the acidic compound, and 0.9 to 1 with respect to the acid moiety of the acidic compound. More preferably, it is 1 equivalent.
  • the temperature for polycondensation is preferably, for example, 200 to 400 ° C, more preferably 240 to 380 ° C.
  • the reaction time is not particularly limited, and is preferably, for example, 4 to 14 hours, more preferably 6 to 10 hours.
  • the number average degree of polymerization at 260 ° C. is preferably 2.5 or more, and more preferably 3.0 or more.
  • the reaction rate (polycondensation rate) is increased and the liquid crystal resin can be produced in a short time.
  • the number average degree of polymerization is a value calculated from the amount of distillate of acetic acid produced as a by-product in the polycondensation reaction process.
  • acylation reaction step In the production method of the present embodiment, a step of acylating the raw material monomer with an acylating agent can be provided before the polycondensation reaction described above.
  • the acylation is characterized in that a liquid crystal resin is produced in a shorter time, and the above-mentioned catalyst (at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms) is used. It is preferable to carry out in the presence of (salt) with.
  • acylating agent examples include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric acid anhydride, pivalic anhydride, 2-ethylhexanoic acid anhydride, monochloroacetic anhydride, dichloroacetic acid anhydride, trichloracetic anhydride, and monobromoacetic acid anhydride.
  • the amount of the acylating agent used is preferably 1.0 to 1.1 equivalents, preferably 1.01 to 1.05 equivalents, based on the total amount of hydroxyl groups of the substance used in the reaction, in terms of ease of reaction control. Is more preferable.
  • Acylation can be performed by a known method.
  • the raw material monomer is mixed with an acylating agent and heated in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours for an acylation reaction to obtain a reaction product containing an acylated product.
  • the production method of the present embodiment may further include a step of solid-phase polymerization of the resin obtained in the melt polymerization step (the above-mentioned polycondensation reaction step).
  • the molecular weight of the raw material resin can be increased, and a liquid crystal resin having excellent strength and heat resistance can be obtained.
  • Solid phase polymerization For solid phase polymerization, a conventionally known method can be used. For example, it can be carried out by heating under reduced pressure or vacuum in an inert gas stream such as nitrogen gas at a temperature 10 to 120 ° C. lower than the liquid crystal forming temperature of the raw material resin. Since the melting point of the liquid crystal resin increases as the solid phase polymerization progresses, it is possible to carry out the solid phase polymerization at a temperature equal to or higher than the original melting point of the raw material resin.
  • the solid phase polymerization may be carried out at a constant temperature or may be gradually heated to a high temperature.
  • the heating method is not particularly limited, and microwave heating, heater heating, or the like can be used.
  • the liquid crystal resin obtained by the production method of the present embodiment preferably contains at least one selected from liquid crystal polyester and liquid crystal polyester amide.
  • the liquid crystal polyester and the liquid crystal polyester amide are not particularly limited, but are preferably aromatic polyester or aromatic polyester amide, and are repeating units derived from one or more of aromatic hydroxycarboxylic acid and its derivatives. It is particularly preferable that it is an aromatic polyester or an aromatic polyester amide having the above as a constituent component. Further, it may be a polyester which partially contains an aromatic polyester or an aromatic polyester amide in the same molecular chain.
  • Polyester mainly composed of (a) one or more kinds of aromatic hydroxycarboxylic acids and derivatives thereof; (2) Mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. Polyester consisting of; (3) Mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or more of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and derivatives thereof.
  • a polyester amide consisting of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and one or more of their derivatives; (5) Mainly (a) one or more kinds of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or more kinds of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. , (C1) one or more of aromatic hydroxyamines, aromatic diamines, and their derivatives, and (c2) one or more of aromatic diols, alicyclic diols, and their derivatives. Examples thereof include a polyester amide composed of.
  • the molecular weight (number average molecular weight Mn) of the liquid crystal resin is not particularly limited, and the resin obtained in the melt polymerization step (polycondensation reaction step) is preferably 10,000 to 100,000, preferably 15,000 to 80,000. Is more preferable.
  • the resin obtained in the solid phase polymerization step is preferably 12,000 to 120,000, more preferably 15,000 to 100,000.
  • the number average molecular weight Mn can be measured by gel permeation chromatography.
  • the melting point of the liquid crystal resin is not particularly limited and can be 250 to 380 ° C.
  • the melt viscosity of the liquid crystal resin is not particularly limited, and the resin obtained by melt polymerization (polycondensation reaction step) has a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1 .
  • the measured melt viscosity is preferably 5 Pa ⁇ s or more and 150 Pa ⁇ s or less, and more preferably 10 Pa ⁇ s or more and 100 Pa ⁇ s or less.
  • the resin obtained by performing the solid phase polymerization step has a melt viscosity of 5 Pa ⁇ s or more and 200 Pa ⁇ s or less measured at a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1. It is preferable, and more preferably, it is 10 Pa ⁇ s or more and 150 Pa ⁇ s or less.
  • “Cylinder temperature 10 to 30 ° C higher than the melting point of the liquid crystal resin” means the cylinder temperature at which the liquid crystal resin can be melted to the extent that the melt viscosity can be measured, and is several degrees Celsius higher than the melting point. Whether to set the cylinder temperature high depends on the type of raw material resin in the range of 10 to 30 ° C.
  • the liquid crystal resin can be in the form of a powder or granular material mixture, or can be in the form of a melt mixture (melt kneaded product) such as pellets.
  • Mass%) is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.8% by mass or less.
  • the weight reduction amount (mass%) is 1.2% by mass or less, the amount of gas generated at the time of melting is small, so that the swelling (blister) of the molded product due to the generated gas can be suppressed.
  • the liquid crystal resin preferably has an L * value of 70 or more, preferably 80 or more, of the powdery granular liquid crystal resin (size: 100 to 200 ⁇ m) measured by a spectrocolorimeter so as not to impair the appearance of the molded product. Is more preferable.
  • Second Embodiment in the second embodiment, particularly in the acylation reaction step, in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. It is essential to do it in.
  • the polycondensation reaction step is also preferably carried out in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having 1 or more nitrogen atoms.
  • the method for producing a liquid crystal resin includes (A) acylating a raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acylating.
  • the reaction of the raw material monomer and the carboxylic acid in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms (a1). include.
  • "Liquid crystallinity" is as described in the first embodiment. Since the raw material monomer is the same as that in the first embodiment, the description thereof is omitted here.
  • acylation reaction step (A) In the production method of the present embodiment, a step of acylating the raw material monomer is provided before the polycondensation reaction step of polycondensing the raw material monomer.
  • the raw material monomer and the carboxylic acid have at least one acidic compound having an acid dissociation constant pKa of 1 or less (hereinafter, also simply referred to as “acidic compound”) and one or more nitrogen atoms.
  • it comprises a step (a1) of reacting with at least one organic base compound (hereinafter, also simply referred to as “organic base compound”) in the presence of a salt (hereinafter, also simply referred to as “step (a1)”).
  • the acylation reaction step (A) includes the step (a1) of using the salt of the acidic compound and the organic base compound described above. It was found that the acylation reaction rate of the raw material monomer can be increased even when a carboxylic acid such as the above is used. As a result, at least a part of the acid anhydride conventionally used as an acylating agent can be changed to a carboxylic acid, and a liquid crystal resin can be produced at a lower cost than the conventional one.
  • the salt of the acidic compound and the organic base compound is considered to have an action as a catalyst for the acylation reaction.
  • carboxylic acid examples include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, pivalic acid, 2-ethylhexanoic acid, monochloroacetic acid, dichloroacetic acid, trichloracetic acid, monobromoacetic acid, dibromoacetic acid, tribromoacetic acid, and monofluoroacetic acid.
  • Difluoroacetic acid, trifluoroacetic acid, glutaric acid, maleic acid, succinic acid, ⁇ -bromopropionic acid and the like are not particularly limited. At least one selected from these can be used.
  • carboxylic acids selected from acetic acid, propionic acid, butyric acid, isobutyric acid and the like. Above all, it is more preferable to contain acetic acid in terms of easy availability.
  • the amount of the carboxylic acid added in the step (a1) of reacting the raw material monomer with the carboxylic acid is preferably 0.01 to 1000 equivalents, preferably 0.1 to 500 equivalents, relative to the hydroxyl group of the raw material monomer. Is more preferable, and it is further preferable that the amount is 1 to 100 equivalents.
  • the acylation method is a known method except that a catalyst described later (a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms) is used. Can be done based on.
  • the raw material monomer is mixed with a carboxylic acid and a catalyst described later, and heated in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours for an acylation reaction to obtain a reaction product containing an acylated product.
  • step (a2) (hereinafter, also simply referred to as “step (a2)”. ”In step (a2), the unreacted raw material monomer is acylated after the reaction of step (a1).
  • the step (a1) of reacting the raw material monomer with the carboxylic acid is referred to as a "first acylation reaction step”
  • an acid anhydride is added to react the unreacted raw material monomer with the acid anhydride.
  • A2) can be referred to as a "second acylation reaction step”.
  • the acylation of the raw material monomer can be achieved more efficiently than in the case of only the first acylation reaction step (step (a1)).
  • the carboxylic acid used in the first acylation reaction step (step (a1)) the amount thereof added, and the acylation method are as described above, the description thereof is omitted here.
  • anhydrous acetic acid anhydrous propionic acid, anhydrous butyric acid, anhydrous isobutyric acid, anhydrous valeric acid, anhydrous pivalic acid, anhydrous 2-ethylhexanoic acid, anhydrous monochloroacetic acid, anhydrous dichloracetic acid, anhydrous Trichloracetic acid, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, ⁇ -bromopropionic anhydride, etc.
  • At least one selected from these can be used. From the viewpoint of price and handleability, it is preferable to contain one or more anhydrous carboxylic acids selected from acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride and the like. Above all, it is more preferable to contain acetic anhydride from the viewpoint of easy availability.
  • the amount of the acid anhydride added in the step (a2) is preferably 0.01 to 0.99 equivalents, more preferably 0.01 to 0.90 equivalents, relative to the hydroxyl group of the raw material monomer. It is more preferably 0.01 to 0.85 equivalent.
  • the amount is larger than the amount used in the conventional acylation reaction step (for example, 1.00 to 1.10 equivalents).
  • the amount of acid anhydride added can be reduced. As a result, the liquid crystal resin can be manufactured at a lower cost than before.
  • the acylation in the step (a2) is performed by using a catalyst described later (a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms). It can be performed based on a known method. For example, an acid anhydride is added to the reaction solution (including the catalyst) of the first acylation reaction step (a1), and the reaction is not reacted by further heating in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours. The raw material monomer of the above is acylated to obtain a reaction product containing an acylated product.
  • a catalyst described later a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. It can be performed based on a known method. For example, an acid anhydride is added to the reaction solution (including the catalyst) of the first acylation reaction step (a1),
  • the acylation reaction rate of the raw material monomer after the step (a1) is preferably 5% or more, and more preferably 10% or more. When the acylation reaction rate is 5% or more, the liquid crystal resin can be produced more efficiently.
  • the acylation reaction rate of the raw material monomer after the step (a2) is preferably 90% or more, more preferably 95% or more.
  • the acylation reaction rate shall be a value measured by a nuclear magnetic resonance apparatus (1 H-NMR).
  • the salt of the acidic compound and the organic base compound is composed of an anion of the acidic compound and a cation of the organic base compound.
  • the salt of the acidic compound and the organic base compound in addition to using the salt itself, the salt may be formed by coexisting the acidic compound and the organic base compound in the reaction system.
  • the acidic compound and the organic base compound can form a salt by an acid-base reaction in the reaction system.
  • the acidic compound (anionic component) has an acid dissociation constant pKa of 1 or less, preferably 0.65 or less, more preferably -14.0 to 0.65, and further preferably -14.0 to-. It is 2.0. If the acid dissociation constant pKa of the acidic compound exceeds 1, the effect of improving the acylation reaction rate may decrease, or the effect of improving the polycondensation reaction rate in the polycondensation reaction step described later may decrease, which is not preferable.
  • the above pKa means pKa in an aqueous solution at 25 ° C. Since the example of the acidic compound is the same as the compound described in the first embodiment, the description thereof is omitted here.
  • the organic base compound is a compound that generates an organic onium cation and has one or more nitrogen atoms. That is, the salt contains at least a nitrogen cation.
  • the organic base compound (cationic component) preferably has an acid dissociation constant pKa of the conjugate acid of less than 13.0, preferably -10.0 to 8.0, in terms of the basicity of the organic base compound. Is more preferable, and ⁇ 8.0 to 6.0 is even more preferable.
  • the acid dissociation constant pKa of the conjugate acid of the organic base compound means pKa in an aqueous solution at 25 ° C.
  • the examples of the "organic base compound” and the examples of “salt of an acidic compound and an organic base compound” are the same as the compounds and salts described in the first embodiment, the description thereof will be omitted here. It is preferable to use the above-mentioned salt of the acidic compound and the organic base compound as a catalyst in the acylation reaction step, preferably as a catalyst in the acylation reaction step and the polycondensation reaction step.
  • the amount of the salt added to the acidic compound and the organic base compound is not particularly limited as long as it does not adversely affect acylation and polycondensation described later, but is generally based on the theoretical yield of a liquid liquid resin obtained. It is preferably 50 to 5000 ppm, and more preferably 100 to 3000 ppm.
  • the amount of the acidic compound and the organic base compound added when the salt of the acidic compound and the organic base compound is generated by coexisting the acidic compound and the organic base compound in the reaction system is, for example, the acidic compound (or in the reaction system).
  • the addition amount of (a compound capable of generating an acidic compound) is [(molecular weight of acidic compound / molecular weight of produced salt) ⁇ 50] to [(molecular weight of acidic compound / molecular weight of produced salt) ⁇ 5000] ppm.
  • the amount of the organic base compound (or the compound capable of generating the organic base compound in the reaction system) is preferably 0.8 to 1.2 equivalents of the base moiety with respect to the acid moiety of the acidic compound, and the acidic compound. It is more preferable that the base moiety is 0.9 to 1.1 equivalents with respect to the acid moiety of.
  • the acylated raw material monomer is preferably the catalyst used in the acylation reaction step (A) (at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one having one or more nitrogen atoms.
  • a polycondensation reaction is carried out by melt polymerization.
  • the temperature for polycondensation is preferably, for example, 200 to 400 ° C, more preferably 240 to 380 ° C.
  • the reaction time is not particularly limited, and is preferably, for example, 4 to 14 hours, more preferably 6 to 10 hours.
  • the liquid crystal resin can be produced in high yield even if the amount of acid anhydride is reduced. That is, the liquid crystal resin can be produced in a high yield of 90% or more, 95% or more, or 98% or more at low cost.
  • the production method of the present embodiment may further include a step of solid-phase polymerization of the resin obtained in the melt polymerization step (the above-mentioned polycondensation reaction step).
  • the molecular weight of the raw material resin can be increased, and a liquid crystal resin having excellent strength and heat resistance can be obtained. Since the method of solid-phase polymerization is the same as that of the first embodiment, the description thereof is omitted here.
  • the liquid crystal resin obtained by the production method of the present embodiment preferably contains at least one selected from liquid crystal polyester and liquid crystal polyester amide.
  • the liquid crystal polyester and the liquid crystal polyester amide include the same as those exemplified in the first embodiment.
  • the molecular weight (number average molecular weight Mn) and melting point of the liquid crystal resin are the same as those in the first embodiment.
  • Mass% is preferably 0.8% by mass or less, and more preferably 0.6% by mass or less.
  • mass reduction amount is 0.8% by mass or less, the amount of gas generated at the time of melting is small, so that the swelling (blister) of the molded product due to the generated gas can be suppressed.
  • a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms is used as a catalyst in the polycondensation reaction. Therefore, it is possible to increase the reaction rate, suppress the generation of gas when the liquid crystal resin is melted, and obtain a liquid crystal resin having high brightness.
  • a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms is used as a catalyst in the acylation reaction. Therefore, it is possible to provide a method for producing a liquid crystal resin at a lower cost than before.
  • Example 1 After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 3 hours (acyllation reaction step). Then, the temperature is further raised to 360 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Polycondensation was performed (polycondensation reaction step).
  • Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 45 mg (150 ppm) of potassium acetate (manufactured by Kanto Chemical Co., Inc.) was used instead of PFBAT.
  • Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 81 mg (270 ppm) of pentafluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of PFBAT.
  • the production method of the examples can achieve both improvement of the reaction rate and suppression of the amount of gas generated when the liquid crystal resin is melted, and can obtain a liquid crystal resin having high brightness. Understandable.
  • Comparative Example 1 using potassium acetate as a catalyst has the same number average degree of polymerization at 260 ° C. as that of Comparative Example 2 having no catalyst, so that the effect of improving the reaction rate is not observed and the liquid crystal resin has no effect.
  • the amount of gas generated during melting was large.
  • Comparative Example 3 in which the acidic compound was used alone as the catalyst, the reaction rate was increased, but the amount of gas generated when the liquid crystal resin was melted was larger than that in the example, and the brightness of the liquid crystal resin was higher. It was low.
  • Comparative Example 4 In Comparative Example 4 in which the organic base compound was used alone as the catalyst, the amount of gas generated when the liquid crystal resin was melted and the decrease in the brightness of the liquid crystal resin could be suppressed, but the reaction rate could not be improved. could not.
  • Comparative Example 5 in which an acidic compound having a pKa greater than 1 and a basic compound were used as catalysts, the amount of gas generated when the liquid crystal resin was melted could be suppressed, but the effect of improving the reaction rate was not observed, and the effect of improving the reaction rate was not observed. The brightness of the liquid crystal resin was low.
  • Example 2-1 After charging the following raw materials excluding acetic anhydride into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 3 hours (first acylation reaction step). Then, acetic anhydride was added while maintaining the temperature at 140 ° C., and the mixture was reacted for 1 hour (second acylation reaction step). Further, the temperature was raised to 325 ° C. over 3.5 hours, and then the pressure was reduced to 10 Torr (that is, 1330 Pa) over 15 minutes, and polycondensation was performed while distilling acetic acid and other low boiling points (heavy). Condensation reaction step).
  • Example 2-1 Liquid crystal resin pellets were obtained in the same manner as in Example 2-1 except that 37 mg (740 ppm) of potassium acetate (manufactured by Kanto Chemical Co., Inc.) was used instead of PFBAT. The yield of the obtained liquid crystal resin was 86%.
  • [Acylation (acetylation) reaction rate] 0.5 mL of DMSO-d 6 was added to 10 mg of the sample sampled during the acylation reaction in the first acylation reaction step and the second acylation reaction step to dissolve the sample.
  • the obtained solution was transferred to a glass sample tube, 1 H-NMR measurement was performed with a nuclear magnetic resonance apparatus (NMR, manufactured by Bluker), and the aromatic ring 3-position proton of the unreacted monomer and the acylated (acetylated) monomer were performed.
  • the integrated value of the proton at the 3-position of the aromatic ring was obtained, and the acylation reaction rate was calculated by the following formula.
  • Acetylation reaction rate (%) [(integral value of protons of acetylated monomer) / ((integrated value of protons of unreacted monomer) + (integrated value of protons of acetylated monomer))] ⁇ 100
  • acylation performed using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having 1 or more nitrogen atoms as a catalyst.
  • the acylation (acetylation) reaction rate of the step (a1) using acetic acid as an acylating agent is high, and the acylation reaction rate of the raw material monomer is reduced even if the amount of anhydrous acetic acid used in the step (a2) is reduced.
  • a liquid crystal resin could be produced in a high yield.
  • Comparative Example 2-1 using potassium acetate as a catalyst has a low acylation reaction rate in the step (a1) using acetic acid as an acylating agent, and the amount of acetic anhydride used in the step (a2).
  • the amount was reduced from the conventional amount, the acylation reaction rate of the raw material monomer was not sufficient, and the liquid crystal resin could not be produced in high yield.
  • the amount of gas generated when the liquid crystal resin was melted was large.
  • Comparative Example 2-2 in which no catalyst was used although the amount of gas generated when the liquid crystal resin was melted was small, the acylation reaction rate in the step (a1) using acetic anhydride as the acylating agent was high. It was low, and when the amount of acetic anhydride used in the step (a2) was reduced from the conventional amount, the acylation reaction rate of the raw material monomer was not sufficient, and the liquid crystal resin could not be produced in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyamides (AREA)

Abstract

[Problem] To provide a method for producing a liquid crystalline resin, said method using a salt of at least one acidic compound that has an acid dissociation constant pKa of 1 or less and at least one organic base compound that has one or more nitrogen atoms. The first embodiment of the present invention further addresses the problem of providing a method for producing a liquid crystalline resin, said method being capable of increasing the reaction rate, while suppressing the generation of a gas during melting of a liquid crystalline resin and enabling the achievement of a liquid crystalline resin that has high brightness. The second embodiment of the present invention further addresses the problem of providing a method by which a liquid crystalline resin is produced at a lower cost than ever before. [Solution] A method for producing a liquid crystalline resin, said method comprising a process wherein a starting material monomer is reacted in the presence of a salt of at least one acidic compound that has an acid dissociation constant pKa of 1 or less and at least one organic base compound that has one or more nitrogen atoms.

Description

液晶性樹脂の製造方法Liquid crystal resin manufacturing method
 本発明は、液晶性樹脂の製造方法に関する。 The present invention relates to a method for producing a liquid crystal resin.
 液晶性ポリエステル樹脂及び液晶性ポリエステルアミド樹脂に代表される液晶性樹脂は、高流動性、低バリ性、耐リフロー性等に優れるため、種々の分野で広く用いられている。液晶性樹脂は、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール等の原料モノマーを、所望の物性の液晶性樹脂が得られるように適宜組み合わせて選択し、それらを重縮合して得られる。実際には、原料モノマーの混合物をアシル化剤(無水酢酸等)で予めアシル化し、その後、アシル化された原料モノマーを重縮合反応させるのが一般的である(例えば特許文献1,2)。
特開2020-19866号公報 国際公開第2020/026746号
Liquid crystal resins represented by liquid crystal polyester resins and liquid crystal polyester amide resins are widely used in various fields because they are excellent in high fluidity, low burr property, reflow resistance and the like. The liquid crystal resin is obtained by appropriately combining and selecting raw material monomers such as aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, and aromatic diol so as to obtain a liquid crystal resin having desired physical properties, and polycondensing them. Be done. In practice, it is common that a mixture of raw material monomers is pre-acylated with an acylating agent (acetic anhydride or the like), and then the acylated raw material monomers are subjected to a polycondensation reaction (for example, Patent Documents 1 and 2).
Japanese Unexamined Patent Publication No. 2020-19866 International Publication No. 2020/026746
 液晶性樹脂の製造に際し、重縮合反応の速度を向上させるため、例えば酢酸カリウムなどの種々の触媒が使用される。しかし、酢酸カリウムを使用すると、反応中にガスの発生が多くなる傾向にある。これは、塩基性たる酢酸カリウムの存在により、液晶性樹脂の末端のカルボキシ基(-COOH)が、カルボン酸イオン(-COO-)になることで活性化され、炭酸ガスとして脱離しやすくなるためと考えられる。一方、炭酸ガスの発生を抑えることのみを考えれば、重縮合反応を無触媒で行えばよいが、無触媒の場合、当然ながら重縮合速度を向上させることができない。
 ガスの発生の低減と重縮合速度の向上との両立を図る技術として、酸触媒を用いた酸性条件下で重縮合反応を行う技術がある(例えば特許文献1,2)。
In the production of the liquid crystal resin, various catalysts such as potassium acetate are used in order to improve the rate of the polycondensation reaction. However, the use of potassium acetate tends to generate more gas during the reaction. This is because the presence of potassium acetate, which is a basic substance, activates the carboxy group (-COOH) at the end of the liquid crystal resin by becoming a carboxylic acid ion (-COO-), which facilitates desorption as carbonic acid gas. it is conceivable that. On the other hand, the polycondensation reaction may be carried out without a catalyst only in consideration of suppressing the generation of carbon dioxide gas, but in the case of no catalyst, the polycondensation rate cannot be improved as a matter of course.
As a technique for achieving both reduction of gas generation and improvement of polycondensation rate, there is a technique of performing a polycondensation reaction under acidic conditions using an acid catalyst (for example, Patent Documents 1 and 2).
 本発明者は、従来の技術をさらに向上させるため鋭意研究を進める過程で、重縮合反応を、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことで、ガスの発生の低減と重縮合速度の向上との両立ができ、かつ液晶性樹脂の明度の低下を抑制することができることを見出した。 In the process of diligent research to further improve the conventional technique, the present inventor conducts a polycondensation reaction with at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic having one or more nitrogen atoms. It has been found that the reduction of gas generation and the improvement of the polycondensation rate can be achieved at the same time and the decrease in the brightness of the liquid crystal resin can be suppressed by carrying out in the presence of a salt with the basic compound.
 また、従来アシル化剤としては、一般的に無水酢酸等の酸無水物が用いられている(例えば特許文献1,2)。しかし、酸無水物は高価であるため、より低コストで液晶性樹脂を製造する方法が求められている。例えば、酢酸等のカルボン酸は一般的に酸無水物よりも価格が安いため、これをアシル化剤として用いることができれば低コストで液晶性樹脂を製造することが可能となる。しかし、カルボン酸を用いた場合は原料モノマーのアシル化反応が十分に進まない。
 本発明者は、アシル化反応を、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことで、アシル化剤としてカルボン酸を用いた場合でも原料モノマーのアシル化反応率を高められることを見出した。
Further, as a conventional acylating agent, an acid anhydride such as acetic anhydride is generally used (for example, Patent Documents 1 and 2). However, since acid anhydrides are expensive, there is a demand for a method for producing a liquid crystal resin at a lower cost. For example, a carboxylic acid such as acetic acid is generally cheaper than an acid anhydride, and if it can be used as an acylating agent, a liquid crystal resin can be produced at low cost. However, when a carboxylic acid is used, the acylation reaction of the raw material monomer does not proceed sufficiently.
The present inventor performs the acylation reaction in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. It has been found that the acylation reaction rate of the raw material monomer can be increased even when a carboxylic acid is used as the agent.
 本発明の共通の課題は、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩を用いた液晶性樹脂の製造方法を提供することである。
 本発明の第1態様におけるさらなる課題は、反応速度を高めるとともに液晶性樹脂の溶融時のガスの発生を抑制することができ、かつ明度が高い液晶性樹脂を得ることができる液晶性樹脂の製造方法を提供することである。
 本発明の第2態様におけるさらなる課題は、従来よりも低コストで液晶性樹脂を製造する方法を提供することである。
A common object of the present invention is to provide a method for producing a liquid crystal resin using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. That is.
A further problem in the first aspect of the present invention is the production of a liquid crystal resin capable of increasing the reaction rate, suppressing the generation of gas when the liquid crystal resin is melted, and obtaining a liquid crystal resin having high brightness. To provide a method.
A further object of the second aspect of the present invention is to provide a method for producing a liquid crystal resin at a lower cost than before.
 本発明は、以下に関するものである。
[1]原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させることを含む、液晶性樹脂の製造方法。
[2](A)原料モノマーをアシル化すること、(B)アシル化された原料モノマーを重縮合すること、を含み、アシル化すること(A)が、原料モノマーとカルボン酸とを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させること(a1)を含む、液晶性樹脂の製造方法。
[3]アシル化すること(A)が、原料モノマーとカルボン酸とを反応させること(a1)の後に、反応液に酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)を含む、[2]に記載の液晶性樹脂の製造方法。
[4]重縮合すること(B)が、アシル化された原料モノマーを前記塩の存在下で重縮合することを含む、[2]または[3]に記載の液晶性樹脂の製造方法。
[5]原料モノマーとカルボン酸とを反応させること(a1)におけるカルボン酸の添加量が、原料モノマーの水酸基に対して、0.01~1000当量である、[2]から[4]のいずれかに記載の液晶性樹脂の製造方法。
[6]酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)における酸無水物の添加量が、原料モノマーの水酸基に対して、0.01~0.99当量である、[3]から[5]のいずれかに記載の液晶性樹脂の製造方法。
[7]前記塩を構成する酸性化合物がスルホン酸基を有する、[1]から[6]のいずれかに記載の液晶性樹脂の製造方法。
[8]前記塩を構成する有機塩基化合物がアミノ基を有する、[1]から[7]のいずれかに記載の液晶性樹脂の製造方法。
[9]前記塩を構成する酸性化合物の酸解離定数pKaが0.65以下である、[1]から[8]のいずれかに記載の液晶性樹脂の製造方法。
[10]前記塩を構成する有機塩基化合物の共役酸の酸解離定数pKaが13.0未満である、[1]から[9]のいずれかに記載の液晶性樹脂の製造方法。
[11]前記塩を構成する酸性化合物がハロゲン化アルキルスルホン酸を含む、[1]から[10]のいずれかに記載の液晶性樹脂の製造方法。
[12]前記塩を構成する有機塩基化合物がハロゲン化芳香族アミンを含む、[1]から[11]のいずれかに記載の液晶性樹脂の製造方法。
The present invention relates to the following.
[1] A liquid crystal resin comprising reacting a raw material monomer in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Manufacturing method.
[2] Acylation comprises (A) acylating the raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acidifying the raw material monomer and the carboxylic acid. A method for producing a liquid crystal resin, which comprises reacting at least one acidic compound having a dissociation constant pKa of 1 or less with at least one organic base compound having 1 or more nitrogen atoms in the presence of a salt (a1).
[3] Acylation (A) causes the reaction of the raw material monomer and the carboxylic acid (a1), and then the acid anhydride is added to the reaction solution to react the unreacted raw material monomer with the acid anhydride. The method for producing a liquid crystal resin according to [2], which comprises the same (a2).
[4] The method for producing a liquid crystal resin according to [2] or [3], wherein the polycondensation (B) comprises polycondensing the acylated raw material monomer in the presence of the salt.
[5] Any of [2] to [4], wherein the amount of the carboxylic acid added in the reaction of the raw material monomer and the carboxylic acid (a1) is 0.01 to 1000 equivalents with respect to the hydroxyl group of the raw material monomer. The method for producing a liquid crystal resin described in Crab.
[6] The amount of the acid anhydride added in (a2) of adding the acid anhydride to react the unreacted raw material monomer with the acid anhydride is 0.01 to 0. The method for producing a liquid crystal resin according to any one of [3] to [5], which is 99 equivalents.
[7] The method for producing a liquid crystal resin according to any one of [1] to [6], wherein the acidic compound constituting the salt has a sulfonic acid group.
[8] The method for producing a liquid crystal resin according to any one of [1] to [7], wherein the organic base compound constituting the salt has an amino group.
[9] The method for producing a liquid crystal resin according to any one of [1] to [8], wherein the acid dissociation constant pKa of the acidic compound constituting the salt is 0.65 or less.
[10] The method for producing a liquid crystal resin according to any one of [1] to [9], wherein the acid dissociation constant pKa of the conjugate acid of the organic base compound constituting the salt is less than 13.0.
[11] The method for producing a liquid crystal resin according to any one of [1] to [10], wherein the acidic compound constituting the salt contains a halogenated alkyl sulfonic acid.
[12] The method for producing a liquid crystal resin according to any one of [1] to [11], wherein the organic base compound constituting the salt contains a halogenated aromatic amine.
 本発明の第1態様は、以下に関するものである。
[1]原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させることを含む、液晶性樹脂の製造方法。
[2]前記塩を構成する酸性化合物がスルホン酸基を有する、[1]に記載の液晶性樹脂の製造方法。
[3]前記塩を構成する有機塩基化合物がアミノ基を有する、[1]又は[2]に記載の液晶性樹脂の製造方法。
[4]前記塩を構成する酸性化合物の酸解離定数pKaが0.65以下である、[1]から[3]のいずれか一項に記載の液晶性樹脂の製造方法。
[5]前記塩を構成する有機塩基化合物の共役酸の酸解離定数pKaが13.0未満である、[1]から[4]のいずれか一項に記載の液晶性樹脂の製造方法。
[6]前記塩を構成する酸性化合物がハロゲン化アルキルスルホン酸を含む、[1]から[5]のいずれかに記載の液晶性樹脂の製造方法。
[7]前記塩を構成する有機塩基化合物がハロゲン化芳香族アミン含む、[1]から[6]のいずれかに記載の液晶性樹脂の製造方法。
The first aspect of the present invention relates to the following.
[1] A liquid crystal resin comprising reacting a raw material monomer in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Manufacturing method.
[2] The method for producing a liquid crystal resin according to [1], wherein the acidic compound constituting the salt has a sulfonic acid group.
[3] The method for producing a liquid crystal resin according to [1] or [2], wherein the organic base compound constituting the salt has an amino group.
[4] The method for producing a liquid crystal resin according to any one of [1] to [3], wherein the acid dissociation constant pKa of the acidic compound constituting the salt is 0.65 or less.
[5] The method for producing a liquid crystal resin according to any one of [1] to [4], wherein the acid dissociation constant pKa of the conjugate acid of the organic base compound constituting the salt is less than 13.0.
[6] The method for producing a liquid crystal resin according to any one of [1] to [5], wherein the acidic compound constituting the salt contains a halogenated alkyl sulfonic acid.
[7] The method for producing a liquid crystal resin according to any one of [1] to [6], wherein the organic base compound constituting the salt contains a halogenated aromatic amine.
 本発明の第2態様は、以下に関するものである。
[1](A)原料モノマーをアシル化すること、(B)アシル化された原料モノマーを重縮合すること、を含み、アシル化すること(A)が、原料モノマーとカルボン酸とを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させること(a1)を含む、液晶性樹脂の製造方法。
[2]アシル化すること(A)が、原料モノマーとカルボン酸とを反応させること(a1)の後に、反応液に酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)を含む、[1]に記載の液晶性樹脂の製造方法。
[3]重縮合すること(B)が、アシル化された原料モノマーを前記塩の存在下で重縮合することを含む、[1]又は[2]に記載の液晶性樹脂の製造方法。
[4]原料モノマーとカルボン酸とを反応させること(a1)におけるカルボン酸の添加量が、原料モノマーの水酸基に対して、0.01~1000当量である、[1]から[3]のいずれかに記載の液晶性樹脂の製造方法。
[5]酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)における酸無水物の添加量が、原料モノマーの水酸基に対して、0.01~0.99当量である、[2]から[4]のいずれかに記載の液晶性樹脂の製造方法。
[6]前記塩を構成する酸性化合物がスルホン酸基を有する、[1]から[5]のいずれかに記載の液晶性樹脂の製造方法。
[7]前記塩を構成する有機塩基化合物がアミノ基を有する、[1]から[6]のいずれかに記載の液晶性樹脂の製造方法。
[8]前記塩を構成する酸性化合物の酸解離定数pKaが0.65以下である、[1]から[7]のいずれかに記載の液晶性樹脂の製造方法。
[9]前記塩を構成する有機塩基化合物の共役酸の酸解離定数pKaが13.0未満である、[1]から[8]のいずれかに記載の液晶性樹脂の製造方法。
[10]前記塩を構成する酸性化合物がハロゲン化アルキルスルホン酸を含む、[1]から[9]のいずれかに記載の液晶性樹脂の製造方法。
[11]前記塩を構成する有機塩基化合物がハロゲン化芳香族アミンを含む、[1]から[10]のいずれかに記載の液晶性樹脂の製造方法。
The second aspect of the present invention relates to the following.
[1] Acylation comprises (A) acylating the raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acidifying the raw material monomer and the carboxylic acid. A method for producing a liquid crystal resin, which comprises reacting at least one acidic compound having a dissociation constant pKa of 1 or less with at least one organic base compound having 1 or more nitrogen atoms in the presence of a salt (a1).
[2] Acylation (A) causes the reaction of the raw material monomer and the carboxylic acid (a1), and then the acid anhydride is added to the reaction solution to react the unreacted raw material monomer with the acid anhydride. The method for producing a liquid crystal resin according to [1], which comprises the same (a2).
[3] The method for producing a liquid crystal resin according to [1] or [2], wherein the polycondensation (B) comprises polycondensing the acylated raw material monomer in the presence of the salt.
[4] Any of [1] to [3], wherein the amount of the carboxylic acid added in the reaction of the raw material monomer and the carboxylic acid (a1) is 0.01 to 1000 equivalents with respect to the hydroxyl group of the raw material monomer. The method for producing a liquid crystal resin described in Crab.
[5] The amount of the acid anhydride added in (a2) of adding the acid anhydride and reacting the unreacted raw material monomer with the acid anhydride is 0.01 to 0. The method for producing a liquid crystal resin according to any one of [2] to [4], which is 99 equivalents.
[6] The method for producing a liquid crystal resin according to any one of [1] to [5], wherein the acidic compound constituting the salt has a sulfonic acid group.
[7] The method for producing a liquid crystal resin according to any one of [1] to [6], wherein the organic base compound constituting the salt has an amino group.
[8] The method for producing a liquid crystal resin according to any one of [1] to [7], wherein the acid dissociation constant pKa of the acidic compound constituting the salt is 0.65 or less.
[9] The method for producing a liquid crystal resin according to any one of [1] to [8], wherein the acid dissociation constant pKa of the conjugate acid of the organic base compound constituting the salt is less than 13.0.
[10] The method for producing a liquid crystal resin according to any one of [1] to [9], wherein the acidic compound constituting the salt contains a halogenated alkyl sulfonic acid.
[11] The method for producing a liquid crystal resin according to any one of [1] to [10], wherein the organic base compound constituting the salt contains a halogenated aromatic amine.
 本発明によれば、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩を用いた液晶性樹脂の製造方法を提供することができる。
 本発明の第1態様によれば、反応速度を高めるとともに液晶性樹脂の溶融時のガスの発生を抑制することができ、かつ明度が高い液晶性樹脂を得ることができる液晶性樹脂の製造方法を提供することができる。
 本発明の第2態様によれば、従来よりも低コストで液晶性樹脂を製造する方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a liquid crystal resin using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. can.
According to the first aspect of the present invention, a method for producing a liquid crystal resin, which can increase the reaction rate, suppress the generation of gas when the liquid crystal resin is melted, and can obtain a liquid crystal resin having high brightness. Can be provided.
According to the second aspect of the present invention, it is possible to provide a method for producing a liquid crystal resin at a lower cost than before.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, an embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications as long as the effects of the present invention are not impaired.
 一実施形態に係る液晶性樹脂の製造方法は、原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させることを含む。詳しくは、後述する実施例に記載しているように、一実施形態に係る液晶性樹脂の製造方法は、原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で、アシル化反応及び/又は重縮合反応させることを含む。
 第1実施形態では、特に重縮合反応を(好ましくはアシル化反応及び重縮合反応を)、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことについて述べる。
 次いで第2実施形態では、特にアシル化反応を(好ましくはアシル化反応及び重縮合反応を)、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことについて述べる。
 第1実施形態及び第2実施形態において内容が重複するものは、記載を省略することがある。
In the method for producing a liquid crystal resin according to an embodiment, the raw material monomer is in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Including reacting with. More specifically, as described in Examples described later, the method for producing a liquid crystal resin according to an embodiment uses a raw material monomer, at least one acidic compound having an acid dissociation constant pKa of 1 or less, and a nitrogen atom. It comprises performing an acylation reaction and / or a polycondensation reaction in the presence of a salt with at least one organic base compound having one or more.
In the first embodiment, particularly the polycondensation reaction (preferably the acylation reaction and the polycondensation reaction), at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base having one or more nitrogen atoms. It describes what to do in the presence of a salt with the compound.
Then, in the second embodiment, particularly the acylation reaction (preferably the acylation reaction and the polycondensation reaction), at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic having one or more nitrogen atoms. It describes what to do in the presence of a salt with a base compound.
If the contents are duplicated in the first embodiment and the second embodiment, the description may be omitted.
第1実施形態
[液晶性樹脂の製造方法]
 本実施形態に係る液晶性樹脂の製造方法は、原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させることを含む。
 原料モノマーを上記酸性化合物と上記有機塩基化合物との塩の存在下で重縮合反応させることで、重縮合速度を上昇させることができるとともに、液晶性樹脂の溶融時の炭酸ガス等のガスの発生を従来よりもさらに低減できる。加えて、液晶性樹脂の明度が低下すること(例えば黒変する等)を防ぐことができる。重縮合速度を上昇させることができるので、従来よりも短時間で液晶性樹脂を製造でき、コストダウンが可能となる。液晶性樹脂の溶融時のガスの発生をより低減できるので、発生したガスによる成形品の膨れ(ブリスター)を抑制することができる。液晶性樹脂の明度の低下を防ぐことができるので、外観が優れた成形品を与える液晶性樹脂を製造することができる。
1st Embodiment [Manufacturing method of liquid crystal resin]
In the method for producing a liquid crystal resin according to the present embodiment, the raw material monomer is in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. Including reacting with.
By polycondensing the raw material monomer in the presence of a salt of the acidic compound and the organic base compound, the polycondensation rate can be increased and gas such as carbon dioxide is generated when the liquid crystal resin is melted. Can be further reduced than before. In addition, it is possible to prevent the brightness of the liquid crystal resin from decreasing (for example, turning black). Since the polycondensation rate can be increased, the liquid crystal resin can be produced in a shorter time than before, and the cost can be reduced. Since the generation of gas when the liquid crystal resin is melted can be further reduced, the swelling (blister) of the molded product due to the generated gas can be suppressed. Since it is possible to prevent a decrease in the brightness of the liquid crystal resin, it is possible to produce a liquid crystal resin that gives a molded product having an excellent appearance.
 「液晶性」とは、光学異方性溶融相を形成し得る性質を有することをいう。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。液晶性を有する樹脂は、直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。 "Liquid crystal" means having a property of being able to form an optically anisotropic molten phase. The properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leitz polarizing microscope. A resin having liquid crystallinity normally transmits polarized light even in a molten stationary state when inspected between orthogonal polarizing elements, and exhibits optical anisotropy.
(原料モノマー)
 原料モノマーは、芳香族ヒドロキシカルボン酸、及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物を含むことが好ましい。芳香族ヒドロキシカルボン酸及びその重合可能な誘導体としては、特に限定されず、例えば、p-ヒドロキシ安息香酸(4-ヒドロキシ安息香酸:HBA)、6-ヒドロキシ-2-ナフトエ酸、m-ヒドロキシ安息香酸、6-ヒドロキシ-3-ナフトエ酸、6-ヒドロキシ-4-ナフトエ酸、4-ヒドロキシ-4’-カルボキシジフェニルエーテル、2,6-ジクロロ-p-ヒドロキシ安息香酸、2-クロロ-p-ヒドロキシ安息香酸、2,6-ジメチル-p-ヒドロキシ安息香酸、2,6-ジフルオロ-p-ヒドロキシ安息香酸、4-ヒドロキシ-4’-ビフェニルカルボン酸、バニリン酸等を挙げることができる。これらから選択される少なくとも1種の化合物を用いることができる。中でも、入手の容易さの点で、p-ヒドロキシ安息香酸及び6-ヒドロキシ-2-ナフトエ酸から選択される少なくとも1種を用いることが好ましい。
(Raw material monomer)
The raw material monomer preferably contains at least one compound selected from the group consisting of aromatic hydroxycarboxylic acids and polymerizable derivatives thereof. The aromatic hydroxycarboxylic acid and its polymerizable derivative are not particularly limited, and are, for example, p-hydroxybenzoic acid (4-hydroxybenzoic acid: HBA), 6-hydroxy-2-naphthoic acid, m-hydroxybenzoic acid. , 6-Hydroxy-3-naphthoic acid, 6-hydroxy-4-naphthoic acid, 4-hydroxy-4'-carboxydiphenyl ether, 2,6-dichloro-p-hydroxybenzoic acid, 2-chloro-p-hydroxybenzoic acid , 2,6-Dimethyl-p-hydroxybenzoic acid, 2,6-difluoro-p-hydroxybenzoic acid, 4-hydroxy-4'-biphenylcarboxylic acid, vanillic acid and the like. At least one compound selected from these can be used. Above all, from the viewpoint of easy availability, it is preferable to use at least one selected from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
 原料モノマーは、さらに、以下の(1)又は(2)を満たすことが好ましい。
 (1)芳香族若しくは脂環族ジカルボン酸及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物を含む、又は、
 (2)芳香族若しくは脂環族ジカルボン酸及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物と、芳香族若しくは脂環族ジオール、芳香族若しくは脂環族ヒドロキシアミン、芳香族若しくは脂環族ジアミン、及びこれらの重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物と、を含む。
The raw material monomer further preferably satisfies the following (1) or (2).
(1) Containing or containing at least one compound selected from the group consisting of aromatic or alicyclic dicarboxylic acids and polymerizable derivatives thereof.
(2) At least one compound selected from the group consisting of aromatic or alicyclic dicarboxylic acids and polymerizable derivatives thereof, and aromatic or alicyclic diols, aromatic or alicyclic hydroxyamines, aromatics or Includes alicyclic diamines and at least one compound selected from the group consisting of polymerizable derivatives thereof.
 芳香族ジカルボン酸としては、特に限定されず、例えば、テレフタル酸(TA)、イソフタル酸(IA)、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(I)で表される化合物等を挙げることができる。
一般式(I):
Figure JPOXMLDOC01-appb-I000001
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
The aromatic dicarboxylic acid is not particularly limited, and is, for example, terephthalic acid (TA), isophthalic acid (IA), 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and the following general formula (I). Examples thereof include compounds represented by.
General formula (I):
Figure JPOXMLDOC01-appb-I000001
(Y:-(CH 2 ) n- (n = 1 to 4) and -O (CH 2 ) n O- (n = 1 to 4).)
 脂環族ジカルボン酸としては、特に限定されず、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸等を挙げることができる。重合可能な誘導体としては、特に限定されず、例えば、上記化合物のアルキルエステル(炭素数1~4程度)、ハロゲン化物等を挙げることができる。 The alicyclic dicarboxylic acid is not particularly limited, and examples thereof include 1,4-cyclohexanedicarboxylic acid and 1,3-cyclopentanedicarboxylic acid. The polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
 芳香族ジオールとしては、特に限定されず、例えば、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル(BP)、ハイドロキノン、レゾルシン、下記一般式(II)で表される化合物、及び下記一般式(III)で表される化合物等を挙げることができる。 The aromatic diol is not particularly limited, and is, for example, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl (BP), hydroquinone, resorcin, represented by the following general formula (II). Examples thereof include compounds represented by the following general formula (III).
一般式(II):
Figure JPOXMLDOC01-appb-I000002
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である。)
General formula (II):
Figure JPOXMLDOC01-appb-I000002
(X: A group selected from alkylene (C 1 to C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-).
一般式(III):
Figure JPOXMLDOC01-appb-I000003
General formula (III):
Figure JPOXMLDOC01-appb-I000003
 脂環族ジオールとしては、特に限定されず、例えば、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等を挙げることができる。重合可能な誘導体としては、特に限定されず、上記化合物のアルキルエステル(炭素数1~4程度)、ハロゲン化物等を挙げることができる。 The alicyclic diol is not particularly limited, and examples thereof include 1,4-cyclohexanedimethanol and 1,4-cyclohexanediol. The polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
 芳香族ヒドロキシアミンとしては、特に限定されず、例えば、p-アミノフェノール、m-アミノフェノール等を挙げることができる。脂環族ヒドロキシアミンとしては、特に限定されず、例えば、4-ヒドロキシシクロヘキサンカルボン酸、3-ヒドロキシシクロペンタンカルボン酸等を挙げることができる。重合可能な誘導体としては、特に限定されず、上記化合物のアルキルエステル(炭素数1~4程度)、ハロゲン化物等を挙げることができる。 The aromatic hydroxyamine is not particularly limited, and examples thereof include p-aminophenol and m-aminophenol. The alicyclic hydroxyamine is not particularly limited, and examples thereof include 4-hydroxycyclohexanecarboxylic acid and 3-hydroxycyclopentanecarboxylic acid. The polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
 芳香族ジアミンとしては、p-フェニレンジアミン等を挙げることができる。脂環族ジアミンとしては、特に限定されず、例えば、1,4-シクロヘキサンジアミン、1,3-シクロペンタンジアミン等を挙げることができる。重合可能な誘導体としては、特に限定されず、上記化合物のアルキルエステル(炭素数1~4程度)、ハロゲン化物等を挙げることができる。 Examples of the aromatic diamine include p-phenylenediamine and the like. The alicyclic diamine is not particularly limited, and examples thereof include 1,4-cyclohexanediamine and 1,3-cyclopentanediamine. The polymerizable derivative is not particularly limited, and examples thereof include an alkyl ester (about 1 to 4 carbon atoms) of the above compound, a halide and the like.
 原料モノマーの具体的な組み合わせとしては、例えば、
(I)(a)芳香族ヒドロキシカルボン酸及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物を含む、又は、
(II)(a)芳香族ヒドロキシカルボン酸及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物と、(b)芳香族若しくは脂環族ジカルボン酸及びその重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物と、(c)芳香族若しくは脂環族ジオール、芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの重合可能な誘導体からなる群から選ばれる少なくとも1種の化合物と、を含む組み合わせとすることができる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
Specific combinations of raw material monomers include, for example,
(I) (a) Containing or containing at least one compound selected from the group consisting of aromatic hydroxycarboxylic acids and polymerizable derivatives thereof.
(II) A group consisting of at least one compound selected from the group consisting of (a) aromatic hydroxycarboxylic acid and a polymerizable derivative thereof, and (b) a group consisting of an aromatic or alicyclic dicarboxylic acid and a polymerizable derivative thereof. At least one compound selected from, and (c) at least one compound selected from the group consisting of aromatic or alicyclic diols, aromatic hydroxyamines, aromatic diamines, and polymerizable derivatives thereof. Can be a combination including. Further, a molecular weight adjusting agent may be used in combination with the above-mentioned constituent components, if necessary.
(重縮合反応工程)
 重縮合反応工程では、上記した原料モノマーを、好ましくは後述するアシル化反応させた後に、酸解離定数pKaが1以下である少なくとも一つの酸性化合物(以下、単に「酸性化合物」ともいう。)と窒素原子を1以上有する少なくとも一つの有機塩基化合物(以下、単に「有機塩基化合物」ともいう。)との塩の存在下で、溶融重合により重縮合反応させる。酸性化合物と有機塩基化合物との塩は、重縮合反応の触媒としての作用を有する。
(Polycondensation reaction step)
In the polycondensation reaction step, the above-mentioned raw material monomer is preferably subjected to an acylation reaction described later, and then referred to as at least one acidic compound having an acid dissociation constant pKa of 1 or less (hereinafter, also simply referred to as “acid compound”). A polycondensation reaction is carried out by melt polymerization in the presence of a salt with at least one organic base compound having one or more nitrogen atoms (hereinafter, also simply referred to as “organic base compound”). The salt of the acidic compound and the organic base compound acts as a catalyst for the polycondensation reaction.
 酸性化合物と有機塩基化合物との塩は、酸性化合物のアニオンと有機塩基化合物のカチオンとで構成されている。酸性化合物と有機塩基化合物との塩は、そのものを使用することの他に、反応系内で酸性化合物と有機塩基化合物とを共存させることにより塩を形成させてもよい。酸性化合物と有機塩基化合物とは、反応系内で酸塩基反応することにより塩を形成し得る。 The salt of the acidic compound and the organic base compound is composed of an anion of the acidic compound and a cation of the organic base compound. As the salt of the acidic compound and the organic base compound, in addition to using the salt itself, the salt may be formed by coexisting the acidic compound and the organic base compound in the reaction system. The acidic compound and the organic base compound can form a salt by an acid-base reaction in the reaction system.
 酸性化合物(アニオン成分)は、酸解離定数pKaが1以下であり、好ましくは0.65以下であり、より好ましくは-14.0~0.65であり、さらに好ましくは-14.0~-2.0である。酸性化合物の酸解離定数pKaが1を超えると、重縮合反応速度の向上効果が低下することがあり好ましくない。なお、上記pKaは、25℃における水溶液中でのpKaを意味する。 The acidic compound (anionic component) has an acid dissociation constant pKa of 1 or less, preferably 0.65 or less, more preferably -14.0 to 0.65, and further preferably -14.0 to-. It is 2.0. If the acid dissociation constant pKa of the acidic compound exceeds 1, the effect of improving the polycondensation reaction rate may decrease, which is not preferable. The above pKa means pKa in an aqueous solution at 25 ° C.
 酸性化合物としては、有機酸化合物が挙げられ、例えばスルホン酸基(-SOH)、スルホニル基(-SO-)から選ばれる1以上の官能基を少なくとも一つ有する有機酸化合物が挙げられ、これらから選ばれる1以上を用いることができる。すなわち、上記塩は、スルホン酸アニオン、スルホニルイミドアニオンから選ばれる1以上のアニオン成分を含むことが好ましい。一実施形態において、酸性化合物は、スルホン酸基を有する。 The acidic compounds, organic acid compounds include, for example, a sulfonic acid group (-SO 3 H), a sulfonyl group (-SO 2 -) organic acid compounds having at least one one or more functional groups selected from the listed , One or more selected from these can be used. That is, the salt preferably contains one or more anion components selected from sulfonic acid anions and sulfonylimide anions. In one embodiment, the acidic compound has a sulfonic acid group.
 酸性化合物は、酸性度、又は常温における取り扱いの簡便さの点で、スルホン酸を含むことが好ましい。スルホン酸としては、例えば、置換基を有してもよいアルキルスルホン酸、置換基を有してもよいアリールスルホン酸等が挙げられる。アルキルスルホン酸としては、例えば、メタンスルホン酸(pKa:-2.6)等が挙げられる。アリールスルホン酸としては、例えば、ベンゼンスルホン酸(pKa:0.7)、p-トルエンスルホン酸(pKa:-2.8)、ナフタレンスルホン酸(pKa:0.17)、ドデシルベンゼンスルホン酸(pKa:-0.45)、1.3-ベンゼンジスルホン酸(pKa:-1.4)等が挙げられる。
 酸性化合物は、酸性度の調整、又は沸点降下の点で、ハロゲン化スルホン酸及び/又はハロゲン化アルキルスルホン酸を含むことが好ましい。ハロゲン化スルホン酸及び/又はハロゲン化アルキルスルホン酸としては、フルオロスルホン酸(pKa:-10)、ジフルオロメタンスルホン酸(pKa:-2.0)、トリフルオロメタンスルホン酸(pKa:-14.0)、パーフルオロブタンスルホン酸(pKa:-13.2)、パーフルオロヘキサンスルホン酸(pKa:-12.3)等が挙げられ、これらから選ばれる1以上を含むことが好ましい。中でも、トリフルオロメタンスルホン酸が最も好ましい。
 一実施形態において、酸性化合物は、ハロゲン化アルキルスルホン酸を含む。
The acidic compound preferably contains a sulfonic acid in terms of acidity or ease of handling at room temperature. Examples of the sulfonic acid include an alkyl sulfonic acid which may have a substituent and an aryl sulfonic acid which may have a substituent. Examples of the alkyl sulfonic acid include methane sulfonic acid (pKa: -2.6) and the like. Examples of the aryl sulfonic acid include benzene sulfonic acid (pKa: 0.7), p-toluene sulfonic acid (pKa: -2.8), naphthalene sulfonic acid (pKa: 0.17), and dodecylbenzene sulfonic acid (pKa). : -0.45), 1.3-benzenedisulfonic acid (pKa: -1.4) and the like.
The acidic compound preferably contains a halogenated sulfonic acid and / or a halogenated alkyl sulfonic acid in terms of adjusting the acidity or lowering the boiling point. Examples of the halogenated sulfonic acid and / or the halogenated alkyl sulfonic acid include fluorosulfonic acid (pKa: -10), difluoromethanesulfonic acid (pKa: -2.0), and trifluoromethanesulfonic acid (pKa: -14.0). , Perfluorobutane sulfonic acid (pKa: -13.2), perfluorohexane sulfonic acid (pKa: -12.3) and the like, and it is preferable to include one or more selected from these. Of these, trifluoromethanesulfonic acid is most preferable.
In one embodiment, the acidic compound comprises a halogenated alkyl sulfonic acid.
 あるいは、本実施形態においては、上記酸性化合物をそのまま用いる他に(又は上記酸性化合物と後述する有機塩基化合物との塩をそのまま用いる他に)、反応系内で当該酸性化合物アニオンを発生し得る化合物を用いることができる。反応系内で上記酸性化合物を発生させることにより、上記酸性化合物(又は酸性化合物と有機塩基化合物との塩)を用いた場合の効果と同じ効果を得ることができる。 Alternatively, in the present embodiment, in addition to using the acidic compound as it is (or using the salt of the acidic compound and an organic base compound described later as it is), a compound capable of generating the acidic compound anion in the reaction system. Can be used. By generating the acidic compound in the reaction system, the same effect as the effect when the acidic compound (or the salt of the acidic compound and the organic base compound) can be obtained can be obtained.
 反応系内でスルホン酸基を少なくとも一つ有する有機酸化合物を発生し得る化合物としては、モノ、ジ又はトリフルオロメタンスルホン酸トリメチルシリル、モノ、ジ又はトリフルオロメタンスルホン酸tert-ブチルシリル、モノ、ジ又はトリフルオロメタンスルホニルハライド、トリフルオロメタンスルホン酸金属塩等が挙げられる。これらの化合物は、カルボン酸の存在や、加熱により反応系内にモノ、ジ又はトリフルオロメタンスルホン酸アニオンを発生し得る。 Compounds that can generate an organic acid compound having at least one sulfonic acid group in the reaction system include mono, di or trifluoromethanesulfonic acid trimethylsilyl, mono, di or trifluoromethanesulfonic acid tert-butylsilyl, mono, di or trifluo. Examples thereof include lomethanesulfonyl halide and trifluoromethanesulfonic acid metal salt. These compounds can generate mono, di or trifluoromethanesulfonic acid anions in the reaction system due to the presence of carboxylic acid or heating.
 有機塩基化合物は、有機オニウムカチオンを発生する化合物であり、窒素原子を1以上有する。すなわち、上記塩は、窒素カチオンを少なくとも含む。原料モノマーを、窒素原子を1以上有する有機塩基化合物と上記した酸性化合物との塩の存在下で反応させることで、驚くべきことに、反応速度を高めることができるだけでなく、ガスの発生をより低減させ、かつ液晶性樹脂の明度が低下することを防ぐことができることが分かった。 The organic base compound is a compound that generates an organic onium cation and has one or more nitrogen atoms. That is, the salt contains at least a nitrogen cation. By reacting the raw material monomer in the presence of a salt of an organic base compound having one or more nitrogen atoms and the above-mentioned acidic compound, surprisingly, not only the reaction rate can be increased, but also gas generation can be further increased. It was found that the reduction can be achieved and the brightness of the liquid crystal resin can be prevented from being lowered.
 有機塩基化合物(カチオン成分)は、当該有機塩基化合物の塩基性度の点で、共役酸の酸解離定数pKaが13.0未満であることが好ましく、-10.0~8.0であることがより好ましく、-8.0~6.0であることがさらに好ましい。
 なお、有機塩基化合物の共役酸の酸解離定数pKaは、25℃における水溶液中でのpKaを意味する。
The organic base compound (cationic component) preferably has an acid dissociation constant pKa of the conjugate acid of less than 13.0, preferably -10.0 to 8.0, in terms of the basicity of the organic base compound. Is more preferable, and −8.0 to 6.0 is even more preferable.
The acid dissociation constant pKa of the conjugate acid of the organic base compound means pKa in an aqueous solution at 25 ° C.
 窒素原子を1以上有する有機塩基化合物としては、置換基を有してもよい、アルキルアミン、芳香族アミン、脂環式アミン、含窒素複素環化合物等が挙げられる。すなわち、上記塩は、置換基を有してもよいアルキルアンモニウムカチオン、置換基を有してもよい芳香族アンモニウムカチオン、置換基を有してもよい脂環式アンモニウムカチオン、置換基を有してもよい含窒素複素環化合物カチオンから選ばれる1以上を含む。
 アルキルアミンとしては、N,N-ジイソプロピルエチルアミン(共役酸の酸解離定数pKa:11.0)、トリメチルアミン(共役酸の酸解離定数pKa:9.8)、トリエチルアミン(共役酸の酸解離定数pKa:10.8)等が挙げられる。
 芳香族アミンとしては、ジフェニルアミン(共役酸の酸解離定数pKa:0.7)、アニリン(共役酸の酸解離定数pKa:4.6)、トリフェニルアミン(共役酸の酸解離定数pKa:-3.0)等が挙げられる。
 脂環式アミンとしては、シクロペンチルアミン(共役酸の酸解離定数pKa:10.7)、シクロヘキシルアミン(共役酸の酸解離定数pKa:10.7)等が挙げられる。
 含窒素複素環化合物としては、2,5-ジメチルピロリジン(共役酸の酸解離定数pKa:11.4)、N,N-ジメチルピペラジン(共役酸の酸解離定数pKa:4.6)、N-メチルモルホリン(共役酸の酸解離定数pKa:7.38)、N-アセチルモルホリン(共役酸の酸解離定数pKa:-0.7)、ジメチルアミノピリジン-N-オキシド・水和物(共役酸の酸解離定数pKa:3.9)、N,N-ジメチル-4-アミノピリジン(DMAP、共役酸の酸解離定数pKa:9.7)、4-メトキシピリジン-N-オキシド(MPO、(共役酸の酸解離定数pKa:2.3)等が挙げられる。
 有機塩基化合物は、塩基性度の点で、アミノ基を有することが好ましく、共役酸の酸解離定数pKaの調整、又は沸点降下の点で、ハロゲン化芳香族アミンを含むことがより好ましい。ハロゲン化芳香族アミンとしては、ペンタフルオロアニリン(共役酸の酸解離定数pKa:-0.16)、2-フルオロピリジン(共役酸の酸解離定数pKa:-0.44)等が挙げられる。
 有機塩基化合物は、中でも、ジフェニルアミン、ペンタフルオロアニリンから選択される1以上を含むことが好ましい。すなわち、上記塩は、ジフェニルアンモニウムカチオン、ペンタフルオロアニリウムカチオン、及び2-フルオロジメチルアミノピリジニウムカチオンから選ばれる1以上を含むことが好ましい。
Examples of the organic base compound having one or more nitrogen atoms include alkylamines, aromatic amines, alicyclic amines, nitrogen-containing heterocyclic compounds and the like, which may have a substituent. That is, the salt has an alkylammonium cation that may have a substituent, an aromatic ammonium cation that may have a substituent, an alicyclic ammonium cation that may have a substituent, and a substituent. A nitrogen-containing heterocyclic compound may contain one or more selected from cations.
Examples of the alkylamine include N, N-diisopropylethylamine (acid dissociation constant of conjugated acid pKa: 11.0), trimethylamine (acid dissociation constant of conjugated acid pKa: 9.8), and triethylamine (acid dissociation constant of conjugated acid pKa:: 10.8) and the like.
Examples of the aromatic amine include diphenylamine (acid dissociation constant of conjugated acid pKa: 0.7), aniline (acid dissociation constant of conjugated acid pKa: 4.6), and triphenylamine (acid dissociation constant of conjugated acid pKa: -3). .0) and the like.
Examples of the alicyclic amine include cyclopentylamine (acid dissociation constant of conjugated acid pKa: 10.7), cyclohexylamine (acid dissociation constant of conjugated acid pKa: 10.7) and the like.
Examples of the nitrogen-containing heterocyclic compound include 2,5-dimethylpyrrolidine (acid dissociation constant of conjugated acid pKa: 11.4), N, N-dimethylpiperazine (acid dissociation constant of conjugated acid pKa: 4.6), N-. Methylmorpholin (acid dissociation constant of conjugated acid pKa: 7.38), N-acetylmorpholin (acid dissociation constant of conjugated acid pKa: -0.7), dimethylaminopyridine-N-oxide / hydrate (of conjugated acid) Acid dissociation constant pKa: 3.9), N, N-dimethyl-4-aminopyridine (DMAP, acid dissociation constant of conjugated acid pKa: 9.7), 4-methoxypyridine-N-oxide (MPO, (conjugated acid) Acid dissociation constant pKa: 2.3) and the like.
The organic base compound preferably has an amino group in terms of basicity, and more preferably contains a halogenated aromatic amine in terms of adjusting the acid dissociation constant pKa of the conjugate acid or lowering the boiling point. Examples of the halogenated aromatic amine include pentafluoroaniline (acid dissociation constant of conjugated acid pKa: −0.16), 2-fluoropyridine (acid dissociation constant of conjugated acid pKa: −0.44) and the like.
The organic base compound preferably contains one or more selected from diphenylamine and pentafluoroaniline. That is, the salt preferably contains one or more selected from a diphenylammonium cation, a pentafluoroanillium cation, and a 2-fluorodimethylaminopyridinium cation.
 酸性化合物と有機塩基化合物との塩の具体例としては、例えば、以下の化合物が挙げられる:
Figure JPOXMLDOC01-appb-I000004
Specific examples of the salt of the acidic compound and the organic base compound include, for example, the following compounds:
Figure JPOXMLDOC01-appb-I000004
 酸性化合物と有機塩基化合物との塩は、上記の(ペンタフルオロフェニル)アンモニウムトリフルオロメタンスルホナート(PFPAT)、(ペンタフルオロフェニル)アンモニウムビス(トリフルオロメタンスルホニル)イミド及びジフェニルアンモニウムトリフルオロメタンスルホナート(DPAT)から選択される1以上を含むことが好ましい。
 上記した酸性化合物と有機塩基化合物との塩を、重縮合反応工程における触媒として用いることが好ましい。
The salts of the acidic compound and the organic base compound are the above-mentioned (pentafluorophenyl) ammonium trifluoromethanesulfonate (PFBAT), (pentafluorophenyl) ammonium bis (trifluoromethanesulfonyl) imide and diphenylammonium trifluoromethanesulfonate (DPAT). It is preferable to include 1 or more selected from.
It is preferable to use the above-mentioned salt of the acidic compound and the organic base compound as a catalyst in the polycondensation reaction step.
(酸性化合物と有機塩基化合物との塩の添加量)
 本実施形態において、上記酸性化合物と有機塩基化合物との塩の添加量は、アシル化又は重縮合に悪影響を与えない限り特に限定されないが、一般には得られる液晶性樹脂の理論収量に対して、50~5000ppmであることが好ましく、100~3000ppmであることがより好ましい。
(Amount of salt added between acidic compound and organic base compound)
In the present embodiment, the amount of the salt added to the acidic compound and the organic base compound is not particularly limited as long as it does not adversely affect acylation or polycondensation, but is generally based on the theoretical yield of the liquid liquid resin obtained. It is preferably 50 to 5000 ppm, more preferably 100 to 3000 ppm.
 酸性化合物と有機塩基化合物とを反応系内で共存させることにより酸性化合物と有機塩基化合物との塩を発生させる場合の酸性化合物及び有機塩基化合物の添加量は、例えば、酸性化合物(又は反応系内で酸性化合物を発生し得る化合物)の添加量が[(酸性化合物の分子量/生成する塩の分子量)×50]~[(酸性化合物の分子量/生成する塩の分子量)×5000]ppmであることが好ましく、[(酸性化合物の分子量/生成する塩の分子量)×100]~[(酸性化合物の分子量/生成する塩の分子量)×3000]ppmであることがより好ましい。有機塩基化合物の添加量は、酸性化合物の酸部位に対して塩基部位が0.8~1.2当量であることが好ましく、酸性化合物の酸部位に対して塩基部位が0.9~1.1当量であることがより好ましい。 The amount of the acidic compound and the organic base compound added when the salt of the acidic compound and the organic base compound is generated by coexisting the acidic compound and the organic base compound in the reaction system is, for example, the acidic compound (or in the reaction system). The addition amount of (a compound capable of generating an acidic compound) is [(molecular weight of acidic compound / molecular weight of produced salt) × 50] to [(molecular weight of acidic compound / molecular weight of produced salt) × 5000] ppm. Is preferable, and is more preferably [(molecular weight of acidic compound / molecular weight of produced salt) × 100] to [(molecular weight of acidic compound / molecular weight of produced salt) × 3000] ppm. The amount of the organic base compound added is preferably 0.8 to 1.2 equivalents with respect to the acid moiety of the acidic compound, and 0.9 to 1 with respect to the acid moiety of the acidic compound. More preferably, it is 1 equivalent.
 重縮合する際の温度は、例えば200~400℃とすることが好ましく、240~380℃とすることがより好ましい。反応時間は特に限定されず、例えば4~14時間とすることが好ましく、6~10時間とすることがより好ましい。 The temperature for polycondensation is preferably, for example, 200 to 400 ° C, more preferably 240 to 380 ° C. The reaction time is not particularly limited, and is preferably, for example, 4 to 14 hours, more preferably 6 to 10 hours.
 本実施形態の製造方法において、260℃における数平均重合度が2.5以上であることが好ましく、3.0以上であることがより好ましい。260℃における数平均重合度が2.5以上である場合は、反応速度(重縮合速度)が高められ短時間で液晶性樹脂を製造することができる。数平均重合度は、重縮合反応過程で副生する酢酸の留出量より算出した値とする。 In the production method of the present embodiment, the number average degree of polymerization at 260 ° C. is preferably 2.5 or more, and more preferably 3.0 or more. When the number average degree of polymerization at 260 ° C. is 2.5 or more, the reaction rate (polycondensation rate) is increased and the liquid crystal resin can be produced in a short time. The number average degree of polymerization is a value calculated from the amount of distillate of acetic acid produced as a by-product in the polycondensation reaction process.
(アシル化反応工程)
 本実施形態の製造方法においては、上記した重縮合反応の前に、上記原料モノマーを、アシル化剤を用いてアシル化する工程を設けることができる。当該アシル化は、より短時間で液晶性樹脂を製造する点で、上記した触媒(酸解離定数pKaが1以下である少なくとも一つの酸性化合物と、窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩)の存在下で行うことが好ましい。
(Acylation reaction step)
In the production method of the present embodiment, a step of acylating the raw material monomer with an acylating agent can be provided before the polycondensation reaction described above. The acylation is characterized in that a liquid crystal resin is produced in a shorter time, and the above-mentioned catalyst (at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms) is used. It is preferable to carry out in the presence of (salt) with.
 アシル化剤としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2-エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸等が挙げられるが、特に限定されるものでない。これらから選択される少なくとも1種を用いることができる。価格と取り扱い性の観点から好適なものとしては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸等の無水カルボン酸等を挙げることができる。中でも、入手の容易さの点で、無水酢酸が好ましい。アシル化剤の使用量は、反応制御の容易さの点で、反応に用いる物質の水酸基総量中、1.0~1.1当量であることが好ましく、1.01~1.05当量であることがより好ましい。 Examples of the acylating agent include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric acid anhydride, pivalic anhydride, 2-ethylhexanoic acid anhydride, monochloroacetic anhydride, dichloroacetic acid anhydride, trichloracetic anhydride, and monobromoacetic acid anhydride. , Acetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic acid anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β-bromopropionic anhydride and the like, but are particularly limited. Not a thing. At least one selected from these can be used. Suitable examples from the viewpoint of price and handleability include acetic anhydride, propionic anhydride, butyric anhydride, and carboxylic acid anhydride such as isobutyric anhydride. Of these, acetic anhydride is preferred in terms of availability. The amount of the acylating agent used is preferably 1.0 to 1.1 equivalents, preferably 1.01 to 1.05 equivalents, based on the total amount of hydroxyl groups of the substance used in the reaction, in terms of ease of reaction control. Is more preferable.
 アシル化は、公知の方法により行うことができる。例えば、原料モノマーを、アシル化剤と混合し、120~160℃の温度範囲で、0.5~5時間程度加熱してアシル化反応させ、アシル化物を含む反応生成物を得る。 Acylation can be performed by a known method. For example, the raw material monomer is mixed with an acylating agent and heated in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours for an acylation reaction to obtain a reaction product containing an acylated product.
(固相重合工程)
 本実施形態の製造方法においては、溶融重合工程(上記重縮合反応工程)で得られた樹脂を、さらに固相重合させる工程を有していてもよい。固相重合により、原料樹脂の分子量の増加を図ることができ、強度や耐熱性に優れた液晶性樹脂を得ることができる。
(Solid phase polymerization step)
The production method of the present embodiment may further include a step of solid-phase polymerization of the resin obtained in the melt polymerization step (the above-mentioned polycondensation reaction step). By solid-phase polymerization, the molecular weight of the raw material resin can be increased, and a liquid crystal resin having excellent strength and heat resistance can be obtained.
 固相重合は、従来公知の方法を用いることができる。例えば、減圧又は真空下、窒素ガス等の不活性ガス気流中で、原料樹脂の液晶形成温度よりも10~120℃低い温度で加熱することにより行うことができる。なお、液晶性樹脂は固相重合が進むにしたがってその融点も上昇するので、原料樹脂の元の融点以上で固相重合することも可能である。固相重合は、一定の温度で実施してもよいし段階的に高温にしてもよい。加熱方法は、特に限定されず、マイクロ波加熱、ヒータ加熱等を用いることができる。 For solid phase polymerization, a conventionally known method can be used. For example, it can be carried out by heating under reduced pressure or vacuum in an inert gas stream such as nitrogen gas at a temperature 10 to 120 ° C. lower than the liquid crystal forming temperature of the raw material resin. Since the melting point of the liquid crystal resin increases as the solid phase polymerization progresses, it is possible to carry out the solid phase polymerization at a temperature equal to or higher than the original melting point of the raw material resin. The solid phase polymerization may be carried out at a constant temperature or may be gradually heated to a high temperature. The heating method is not particularly limited, and microwave heating, heater heating, or the like can be used.
[液晶性樹脂]
 本実施形態の製造方法により得られる液晶性樹脂は、液晶性ポリエステル及び液晶性ポリエステルアミドから選択される少なくとも1種を含むことが好ましい。液晶性ポリエステル及び液晶性ポリエステルアミドとしては、特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドであることが特に好ましい。また、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルとすることもできる。
[Liquid crystal resin]
The liquid crystal resin obtained by the production method of the present embodiment preferably contains at least one selected from liquid crystal polyester and liquid crystal polyester amide. The liquid crystal polyester and the liquid crystal polyester amide are not particularly limited, but are preferably aromatic polyester or aromatic polyester amide, and are repeating units derived from one or more of aromatic hydroxycarboxylic acid and its derivatives. It is particularly preferable that it is an aromatic polyester or an aromatic polyester amide having the above as a constituent component. Further, it may be a polyester which partially contains an aromatic polyester or an aromatic polyester amide in the same molecular chain.
 芳香族ポリエステル又は芳香族ポリエステルアミドとしては、より具体的には、
(1)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステル;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(c1)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、(c2)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド;
(5)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、(c1)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、(c2)芳香族ジオール、脂環族ジオール、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド等、を挙げることができる。
More specifically, as an aromatic polyester or an aromatic polyester amide,
(1) Polyester mainly composed of (a) one or more kinds of aromatic hydroxycarboxylic acids and derivatives thereof;
(2) Mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or more of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. Polyester consisting of;
(3) Mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one or more of aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and derivatives thereof. , (C) Aromatic diols, alicyclic diols, aliphatic diols, and polyesters consisting of one or more of their derivatives;
(4) Mainly (a) one or more kinds of aromatic hydroxycarboxylic acids and derivatives thereof, and (c1) one or more kinds of aromatic hydroxyamines, aromatic diamines, and derivatives thereof, (c1). c2) A polyester amide consisting of an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid, and one or more of their derivatives;
(5) Mainly (a) one or more kinds of aromatic hydroxycarboxylic acids and their derivatives, and (b) one or more kinds of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and their derivatives. , (C1) one or more of aromatic hydroxyamines, aromatic diamines, and their derivatives, and (c2) one or more of aromatic diols, alicyclic diols, and their derivatives. Examples thereof include a polyester amide composed of.
 液晶性樹脂の分子量(数平均分子量Mn)は、特に限定されず、溶融重合工程(重縮合反応工程)で得られた樹脂としては、10000~100000であることが好ましく、15000~80000であることがより好ましい。固相重合工程で得られた樹脂としては、12000~120000であることが好ましく、15000~100000であることがより好ましい。なお、数平均分子量Mnは、ゲル浸透クロマトグラフィーで測定することができる。 The molecular weight (number average molecular weight Mn) of the liquid crystal resin is not particularly limited, and the resin obtained in the melt polymerization step (polycondensation reaction step) is preferably 10,000 to 100,000, preferably 15,000 to 80,000. Is more preferable. The resin obtained in the solid phase polymerization step is preferably 12,000 to 120,000, more preferably 15,000 to 100,000. The number average molecular weight Mn can be measured by gel permeation chromatography.
 液晶性樹脂の融点は、特に限定されず、250~380℃とすることができる。液晶性樹脂の溶融粘度は、特に限定されず、溶融重合(重縮合反応工程)で得られた樹脂としては、液晶性樹脂の融点よりも10~30℃高いシリンダー温度及びせん断速度1000sec-1で測定した溶融粘度が、5Pa・s以上150Pa・s以下であることが好ましく、さらに好ましくは、10Pa・s以上100Pa・s以下である。さらに固相重合工程を行った場合の樹脂は、液晶性樹脂の融点よりも10~30℃高いシリンダー温度及びせん断速度1000sec-1で測定した溶融粘度が、5Pa・s以上200Pa・s以下であることが好ましく、さらに好ましくは、10Pa・s以上150Pa・s以下である。 The melting point of the liquid crystal resin is not particularly limited and can be 250 to 380 ° C. The melt viscosity of the liquid crystal resin is not particularly limited, and the resin obtained by melt polymerization (polycondensation reaction step) has a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1 . The measured melt viscosity is preferably 5 Pa · s or more and 150 Pa · s or less, and more preferably 10 Pa · s or more and 100 Pa · s or less. Further, the resin obtained by performing the solid phase polymerization step has a melt viscosity of 5 Pa · s or more and 200 Pa · s or less measured at a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystal resin and a shear rate of 1000 sec -1. It is preferable, and more preferably, it is 10 Pa · s or more and 150 Pa · s or less.
 「液晶性樹脂の融点よりも10~30℃高いシリンダー温度」とは、液晶性樹脂が溶融粘度の測定が可能な程度まで溶融することができるシリンダー温度を意味しており、融点よりも何℃高いシリンダー温度とするかは、10~30℃の範囲で原料樹脂の種類によって異なる。液晶性樹脂は、粉粒体混合物の形態とすることができ、ペレット等の溶融混合物(溶融混練物)の形態とすることもできる。 "Cylinder temperature 10 to 30 ° C higher than the melting point of the liquid crystal resin" means the cylinder temperature at which the liquid crystal resin can be melted to the extent that the melt viscosity can be measured, and is several degrees Celsius higher than the melting point. Whether to set the cylinder temperature high depends on the type of raw material resin in the range of 10 to 30 ° C. The liquid crystal resin can be in the form of a powder or granular material mixture, or can be in the form of a melt mixture (melt kneaded product) such as pellets.
 液晶性樹脂は、熱重量測定装置を使用し、液晶性樹脂10mgを窒素気流下にて、液晶性樹脂の融点よりも25℃高い温度(Tm2+25℃)で、30分保持した際の重量減少量(質量%)が1.2質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.8質量%以下であることがさらに好ましい。重量減少量(質量%)が1.2質量%以下である場合は、溶融時のガス発生量が少ないので、発生したガスによる成形品の膨れ(ブリスター)を抑制することができる。 For the liquid crystal resin, the amount of weight loss when 10 mg of the liquid crystal resin is held at a temperature 25 ° C higher than the melting point of the liquid crystal resin (Tm2 + 25 ° C) for 30 minutes under a nitrogen stream using a thermal weight measuring device. (Mass%) is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.8% by mass or less. When the weight reduction amount (mass%) is 1.2% by mass or less, the amount of gas generated at the time of melting is small, so that the swelling (blister) of the molded product due to the generated gas can be suppressed.
 液晶性樹脂は、成形品の外観を損なわない点で、分光色差計により測定した粉粒状の液晶性樹脂(サイズ:100~200μm)のL値が、70以上であることが好ましく、80以上であることがより好ましい。 The liquid crystal resin preferably has an L * value of 70 or more, preferably 80 or more, of the powdery granular liquid crystal resin (size: 100 to 200 μm) measured by a spectrocolorimeter so as not to impair the appearance of the molded product. Is more preferable.
第2実施形態
 第2実施形態は、特にアシル化反応工程を、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことを必須とする。重縮合反応工程についても、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で行うことが好ましい。
Second Embodiment In the second embodiment, particularly in the acylation reaction step, in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. It is essential to do it in. The polycondensation reaction step is also preferably carried out in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having 1 or more nitrogen atoms.
[液晶性樹脂の製造方法]
 本実施形態に係る液晶性樹脂の製造方法は、(A)原料モノマーをアシル化すること、(B)アシル化された原料モノマーを重縮合すること、を含み、アシル化すること(A)が、原料モノマーとカルボン酸とを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させること(a1)を含む。
 「液晶性」は、第1実施形態に記載のとおりである。原料モノマーについても、第1実施形態と同じであるからここでは記載を省略する。
[Manufacturing method of liquid crystal resin]
The method for producing a liquid crystal resin according to the present embodiment includes (A) acylating a raw material monomer, (B) polycondensing the acylated raw material monomer, and (A) acylating. The reaction of the raw material monomer and the carboxylic acid in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms (a1). include.
"Liquid crystallinity" is as described in the first embodiment. Since the raw material monomer is the same as that in the first embodiment, the description thereof is omitted here.
(アシル化反応工程(A))
 本実施形態の製造方法においては、原料モノマーを重縮合する重縮合反応工程の前に、原料モノマーをアシル化する工程を設ける。
 アシル化反応工程(A)は、原料モノマーとカルボン酸とを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物(以下、単に「酸性化合物」ともいう。)と窒素原子を1以上有する少なくとも一つの有機塩基化合物(以下、単に「有機塩基化合物」ともいう。)との塩の存在下で反応させる工程(a1)(以下、単に「工程(a1)」ともいう。)を含む。
 アシル化反応工程(A)が、上記した酸性化合物と有機塩基化合物との塩を用いる工程(a1)を有することで、驚くべきことに、従来アシル化剤としては使用できないと考えられていた酢酸等のカルボン酸を用いた場合でも原料モノマーのアシル化反応率を高められることが分かった。これにより、従来アシル化剤として用いられてきた酸無水物の少なくとも一部をカルボン酸に変更することが可能となり、従来よりも低コストで液晶性樹脂を製造することができる。酸性化合物と有機塩基化合物との塩は、アシル化反応の触媒としての作用を有すると考えられる。
(Acylation reaction step (A))
In the production method of the present embodiment, a step of acylating the raw material monomer is provided before the polycondensation reaction step of polycondensing the raw material monomer.
In the acylation reaction step (A), the raw material monomer and the carboxylic acid have at least one acidic compound having an acid dissociation constant pKa of 1 or less (hereinafter, also simply referred to as “acidic compound”) and one or more nitrogen atoms. It comprises a step (a1) of reacting with at least one organic base compound (hereinafter, also simply referred to as “organic base compound”) in the presence of a salt (hereinafter, also simply referred to as “step (a1)”).
Surprisingly, acetic acid, which was conventionally considered to be unusable as an acylating agent, because the acylation reaction step (A) includes the step (a1) of using the salt of the acidic compound and the organic base compound described above. It was found that the acylation reaction rate of the raw material monomer can be increased even when a carboxylic acid such as the above is used. As a result, at least a part of the acid anhydride conventionally used as an acylating agent can be changed to a carboxylic acid, and a liquid crystal resin can be produced at a lower cost than the conventional one. The salt of the acidic compound and the organic base compound is considered to have an action as a catalyst for the acylation reaction.
 カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、ピバル酸、2-エチルヘキサン酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸、モノブロモ酢酸、ジブロモ酢酸、トリブロモ酢酸、モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、グルタル酸、マレイン酸、コハク酸、β-ブロモプロピオン酸等が挙げられるが、特に限定されるものでない。これらから選択される少なくとも1種を用いることができる。価格と取り扱い性の観点から、酢酸、プロピオン酸、酪酸、イソ酪酸等から選ばれる1以上のカルボン酸を含むことが好ましい。中でも、入手の容易さの点で、酢酸を含むことがより好ましい。 Examples of the carboxylic acid include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, pivalic acid, 2-ethylhexanoic acid, monochloroacetic acid, dichloroacetic acid, trichloracetic acid, monobromoacetic acid, dibromoacetic acid, tribromoacetic acid, and monofluoroacetic acid. , Difluoroacetic acid, trifluoroacetic acid, glutaric acid, maleic acid, succinic acid, β-bromopropionic acid and the like, but are not particularly limited. At least one selected from these can be used. From the viewpoint of price and handleability, it is preferable to contain one or more carboxylic acids selected from acetic acid, propionic acid, butyric acid, isobutyric acid and the like. Above all, it is more preferable to contain acetic acid in terms of easy availability.
 原料モノマーとカルボン酸とを反応させる工程(a1)におけるカルボン酸の添加量は、原料モノマーの水酸基に対して、0.01~1000当量であることが好ましく、0.1~500当量であることがより好ましく、1~100当量であるであることが更に好ましい。カルボン酸の添加量を原料モノマーの水酸基に対して、0.01~1000当量とすることで、より低コストでかつ確実に液晶性樹脂を製造することができる。 The amount of the carboxylic acid added in the step (a1) of reacting the raw material monomer with the carboxylic acid is preferably 0.01 to 1000 equivalents, preferably 0.1 to 500 equivalents, relative to the hydroxyl group of the raw material monomer. Is more preferable, and it is further preferable that the amount is 1 to 100 equivalents. By setting the addition amount of the carboxylic acid to 0.01 to 1000 equivalents with respect to the hydroxyl group of the raw material monomer, a liquid crystal resin can be reliably produced at a lower cost.
 アシル化の方法は、後述する触媒(酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩)を用いることの他は公知の方法に基づいて行うことができる。例えば、原料モノマーをカルボン酸及び後述する触媒と混合し、120~160℃の温度範囲で、0.5~5時間程度加熱してアシル化反応させ、アシル化物を含む反応生成物を得る。工程(a1)では、アシル化剤として酸無水物を用いる必要がない。そのため、工程(a1)における反応液中の酸無水物の含有量は、原料モノマーの水酸基に対して、1当量未満又は0.5当量未満とすることができ、酸無水物を含まない構成にすることもできる。 The acylation method is a known method except that a catalyst described later (a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms) is used. Can be done based on. For example, the raw material monomer is mixed with a carboxylic acid and a catalyst described later, and heated in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours for an acylation reaction to obtain a reaction product containing an acylated product. In the step (a1), it is not necessary to use an acid anhydride as an acylating agent. Therefore, the content of acid anhydride in the reaction solution in the step (a1) can be less than 1 equivalent or less than 0.5 equivalent with respect to the hydroxyl group of the raw material monomer, and the structure does not contain acid anhydride. You can also do it.
 一実施形態において、原料モノマーとカルボン酸とを反応させる工程(a1)の後に、工程(a1)の反応液に酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)(以下、単に「工程(a2)ともいう。」を含むことが好ましい。工程(a2)では、工程(a1)の反応後に未反応の原料モノマーをアシル化する。
 この実施形態では、原料モノマーとカルボン酸とを反応させる工程(a1)を「第1アシル化反応工程」とし、酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)を「第2アシル化反応工程」とすることができる。第2アシル化反応工程(工程(a2))を設けることで、第1アシル化反応工程(工程(a1))のみの場合に比べて、より効率的に原料モノマーのアシル化を達成することができる。第1アシル化反応工程(工程(a1))で用いるカルボン酸及びその添加量並びにアシル化の方法は、上記のとおりであるからここでは記載を省略する。
In one embodiment, after the step (a1) of reacting the raw material monomer with the carboxylic acid, an acid anhydride is added to the reaction solution of the step (a1) to react the unreacted raw material monomer with the acid anhydride. (A2) (hereinafter, also simply referred to as “step (a2)”. ”In step (a2), the unreacted raw material monomer is acylated after the reaction of step (a1).
In this embodiment, the step (a1) of reacting the raw material monomer with the carboxylic acid is referred to as a "first acylation reaction step", and an acid anhydride is added to react the unreacted raw material monomer with the acid anhydride. (A2) can be referred to as a "second acylation reaction step". By providing the second acylation reaction step (step (a2)), the acylation of the raw material monomer can be achieved more efficiently than in the case of only the first acylation reaction step (step (a1)). can. Since the carboxylic acid used in the first acylation reaction step (step (a1)), the amount thereof added, and the acylation method are as described above, the description thereof is omitted here.
 工程(a2)で用いる酸無水物としては、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2-エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸等が挙げられるが、特に限定されるものでない。これらから選択される少なくとも1種を用いることができる。価格と取り扱い性の観点から、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸等から選ばれる1以上の無水カルボン酸を含むことが好ましい。中でも、入手の容易さの点で、無水酢酸を含むことがより好ましい。 As the acid anhydride used in the step (a2), anhydrous acetic acid, anhydrous propionic acid, anhydrous butyric acid, anhydrous isobutyric acid, anhydrous valeric acid, anhydrous pivalic acid, anhydrous 2-ethylhexanoic acid, anhydrous monochloroacetic acid, anhydrous dichloracetic acid, anhydrous Trichloracetic acid, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β-bromopropionic anhydride, etc. However, it is not particularly limited. At least one selected from these can be used. From the viewpoint of price and handleability, it is preferable to contain one or more anhydrous carboxylic acids selected from acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride and the like. Above all, it is more preferable to contain acetic anhydride from the viewpoint of easy availability.
 工程(a2)における酸無水物の添加量は、原料モノマーの水酸基に対して、0.01~0.99当量であることが好ましく、0.01~0.90当量であることがより好ましく、0.01~0.85当量であるであることが更に好ましい。酸無水物の添加量を原料モノマーの水酸基に対して、0.01~0.99当量とすることで、従来のアシル化反応工程で用いる量(例えば1.00~1.10当量)よりも酸無水物の添加量を少量にすることができる。その結果、従来よりも低コストで液晶性樹脂を製造することができる。 The amount of the acid anhydride added in the step (a2) is preferably 0.01 to 0.99 equivalents, more preferably 0.01 to 0.90 equivalents, relative to the hydroxyl group of the raw material monomer. It is more preferably 0.01 to 0.85 equivalent. By setting the addition amount of acid anhydride to 0.01 to 0.99 equivalents with respect to the hydroxyl group of the raw material monomer, the amount is larger than the amount used in the conventional acylation reaction step (for example, 1.00 to 1.10 equivalents). The amount of acid anhydride added can be reduced. As a result, the liquid crystal resin can be manufactured at a lower cost than before.
 工程(a2)におけるアシル化は、後述する触媒(酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩)を用いることの他は公知の方法に基づいて行うことができる。例えば、第1アシル化反応工程(a1)の反応液(触媒を含む)に酸無水物を添加し、120~160℃の温度範囲で、0.5~5時間程度さらに加熱することで未反応の原料モノマーをアシル化して、アシル化物を含む反応生成物を得る。 The acylation in the step (a2) is performed by using a catalyst described later (a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms). It can be performed based on a known method. For example, an acid anhydride is added to the reaction solution (including the catalyst) of the first acylation reaction step (a1), and the reaction is not reacted by further heating in a temperature range of 120 to 160 ° C. for about 0.5 to 5 hours. The raw material monomer of the above is acylated to obtain a reaction product containing an acylated product.
 工程(a1)後の原料モノマーのアシル化反応率は、5%以上であることが好ましく、10%以上であることがより好ましい。アシル化反応率が5%以上であることにより、液晶性樹脂をより効率的に製造することができる。
 工程(a2)後の原料モノマーのアシル化反応率は、90%以上であることが好ましく、95%以上であることがより好ましい。
 アシル化反応率は、核磁気共鳴装置(H-NMR)により測定した値とする。
The acylation reaction rate of the raw material monomer after the step (a1) is preferably 5% or more, and more preferably 10% or more. When the acylation reaction rate is 5% or more, the liquid crystal resin can be produced more efficiently.
The acylation reaction rate of the raw material monomer after the step (a2) is preferably 90% or more, more preferably 95% or more.
The acylation reaction rate shall be a value measured by a nuclear magnetic resonance apparatus (1 H-NMR).
(触媒)
 酸性化合物と有機塩基化合物との塩は、酸性化合物のアニオンと有機塩基化合物のカチオンとで構成されている。酸性化合物と有機塩基化合物との塩は、そのものを使用することの他に、反応系内で酸性化合物と有機塩基化合物とを共存させることにより塩を形成させてもよい。酸性化合物と有機塩基化合物とは、反応系内で酸塩基反応することにより塩を形成し得る。
(catalyst)
The salt of the acidic compound and the organic base compound is composed of an anion of the acidic compound and a cation of the organic base compound. As the salt of the acidic compound and the organic base compound, in addition to using the salt itself, the salt may be formed by coexisting the acidic compound and the organic base compound in the reaction system. The acidic compound and the organic base compound can form a salt by an acid-base reaction in the reaction system.
 酸性化合物(アニオン成分)は、酸解離定数pKaが1以下であり、好ましくは0.65以下であり、より好ましくは-14.0~0.65であり、さらに好ましくは-14.0~-2.0である。酸性化合物の酸解離定数pKaが1を超えると、アシル化反応率の向上効果が低下したり、後述する重縮合反応工程における重縮合反応速度の向上効果が低下したりすることがあり好ましくない。なお、上記pKaは、25℃における水溶液中でのpKaを意味する。酸性化合物の例は、第1実施形態に記載した化合物と同じであるからここでは記載を省略する。 The acidic compound (anionic component) has an acid dissociation constant pKa of 1 or less, preferably 0.65 or less, more preferably -14.0 to 0.65, and further preferably -14.0 to-. It is 2.0. If the acid dissociation constant pKa of the acidic compound exceeds 1, the effect of improving the acylation reaction rate may decrease, or the effect of improving the polycondensation reaction rate in the polycondensation reaction step described later may decrease, which is not preferable. The above pKa means pKa in an aqueous solution at 25 ° C. Since the example of the acidic compound is the same as the compound described in the first embodiment, the description thereof is omitted here.
 有機塩基化合物は、有機オニウムカチオンを発生する化合物であり、窒素原子を1以上有する。すなわち、上記塩は、窒素カチオンを少なくとも含む。原料モノマーを、窒素原子を1以上有する有機塩基化合物と上記した酸性化合物との塩の存在下で反応させることで、驚くべきことに、反応速度を高めることができるだけでなく、ガスの発生をより低減させ、かつ液晶性樹脂の明度が低下することを防ぐことができることが分かった。 The organic base compound is a compound that generates an organic onium cation and has one or more nitrogen atoms. That is, the salt contains at least a nitrogen cation. By reacting the raw material monomer in the presence of a salt of an organic base compound having one or more nitrogen atoms and the above-mentioned acidic compound, surprisingly, not only the reaction rate can be increased, but also gas generation can be further increased. It was found that the reduction can be achieved and the brightness of the liquid crystal resin can be prevented from being lowered.
 有機塩基化合物(カチオン成分)は、当該有機塩基化合物の塩基性度の点で、共役酸の酸解離定数pKaが13.0未満であることが好ましく、-10.0~8.0であることがより好ましく、-8.0~6.0であることがさらに好ましい。
 なお、有機塩基化合物の共役酸の酸解離定数pKaは、25℃における水溶液中でのpKaを意味する。
The organic base compound (cationic component) preferably has an acid dissociation constant pKa of the conjugate acid of less than 13.0, preferably -10.0 to 8.0, in terms of the basicity of the organic base compound. Is more preferable, and −8.0 to 6.0 is even more preferable.
The acid dissociation constant pKa of the conjugate acid of the organic base compound means pKa in an aqueous solution at 25 ° C.
 「有機塩基化合物」の例及び「酸性化合物と有機塩基化合物との塩」の例は、第1実施形態に記載した化合物及び塩と同じであるからここでは記載を省略する。
 上記した酸性化合物と有機塩基化合物との塩を、アシル化反応工程における触媒として、好ましくはアシル化反応工程及び重縮合反応工程における触媒として、用いることが好ましい。
Since the examples of the "organic base compound" and the examples of "salt of an acidic compound and an organic base compound" are the same as the compounds and salts described in the first embodiment, the description thereof will be omitted here.
It is preferable to use the above-mentioned salt of the acidic compound and the organic base compound as a catalyst in the acylation reaction step, preferably as a catalyst in the acylation reaction step and the polycondensation reaction step.
(酸性化合物と有機塩基化合物との塩の添加量)
 本実施形態において、上記酸性化合物と有機塩基化合物との塩の添加量は、アシル化及び後述する重縮合に悪影響を与えない限り特に限定されないが、一般には得られる液晶性樹脂の理論収量に対して、50~5000ppmであることが好ましく、100~3000ppmであることがより好ましい。
(Amount of salt added between acidic compound and organic base compound)
In the present embodiment, the amount of the salt added to the acidic compound and the organic base compound is not particularly limited as long as it does not adversely affect acylation and polycondensation described later, but is generally based on the theoretical yield of a liquid liquid resin obtained. It is preferably 50 to 5000 ppm, and more preferably 100 to 3000 ppm.
 酸性化合物と有機塩基化合物とを反応系内で共存させることにより酸性化合物と有機塩基化合物との塩を発生させる場合の酸性化合物及び有機塩基化合物の添加量は、例えば、酸性化合物(又は反応系内で酸性化合物を発生し得る化合物)の添加量が[(酸性化合物の分子量/生成する塩の分子量)×50]~[(酸性化合物の分子量/生成する塩の分子量)×5000]ppmであることが好ましく、[(酸性化合物の分子量/生成する塩の分子量)×100]~[(酸性化合物の分子量/生成する塩の分子量)×3000]ppmであることがより好ましい。有機塩基化合物(又は反応系内で有機塩基化合物を発生し得る化合物)の添加量は、酸性化合物の酸部位に対して塩基部位が0.8~1.2当量であることが好ましく、酸性化合物の酸部位に対して塩基部位が0.9~1.1当量であることがより好ましい。 The amount of the acidic compound and the organic base compound added when the salt of the acidic compound and the organic base compound is generated by coexisting the acidic compound and the organic base compound in the reaction system is, for example, the acidic compound (or in the reaction system). The addition amount of (a compound capable of generating an acidic compound) is [(molecular weight of acidic compound / molecular weight of produced salt) × 50] to [(molecular weight of acidic compound / molecular weight of produced salt) × 5000] ppm. Is preferable, and is more preferably [(molecular weight of acidic compound / molecular weight of produced salt) × 100] to [(molecular weight of acidic compound / molecular weight of produced salt) × 3000] ppm. The amount of the organic base compound (or the compound capable of generating the organic base compound in the reaction system) is preferably 0.8 to 1.2 equivalents of the base moiety with respect to the acid moiety of the acidic compound, and the acidic compound. It is more preferable that the base moiety is 0.9 to 1.1 equivalents with respect to the acid moiety of.
(重縮合反応工程)
 重縮合反応工程では、アシル化された原料モノマーを、好ましくはアシル化反応工程(A)で用いた触媒(酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩)の存在下で、溶融重合により重縮合反応させる。アシル化反応工程(A)で用いた触媒の存在下で重縮合反応させることで、より短時間で液晶性樹脂を製造することができるとともに、液晶性樹脂の溶融時のガスの発生をより低減できる。その結果、発生したガスによる成形品の膨れ(ブリスター)を抑制する)ことができる。
(Polycondensation reaction step)
In the polycondensation reaction step, the acylated raw material monomer is preferably the catalyst used in the acylation reaction step (A) (at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one having one or more nitrogen atoms. In the presence of a salt with one organic base compound), a polycondensation reaction is carried out by melt polymerization. By performing the polycondensation reaction in the presence of the catalyst used in the acylation reaction step (A), the liquid crystal resin can be produced in a shorter time, and the generation of gas at the time of melting the liquid crystal resin is further reduced. can. As a result, swelling (blister) of the molded product due to the generated gas can be suppressed).
 重縮合する際の温度は、例えば200~400℃とすることが好ましく、240~380℃とすることがより好ましい。反応時間は特に限定されず、例えば4~14時間とすることが好ましく、6~10時間とすることがより好ましい。 The temperature for polycondensation is preferably, for example, 200 to 400 ° C, more preferably 240 to 380 ° C. The reaction time is not particularly limited, and is preferably, for example, 4 to 14 hours, more preferably 6 to 10 hours.
 本実施形態に係る製造方法によれば、酸無水物の量を減らしても液晶性樹脂を高収率で製造することができる。すなわち、低コストで90%以上、95%以上または98%以上の高収率で液晶性樹脂を製造することができる。 According to the production method according to the present embodiment, the liquid crystal resin can be produced in high yield even if the amount of acid anhydride is reduced. That is, the liquid crystal resin can be produced in a high yield of 90% or more, 95% or more, or 98% or more at low cost.
(固相重合工程)
 本実施形態の製造方法においては、溶融重合工程(上記重縮合反応工程)で得られた樹脂を、さらに固相重合させる工程を有していてもよい。固相重合により、原料樹脂の分子量の増加を図ることができ、強度や耐熱性に優れた液晶性樹脂を得ることができる。固相重合の方法については、第1実施形態と同じであるからここでは記載を省略する。
(Solid phase polymerization step)
The production method of the present embodiment may further include a step of solid-phase polymerization of the resin obtained in the melt polymerization step (the above-mentioned polycondensation reaction step). By solid-phase polymerization, the molecular weight of the raw material resin can be increased, and a liquid crystal resin having excellent strength and heat resistance can be obtained. Since the method of solid-phase polymerization is the same as that of the first embodiment, the description thereof is omitted here.
[液晶性樹脂]
 本実施形態の製造方法により得られる液晶性樹脂は、液晶性ポリエステル及び液晶性ポリエステルアミドから選択される少なくとも1種を含むことが好ましい。液晶性ポリエステル及び液晶性ポリエステルアミドとしては、第1実施形態において例示したものと同じものが挙げられる。液晶性樹脂の分子量(数平均分子量Mn)及び融点についても、第1実施形態と同様である。
[Liquid crystal resin]
The liquid crystal resin obtained by the production method of the present embodiment preferably contains at least one selected from liquid crystal polyester and liquid crystal polyester amide. Examples of the liquid crystal polyester and the liquid crystal polyester amide include the same as those exemplified in the first embodiment. The molecular weight (number average molecular weight Mn) and melting point of the liquid crystal resin are the same as those in the first embodiment.
 液晶性樹脂は、熱重量測定装置を使用し、液晶性樹脂10mgを窒素気流下にて、液晶性樹脂の融点よりも25℃高い温度(Tm2+25℃)で、30分保持した際の重量減少量(質量%)が0.8質量%以下であることが好ましく、0.6質量%以下であることがより好ましい。重量減少量(質量%)が0.8質量%以下である場合は、溶融時のガス発生量が少ないので、発生したガスによる成形品の膨れ(ブリスター)を抑制することができる。 For the liquid crystal resin, the amount of weight loss when 10 mg of the liquid crystal resin is held at a temperature 25 ° C higher than the melting point of the liquid crystal resin (Tm2 + 25 ° C) for 30 minutes under a nitrogen stream using a thermogravimetric measuring device. (Mass%) is preferably 0.8% by mass or less, and more preferably 0.6% by mass or less. When the weight reduction amount (mass%) is 0.8% by mass or less, the amount of gas generated at the time of melting is small, so that the swelling (blister) of the molded product due to the generated gas can be suppressed.
 第1実施形態で述べたように、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩を、重縮合反応における触媒として用いることで、反応速度を高めるとともに液晶性樹脂の溶融時のガスの発生を抑制することができ、かつ明度が高い液晶性樹脂を得ることができる。
 第2実施形態で述べたように、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩を、アシル化反応における触媒として用いることで、従来よりも低コストで液晶性樹脂を製造する方法を提供することができる。
 上記塩を、アシル化反応及び重縮合反応の両方における触媒として用いることで、上記両方の効果を得ることができる。
As described in the first embodiment, a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms is used as a catalyst in the polycondensation reaction. Therefore, it is possible to increase the reaction rate, suppress the generation of gas when the liquid crystal resin is melted, and obtain a liquid crystal resin having high brightness.
As described in the second embodiment, a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms is used as a catalyst in the acylation reaction. Therefore, it is possible to provide a method for producing a liquid crystal resin at a lower cost than before.
By using the salt as a catalyst in both the acylation reaction and the polycondensation reaction, both of the above effects can be obtained.
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the interpretation of the present invention is not limited by these examples.
第1実施形態
[実施例1]
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で3時間反応させた(アシル化反応工程)。その後、更に360℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら重縮合を行った(重縮合反応工程)。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。その後、ストランドをペレタイズして液晶性樹脂ペレットを得た。
 (原料)
  4-ヒドロキシ安息香酸(HBA):183.7g(60モル%)
  テレフタル酸(TA):51.56g(14モル%)
  イソフタル酸(IA):22.10g(6モル%)
  4,4’-ジヒドロキシビフェニル(BP):82.56g(20モル%)
  PFPAT(東京化成工業(株)製):150mg(500ppm)
  アシル化剤(無水酢酸):226.4g
1st Embodiment [Example 1]
After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 3 hours (acyllation reaction step). Then, the temperature is further raised to 360 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes while distilling acetic acid, excess acetic anhydride, and other low boiling points. Polycondensation was performed (polycondensation reaction step). After the stirring torque reached a predetermined value, nitrogen was introduced to bring the polymer into a pressurized state from a reduced pressure state through a normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel. Then, the strands were pelletized to obtain liquid crystal resin pellets.
(material)
4-Hydroxybenzoic acid (HBA): 183.7 g (60 mol%)
Terephthalic acid (TA): 51.56 g (14 mol%)
Isophthalic acid (IA): 22.10 g (6 mol%)
4,4'-Dihydroxybiphenyl (BP): 82.56 g (20 mol%)
PFBAT (manufactured by Tokyo Chemical Industry Co., Ltd.): 150 mg (500 ppm)
Acylating agent (acetic anhydride): 226.4 g
[比較例1]
 PFPATに替えて酢酸カリウム(関東化学(株)製)を45mg(150ppm)用いた以外は、実施例1と同様にして液晶性樹脂ペレットを得た。
[Comparative Example 1]
Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 45 mg (150 ppm) of potassium acetate (manufactured by Kanto Chemical Co., Inc.) was used instead of PFBAT.
[比較例2]
 PFPAT及び他の触媒を用いなかったこと以外は、実施例1と同様にして液晶性樹脂ペレットを得た。
[Comparative Example 2]
Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that PFBAT and other catalysts were not used.
[比較例3]
 PFPATに替えてトリフルオロメタンスルホン酸(東京化成工業(株)製)を66mg(220ppm)用いた以外は、実施例1と同様にして液晶性樹脂ペレットを得た。
[Comparative Example 3]
Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 66 mg (220 ppm) of trifluoromethanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of PFBAT.
[比較例4]
 PFPATに替えてペンタフルオロアニリン(東京化成工業(株)製)を81mg(270ppm)用いた以外は、実施例1と同様にして液晶性樹脂ペレットを得た。
[Comparative Example 4]
Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 81 mg (270 ppm) of pentafluoroaniline (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of PFBAT.
[比較例5]
 PFPATに替えてホウ酸(富士フィルム和光純薬(株)製、pKa:9.23)を27mg(91ppm)、ジメチルアミノピリジン-N-オキシド・水和物(東京化成工業(株)製)を61mg(200ppm)用いた以外は、実施例1と同様にして液晶性樹脂ペレットを得た。
[Comparative Example 5]
Instead of PFBAT, use boric acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., pKa: 9.23) at 27 mg (91 ppm) and dimethylaminopyridine-N-oxide / hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.). Liquid crystal resin pellets were obtained in the same manner as in Example 1 except that 61 mg (200 ppm) was used.
[重縮合速度(数平均重合度)]
 実施例及び比較例において、重縮合反応工程の温度が260℃に達した時に反応系内から留出する酢酸の重量を測定し、以下の式にて数平均重合度を算出した。260℃における数平均重合度が大きいほど重縮合速度(反応速度)が速いと評価できる。結果を表1に示した。
 数平均重合度=1/(1-(260℃における留出酢酸量-留出酢酸理論総量/2)/(留出酢酸理論総量/2))
[Polycondensation rate (number average degree of polymerization)]
In Examples and Comparative Examples, the weight of acetic acid distilled out from the reaction system when the temperature of the polycondensation reaction step reached 260 ° C. was measured, and the number average degree of polymerization was calculated by the following formula. It can be evaluated that the larger the number average degree of polymerization at 260 ° C., the faster the polycondensation rate (reaction rate). The results are shown in Table 1.
Number average degree of polymerization = 1 / (1- (Amount of distillate acetic acid at 260 ° C.-Theoretical total amount of distillate acetic acid / 2) / (Theoretical total amount of distillate acetic acid / 2))
[ガス発生量]
 実施例及び比較例で得られた樹脂ペレットを凍結粉砕処理して粉粒状にし、熱重量測定装置(TGA、TAインスツルメント(株)製)を使用し、液晶性樹脂10mgを窒素気流下にて、液晶性樹脂の融点よりも25℃高い温度(Tm2+25℃)で、30分保持した際の重量減少量(質量%)を測定し、それをガス発生量として評価した。結果を表1に示した。
[Gas generation amount]
The resin pellets obtained in Examples and Comparative Examples were freeze-ground and granulated, and a thermogravimetric measuring device (TGA, manufactured by TA Instrument Co., Ltd.) was used to apply 10 mg of the liquid crystal resin under a nitrogen stream. The weight loss (% by mass) when held for 30 minutes at a temperature 25 ° C. higher than the melting point of the liquid crystal resin (Tm2 + 25 ° C.) was measured and evaluated as the amount of gas generated. The results are shown in Table 1.
[明度]
 実施例及び比較例で得られた樹脂ペレットを凍結粉砕処理して粉粒状にし、分光色差計(日本電色工業(株)製、SE6000)により明度(L値)を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000005
[brightness]
The resin pellets obtained in Examples and Comparative Examples were freeze-ground and granulated, and the brightness (L * value) was measured with a spectrocolorimeter (SE6000 manufactured by Nippon Denshoku Kogyo Co., Ltd.). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、実施例の製造方法は、反応速度の向上と液晶性樹脂の溶融時のガス発生量の抑制とを両立できるとともに、明度が高い液晶性樹脂を得ることができることが理解できる。
 一方、触媒として酢酸カリウムを用いた比較例1は、260℃における数平均重合度は無触媒である比較例2と同等であることから反応速度の向上効果は見られず、かつ液晶性樹脂の溶融時のガス発生量が多かった。
 触媒として酸性化合物を単独で用いた比較例3では、反応速度は高められたものの、液晶性樹脂の溶融時のガスの発生量が実施例よりも多くなっており、かつ液晶性樹脂の明度が低かった。
 触媒として有機塩基化合物を単独で用いた比較例4では、液晶性樹脂の溶融時のガスの発生量や液晶性樹脂の明度の低下を抑制することができたものの、反応速度を向上させることはできなかった。
 触媒として、pKaが1より大きい酸性化合物と塩基性化合物を用いた比較例5は、液晶性樹脂の溶融時のガスの発生量は抑制できたものの、反応速度の向上効果は見られず、かつ液晶性樹脂の明度が低かった。
As is clear from Table 1, the production method of the examples can achieve both improvement of the reaction rate and suppression of the amount of gas generated when the liquid crystal resin is melted, and can obtain a liquid crystal resin having high brightness. Understandable.
On the other hand, Comparative Example 1 using potassium acetate as a catalyst has the same number average degree of polymerization at 260 ° C. as that of Comparative Example 2 having no catalyst, so that the effect of improving the reaction rate is not observed and the liquid crystal resin has no effect. The amount of gas generated during melting was large.
In Comparative Example 3 in which the acidic compound was used alone as the catalyst, the reaction rate was increased, but the amount of gas generated when the liquid crystal resin was melted was larger than that in the example, and the brightness of the liquid crystal resin was higher. It was low.
In Comparative Example 4 in which the organic base compound was used alone as the catalyst, the amount of gas generated when the liquid crystal resin was melted and the decrease in the brightness of the liquid crystal resin could be suppressed, but the reaction rate could not be improved. could not.
In Comparative Example 5 in which an acidic compound having a pKa greater than 1 and a basic compound were used as catalysts, the amount of gas generated when the liquid crystal resin was melted could be suppressed, but the effect of improving the reaction rate was not observed, and the effect of improving the reaction rate was not observed. The brightness of the liquid crystal resin was low.
第2実施形態
[実施例2-1]
 重合容器に無水酢酸を除く下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で3時間反応させた(第1アシル化反応工程)。その後、温度を140℃で保持したまま無水酢酸を添加し、1時間反応させた(第2アシル化反応工程)。更に325℃まで3.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、及びその他の低沸分を留出させながら重縮合を行った(重縮合反応工程)。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。その後、ストランドをペレタイズして液晶性樹脂ペレットを得た。得られた液晶性樹脂の収率は99%であった。
 (原料)
  4-ヒドロキシ安息香酸(HBA):37.73g(73モル%)
  6-ヒドロキシ-2-ナフトエ酸;19.01g(27モル%)
  PFPAT(東京化成工業(株)製):125mg(2500ppm)
  アシル化剤1(酢酸):1600g
  アシル化剤2(無水酢酸):30.94g
2nd Embodiment [Example 2-1]
After charging the following raw materials excluding acetic anhydride into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and the reaction was carried out at 140 ° C. for 3 hours (first acylation reaction step). Then, acetic anhydride was added while maintaining the temperature at 140 ° C., and the mixture was reacted for 1 hour (second acylation reaction step). Further, the temperature was raised to 325 ° C. over 3.5 hours, and then the pressure was reduced to 10 Torr (that is, 1330 Pa) over 15 minutes, and polycondensation was performed while distilling acetic acid and other low boiling points (heavy). Condensation reaction step). After the stirring torque reached a predetermined value, nitrogen was introduced to bring the polymer into a pressurized state from a reduced pressure state through a normal pressure state, and the polymer was discharged from the lower part of the polymerization vessel. Then, the strands were pelletized to obtain liquid crystal resin pellets. The yield of the obtained liquid crystal resin was 99%.
(material)
4-Hydroxybenzoic acid (HBA): 37.73 g (73 mol%)
6-Hydroxy-2-naphthoic acid; 19.01 g (27 mol%)
PFBAT (manufactured by Tokyo Chemical Industry Co., Ltd.): 125 mg (2500 ppm)
Acylating agent 1 (acetic acid): 1600 g
Acylating agent 2 (acetic anhydride): 30.94 g
[比較例2-1]
 PFPATに替えて酢酸カリウム(関東化学(株)製)を37mg(740ppm)用いた以外は、実施例2-1と同様にして液晶性樹脂ペレットを得た。得られた液晶性樹脂の収率は86%であった。
[Comparative Example 2-1]
Liquid crystal resin pellets were obtained in the same manner as in Example 2-1 except that 37 mg (740 ppm) of potassium acetate (manufactured by Kanto Chemical Co., Inc.) was used instead of PFBAT. The yield of the obtained liquid crystal resin was 86%.
[比較例2-2]
 PFPAT及び他の触媒を用いなかったこと以外は、実施例2-1と同様にして液晶性樹脂ペレットを得た。得られた液晶性樹脂の収率は89%であった。
[Comparative Example 2-2]
Liquid crystal resin pellets were obtained in the same manner as in Example 2-1 except that PFBAT and other catalysts were not used. The yield of the obtained liquid crystal resin was 89%.
[アシル化(アセチル化)反応率]
 第1アシル化反応工程及び第2アシル化反応工程におけるアシル化反応中にそれぞれサンプリングした試料10mgに対して、DMSO-dを0.5mL加えて試料を溶解させた。得られた溶液をガラス製試料管に移し、核磁気共鳴装置(NMR、Bluker社製)にてH-NMR測定を行い、未反応モノマーの芳香環3位プロトン並びにアシル化(アセチル化)モノマーの芳香環3位プロトンの積分値を取得し、以下の式にてアシル化(アセチル化)反応率を算出した。
 アセチル化反応率(%)=[(アセチル化モノマーのプロトン積分値)/((未反応モノマーのプロトン積分値)+(アセチル化モノマーのプロトン積分値))]×100
[Acylation (acetylation) reaction rate]
0.5 mL of DMSO-d 6 was added to 10 mg of the sample sampled during the acylation reaction in the first acylation reaction step and the second acylation reaction step to dissolve the sample. The obtained solution was transferred to a glass sample tube, 1 H-NMR measurement was performed with a nuclear magnetic resonance apparatus (NMR, manufactured by Bluker), and the aromatic ring 3-position proton of the unreacted monomer and the acylated (acetylated) monomer were performed. The integrated value of the proton at the 3-position of the aromatic ring was obtained, and the acylation reaction rate was calculated by the following formula.
Acetylation reaction rate (%) = [(integral value of protons of acetylated monomer) / ((integrated value of protons of unreacted monomer) + (integrated value of protons of acetylated monomer))] × 100
[ガス発生量]
 実施例及び比較例で得られた樹脂ペレットを凍結粉砕処理して粉粒状にし、熱重量測定装置(TGA、TAインスツルメント(株)製)を使用し、液晶性樹脂10mgを窒素気流下にて、液晶性樹脂の融点よりも25℃高い温度(Tm2+25℃)で、30分保持した際の重量減少量(質量%)を測定し、それをガス発生量として評価した。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000006
[Gas generation amount]
The resin pellets obtained in Examples and Comparative Examples were freeze-ground and granulated, and a thermogravimetric measuring device (TGA, manufactured by TA Instrument Co., Ltd.) was used to apply 10 mg of the liquid crystal resin under a nitrogen stream. The weight loss (% by mass) when held for 30 minutes at a temperature 25 ° C. higher than the melting point of the liquid crystal resin (Tm2 + 25 ° C.) was measured and evaluated as the amount of gas generated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
 表2から明らかなように、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩を触媒として用いてアシル化を行った実施例の製造方法は、アシル化剤として酢酸を用いた工程(a1)のアシル化(アセチル化)反応率が高く、工程(a2)で用いる無水酢酸の量を減らしても原料モノマーのアシル化反応率を十分に高めることができ、液晶性樹脂を高収率で製造することができた。また、溶融時のガス発生量を抑制することができた。
 一方、触媒として酢酸カリウムを用いた比較例2-1は、アシル化剤として酢酸を用いた工程(a1)のアシル化(アセチル化)反応率が低く、工程(a2)で用いる無水酢酸の量を従来の量よりも減らすと原料モノマーのアシル化反応率が十分ではなく、液晶性樹脂を高収率で製造することができなかった。また、液晶性樹脂の溶融時のガス発生量が多かった。
 触媒を用いなかった比較例2-2では、液晶性樹脂の溶融時のガスの発生量は少なかったものの、アシル化剤として酢酸を用いた工程(a1)のアシル化(アセチル化)反応率が低く、工程(a2)で用いる無水酢酸の量を従来の量よりも減らすと原料モノマーのアシル化反応率が十分ではなく、液晶性樹脂を高収率で製造することができなかった。
As is clear from Table 2, examples of acylation performed using a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having 1 or more nitrogen atoms as a catalyst. In the production method of, the acylation (acetylation) reaction rate of the step (a1) using acetic acid as an acylating agent is high, and the acylation reaction rate of the raw material monomer is reduced even if the amount of anhydrous acetic acid used in the step (a2) is reduced. Was sufficiently enhanced, and a liquid crystal resin could be produced in a high yield. In addition, it was possible to suppress the amount of gas generated during melting.
On the other hand, Comparative Example 2-1 using potassium acetate as a catalyst has a low acylation reaction rate in the step (a1) using acetic acid as an acylating agent, and the amount of acetic anhydride used in the step (a2). When the amount was reduced from the conventional amount, the acylation reaction rate of the raw material monomer was not sufficient, and the liquid crystal resin could not be produced in high yield. In addition, the amount of gas generated when the liquid crystal resin was melted was large.
In Comparative Example 2-2 in which no catalyst was used, although the amount of gas generated when the liquid crystal resin was melted was small, the acylation reaction rate in the step (a1) using acetic anhydride as the acylating agent was high. It was low, and when the amount of acetic anhydride used in the step (a2) was reduced from the conventional amount, the acylation reaction rate of the raw material monomer was not sufficient, and the liquid crystal resin could not be produced in high yield.

Claims (12)

  1.  原料モノマーを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させることを含む、液晶性樹脂の製造方法。 A method for producing a liquid crystal resin, which comprises reacting a raw material monomer in the presence of a salt of at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. ..
  2.  (A)原料モノマーをアシル化すること、
     (B)アシル化された原料モノマーを重縮合すること、を含み、
     アシル化すること(A)が、原料モノマーとカルボン酸とを、酸解離定数pKaが1以下である少なくとも一つの酸性化合物と窒素原子を1以上有する少なくとも一つの有機塩基化合物との塩の存在下で反応させること(a1)を含む、液晶性樹脂の製造方法。
    (A) Acylating the raw material monomer,
    (B) including polycondensing the acylated raw material monomer.
    Acryling (A) is the presence of a salt of the raw material monomer and the carboxylic acid with at least one acidic compound having an acid dissociation constant pKa of 1 or less and at least one organic base compound having one or more nitrogen atoms. A method for producing a liquid crystal resin, which comprises reacting with (a1).
  3.  アシル化すること(A)が、原料モノマーとカルボン酸とを反応させること(a1)の後に、反応液に酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)を含む、請求項2に記載の液晶性樹脂の製造方法。 Acylation (A) is the reaction of the raw material monomer with the carboxylic acid (a1), and then the acid anhydride is added to the reaction solution to react the unreacted raw material monomer with the acid anhydride (a1). The method for producing a liquid crystal resin according to claim 2, which comprises a2).
  4.  重縮合すること(B)が、アシル化された原料モノマーを前記塩の存在下で重縮合することを含む、請求項2または3に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to claim 2 or 3, wherein the polycondensation (B) comprises polycondensing the acylated raw material monomer in the presence of the salt.
  5.  原料モノマーとカルボン酸とを反応させること(a1)におけるカルボン酸の添加量が、原料モノマーの水酸基に対して、0.01~1000当量である、請求項2から4のいずれか一項に記載の液晶性樹脂の製造方法。 The invention according to any one of claims 2 to 4, wherein the amount of the carboxylic acid added in the reaction of the raw material monomer and the carboxylic acid (a1) is 0.01 to 1000 equivalents with respect to the hydroxyl group of the raw material monomer. Method for manufacturing liquid crystal resin.
  6.  酸無水物を添加して未反応の原料モノマーと酸無水物とを反応させること(a2)における酸無水物の添加量が、原料モノマーの水酸基に対して、0.01~0.99当量である、請求項3から5のいずれか一項に記載の液晶性樹脂の製造方法。 The amount of acid anhydride added in (a2) of adding acid anhydride to react the unreacted raw material monomer with the acid anhydride is 0.01 to 0.99 equivalents with respect to the hydroxyl group of the raw material monomer. The method for producing a liquid crystal resin according to any one of claims 3 to 5.
  7.  前記塩を構成する酸性化合物がスルホン酸基を有する、請求項1から6のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 6, wherein the acidic compound constituting the salt has a sulfonic acid group.
  8.  前記塩を構成する有機塩基化合物がアミノ基を有する、請求項1から7のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 7, wherein the organic base compound constituting the salt has an amino group.
  9.  前記塩を構成する酸性化合物の酸解離定数pKaが0.65以下である、請求項1から8のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 8, wherein the acid dissociation constant pKa of the acidic compound constituting the salt is 0.65 or less.
  10.  前記塩を構成する有機塩基化合物の共役酸の酸解離定数pKaが13.0未満である、請求項1から9のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 9, wherein the acid dissociation constant pKa of the conjugate acid of the organic base compound constituting the salt is less than 13.0.
  11.  前記塩を構成する酸性化合物がハロゲン化アルキルスルホン酸を含む、請求項1から10のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 10, wherein the acidic compound constituting the salt contains a halogenated alkyl sulfonic acid.
  12.  前記塩を構成する有機塩基化合物がハロゲン化芳香族アミンを含む、請求項1から11のいずれか一項に記載の液晶性樹脂の製造方法。 The method for producing a liquid crystal resin according to any one of claims 1 to 11, wherein the organic base compound constituting the salt contains a halogenated aromatic amine.
PCT/JP2021/019894 2020-05-29 2021-05-26 Method for producing liquid crystalline resin WO2021241607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556780A JP7072733B1 (en) 2020-05-29 2021-05-26 Liquid crystal resin manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020094471 2020-05-29
JP2020-094471 2020-05-29
JP2020094463 2020-05-29
JP2020-094463 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241607A1 true WO2021241607A1 (en) 2021-12-02

Family

ID=78744535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019894 WO2021241607A1 (en) 2020-05-29 2021-05-26 Method for producing liquid crystalline resin

Country Status (3)

Country Link
JP (1) JP7072733B1 (en)
TW (1) TW202206490A (en)
WO (1) WO2021241607A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395536A (en) * 1981-11-17 1983-07-26 Celanese Corporation Preparation of aromatic copolyesters via in situ esterification with isopropenyl esters of an alkyl acid
JP2003171449A (en) * 2001-12-05 2003-06-20 Daicel Chem Ind Ltd New thermotropic liquid crystal polyester and method for producing the same
WO2007116818A1 (en) * 2006-03-30 2007-10-18 Toray Industries, Inc. Dendritic polyester, method for producing the same, and thermoplastic resin composition
WO2009087910A1 (en) * 2008-01-09 2009-07-16 National University Corporation Kyoto Institute Of Technology Process for production of biodegradable polymer
JP2012532951A (en) * 2009-07-09 2012-12-20 インビスタ テクノロジーズ エス エイ アール エル Manufacture of polyamide
CN111072936A (en) * 2019-12-23 2020-04-28 上海普利特化工新材料有限公司 Wholly aromatic liquid crystal polyester resin and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395536A (en) * 1981-11-17 1983-07-26 Celanese Corporation Preparation of aromatic copolyesters via in situ esterification with isopropenyl esters of an alkyl acid
JP2003171449A (en) * 2001-12-05 2003-06-20 Daicel Chem Ind Ltd New thermotropic liquid crystal polyester and method for producing the same
WO2007116818A1 (en) * 2006-03-30 2007-10-18 Toray Industries, Inc. Dendritic polyester, method for producing the same, and thermoplastic resin composition
WO2009087910A1 (en) * 2008-01-09 2009-07-16 National University Corporation Kyoto Institute Of Technology Process for production of biodegradable polymer
JP2012532951A (en) * 2009-07-09 2012-12-20 インビスタ テクノロジーズ エス エイ アール エル Manufacture of polyamide
CN111072936A (en) * 2019-12-23 2020-04-28 上海普利特化工新材料有限公司 Wholly aromatic liquid crystal polyester resin and application thereof

Also Published As

Publication number Publication date
JPWO2021241607A1 (en) 2021-12-02
JP7072733B1 (en) 2022-05-20
TW202206490A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JPS62220556A (en) Resin composition capable of exhibiting anisotropy in melting
US8822628B2 (en) Crosslinkable liquid crystalline polymer
KR20120055387A (en) Method of preparing wholly aromatic liquid crystalline polyester amide resin and method of wholly aromatic liquid crystalline polyester amide resin compound using the wholly aromatic liquid crystalline polyester amide resin prepared thereby
TWI515222B (en) Method of preparing aromatic liquid crystalline polyester resin and method of preparing aromatic liquid crystalline polyester resin compound using the aromatic liquid crystalline polyester resin
JP7072733B1 (en) Liquid crystal resin manufacturing method
JP2018044108A (en) Liquid crystalline resin composition and high fluidizing agent for liquid crystalline resin composition
TW202106800A (en) Liquid crystalline polymer composition
JP6258771B2 (en) Liquid crystal polymer
US8853342B2 (en) Crosslinkable liquid crystalline polymer
JP6695012B1 (en) Liquid crystalline resin manufacturing method
JP7169804B2 (en) Method for producing liquid crystalline resin
JP6433211B2 (en) Liquid crystal polymer
JP6426994B2 (en) Method for producing liquid crystal polymer
WO2020070904A1 (en) Liquid crystal polyester resin
JP2020176174A (en) Liquid crystal polyester resin
WO2020070903A1 (en) Liquid crystal polyester resin
JP2023062742A (en) Method for producing liquid crystalline resin
WO2005033178A1 (en) Process for producing optically active liquid crystal polymer compound
JP2021105105A (en) Wholly aromatic polyester amide, polyester amide resin composition, and molding
WO2023176815A1 (en) Method for producing liquid crystalline resin
JP2022186080A (en) Liquid crystalline resin composition and molding
JP2023160610A (en) polyamide resin composition
WO2022210967A1 (en) Wholly aromatic polyester and polyester resin composition
KR101819752B1 (en) Method of preparing aromatic liquid crystalline polyester amide resin and aromatic liquid crystalline polyester amide resin compound including the aromatic liquid crystalline polyester amide resin prepared by the method
JP2023160611A (en) polyamide resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021556780

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814460

Country of ref document: EP

Kind code of ref document: A1