WO2021241545A1 - Optical combiner and laser device - Google Patents

Optical combiner and laser device Download PDF

Info

Publication number
WO2021241545A1
WO2021241545A1 PCT/JP2021/019723 JP2021019723W WO2021241545A1 WO 2021241545 A1 WO2021241545 A1 WO 2021241545A1 JP 2021019723 W JP2021019723 W JP 2021019723W WO 2021241545 A1 WO2021241545 A1 WO 2021241545A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
laser light
laser
input
Prior art date
Application number
PCT/JP2021/019723
Other languages
French (fr)
Japanese (ja)
Inventor
亮吉 松本
智之 藤田
裕 山口
拓矢 小林
究 鈴木
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2021241545A1 publication Critical patent/WO2021241545A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an optical combiner and a laser device, and particularly relates to an optical combiner that combines and outputs light propagating through a plurality of optical fibers.
  • the central core of an output optical fiber is described as an optical combiner for introducing laser light into an output optical fiber having a central core as an optical waveguide and an outer core located around the central core.
  • one or more optical fibers are arranged on the center side, and a plurality of optical fibers (outer optical fibers) are annularly arranged around the center side optical fiber corresponding to the outer core of the output optical fiber.
  • the arrangement is disclosed (see FIGS. 8a and 8b of Patent Document 1 and FIG. 14 of Patent Document 2).
  • the NA of light can be considered as one of the parameters of such laser light.
  • NA nsin ⁇
  • n' the refractive index of the core
  • the propagation angle of the light.
  • the first object of the present invention is to provide an optical combiner capable of reducing the NA of light propagating in a core located outside the optical output unit.
  • a second object of the present invention is to provide a laser device capable of reducing the NA of the laser beam emitted from the outer core.
  • an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit.
  • This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected.
  • the optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled.
  • the first core has a first outer diameter
  • the second core has a second outer diameter larger than the first outer diameter.
  • the at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small.
  • a laser device capable of emitting a low NA laser beam from an outer core.
  • This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner.
  • the first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source.
  • the second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
  • FIG. 1 is a schematic block diagram showing a configuration of a laser device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a cross section of the output optical fiber of the laser apparatus shown in FIG. 1 together with a refractive index distribution along the radial direction.
  • FIG. 3 is a perspective view showing an optical combiner of the laser apparatus shown in FIG.
  • FIG. 4 is an exploded perspective view of the optical combiner shown in FIG.
  • FIG. 5 is a schematic block diagram showing a configuration of a laser device according to a second embodiment of the present invention.
  • FIG. 6 is a perspective view showing an optical combiner of the laser apparatus shown in FIG.
  • FIG. 7 is an exploded perspective view of the optical combiner shown in FIG.
  • FIGS. 1 to 7 the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 7, the scale and dimensions of each component may be exaggerated or some components may be omitted. In the following description, unless otherwise noted, terms such as “first” and “second” are only used to distinguish the components from each other and represent a particular order or order. It's not a thing.
  • FIG. 1 is a schematic block diagram showing the configuration of the laser device 1 according to the first embodiment of the present invention.
  • the laser apparatus 1 in the present embodiment generates a laser light source 2 (first laser light source) that generates a laser beam, an optical fiber 10 connected to the laser light source 2, and a laser beam.
  • An optical combiner 40 that combines light and introduces it into the output optical fiber 30, a laser emitting unit 4 provided at the end of the output optical fiber 30, a control unit 5 that controls laser light sources 2 and 3, and an object to be processed. It is equipped with a stage 6 that holds W.
  • the laser light sources 2 and 3 for example, a fiber laser or a semiconductor laser can be used.
  • the direction from the laser light sources 2 and 3 toward the laser emitting unit 4 is referred to as "downstream side", and the opposite direction is referred to as "upstream side”. do.
  • FIG. 2 is a diagram showing a cross section of the output optical fiber 30 together with a refractive index distribution along the radial direction.
  • the output optical fiber 30 includes a center core 31 (first core), an inner clad 32 that covers the periphery of the center core 31, and a ring core 33 (second core) that covers the periphery of the inner clad 32. It has an outer clad 34 that covers the periphery of the ring core 33.
  • the refractive index of the inner clad 32 is lower than that of the center core 31 and the ring core 33, and the refractive index of the outer clad 34 is lower than that of the ring core 33.
  • optical waveguides through which light propagates are formed inside the center core 31 and the ring core 33, respectively.
  • the center core 31 and the ring core 33 which are independent optical waveguides, are concentrically arranged inside the output optical fiber 30.
  • the center core 31 and the ring core 33 are formed of quartz glass (SiO 2 ), and a dopant having a property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form an inner clad 32.
  • the outer clad 34 may be formed.
  • the inner clad 32 and the outer clad 34 are formed of quartz glass (SiO 2 ), and a dopant having a property of increasing the refractive index (for example, germanium (Ge)) is added to form the center core 31 and the ring core 33. May be good.
  • the periphery of the outer clad 34 is covered with, for example, a coating made of resin (reference numeral 35 in FIG. 3), but the coating is omitted in FIG.
  • the outer diameter of the center core 31 of the output optical fiber 30, the outer diameter of the inner clad 32, the outer diameter of the ring core 33, and the outer diameter of the outer clad 34 are important for determining the intensity distribution of the laser beam L emitted from the laser emitting portion 4. Although it is a factor, it can be appropriately set according to the application and output specifications of the laser device 1. As an example, the outer diameter of the center core 31 is 100 ⁇ m, the outer diameter of the inner clad 32 (inner diameter of the ring core 33) is 200 ⁇ m, the outer diameter of the ring core 33 is 300 ⁇ m, and the outer diameter of the outer clad 34 is 375 ⁇ m. Further, the refractive index of the inner clad 32 and the refractive index of the outer clad 34 may be the same or different.
  • FIG. 3 is a perspective view showing the optical combiner 40
  • FIG. 4 is an exploded perspective view.
  • the optical combiner 40 in the present embodiment includes an optical input unit 110 (first optical input unit) composed of a downstream end portion of an optical fiber 10 extending from a laser light source 2.
  • a plurality of optical input units 120 (second optical input units) each composed of a downstream end portion of the optical fiber 20 extending from the laser light source 3 and an optical adjusting member 50, and an upstream end portion of the output optical fiber 30.
  • the optical output unit 130 is included.
  • the optical fiber 10 constituting the optical input unit 110 has a core 11 and a clad 12 that covers the periphery of the core 11, and the refractive index of the clad 12 is the core. It is lower than the refractive index of 11.
  • the core 11 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form the clad 12. May be good.
  • the clad 12 may be formed of quartz glass (SiO 2 ), and the core 11 may be formed by adding a dopant having the property of increasing the refractive index (for example, germanium (Ge)).
  • a dopant having the property of increasing the refractive index for example, germanium (Ge)
  • an optical waveguide (first input optical waveguide) through which light propagates is formed inside the core 11 of the optical fiber 10. Therefore, the laser light generated by the laser light source 2 propagates inside the core 11 of the optical fiber 10.
  • the outer diameter of the core 11 of the optical fiber 10 is 30 ⁇ m
  • the outer diameter of the clad 12 is 125 ⁇ m.
  • the periphery of the clad 12 of the optical fiber 10 is covered with, for example, a coating made of resin (not shown).
  • the optical fiber 20 of the optical input unit 120 has a core 21 and a clad 22 that covers the periphery of the core 21, and the refractive index of the clad 22 is lower than that of the core 21.
  • the core 21 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form the clad 22. May be good.
  • the clad 22 may be formed of quartz glass (SiO 2 ), and the core 21 may be formed by adding a dopant having the property of increasing the refractive index (for example, germanium (Ge)).
  • an optical waveguide (second input optical waveguide) through which light propagates is formed inside the core 21 of the optical fiber 20. Therefore, the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20.
  • the outer diameter of the core 21 of the optical fiber 20 is 30 ⁇ m
  • the outer diameter of the clad 22 is 125 ⁇ m.
  • the periphery of the clad 22 of the optical fiber 20 is covered with, for example, a coating made of resin (not shown).
  • the optical fiber 10 and the optical fiber 20 are made of optical fibers having the same configuration and dimensions, but the optical fiber 10 and the optical fiber 20 may be made of different optical fibers. ..
  • the light adjustment member 50 of the light input unit 120 is a cylindrical member having a function of reducing the emission angle of the laser light propagating inside. That is, the optical adjustment member 50 propagates the laser light emitted from the emission end portion 20A (see FIG. 4) of the optical fiber 20 of the optical input unit 120 so that the emission angle thereof becomes small, and the emission end portion 50A (FIG. 4). 4) is configured to emit light.
  • an optical adjusting member 50 for example, a GRIN (Graded Index or Gradient Index) lens member whose refractive index gradually decreases from the central axis toward the outer side in the radial direction can be used.
  • Such a GRIN lens member can be formed, for example, by adding a dopant such as germanium (Ge) to a central portion of a cylindrical glass made of quartz at a high concentration.
  • a dopant such as germanium (Ge)
  • the outer diameter of the light adjusting member 50 is 125 ⁇ m.
  • the upstream end portion of the coating 35 covering the periphery of the outer clad 34 of the output optical fiber 30 is removed, and the outer clad 34 is exposed to the outside.
  • the above-mentioned optical input portions 110 and 120 are fused and connected to the upstream end surface (connection end surface) 135 of the portion where the outer clad 34 is exposed.
  • the size of the center core 31 of the optical output unit 130 is larger than that of the core 11 of the optical input unit 110, and in the optical input unit 110, the core 11 of the optical fiber 10 is optical.
  • optical output unit 130 It is fused and connected to the optical output unit 130 so as to be located within the region of the center core 31 of the output unit 130. Further, the optical input unit 120 is fused and connected to the optical output unit 130 so that the emission end portion 50A of the optical adjustment member 50 of the optical input unit 120 is optically coupled to the ring core 33 of the optical output unit 130.
  • the laser light generated by the laser light source 2 propagates inside the core 11 of the optical fiber 10, reaches the optical input unit 110 of the optical combiner 40, and is incident on the center core 31 of the optical output unit 130. do.
  • the laser light incident on the center core 31 of the optical output unit 130 propagates inside the center core 31 of the output optical fiber 30 and is directed from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L. It is irradiated (see FIG. 1).
  • the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 40.
  • the laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 has a smaller emission angle while propagating through the optical adjustment member 50, and is emitted from the emission end 20A of the optical fiber 20. It is incident on the ring core 33 of the optical output unit 130 at a small emission angle.
  • the laser light incident on the ring core 33 of the optical output unit 130 propagates inside the ring core 33 of the output optical fiber 30 and is directed from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L. It is irradiated (see FIG. 1).
  • the laser beam L including the laser beam generated by the laser light source 2 on the center side and the laser beam generated by the laser light source 3 on the outside thereof is the laser emitting portion. It is irradiated from 4 toward the workpiece W on the stage 6.
  • the output optical fiber 30 between the optical combiner 40 and the laser emitting unit 4 has excess light leaked from the center core 31 or the ring core 33 of the output optical fiber 30 to the outer clad 34.
  • a light removing unit 7 for removing the clad mode light is provided. Since a known structure (clad mode stripper) can be used as the light removing unit 7, the details thereof will be omitted. Since the light removing unit 7 can remove unnecessary light leaked from the center core 31 or the ring core 33 of the output optical fiber 30 to the outer clad 34, such light is emitted from the laser emitting unit 4. It is possible to suppress adverse effects on L.
  • the control unit 5 can control these laser light sources 2 and 3 by, for example, controlling the current supplied to the laser light sources 2 and 3.
  • the control unit 5 By controlling the laser light sources 2 and 3 by the control unit 5 in this way, the power of the laser light generated by the laser light source 2 and the power of the laser light generated by the laser light source 3 can be changed.
  • the power on the center side of the laser beam L output from the laser emitting unit 4 of the laser apparatus 1 and the power on the outer side thereof can be adjusted, and the profile of the laser beam L can be easily changed.
  • a small-diameter circular beam having a high optical power density on the center side of the laser beam L is used to cut the work object W which is a thick metal plate.
  • Such a large-diameter ring-shaped beam has an advantage that the optical power density at the beam waist portion can be increased as compared with a circular beam even if the beam diameter and the beam output are the same. Suitable for cutting.
  • the laser beam is introduced into the ring core 33 of the output optical fiber 30 after reducing the emission angle of the laser light propagating through the core 21 of the optical fiber 20 by the optical adjustment member 50 of the optical input unit 120.
  • the NA of the laser beam output from the ring core 33 of the emitting unit 4 can be reduced. Therefore, by using such a laser beam for processing the processing object W, it is possible to suppress fluctuations in the beam diameter and the optical power density on the front surface, the inside, and the back surface of the processing object W.
  • a laser beam L suitable for processing for example, a thick metal plate.
  • the configuration of the laser light source 2 and the configuration of the laser light source 3 may be the same, and even if the NA of the laser light generated by the laser light source 2 and the NA of the laser light generated by the laser light source 3 are the same. good.
  • the laser light incident on the ring core 33 of the light output unit 130 from the light adjustment member 50 of the light input unit 120 is compared with the NA of the laser light incident on the center core 31 of the light output unit 130 from the light input unit 110. NA can be lowered.
  • the laser light source 2 and the laser light source 3 are shown as separate light sources, but one light source is provided with two output ports, and the first output port is connected to the optical fiber 10.
  • the second output port may be connected to the optical fiber 20.
  • the above-mentioned laser light source 2 and laser light source 3 can be realized by switching between the first output port and the second output port by, for example, a spatial optical system switch.
  • two output ports may be provided on both sides of one amplification optical fiber, the first output port may be connected to the optical fiber 10, and the second output port may be connected to the optical fiber 20.
  • the generated laser light can be directed to each output port by each set of fiber Bragg gratings.
  • the above-mentioned laser light source 2 and laser light source 3 can be realized.
  • each optical input unit 120 includes the optical adjustment member 50, but only a part of the optical input unit 120 may include the optical adjustment member 50. Further, the optical input unit 110 may include an optical adjusting member similar to the optical adjusting member 50.
  • FIG. 5 is a schematic block diagram showing the configuration of the laser device 401 according to the second embodiment of the present invention.
  • the laser device 401 in the present embodiment includes a plurality of laser light sources 3 that generate laser light, an optical fiber 20 connected to the laser light source 3, and a plurality of laser light sources 402 that generate laser light.
  • a control unit 405 that controls the laser light source 3 (second laser light source).
  • the laser light source 402 for example, a fiber laser or a semiconductor laser can be used.
  • FIG. 6 is a perspective view showing the optical combiner 440
  • FIG. 7 is an exploded perspective view.
  • the optical combiner 440 in the present embodiment has an optical input unit 520 (first optical input unit) configured by the intermediate optical fiber 420 and an optical fiber 20 extending from the laser light source 3.
  • a plurality of optical input units 120 each composed of a downstream end portion and an optical adjusting member 50, and a plurality of each composed of a plurality of downstream end portions of an optical fiber 410 extending from a laser light source 402.
  • the intermediate optical fiber 420 is connected to the downstream side of the bridge fiber 450.
  • the intermediate optical fiber 420 constituting the optical input unit 520 has a core 421 and a clad 422 that covers the periphery of the core 421, and the refractive index of the clad 422 is that of the core 421. It is lower than the refractive index.
  • an optical waveguide (first input optical waveguide) through which light propagates is formed inside the core 421 of the intermediate optical fiber 420.
  • an optical waveguide (second input optical waveguide) through which light propagates is formed inside the core 21 of the optical fiber 20 constituting the optical input unit 120.
  • the laser light generated by the laser light source 3 propagates through the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 440.
  • the emission angle of the laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 becomes smaller while propagating through the optical adjustment member 50, and the laser light is emitted from the emission end portion 20A of the optical fiber 20. Also incident on the ring core 33 of the optical output unit 130 at a small emission angle.
  • the optical fiber 410 constituting the optical input unit 510 has a core 411 and a clad 412 that covers the periphery of the core 411, and the refractive index of the clad 412 is the core. It is lower than the refractive index of 411.
  • the core 411 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form a clad 412. May be good.
  • the clad 412 may be formed of quartz glass (SiO 2 ), and the core 411 may be formed by adding a dopant having a property of increasing the refractive index (for example, germanium (Ge)).
  • a dopant having a property of increasing the refractive index for example, germanium (Ge)
  • an optical waveguide (third input optical waveguide) through which light propagates is formed inside the core 411 of the optical fiber 410. Therefore, the laser light generated by the laser light source 402 propagates through the core 411 of the optical fiber 410 and reaches the optical input unit 510 of the optical combiner 440.
  • the outer diameter of the core 411 of the optical fiber 410 is 30 ⁇ m
  • the outer diameter of the clad 412 is 125 ⁇ m. In the portion not shown in FIGS.
  • the periphery of the clad 412 of the optical fiber 410 is covered with, for example, a coating made of resin (not shown).
  • the optical fiber 410 and the optical fiber 20 are made of optical fibers having the same configuration and dimensions, but the optical fiber 410 and the optical fiber 20 may be made of different optical fibers. ..
  • the bridge fiber 450 has a core 451 and a clad 452 that covers the periphery of the core 451.
  • the refractive index of the clad 452 is lower than that of the core 451, and an optical waveguide through which light propagates is formed inside the core 451.
  • the bridge fiber 450 having such a core-clad structure inside has a first cylindrical portion 461 extending with a constant outer diameter along the optical axis, and a first cylindrical portion 461 gradually having an outer diameter along the optical axis. It includes a reduced diameter portion 462 in which the diameter is reduced, and a second cylindrical portion 463 extending from the reduced diameter portion 462 with a constant outer diameter along the optical axis direction.
  • the end surface of the first cylindrical portion 461 is a bridge incident surface 465 to which the downstream end portions of the respective optical input portions 510 are fused and connected.
  • the three optical input units 510 are connected to the bridge incident surface 465 of the bridge fiber 450 in a state of being in contact with each other.
  • the size of the core 451 on the bridge entrance surface 465 of the bridge fiber 450 is such that the core 411 of all the optical input units 510 can be contained therein, and the optical input unit 510 and the bridge fiber 450 are 3 All the cores 411 of the optical input unit 510 are fused and connected so as to be located in the region of the core 451 on the bridge entrance surface 465 of the bridge fiber 450.
  • the bridge fiber 450 is configured to propagate the laser light emitted from the core 411 of the optical input unit 510 into the core 451 and reduce the beam diameter by the reduced diameter portion 462. At this time, the laser beam is repeatedly reflected on the inner peripheral surface of the clad 452 of the reduced diameter portion 462 to increase the divergence angle (angle in the direction in which the light spreads with respect to the optical axis of the core 451), and the laser emitted from the bridge fiber 450. The light emission angle increases.
  • the bridge fiber 450 in the present embodiment is a member that increases the emission angle of the propagating laser beam.
  • the refractive index of the core 451 of the bridge fiber 450 is the refraction index of the core 411 of the optical input unit 510. It is preferable that it is substantially the same as the rate.
  • the end surface of the second cylindrical portion 463 located on the side opposite to the bridge entrance surface 465 in the optical axis direction is the bridge exit surface 466 to which the intermediate optical fiber 420 is fused and connected.
  • the size of the core 421 of the intermediate optical fiber 420 is larger than the size of the core 451 on the bridge exit surface 466 of the bridge fiber 450, and the bridge fiber 450 and the optical input unit 520 (intermediate optical fiber 420) Is fused and connected so that the core 451 of the bridge fiber 450 on the bridge exit surface 466 is located within the region of the core 421 of the intermediate optical fiber 420.
  • the intermediate optical fiber 420 of the optical input unit 520 is configured to propagate the laser light propagating through the core 451 of the bridge fiber 450 to the inside of the core 421.
  • the refractive index of the core 421 of the intermediate optical fiber 420 is the refraction of the core 451 of the bridge fiber 450. It is preferable that it is substantially the same as the rate.
  • the bridge fiber 450 in the present embodiment has a clad 452 on the outside of the core 451 as a low refractive index medium having a refractive index lower than that of the core 451.
  • a low refractive index medium is clad. It is not limited to the coating layer such as 452, and for example, an air layer may be formed around the core 451 and this air layer may be used as a low refractive index medium.
  • connection end surface 135 of the optical output unit 130 has a downstream end portion (emission end portion 50A) of the optical input unit 120 (optical adjustment member 50) and a downstream end portion of the optical input unit 520 (intermediate optical fiber 420). Each is fused and connected.
  • connection end At the downstream end (connection end) of the optical input unit 120 and the optical input unit 520, six optical input units 120 are located outside the optical input unit 520 (intermediate optical fiber 420) from the center of the intermediate optical fiber 420, etc. They are arranged at a distance, and the adjacent optical input units 120 and 520 are in close contact with each other.
  • connection ends of the optical input units 120 and 520 of the optical output unit 130 are arranged so that the center of the intermediate optical fiber 420 arranged in the center coincides with the center O 1 (see FIG. 2) of the output optical fiber 30. It is fused and connected to the connection end surface 135.
  • the area of the center core 31 of the optical output unit 130 is large enough to include the core 421 of the optical input unit 520 arranged in the center.
  • the optical input unit 520 is fused and connected to the optical output unit 130 so that the core 421 of the intermediate optical fiber 420 of the optical input unit 520 is located in the region of the center core 31 of the optical output unit 130.
  • the optical input unit 120 is fused and connected to the optical output unit 130 so that the optical adjustment member 50 of the optical input unit 120 is optically coupled to the ring core 33 of the optical output unit 130.
  • the laser light generated by the laser light source 402 propagates inside the core 411 of the optical fiber 410 and is incident on the core 451 of the bridge fiber 450 from the bridge incident surface 465 of the bridge fiber 450.
  • the laser beam incident on the core 451 of the bridge fiber 450 propagates through the core 451 of the bridge fiber 450 while being reflected at the interface between the core 451 and the clad 452.
  • NA becomes large.
  • the laser beam in a state where the beam diameter is small and the emission angle is large enters the core 421 of the intermediate optical fiber 420 from the bridge emission surface 466 of the bridge fiber 450, propagates inside the core 421, and propagates inside the core 421 of the optical output unit 130. It is incident on the center core 31.
  • the laser light incident on the center core 31 of the optical output unit 130 propagates inside the center core 31 and is emitted from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L (FIG. 5).
  • the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 40.
  • the laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 has a smaller emission angle while propagating through the optical adjustment member 50, and is emitted from the emission end 20A of the optical fiber 20. It is incident on the ring core 33 of the light output unit 130 from the emission end portion 50A at a small emission angle.
  • the laser light incident on the ring core 33 of the optical output unit 130 propagates inside the ring core 33 and is emitted from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L (FIG. 5).
  • the laser light from the plurality of laser light sources 402 can be coupled by the bridge fiber 450 and introduced into the center core 31 of the optical output unit 130, so that the center core 31 of the output optical fiber 30 is propagated.
  • the power of the laser beam can be easily increased.
  • the control unit 405 can control these laser light sources 3, 402, for example, by controlling the current supplied to the laser light sources 3, 402.
  • the control unit 405 can control the laser light sources 3 and 402 by the control unit 405 in this way, the power of the laser light generated by the laser light source 3 and the power of the laser light generated by the laser light source 402 can be changed.
  • the power on the center side of the laser beam L output from the laser emitting unit 4 of the laser apparatus 401 and the power on the outside thereof can be adjusted, and the profile of the laser beam L can be easily changed.
  • the emission angle of the laser beam propagating through the core 21 of the optical fiber 20 is reduced by the optical adjusting member 50 of the optical input unit 120, and then introduced into the ring core 33 of the optical output unit 130. Can be done. Therefore, it is possible to reduce the NA of the laser beam output from the ring core 33 of the laser emitting unit 4, and it is possible to irradiate the machined object W with the laser beam L suitable for processing a thick metal plate, for example. Is.
  • the configuration of the laser light source 3 and the configuration of the laser light source 402 may be the same, and even if the NA of the laser light generated by the laser light source 3 and the NA of the laser light generated by the laser light source 402 are the same. good.
  • the NA of the laser light generated by the laser light source 402 increases while propagating through the reduced diameter portion 462 of the bridge fiber 450, so that the NA of the laser light propagating through the core 421 of the optical input section 520 is Although it is higher than the NA of the laser light propagating through the core 21 of the optical fiber 20 of the optical input unit 120, the laser light incident on the ring core 33 of the optical output unit 130 from the optical input unit 120 by the above-mentioned optical adjustment member 50.
  • the NA can be adjusted to be even lower than the NA of the laser beam incident on the center core 31 of the optical output unit 130 from the optical input unit 520.
  • the laser light source 3 and the laser light source 402 are shown as separate light sources, but as described above, one light source is provided with two output ports, and a spatial optical system switch or two sets of fibers are provided.
  • the above-mentioned laser light source 3 and laser light source 402 can also be realized by switching the output port using the Bragg grating.
  • the output optical fiber 30 (optical output unit 130) in the above-described embodiment has two optical waveguides including a center core 31 and a ring core 33, but the output optical fiber 30 has three or more optical waveguides. You may be doing it. Further, the cross-sectional shape of the core (optical waveguide) included in the output optical fiber 30 is not limited to the circular shape or the annular shape as shown in the figure.
  • the output optical fiber 30 (optical output unit 130) in the above-described embodiment has two clads 32 and 34
  • the output optical fiber 30 may have a single clad layer. , Or may have three or more clad layers.
  • the refractive index such that the ring core 33 corresponds to the first clad of the center core 31 without the inner clad 32 of the output optical fiber 30 in the above-described embodiment exists. Those having a profile are conceivable.
  • an outer clad 34 is formed around the ring core 33, and such a low refractive index medium is like the outer clad 34.
  • the present invention is not limited to the coating layer, and for example, an air layer may be formed around the ring core 33, and this air layer may be used as a low refractive index medium.
  • the configuration of the laser light source 2, the configuration of the laser light source 3, and the configuration of the laser light source 402 may be the same or different. Further, the wavelength of the laser light generated by the laser light source 2, the wavelength of the laser light generated by the laser light source 3, and the wavelength of the laser light generated by the laser light source 402 may be the same or different. May be good.
  • an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit.
  • This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected.
  • the optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled.
  • the first core has a first outer diameter
  • the second core has a second outer diameter larger than the first outer diameter.
  • the at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small.
  • a GRIN lens whose refractive index gradually decreases from the central axis toward the outer side in the radial direction can be used.
  • the light incident on the optical adjustment member from the core of the optical fiber of the second optical input unit has a small emission angle while propagating through the optical adjustment member, and the light is emitted from the end of the optical fiber. Since the light is incident on the second core of the optical output unit at a smaller emission angle than when it is emitted, the NA of the light propagating through the second core of the optical output unit can be reduced.
  • the optical output unit is a center core as the first core, and has a center core arranged in the center and an inner clad having a refractive index lower than the refractive index of the center core and covering the periphery of the center core.
  • the ring core as the second core may be included.
  • the ring core has a refractive index higher than that of the inner clad and covers the periphery of the inner clad.
  • the optical combiner may further include a plurality of third optical input units each having a third input optical waveguide, and a bridge fiber.
  • the diameter of the bridge fiber gradually increases as the distance from the bridge incident surface to which the third input optical waveguide of the plurality of third optical input units is optically coupled and the bridge incident surface along the optical axis direction gradually increases. It has a reduced diameter portion that becomes smaller and a bridge exit surface that is opposite to the bridge entrance surface in the optical axis direction.
  • the at least one first optical input unit includes an intermediate optical fiber including a core optically coupled to the bridge exit surface of the bridge fiber. According to such a configuration, light from a plurality of third optical input units can be coupled by a bridge fiber and introduced into the first core of the optical output unit, so that the first core of the optical output unit can be introduced. The power of light propagating can be easily increased.
  • a laser device capable of emitting a low NA laser beam from an outer core.
  • This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner.
  • the first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source.
  • the second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
  • the NA of the laser beam incident on the second core of the optical output unit of the optical combiner can be reduced, so that the low NA laser beam is emitted from the outer core. It is possible to emit light.
  • the laser device may further include a light removing unit that removes light leaking from the first core or the second core of the optical output unit of the optical combiner.
  • a light removing unit that removes light leaking from the first core or the second core of the optical output unit of the optical combiner.
  • the laser device is controlled by the at least one first laser light source and the at least one second laser light source, thereby using the at least one first laser light source and the at least one second laser light source.
  • a control unit for adjusting the output of the generated laser beam may be provided. With such a control unit, the power of the laser beam output from the laser apparatus can be adjusted, and the profile of the laser beam can be easily changed.
  • an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit.
  • This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected.
  • the optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled.
  • the first core has a first outer diameter
  • the second core has a second outer diameter larger than the first outer diameter.
  • the at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small.
  • a laser device capable of emitting a low NA laser beam from an outer core.
  • This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner.
  • the first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source.
  • the second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
  • the present invention is suitably used for an optical combiner that combines and outputs light propagating through a plurality of optical fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention provides an optical combiner capable of reducing the NA of light propagating through a core located outside a light output part. An optical combiner (40) is provided with a light output part (130) to which light input parts (110, 120) respectively having cores (11, 21) are connected. The light output part (130) includes a center core (31) to which the core (11) of the light input part (110) is optically coupled, and a ring core (33) to which the core (21) of the light input part (120) is optically coupled. The ring core (33) has an outside diameter larger than the outside diameter of the center core (31). The light input part (120) includes an optical fiber (20) and a light adjustment member (50) that causes light emitted from an end of the core (21) of the optical fiber (20) to propagate such that the emission angle thereof becomes smaller.

Description

光コンバイナ及びレーザ装置Optical combiner and laser device
 本発明は、光コンバイナ及びレーザ装置に係り、特に複数の光ファイバを伝搬する光を結合して出力する光コンバイナに関するものである。 The present invention relates to an optical combiner and a laser device, and particularly relates to an optical combiner that combines and outputs light propagating through a plurality of optical fibers.
 レーザ加工の分野では、加工速度や加工品質などの加工性能を向上する上で、加工対象物に照射するレーザ光のビームプロファイルを加工対象物の材料や厚みに合わせて変更することが重要である。近年、このような観点から、出力側の光ファイバに複数の光導波路を形成し、これらの光導波路のそれぞれに導入するレーザ光を制御することによって、加工対象物に照射されるレーザ光のビームプロファイルを所望の形態に変化させる技術も開発されている。 In the field of laser machining, in order to improve machining performance such as machining speed and machining quality, it is important to change the beam profile of the laser beam irradiating the machining object according to the material and thickness of the machining object. .. In recent years, from this point of view, by forming a plurality of optical waveguides on the optical fiber on the output side and controlling the laser light introduced into each of these optical waveguides, a beam of laser light irradiated to the object to be processed is applied. Techniques have also been developed to transform the profile into the desired form.
 例えば、特許文献1及び特許文献2には、光導波路として中心コアとその周囲に位置する外側コアとを有する出力光ファイバにレーザ光を導入するための光コンバイナとして、出力光ファイバの中心コアに対応して中心側に1以上の光ファイバ(中心側光ファイバ)を配置し、出力光ファイバの外側コアに対応して中心側光ファイバの周囲に複数の光ファイバ(外側光ファイバ)を環状に配置したものが開示されている(特許文献1の図8a及び図8b、特許文献2の図14参照)。近年のレーザ加工の多様化に伴い、出力側の光ファイバの複数の光導波路に導入するレーザ光のパラメータを様々に変化させて所望のビームプロファイルを実現することが考えられている。そのようなレーザ光のパラメータの1つとして光のNAが考えられる。 For example, in Patent Document 1 and Patent Document 2, the central core of an output optical fiber is described as an optical combiner for introducing laser light into an output optical fiber having a central core as an optical waveguide and an outer core located around the central core. Correspondingly, one or more optical fibers (center side optical fibers) are arranged on the center side, and a plurality of optical fibers (outer optical fibers) are annularly arranged around the center side optical fiber corresponding to the outer core of the output optical fiber. The arrangement is disclosed (see FIGS. 8a and 8b of Patent Document 1 and FIG. 14 of Patent Document 2). With the diversification of laser processing in recent years, it is considered to realize a desired beam profile by variously changing the parameters of the laser beam introduced into a plurality of optical waveguides of the optical fiber on the output side. The NA of light can be considered as one of the parameters of such laser light.
 ここで、本明細書において、光ファイバのコアを伝搬する光のNAとは、コアの屈折率をn、その光の伝搬角をθとすると、NA=nsinθにより定義される量を意味している。光ファイバのコアを伝搬する光が屈折率n’の媒質(例えば空気)に入射する場合、当該媒質における光の広がり角θ’を測定すれば、光ファイバのコアを伝搬する光のNAを、NA=n’sinθ’(=nsinθ)により評価することができる。 Here, in the present specification, the NA of light propagating in the core of an optical fiber means a quantity defined by NA = nsinθ, where n is the refractive index of the core and θ is the propagation angle of the light. There is. When the light propagating in the core of the optical fiber is incident on a medium having a refractive index n'(for example, air), the NA of the light propagating in the core of the optical fiber can be determined by measuring the spread angle θ'of the light in the medium. It can be evaluated by NA = n'sinθ'(= nsinθ).
特開2009-145888号公報Japanese Unexamined Patent Publication No. 2009-145888 米国特許第9620925号明細書U.S. Pat. No. 9620925
 本発明は、光出力部の外側に位置するコアを伝搬する光のNAを低下させることができる光コンバイナを提供することを第1の目的とする。 The first object of the present invention is to provide an optical combiner capable of reducing the NA of light propagating in a core located outside the optical output unit.
 また、本発明は、外側のコアから出射されるレーザ光のNAを低下させることができるレーザ装置を提供することを第2の目的とする。 A second object of the present invention is to provide a laser device capable of reducing the NA of the laser beam emitted from the outer core.
 本発明の第1の態様によれば、光出力部の外側に位置するコアを伝搬する光のNAを低下させることができる光コンバイナが提供される。この光コンバイナは、第1の入力光導波路を有する少なくとも1つの第1の光入力部と、第2の入力光導波路を有する少なくとも1つの第2の光入力部と、上記第1の光入力部及び上記第2の光入力部が接続される光出力部とを備える。上記光出力部は、上記少なくとも1つの第1の光入力部の上記第1の入力光導波路が光学的に結合される第1のコアと、上記少なくとも1つの第2の光入力部の上記第2の入力光導波路が光学的に結合される第2のコアとを含む。上記第1のコアは、第1の外径を有し、上記第2のコアは、上記第1の外径よりも大きな第2の外径を有する。上記少なくとも1つの第2の光入力部は、上記第2の入力光導波路としてのコアと、上記コアの屈折率よりも低い屈折率を有し、上記コアの周囲を覆うクラッドとを含む光ファイバと、上記光ファイバの上記コアの端部から出射された光をその出射角度が小さくなるように伝搬させる光調整部材とを含む。 According to the first aspect of the present invention, there is provided an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit. This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected. The optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled. The first core has a first outer diameter, and the second core has a second outer diameter larger than the first outer diameter. The at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small.
 本発明の第2の態様によれば、外側のコアから低NAのレーザ光を出射することができるレーザ装置が提供される。このレーザ装置は、レーザ光を生成する少なくとも1つの第1のレーザ光源と、レーザ光を生成する少なくとも1つの第2のレーザ光源と、上述した光コンバイナとを備える。上記光コンバイナの上記少なくとも1つの第1の光入力部の上記第1の入力光導波路は、上記少なくとも1つの第1のレーザ光源に光学的に結合される。上記光コンバイナの上記少なくとも1つの第2の光入力部の上記第2の入力光導波路は、上記少なくとも1つの第2のレーザ光源に光学的に結合される。 According to the second aspect of the present invention, there is provided a laser device capable of emitting a low NA laser beam from an outer core. This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner. The first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source. The second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
図1は、本発明の第1の実施形態におけるレーザ装置の構成を示す模式的ブロック図である。FIG. 1 is a schematic block diagram showing a configuration of a laser device according to the first embodiment of the present invention. 図2は、図1に示すレーザ装置の出力光ファイバの断面を半径方向に沿った屈折率分布とともに示す図である。FIG. 2 is a diagram showing a cross section of the output optical fiber of the laser apparatus shown in FIG. 1 together with a refractive index distribution along the radial direction. 図3は、図1に示すレーザ装置の光コンバイナを示す斜視図である。FIG. 3 is a perspective view showing an optical combiner of the laser apparatus shown in FIG. 図4は、図3に示す光コンバイナの分解斜視図である。FIG. 4 is an exploded perspective view of the optical combiner shown in FIG. 図5は、本発明の第2の実施形態におけるレーザ装置の構成を示す模式的ブロック図である。FIG. 5 is a schematic block diagram showing a configuration of a laser device according to a second embodiment of the present invention. 図6は、図5に示すレーザ装置の光コンバイナを示す斜視図である。FIG. 6 is a perspective view showing an optical combiner of the laser apparatus shown in FIG. 図7は、図6に示す光コンバイナの分解斜視図である。FIG. 7 is an exploded perspective view of the optical combiner shown in FIG.
 以下、本発明に係る光コンバイナを含むレーザ装置の実施形態について図1から図7を参照して詳細に説明する。図1から図7において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図7においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。以下の説明では、特に言及がない場合には、「第1」や「第2」などの用語は、構成要素を互いに区別するために使用されているだけであり、特定の順位や順番を表すものではない。 Hereinafter, embodiments of the laser apparatus including the optical combiner according to the present invention will be described in detail with reference to FIGS. 1 to 7. In FIGS. 1 to 7, the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 7, the scale and dimensions of each component may be exaggerated or some components may be omitted. In the following description, unless otherwise noted, terms such as "first" and "second" are only used to distinguish the components from each other and represent a particular order or order. It's not a thing.
 図1は、本発明の第1の実施形態におけるレーザ装置1の構成を示す模式的ブロック図である。図1に示すように、本実施形態におけるレーザ装置1は、レーザ光を生成するレーザ光源2(第1のレーザ光源)と、レーザ光源2に接続される光ファイバ10と、レーザ光を生成する複数のレーザ光源3(第2のレーザ光源)と、レーザ光源3に接続される光ファイバ20と、光ファイバ10,20が接続される出力光ファイバ30と、光ファイバ10,20を伝搬するレーザ光を結合して出力光ファイバ30に導入する光コンバイナ40と、出力光ファイバ30の端部に設けられたレーザ出射部4と、レーザ光源2,3を制御する制御部5と、加工対象物Wを保持するステージ6とを備えている。レーザ光源2,3としては例えばファイバレーザや半導体レーザを用いることができる。なお、以下の実施形態では、特に言及がない場合には、レーザ光源2,3からレーザ出射部4に向かう方向を「下流側」といい、それとは逆の方向を「上流側」ということとする。 FIG. 1 is a schematic block diagram showing the configuration of the laser device 1 according to the first embodiment of the present invention. As shown in FIG. 1, the laser apparatus 1 in the present embodiment generates a laser light source 2 (first laser light source) that generates a laser beam, an optical fiber 10 connected to the laser light source 2, and a laser beam. A plurality of laser light sources 3 (second laser light source), an optical fiber 20 connected to the laser light source 3, an output optical fiber 30 to which the optical fibers 10 and 20 are connected, and a laser propagating through the optical fibers 10 and 20. An optical combiner 40 that combines light and introduces it into the output optical fiber 30, a laser emitting unit 4 provided at the end of the output optical fiber 30, a control unit 5 that controls laser light sources 2 and 3, and an object to be processed. It is equipped with a stage 6 that holds W. As the laser light sources 2 and 3, for example, a fiber laser or a semiconductor laser can be used. In the following embodiments, unless otherwise specified, the direction from the laser light sources 2 and 3 toward the laser emitting unit 4 is referred to as "downstream side", and the opposite direction is referred to as "upstream side". do.
 図2は、出力光ファイバ30の断面を半径方向に沿った屈折率分布とともに示す図である。図2に示すように、出力光ファイバ30は、センタコア31(第1のコア)と、センタコア31の周囲を覆う内側クラッド32と、内側クラッド32の周囲を覆うリングコア33(第2のコア)と、リングコア33の周囲を覆う外側クラッド34とを有している。 FIG. 2 is a diagram showing a cross section of the output optical fiber 30 together with a refractive index distribution along the radial direction. As shown in FIG. 2, the output optical fiber 30 includes a center core 31 (first core), an inner clad 32 that covers the periphery of the center core 31, and a ring core 33 (second core) that covers the periphery of the inner clad 32. It has an outer clad 34 that covers the periphery of the ring core 33.
 内側クラッド32の屈折率はセンタコア31及びリングコア33の屈折率よりも低くなっており、外側クラッド34の屈折率はリングコア33の屈折率よりも低くなっている。これにより、センタコア31とリングコア33の内部にはそれぞれ光が伝搬する光導波路が形成される。このように、本実施形態では、それぞれ独立した光導波路であるセンタコア31とリングコア33とが出力光ファイバ30の内部に同心状に配置されている。例えば、センタコア31及びリングコア33を石英ガラス(SiO2)により形成し、屈折率を低下させる性質を有するドーパント(例えばフッ素(F)やホウ素(B))を石英ガラスに添加することにより内側クラッド32及び外側クラッド34を形成してもよい。あるいは、内側クラッド32及び外側クラッド34を石英ガラス(SiO2)により形成し、屈折率を上昇させる性質を有するドーパント(例えばゲルマニウム(Ge))を添加することによりセンタコア31及びリングコア33を形成してもよい。なお、外側クラッド34の周囲は例えば樹脂からなる被覆(図3の符号35)により覆われているが、図2においてはこの被覆の図示を省略している。 The refractive index of the inner clad 32 is lower than that of the center core 31 and the ring core 33, and the refractive index of the outer clad 34 is lower than that of the ring core 33. As a result, optical waveguides through which light propagates are formed inside the center core 31 and the ring core 33, respectively. As described above, in the present embodiment, the center core 31 and the ring core 33, which are independent optical waveguides, are concentrically arranged inside the output optical fiber 30. For example, the center core 31 and the ring core 33 are formed of quartz glass (SiO 2 ), and a dopant having a property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form an inner clad 32. And the outer clad 34 may be formed. Alternatively, the inner clad 32 and the outer clad 34 are formed of quartz glass (SiO 2 ), and a dopant having a property of increasing the refractive index (for example, germanium (Ge)) is added to form the center core 31 and the ring core 33. May be good. The periphery of the outer clad 34 is covered with, for example, a coating made of resin (reference numeral 35 in FIG. 3), but the coating is omitted in FIG.
 出力光ファイバ30のセンタコア31の外径、内側クラッド32の外径、リングコア33の外径、及び外側クラッド34の外径はレーザ出射部4から出射されるレーザ光Lの強度分布を決定する重要なファクターであるが、レーザ装置1の用途や出力仕様に応じて適宜設定することができる。一例として、センタコア31の外径は100μm、内側クラッド32の外径(リングコア33の内径)は200μm、リングコア33の外径は300μm、外側クラッド34の外径は375μmである。また、内側クラッド32の屈折率と外側クラッド34の屈折率とは同じであってもよいし、異なっていてもよい。 The outer diameter of the center core 31 of the output optical fiber 30, the outer diameter of the inner clad 32, the outer diameter of the ring core 33, and the outer diameter of the outer clad 34 are important for determining the intensity distribution of the laser beam L emitted from the laser emitting portion 4. Although it is a factor, it can be appropriately set according to the application and output specifications of the laser device 1. As an example, the outer diameter of the center core 31 is 100 μm, the outer diameter of the inner clad 32 (inner diameter of the ring core 33) is 200 μm, the outer diameter of the ring core 33 is 300 μm, and the outer diameter of the outer clad 34 is 375 μm. Further, the refractive index of the inner clad 32 and the refractive index of the outer clad 34 may be the same or different.
 図3は光コンバイナ40を示す斜視図、図4は分解斜視図である。図3及び図4に示すように、本実施形態における光コンバイナ40は、レーザ光源2から延びる光ファイバ10の下流側端部により構成される光入力部110(第1の光入力部)と、レーザ光源3から延びる光ファイバ20の下流側端部と光調整部材50とによりそれぞれ構成される複数の光入力部120(第2の光入力部)と、出力光ファイバ30の上流側端部によって構成される光出力部130とを含んでいる。 FIG. 3 is a perspective view showing the optical combiner 40, and FIG. 4 is an exploded perspective view. As shown in FIGS. 3 and 4, the optical combiner 40 in the present embodiment includes an optical input unit 110 (first optical input unit) composed of a downstream end portion of an optical fiber 10 extending from a laser light source 2. A plurality of optical input units 120 (second optical input units) each composed of a downstream end portion of the optical fiber 20 extending from the laser light source 3 and an optical adjusting member 50, and an upstream end portion of the output optical fiber 30. The optical output unit 130 is included.
 図3及び図4に示すように、光入力部110を構成している光ファイバ10は、コア11と、コア11の周囲を覆うクラッド12とを有しており、クラッド12の屈折率はコア11の屈折率よりも低くなっている。例えば、コア11を石英ガラス(SiO2)により形成し、屈折率を低下させる性質を有するドーパント(例えばフッ素(F)やホウ素(B))を石英ガラスに添加することによりクラッド12を形成してもよい。あるいは、クラッド12を石英ガラス(SiO2)により形成し、屈折率を上昇させる性質を有するドーパント(例えばゲルマニウム(Ge))を添加することによりコア11を形成してもよい。これにより、光ファイバ10のコア11の内部には光が伝搬する光導波路(第1の入力光導波路)が形成される。したがって、レーザ光源2で生成されたレーザ光は、光ファイバ10のコア11の内部を伝搬するようになっている。一例として、光ファイバ10のコア11の外径は30μm、クラッド12の外径は125μmである。なお、図3及び図4に示されていない部分においては、光ファイバ10のクラッド12の周囲が例えば樹脂からなる被覆(図示せず)で覆われている。 As shown in FIGS. 3 and 4, the optical fiber 10 constituting the optical input unit 110 has a core 11 and a clad 12 that covers the periphery of the core 11, and the refractive index of the clad 12 is the core. It is lower than the refractive index of 11. For example, the core 11 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form the clad 12. May be good. Alternatively, the clad 12 may be formed of quartz glass (SiO 2 ), and the core 11 may be formed by adding a dopant having the property of increasing the refractive index (for example, germanium (Ge)). As a result, an optical waveguide (first input optical waveguide) through which light propagates is formed inside the core 11 of the optical fiber 10. Therefore, the laser light generated by the laser light source 2 propagates inside the core 11 of the optical fiber 10. As an example, the outer diameter of the core 11 of the optical fiber 10 is 30 μm, and the outer diameter of the clad 12 is 125 μm. In the portion not shown in FIGS. 3 and 4, the periphery of the clad 12 of the optical fiber 10 is covered with, for example, a coating made of resin (not shown).
 また、光入力部120の光ファイバ20は、コア21と、コア21の周囲を覆うクラッド22とを有しており、クラッド22の屈折率はコア21の屈折率よりも低くなっている。例えば、コア21を石英ガラス(SiO2)により形成し、屈折率を低下させる性質を有するドーパント(例えばフッ素(F)やホウ素(B))を石英ガラスに添加することによりクラッド22を形成してもよい。あるいは、クラッド22を石英ガラス(SiO2)により形成し、屈折率を上昇させる性質を有するドーパント(例えばゲルマニウム(Ge))を添加することによりコア21を形成してもよい。これにより、光ファイバ20のコア21の内部には光が伝搬する光導波路(第2の入力光導波路)が形成される。したがって、レーザ光源3で生成されたレーザ光は、光ファイバ20のコア21の内部を伝搬するようになっている。一例として、光ファイバ20のコア21の外径は30μm、クラッド22の外径は125μmである。なお、図3及び図4に示されていない部分においては、光ファイバ20のクラッド22の周囲が例えば樹脂からなる被覆(図示せず)で覆われている。また、本実施形態では、光ファイバ10と光ファイバ20とが同一の構成及び寸法の光ファイバにより構成されているが、光ファイバ10と光ファイバ20とが異なる光ファイバにより構成されていてもよい。 Further, the optical fiber 20 of the optical input unit 120 has a core 21 and a clad 22 that covers the periphery of the core 21, and the refractive index of the clad 22 is lower than that of the core 21. For example, the core 21 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form the clad 22. May be good. Alternatively, the clad 22 may be formed of quartz glass (SiO 2 ), and the core 21 may be formed by adding a dopant having the property of increasing the refractive index (for example, germanium (Ge)). As a result, an optical waveguide (second input optical waveguide) through which light propagates is formed inside the core 21 of the optical fiber 20. Therefore, the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20. As an example, the outer diameter of the core 21 of the optical fiber 20 is 30 μm, and the outer diameter of the clad 22 is 125 μm. In the portion not shown in FIGS. 3 and 4, the periphery of the clad 22 of the optical fiber 20 is covered with, for example, a coating made of resin (not shown). Further, in the present embodiment, the optical fiber 10 and the optical fiber 20 are made of optical fibers having the same configuration and dimensions, but the optical fiber 10 and the optical fiber 20 may be made of different optical fibers. ..
 また、光入力部120の光調整部材50は、内部を伝搬するレーザ光の出射角度を小さくする機能を有する円筒状の部材である。すなわち、光調整部材50は、光入力部120の光ファイバ20の出射端部20A(図4参照)から出射されたレーザ光をその出射角度が小さくなるように伝搬させて出射端部50A(図4参照)から出射するように構成されている。このような光調整部材50としては、例えば中心軸から半径方向外側に向かって次第に屈折率が低くなったGRIN(Graded Index又はGradient Index)レンズ部材を用いることができる。このようなGRINレンズ部材は、例えば、石英からなる円筒ガラスの中心部にゲルマニウム(Ge)などのドーパントを高濃度に添加することにより形成することができる。一例として、光調整部材50の外径は125μmである。 Further, the light adjustment member 50 of the light input unit 120 is a cylindrical member having a function of reducing the emission angle of the laser light propagating inside. That is, the optical adjustment member 50 propagates the laser light emitted from the emission end portion 20A (see FIG. 4) of the optical fiber 20 of the optical input unit 120 so that the emission angle thereof becomes small, and the emission end portion 50A (FIG. 4). 4) is configured to emit light. As such an optical adjusting member 50, for example, a GRIN (Graded Index or Gradient Index) lens member whose refractive index gradually decreases from the central axis toward the outer side in the radial direction can be used. Such a GRIN lens member can be formed, for example, by adding a dopant such as germanium (Ge) to a central portion of a cylindrical glass made of quartz at a high concentration. As an example, the outer diameter of the light adjusting member 50 is 125 μm.
 図3及び図4に示すように、光出力部130では、出力光ファイバ30の外側クラッド34の周囲を覆っている被覆35の上流側端部が除去され、外側クラッド34が外部に露出している。この外側クラッド34が露出した部分の上流側端面(接続端面)135に上述した光入力部110,120が融着接続されている。具体的には、本実施形態では、光出力部130のセンタコア31の大きさは、光入力部110のコア11よりも大きくなっており、光入力部110は、光ファイバ10のコア11が光出力部130のセンタコア31の領域内に位置するように光出力部130に融着接続されている。また、光入力部120は、光入力部120の光調整部材50の出射端部50Aが光出力部130のリングコア33に光学的に結合するように光出力部130に融着接続されている。 As shown in FIGS. 3 and 4, in the optical output unit 130, the upstream end portion of the coating 35 covering the periphery of the outer clad 34 of the output optical fiber 30 is removed, and the outer clad 34 is exposed to the outside. There is. The above-mentioned optical input portions 110 and 120 are fused and connected to the upstream end surface (connection end surface) 135 of the portion where the outer clad 34 is exposed. Specifically, in the present embodiment, the size of the center core 31 of the optical output unit 130 is larger than that of the core 11 of the optical input unit 110, and in the optical input unit 110, the core 11 of the optical fiber 10 is optical. It is fused and connected to the optical output unit 130 so as to be located within the region of the center core 31 of the output unit 130. Further, the optical input unit 120 is fused and connected to the optical output unit 130 so that the emission end portion 50A of the optical adjustment member 50 of the optical input unit 120 is optically coupled to the ring core 33 of the optical output unit 130.
 このような構成により、レーザ光源2で生成されたレーザ光は、光ファイバ10のコア11の内部を伝搬して、光コンバイナ40の光入力部110に至り、光出力部130のセンタコア31に入射する。光出力部130のセンタコア31に入射したレーザ光は、出力光ファイバ30のセンタコア31の内部を伝搬してレーザ出射部4からレーザ光Lの一部としてステージ6上の加工対象物Wに向けて照射される(図1参照)。 With such a configuration, the laser light generated by the laser light source 2 propagates inside the core 11 of the optical fiber 10, reaches the optical input unit 110 of the optical combiner 40, and is incident on the center core 31 of the optical output unit 130. do. The laser light incident on the center core 31 of the optical output unit 130 propagates inside the center core 31 of the output optical fiber 30 and is directed from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L. It is irradiated (see FIG. 1).
 また、レーザ光源3で生成されたレーザ光は、光ファイバ20のコア21の内部を伝搬して、光コンバイナ40の光入力部120に至る。光入力部120の光ファイバ20から光調整部材50に入射したレーザ光は、光調整部材50を伝搬する間に出射角度が小さくなり、光ファイバ20の出射端部20Aから出射されたときよりも小さな出射角度で光出力部130のリングコア33に入射する。光出力部130のリングコア33に入射したレーザ光は、出力光ファイバ30のリングコア33の内部を伝搬してレーザ出射部4からレーザ光Lの一部としてステージ6上の加工対象物Wに向けて照射される(図1参照)。 Further, the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 40. The laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 has a smaller emission angle while propagating through the optical adjustment member 50, and is emitted from the emission end 20A of the optical fiber 20. It is incident on the ring core 33 of the optical output unit 130 at a small emission angle. The laser light incident on the ring core 33 of the optical output unit 130 propagates inside the ring core 33 of the output optical fiber 30 and is directed from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L. It is irradiated (see FIG. 1).
 このように、本実施形態のレーザ装置1においては、中心側にレーザ光源2で生成されたレーザ光を含み、その外側にレーザ光源3で生成されたレーザ光を含むレーザ光Lがレーザ出射部4からステージ6上の加工対象物Wに向けて照射される。 As described above, in the laser apparatus 1 of the present embodiment, the laser beam L including the laser beam generated by the laser light source 2 on the center side and the laser beam generated by the laser light source 3 on the outside thereof is the laser emitting portion. It is irradiated from 4 toward the workpiece W on the stage 6.
 ここで、図1に示すように、光コンバイナ40とレーザ出射部4との間の出力光ファイバ30には、出力光ファイバ30のセンタコア31又はリングコア33から外側クラッド34に漏洩した余剰な光(クラッドモード光)を除去するための光除去部7が設けられている。この光除去部7としては公知の構造(クラッドモードストリッパ)を用いることができるため、その詳細については説明を省略する。この光除去部7によって、出力光ファイバ30のセンタコア31又はリングコア33から外側クラッド34に漏洩した不要な光を除去することができるため、このような光がレーザ出射部4から出射されるレーザ光Lに悪影響を与えることを抑制できる。 Here, as shown in FIG. 1, the output optical fiber 30 between the optical combiner 40 and the laser emitting unit 4 has excess light leaked from the center core 31 or the ring core 33 of the output optical fiber 30 to the outer clad 34. A light removing unit 7 for removing the clad mode light) is provided. Since a known structure (clad mode stripper) can be used as the light removing unit 7, the details thereof will be omitted. Since the light removing unit 7 can remove unnecessary light leaked from the center core 31 or the ring core 33 of the output optical fiber 30 to the outer clad 34, such light is emitted from the laser emitting unit 4. It is possible to suppress adverse effects on L.
 制御部5は、例えばレーザ光源2,3に供給する電流を制御することなどによって、これらのレーザ光源2,3を制御できるようになっている。このように制御部5によってレーザ光源2,3を制御することによって、レーザ光源2によって生成されるレーザ光のパワー及びレーザ光源3によって生成されるレーザ光のパワーを変更することができる。これにより、レーザ装置1のレーザ出射部4から出力されるレーザ光Lの中心側のパワーとその外側のパワーを調整することができ、レーザ光Lのプロファイルを容易に変化させることができる。 The control unit 5 can control these laser light sources 2 and 3 by, for example, controlling the current supplied to the laser light sources 2 and 3. By controlling the laser light sources 2 and 3 by the control unit 5 in this way, the power of the laser light generated by the laser light source 2 and the power of the laser light generated by the laser light source 3 can be changed. Thereby, the power on the center side of the laser beam L output from the laser emitting unit 4 of the laser apparatus 1 and the power on the outer side thereof can be adjusted, and the profile of the laser beam L can be easily changed.
 例えば、薄い金属板である加工対象物Wを切断する場合には、レーザ光Lの中心側の光パワー密度が高い小径の円形形状のビームを使用し、厚い金属板である加工対象物Wを切断する場合には、ビームウェスト部からレーザ伝搬方向(加工対象物Wの厚さ方向)にずれた位置でのスポット径や光パワー密度の変化率が小さい大径円環形状のビームを使用することが多い。このような大径円環形状のビームは、ビーム径及びビーム出力が同じであっても、円形形状のビームに比べてビームウェスト部での光パワー密度を大きくできるという利点があり、厚板を切断するのに適している。このような大径円環形状のビームを用いた加工においては、小径の円形形状のビームよりも低NAのビームを用いることが有利であると推測される。 For example, when cutting a work object W which is a thin metal plate, a small-diameter circular beam having a high optical power density on the center side of the laser beam L is used to cut the work object W which is a thick metal plate. When cutting, use a large-diameter ring-shaped beam with a small rate of change in spot diameter and optical power density at a position deviated from the beam waist in the laser propagation direction (thickness direction of the workpiece W). Often. Such a large-diameter ring-shaped beam has an advantage that the optical power density at the beam waist portion can be increased as compared with a circular beam even if the beam diameter and the beam output are the same. Suitable for cutting. In processing using such a large-diameter ring-shaped beam, it is presumed that it is advantageous to use a low NA beam rather than a small-diameter circular beam.
 本実施形態のように、光入力部120の光調整部材50により光ファイバ20のコア21を伝搬するレーザ光の出射角度を小さくしてから出力光ファイバ30のリングコア33に導入することで、レーザ出射部4のリングコア33から出力されるレーザ光のNAを低下させることができる。したがって、このようなレーザ光を加工対象物Wの加工に用いることで、加工対象物Wの表面や内部、裏面でのビーム径及び光パワー密度の変動を抑えることができる。このように、本実施形態によれば、例えば厚い金属板を加工するのに適したレーザ光Lを加工対象物Wに照射することが可能である。 As in the present embodiment, the laser beam is introduced into the ring core 33 of the output optical fiber 30 after reducing the emission angle of the laser light propagating through the core 21 of the optical fiber 20 by the optical adjustment member 50 of the optical input unit 120. The NA of the laser beam output from the ring core 33 of the emitting unit 4 can be reduced. Therefore, by using such a laser beam for processing the processing object W, it is possible to suppress fluctuations in the beam diameter and the optical power density on the front surface, the inside, and the back surface of the processing object W. As described above, according to the present embodiment, it is possible to irradiate the processing object W with a laser beam L suitable for processing, for example, a thick metal plate.
 レーザ光源2の構成とレーザ光源3の構成とは同一であってもよく、レーザ光源2で生成されるレーザ光のNAとレーザ光源3で生成されるレーザ光のNAとが同一であってもよい。この場合には、光入力部110から光出力部130のセンタコア31に入射するレーザ光のNAに比べて、光入力部120の光調整部材50から光出力部130のリングコア33に入射するレーザ光のNAを低くすることができる。 The configuration of the laser light source 2 and the configuration of the laser light source 3 may be the same, and even if the NA of the laser light generated by the laser light source 2 and the NA of the laser light generated by the laser light source 3 are the same. good. In this case, the laser light incident on the ring core 33 of the light output unit 130 from the light adjustment member 50 of the light input unit 120 is compared with the NA of the laser light incident on the center core 31 of the light output unit 130 from the light input unit 110. NA can be lowered.
 また、本実施形態では、レーザ光源2とレーザ光源3とは別個の光源として図示されているが、1つの光源に2つの出力ポートを設け、第1の出力ポートを光ファイバ10に接続し、第2の出力ポートを光ファイバ20に接続してもよい。この場合において、第1の出力ポートと第2の出力ポートとを例えば空間光学系スイッチによって切り替えることにより上述したレーザ光源2とレーザ光源3とを実現することができる。あるいは、1つの増幅用光ファイバの両側に2つの出力ポートを設け、第1の出力ポートを光ファイバ10に接続し、第2の出力ポートを光ファイバ20に接続してもよい。この場合には、増幅用光ファイバを挟んで反射波長帯域の異なる2組のファイバブラッググレーティングを配置すれば、生成されたレーザ光を各組のファイバブラッググレーティングによってそれぞれの出力ポートに向けることができ、上述したレーザ光源2とレーザ光源3とを実現することができる。 Further, in the present embodiment, the laser light source 2 and the laser light source 3 are shown as separate light sources, but one light source is provided with two output ports, and the first output port is connected to the optical fiber 10. The second output port may be connected to the optical fiber 20. In this case, the above-mentioned laser light source 2 and laser light source 3 can be realized by switching between the first output port and the second output port by, for example, a spatial optical system switch. Alternatively, two output ports may be provided on both sides of one amplification optical fiber, the first output port may be connected to the optical fiber 10, and the second output port may be connected to the optical fiber 20. In this case, if two sets of fiber Bragg gratings having different reflected wavelength bands are arranged across the amplification optical fiber, the generated laser light can be directed to each output port by each set of fiber Bragg gratings. , The above-mentioned laser light source 2 and laser light source 3 can be realized.
 本実施形態では、それぞれの光入力部120が光調整部材50を含んでいるが、光入力部120の一部のみが光調整部材50を含んでいてもよい。また、光入力部110が光調整部材50と同様の光調整部材を含んでいてもよい。 In the present embodiment, each optical input unit 120 includes the optical adjustment member 50, but only a part of the optical input unit 120 may include the optical adjustment member 50. Further, the optical input unit 110 may include an optical adjusting member similar to the optical adjusting member 50.
 図5は、本発明の第2の実施形態におけるレーザ装置401の構成を示す模式的ブロック図である。図5に示すように、本実施形態におけるレーザ装置401は、レーザ光を生成する複数のレーザ光源3と、レーザ光源3に接続される光ファイバ20と、レーザ光を生成する複数のレーザ光源402と、レーザ光源402に接続される光ファイバ410と、光ファイバ20,410を伝搬するレーザ光を結合して出力光ファイバ30に導入する光コンバイナ440と、レーザ光源402(第1のレーザ光源)及びレーザ光源3(第2のレーザ光源)を制御する制御部405とを含んでいる。レーザ光源402としては例えばファイバレーザや半導体レーザを用いることができる。 FIG. 5 is a schematic block diagram showing the configuration of the laser device 401 according to the second embodiment of the present invention. As shown in FIG. 5, the laser device 401 in the present embodiment includes a plurality of laser light sources 3 that generate laser light, an optical fiber 20 connected to the laser light source 3, and a plurality of laser light sources 402 that generate laser light. The optical fiber 410 connected to the laser light source 402, the optical combiner 440 that combines the laser light propagating through the optical fibers 20 and 410 and introduced into the output optical fiber 30, and the laser light source 402 (first laser light source). And a control unit 405 that controls the laser light source 3 (second laser light source). As the laser light source 402, for example, a fiber laser or a semiconductor laser can be used.
 図6は光コンバイナ440を示す斜視図、図7は分解斜視図である。図6及び図7に示すように、本実施形態における光コンバイナ440は、中間光ファイバ420により構成される光入力部520(第1の光入力部)と、レーザ光源3から延びる光ファイバ20の下流側端部と光調整部材50とによりそれぞれ構成される複数の光入力部120(第2の光入力部)と、レーザ光源402から延びる光ファイバ410の下流側端部によりそれぞれ構成される複数の光入力部510(第3の光入力部)と、これらの光入力部510に接続されるブリッジファイバ450と、出力光ファイバ30の上流側端部によって構成される光出力部130とを含んでいる。中間光ファイバ420はブリッジファイバ450の下流側に接続されている。 FIG. 6 is a perspective view showing the optical combiner 440, and FIG. 7 is an exploded perspective view. As shown in FIGS. 6 and 7, the optical combiner 440 in the present embodiment has an optical input unit 520 (first optical input unit) configured by the intermediate optical fiber 420 and an optical fiber 20 extending from the laser light source 3. A plurality of optical input units 120 (second optical input units) each composed of a downstream end portion and an optical adjusting member 50, and a plurality of each composed of a plurality of downstream end portions of an optical fiber 410 extending from a laser light source 402. Includes an optical input unit 510 (third optical input unit), a bridge fiber 450 connected to these optical input units 510, and an optical output unit 130 composed of an upstream end portion of the output optical fiber 30. I'm out. The intermediate optical fiber 420 is connected to the downstream side of the bridge fiber 450.
 図7に示すように、光入力部520を構成している中間光ファイバ420は、コア421と、コア421の周囲を覆うクラッド422とを有しており、クラッド422の屈折率はコア421の屈折率よりも低くなっている。これにより、中間光ファイバ420のコア421の内部には光が伝搬する光導波路(第1の入力光導波路)が形成される。 As shown in FIG. 7, the intermediate optical fiber 420 constituting the optical input unit 520 has a core 421 and a clad 422 that covers the periphery of the core 421, and the refractive index of the clad 422 is that of the core 421. It is lower than the refractive index. As a result, an optical waveguide (first input optical waveguide) through which light propagates is formed inside the core 421 of the intermediate optical fiber 420.
 第1の実施形態で述べたように、光入力部120を構成している光ファイバ20のコア21の内部には光が伝搬する光導波路(第2の入力光導波路)が形成されており、レーザ光源3で生成されたレーザ光は、光ファイバ20のコア21を伝搬して光コンバイナ440の光入力部120に至るようになっている。光入力部120の光ファイバ20から光調整部材50に入射したレーザ光は、光調整部材50を伝搬する間にその出射角度が小さくなり、光ファイバ20の出射端部20Aから出射されるときよりも小さな出射角度で光出力部130のリングコア33に入射する。 As described in the first embodiment, an optical waveguide (second input optical waveguide) through which light propagates is formed inside the core 21 of the optical fiber 20 constituting the optical input unit 120. The laser light generated by the laser light source 3 propagates through the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 440. The emission angle of the laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 becomes smaller while propagating through the optical adjustment member 50, and the laser light is emitted from the emission end portion 20A of the optical fiber 20. Also incident on the ring core 33 of the optical output unit 130 at a small emission angle.
 図6及び図7に示すように、光入力部510を構成している光ファイバ410は、コア411と、コア411の周囲を覆うクラッド412とを有しており、クラッド412の屈折率はコア411の屈折率よりも低くなっている。例えば、コア411を石英ガラス(SiO2)により形成し、屈折率を低下させる性質を有するドーパント(例えばフッ素(F)やホウ素(B))を石英ガラスに添加することによりクラッド412を形成してもよい。あるいは、クラッド412を石英ガラス(SiO2)により形成し、屈折率を上昇させる性質を有するドーパント(例えばゲルマニウム(Ge))を添加することによりコア411を形成してもよい。これにより、光ファイバ410のコア411の内部には光が伝搬する光導波路(第3の入力光導波路)が形成される。したがって、レーザ光源402で生成されたレーザ光は、光ファイバ410のコア411を伝搬して光コンバイナ440の光入力部510に至るようになっている。一例として、光ファイバ410のコア411の外径は30μm、クラッド412の外径は125μmである。なお、図6及び図7に示されていない部分においては、光ファイバ410のクラッド412の周囲が例えば樹脂からなる被覆(図示せず)で覆われている。また、本実施形態では、光ファイバ410と光ファイバ20とが同一の構成及び寸法の光ファイバにより構成されているが、光ファイバ410と光ファイバ20とが異なる光ファイバにより構成されていてもよい。 As shown in FIGS. 6 and 7, the optical fiber 410 constituting the optical input unit 510 has a core 411 and a clad 412 that covers the periphery of the core 411, and the refractive index of the clad 412 is the core. It is lower than the refractive index of 411. For example, the core 411 is formed of quartz glass (SiO 2 ), and a dopant having the property of lowering the refractive index (for example, fluorine (F) or boron (B)) is added to the quartz glass to form a clad 412. May be good. Alternatively, the clad 412 may be formed of quartz glass (SiO 2 ), and the core 411 may be formed by adding a dopant having a property of increasing the refractive index (for example, germanium (Ge)). As a result, an optical waveguide (third input optical waveguide) through which light propagates is formed inside the core 411 of the optical fiber 410. Therefore, the laser light generated by the laser light source 402 propagates through the core 411 of the optical fiber 410 and reaches the optical input unit 510 of the optical combiner 440. As an example, the outer diameter of the core 411 of the optical fiber 410 is 30 μm, and the outer diameter of the clad 412 is 125 μm. In the portion not shown in FIGS. 6 and 7, the periphery of the clad 412 of the optical fiber 410 is covered with, for example, a coating made of resin (not shown). Further, in the present embodiment, the optical fiber 410 and the optical fiber 20 are made of optical fibers having the same configuration and dimensions, but the optical fiber 410 and the optical fiber 20 may be made of different optical fibers. ..
 ブリッジファイバ450は、コア451と、コア451の周囲を覆うクラッド452とを有している。クラッド452の屈折率はコア451の屈折率よりも低くなっており、コア451の内部には光が伝搬する光導波路が形成されている。このようなコア-クラッド構造を内部に有するブリッジファイバ450は、光軸に沿って一定の外径で延びる第1の円筒部461と、第1の円筒部461から光軸に沿って次第に外径が小さくなる縮径部462と、縮径部462から光軸方向に沿って一定の外径で延びる第2の円筒部463とを含んでいる。 The bridge fiber 450 has a core 451 and a clad 452 that covers the periphery of the core 451. The refractive index of the clad 452 is lower than that of the core 451, and an optical waveguide through which light propagates is formed inside the core 451. The bridge fiber 450 having such a core-clad structure inside has a first cylindrical portion 461 extending with a constant outer diameter along the optical axis, and a first cylindrical portion 461 gradually having an outer diameter along the optical axis. It includes a reduced diameter portion 462 in which the diameter is reduced, and a second cylindrical portion 463 extending from the reduced diameter portion 462 with a constant outer diameter along the optical axis direction.
 第1の円筒部461の端面は、それぞれの光入力部510の下流側端部が融着接続されるブリッジ入射面465となっている。本実施形態においては、3つの光入力部510が互いに接した状態でブリッジファイバ450のブリッジ入射面465に接続されている。ブリッジファイバ450のブリッジ入射面465におけるコア451の大きさは、すべての光入力部510のコア411を内部に包含できるような大きさとなっており、光入力部510とブリッジファイバ450とは、3つの光入力部510のすべてのコア411がブリッジファイバ450のブリッジ入射面465におけるコア451の領域内に位置するように融着接続される。 The end surface of the first cylindrical portion 461 is a bridge incident surface 465 to which the downstream end portions of the respective optical input portions 510 are fused and connected. In the present embodiment, the three optical input units 510 are connected to the bridge incident surface 465 of the bridge fiber 450 in a state of being in contact with each other. The size of the core 451 on the bridge entrance surface 465 of the bridge fiber 450 is such that the core 411 of all the optical input units 510 can be contained therein, and the optical input unit 510 and the bridge fiber 450 are 3 All the cores 411 of the optical input unit 510 are fused and connected so as to be located in the region of the core 451 on the bridge entrance surface 465 of the bridge fiber 450.
 このように、ブリッジファイバ450は、光入力部510のコア411から出射されたレーザ光をそのコア451の内部に伝搬させ、縮径部462によってそのビーム径を小さくするように構成されている。このとき、レーザ光は、縮径部462のクラッド452の内周面で反射を繰り返して発散角(コア451の光軸に対する光が広がる方向の角度)が大きくなり、ブリッジファイバ450から出射するレーザ光の出射角度が大きくなる。このように、本実施形態におけるブリッジファイバ450は、伝搬するレーザ光の出射角度を増大させる部材となっている。なお、光入力部510のコア411からブリッジファイバ450のコア451にレーザ光が入射する際の反射を抑えるために、ブリッジファイバ450のコア451の屈折率は、光入力部510のコア411の屈折率と略同一であることが好ましい。 As described above, the bridge fiber 450 is configured to propagate the laser light emitted from the core 411 of the optical input unit 510 into the core 451 and reduce the beam diameter by the reduced diameter portion 462. At this time, the laser beam is repeatedly reflected on the inner peripheral surface of the clad 452 of the reduced diameter portion 462 to increase the divergence angle (angle in the direction in which the light spreads with respect to the optical axis of the core 451), and the laser emitted from the bridge fiber 450. The light emission angle increases. As described above, the bridge fiber 450 in the present embodiment is a member that increases the emission angle of the propagating laser beam. In order to suppress the reflection when the laser beam is incident on the core 451 of the bridge fiber 450 from the core 411 of the optical input unit 510, the refractive index of the core 451 of the bridge fiber 450 is the refraction index of the core 411 of the optical input unit 510. It is preferable that it is substantially the same as the rate.
 光軸方向においてブリッジ入射面465とは反対側に位置する第2の円筒部463の端面は、中間光ファイバ420が融着接続されるブリッジ出射面466となっている。ここで、中間光ファイバ420のコア421の大きさは、ブリッジファイバ450のブリッジ出射面466におけるコア451の大きさ以上となっており、ブリッジファイバ450と光入力部520(中間光ファイバ420)とは、ブリッジ出射面466におけるブリッジファイバ450のコア451が中間光ファイバ420のコア421の領域内に位置するように融着接続される。 The end surface of the second cylindrical portion 463 located on the side opposite to the bridge entrance surface 465 in the optical axis direction is the bridge exit surface 466 to which the intermediate optical fiber 420 is fused and connected. Here, the size of the core 421 of the intermediate optical fiber 420 is larger than the size of the core 451 on the bridge exit surface 466 of the bridge fiber 450, and the bridge fiber 450 and the optical input unit 520 (intermediate optical fiber 420) Is fused and connected so that the core 451 of the bridge fiber 450 on the bridge exit surface 466 is located within the region of the core 421 of the intermediate optical fiber 420.
 このように、光入力部520の中間光ファイバ420は、ブリッジファイバ450のコア451を伝搬してきたレーザ光をそのコア421の内部に伝搬させるように構成されている。なお、ブリッジファイバ450のコア451から中間光ファイバ420のコア421にレーザ光が入射する際の反射を抑えるために、中間光ファイバ420のコア421の屈折率は、ブリッジファイバ450のコア451の屈折率と略同一であることが好ましい。 As described above, the intermediate optical fiber 420 of the optical input unit 520 is configured to propagate the laser light propagating through the core 451 of the bridge fiber 450 to the inside of the core 421. In order to suppress reflection when laser light is incident on the core 421 of the intermediate optical fiber 420 from the core 451 of the bridge fiber 450, the refractive index of the core 421 of the intermediate optical fiber 420 is the refraction of the core 451 of the bridge fiber 450. It is preferable that it is substantially the same as the rate.
 本実施形態におけるブリッジファイバ450は、コア451の屈折率よりも低い屈折率を有する低屈折率媒質としてコア451の外側にクラッド452を有しているが、このような低屈折率媒質は、クラッド452のような被覆層に限られるものではなく、例えばコア451の周囲に空気の層を形成し、この空気の層を低屈折率媒質として用いてもよい。 The bridge fiber 450 in the present embodiment has a clad 452 on the outside of the core 451 as a low refractive index medium having a refractive index lower than that of the core 451. Such a low refractive index medium is clad. It is not limited to the coating layer such as 452, and for example, an air layer may be formed around the core 451 and this air layer may be used as a low refractive index medium.
 光出力部130の接続端面135には、光入力部120(光調整部材50)の下流側端部(出射端部50A)と光入力部520(中間光ファイバ420)の下流側端部とがそれぞれ融着接続される。光入力部120及び光入力部520の下流側端部(接続端部)においては、光入力部520(中間光ファイバ420)の外側に6つの光入力部120が中間光ファイバ420の中心から等距離に配置されており、隣り合う光入力部120,520が互いに接した最密状態となっている。ここで、光入力部120,520の接続端部は、中央に配置される中間光ファイバ420の中心が出力光ファイバ30の中心O1(図2参照)と一致するように光出力部130の接続端面135に融着接続される。 The connection end surface 135 of the optical output unit 130 has a downstream end portion (emission end portion 50A) of the optical input unit 120 (optical adjustment member 50) and a downstream end portion of the optical input unit 520 (intermediate optical fiber 420). Each is fused and connected. At the downstream end (connection end) of the optical input unit 120 and the optical input unit 520, six optical input units 120 are located outside the optical input unit 520 (intermediate optical fiber 420) from the center of the intermediate optical fiber 420, etc. They are arranged at a distance, and the adjacent optical input units 120 and 520 are in close contact with each other. Here, the connection ends of the optical input units 120 and 520 of the optical output unit 130 are arranged so that the center of the intermediate optical fiber 420 arranged in the center coincides with the center O 1 (see FIG. 2) of the output optical fiber 30. It is fused and connected to the connection end surface 135.
 光出力部130のセンタコア31の領域は、中央に配置される光入力部520のコア421を内部に包含できるような大きさとなっている。光入力部520は、光入力部520の中間光ファイバ420のコア421が光出力部130のセンタコア31の領域内に位置するように光出力部130に融着接続されている。また、光入力部120は、光入力部120の光調整部材50が光出力部130のリングコア33に光学的に結合するように光出力部130に融着接続されている。 The area of the center core 31 of the optical output unit 130 is large enough to include the core 421 of the optical input unit 520 arranged in the center. The optical input unit 520 is fused and connected to the optical output unit 130 so that the core 421 of the intermediate optical fiber 420 of the optical input unit 520 is located in the region of the center core 31 of the optical output unit 130. Further, the optical input unit 120 is fused and connected to the optical output unit 130 so that the optical adjustment member 50 of the optical input unit 120 is optically coupled to the ring core 33 of the optical output unit 130.
 このような構成により、レーザ光源402で生成されたレーザ光は、光ファイバ410のコア411の内部を伝搬して、ブリッジファイバ450のブリッジ入射面465からブリッジファイバ450のコア451に入射する。ブリッジファイバ450のコア451に入射したレーザ光は、コア451とクラッド452との界面で反射しながらブリッジファイバ450のコア451を伝搬し、縮径部462によってそのビーム径が小さくなるとともに出射角度(NA)が大きくなる。ビーム径が小さくなり出射角度が大きくなった状態のレーザ光は、ブリッジファイバ450のブリッジ出射面466から中間光ファイバ420のコア421に入射し、コア421の内部を伝搬して光出力部130のセンタコア31に入射する。光出力部130のセンタコア31に入射したレーザ光は、センタコア31の内部を伝搬してレーザ出射部4からレーザ光Lの一部としてステージ6上の加工対象物Wに向けて照射される(図5参照)。 With such a configuration, the laser light generated by the laser light source 402 propagates inside the core 411 of the optical fiber 410 and is incident on the core 451 of the bridge fiber 450 from the bridge incident surface 465 of the bridge fiber 450. The laser beam incident on the core 451 of the bridge fiber 450 propagates through the core 451 of the bridge fiber 450 while being reflected at the interface between the core 451 and the clad 452. NA) becomes large. The laser beam in a state where the beam diameter is small and the emission angle is large enters the core 421 of the intermediate optical fiber 420 from the bridge emission surface 466 of the bridge fiber 450, propagates inside the core 421, and propagates inside the core 421 of the optical output unit 130. It is incident on the center core 31. The laser light incident on the center core 31 of the optical output unit 130 propagates inside the center core 31 and is emitted from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L (FIG. 5).
 また、レーザ光源3で生成されたレーザ光は、光ファイバ20のコア21の内部を伝搬して、光コンバイナ40の光入力部120に至る。光入力部120の光ファイバ20から光調整部材50に入射したレーザ光は、光調整部材50を伝搬する間に出射角度が小さくなり、光ファイバ20の出射端部20Aから出射されるときよりも小さな出射角度で出射端部50Aから光出力部130のリングコア33に入射する。光出力部130のリングコア33に入射したレーザ光は、リングコア33の内部を伝搬してレーザ出射部4からレーザ光Lの一部としてステージ6上の加工対象物Wに向けて照射される(図5参照)。 Further, the laser light generated by the laser light source 3 propagates inside the core 21 of the optical fiber 20 and reaches the optical input unit 120 of the optical combiner 40. The laser beam incident on the optical adjustment member 50 from the optical fiber 20 of the optical input unit 120 has a smaller emission angle while propagating through the optical adjustment member 50, and is emitted from the emission end 20A of the optical fiber 20. It is incident on the ring core 33 of the light output unit 130 from the emission end portion 50A at a small emission angle. The laser light incident on the ring core 33 of the optical output unit 130 propagates inside the ring core 33 and is emitted from the laser emitting unit 4 toward the processing object W on the stage 6 as a part of the laser light L (FIG. 5).
 このように、本実施形態では、複数のレーザ光源402からのレーザ光をブリッジファイバ450により結合して光出力部130のセンタコア31に導入することができるため、出力光ファイバ30のセンタコア31を伝搬するレーザ光のパワーを簡単に高めることができる。 As described above, in the present embodiment, the laser light from the plurality of laser light sources 402 can be coupled by the bridge fiber 450 and introduced into the center core 31 of the optical output unit 130, so that the center core 31 of the output optical fiber 30 is propagated. The power of the laser beam can be easily increased.
 制御部405は、例えばレーザ光源3,402に供給する電流を制御することなどによって、これらのレーザ光源3,402を制御できるようになっている。このように制御部405によってレーザ光源3,402を制御することによって、レーザ光源3によって生成されるレーザ光のパワー及びレーザ光源402によって生成されるレーザ光のパワーを変更することができる。これにより、レーザ装置401のレーザ出射部4から出力されるレーザ光Lの中心側のパワーとその外側のパワーを調整することができ、レーザ光Lのプロファイルを容易に変化させることができる。 The control unit 405 can control these laser light sources 3, 402, for example, by controlling the current supplied to the laser light sources 3, 402. By controlling the laser light sources 3 and 402 by the control unit 405 in this way, the power of the laser light generated by the laser light source 3 and the power of the laser light generated by the laser light source 402 can be changed. As a result, the power on the center side of the laser beam L output from the laser emitting unit 4 of the laser apparatus 401 and the power on the outside thereof can be adjusted, and the profile of the laser beam L can be easily changed.
 このように、本実施形態においても、光入力部120の光調整部材50によって光ファイバ20のコア21を伝搬するレーザ光の出射角度を小さくしてから光出力部130のリングコア33に導入することができる。このため、レーザ出射部4のリングコア33から出力されるレーザ光のNAを低下させることができ、例えば厚い金属板を加工するのに適したレーザ光Lを加工対象物Wに照射することが可能である。 As described above, also in this embodiment, the emission angle of the laser beam propagating through the core 21 of the optical fiber 20 is reduced by the optical adjusting member 50 of the optical input unit 120, and then introduced into the ring core 33 of the optical output unit 130. Can be done. Therefore, it is possible to reduce the NA of the laser beam output from the ring core 33 of the laser emitting unit 4, and it is possible to irradiate the machined object W with the laser beam L suitable for processing a thick metal plate, for example. Is.
 レーザ光源3の構成とレーザ光源402の構成とは同一であってもよく、レーザ光源3で生成されるレーザ光のNAとレーザ光源402で生成されるレーザ光のNAとが同一であってもよい。本実施形態では、レーザ光源402で生成されたレーザ光は、ブリッジファイバ450の縮径部462を伝搬する間にNAが増大するため、光入力部520のコア421を伝搬するレーザ光のNAは、光入力部120の光ファイバ20のコア21を伝搬するレーザ光のNAよりも高いが、上述した光調整部材50によって、光入力部120から光出力部130のリングコア33に入射するレーザ光のNAを光入力部520から光出力部130のセンタコア31に入射するレーザ光のNAに対してさらに低く調整することが可能である。 The configuration of the laser light source 3 and the configuration of the laser light source 402 may be the same, and even if the NA of the laser light generated by the laser light source 3 and the NA of the laser light generated by the laser light source 402 are the same. good. In the present embodiment, the NA of the laser light generated by the laser light source 402 increases while propagating through the reduced diameter portion 462 of the bridge fiber 450, so that the NA of the laser light propagating through the core 421 of the optical input section 520 is Although it is higher than the NA of the laser light propagating through the core 21 of the optical fiber 20 of the optical input unit 120, the laser light incident on the ring core 33 of the optical output unit 130 from the optical input unit 120 by the above-mentioned optical adjustment member 50. The NA can be adjusted to be even lower than the NA of the laser beam incident on the center core 31 of the optical output unit 130 from the optical input unit 520.
 また、本実施形態では、レーザ光源3とレーザ光源402とは別個の光源として図示されているが、上述したように1つの光源に2つの出力ポートを設け、空間光学系スイッチ又は2組のファイバブラッググレーティングを用いて出力ポートを切り替えることによって上述したレーザ光源3とレーザ光源402とを実現することもできる。 Further, in the present embodiment, the laser light source 3 and the laser light source 402 are shown as separate light sources, but as described above, one light source is provided with two output ports, and a spatial optical system switch or two sets of fibers are provided. The above-mentioned laser light source 3 and laser light source 402 can also be realized by switching the output port using the Bragg grating.
 上述した実施形態における出力光ファイバ30(光出力部130)は、センタコア31とリングコア33とからなる2つの光導波路を有するものであったが、出力光ファイバ30が3つ以上の光導波路を有していてもよい。また、出力光ファイバ30に含まれるコア(光導波路)の断面形状も図示したような円形状や円環形状に限られるものではない。 The output optical fiber 30 (optical output unit 130) in the above-described embodiment has two optical waveguides including a center core 31 and a ring core 33, but the output optical fiber 30 has three or more optical waveguides. You may be doing it. Further, the cross-sectional shape of the core (optical waveguide) included in the output optical fiber 30 is not limited to the circular shape or the annular shape as shown in the figure.
 また、上述した実施形態における出力光ファイバ30(光出力部130)は、2つのクラッド32,34を有するものであったが、出力光ファイバ30が単一のクラッド層を有していてもよく、あるいは3つ以上のクラッド層を有していてもよい。例えば、単一のクラッド層を有する出力光ファイバ30としては、上述した実施形態における出力光ファイバ30の内側クラッド32が存在せずにリングコア33がセンタコア31の第1クラッドに相当するような屈折率プロファイルを有するものが考えられる。また、リングコア33の屈折率よりも低い屈折率を有する低屈折率媒質として、リングコア33の周囲に外側クラッド34が形成されているが、このような低屈折率媒質は、外側クラッド34のような被覆層に限られるものではなく、例えばリングコア33の周囲に空気の層を形成し、この空気の層を低屈折率媒質として用いてもよい。 Further, although the output optical fiber 30 (optical output unit 130) in the above-described embodiment has two clads 32 and 34, the output optical fiber 30 may have a single clad layer. , Or may have three or more clad layers. For example, as the output optical fiber 30 having a single clad layer, the refractive index such that the ring core 33 corresponds to the first clad of the center core 31 without the inner clad 32 of the output optical fiber 30 in the above-described embodiment exists. Those having a profile are conceivable. Further, as a low refractive index medium having a refractive index lower than that of the ring core 33, an outer clad 34 is formed around the ring core 33, and such a low refractive index medium is like the outer clad 34. The present invention is not limited to the coating layer, and for example, an air layer may be formed around the ring core 33, and this air layer may be used as a low refractive index medium.
 上述した実施形態において、レーザ光源2の構成、レーザ光源3、及びレーザ光源402の構成は同一であってもよいし、異なっていてもよい。また、レーザ光源2により生成されるレーザ光の波長、レーザ光源3により生成されるレーザ光の波長、及びレーザ光源402により生成されるレーザ光の波長は同一であってもよいし、異なっていてもよい。 In the above-described embodiment, the configuration of the laser light source 2, the configuration of the laser light source 3, and the configuration of the laser light source 402 may be the same or different. Further, the wavelength of the laser light generated by the laser light source 2, the wavelength of the laser light generated by the laser light source 3, and the wavelength of the laser light generated by the laser light source 402 may be the same or different. May be good.
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although the preferred embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment and may be implemented in various different forms within the scope of the technical idea.
 以上述べたように、本発明の第1の態様によれば、光出力部の外側に位置するコアを伝搬する光のNAを低下させることができる光コンバイナが提供される。この光コンバイナは、第1の入力光導波路を有する少なくとも1つの第1の光入力部と、第2の入力光導波路を有する少なくとも1つの第2の光入力部と、上記第1の光入力部及び上記第2の光入力部が接続される光出力部とを備える。上記光出力部は、上記少なくとも1つの第1の光入力部の上記第1の入力光導波路が光学的に結合される第1のコアと、上記少なくとも1つの第2の光入力部の上記第2の入力光導波路が光学的に結合される第2のコアとを含む。上記第1のコアは、第1の外径を有し、上記第2のコアは、上記第1の外径よりも大きな第2の外径を有する。上記少なくとも1つの第2の光入力部は、上記第2の入力光導波路としてのコアと、上記コアの屈折率よりも低い屈折率を有し、上記コアの周囲を覆うクラッドとを含む光ファイバと、上記光ファイバの上記コアの端部から出射された光をその出射角度が小さくなるように伝搬させる光調整部材とを含む。上記光調整部材として、中心軸から半径方向外側に向かって次第に屈折率が低くなったGRINレンズを用いることができる。 As described above, according to the first aspect of the present invention, there is provided an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit. This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected. The optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled. The first core has a first outer diameter, and the second core has a second outer diameter larger than the first outer diameter. The at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small. As the light adjusting member, a GRIN lens whose refractive index gradually decreases from the central axis toward the outer side in the radial direction can be used.
 このような構成によれば、第2の光入力部の光ファイバのコアから光調整部材に入射した光が、光調整部材を伝搬する間にその出射角度が小さくなり、光ファイバの端部から出射されたときよりも小さな出射角度で光出力部の第2のコアに入射することとなるため、光出力部の第2のコアを伝搬する光のNAを低下させることができる。 According to such a configuration, the light incident on the optical adjustment member from the core of the optical fiber of the second optical input unit has a small emission angle while propagating through the optical adjustment member, and the light is emitted from the end of the optical fiber. Since the light is incident on the second core of the optical output unit at a smaller emission angle than when it is emitted, the NA of the light propagating through the second core of the optical output unit can be reduced.
 上記光出力部は、上記第1のコアとしてのセンタコアであって、中心に配置されるセンタコアと、上記センタコアの屈折率よりも低い屈折率を有し、上記センタコアの周囲を覆う内側クラッドと、上記第2のコアとしてのリングコアとを含んでいてもよい。上記リングコアは、上記内側クラッドの屈折率よりも高い屈折率を有し、上記内側クラッドの周囲を覆っている。 The optical output unit is a center core as the first core, and has a center core arranged in the center and an inner clad having a refractive index lower than the refractive index of the center core and covering the periphery of the center core. The ring core as the second core may be included. The ring core has a refractive index higher than that of the inner clad and covers the periphery of the inner clad.
 上記光コンバイナは、第3の入力光導波路をそれぞれ有する複数の第3の光入力部と、ブリッジファイバとをさらに備えていてもよい。上記ブリッジファイバは、上記複数の第3の光入力部の上記第3の入力光導波路が光学的に結合されるブリッジ入射面と、光軸方向に沿って上記ブリッジ入射面から離れるにつれて次第に径が小さくなる縮径部と、上記光軸方向において上記ブリッジ入射面とは反対側のブリッジ出射面とを有する。上記少なくとも1つの第1の光入力部は、上記ブリッジファイバの上記ブリッジ出射面と光学的に結合されるコアを含む中間光ファイバを含んでいる。このような構成によれば、複数の第3の光入力部からの光をブリッジファイバにより結合して光出力部の第1のコアに導入することができるため、光出力部の第1のコアを伝搬する光のパワーを簡単に高めることができる。 The optical combiner may further include a plurality of third optical input units each having a third input optical waveguide, and a bridge fiber. The diameter of the bridge fiber gradually increases as the distance from the bridge incident surface to which the third input optical waveguide of the plurality of third optical input units is optically coupled and the bridge incident surface along the optical axis direction gradually increases. It has a reduced diameter portion that becomes smaller and a bridge exit surface that is opposite to the bridge entrance surface in the optical axis direction. The at least one first optical input unit includes an intermediate optical fiber including a core optically coupled to the bridge exit surface of the bridge fiber. According to such a configuration, light from a plurality of third optical input units can be coupled by a bridge fiber and introduced into the first core of the optical output unit, so that the first core of the optical output unit can be introduced. The power of light propagating can be easily increased.
 本発明の第2の態様によれば、外側のコアから低NAのレーザ光を出射することができるレーザ装置が提供される。このレーザ装置は、レーザ光を生成する少なくとも1つの第1のレーザ光源と、レーザ光を生成する少なくとも1つの第2のレーザ光源と、上述した光コンバイナとを備える。上記光コンバイナの上記少なくとも1つの第1の光入力部の上記第1の入力光導波路は、上記少なくとも1つの第1のレーザ光源に光学的に結合される。上記光コンバイナの上記少なくとも1つの第2の光入力部の上記第2の入力光導波路は、上記少なくとも1つの第2のレーザ光源に光学的に結合される。 According to the second aspect of the present invention, there is provided a laser device capable of emitting a low NA laser beam from an outer core. This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner. The first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source. The second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
 このような態様によれば、上述したように、光コンバイナの光出力部の第2のコアに入射されるレーザ光のNAを低下させることができるため、外側のコアから低NAのレーザ光を出射することが可能となる。 According to such an embodiment, as described above, the NA of the laser beam incident on the second core of the optical output unit of the optical combiner can be reduced, so that the low NA laser beam is emitted from the outer core. It is possible to emit light.
 上記レーザ装置は、上記光コンバイナの上記光出力部の上記第1のコア又は上記第2のコアから漏洩する光を除去する光除去部をさらに備えていてもよい。このような光除去部によって、光コンバイナの光出力部の第1のコア又は第2のコアから漏洩する不要な光を除去することができる。 The laser device may further include a light removing unit that removes light leaking from the first core or the second core of the optical output unit of the optical combiner. With such a light removing unit, it is possible to remove unnecessary light leaking from the first core or the second core of the light output unit of the optical combiner.
 上記レーザ装置は、上記少なくとも1つの第1のレーザ光源及び上記少なくとも1つの第2のレーザ光源を制御することにより、上記少なくとも1つの第1のレーザ光源及び上記少なくとも1つの第2のレーザ光源により生成されるレーザ光の出力を調整する制御部をさらに備えていてもよい。このような制御部により、レーザ装置から出力されるレーザ光のパワーを調整することができ、レーザ光のプロファイルを容易に変化させることができる。 The laser device is controlled by the at least one first laser light source and the at least one second laser light source, thereby using the at least one first laser light source and the at least one second laser light source. Further, a control unit for adjusting the output of the generated laser beam may be provided. With such a control unit, the power of the laser beam output from the laser apparatus can be adjusted, and the profile of the laser beam can be easily changed.
 以上述べたように、本発明の第1の態様によれば、光出力部の外側に位置するコアを伝搬する光のNAを低下させることができる光コンバイナが提供される。この光コンバイナは、第1の入力光導波路を有する少なくとも1つの第1の光入力部と、第2の入力光導波路を有する少なくとも1つの第2の光入力部と、上記第1の光入力部及び上記第2の光入力部が接続される光出力部とを備える。上記光出力部は、上記少なくとも1つの第1の光入力部の上記第1の入力光導波路が光学的に結合される第1のコアと、上記少なくとも1つの第2の光入力部の上記第2の入力光導波路が光学的に結合される第2のコアとを含む。上記第1のコアは、第1の外径を有し、上記第2のコアは、上記第1の外径よりも大きな第2の外径を有する。上記少なくとも1つの第2の光入力部は、上記第2の入力光導波路としてのコアと、上記コアの屈折率よりも低い屈折率を有し、上記コアの周囲を覆うクラッドとを含む光ファイバと、上記光ファイバの上記コアの端部から出射された光をその出射角度が小さくなるように伝搬させる光調整部材とを含む。 As described above, according to the first aspect of the present invention, there is provided an optical combiner capable of reducing the NA of light propagating through a core located outside the optical output unit. This optical combiner includes at least one first optical input unit having a first input optical waveguide, at least one second optical input unit having a second input optical waveguide, and the first optical input unit. And an optical output unit to which the second optical input unit is connected. The optical output unit includes a first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, and the first core of the at least one second optical input unit. Includes a second core to which the input optical waveguide of 2 is optically coupled. The first core has a first outer diameter, and the second core has a second outer diameter larger than the first outer diameter. The at least one second optical input unit is an optical fiber including a core as the second input optical waveguide and a cladding having a refractive index lower than the refractive index of the core and covering the periphery of the core. And an optical adjusting member that propagates the light emitted from the end of the core of the optical fiber so that the emission angle thereof becomes small.
 本発明の第2の態様によれば、外側のコアから低NAのレーザ光を出射することができるレーザ装置が提供される。このレーザ装置は、レーザ光を生成する少なくとも1つの第1のレーザ光源と、レーザ光を生成する少なくとも1つの第2のレーザ光源と、上述した光コンバイナとを備える。上記光コンバイナの上記少なくとも1つの第1の光入力部の上記第1の入力光導波路は、上記少なくとも1つの第1のレーザ光源に光学的に結合される。上記光コンバイナの上記少なくとも1つの第2の光入力部の上記第2の入力光導波路は、上記少なくとも1つの第2のレーザ光源に光学的に結合される。 According to the second aspect of the present invention, there is provided a laser device capable of emitting a low NA laser beam from an outer core. This laser apparatus includes at least one first laser light source that generates a laser beam, at least one second laser light source that generates a laser beam, and the above-mentioned optical combiner. The first input optical waveguide of the at least one first optical input unit of the optical combiner is optically coupled to the at least one first laser light source. The second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
 本出願は、2020年5月26日に提出された日本国特許出願特願2020-091461号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2020-091461 filed on May 26, 2020, and claims the priority of the application. The disclosure of such application is incorporated herein by reference in its entirety.
 本発明は、複数の光ファイバを伝搬する光を結合して出力する光コンバイナに好適に用いられる。 The present invention is suitably used for an optical combiner that combines and outputs light propagating through a plurality of optical fibers.
  1   レーザ装置
  2   (第1の)レーザ光源
  3   (第2の)レーザ光源
  4   レーザ出射部
  5   制御部
  6   ステージ
  7   光除去部
 10,20   光ファイバ
 30   出力光ファイバ
 31   センタコア(第1のコア)
 32   内側クラッド
 33   リングコア(第2のコア)
 34   外側クラッド
 40,440   光コンバイナ
 50   光調整部材
110   (第1の)光入力部
120   (第2の)光入力部
130   光出力部
135   接続端面
401   レーザ装置
402   (第1の)レーザ光源
405   制御部
410   光ファイバ
420   中間光ファイバ
450   ブリッジファイバ
461   第1の円筒部
462   縮径部
463   第2の円筒部
465   ブリッジ入射面
466   ブリッジ出射面
510   (第3の)光入力部
520   (第1の)光入力部
1 Laser device 2 (1st) laser light source 3 (2nd) laser light source 4 Laser emission unit 5 Control unit 6 Stage 7 Light removal unit 10, 20 Optical fiber 30 Output optical fiber 31 Center core (1st core)
32 Inner clad 33 Ring core (second core)
34 Outer clad 40,440 Optical combiner 50 Optical adjuster 110 (1st) Optical input unit 120 (2nd) Optical input unit 130 Optical output unit 135 Connection end face 401 Laser device 402 (1st) Laser light source 405 Control Section 410 Optical fiber 420 Intermediate optical fiber 450 Bridge fiber 461 First cylindrical section 462 Reduced diameter section 465 Second cylindrical section 465 Bridge entrance surface 466 Bridge exit surface 510 (third) Optical input section 520 (first) Optical input section

Claims (7)

  1.  第1の入力光導波路を有する少なくとも1つの第1の光入力部と、
     第2の入力光導波路を有する少なくとも1つの第2の光入力部と、
     前記第1の光入力部及び前記第2の光入力部が接続される光出力部であって、
      前記少なくとも1つの第1の光入力部の前記第1の入力光導波路が光学的に結合される第1のコアであって、第1の外径を有する第1のコアと、
      前記少なくとも1つの第2の光入力部の前記第2の入力光導波路が光学的に結合される第2のコアであって、前記第1の外径よりも大きな第2の外径を有する第2のコアと
    を含む光出力部と
    を備え、
     前記少なくとも1つの第2の光入力部は、
      前記第2の入力光導波路としてのコアと、前記コアの屈折率よりも低い屈折率を有し、前記コアの周囲を覆うクラッドとを含む光ファイバと、
      前記光ファイバの前記コアの端部から出射された光をその出射角度が小さくなるように伝搬させる光調整部材と
    を含む、
    光コンバイナ。
    With at least one first optical input unit having a first input optical waveguide,
    With at least one second optical input unit having a second input optical waveguide,
    An optical output unit to which the first optical input unit and the second optical input unit are connected.
    A first core to which the first input optical waveguide of the at least one first optical input unit is optically coupled, the first core having a first outer diameter, and the like.
    A second core to which the second input optical waveguide of the at least one second optical input unit is optically coupled and having a second outer diameter larger than the first outer diameter. Equipped with an optical output unit including 2 cores
    The at least one second optical input unit is
    An optical fiber comprising a core as the second input optical waveguide and a cladding having a refractive index lower than that of the core and covering the periphery of the core.
    A light adjusting member for propagating light emitted from an end portion of the core of the optical fiber so that the emission angle thereof is reduced.
    Optical combiner.
  2.  前記光調整部材は、中心軸から半径方向外側に向かって次第に屈折率が低くなったGRINレンズから構成される、請求項1に記載の光コンバイナ。 The optical combiner according to claim 1, wherein the optical adjusting member is composed of a GRIN lens whose refractive index gradually decreases from the central axis toward the outer side in the radial direction.
  3.  前記光出力部は、
      前記第1のコアとしてのセンタコアであって、中心に配置されるセンタコアと、
      前記センタコアの屈折率よりも低い屈折率を有し、前記センタコアの周囲を覆う内側クラッドと、
      前記第2のコアとしてのリングコアであって、前記内側クラッドの屈折率よりも高い屈折率を有し、前記内側クラッドの周囲を覆うリングコアと
    を含む、請求項1又は2に記載の光コンバイナ。
    The optical output unit is
    A center core as the first core, the center core arranged in the center, and the center core.
    With an inner clad that has a refractive index lower than that of the center core and covers the periphery of the center core,
    The optical combiner according to claim 1 or 2, wherein the ring core as the second core has a refractive index higher than that of the inner clad and includes a ring core that covers the periphery of the inner clad.
  4.  第3の入力光導波路をそれぞれ有する複数の第3の光入力部と、
     前記複数の第3の光入力部の前記第3の入力光導波路が光学的に結合されるブリッジ入射面と、光軸方向に沿って前記ブリッジ入射面から離れるにつれて次第に径が小さくなる縮径部と、前記光軸方向において前記ブリッジ入射面とは反対側のブリッジ出射面とを有するブリッジファイバと
    をさらに備え、
     前記少なくとも1つの第1の光入力部は、前記ブリッジファイバの前記ブリッジ出射面と光学的に結合されるコアを含む中間光ファイバを含む、
    請求項1から3のいずれか一項に記載の光コンバイナ。
    A plurality of third optical input units each having a third input optical waveguide,
    A bridge incident surface to which the third input optical waveguide of the plurality of third optical input units is optically coupled, and a reduced diameter portion whose diameter gradually decreases as the distance from the bridge incident surface along the optical axis direction increases. And a bridge fiber having a bridge exit surface on the opposite side of the bridge entrance surface in the optical axis direction.
    The at least one first optical input unit includes an intermediate optical fiber including a core optically coupled to the bridge exit surface of the bridge fiber.
    The optical combiner according to any one of claims 1 to 3.
  5.  レーザ光を生成する少なくとも1つの第1のレーザ光源と、
     レーザ光を生成する少なくとも1つの第2のレーザ光源と、
     請求項1から4のいずれか一項に記載の光コンバイナと
    を備え、
     前記光コンバイナの前記少なくとも1つの第1の光入力部の前記第1の入力光導波路は、前記少なくとも1つの第1のレーザ光源に光学的に結合され、
     前記光コンバイナの前記少なくとも1つの第2の光入力部の前記第2の入力光導波路は、前記少なくとも1つの第2のレーザ光源に光学的に結合される、
    レーザ装置。
    With at least one first laser source that produces laser light,
    With at least one second laser source that produces a laser beam,
    The optical combiner according to any one of claims 1 to 4 is provided.
    The first input optical waveguide of the at least one first optical input section of the optical combiner is optically coupled to the at least one first laser light source.
    The second input optical waveguide of the at least one second optical input section of the optical combiner is optically coupled to the at least one second laser light source.
    Laser device.
  6.  前記光コンバイナの前記光出力部の前記第1のコア又は前記第2のコアから漏洩する光を除去する光除去部をさらに備える、請求項5に記載のレーザ装置。 The laser device according to claim 5, further comprising an optical removing unit for removing light leaking from the first core or the second core of the optical output unit of the optical combiner.
  7.  前記少なくとも1つの第1のレーザ光源及び前記少なくとも1つの第2のレーザ光源を制御することにより、前記少なくとも1つの第1のレーザ光源及び前記少なくとも1つの第2のレーザ光源により生成されるレーザ光の出力を調整する制御部をさらに備える、請求項5又は6に記載のレーザ装置。 By controlling the at least one first laser light source and the at least one second laser light source, the laser light generated by the at least one first laser light source and the at least one second laser light source. The laser apparatus according to claim 5 or 6, further comprising a control unit for adjusting the output of the above.
PCT/JP2021/019723 2020-05-26 2021-05-25 Optical combiner and laser device WO2021241545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-091461 2020-05-26
JP2020091461 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021241545A1 true WO2021241545A1 (en) 2021-12-02

Family

ID=78744461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019723 WO2021241545A1 (en) 2020-05-26 2021-05-25 Optical combiner and laser device

Country Status (1)

Country Link
WO (1) WO2021241545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112839A1 (en) * 2021-12-14 2023-06-22 株式会社フジクラ Optical combiner and laser system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518566A (en) * 2003-12-05 2007-07-12 エスピーアイ レーザーズ ユーケー リミテッド Equipment for industrial processing of materials by light radiation
JP2009212441A (en) * 2008-03-06 2009-09-17 Fujikura Ltd Pump combiner
JP2013190714A (en) * 2012-03-15 2013-09-26 Fujikura Ltd Optical fiber combiner and laser device using the same
US8781269B2 (en) * 2010-04-08 2014-07-15 Trumpf Laser- Und Systemtechnik Gmbh Method and arrangement for generating a laser beam having a differing beam profile characteristic by means of a multi-clad fiber
JP2014197193A (en) * 2013-03-15 2014-10-16 オーエフエス ファイテル,エルエルシー Ring combiner
US9620925B2 (en) * 2013-01-31 2017-04-11 Spi Lasers Uk Limited Fiber optical laser combiner
JP2017187651A (en) * 2016-04-06 2017-10-12 株式会社フジクラ Cladding mode stripper
JP2018527184A (en) * 2016-07-15 2018-09-20 コアレイズ オーワイ Laser processing apparatus and laser processing method
JP2019049698A (en) * 2017-08-25 2019-03-28 ルーメンタム オペレーションズ エルエルシーLumentum Operations LLC Cladding light stripper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518566A (en) * 2003-12-05 2007-07-12 エスピーアイ レーザーズ ユーケー リミテッド Equipment for industrial processing of materials by light radiation
JP2009212441A (en) * 2008-03-06 2009-09-17 Fujikura Ltd Pump combiner
US8781269B2 (en) * 2010-04-08 2014-07-15 Trumpf Laser- Und Systemtechnik Gmbh Method and arrangement for generating a laser beam having a differing beam profile characteristic by means of a multi-clad fiber
JP2013190714A (en) * 2012-03-15 2013-09-26 Fujikura Ltd Optical fiber combiner and laser device using the same
US9620925B2 (en) * 2013-01-31 2017-04-11 Spi Lasers Uk Limited Fiber optical laser combiner
JP2014197193A (en) * 2013-03-15 2014-10-16 オーエフエス ファイテル,エルエルシー Ring combiner
JP2017187651A (en) * 2016-04-06 2017-10-12 株式会社フジクラ Cladding mode stripper
JP2018527184A (en) * 2016-07-15 2018-09-20 コアレイズ オーワイ Laser processing apparatus and laser processing method
JP2019049698A (en) * 2017-08-25 2019-03-28 ルーメンタム オペレーションズ エルエルシーLumentum Operations LLC Cladding light stripper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112839A1 (en) * 2021-12-14 2023-06-22 株式会社フジクラ Optical combiner and laser system

Similar Documents

Publication Publication Date Title
CN108780189B (en) Optical fiber structure and method for changing laser beam profile
KR101588544B1 (en) Method and arrangement for generating a laser beam having a differing beam profile characteristic by means of a multi­clad fibre
JP7394289B2 (en) Laser oscillator, laser processing device using the same, and laser oscillation method
CA2146727A1 (en) Fiber optical coupler
WO2021240880A1 (en) Optical combiner and laser device
WO2021241545A1 (en) Optical combiner and laser device
WO2021044677A1 (en) Optical fiber, laser generating device, laser processing device, and method for manufacturing optical fiber
JP2023058673A (en) Optical combiner and laser device
JP2021111638A (en) Laser device
US20020114568A1 (en) Optical fiber termination collimator and process of manufacture
WO2021240916A1 (en) Optical combiner and laser device
JP2023030808A (en) Optical control member, optical device, and laser device
JP4158307B2 (en) Optical transmission module
JP7402024B2 (en) laser equipment
JP2017026660A (en) Optical fiber terminal
WO2024171538A1 (en) Laser device
WO2005022218A1 (en) Optical part, optical part producing method and optical system
KR101567985B1 (en) optical fiber having dual core and laser machining apparatus using the same
JP2021139963A (en) Optical coupler and optical output device
JP2004191400A (en) Single mode ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2020201420A (en) Light guiding member and laser device
JP2002107585A (en) Optical branching device and method for manufacturing its optical branching element
JPS5917506A (en) Glass fiber for transmission of high output laser light
JP2005070664A (en) Laser branching device and laser processing apparatus
JP2004191399A (en) Low loss ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP