WO2021241524A1 - Method for selecting cardiomyocytes having high proliferation ability - Google Patents

Method for selecting cardiomyocytes having high proliferation ability Download PDF

Info

Publication number
WO2021241524A1
WO2021241524A1 PCT/JP2021/019678 JP2021019678W WO2021241524A1 WO 2021241524 A1 WO2021241524 A1 WO 2021241524A1 JP 2021019678 W JP2021019678 W JP 2021019678W WO 2021241524 A1 WO2021241524 A1 WO 2021241524A1
Authority
WO
WIPO (PCT)
Prior art keywords
cardiomyocytes
cells
gene
catalog number
cell
Prior art date
Application number
PCT/JP2021/019678
Other languages
French (fr)
Japanese (ja)
Inventor
善紀 吉田
周子 大久保
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022526546A priority Critical patent/JPWO2021241524A1/ja
Publication of WO2021241524A1 publication Critical patent/WO2021241524A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for selecting cardiomyocytes having high proliferative ability. More specifically, the present invention relates to a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population, a method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population, a method for producing cardiomyocytes, and a heart. Regarding the method of manufacturing the tissue.
  • This application claims priority based on US Patent Application No. 63 / 029,564, which was provisionally filed in the United States on May 25, 2020, the contents of which are incorporated herein by reference.
  • Heart transplantation is often the only treatment option for patients with markedly impaired cardiac function.
  • the donor's heart is chronically deficient. Therefore, there is a demand for a treatment method that can replace heart transplantation.
  • Cardiac cell therapy is expected as an alternative to heart transplantation.
  • Non-Patent Document 1 it is known that cardiomyocytes in adult heart tissue do not have proliferative ability, and cardiomyocytes induced to differentiate in vitro also lose proliferative ability by continuing culturing. Therefore, the development of a technique for increasing the proliferative capacity of cardiomyocytes is being actively carried out (see, for example, Non-Patent Document 1).
  • knockout mice of genes encoding the transcription factors HAND1 and HAND2 show hypoplasia of the left ventricle and the right ventricle, respectively.
  • the function and expression of these transcription factors in human cardiac development has not been fully elucidated.
  • an object of the present invention is to provide a technique for obtaining cardiomyocytes having high proliferative ability without introducing a gene.
  • a method for producing cardiomyocytes which comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes.
  • a method for producing a heart tissue comprising a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of culturing the recovered cardiomyocytes to prepare a heart tissue.
  • the pluripotent stem cell is a human iPS cell.
  • a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
  • a method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population which comprises a step of selecting cardiomyocytes that highly express CD105 from the cardiomyocyte population.
  • the method according to [5] or [6], wherein the cardiomyocyte population is derived from pluripotent stem cells.
  • the pluripotent stem cell is a human iPS cell.
  • the present invention includes the following aspects.
  • a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population derived from pluripotent stem cells which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
  • a method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population derived from pluripotent stem cells which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
  • a method, wherein the selected cardiomyocytes are cardiomyocytes in which the cell cycle is activated.
  • a method for determining the maturity of cardiomyocytes derived from pluripotent stem cells which comprises a step of measuring the expression level of CD105 in the cardiomyocytes, and the expression level is higher than that of a control. It indicates that the cell cycle of the cardiomyocytes is activated and the maturity as a cardiomyocyte is low, and that the expression level is lower than that of the control means that the activation of the cell cycle of the cardiomyocytes is not observed and the cardiomyocyte is myocardial.
  • CD105 is highly expressed in patients who need to transplant cardiomyocytes with high proliferative capacity or cardiomyocytes with activated cell cycle and low maturity as cardiomyocytes in the process of transplanting to the patient's heart.
  • the step of transplanting the cardiomyocytes expressing low CD105 are included in the cardiomyocytes.
  • [P5] Manufacture of cardiomyocytes in large quantities, including a step of recovering cardiomyocytes highly expressing CD105 from a pluripotent stem cell-derived cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes in vitro. how to.
  • the cells include a step of recovering cardiomyocytes whose cell cycle has been activated from a cardiomyocyte population derived from pluripotent stem cells, and a step of culturing the recovered cardiomyocytes to prepare a heart tissue. Cardiomyocytes whose cycle is activated are cardiomyocytes that highly express CD105, which is a method for producing heart tissue with high efficiency.
  • FIG. 1 is a schematic diagram illustrating an outline of preparation of the HAND1-mCherry reporter hiPSC in Experimental Example 1.
  • FIG. 2 is a schematic diagram illustrating an outline of the production of the HAND2-EGFP reporter hiPSC in Experimental Example 1.
  • FIG. 3 is a schematic diagram showing the structure of the MYH6-iRFP670 transposon vector used in Experimental Example 2.
  • FIG. 4 is a heat map showing the results of Experimental Example 4.
  • FIG. 5 is a graph showing the results of flow cytometer analysis (FACS analysis) in Experimental Example 5.
  • the horizontal axis shows the fluorescence intensity of EGFP, and the vertical axis shows the fluorescence intensity of APC.
  • FIG. 6 is a graph showing the results of the EdU assay in Experimental Example 5.
  • “High” indicates the result of CD105 high expression cardiomyocytes
  • “Low” indicates the result of CD105 low expression cardiomyocytes.
  • the vertical axis shows the percentage of EdU-positive cells.
  • FIG. 7 is a graph showing the results of the EdU assay in Experimental Example 6.
  • FIG. 8 is a graph showing the results of the EdU assay in Experimental Example 6.
  • “High” indicates the result of CD105 high expression cardiomyocytes
  • “Low” indicates the result of CD105 low expression cardiomyocytes.
  • the vertical axis shows the percentage of EdU-positive cells.
  • FIG. 9 is a graph showing the results of quantitative real-time PCR in Experimental Example 7. In the figure, “High” indicates the result of CD105 high expression cardiomyocytes, and “Low” indicates the result of CD105 low expression cardiomyocytes.
  • the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
  • FIG. 10 is a graph showing the results of quantitative real-time PCR in Experimental Example 8. In the figure, “High” indicates the result of CD105 high expression cardiomyocytes, and “Low” indicates the result of CD105 low expression cardiomyocytes.
  • the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
  • FIG. 11 is a graph showing the results of quantitative real-time PCR in Experimental Example 8.
  • “High” indicates the result of CD105 high expression cardiomyocytes
  • “Low” indicates the result of CD105 low expression cardiomyocytes.
  • the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
  • positive may be referred to as "+” and negative may be referred to as "-”. Further, being positive means that the expression level of the target gene or the target protein in the cell is high, or the degree to which the cell is stained under a predetermined condition is high. Further, negative means that the expression level of the target gene or the target protein in the cell is low, or the degree to which the cell is stained under a predetermined condition is low.
  • the present invention provides a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population, which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population. ..
  • the selected cardiomyocytes are cardiomyocytes having high proliferative ability.
  • cardiomyocytes having high proliferative ability can be selected without introducing a gene into cardiomyocytes. Since no gene transfer is performed, safe cardiomyocytes that can be transplanted into humans can be easily obtained.
  • the cardiomyocytes selected and collected by the method of the present embodiment can be used for elucidation of the biological mechanism, cell transplantation therapy in the field of regenerative medicine, and the like.
  • the method of the present embodiment can be rephrased as a method of selecting cardiomyocytes having proliferative ability from a cardiomyocyte population, a method of selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population, and the like.
  • the cardiomyocyte population may be a living body-derived cardiomyocyte population or may be obtained by inducing differentiation from pluripotent stem cells.
  • the cardiomyocyte population includes cardiomyocytes having high proliferative ability, cardiomyocytes having low proliferative ability, cardiomyocytes having lost proliferative ability, and the like.
  • the method for inducing differentiation of pluripotent stem cells into cardiomyocytes is not particularly limited, and may be a method usually used in the art.
  • the pluripotent stem cells are preferably cells derived from humans, and examples thereof include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC).
  • a cell population induced to differentiate from pluripotent stem cells for example, 8th, 9th, 10th, 11th, 12th, 13th, 14th, and 15th days from the start of differentiation induction. , 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 27th, 28th The day, 29th, 30th, 40th, and 50th days are used.
  • the proliferative capacity of myocardial cells is high, the myocardial cells have proliferative capacity, or the cell cycle of myocardial cells is activated.
  • the amount of nascent DNA synthesis of myocardial cells is higher than that of control cells. 3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2. 3. times, 2.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.
  • the cell proliferation amount of myocardial cells is 1.3 times, 1 times that of the control cell. 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times, 2 4.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.0 times, 7 It may be 0.0 times, 8.0 times, 9.0 times, or 10.0 times higher.
  • the control cell cells having a low cell proliferation ability can be used, and examples thereof include cardiomyocytes derived from adult heart tissue and cardiomyocytes having a low expression level of CD105. Be done.
  • the amount of nascent DNA synthesis can be measured, for example, by an EdU assay or the like, which measures the uptake of EdU (5-ethynyl-2'-deoxyuridine), which is a nucleoside analog, into DNA.
  • EdU 5-ethynyl-2'-deoxyuridine
  • CD105 is one of the cell membrane surface proteins encoded by the ENG gene.
  • the ENG gene may be referred to as a CD105 gene.
  • the NCBI accession numbers for the human CD105 protein are NP_1000109.1, NP_001108225.1, NP_001265067.1, and the like.
  • the NCBI accession numbers of the mRNA of the human CD105 gene are NM_000118.3., NM_00111475.3, NM_001278138.2 and the like.
  • the low expression level of CD105 or the low expression of CD105 may mean, for example, that the degree of staining with the anti-CD105 antibody is similar to that of cardiomyocytes not stained with the anti-CD105 antibody. ..
  • a high expression level of CD105 or a high expression level of CD105 may mean that the expression level of CD105 at the mRNA level or the protein level is significantly higher than that of the control cell, or 1.3. Double, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times Double, 2.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.0 times It may be times, 7.0 times, 8.0 times, 9.0 times, and 10.0 times higher.
  • the control cell a cell whose cell proliferation ability is known to be low can be used, and is the same as that described above.
  • the expression level of CD105 at the gene level can be measured, for example, by quantitative real-time PCR or the like.
  • the expression level of CD105 at the protein level can be measured, for example, by cell staining with a fluorescently labeled anti-CD105 antibody and flow cytometer analysis (FACS analysis).
  • the step of selecting cardiomyocytes that highly express CD105 can be performed, for example, by staining the cardiomyocyte population with an anti-CD105 antibody and analyzing it with a flow cytometer or the like.
  • cardiomyocytes having high proliferative ability may be collected by using the sorting function of the flow cytometer.
  • hiPSC human induced pluripotent stem cells
  • HAND1, HAND2 and MYH6 human induced pluripotent stem cells
  • RNA-seq RNA sequence
  • EdU EdU analysis
  • cardiomyocytes having high proliferative ability can be easily obtained without performing gene transfer.
  • the present invention provides a method for producing cardiomyocytes, which comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes in vitro. do.
  • the cardiomyocyte population is the same as described above.
  • the step of recovering cardiomyocytes highly expressing CD105 from the cardiomyocyte population can be performed in the same manner as described above. More specifically, the cardiomyocyte population can be stained with the anti-CD105 antibody, and for example, the sorting function of the flow cytometer can be used to recover the cardiomyocytes having high proliferative ability.
  • cardiomyocytes that highly express CD105 may be recovered by contacting the magnetic beads bound with the anti-CD105 antibody with the cardiomyocyte population and then recovering the cells bound to the magnetic beads at a magnetic stand.
  • cardiomyocytes that highly express CD105 have proliferative ability. Therefore, it is possible to proliferate and increase the number of cells by culturing. As a result, a large amount of cardiomyocytes can be prepared.
  • to prepare a large amount means to increase the number of myocardial cells at the start of culture, for example, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times.
  • the method of this embodiment can be rephrased as a method of proliferating cardiomyocytes, a method of culturing a large amount of cardiomyocytes, and the like.
  • the present invention comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of culturing the recovered cardiomyocytes to prepare a heart tissue.
  • a manufacturing method Provide a manufacturing method.
  • the cardiomyocyte population is the same as described above. Further, the step of recovering cardiomyocytes highly expressing CD105 from the cardiomyocyte population is the same as described above.
  • the collected cardiomyocytes are cultured to prepare heart tissue.
  • the present invention provides a method of treating a heart disease, comprising the step of transplanting an effective amount of cardiomyocytes highly expressing CD105 into the heart of a subject in need thereof. do.
  • the cardiomyocytes that highly express CD105 are preferably cells selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
  • the invention provides cardiomyocytes that highly express CD105 for use in the treatment of heart disease.
  • the cardiomyocytes of the present embodiment are preferably formulated as a cell medicine. Further, it is preferable that the cells are selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
  • the invention provides the use of cardiomyocytes that highly express CD105 in the manufacture of cell medicines for the treatment of heart disease.
  • the cardiomyocytes that highly express CD105 are preferably cells selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
  • All differentiation media are based on StemPro34 medium (catalog number "# 10640-019", Thermo Fisher Scientific) and supplements (catalog number "# 10641-025", Thermo Fisher Scientific), 50 ⁇ g / mL ascorbic acid.
  • hiPSC was dissociated into single cells by treatment with Accumax (catalog number "# AM-105", Alternative Cell Technologies) at 37 ° C. for 5 minutes.
  • the cells were then pipetted and collected in a 15 mL tube with 6 mL IMDM (1x) (catalog number "# 12440-053", Thermo Fisher Scientific). Subsequently, the tube was centrifuged at 800 rpm for 5 minutes, and the pellet was subjected to 10 ⁇ M Y-27632 (catalog number “# 036-24023”, Fujifilm Wako Pure Chemical Industries, Ltd.), 2 ng / mL BMP4 (catalog number “# 314-BP” R & D).
  • germ layers were collected in a 15 mL tube, dissociated with Accumax, washed with 6 mL IMDM and centrifuged. Subsequently, the cells were cultured in a differentiation medium containing 10 ng / mL VEGF (catalog number “# 293-VE”, R & D Systems) and 1 ⁇ M IWP-3 (catalog number “# 04-0035”, Stemgent) for 4 days, and germ layers were again cultured. Formed a body.
  • the HAND1 gene uses the TaqMan probe (catalog number "# 4331182", Hs02330376_m1, Thermo Fisher Scientific) and the TaqMan TM Universal Master Mix II, with UNG (catalog number "# 4440044, Thermo Fisher Scientific). , StepOne (catalog number "# 4376374, Thermo Fisher Scientific)” was used to perform real-time quantitative PCR analysis.
  • the gene expression level is determined by the ddCt method using the GAPDH gene (catalog number "# 4331182”, Hs99999905_m1, Thermo Fisher Scientific) or the ACTB gene (catalog number "# 4331182", Hs0035733_g1, thermo Fisher scientific) as an internal control. Estimated. Statistical analysis of qPCR results was performed by Welch's test using Prism7 (GraphPad).
  • RNA extraction RNA sequencing and analysis
  • Cardiomyocytes were fractionated from cells 20 days after the start of differentiation induction by FACS, and total RNA was extracted and purified using miRNeasy Micro Kit with RNase-Free DNase Set (catalog number "# 79254", Qiagen).
  • TruSeq Stranded total RNA with Rivo-Zero Gold LT Single Prep Kit (catalog number “# 20020598”, Illumina) and TruSeq RNA Single Index 92 And "# 20020493", Illumina) to make a library.
  • the adapter sequence was removed from the reads using cutapt-1.15, and the reads less than 20 bp were discarded. Subsequently, using bowtie2 (ver. 2.2.2.5), the reads from which the adapter sequence was removed were mapped to human ribosomal RNA and transfer RNA. Subsequently, using samtools and bam2fastq, unmapped bum files were extracted and translated into fastq files.
  • the fastq file was aligned with the GRCh38 human reference genome downloaded from the UCSC Genome Browser.
  • Germ layers obtained from hiPSCs with cardiomyocyte reporters (eg, MYH6-EGFP) were first treated with collagenase type I (catalog number "# C-0130", Sigma) for 6-12 hours into 15 mL tubes. collected.
  • the cells were suspended in a FACS buffer containing DNase (catalog number "# 260913”, Calbiochem) and DAPI (catalog number "# D1306", Thermo Fisher Scientific). ..
  • the suspended cells were then filtered and placed in a 5 mL FACS tube and the cells were sorted using FACS Maria II (Becton Dickinson). First, DAPI-positive cells were removed, and then EGFP-positive CD105 high or CD105 low cardiomyocytes were isolated as proliferative and non-proliferative cardiomyocytes, respectively.
  • EdU assays were performed using Click-iT (R) EdU Flow Cytometry Assay Kits (catalog number "# C10418", Thermo Fisher Scientific).
  • Sorting cardiomyocytes fibronectin (catalog number "# F4759-5MG", Sigma) in 6-well plates or 12-well plates coated were seeded at each 6 ⁇ 10 5 cells / well or 2 ⁇ 10 5 / well. Subsequently, 2 days later, 1 ⁇ M EdU was added and incubated for 18 hours, and the assay was performed according to the instructions.
  • the flag tag, 2A peptide, and mCherry gene were designed to be knocked in to the stop codon of the HAND1 gene, and a targeting vector was prepared.
  • the HA tag, 2A peptide, and EGFP gene were designed to knock in to the stop codon of the HAND2 gene, and a targeting vector was prepared.
  • These targeting vectors had an antibiotic selection cassette with a PGK promoter and a puromycin or neomycin resistance gene between the LoxP sequences. These sequences were placed between the homologous arms in the regions 1,000 bases upstream and 1,000 bases downstream from the stop codons of the HAND1 and HAND2 genes for homologous recombination.
  • FIG. 1 is a schematic diagram illustrating an outline of the production of the HAND1-mCherry reporter hiPSC.
  • FIG. 2 is a schematic diagram illustrating an outline of the production of the HAND2-EGFP reporter hiPSC.
  • “5arm” indicates a 5'homologous arm
  • “3arm” indicates a 3'homologous arm
  • “2A” indicates a 2A peptide
  • "flag” indicates a flag tag
  • HA indicates a flag tag.
  • PGK indicates the promoter sequence of phosphoglycerate kinase 1
  • PuroR indicates the puromycin resistance gene
  • NeoR indicates the neomycin resistance gene
  • H was used for Southern blotting. Indicates the HindIII cleavage site, where "Probe” indicates the probe used for Southern blotting.
  • the NCBI accession number of the mRNA of the human HAND1 gene is NM_004821.3.
  • the NCBI accession number of the mRNA of the human HAND2 gene is NM_021973.3.
  • the 409B2 hiPSC established by the episomal method was used.
  • 409B2 hiPSCs were cultured on puromycin-resistant and neomycin-resistant STO cells.
  • electroporation product name "NEPA21”, NEPAGENE
  • 2.5 ⁇ g Cas9 expression vector pHL-EF1a-SphcCas9-iP-A, catalog number "# 60599", Addgene
  • neomycin product name “Geneticin TM Selective Antibiotic (G418 Sulfate) (50 mg / mL)”, catalog number “# 10131027”, Thermo Fisher Scientific) was added.
  • the selected cassette was removed. Specifically, first, dilute Matrigel (catalog number "# 354230", Corning) with DMEM / F-12 (catalog number "# 1132333", Thermo Fisher Scientific) to 10 ⁇ g / mL to make a dish. Put in, incubated for 1 hour and coated. Subsequently, a 1 ⁇ g / mL Cre expression vector (pCAG-Cre-Blast, provided by Dr. Keisuke Okita) was introduced into hiPSC using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega). , Sown in the above-mentioned dish.
  • pCAG-Cre-Blast provided by Dr. Keisuke Okita
  • hiPSCs were cultured in MEF-conditioned medium, 10 ⁇ g / mL blastsaidin (catalog number “# KK-400”, Funakoshi) was added, and the mixture was incubated for 2 days. Subsequently, hiPSCs were cloned again and identified by PCR and Southern blotting.
  • FIG. 3 is a schematic diagram showing the structure of the transposon vector.
  • a transposon vector (PB-hMYH6-iRFP670-IPPNL) and a PiggyBac transposase expression vector were introduced using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega).
  • cells into which the transposon vector was introduced were selected with neomycin (50 ⁇ g / mL) to obtain MYH6-iRFP670 / HAND1-mCherry / HAND2-EGFP triple reporter hiPSC.
  • the NCBI accession number of the mRNA of the human MYH6 gene is NM_002471.4 or the like.
  • a transposon vector and a PiggyBac transposase expression vector were introduced into 201B7 hiPSC using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega).
  • the cells into which the transposon vector was introduced were selected with neomycin (50 ⁇ g / mL) to obtain a MYH6-EGFP reporter hiPSC.
  • the MYH6-EGFP reporter hiPSC expresses EGFP when differentiated into cardiomyocytes (MYH6-positive cells).
  • RNA sequence analysis The MYH6-iRFP670 / HAND1-mCherry / HAND2-EGFP triple reporter hiPSC prepared in Experimental Example 2 was induced to differentiate into cardiomyocytes. Then, from day 20 cells from the start of differentiation induction, mCherry - EGFP -, mCherry + EGFP -, mCherry + EGFP +, mCherry - is EGFP +, the iRF670 positive cells (cardiomyocytes), Shi fractionated by FACS , Each RNA sequence was performed. The experiment was performed 3 times each.
  • FIG. 4 is a created heat map. The shades of color in the heatmap correspond to the Z-score of gene expression.
  • “ex1”, “ex2”, and “ex3” indicate that they are the results of the first, second, and third experiments, respectively.
  • the myocardial cells that do not express the hand2 HAND1 is not expressed, i.e. mCherry + EGFP - gene expression in cells, as high gene as compared to other cells, focusing on CD105 bottom.
  • FIG. 5 is a graph showing the results of FACS analysis.
  • the horizontal axis shows the fluorescence intensity of EGFP
  • the vertical axis shows the fluorescence intensity of APC.
  • the region surrounded by the square indicated by "High” indicates the region of the recovered CD105 high-expressing cardiomyocytes
  • the region surrounded by the square indicated by "Low” indicates the region of the recovered CD105 low-expressing cardiomyocytes.
  • “Negative control” shows the results of cells not stained with the anti-CD105 antibody.
  • “High” indicates the result of CD105 high expression cardiomyocytes
  • “Low” indicates the result of CD105 low expression cardiomyocytes.
  • "***” indicates that there is a significant difference at p ⁇ 0.001 as a result of the t-test of the unpaired sample.
  • Example 6 (EdU Assay 2 of CD105 Highly Expressed Cardiomyocytes) A hiPSC strain different from Experimental Example 5 was induced to differentiate into cardiomyocytes, and an EdU assay for CD105 high-expressing cardiomyocytes was performed. As the hiPSC strain, 692D2 strain and 1390D4 strain were used. The 692D2 strain was cultured on SNL feeder cells. The 1390D4 strain was cultured in a feeder-free manner.
  • Anti-CD105 antibody (CD105-APC), antibody against Lineage marker, antibody against myocardial cell marker SIRPA (CD172a) (anti-CD172a / b antibody, CD172a / b-PE /) from each cell on the 20th day from the start of differentiation induction.
  • SIRPA antibody against myocardial cell marker
  • Antibodies to the Lineage marker include anti-CD140b antibody (CD104b-PE, catalog number "558821”, BD Biosciences), anti-CD49a antibody (CD49a-PE, catalog number “559596”, BD Biosciences), and anti-CD31 antibody (CD31-PE). , Catalog number “555446”, BD Biosciences), anti-CD90 antibody (CD90-PE, catalog number "555596”, BD Biosciences) were mixed and used.
  • FIG. 7 is the result of 692D2 hiPSC
  • FIG. 8 is the result of 1390D4 hiPSC.
  • “High” indicates the result of CD105 high expression cardiomyocytes
  • “Low” indicates the result of CD105 low expression cardiomyocytes.
  • "*" and "**” indicate that there is a significant difference in p ⁇ 0.05 and p ⁇ 0.01 as a result of the t-test of the unpaired sample.
  • EGFP-positive CD105 high-expressing cardiomyocytes top 30% and low-expressing cardiomyocytes (bottom 30%) were obtained from cells 20 days after the start of differentiation induction by FACS sorting using an anti-CD105 antibody (CD105-APC). Each was separated.
  • FIG. 9 is a graph showing the results of quantitative real-time PCR.
  • the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
  • "**" indicates that there is a significant difference at p ⁇ 0.01 as a result of the t-test of the unpaired sample.
  • HAND1 was significantly highly expressed in cells with high expression of CD105. From the results of FIG. 4 and FIG. 9 of Experimental Example 4, it was shown that CD105 was also highly expressed in cardiomyocytes with high expression of HAND1 and that HAND1 was also highly expressed in cardiomyocytes with high expression of CD105.
  • Example 8 (Examination of HAND1 gene expression in CD105 high-expressing cardiomyocytes 2) A hiPSC strain different from that of Experimental Example 7 was induced to differentiate into cardiomyocytes, and the expression level of the HAND1 gene in CD105 high-expressing cardiomyocytes was examined. As the hiPSC strain, 692D2 strain and 1390D4 strain were used. The 692D2 strain was cultured on SNL feeder cells. The 1390D4 strain was cultured in a feeder-free manner.
  • Anti-CD105 antibody (CD105-APC), antibody against Lineage marker, antibody against myocardial cell marker SIRPA (CD172a) (anti-CD172a / b antibody, CD172a / b-PE /) from each cell on the 20th day from the start of differentiation induction.
  • SIRPA antibody against myocardial cell marker
  • Antibodies to the Lineage marker include anti-CD140b antibody (CD104b-PE, catalog number "558821”, BD Biosciences), anti-CD49a antibody (CD49a-PE, catalog number “559596”, BD Biosciences), and anti-CD31 antibody (CD31-PE). , Catalog number “555446”, BD Biosciences), anti-CD90 antibody (CD90-PE, catalog number "555596”, BD Biosciences) were mixed and used.
  • FIGS. 10 and 11 are graphs showing the results of quantitative real-time PCR.
  • the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
  • "**" indicates that there is a significant difference at p ⁇ 0.01 as a result of the t-test of the unpaired sample
  • "ns" indicates that there is no significant difference.
  • HAND1 is highly expressed in cells with high expression of CD105 even in hiPSC strains other than 201B7. This result further supports the high expression of HAND1 in cardiomyocytes with high expression of CD105.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method for producing cardiomyocytes that comprises a step for collecting cardiomyocytes highly expressing CD105 from a population of cardiomyocytes and a step for extensively culturing the cardiomyocytes thus collected.

Description

増殖能が高い心筋細胞を選別する方法How to select cardiomyocytes with high proliferative capacity
 本発明は、増殖能が高い心筋細胞を選別する方法に関する。より具体的には、本発明は、心筋細胞集団から増殖能が高い心筋細胞を選別する方法、心筋細胞集団から細胞周期が活性化している心筋細胞を選別する方法、心筋細胞の製造方法及び心臓組織の製造方法に関する。本願は、2020年5月25日に米国に仮出願された米国特許出願第63/029,564号明細書に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a method for selecting cardiomyocytes having high proliferative ability. More specifically, the present invention relates to a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population, a method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population, a method for producing cardiomyocytes, and a heart. Regarding the method of manufacturing the tissue. This application claims priority based on US Patent Application No. 63 / 029,564, which was provisionally filed in the United States on May 25, 2020, the contents of which are incorporated herein by reference.
 心機能が著しく低下した患者にとって、多くの場合、心臓移植が唯一の治療の選択肢である。しかしながら、ドナーの心臓は慢性的に不足している。このため、心臓移植に代わる治療法が求められている。心臓細胞治療は、心臓移植に代わる治療法の1つとして期待されている。 Heart transplantation is often the only treatment option for patients with markedly impaired cardiac function. However, the donor's heart is chronically deficient. Therefore, there is a demand for a treatment method that can replace heart transplantation. Cardiac cell therapy is expected as an alternative to heart transplantation.
 しかしながら、成体の心臓組織の心筋細胞は増殖能を有さず、インビトロで分化誘導した心筋細胞も培養を続けることにより増殖能を失うことが知られている。そこで、心筋細胞の増殖能を上昇させる技術の開発が活発に行われている(例えば、非特許文献1を参照。) However, it is known that cardiomyocytes in adult heart tissue do not have proliferative ability, and cardiomyocytes induced to differentiate in vitro also lose proliferative ability by continuing culturing. Therefore, the development of a technique for increasing the proliferative capacity of cardiomyocytes is being actively carried out (see, for example, Non-Patent Document 1).
 ところで、転写因子であるHAND1及びHAND2をコードする遺伝子のノックアウトマウスは、それぞれ、左心室及び右心室の形成不全を示すことが知られている。しかしながら、ヒトの心臓発生におけるこれらの転写因子の機能及び発現は十分に解明されていない。 By the way, it is known that knockout mice of genes encoding the transcription factors HAND1 and HAND2 show hypoplasia of the left ventricle and the right ventricle, respectively. However, the function and expression of these transcription factors in human cardiac development has not been fully elucidated.
 非特許文献1の方法では、心筋細胞の増殖能を上昇させるために、遺伝子導入により、心筋細胞に、cyclin-dependent kinase 1(CDK1)、CDK4、cyclin B1及びcyclin D1を過剰発現させる必要がある。そこで、本発明は、遺伝子導入を行うことなく、増殖能が高い心筋細胞を得る技術を提供することを目的とする。 In the method of Non-Patent Document 1, in order to increase the proliferative ability of cardiomyocytes, it is necessary to overexpress cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1 and cyclin D1 in cardiomyocytes by gene transfer. .. Therefore, an object of the present invention is to provide a technique for obtaining cardiomyocytes having high proliferative ability without introducing a gene.
 本発明は以下の態様を含む。
[1]心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、回収した前記心筋細胞を拡大培養する工程と、を含む、心筋細胞の製造方法。
[2]心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、回収した前記心筋細胞を培養して心臓組織を作製する工程と、を含む、心臓組織の製造方法。
[3]前記心筋細胞集団が多能性幹細胞由来である、[1]又は[2]に記載の製造方法。
[4]前記多能性幹細胞がヒトiPS細胞である、[3]に記載の製造方法。
[5]心筋細胞集団から増殖能が高い心筋細胞を選別する方法であって、前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含む方法。
[6]心筋細胞集団から細胞周期が活性化している心筋細胞を選別する方法であって、前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含む方法。
[7]前記心筋細胞集団が多能性幹細胞由来である、[5]又は[6]に記載の方法。
[8]前記多能性幹細胞がヒトiPS細胞である、[7]に記載の方法。
The present invention includes the following aspects.
[1] A method for producing cardiomyocytes, which comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes.
[2] A method for producing a heart tissue, comprising a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of culturing the recovered cardiomyocytes to prepare a heart tissue.
[3] The production method according to [1] or [2], wherein the cardiomyocyte population is derived from pluripotent stem cells.
[4] The production method according to [3], wherein the pluripotent stem cell is a human iPS cell.
[5] A method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population, which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
[6] A method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population, which comprises a step of selecting cardiomyocytes that highly express CD105 from the cardiomyocyte population.
[7] The method according to [5] or [6], wherein the cardiomyocyte population is derived from pluripotent stem cells.
[8] The method according to [7], wherein the pluripotent stem cell is a human iPS cell.
 本発明は以下の態様を含むものであるということもできる。
[P1]多能性幹細胞由来の心筋細胞集団から増殖能が高い心筋細胞を選別する方法であって、前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含み、選別した前記心筋細胞が増殖能が高い心筋細胞である、方法。
[P2]多能性幹細胞由来の心筋細胞集団から細胞周期が活性化している心筋細胞を選別する方法であって、前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含み、選別した前記心筋細胞が、細胞周期が活性化している心筋細胞である、方法。
[P3]多能性幹細胞由来の心筋細胞の成熟度を判定する方法であって、前記心筋細胞のCD105の発現量を測定する工程を含み、前記発現量が対照と比較して高いことが、前記心筋細胞の細胞周期が活性化していて心筋細胞としての成熟度が低いことを示し、前記発現量が対照と比較して低いことが、前記心筋細胞の細胞周期の活性化が認められず心筋細胞としての成熟度が高いことを示す、方法。
[P4]心疾患の治療方法であって、多能性幹細胞由来の心筋細胞集団から、CD105を高発現する心筋細胞又はCD105を低発現する心筋細胞を回収する工程と、回収した前記心筋細胞を患者の心臓に移植する工程であって、増殖能が高い心筋細胞又は細胞周期が活性化していて心筋細胞としての成熟度が低い心筋細胞を移植することが必要な患者には、CD105を高発現する前記心筋細胞を移植し、細胞周期の活性化が認められず心筋細胞としての成熟度が高い心筋細胞を移植することが必要な患者には、CD105を低発現する前記心筋細胞を移植する工程と、を含む、治療方法。
[P5]多能性幹細胞由来の心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、回収した前記心筋細胞をインビトロで拡大培養する工程と、を含む、心筋細胞を大量に製造する方法。
[P6]多能性幹細胞由来の心筋細胞集団から、細胞周期が活性化した心筋細胞を回収する工程と、回収した前記心筋細胞を培養して心臓組織を作製する工程と、を含み、前記細胞周期が活性化した心筋細胞は、CD105を高発現する心筋細胞である、心臓組織を高効率に製造する方法。
It can also be said that the present invention includes the following aspects.
[P1] A method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population derived from pluripotent stem cells, which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population. A method in which cardiomyocytes are highly proliferative cardiomyocytes.
[P2] A method for selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population derived from pluripotent stem cells, which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population. A method, wherein the selected cardiomyocytes are cardiomyocytes in which the cell cycle is activated.
[P3] A method for determining the maturity of cardiomyocytes derived from pluripotent stem cells, which comprises a step of measuring the expression level of CD105 in the cardiomyocytes, and the expression level is higher than that of a control. It indicates that the cell cycle of the cardiomyocytes is activated and the maturity as a cardiomyocyte is low, and that the expression level is lower than that of the control means that the activation of the cell cycle of the cardiomyocytes is not observed and the cardiomyocyte is myocardial. A method that indicates a high degree of maturity as a cell.
[P4] A step of recovering cardiomyocytes that highly express CD105 or cardiomyocytes that express CD105 from a population of cardiomyocytes derived from pluripotent stem cells, which is a method for treating heart disease, and the collected cardiomyocytes. CD105 is highly expressed in patients who need to transplant cardiomyocytes with high proliferative capacity or cardiomyocytes with activated cell cycle and low maturity as cardiomyocytes in the process of transplanting to the patient's heart. For patients who need to transplant the cardiomyocytes and transplant the cardiomyocytes with high maturity as cardiomyocytes without activation of the cell cycle, the step of transplanting the cardiomyocytes expressing low CD105. And, including treatment methods.
[P5] Manufacture of cardiomyocytes in large quantities, including a step of recovering cardiomyocytes highly expressing CD105 from a pluripotent stem cell-derived cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes in vitro. how to.
[P6] The cells include a step of recovering cardiomyocytes whose cell cycle has been activated from a cardiomyocyte population derived from pluripotent stem cells, and a step of culturing the recovered cardiomyocytes to prepare a heart tissue. Cardiomyocytes whose cycle is activated are cardiomyocytes that highly express CD105, which is a method for producing heart tissue with high efficiency.
 本発明によれば、遺伝子導入を行うことなく、増殖能が高い心筋細胞を得る技術を提供することができる。 According to the present invention, it is possible to provide a technique for obtaining cardiomyocytes having high proliferative ability without performing gene transfer.
図1は、実験例1における、HAND1-mCherryレポーターhiPSCの作製の概要を説明する模式図である。FIG. 1 is a schematic diagram illustrating an outline of preparation of the HAND1-mCherry reporter hiPSC in Experimental Example 1. 図2は、実験例1における、HAND2-EGFPレポーターhiPSCの作製の概要を説明する模式図である。FIG. 2 is a schematic diagram illustrating an outline of the production of the HAND2-EGFP reporter hiPSC in Experimental Example 1. 図3は、実験例2で使用した、MYH6-iRFP670トランスポゾンベクターの構造を示す模式図である。FIG. 3 is a schematic diagram showing the structure of the MYH6-iRFP670 transposon vector used in Experimental Example 2. 図4は、実験例4の結果を示すヒートマップである。FIG. 4 is a heat map showing the results of Experimental Example 4. 図5は、実験例5におけるフローサイトメーター解析(FACS解析)の結果を示すグラフである。横軸はEGFPの蛍光強度を示し、縦軸はAPCの蛍光強度を示す。図中、「High」はMYH6-EGFP陽性細胞かつCD105-APC高発現心筋細胞を指定し、「Low」はMYH6-EGFP陽性細胞かつCD105-APC低発現心筋細胞を指定する。FIG. 5 is a graph showing the results of flow cytometer analysis (FACS analysis) in Experimental Example 5. The horizontal axis shows the fluorescence intensity of EGFP, and the vertical axis shows the fluorescence intensity of APC. In the figure, "High" specifies MYH6-EGFP-positive cells and CD105-APC high-expressing cardiomyocytes, and "Low" specifies MYH6-EGFP-positive cells and CD105-APC low-expressing cardiomyocytes. 図6は、実験例5におけるEdUアッセイの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。縦軸はEdU陽性細胞の割合を示す。FIG. 6 is a graph showing the results of the EdU assay in Experimental Example 5. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. The vertical axis shows the percentage of EdU-positive cells. 図7は、実験例6におけるEdUアッセイの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。縦軸はEdU陽性細胞の割合を示す。FIG. 7 is a graph showing the results of the EdU assay in Experimental Example 6. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. The vertical axis shows the percentage of EdU-positive cells. 図8は、実験例6におけるEdUアッセイの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。 縦軸はEdU陽性細胞の割合を示す。FIG. 8 is a graph showing the results of the EdU assay in Experimental Example 6. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. The vertical axis shows the percentage of EdU-positive cells. 図9は、実験例7における定量的リアルタイムPCRの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。図中、縦軸は、GAPDH遺伝子の発現量を内部コントロールとしてddCt法によりCD105低発現心筋細胞のHAND1遺伝子の発現量を1とした相対値を示す。FIG. 9 is a graph showing the results of quantitative real-time PCR in Experimental Example 7. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. In the figure, the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control. 図10は、実験例8における定量的リアルタイムPCRの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。図中、縦軸は、GAPDH遺伝子の発現量を内部コントロールとしてddCt法によりCD105低発現心筋細胞のHAND1遺伝子の発現量を1とした相対値を示す。FIG. 10 is a graph showing the results of quantitative real-time PCR in Experimental Example 8. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. In the figure, the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control. 図11は、実験例8における定量的リアルタイムPCRの結果を示すグラフである。図中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。図中、縦軸は、GAPDH遺伝子の発現量を内部コントロールとしてddCt法によりCD105低発現心筋細胞のHAND1遺伝子の発現量を1とした相対値を示す。FIG. 11 is a graph showing the results of quantitative real-time PCR in Experimental Example 8. In the figure, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. In the figure, the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control.
 本明細書において、陽性であることを「+」、陰性であることを「-」と表記する場合がある。また、陽性であるとは、細胞における対象遺伝子又は対象タンパク質の発現量が高いこと、あるいは、所定の条件下で細胞が染色される程度が高いことを意味する。また、陰性であるとは、細胞における対象遺伝子又は対象タンパク質の発現量が低いこと、あるいは、所定の条件下で細胞が染色される程度が低いことを意味する。 In this specification, positive may be referred to as "+" and negative may be referred to as "-". Further, being positive means that the expression level of the target gene or the target protein in the cell is high, or the degree to which the cell is stained under a predetermined condition is high. Further, negative means that the expression level of the target gene or the target protein in the cell is low, or the degree to which the cell is stained under a predetermined condition is low.
[増殖能が高い心筋細胞を選別する方法]
 1実施形態において、本発明は、心筋細胞集団から増殖能が高い心筋細胞を選別する方法であって、前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含む方法を提供する。選別した前記心筋細胞が、増殖能が高い心筋細胞である。
[Method of selecting cardiomyocytes with high proliferative capacity]
In one embodiment, the present invention provides a method for selecting cardiomyocytes having high proliferative ability from a cardiomyocyte population, which comprises a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population. .. The selected cardiomyocytes are cardiomyocytes having high proliferative ability.
 本実施形態の方法によれば、心筋細胞に遺伝子導入を行うことなく、増殖能が高い心筋細胞を選別することができる。遺伝子導入を行わないため、ヒトに移植することが可能な安全な心筋細胞を容易に得ることができる。本実施形態の方法により選別し、回収した心筋細胞は、生物学的メカニズムの解明や再生医療分野における細胞移植治療等に利用することができる。 According to the method of this embodiment, cardiomyocytes having high proliferative ability can be selected without introducing a gene into cardiomyocytes. Since no gene transfer is performed, safe cardiomyocytes that can be transplanted into humans can be easily obtained. The cardiomyocytes selected and collected by the method of the present embodiment can be used for elucidation of the biological mechanism, cell transplantation therapy in the field of regenerative medicine, and the like.
 本実施形態の方法は、心筋細胞集団から増殖能を有する心筋細胞を選別する方法、心筋細胞集団から細胞周期が活性化している心筋細胞を選別する方法等といいかえることができる。 The method of the present embodiment can be rephrased as a method of selecting cardiomyocytes having proliferative ability from a cardiomyocyte population, a method of selecting cardiomyocytes having an activated cell cycle from a cardiomyocyte population, and the like.
 本実施形態の方法において、心筋細胞集団は、生体由来の心筋細胞集団であってもよいし、多能性幹細胞から分化誘導して得られたものであってもよい。心筋細胞集団には、増殖能が高い心筋細胞、増殖能が低い心筋細胞、増殖能を失った心筋細胞等が含まれる。多能性幹細胞を心筋細胞に分化誘導する方法は特に限定されず、当技術分野において通常行われる方法であってよい。多能性幹細胞としては、ヒト由来の細胞であることが好ましく、胚性幹細胞(ESC)、人工多能性幹細胞(iPSC)等が挙げられる。多能性幹細胞から分化誘導した細胞集団の場合、例えば分化誘導開始から、8日目、9日目、10日目、11日目、12日目、13日目、14日目、15日目、16日目、17日目、18日目、19日目、20日目、21日目、22日目、23日目、24日目、25日目、26日目、27日目、28日目、29日目、30日目、40日目、50日目のものが用いられる。 In the method of the present embodiment, the cardiomyocyte population may be a living body-derived cardiomyocyte population or may be obtained by inducing differentiation from pluripotent stem cells. The cardiomyocyte population includes cardiomyocytes having high proliferative ability, cardiomyocytes having low proliferative ability, cardiomyocytes having lost proliferative ability, and the like. The method for inducing differentiation of pluripotent stem cells into cardiomyocytes is not particularly limited, and may be a method usually used in the art. The pluripotent stem cells are preferably cells derived from humans, and examples thereof include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In the case of a cell population induced to differentiate from pluripotent stem cells, for example, 8th, 9th, 10th, 11th, 12th, 13th, 14th, and 15th days from the start of differentiation induction. , 16th, 17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 27th, 28th The day, 29th, 30th, 40th, and 50th days are used.
 心筋細胞の増殖能が高い、心筋細胞が増殖能を有する、あるいは、心筋細胞の細胞周期が活性化しているとは、例えば、心筋細胞の新生DNA合成量が、対照細胞と比較して1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3.0倍、4.0倍、5.0倍、6.0倍、7.0倍、8.0倍、9.0倍、10.0倍高いことであってもよいし、心筋細胞の細胞増殖量が対照細胞と比較して1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3.0倍、4.0倍、5.0倍、6.0倍、7.0倍、8.0倍、9.0倍、10.0倍高いことであってもよい。ここで、対照細胞としては、細胞増殖能が低いことが予め明らかとなっている細胞を用いることができ、例えば、成体の心臓組織由来の心筋細胞、CD105の発現量が低い心筋細胞等が挙げられる。 The proliferative capacity of myocardial cells is high, the myocardial cells have proliferative capacity, or the cell cycle of myocardial cells is activated. For example, the amount of nascent DNA synthesis of myocardial cells is higher than that of control cells. 3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2. 3. times, 2.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6. It may be 0 times, 7.0 times, 8.0 times, 9.0 times, 10.0 times higher, and the cell proliferation amount of myocardial cells is 1.3 times, 1 times that of the control cell. 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times, 2 4.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.0 times, 7 It may be 0.0 times, 8.0 times, 9.0 times, or 10.0 times higher. Here, as the control cell, cells having a low cell proliferation ability can be used, and examples thereof include cardiomyocytes derived from adult heart tissue and cardiomyocytes having a low expression level of CD105. Be done.
 新生DNA合成量は、例えば、ヌクレオシドアナログであるEdU(5-エチニル-2’-デオキシウリジン)のDNAへの取り込みを測定する、EdUアッセイ等により測定することができる。 The amount of nascent DNA synthesis can be measured, for example, by an EdU assay or the like, which measures the uptake of EdU (5-ethynyl-2'-deoxyuridine), which is a nucleoside analog, into DNA.
 CD105は、ENG遺伝子にコードされる細胞膜表面タンパク質の1種である。以下、ENG遺伝子のことをCD105遺伝子という場合がある。ヒトCD105タンパク質のNCBIアクセッション番号は、NP_000109.1、NP_001108225.1、NP_001265067.1等である。また、ヒトCD105遺伝子のmRNAのNCBIアクセッション番号は、NM_000118.3、NM_001114753.3、NM_001278138.2等である。 CD105 is one of the cell membrane surface proteins encoded by the ENG gene. Hereinafter, the ENG gene may be referred to as a CD105 gene. The NCBI accession numbers for the human CD105 protein are NP_1000109.1, NP_001108225.1, NP_001265067.1, and the like. The NCBI accession numbers of the mRNA of the human CD105 gene are NM_000118.3., NM_00111475.3, NM_001278138.2 and the like.
 CD105の発現量が低い、あるいは、CD105を低発現するとは、例えば、抗CD105抗体で染色していない心筋細胞と比較して、抗CD105抗体による染色の程度が同程度であることであってよい。 The low expression level of CD105 or the low expression of CD105 may mean, for example, that the degree of staining with the anti-CD105 antibody is similar to that of cardiomyocytes not stained with the anti-CD105 antibody. ..
 また、CD105の発現量が高い、あるいは、CD105を高発現するとは、対照細胞と比較して、mRNAレベル又はタンパク質レベルにおけるCD105の発現量が有意に高いことであってもよいし、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3.0倍、4.0倍、5.0倍、6.0倍、7.0倍、8.0倍、9.0倍、10.0倍高いことであってもよい。ここで対照細胞としては、細胞増殖能が低いことが予め明らかとなっている細胞を用いることができ、上述したものと同様である。 Further, a high expression level of CD105 or a high expression level of CD105 may mean that the expression level of CD105 at the mRNA level or the protein level is significantly higher than that of the control cell, or 1.3. Double, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times Double, 2.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times, 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.0 times It may be times, 7.0 times, 8.0 times, 9.0 times, and 10.0 times higher. Here, as the control cell, a cell whose cell proliferation ability is known to be low can be used, and is the same as that described above.
 CD105の遺伝子レベルでの発現量は、例えば定量的リアルタイムPCR等により測定することができる。また、CD105のタンパク質レベルでの発現量は、例えば、蛍光標識した抗CD105抗体による細胞染色及びフローサイトメーター解析(FACS解析)等により測定することができる。 The expression level of CD105 at the gene level can be measured, for example, by quantitative real-time PCR or the like. The expression level of CD105 at the protein level can be measured, for example, by cell staining with a fluorescently labeled anti-CD105 antibody and flow cytometer analysis (FACS analysis).
 本実施形態の方法において、CD105を高発現する心筋細胞を選別する工程は、例えば、抗CD105抗体で心筋細胞集団を染色し、フローサイトメーター等で解析することにより行うことができる。また、フローサイトメーターのソーティング機能を用いて、増殖能が高い心筋細胞を回収してもよい。 In the method of the present embodiment, the step of selecting cardiomyocytes that highly express CD105 can be performed, for example, by staining the cardiomyocyte population with an anti-CD105 antibody and analyzing it with a flow cytometer or the like. In addition, cardiomyocytes having high proliferative ability may be collected by using the sorting function of the flow cytometer.
 実施例において後述するように、発明者らは、HAND1、HAND2及びMYH6の3つのレポーター遺伝子を発現するヒト人工多能性幹細胞(hiPSC)を樹立し、心筋細胞の分化におけるこれらの遺伝子の発現を解析した。RNAシーケンス(RNA-seq)及びEdU解析の結果、HAND1の発現は細胞増殖と相関することが明らかとなった。更に、発明者らは、HAND1陽性細胞特異的に発現する細胞表面タンパク質に着目し、CD105を同定した。したがって、CD105は、増殖性心筋細胞の新規マーカーであるということができる。 As will be described later in the Examples, the inventors established human induced pluripotent stem cells (hiPSC) expressing three reporter genes, HAND1, HAND2 and MYH6, and expressed these genes in the differentiation of myocardial cells. Analyzed. As a result of RNA sequence (RNA-seq) and EdU analysis, it was revealed that the expression of HAND1 correlates with cell proliferation. Furthermore, the inventors focused on cell surface proteins specifically expressed in HAND1-positive cells and identified CD105. Therefore, it can be said that CD105 is a novel marker of proliferative cardiomyocytes.
 現在までにhiPSC由来心筋細胞の中から増殖能を示す心筋細胞を分離する技術は知られていない。本実施形態の方法により、遺伝子導入を行うことなく、増殖能が高い心筋細胞を簡便に得ることができる。 To date, no technique has been known for separating cardiomyocytes exhibiting proliferative ability from hiPSC-derived cardiomyocytes. By the method of this embodiment, cardiomyocytes having high proliferative ability can be easily obtained without performing gene transfer.
[心筋細胞の製造方法]
 1実施形態において、本発明は、心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、回収した前記心筋細胞をインビトロで拡大培養する工程とを含む、心筋細胞の製造方法を提供する。
[Method for manufacturing cardiomyocytes]
In one embodiment, the present invention provides a method for producing cardiomyocytes, which comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of expanding and culturing the recovered cardiomyocytes in vitro. do.
 本実施形態の方法において、心筋細胞集団については、上述したものと同様である。また、心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程は、上述した方法と同様にして行うことができる。より具体的には、抗CD105抗体で心筋細胞集団を染色し、例えば、フローサイトメーターのソーティング機能を用いて、増殖能が高い心筋細胞を回収することができる。あるいは、抗CD105抗体を結合させた磁気ビーズを心筋細胞集団に接触させた後、磁気ビーズに結合した細胞をマグネティックスタンドで回収することにより、CD105を高発現する心筋細胞を回収してもよい。 In the method of this embodiment, the cardiomyocyte population is the same as described above. In addition, the step of recovering cardiomyocytes highly expressing CD105 from the cardiomyocyte population can be performed in the same manner as described above. More specifically, the cardiomyocyte population can be stained with the anti-CD105 antibody, and for example, the sorting function of the flow cytometer can be used to recover the cardiomyocytes having high proliferative ability. Alternatively, cardiomyocytes that highly express CD105 may be recovered by contacting the magnetic beads bound with the anti-CD105 antibody with the cardiomyocyte population and then recovering the cells bound to the magnetic beads at a magnetic stand.
 続いて、回収した心筋細胞をインビトロで拡大培養する。実施例において後述するように、CD105を高発現する心筋細胞は増殖能を有する。このため、培養することにより増殖させ、細胞数を増加させることができる。この結果、心筋細胞を大量に調製することができる。ここで、大量に調製するとは、培養開始時の心筋細胞の細胞数を、例えば1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3.0倍、4.0倍、5.0倍、6.0倍、7.0倍、8.0倍、9.0倍、10.0倍に増殖させることであってよい。 Subsequently, the collected cardiomyocytes are expanded and cultured in vitro. As will be described later in the examples, cardiomyocytes that highly express CD105 have proliferative ability. Therefore, it is possible to proliferate and increase the number of cells by culturing. As a result, a large amount of cardiomyocytes can be prepared. Here, to prepare a large amount means to increase the number of myocardial cells at the start of culture, for example, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times. 1.9 times, 2.0 times, 2.1 times, 2.2 times, 2.3 times, 2.4 times, 2.5 times, 2.6 times, 2.7 times, 2.8 times By multiplying by 2.9 times, 3.0 times, 4.0 times, 5.0 times, 6.0 times, 7.0 times, 8.0 times, 9.0 times, 10.0 times It may be there.
 本実施形態の方法は、心筋細胞を増殖させる方法、心筋細胞を大量に培養する方法等といいかえることができる。 The method of this embodiment can be rephrased as a method of proliferating cardiomyocytes, a method of culturing a large amount of cardiomyocytes, and the like.
[心臓組織の製造方法]
 1実施形態において、本発明は、心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、回収した前記心筋細胞を培養して心臓組織を作製する工程と、を含む、心臓組織の製造方法を提供する。
[Manufacturing method of heart tissue]
In one embodiment, the present invention comprises a step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population and a step of culturing the recovered cardiomyocytes to prepare a heart tissue. Provide a manufacturing method.
 本実施形態の方法において、心筋細胞集団については、上述したものと同様である。また、心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程についても上述したものと同様である。 In the method of this embodiment, the cardiomyocyte population is the same as described above. Further, the step of recovering cardiomyocytes highly expressing CD105 from the cardiomyocyte population is the same as described above.
 続いて、回収した心筋細胞を培養して心臓組織を作製する。心臓組織の作製は、例えば、培養皿上に心筋細胞を密に播種し単層培養し、続いて、単層培養した培養物を積層し、多層の心筋シートとする方法、3Dプリンターを用いて心筋細胞を配置する方法等により行うことができる。 Subsequently, the collected cardiomyocytes are cultured to prepare heart tissue. To prepare the heart tissue, for example, a method in which cardiomyocytes are densely seeded on a culture dish and cultured in a single layer, and then the cultures cultured in the single layer are laminated to form a multi-layered myocardial sheet, using a 3D printer. This can be done by a method of arranging cardiomyocytes or the like.
[その他の実施形態]
 1実施形態において、本発明は、心疾患の治療方法であって、CD105を高発現する心筋細胞の有効量を、それを必要とする対象の心臓に移植する工程とを含む、治療方法を提供する。CD105を高発現する心筋細胞は、遺伝子導入することなく、ヒト多能性幹細胞由来の心筋細胞集団から、選別及び回収された細胞であることが好ましい。
[Other embodiments]
In one embodiment, the present invention provides a method of treating a heart disease, comprising the step of transplanting an effective amount of cardiomyocytes highly expressing CD105 into the heart of a subject in need thereof. do. The cardiomyocytes that highly express CD105 are preferably cells selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
 1実施形態において、本発明は、心疾患の治療における使用のためのCD105を高発現する心筋細胞を提供する。本実施形態の心筋細胞は、細胞医薬として製剤化されていることが好ましい。また、遺伝子導入することなく、ヒト多能性幹細胞由来の心筋細胞集団から、選別及び回収された細胞であることが好ましい。 In one embodiment, the invention provides cardiomyocytes that highly express CD105 for use in the treatment of heart disease. The cardiomyocytes of the present embodiment are preferably formulated as a cell medicine. Further, it is preferable that the cells are selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
 1実施形態において、本発明は、心疾患治療用細胞医薬の製造におけるCD105を高発現する心筋細胞の使用を提供する。CD105を高発現する心筋細胞は、遺伝子導入することなく、ヒト多能性幹細胞由来の心筋細胞集団から、選別及び回収された細胞であることが好ましい。 In one embodiment, the invention provides the use of cardiomyocytes that highly express CD105 in the manufacture of cell medicines for the treatment of heart disease. The cardiomyocytes that highly express CD105 are preferably cells selected and recovered from the cardiomyocyte population derived from human pluripotent stem cells without gene transfer.
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[材料及び方法]
(hiPSCの培養及び心筋細胞への分化誘導)
 hiPSCは、4ng/mL bFGF(カタログ番号「#060-04543」、富士フイルム和光純薬)を添加した霊長類ES細胞培地(カタログ番号「#RCHEMD001」、リプロセル)中、SNLフィーダー細胞上で培養した。
[Materials and methods]
(Culture of hiPSC and induction of differentiation into cardiomyocytes)
hiPSCs were cultured on SNL feeder cells in primate ES cell medium (catalog number "# RCHEMD001", reprocell) supplemented with 4 ng / mL bFGF (catalog number "# 060-04543", Fujifilm Wako Pure Chemical Industries, Ltd.). ..
 全ての分化培地はStemPro34培地(カタログ番号「#10640-019」、サーモフィッシャーサイエンティフィック)及びサプリメント(カタログ番号「#10641-025」、サーモフィッシャーサイエンティフィック)をベースとし、50μg/mLアスコルビン酸(カタログ番号「#A4544-25G」、シグマ)、2mM L-グルタミン(カタログ番号「#25030164」、サーモフィッシャーサイエンティフィック)、150μg/mLトランスフェリン(カタログ番号「#10652202001」、シグマ)、4×10-4Mモノチオグリセロール(カタログ番号「#M6145-25ML」、シグマ)及び0.5%ペニシリン/ストレプトマイシン(カタログ番号「#15140-122」、サーモフィッシャーサイエンティフィック)を含むものであった。 All differentiation media are based on StemPro34 medium (catalog number "# 10640-019", Thermo Fisher Scientific) and supplements (catalog number "# 10641-025", Thermo Fisher Scientific), 50 μg / mL ascorbic acid. (Catalog number "# A4544-25G", Sigma), 2 mM L-glutamine (Catalog number "# 25030164", Thermo Fisher Scientific), 150 μg / mL transferase (Catalog number "# 106522012001", Sigma), 4 × 10 -4 M monothioglycerol (catalog number "# M6145-25ML", Sigma) and 0.5% penicillin / streptomycin (catalog number "# 1510-1122", Thermo Fisher Scientific) were included.
 分化誘導の0日目に、Accumax(カタログ番号「#AM-105」、Innovative Cell Technologies)で37℃、5分間処理してhiPSCを単一細胞に解離した。 On the 0th day of differentiation induction, hiPSC was dissociated into single cells by treatment with Accumax (catalog number "# AM-105", Innovative Cell Technologies) at 37 ° C. for 5 minutes.
 続いて、細胞をピペッティングし、6mLのIMDM(1×)(カタログ番号「#12440-053」、サーモフィッシャーサイエンティフィック)と共に15mLチューブに集めた。続いて、チューブを800rpmで5分間遠心し、ペレットを、10μM Y-27632 (カタログ番号「#036-24023」、富士フイルム和光純薬)、2ng/mL BMP4(カタログ番号「#314-BP」R&D Systems)及びマトリゲルを含む培地(0日目培地)で懸濁し、Hema(カタログ番号「#P3932-25G」、シグマ)コートした96ウェルラウンドボトムプレートに2×10個/ウェルの細胞密度で播種し、凝集させた。 The cells were then pipetted and collected in a 15 mL tube with 6 mL IMDM (1x) (catalog number "# 12440-053", Thermo Fisher Scientific). Subsequently, the tube was centrifuged at 800 rpm for 5 minutes, and the pellet was subjected to 10 μM Y-27632 (catalog number “# 036-24023”, Fujifilm Wako Pure Chemical Industries, Ltd.), 2 ng / mL BMP4 (catalog number “# 314-BP” R & D). Suspended in medium containing Systems) and Matrigel (day 0 medium) and seeded on a Hema (catalog number "# P3932-25G", Sigma) -coated 96-well round bottom plate at a cell density of 2 x 10 4 cells / well. And aggregated.
 分化誘導の1日目に、0日目培地に、12ng/mLヒト組換えアクチビンA(カタログ番号「#338-AC-500」、R&D Systems)、18ng/mL BMP4、10ng/mL bFGF(カタログ番号「#233-FB」、R&D Systems)を添加した。 On the 1st day of differentiation induction, on the 0th day medium, 12 ng / mL human recombinant activin A (catalog number "# 338-AC-500", R & D Systems), 18 ng / mL BMP4, 10 ng / mL bFGF (catalog number). "# 233-FB", R & D Systems) was added.
 分化誘導の3日目に、胚葉体を15mLチューブに集め、Accumaxで解離し、6mLのIMDMで洗浄して遠心した。続いて、10ng/mL VEGF(カタログ番号「#293-VE」、R&D Systems)及び1μM IWP-3(カタログ番号「#04-0035」、Stemgent)を含む分化培地中で4日間培養し、再び胚葉体を形成した。 On the 3rd day of differentiation induction, germ layers were collected in a 15 mL tube, dissociated with Accumax, washed with 6 mL IMDM and centrifuged. Subsequently, the cells were cultured in a differentiation medium containing 10 ng / mL VEGF (catalog number “# 293-VE”, R & D Systems) and 1 μM IWP-3 (catalog number “# 04-0035”, Stemgent) for 4 days, and germ layers were again cultured. Formed a body.
 分化誘導の7日目に、胚葉体を、5ng/mLのVEGFを含む分化培地中、Hemaでコートした6ウェルプレートに集めた。続いて、20日目まで、培地を2~3日ごとに交換した。分化誘導中、0~12日目は、細胞は低酸素条件下(5%O)で培養した。続いて、12日目に、プレートを通常酸素条件下に移した。 On day 7 of induction of differentiation, germ layers were collected in Hema-coated 6-well plates in differentiation medium containing 5 ng / mL VEGF. Subsequently, the medium was changed every 2 to 3 days until the 20th day. During the induction of differentiation, cells were cultured under hypoxic conditions (5% O 2 ) on days 0-12. Subsequently, on day 12, the plates were transferred to normal oxygen conditions.
(RNA抽出及び定量的リアルタイムPCR)
 QIAZOL試薬及びmiRNeasy Micro Kit(カタログ番号「#217084]、キアゲン)を用いてRNAを精製した。続いて、ReverTra Ace(R)(カタログ番号「#TRT-101」、東洋紡)及びポリTプライマー、又は、ReverTra Ace(R)qPCR RT Master Mix with gDNA Remover (カタログ番号「#FSQ-301」、東洋紡)を用いてcDNAを合成した。
(RNA extraction and quantitative real-time PCR)
RNA was purified using the QIAZOL reagent and miRNeasy Micro Kit (catalog number "# 217084], Qiagen), followed by RiverTra Ace (R) (catalog number"# TRT-101 ", Toyobo) and poly-T primers, or , RiverTra Ace (R) qPCR RT Master Mix with gDNA Reagent (catalog number "# FSQ-301", Toyobo) was used to synthesize cDNA.
 HAND1遺伝子は、TaqManプローブ(カタログ番号「#4331182」、Hs02330376_m1、サーモフィッシャーサイエンティフィック)及びTaqManTM Universal Master Mix II,with UNG(カタログ番号「#4440044、サーモフィッシャーサイエンティフィック)を用いて増幅し、StepOne(カタログ番号「#4376374、サーモフィッシャーサイエンティフィック)を用いてリアルタイム定量的PCR解析を行った。 The HAND1 gene uses the TaqMan probe (catalog number "# 4331182", Hs02330376_m1, Thermo Fisher Scientific) and the TaqMan TM Universal Master Mix II, with UNG (catalog number "# 4440044, Thermo Fisher Scientific). , StepOne (catalog number "# 4376374, Thermo Fisher Scientific)" was used to perform real-time quantitative PCR analysis.
 遺伝子発現レベルはGAPDH遺伝子(カタログ番号「#4331182」、Hs99999905_m1、サーモフィッシャーサイエンティフィック)又はACTB遺伝子(カタログ番号「#4331182」、Hs0035733_g1、サーモフィッシャーサイエンティフィック)を内部コントロールに用いてddCt法により推定した。qPCRの結果の統計的解析は、Prism7(GraphPad)を用いてウェルチ検定により行った。 The gene expression level is determined by the ddCt method using the GAPDH gene (catalog number "# 4331182", Hs99999905_m1, Thermo Fisher Scientific) or the ACTB gene (catalog number "# 4331182", Hs0035733_g1, thermo Fisher scientific) as an internal control. Estimated. Statistical analysis of qPCR results was performed by Welch's test using Prism7 (GraphPad).
(RNA抽出、RNAシーケンス及び解析)
 分化誘導開始から20日目の細胞から、心筋細胞をFACSにより分取し、miRNeasy Micro Kit with RNase-Free DNase Set(カタログ番号「#79254」、キアゲン)を用いて全RNAを抽出及び精製した。
(RNA extraction, RNA sequencing and analysis)
Cardiomyocytes were fractionated from cells 20 days after the start of differentiation induction by FACS, and total RNA was extracted and purified using miRNeasy Micro Kit with RNase-Free DNase Set (catalog number "# 79254", Qiagen).
 続いて、200μgのRNAを使用して、TruSeq Stranded total RNA with Ribo-Zero Gold LT Sample Prep Kit(カタログ番号「#20020598」、イルミナ)及びTruSeq RNA Single Indexes Set A and B(カタログ番号「#20020492」及び「#20020493」、イルミナ)を用いてライブラリを作製した。 Subsequently, using 200 μg of RNA, TruSeq Stranded total RNA with Rivo-Zero Gold LT Single Prep Kit (catalog number “# 20020598”, Illumina) and TruSeq RNA Single Index 92 And "# 20020493", Illumina) to make a library.
 シーケンスはNextSeq 500/550 High Output Kit v2(75 Cycles)(カタログ番号「#20024906」、イルミナ)を用いて行った。 The sequence was performed using NextSeq 500/550 High Output Kit v2 (75 Cycles) (catalog number "# 200024906", Illumina).
 続いて、cutadapt-1.15を用いて、リードからアダプター配列を除去し、20bp未満のリードは廃棄した。続いて、bowtie2(ver.2.2.2.5)を用いて、アダプター配列を除去したリードをヒトリボソーマルRNA及びトランスファーRNAにマップした。続いて、samtools及びbam2fastqを用いて、マップされなかったbamファイルを抽出し、fastqファイルに翻訳した。 Subsequently, the adapter sequence was removed from the reads using cutapt-1.15, and the reads less than 20 bp were discarded. Subsequently, using bowtie2 (ver. 2.2.2.5), the reads from which the adapter sequence was removed were mapped to human ribosomal RNA and transfer RNA. Subsequently, using samtools and bam2fastq, unmapped bum files were extracted and translated into fastq files.
 続いて、STAR(ver.2.5.4a)を用いて、UCSC Genome BrowserからダウンロードしたGRCh38ヒトリファレンスゲノムにfastqファイルをアラインした。 Subsequently, using STAR (ver. 2.5.4a), the fastq file was aligned with the GRCh38 human reference genome downloaded from the UCSC Genome Browser.
 リードのカウント及び正規化は、HTSeq(ver.0.9.1)、DESeq2(Rパッケージ)及びR-3.6.1のiGenomeのgtfファイルを使用して行った。また、Pheatmap(Rパッケージ)により、「原形質膜の外側」(GO:0009897)にリストされ、尤度比検定、調整P値<0.05によって4つのサブポピュレーションで差次的に発現されることが示された遺伝子の発現レベルのヒートマップを作成した。 Read counting and normalization were performed using the iGenome gtf files of HTSeq (ver. 0.9.1), DESeq2 (R package) and R-3.6.1. It is also listed in "Outside the Protoplasmic Membrane" (GO: 0009897) by Heatmap (R Package) and is differentially expressed in 4 subpopulations by likelihood ratio test, adjusted P value <0.05. We created a heatmap of the expression level of the genes that were shown to be.
(抗CD105抗体を用いた増殖性/非増殖性心筋細胞のソーティング)
 心筋細胞のレポーター(例えば、MYH6-EGFP)を有するhiPSCから得られた胚葉体を、まず、コラゲナーゼタイプI(カタログ番号「#C-0130」、シグマ)で6~12時間処理し、15mLチューブに集めた。
(Sorting of proliferative / non-proliferative cardiomyocytes using anti-CD105 antibody)
Germ layers obtained from hiPSCs with cardiomyocyte reporters (eg, MYH6-EGFP) were first treated with collagenase type I (catalog number "# C-0130", Sigma) for 6-12 hours into 15 mL tubes. collected.
 続いて、コラゲナーゼを除去し、1~2mLのAccumaxを添加した。37℃で15分間インキュベートした後、胚葉体を穏やかにピペッティングして解離した。続いて、15mLチューブに6mLのIMDMを添加し、800rpmで5分間遠心した。上清を除去した後、細胞をFACSバッファー(5%FBS-PBS)で1:50に希釈した抗CD105抗体(カタログ番号「#130-099-125」、ミルテニーバイオテク)に懸濁し、室温で30分間インキュベートして染色した。 Subsequently, collagenase was removed and 1 to 2 mL of Accumax was added. After incubating at 37 ° C. for 15 minutes, the germ layer was gently pipetted and dissected. Subsequently, 6 mL of IMDM was added to a 15 mL tube and centrifuged at 800 rpm for 5 minutes. After removing the supernatant, the cells were suspended in anti-CD105 antibody (catalog number "# 130-099-125", Miltenyi Biotec) diluted 1:50 with FACS buffer (5% FBS-PBS) and at room temperature. It was incubated for 30 minutes and stained.
 続いて、FACSバッファーで2回洗浄した後、細胞を、DNase(カタログ番号「#260913」、カルビオケム)及びDAPI(カタログ番号「#D1306」、サーモフィッシャーサイエンティフィック)を含むFACSバッファーに懸濁した。 Subsequently, after washing twice with the FACS buffer, the cells were suspended in a FACS buffer containing DNase (catalog number "# 260913", Calbiochem) and DAPI (catalog number "# D1306", Thermo Fisher Scientific). ..
 続いて、懸濁した細胞をフィルターに通し、5mL FACSチューブに入れ、FACS AriaII(ベクトン・ディッキンソン)を用いて細胞をソーティングした。まず、DAPI陽性細胞を除去し、続いて、EGFP陽性のCD105high又はCD105low心筋細胞を、それぞれ、増殖性心筋細胞及び非増殖性心筋細胞として単離した。 The suspended cells were then filtered and placed in a 5 mL FACS tube and the cells were sorted using FACS Maria II (Becton Dickinson). First, DAPI-positive cells were removed, and then EGFP-positive CD105 high or CD105 low cardiomyocytes were isolated as proliferative and non-proliferative cardiomyocytes, respectively.
(EdUアッセイ)
 Click-iT(R)EdU Flow Cytometry Assay Kits(カタログ番号「#C10418」、サーモフィッシャーサイエンティフィック)を使用してEdUアッセイを行った。
(EdU Assay)
EdU assays were performed using Click-iT (R) EdU Flow Cytometry Assay Kits (catalog number "# C10418", Thermo Fisher Scientific).
 ソートした心筋細胞をフィブロネクチン(カタログ番号「#F4759-5MG」、シグマ)コートした6ウェルプレート又は12ウェルプレートに、それぞれ6×10個/ウェル又は2×10個/ウェルで播種した。続いて、2日後に1μMのEdUを添加して18時間インキュベートし、説明書にしたがってアッセイを行った。 Sorting cardiomyocytes fibronectin (catalog number "# F4759-5MG", Sigma) in 6-well plates or 12-well plates coated were seeded at each 6 × 10 5 cells / well or 2 × 10 5 / well. Subsequently, 2 days later, 1 μM EdU was added and incubated for 18 hours, and the assay was performed according to the instructions.
[実験例1]
(HAND1-mCherry/HAND2-EGFPダブルレポーターhiPSCの樹立)
 CRISPR/Cas9システムを使用してダブルレポーターhiPSCを樹立した。まず、HAND1遺伝子及びHAND2遺伝子の終止コドンの近傍に、それぞれガイドRNA(gRNA)を設計した。続いて、各gRNAをpHL-H1-ccdB-mEF1a-RiHベクター(カタログ番号「#60601」、Addgene)にそれぞれクローニングした。
[Experimental Example 1]
(Establishment of HAND1-mCherry / HAND2-EGFP double reporter hiPSC)
A double reporter hiPSC was established using the CRISPR / Cas9 system. First, guide RNAs (gRNAs) were designed near the stop codons of the HAND1 gene and the HAND2 gene, respectively. Subsequently, each gRNA was cloned into a pHL-H1-cdB-mEF1a-RiH vector (catalog number "# 60601", Addgene), respectively.
 また、flagタグ、2Aペプチド、及び、mCherry遺伝子を、HAND1遺伝子の終止コドンにノックインするように設計し、ターゲッティングベクターを作製した。また、HAタグ、2Aペプチド、及び、EGFP遺伝子を、HAND2遺伝子の終止コドンにノックインするように設計し、ターゲッティングベクターを作製した。これらのターゲッティングベクターは、LoxP配列の間に、PGKプロモーター及びピューロマイシン耐性遺伝子又はネオマイシン耐性遺伝子を有する抗生物質選択カセットを有していた。これらの配列は、相同組換えのために、HAND1遺伝子及びHAND2遺伝子の終止コドンから1,000塩基上流及び1,000塩基下流領域の相同アームの間に配置した。 In addition, the flag tag, 2A peptide, and mCherry gene were designed to be knocked in to the stop codon of the HAND1 gene, and a targeting vector was prepared. In addition, the HA tag, 2A peptide, and EGFP gene were designed to knock in to the stop codon of the HAND2 gene, and a targeting vector was prepared. These targeting vectors had an antibiotic selection cassette with a PGK promoter and a puromycin or neomycin resistance gene between the LoxP sequences. These sequences were placed between the homologous arms in the regions 1,000 bases upstream and 1,000 bases downstream from the stop codons of the HAND1 and HAND2 genes for homologous recombination.
 図1は、HAND1-mCherryレポーターhiPSCの作製の概要を説明する模式図である。また、図2は、HAND2-EGFPレポーターhiPSCの作製の概要を説明する模式図である。図1及び2中、「5arm」は5’相同アームを示し、「3arm」は3’相同アームを示し、「2A」は2Aペプチドを示し、「flag」はflagタグを示し、「HA」はHAペプチドを示し、「PGK」はホスホグリセリン酸キナーゼ1のプロモーター配列を示し、「PuroR」はピューロマイシン耐性遺伝子を示し、「NeoR」はネオマイシン耐性遺伝子を示し、「H」はサザンブロッティングに使用したHindIII切断部位を示し、「Probe」はサザンブロッティングに使用したプローブを示す。なお、ヒトHAND1遺伝子のmRNAのNCBIアクセッション番号は、NM_004821.3等である。また、ヒトHAND2遺伝子のmRNAのNCBIアクセッション番号は、NM_021973.3等である。 FIG. 1 is a schematic diagram illustrating an outline of the production of the HAND1-mCherry reporter hiPSC. Further, FIG. 2 is a schematic diagram illustrating an outline of the production of the HAND2-EGFP reporter hiPSC. In FIGS. 1 and 2, "5arm" indicates a 5'homologous arm, "3arm" indicates a 3'homologous arm, "2A" indicates a 2A peptide, "flag" indicates a flag tag, and "HA" indicates a flag tag. "PGK" indicates the promoter sequence of phosphoglycerate kinase 1, "PuroR" indicates the puromycin resistance gene, "NeoR" indicates the neomycin resistance gene, and "H" was used for Southern blotting. Indicates the HindIII cleavage site, where "Probe" indicates the probe used for Southern blotting. The NCBI accession number of the mRNA of the human HAND1 gene is NM_004821.3. The NCBI accession number of the mRNA of the human HAND2 gene is NM_021973.3.
 エピソーマル法により樹立された409B2 hiPSCを使用した。409B2 hiPSCは、ピューロマイシン耐性及びネオマイシン耐性のSTO細胞上で培養した。エレクトロポレーション(製品名「NEPA21」、NEPAGENE)により、50×10個の細胞に、2.5μgのCas9発現ベクター(pHL-EF1a-SphcCas9-iP-A、カタログ番号「#60599」、Addgene)、それぞれ3μgのターゲッティングベクター、それぞれ2.5μgのHAND1 gRNAベクター及びHAND2 gRNAベクターを同時に導入した。 The 409B2 hiPSC established by the episomal method was used. 409B2 hiPSCs were cultured on puromycin-resistant and neomycin-resistant STO cells. By electroporation (product name "NEPA21", NEPAGENE), 2.5 μg Cas9 expression vector (pHL-EF1a-SphcCas9-iP-A, catalog number "# 60599", Addgene) was added to 50 × 10 4 cells. , 3 μg of each targeting vector, 2.5 μg of HAND1 gRNA vector and HAND2 gRNA vector, respectively, were simultaneously introduced.
 48時間後、0.5μg/mLピューロマイシンを添加し5日間処理した。続いて、50μg/mLネオマイシン(製品名「GeneticinTM Selective Antibiotic(G418 Sulfate)(50mg/mL)」、カタログ番号「#10131027」、サーモフィッシャーサイエンティフィック)を添加した。 After 48 hours, 0.5 μg / mL puromycin was added and treated for 5 days. Subsequently, 50 μg / mL neomycin (product name “Geneticin TM Selective Antibiotic (G418 Sulfate) (50 mg / mL)”, catalog number “# 10131027”, Thermo Fisher Scientific) was added.
 続いて、生存した細胞をクローニングし、PCRでノックインした配列を同定し、相同アームの内側及び外側の塩基配列をシーケンスした。また、HindIII(NEB)及びノックインした配列の内部領域及び外部領域に対応する4つのプローブを用いてサザンブロッティングを行った。 Subsequently, the surviving cells were cloned, the sequence knocked in by PCR was identified, and the nucleotide sequences inside and outside the homologous arm were sequenced. Southern blotting was also performed using HindIII (NEB) and four probes corresponding to the inner and outer regions of the knocked-in sequence.
 続いて、選択カセットを除去した。具体的には、まず、マトリゲル(カタログ番号「#354230」、コーニング)を10μg/mLになるようDMEM/F-12(カタログ番号「#11320033」、サーモフィッシャーサイエンティフィック)で希釈してディッシュに入れ、1時間インキュベートしてコートした。続いて、hiPSCに、FuGENE HD Transfection Reagent(カタログ番号「#E2311」、プロメガ)を用いて、1μg/mLのCre発現ベクター(pCAG-Cre-Blast、沖田圭介博士より提供された)を遺伝子導入し、上述したディッシュに播種した。 Subsequently, the selected cassette was removed. Specifically, first, dilute Matrigel (catalog number "# 354230", Corning) with DMEM / F-12 (catalog number "# 1132333", Thermo Fisher Scientific) to 10 μg / mL to make a dish. Put in, incubated for 1 hour and coated. Subsequently, a 1 μg / mL Cre expression vector (pCAG-Cre-Blast, provided by Dr. Keisuke Okita) was introduced into hiPSC using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega). , Sown in the above-mentioned dish.
 続いて、hiPSCsをMEFコンディションドメディウム中で培養し、10μg/mLブラストサイジン(カタログ番号「#KK-400」、フナコシ)を添加して2日間インキュベートした。続いて、hiPSCsを再度クローニングし、PCR及びサザンブロッティングにより同定した。 Subsequently, hiPSCs were cultured in MEF-conditioned medium, 10 μg / mL blastsaidin (catalog number “# KK-400”, Funakoshi) was added, and the mixture was incubated for 2 days. Subsequently, hiPSCs were cloned again and identified by PCR and Southern blotting.
[実験例2]
(MYH6-iRFP670/HAND1-mCherry/HAND2-EGFPトリプルレポーターhiPSCの樹立)
 MYH6レポーター遺伝子をHAND1-mCherry/HAND2-EGFPダブルレポーターhiPSCのゲノムに導入した。
[Experimental Example 2]
(Establishment of MYH6-iRFP670 / HAND1-mCherry / HAND2-EGFP triple reporter hiPSC)
The MYH6 reporter gene was introduced into the genome of the HAND1-mCherry / HAND2-EGFP double reporter hiPSC.
 具体的には、ヒトMYH6プロモーター(-4391~+1051)、iRFP670-IRES-ピューロマイシン耐性遺伝子カセット、LoxP配列に挟まれPGKプロモーターに制御されたネオマイシン耐性カセットを有する、PiggyBacトランスポゾンベクター(PB-hMYH6-iRFP670-IPPNL)を作製した。図3は、トランスポゾンベクターの構造を示す模式図である。 Specifically, the PiggyBac transposon vector (PB-hMYH6-) having a human MYH6 promoter (-4391 to +1051), an iRFP670-IRES-puromycin resistance gene cassette, and a neomycin resistance cassette sandwiched between LuxP sequences and controlled by the PGK promoter. iRFP670-IPPNL) was prepared. FIG. 3 is a schematic diagram showing the structure of the transposon vector.
 続いて、FuGENE HD Transfection Reagent(カタログ番号「#E2311」、プロメガ)を用いて、トランスポゾンベクター(PB-hMYH6-iRFP670-IPPNL)及びPiggyBacトランスポザーゼ発現ベクターを導入した。続いて、トランスポゾンベクターが導入された細胞をネオマイシン(50μg/mL)で選択し、MYH6-iRFP670/HAND1-mCherry/HAND2-EGFPトリプルレポーターhiPSCを得た。なお、ヒトMYH6遺伝子のmRNAのNCBIアクセッション番号は、NM_002471.4等である。 Subsequently, a transposon vector (PB-hMYH6-iRFP670-IPPNL) and a PiggyBac transposase expression vector were introduced using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega). Subsequently, cells into which the transposon vector was introduced were selected with neomycin (50 μg / mL) to obtain MYH6-iRFP670 / HAND1-mCherry / HAND2-EGFP triple reporter hiPSC. The NCBI accession number of the mRNA of the human MYH6 gene is NM_002471.4 or the like.
[実験例3]
(MYH6-EGFPレポーターhiPSCの樹立)
 図3に構造を示すトランスポゾンベクターにおいて、iRFP670遺伝子の代わりにEGFP遺伝子を有するトランスポゾンベクターを作製した。
[Experimental Example 3]
(Establishment of MYH6-EGFP reporter hiPSC)
In the transposon vector whose structure is shown in FIG. 3, a transposon vector having an EGFP gene instead of the iRFP670 gene was prepared.
 続いて、FuGENE HD Transfection Reagent(カタログ番号「#E2311」、プロメガ)を用いて、201B7 hiPSCにトランスポゾンベクター及びPiggyBacトランスポザーゼ発現ベクターを導入した。続いて、トランスポゾンベクターが導入された細胞をネオマイシン(50μg/mL)で選択し、MYH6-EGFPレポーターhiPSCを得た。MYH6-EGFPレポーターhiPSCは、心筋細胞(MYH6陽性細胞)に分化するとEGFPを発現する。 Subsequently, a transposon vector and a PiggyBac transposase expression vector were introduced into 201B7 hiPSC using FuGENE HD Transfection Reagent (catalog number “# E2311”, Promega). Subsequently, the cells into which the transposon vector was introduced were selected with neomycin (50 μg / mL) to obtain a MYH6-EGFP reporter hiPSC. The MYH6-EGFP reporter hiPSC expresses EGFP when differentiated into cardiomyocytes (MYH6-positive cells).
[実験例4]
(RNAシーケンス解析)
 実験例2で作製した、MYH6-iRFP670/HAND1-mCherry/HAND2-EGFPトリプルレポーターhiPSCを心筋細胞に分化誘導した。続いて、分化誘導開始から20日目の細胞から、mCherryEGFP、mCherryEGFP、mCherryEGFP、mCherryEGFPである、iRF670陽性細胞(心筋細胞)を、FACSにより分取し、それぞれRNAシーケンスを行った。実験は3回ずつ行った。
[Experimental Example 4]
(RNA sequence analysis)
The MYH6-iRFP670 / HAND1-mCherry / HAND2-EGFP triple reporter hiPSC prepared in Experimental Example 2 was induced to differentiate into cardiomyocytes. Then, from day 20 cells from the start of differentiation induction, mCherry - EGFP -, mCherry + EGFP -, mCherry + EGFP +, mCherry - is EGFP +, the iRF670 positive cells (cardiomyocytes), Shi fractionated by FACS , Each RNA sequence was performed. The experiment was performed 3 times each.
 RNAシーケンスの結果に基づいて、遺伝子オントロジー(gene ontology、GO)解析を行った。その結果、HAND1陽性細胞(mCherry細胞)で細胞周期に関連するtermが濃縮された。更に、EdUアッセイを行ったところ、HAND1陽性細胞において、細胞周期が活性化していることを示すEdU陽性細胞の割合が、HAND1陰性細胞と比較して高いことが確認された。 Gene ontology (GO) analysis was performed based on the results of RNA sequencing. As a result, cell cycle-related terms were enriched in HAND1-positive cells (mCherry + cells). Furthermore, when the EdU assay was performed, it was confirmed that the proportion of EdU-positive cells showing that the cell cycle was activated was higher in the HAND1-positive cells than in the HAND1-negative cells.
 続いて、RNAシーケンスのデータを用いて、細胞表面に露出する遺伝子をAmiGOデータベースから抽出し(GO:0009897)、これらの遺伝子についてヒートマップを作成した。図4は、作成したヒートマップである。ヒートマップの色の濃淡は、遺伝子発現量のZスコアに対応する。図4中、「ex1」、「ex2」、「ex3」は、それぞれ1回目、2回目及び3回目の実験結果であることを示す。 Subsequently, using the RNA sequence data, genes exposed on the cell surface were extracted from the AmiGO database (GO: 0009897), and heat maps were created for these genes. FIG. 4 is a created heat map. The shades of color in the heatmap correspond to the Z-score of gene expression. In FIG. 4, "ex1", "ex2", and "ex3" indicate that they are the results of the first, second, and third experiments, respectively.
 図4に示すヒートマップに基づいて、HAND1が発現していてHAND2が発現していない心筋細胞、すなわちmCherryEGFP細胞における遺伝子発現が、他の細胞と比較して高い遺伝子として、CD105に着目した。 Based on the heat map shown in FIG. 4, the myocardial cells that do not express the hand2 HAND1 is not expressed, i.e. mCherry + EGFP - gene expression in cells, as high gene as compared to other cells, focusing on CD105 bottom.
[実験例5]
(CD105高発現心筋細胞のEdUアッセイ1)
 実験例3で作製した、201B7 hiPSC由来のMYH6-EGFPレポーターhiPSCを、心筋細胞に分化誘導した。MYH6-EGFPレポーターhiPSCはSNLフィーダー細胞上で培養した。
[Experimental Example 5]
(EdU Assay 1 of CD105 Highly Expressed Cardiomyocytes)
The MYH6-EGFP reporter hiPSC derived from 201B7 hiPSC prepared in Experimental Example 3 was induced to differentiate into cardiomyocytes. The MYH6-EGFP reporter hiPSC was cultured on SNL feeder cells.
 分化誘導開始から20日目の細胞から、抗CD105抗体(CD105-APC)を用いたFACSソーティングにより、CD105高発現心筋細胞(上位30%)と低発現心筋細胞(下位30%)をそれぞれ分取した。図5は、FACS解析の結果を示すグラフである。図5中、横軸はEGFPの蛍光強度を示し、縦軸はAPCの蛍光強度を示す。また、「High」と示す四角で囲んだ領域は、回収したCD105高発現心筋細胞の領域を示し、「Low」と示す四角で囲んだ領域は、回収したCD105低発現心筋細胞の領域を示す。また、「Negative control」は、抗CD105抗体で染色していない細胞の結果を示す。 CD105 high-expressing cardiomyocytes (top 30%) and low-expressing cardiomyocytes (bottom 30%) were separated from cells 20 days after the start of differentiation induction by FACS sorting using an anti-CD105 antibody (CD105-APC). bottom. FIG. 5 is a graph showing the results of FACS analysis. In FIG. 5, the horizontal axis shows the fluorescence intensity of EGFP, and the vertical axis shows the fluorescence intensity of APC. Further, the region surrounded by the square indicated by "High" indicates the region of the recovered CD105 high-expressing cardiomyocytes, and the region surrounded by the square indicated by "Low" indicates the region of the recovered CD105 low-expressing cardiomyocytes. In addition, "Negative control" shows the results of cells not stained with the anti-CD105 antibody.
 続いて、分取した各細胞についてEdUアッセイを行った。図6は分化誘導開始から23日目のEdU陽性細胞の割合を示すグラフである(n=3)。図6中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。また、「***」は、対応のないサンプルのt検定の結果、p<0.001で有意差が存在することを示す。 Subsequently, an EdU assay was performed on each of the separated cells. FIG. 6 is a graph showing the proportion of EdU-positive cells on the 23rd day from the start of differentiation induction (n = 3). In FIG. 6, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. Further, "***" indicates that there is a significant difference at p <0.001 as a result of the t-test of the unpaired sample.
 その結果、CD105高発現細胞中に、有意に高い割合でEdU陽性細胞が存在していることが明らかになった。この結果は、CD105を高発現している心筋細胞は、細胞周期が活性化していることを示す。 As a result, it was clarified that EdU-positive cells were present in a significantly high proportion among the CD105 high-expressing cells. This result indicates that cardiomyocytes highly expressing CD105 have an activated cell cycle.
[実験例6]
(CD105高発現心筋細胞のEdUアッセイ2)
 実験例5とは異なるhiPSC株を心筋細胞に分化誘導し、CD105高発現心筋細胞のEdUアッセイを行った。hiPSC株としては、692D2株及び1390D4株を使用した。692D2株はSNLフィーダー細胞上で培養した。1390D4株はフィーダーフリーで培養した。
[Experimental Example 6]
(EdU Assay 2 of CD105 Highly Expressed Cardiomyocytes)
A hiPSC strain different from Experimental Example 5 was induced to differentiate into cardiomyocytes, and an EdU assay for CD105 high-expressing cardiomyocytes was performed. As the hiPSC strain, 692D2 strain and 1390D4 strain were used. The 692D2 strain was cultured on SNL feeder cells. The 1390D4 strain was cultured in a feeder-free manner.
 分化誘導開始から20日目の各細胞から、抗CD105抗体(CD105-APC)、Lineageマーカーに対する抗体、心筋細胞マーカーであるSIRPA(CD172a)に対する抗体(抗CD172a/b抗体、CD172a/b-PE/Cyanine7、カタログ番号「323808」、BioLegend)を用いたFACSソーティングにより、Lineage陰性SIRPA陽性のCD105高発現心筋細胞(上位30%)と低発現心筋細胞(下位30%)をそれぞれ分取した。Lineageマーカーに対する抗体としては、抗CD140b抗体(CD104b-PE、カタログ番号「558821」、BD Biosciences)、抗CD49a抗体(CD49a-PE、カタログ番号「559596」、BD Biosciences)、抗CD31抗体(CD31-PE、カタログ番号「555446」、BD Biosciences)、抗CD90抗体(CD90-PE、カタログ番号「555596」、BD Biosciencesを混合して使用した。 Anti-CD105 antibody (CD105-APC), antibody against Lineage marker, antibody against myocardial cell marker SIRPA (CD172a) (anti-CD172a / b antibody, CD172a / b-PE /) from each cell on the 20th day from the start of differentiation induction. By FACS sorting using Antibody7, Catalog No. "323808", BioLegend), Lineage-negative SIRPA-positive CD105 high-expressing myocardial cells (upper 30%) and low-expressing myocardial cells (lower 30%) were separated, respectively. Antibodies to the Lineage marker include anti-CD140b antibody (CD104b-PE, catalog number "558821", BD Biosciences), anti-CD49a antibody (CD49a-PE, catalog number "559596", BD Biosciences), and anti-CD31 antibody (CD31-PE). , Catalog number "555446", BD Biosciences), anti-CD90 antibody (CD90-PE, catalog number "555596", BD Biosciences) were mixed and used.
 続いて、分取した各細胞についてEdUアッセイを行った。図7及び図8は分化誘導開始から23日目のEdU陽性細胞の割合を示すグラフである(n=3)。図7は692D2 hiPSCの結果であり、図8は1390D4 hiPSCの結果である。図7及び図8中、「High」はCD105高発現心筋細胞の結果であることを示し、「Low」はCD105低発現心筋細胞の結果であることを示す。また、「*」、「**」は、対応のないサンプルのt検定の結果、p<0.05、p<0.01でそれぞれ有意差が存在することを示す。 Subsequently, an EdU assay was performed on each of the separated cells. 7 and 8 are graphs showing the proportion of EdU-positive cells on the 23rd day from the start of differentiation induction (n = 3). FIG. 7 is the result of 692D2 hiPSC, and FIG. 8 is the result of 1390D4 hiPSC. In FIGS. 7 and 8, "High" indicates the result of CD105 high expression cardiomyocytes, and "Low" indicates the result of CD105 low expression cardiomyocytes. Further, "*" and "**" indicate that there is a significant difference in p <0.05 and p <0.01 as a result of the t-test of the unpaired sample.
 その結果、201B7以外のhiPSC株においても、CD105高発現細胞中に、有意に高い割合でEdU陽性細胞が存在していることが明らかになった。この結果は、CD105を高発現している心筋細胞は、細胞周期が活性化していることを更に支持するものである。 As a result, it was clarified that EdU-positive cells were present in a significantly high rate among the CD105 high-expressing cells even in the hiPSC strains other than 201B7. This result further supports that the cardiomyocytes highly expressing CD105 have an activated cell cycle.
[実験例7]
(CD105高発現心筋細胞におけるHAND1遺伝子の発現の検討1)
 実験例3で作製した、201B7 hiPSC由来のMYH6-EGFPレポーターhiPSCを、心筋細胞に分化誘導した。
[Experimental Example 7]
(Examination of HAND1 gene expression in CD105 high-expressing cardiomyocytes 1)
The MYH6-EGFP reporter hiPSC derived from 201B7 hiPSC prepared in Experimental Example 3 was induced to differentiate into cardiomyocytes.
 分化誘導開始から20日目の細胞から、抗CD105抗体(CD105-APC)を用いたFACSソーティングにより、EGFP陽性のCD105高発現心筋細胞(上位30%)と低発現心筋細胞(下位30%)をそれぞれ分取した。 EGFP-positive CD105 high-expressing cardiomyocytes (top 30%) and low-expressing cardiomyocytes (bottom 30%) were obtained from cells 20 days after the start of differentiation induction by FACS sorting using an anti-CD105 antibody (CD105-APC). Each was separated.
 続いて、分取した各細胞について定量的リアルタイムPCRによりHAND1遺伝子の発現量を測定した。図9は、定量的リアルタイムPCRの結果を示すグラフである。図9中、縦軸は、GAPDH遺伝子の発現量を内部コントロールとしてddCt法によりCD105低発現心筋細胞のHAND1遺伝子の発現量を1とした相対値を示す。また、「**」は、対応のないサンプルのt検定の結果、p<0.01で有意差が存在することを示す。 Subsequently, the expression level of the HAND1 gene was measured by quantitative real-time PCR for each of the separated cells. FIG. 9 is a graph showing the results of quantitative real-time PCR. In FIG. 9, the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control. Further, "**" indicates that there is a significant difference at p <0.01 as a result of the t-test of the unpaired sample.
 その結果、CD105高発現の細胞において、有意にHAND1が高発現であることが明らかとなった。実験例4の図4の結果及び図9の結果から、HAND1高発現の心筋細胞ではCD105も高発現であり、CD105高発現の心筋細胞ではHAND1も高発現であることが示された。 As a result, it was clarified that HAND1 was significantly highly expressed in cells with high expression of CD105. From the results of FIG. 4 and FIG. 9 of Experimental Example 4, it was shown that CD105 was also highly expressed in cardiomyocytes with high expression of HAND1 and that HAND1 was also highly expressed in cardiomyocytes with high expression of CD105.
[実験例8]
(CD105高発現心筋細胞におけるHAND1遺伝子の発現の検討2)
 実験例7とは異なるhiPSC株を心筋細胞に分化誘導し、CD105高発現心筋細胞におけるHAND1遺伝子の発現量を検討した。hiPSC株としては、692D2株及び1390D4株を使用した。692D2株はSNLフィーダー細胞上で培養した。1390D4株はフィーダーフリーで培養した。
[Experimental Example 8]
(Examination of HAND1 gene expression in CD105 high-expressing cardiomyocytes 2)
A hiPSC strain different from that of Experimental Example 7 was induced to differentiate into cardiomyocytes, and the expression level of the HAND1 gene in CD105 high-expressing cardiomyocytes was examined. As the hiPSC strain, 692D2 strain and 1390D4 strain were used. The 692D2 strain was cultured on SNL feeder cells. The 1390D4 strain was cultured in a feeder-free manner.
 分化誘導開始から20日目の各細胞から、抗CD105抗体(CD105-APC)、Lineageマーカーに対する抗体、心筋細胞マーカーであるSIRPA(CD172a)に対する抗体(抗CD172a/b抗体、CD172a/b-PE/Cyanine7、カタログ番号「323808」、BioLegend)を用いたFACSソーティングにより、Lineage陰性SIRPA陽性のCD105高発現心筋細胞(上位30%)と低発現心筋細胞(下位30%)をそれぞれ分取した。Lineageマーカーに対する抗体としては、抗CD140b抗体(CD104b-PE、カタログ番号「558821」、BD Biosciences)、抗CD49a抗体(CD49a-PE、カタログ番号「559596」、BD Biosciences)、抗CD31抗体(CD31-PE、カタログ番号「555446」、BD Biosciences)、抗CD90抗体(CD90-PE、カタログ番号「555596」、BD Biosciencesを混合して使用した。 Anti-CD105 antibody (CD105-APC), antibody against Lineage marker, antibody against myocardial cell marker SIRPA (CD172a) (anti-CD172a / b antibody, CD172a / b-PE /) from each cell on the 20th day from the start of differentiation induction. By FACS sorting using Antibody7, Catalog No. "323808", BioLegend), Lineage-negative SIRPA-positive CD105 high-expressing myocardial cells (upper 30%) and low-expressing myocardial cells (lower 30%) were separated, respectively. Antibodies to the Lineage marker include anti-CD140b antibody (CD104b-PE, catalog number "558821", BD Biosciences), anti-CD49a antibody (CD49a-PE, catalog number "559596", BD Biosciences), and anti-CD31 antibody (CD31-PE). , Catalog number "555446", BD Biosciences), anti-CD90 antibody (CD90-PE, catalog number "555596", BD Biosciences) were mixed and used.
 続いて、分取した各細胞について、定量的リアルタイムPCRによりHAND1遺伝子の発現量を測定した。図10及び図11は、定量的リアルタイムPCRの結果を示すグラフである。図10及び図11中、縦軸は、GAPDH遺伝子の発現量を内部コントロールとしてddCt法によりCD105低発現心筋細胞のHAND1遺伝子の発現量を1とした相対値を示す。また、「**」は、対応のないサンプルのt検定の結果、p<0.01で有意差が存在することを示し、「ns」は有意差が存在しないことを示す。 Subsequently, the expression level of the HAND1 gene was measured by quantitative real-time PCR for each of the separated cells. 10 and 11 are graphs showing the results of quantitative real-time PCR. In FIGS. 10 and 11, the vertical axis shows a relative value in which the expression level of the HAND1 gene in CD105 low-expressing cardiomyocytes is set to 1 by the ddCt method with the expression level of the GAPDH gene as an internal control. Further, "**" indicates that there is a significant difference at p <0.01 as a result of the t-test of the unpaired sample, and "ns" indicates that there is no significant difference.
 その結果、201B7以外のhiPSC株においても、CD105高発現の細胞において、HAND1が高発現であることが明らかとなった。この結果は、CD105高発現の心筋細胞ではHAND1も高発現することを更に支持するものである。 As a result, it was clarified that HAND1 is highly expressed in cells with high expression of CD105 even in hiPSC strains other than 201B7. This result further supports the high expression of HAND1 in cardiomyocytes with high expression of CD105.
 本発明によれば、遺伝子導入を行うことなく、増殖能が高い心筋細胞を得る技術を提供することができる。 According to the present invention, it is possible to provide a technique for obtaining cardiomyocytes having high proliferative ability without performing gene transfer.

Claims (8)

  1.  心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、
     回収した前記心筋細胞を拡大培養する工程と、
     を含む、心筋細胞の製造方法。
    A step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population, and
    The step of expanding and culturing the collected cardiomyocytes and
    A method for producing cardiomyocytes, including.
  2.  心筋細胞集団から、CD105を高発現する心筋細胞を回収する工程と、
     回収した前記心筋細胞を培養して心臓組織を作製する工程と、
     を含む、心臓組織の製造方法。
    A step of recovering cardiomyocytes highly expressing CD105 from a cardiomyocyte population, and
    The step of culturing the collected cardiomyocytes to prepare heart tissue, and
    How to make heart tissue, including.
  3.  前記心筋細胞集団が多能性幹細胞由来である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the cardiomyocyte population is derived from pluripotent stem cells.
  4.  前記多能性幹細胞がヒトiPS細胞である、請求項3に記載の製造方法。 The production method according to claim 3, wherein the pluripotent stem cell is a human iPS cell.
  5.  心筋細胞集団から増殖能が高い心筋細胞を選別する方法であって、
     前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含む方法。
    It is a method of selecting cardiomyocytes with high proliferative ability from the cardiomyocyte population.
    A method comprising a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
  6.  心筋細胞集団から細胞周期が活性化している心筋細胞を選別する方法であって、
     前記心筋細胞集団から、CD105を高発現する心筋細胞を選別する工程を含む方法。
    It is a method of selecting cardiomyocytes whose cell cycle is activated from the cardiomyocyte population.
    A method comprising a step of selecting cardiomyocytes highly expressing CD105 from the cardiomyocyte population.
  7.  前記心筋細胞集団が多能性幹細胞由来である、請求項5又は6に記載の方法。 The method according to claim 5 or 6, wherein the cardiomyocyte population is derived from pluripotent stem cells.
  8.  前記多能性幹細胞がヒトiPS細胞である、請求項7に記載の方法。 The method according to claim 7, wherein the pluripotent stem cell is a human iPS cell.
PCT/JP2021/019678 2020-05-25 2021-05-24 Method for selecting cardiomyocytes having high proliferation ability WO2021241524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022526546A JPWO2021241524A1 (en) 2020-05-25 2021-05-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063029564P 2020-05-25 2020-05-25
US63/029,564 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021241524A1 true WO2021241524A1 (en) 2021-12-02

Family

ID=78744391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019678 WO2021241524A1 (en) 2020-05-25 2021-05-24 Method for selecting cardiomyocytes having high proliferation ability

Country Status (2)

Country Link
JP (1) JPWO2021241524A1 (en)
WO (1) WO2021241524A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518730A (en) * 2004-11-08 2008-06-05 ザ ジョンズ ホプキンス ユニバーシティー Heart stem cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518730A (en) * 2004-11-08 2008-06-05 ザ ジョンズ ホプキンス ユニバーシティー Heart stem cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEITOLIS, A. ET AL.: "Human heart explant-derived extracellular vesicles: characterization and effects on the in vitro recellularization of decellularized heart valves", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 20, 14 March 2019 (2019-03-14), XP055879506, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471048> *
MATSUSHITA, SATOSHI: "Regeneration therapy for heart disease", JUNTENDO MEDICAL JOURNAL, vol. 57, 2011, pages 324 - 328 *

Also Published As

Publication number Publication date
JPWO2021241524A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
Zhou et al. Single-cell transcriptomic analyses of cell fate transitions during human cardiac reprogramming
KR102388643B1 (en) Novel and efficient method for reprogramming blood into induced pluripotent stem cells
Xu et al. Stochastic gene expression drives mesophyll protoplast regeneration
US11845960B2 (en) Transcription factors controlling differentiation of stem cells
JP6288615B2 (en) Human erythrocyte progenitor cell line and method for producing human enucleated erythrocyte
US20180320230A1 (en) High throughput identification of t-cell recognition antigens and epitopes
Kao et al. Gene expression variation in Arabidopsis embryos at single-nucleus resolution
JP7376013B2 (en) Evaluation method for anti-infective drugs, vaccines, etc. using immortalized monocytic cells and induced cells
Liu et al. Purification and characterization of human neural stem and progenitor cells
CN111662907B (en) Method for knocking out induced pluripotent stem cell NANS gene and application thereof
WO2021172542A1 (en) Mature-cardiomyocyte production method
Berl et al. Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis
WO2021241524A1 (en) Method for selecting cardiomyocytes having high proliferation ability
US20190194624A1 (en) Novel and efficient method for reprogramming blood to induced pluripotent stem cells
JP7025524B2 (en) Method for producing heterogeneous hematopoietic stem cells / progenitor cells using non-mobilized peripheral blood
KR101916902B1 (en) The method of production for beating cardiomyocyte from human embryonic stem cell using CD71 cell surface marker
Borisova et al. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency
US11293065B2 (en) Compositions and methods for the quality control of stem cell preparations
JPWO2018124118A1 (en) Method for evaluating and selecting induced pluripotent stem cells, and method for producing induced pluripotent stem cells
Ali Neural Stem Cell Fate Decisions: Clonal Approaches
WO2023179795A1 (en) Method for rapidly, simply and conveniently obtaining correctly paired tcrs, and obtained tcrs
WO2023184528A1 (en) Application of marker genes in detecting multipotent stem cell residues, detection method and kit
Saito et al. Neuron-specific cTag-CLIP reveals cell-specific diversity of functional RNA regulation in the brain
JP2023140135A (en) Microglia production method
Allen Fate Mapping of Human Cerebral Cortex Progenitors Reveals Novel Patterns of Neuronal and Glial Differentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811823

Country of ref document: EP

Kind code of ref document: A1