WO2021241501A1 - Radio wave sensor, object detection method, and setting method - Google Patents

Radio wave sensor, object detection method, and setting method Download PDF

Info

Publication number
WO2021241501A1
WO2021241501A1 PCT/JP2021/019614 JP2021019614W WO2021241501A1 WO 2021241501 A1 WO2021241501 A1 WO 2021241501A1 JP 2021019614 W JP2021019614 W JP 2021019614W WO 2021241501 A1 WO2021241501 A1 WO 2021241501A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
radio wave
wave sensor
effective range
angle
Prior art date
Application number
PCT/JP2021/019614
Other languages
French (fr)
Japanese (ja)
Inventor
篤司 東
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021241501A1 publication Critical patent/WO2021241501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • the present disclosure relates to radio wave sensors, object detection methods and setting methods.
  • This application claims priority based on Japanese Application No. 2020-93071 filed on May 28, 2020, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a radio wave sensor installed on a road.
  • Patent Document 2 discloses that by measuring the direction of a reference object installed in a target area set to include a pedestrian crossing, it is possible to recognize a deviation in the direction of a radio wave sensor installed on a road. ..
  • Patent Document 3 discloses a radar device mounted on a vehicle.
  • the radio wave sensor of the present disclosure includes a transmitter that transmits radio waves, a receiver that receives reflected waves from which the radio waves are reflected from an object, and an effective detection target set in the detection area of the radio wave sensor. It includes a storage device that stores effective range data indicating a range, and a processing device configured to perform estimation processing of the arrival direction of the reflected wave based on the received data generated based on the reflected wave.
  • the received data includes the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not a detection target. It is the data obtained by receiving the receiver, and the processing apparatus executes the estimation process only in the effective range indicated by the effective range data.
  • Another aspect of the present disclosure is an object detection method using a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object.
  • the method of the present disclosure stores the effective range data indicating the effective range for which the object is to be detected, which is set in the detection area of the radio wave sensor, and is based on the received data generated based on the reflected wave.
  • the received data includes the reflected wave from within the effective range and the range obtained by removing the effective range from the detection area.
  • the data is obtained by the receiver receiving the reflected wave from an invalid range in which the object is not a detection target, and the estimation process is executed only in the effective range indicated by the effective range data.
  • NS the effective range data indicating the effective range for which the object is to be detected
  • Another aspect of the present disclosure sets an effective range in which the object is to be detected in a detection area of a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object.
  • the method of the present disclosure is to display information indicating the intensity distribution of the reflected intensity value of the reflected wave, to specify the position of the object existing in the detection area based on the information indicating the intensity distribution, and the above-mentioned. Determining whether or not the object existing at a position in the real space corresponding to the position is the detection target of the radio wave sensor, and setting an effective range in which the object is the detection target based on the result of the determination.
  • a setting method that includes.
  • FIG. 1 is a schematic configuration diagram of a radio wave sensor.
  • FIG. 2 is a schematic view showing an example of the detection area.
  • FIG. 3 is a flowchart of the effective range setting process.
  • FIG. 4 is a schematic diagram showing the relationship between the detection area and the effective range.
  • FIG. 5 is a schematic diagram showing another example of the detection area.
  • FIG. 6 is a schematic diagram showing another example of the detection area.
  • FIG. 7 is a data structure diagram of effective range data.
  • FIG. 8 shows the reflection intensity distribution in the distance zone.
  • FIG. 9 shows the reflection intensity distribution in the distance zone.
  • FIG. 10 is a schematic view of an angle band.
  • FIG. 11 is a data structure diagram of effective range data.
  • FIG. 12 is a flowchart of the object detection process.
  • FIG. 13 is a data structure diagram of the reflection intensity data.
  • Patent Document 1 discloses a radio wave sensor installed on a road.
  • the radio wave sensor of Patent Document 1 radiates radio waves to a target area set to include a pedestrian crossing and detects an object.
  • Patent Document 2 discloses that by measuring the direction of a reference object installed in a target area set to include a pedestrian crossing, it is possible to recognize a deviation in the direction of a radio wave sensor installed on a road. ..
  • Patent Document 3 discloses a radar device mounted on a vehicle.
  • the radar device of Patent Document 3 discloses that the detection angle range of a target object is changed depending on the distance from the vehicle.
  • the radar device of Patent Document 3 widens the detection angle range in the case of a short distance and narrows the detection angle range in the case of a long distance.
  • a detection area which is an area monitored by the radio wave sensor to detect an object, may be set.
  • the detection area is described as a target area.
  • the radio wave sensor may generate unnecessary arithmetic processing.
  • the radio wave sensor is detected by a transmitter that transmits radio waves, a receiver that receives reflected waves from which the radio waves are reflected from an object, and the object set in the detection area of the radio wave sensor.
  • a storage device that stores effective range data indicating a target effective range, and a processing device configured to execute estimation processing of the arrival direction of the reflected wave based on received data generated based on the reflected wave.
  • the received data includes the reflected wave from the effective range and the reflection from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is data obtained by receiving a wave by the receiver, and the processing apparatus executes the estimation process only in the effective range indicated by the effective range data. Since the estimation process is executed only within the effective range, unnecessary arithmetic processing can be suppressed.
  • the processing device may be configured to further execute the effective range setting process for generating the effective range data based on the detection area data indicating the detection area.
  • the processing device can set the effective range.
  • the radio wave sensor may acquire and store the effective range data set externally.
  • the effective range data includes a value of a distance band which is a distance range in the radial direction of a polar coordinate system with the radio wave sensor as an origin, and a value of an angle range in the circumferential direction of the polar coordinate system. May be good. In this case, the effective range is set in the polar coordinate system.
  • the storage device may store reflection intensity data indicating the reflection intensity value of the reflected wave.
  • the value in the angle range may be greater than or equal to the reference value determined based on the intensity distribution of the reflection intensity value. In this case, it is possible to prevent the effective range from becoming too small.
  • the reflection intensity data may be configured to be able to store the reflection intensity data in a preset maximum range.
  • the effective range is a part of the maximum range, and the reflection intensity data has a first range corresponding to the effective range and a second range corresponding to the invalid range. May be good.
  • the reflection intensity value of the reflected wave may be stored in the first range, and a value indicating that the estimation process has not been performed may be stored in the second range. In this case, it is possible to discriminate the portion of the reflection intensity data where the estimation process has not been performed.
  • the radio wave sensor may be set with an angle band which is the resolution of the radio wave sensor in the circumferential direction of the polar coordinate system.
  • the processing device may be configured to estimate the arrival direction for each of a plurality of the angle bands set within the effective range in the estimation process.
  • the plurality of angle bands may include a first angle band and a second angle band having an angle range different from that of the first angle band. In this case, the arrival direction can be estimated for each different angle band.
  • the plurality of distance bands may include a first distance band having the first angle band and a second distance band having the second angle band.
  • the first distance band and the second distance band can each have different angle bands.
  • the distance from the radio wave sensor in the second distance band is longer than the distance from the radio wave sensor in the first distance band, and the angle range of the second angle band is the angle range of the first angle band. It may be smaller. In this case, the farther from the radio wave sensor, the higher the resolution of the radio wave sensor.
  • the estimation process calculates the reflected intensity value of the reflected wave with the incident angle of the reflected wave on the radio wave sensor as a variable based on the received data, and is based on the peak of the intensity distribution of the reflected intensity value.
  • the process may be a process of determining the arrival direction of the reflected wave.
  • the processing device may calculate the reflection intensity value by limiting it to the effective range indicated by the effective range data. In this case, since the calculation of the reflection intensity value is limited to the effective range data, the calculation load can be suppressed.
  • the object detection method by the radio wave sensor according to the embodiment is based on storing the effective range data indicating the effective range in which the object is to be detected, which is set in the detection area of the radio wave sensor, and the reflected wave. It is provided to execute the estimation process of the arrival direction of the reflected wave based on the received data generated in the above.
  • the received data receives the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is the data obtained by receiving the device.
  • the estimation process is executed only in the effective range indicated by the effective range data.
  • the computer program according to the embodiment causes the processing apparatus to execute the above-mentioned processing. Computer programs are stored on computer-readable, non-temporary storage media.
  • the setting method using the radio wave sensor according to the embodiment is to display information indicating the intensity distribution of the reflected intensity value of the reflected wave, and based on the information indicating the intensity distribution, the object existing in the detection area.
  • the object is to be detected based on the result of the determination, the determination of whether or not the object existing in the position in the real space corresponding to the position is the detection target of the radio wave sensor, and the result of the determination. It is provided to set the effective range.
  • the computer program according to the embodiment causes the processing apparatus to execute the above-mentioned processing.
  • Computer programs are stored on computer-readable, non-temporary storage media.
  • FIG. 1 shows a radio wave sensor 10 according to an embodiment.
  • the radio wave sensor 10 according to the embodiment is used, for example, for monitoring a vehicle on a road or monitoring a pedestrian on a sidewalk or a pedestrian crossing.
  • the radio wave sensor 10 is installed, for example, as road equipment which is an infrastructure.
  • the radio wave sensor 10 according to the embodiment is also referred to as an infrastructure radio wave sensor or an infrastructure radar.
  • the radio wave sensor 10 according to the embodiment is installed in a state of being fixed to the infrastructure near the detection area, which is the area where the radio wave sensor 10 detects an object.
  • the radio wave sensor 10 is installed to monitor an object in the detection area T1 exemplified in FIG.
  • the detection area T1 is a monitoring area by the radio wave sensor 10.
  • the detection area T1 is installed as a range including the pedestrian crossing 200.
  • the radio wave sensor 10 detects an object such as a pedestrian moving in the detection area T1.
  • the detection area T1 may be installed as a range including the road on which the vehicle travels.
  • the radio wave sensor 10 detects an object such as a vehicle moving in the detection area T1.
  • the radio wave sensor 10 detects an object by the reflection of the irradiated radio wave.
  • the radio wave sensor 10 of the embodiment is configured as a millimeter wave radar sensor.
  • the radio wave sensor 10 includes a transmitter 11 that transmits a radio wave for detecting an object, a receiver 13 that receives a reflected wave of the transmitted radio wave, a signal processing device 15, and a processing device 110. , A storage device 120, and a communication interface 130.
  • the receiver 13 outputs the received signal of the reflected wave to the signal processing device 15.
  • the radio wave sensor 10 obtains the distance from the radio wave sensor 10 to the object and the existence angle of the object.
  • the two-dimensional position coordinates of the object are specified from the distance and the angle.
  • the transmitter 11 and the receiver 13 may be separate devices or may be one device.
  • the radio wave sensor 10 includes a signal processing device 15.
  • the signal processing device 15 outputs the received data obtained by processing the received signal of the reflected wave to the processing device 110.
  • the processing device 110 is, for example, a CPU (Central Processing Unit).
  • the processing device 110 executes the effective range setting process 111. Further, the processing device 110 according to the embodiment executes the object detection processing 113.
  • the effective range setting process 111 and the object detection process 113 will be described later.
  • the radio wave sensor 10 includes a storage device 120 connected to the processing device 110.
  • the storage device 120 includes, for example, a primary storage device and a secondary storage device.
  • the primary storage device is, for example, a RAM (Random access memory).
  • the secondary storage device is, for example, a hard disk drive (HDD) or a solid state drive (SSD).
  • the storage device 120 stores the detection area data 121 and the effective range data 123. Further, the storage device 120 stores the reflection intensity data 125.
  • the detection area data 121, the effective range data 123, and the reflection intensity data 125 will be described later.
  • the computer program 150 is stored in the storage device 120.
  • the computer program 150 causes the processing device 110 to execute the effective range setting process 111.
  • the computer program 150 includes a program code for causing the processing device 110 to execute the effective range setting process 111.
  • the computer program 150 causes the processing device 110 to execute the object detection process 113.
  • the computer program 150 includes a program code for causing the processing device 110 to execute the object detection process 113.
  • the processing device 110 reads out and executes the computer program 150 stored in the storage device 120.
  • the radio wave sensor 10 includes a communication interface 130 for communicating with an external device.
  • the communication interface 130 is an interface for wireless communication or wired communication.
  • the radio wave sensor 10 can transmit and receive data to and from an external device via the communication interface 130.
  • the external device may be, for example, a server on a network, a roadside sensor other than another radio wave sensor or a radio wave sensor, or a device connected to the radio wave sensor 10.
  • a detection area setting device 20 is connected to the communication interface 130 as an external device.
  • the detection area setting device 20 is a computer in which a computer program for setting the detection area T1 is stored. Setting the detection area T1 The worker sets the detection area T1 by using the detection area setting device 20.
  • the detection area T1 is set to a size and shape including the pedestrian crossing 200 and its vicinity, for example, according to the size and shape of the pedestrian crossing 200 which is a monitoring area.
  • the detection area setting device 20 generates the detection area data 121 indicating the detection area T1 in response to the operation of the determination area setting by the setting worker.
  • the detection area data 121 indicates the size and shape of the detection area T1.
  • the detection area data 121 includes, for example, coordinate data for defining the shape of the detection area data 121 with the position of the radio wave sensor 10 installed in the vicinity of the detection area T1 as a reference position. Since the size and shape of the pedestrian crossing or the road serving as the monitoring area are various, the size and shape of the detection area T1 are also various. By the setting work of the detection area T1, an appropriate detection area T1 corresponding to various monitoring areas is set.
  • the processing device 110 of the radio wave sensor 10 can obtain two-dimensional position coordinates indicating where an object exists in the detection area T1. As a result, it is possible to obtain the movement locus of a pedestrian or the like in the detection area T1.
  • the detection area setting device 20 When the detection area setting device 20 generates the detection area data 121, the detection area data 121 is output to the radio wave sensor 10.
  • the radio wave sensor 10 receives the detection area data 121 via the communication interface 130, the radio wave sensor 10 stores the detection area data 121 in the storage device 120.
  • the stored detection area data 121 is used to generate the effective range data 123 by the processing device 110 of the radio wave sensor 10.
  • FIG. 3 shows the procedure of the effective range setting process 111 executed by the processing device 110.
  • the effective range has an effective range in the angular direction and an effective range in the distance direction as seen from the radio wave sensor 10.
  • the angular direction refers to the circumferential direction of the polar coordinate system with the radio wave sensor 10 as the origin
  • the distance direction refers to the radial direction (radial direction) of the polar coordinate system with the radio wave sensor 10 as the origin.
  • the processing device 110 reads the detection area data 121 from the storage device 120.
  • the processing device 110 sets a second detection area T2 having a predetermined width margin around the detection area T1 (first detection area) indicated by the detection area data 121.
  • first detection area T1 and a second detection area T2 (a detection area T2 with a margin).
  • the margin around the first detection area T1 may not be secured, but if the margin is secured, an object outside the first detection area T1 but within the margin can be detected, which is advantageous.
  • the processing device 110 sets the effective angle range C required to cover the second detection area T2 for each of the plurality of distance bands D.
  • the distance band D is a distance range in the radial direction of the polar coordinate system with the radio wave sensor 10 as the origin. For example, a distance A of 10 m in the radial direction from the radio wave sensor 10, a distance B of 20 m in the radial direction from the radio wave sensor 10, a distance C of 30 m in the radial direction from the radio wave sensor 10, and a radio wave sensor 10 A distance of 40 m in the radial direction from the distance is defined as a distance D.
  • the range between the distance A and the distance B is the distance zone D defined by the distance range of 10 m to 20 m in the radial direction
  • the range between the distance B and the distance C is the radial direction.
  • the range between the distance C and the distance D is the distance zone D defined in the distance range of 30 m to 40 m in the radial direction.
  • the distance band D is set, for example, in units of 1 m, but the unit of the distance band D is not particularly limited. For example, when the second detection area T2 exists 20 m ahead of the radio wave sensor 10, 20 distance zones D in 1 m units are set.
  • the effective angle range C set for each distance zone D may be the minimum necessary to cover the second detection area T2. Therefore, as shown in FIG. 4, the effective angle range C is different for each distance band D. Setting of the detection area T1 Since the operator can freely set the effective angle range C for each distance zone D according to the shape of the second detection area T2, the flexible effective angle range C can be set.
  • the effective angle range C becomes smaller as the distance band D farther from the radio wave sensor 10.
  • the setting of the effective angle range C in FIG. 4 is an example, and is not limited to such a setting.
  • the second angle range G2 in a slightly distant distance zone is wider than the first angle range G1 in a distance zone relatively close to the radio wave sensor 10.
  • the second angle range G3 in a farther distance zone is narrower than the second angle range G2.
  • the angle range may not be uniformly reduced even if the distance from the radio wave sensor 10 is increased.
  • the worker who sets the detection area T1 can set the effective angle range C for each distance zone D, so that even in the case of FIG. 5, the minimum necessary effective angle range C is set. Can be set.
  • the non-detection area 230 may be set in the detection area T1.
  • the utility pole 220 or the like exists as the non-detection area 230
  • the non-detection area 230 in the detection area T1 may be a place where no one can enter.
  • Objects excluded from detection targets include guardrails, medians, gutters, signboards, etc., in addition to utility poles and trees.
  • the effective angle range C of the distance zone D can be set, for example, from ⁇ 40 ° to ⁇ 10 ° and from + 10 ° to + 40 °. As described above, according to the present embodiment, since the effective angle range C can be set for each distance zone D, the effective angle range C can be set while avoiding the angle corresponding to the non-detection area 230 as shown in FIG.
  • the installation worker determines whether or not the object detected by the radio wave sensor 10 is the detection target by referring to the image of the detection area captured by the image pickup device such as a camera or by visually observing the detection area. For example, if the installation worker finds out from an image or visual inspection that an object existing at a position in the real space corresponding to the position of the object detected by the radio wave sensor 10 is a tree or a utility pole, the installation worker must detect this object. Determine. The installation worker can set the non-detection area based on the determination result.
  • FIG. 7 shows an example of the effective range data 123 generated by the processing device 110 according to the setting in step S13.
  • the valid range data 123 is configured to indicate a valid range and an invalid range within a preset maximum range.
  • the effective range is a set of the plurality of effective angle ranges C described above.
  • the effective range is the range in which the estimation process S24 in the arrival direction, which will be described later, is executed.
  • the invalid range is a range in which the estimation process S24 in the arrival direction, which will be described later, is not executed.
  • the effective range is set as a range corresponding to the detection area T1 within the maximum range by the process of step S13.
  • the invalid range is a range other than the valid range within the maximum range.
  • the maximum range is defined by the maximum distance from the radio wave sensor 10 and the maximum angle range M.
  • the maximum distance is, for example, 100 m from the radio wave sensor 10.
  • the maximum angle range M is, for example, ⁇ 90 ° to 90 ° as shown in FIG.
  • the effective range data 123 shown in FIG. 7 shows the effective range and the invalid range for each distance band D.
  • the effective range for each distance band D is shown as an effective angle range C1, C2, and C3.
  • the effective range data 123 shown in FIG. 7 is, for example, the effective angle range C1 and the invalid range F in the distance band D 9 m from the radio wave sensor 10, the effective angle range C2 and the invalid range F in the distance band D of 10 m, and 11 m.
  • the effective angle range C3 and the invalid range F in the distance zone D are shown.
  • the angle in the effective range is indicated by "1", and the angle in the invalid range is indicated by "0".
  • the set of ranges indicated by “1” is the valid range, and the set of ranges indicated by "0" is the invalid range.
  • different effective angle ranges C1, C2, and C3 are set for each distance band D.
  • the setting operator of the detection area T1 can set valid or invalid for each angle in each distance band D. Therefore, the worker who sets the detection area T1 can flexibly set the effective range corresponding to the detection area T1 having an arbitrary shape.
  • step S14 of FIG. 3 the processing device 110 determines whether or not the effective angle range C of each distance band D set in step S13 is equal to or greater than the reference value.
  • the distance zone D to be determined here is the distance zone D in which the effective angle range C exists.
  • the distance zone D in which the effective angle range C does not exist at all is not the target of the determination.
  • step S14 If the effective angle range C is equal to or greater than the reference value (“YES” in step S14) in a certain distance zone D, the effective angle range C set in step S13 is maintained. If the effective angle range C is less than the reference value (“NO” in step S14) in a certain distance band D, the effective angle range C in the distance band D is set to the reference value (step S15). This prevents the setting of an effective angle range C that is too small.
  • the reference value indicates a range in the angular direction with respect to the radio wave sensor 10, and is set to a size required for the radio wave sensor 10 to detect an object.
  • the graph of FIG. 8 shows the intensity distribution of the received radio wave in the specific distance band D.
  • the horizontal axis of the graph shows the angle in the circumferential direction in the polar coordinate system with the radio wave sensor 10 as the origin, and the vertical axis of the graph shows the intensity of the radio wave received by the radio wave sensor 10.
  • a straight line passing through 0 ° on the horizontal axis regardless of the distance from the radio wave sensor 10 forms the center of the fan-shaped area and both ends of the arc of the fan-shaped area when the shape of the area where the radio wave is emitted is fan-shaped.
  • the angle corresponding to the peak point is the angle of existence of the object.
  • the installation worker specifies the position of the object from the intensity distribution shown in FIG. 8, the installation worker confirms the object existing at the position in the real space corresponding to the position by the image of the camera or visually. Then, if the object is a utility pole or a tree, the installation worker determines that the object is not the detection target of the radio wave sensor 10.
  • the effective angle range C may have a size larger than a certain level so that the peak point can be detected.
  • the minimum necessary effective angle range C corresponding to the detection area T2 is set, so that the effective angle range C may be too small.
  • the effective angle range C is set to a width equal to or larger than the reference value in advance, so that the setting of the effective angle range C that is too narrow is prevented.
  • 0 ° in FIG. 9 is the center of the fan-shaped area and the fan-shaped area when the shape of the area where the radio wave is radiated is fan-shaped. Let 0 ° be the straight line connecting the midpoint of the line segment connecting both ends of the arc.
  • the reference value may be different for each distance band D, or may be a uniform value regardless of the distance band D. Further, the reference value does not have to be a preset value, and may be appropriately set according to the intensity distribution of the reflected wave, or may be changed during the operation of the radio wave sensor 10.
  • step S16 of FIG. 3 the processing device 110 sets the sizes of the angle bands A1 and A2 for each distance band D.
  • the processing device 110 of the embodiment performs the estimation processing S24 of the arrival direction of the reflected wave for each of the predetermined angle bands A1 and A2.
  • the angle bands A1 and A2 indicate an angle range in the angle direction with respect to the radio wave sensor 10.
  • the first angle band A1 in the first distance band D1, the first angle band A1 is set, and in the second distance band D2, which is farther from the radio wave sensor 10 than the first distance band D1, the second angle band A2 is set. It is set.
  • the first angle band A1 and the second angle band A2 have different angle ranges, and more specifically, the first angle band A1 is narrower than the second angle band A2.
  • the angle range of the first angle band A1 is, for example, 1 °
  • the angle range of the second angle band A2 is, for example, 0.5 °.
  • the size of the angle bands A1 and A2 defines the resolution of the reflection intensity distribution.
  • the angle bands A1 and A2 correspond to the resolution of the radio wave sensor 10 in the circumferential direction of the polar coordinate system with the radio wave sensor 10 as the origin. If the angle bands A1 and A2 are large, the resolution becomes coarse, and if the angle bands A1 and A2 are small, the resolution becomes fine.
  • the physical range corresponding to the effective angle range C is relatively narrow. Therefore, in the first distance band D1, even if the first angle band A1 is increased and the resolution becomes coarse, the physical range is originally narrow, so that sufficient resolution is ensured.
  • the second distance band D2 which is relatively far from the radio wave sensor 10, even if the effective angle range C is narrow, the physical range corresponding to the effective angle range C is not narrow. Therefore, in the second distance band D2, sufficient resolution is ensured by making the second angle band A2 smaller and making the resolution finer.
  • FIG. 11 shows an example of effective range data 123 showing a plurality of angle bands A1 and A2 set within the effective range.
  • the angle unit in which the valid “1” or the invalid “0” can be set is 0.5 ° in each distance band.
  • "1" indicating validity is set for each 1 °
  • "1" indicating invalidity is set.
  • "0" is set to ⁇ 0.5 °, 0.5 °, 1.5 °, 2.5 °, etc. That is, in the first distance band D1, the first angle band A1 in units of 1 degree is set. Therefore, in the first distance band D1, the arrival direction is estimated every 1 °.
  • the angle bands A1 and A2 may be set automatically by the processing device 110 according to the distance band, or may be manually set by the user when the processing device 110 accepts an operation by the user.
  • step S17 of FIG. 2 the processing device 110 stores the effective range data 123 set as described above in the storage device 120.
  • the stored effective range data 123 is referred to by the processing device 110 when estimating the arrival direction of the reflected wave.
  • FIG. 12 shows the procedure of the object detection process 113 executed by the radio wave sensor 10.
  • the transmitter 11 of the radio wave sensor 10 radiates a transmitted wave for detecting an object.
  • the receiver 13 of the radio wave sensor receives the reflected wave in which the emitted transmitted wave is reflected by the object.
  • the received signal of the reflected wave received by the receiver 13 is given to the signal processing device 15.
  • the signal processing device 15 feeds the received data to the processing device 110.
  • the received data is, for example, digital data showing a reflected wave.
  • step S23 the processing device 110 executes the distance profile calculation process.
  • the distance to the object is calculated by the time required from the time when the transmitter 11 transmits the transmitted wave to the time when the receiver 13 receives the reflected wave. This required time is the time required for the radio wave to reciprocate between the radio wave sensor 10 and the object. Therefore, the processing device 110 can obtain the distance from the radio wave sensor 10 to the object from this required time.
  • the processing device 110 calculates the distance profile by performing a fast Fourier transform (FFT) on the received data in the distance profile calculation process.
  • FFT fast Fourier transform
  • step S24 the processing device 110 executes estimation processing of the arrival direction of the reflected wave based on the received data of the reflected wave.
  • the arrival direction is calculated based on the phase difference of the reflected wave between the plurality of antenna elements of the receiver 13.
  • the estimation process in the arrival direction is executed only within the effective range indicated by the effective range data 123, and is not executed outside the effective range, that is, in the invalid range F. Since the processing device 110 does not execute the estimation process in the invalid range F, the calculation load of the processing device 110 is reduced.
  • the radio wave sensor has a plurality of antennas, and each antenna receives the reflected wave from the object at the incident angle ⁇ .
  • Each antenna generates a received signal (received data) based on the received reflected wave, and the radio wave sensor takes the sum of the received signals generated by each antenna.
  • the radio wave sensor generates a composite signal by synthesizing the received signals generated by each antenna.
  • the radio wave sensor multiplies the received signal of each antenna by a weighting function and then sums the received signals.
  • the weighting function is a function for making the received signals of each antenna in phase, and includes the incident angle ⁇ as a variable.
  • the combined signal which is the sum of each received signal, is also a function that includes the incident angle ⁇ as a variable.
  • the radio wave sensor calculates the signal strength (radio wave strength) of the composite signal by multiplying the square of the absolute value of the amplitude of the composite signal by a coefficient.
  • the signal strength of the combined signal is also a function that includes the incident angle ⁇ as a variable.
  • the radio wave sensor calculates the signal strength of the combined signal while changing the value of the incident angle ⁇ within the maximum angle range.
  • a signal intensity distribution showing a change in the signal intensity of the combined signal according to the change in the angle (incident angle ⁇ ) shown in FIG. 8 can be obtained.
  • the radio wave sensor estimates the angle corresponding to the peak of the signal intensity distribution as the arrival direction of the reflected wave.
  • the radio wave sensor makes this estimation for each distance band.
  • a method of manipulating the phase of the received signal of each antenna over a certain angle range and searching for a direction in which the value of the signal strength increases is generally used for the estimation process of the arrival direction.
  • the beamformer method, the Capon method, and the linear prediction method use the above method for the estimation process in the arrival direction.
  • the process of changing the incident angle ⁇ to calculate the signal strength of the combined signal is limited to the angle (incident angle) included in the effective range. For example, if 0 ° to 90 ° is an effective range, the above calculation is performed in the range of 0 ° to 90 ° and not in the range of ⁇ 90 ° to less than 0 °. This reduces the computational load.
  • the description of the object detection process of FIG. 24 will be returned to.
  • the processing device 110 In order to execute the estimation process only within the effective range, the processing device 110 reads the effective range data 123 from the storage device 120 and grasps the effective range. The processing device 110 executes the estimation process only at the angle indicated by "1" in each distance band D in the effective range data 123. The processing device 110 does not execute the estimation process at the angle indicated by "0".
  • the received data Since the reflected wave comes from outside the effective range, that is, from the invalid range, the received data also shows information about the reflected wave from outside the effective range. That is, the received data is data obtained by the radio wave sensor 10 receiving the reflected wave from within the effective range and outside the effective range.
  • the processing device 110 reduces the calculation load by omitting the estimation processing for the outside of the effective range while using the received data including the information outside the effective range.
  • the reflected intensity of the reflected wave is calculated in each of the set angle bands A1 and A2 for each distance band D indicated by the effective range data 123. That is, the processing device 110 calculates the reflected intensity of the reflected wave only at the angle indicated by "1" in each distance band D in the effective range data 123. The processing device 110 does not calculate the reflection intensity at the angle indicated by "0".
  • the calculated reflection intensity is stored in the reflection intensity data 125.
  • FIG. 13 shows an example of the reflection intensity data 125.
  • the reflection intensity data 125 is configured to store the reflection intensity at each position within a preset maximum range.
  • the reflection intensity is the reception intensity of the reflected wave received by the receiver 120.
  • the value of the reception intensity may be referred to as the reflection intensity value.
  • the maximum range here is the same as the maximum range of the effective range data 123. That is, the maximum range is defined by the maximum distance from the radio wave sensor 10 and the maximum angle range M.
  • the maximum distance is, for example, 100 m from the radio wave sensor 10.
  • the maximum angle range M is, for example, ⁇ 90 ° to 90 ° as shown in FIG.
  • the effective range is a part of the maximum range. Since the reflection intensity data 125 can store the reflection intensity within the maximum range in which the radio wave sensor 10 can detect an object, it can correspond to an effective range of various sizes or shapes.
  • the reflection intensity data 125 shown in FIG. 13 is configured to be able to store the reflection intensity at each angle for each distance band D.
  • the reflection intensity data 125 of FIG. 13 shows, as an example, the reflection intensity v at each angle in the first distance band D1 and the reflection intensity v at each angle in the second distance band D2.
  • the reflection intensity data 125 Since the maximum range in the reflection intensity data 125 is wider than the effective range, the reflection intensity data 125 includes the first range R corresponding to the effective range (effective angle range C1 and C2 in each distance band D) and the outside of the effective range (the effective range R). It has a second range N corresponding to the invalid range).
  • the reflection intensity v which is the result of the executed estimation process, is stored in the first range R corresponding to the effective angle ranges C1 and C2.
  • the second range N corresponding to the outside of the effective range (invalid range F)
  • a value indicating that the estimation process is not executed is stored in the second range N corresponding to the outside of the effective range (invalid range F).
  • the value indicating that the estimation process has not been executed indicates, for example, a value that the reflection intensity v cannot take.
  • the value that the reflection intensity v cannot take is, for example, a null value.
  • the reflection intensity data 125 has a region for storing the reflection intensity even outside the effective range of the estimation process. Therefore, when a value (for example, 0) that the reflection intensity can take is stored in the region where the estimation process is not executed, the processing device 110 estimates the reflection intensity in the region where the estimation process is not executed. There is a risk of misrecognition as the resulting value. On the other hand, in the second range N corresponding to the outside of the effective range (invalid range F), a value indicating that the estimation process is not executed is stored, so that the erroneous recognition is prevented.
  • the reflection intensity data 125 obtained by the estimation process in step S24 shows the reflection intensity spectrum for each of the plurality of distance bands D.
  • the reflection intensity spectrum obtained in step S24 corresponds to the distribution within the effective angle range C among the intensity distributions shown in FIG. That is, in the estimation process of step S24, the intensity distribution in the invalid range F in FIG. 8 is not obtained.
  • step S25 if the difference between the maximum point P and the minimum points V1 and V2 in the reflection intensity distribution within the effective angle range C is equal to or greater than the threshold value, the maximum point P is the peak point corresponding to the object. (See FIG. 8).
  • the angle corresponding to the peak point is the angle of existence of the object.
  • the processing device 110 is based on the distance from the radio wave sensor 10 to the distance zone D where the peak point exists and the angle at which the peak point exists when the radio wave sensor 10 is the origin of the polar coordinate system. , Detects the position where the object exists.
  • the processing device 110 obtains two-dimensional position coordinates indicating where the object exists in the detection area T1. As a result, it is possible to obtain the movement locus of a pedestrian or the like in the detection area T1.
  • each process (each function) of the above-described embodiment can be realized by a process circuit.
  • each process of the present embodiment can be realized by a processor that operates based on information such as a program and a storage device (memory) that stores information such as a program.
  • the functions of each part may be realized by individual hardware, or the functions of each part may be realized by integrated hardware.
  • the processor includes hardware, which hardware can include at least one of a circuit that processes a digital signal and a circuit that processes an analog signal.
  • a processor can be composed of one or more circuit devices (eg, ICs, etc.) mounted on a circuit board, or one or more circuit elements (eg, resistors, capacitors, etc.).
  • the processor may be, for example, a CPU. However, the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) can be used. Further, the processor may be a hardware circuit by ASIC. Further, the processor may be configured by a plurality of CPUs or may be configured by a hardware circuit by a plurality of ASICs. Further, the processor may be configured by a combination of a plurality of CPUs and a hardware circuit by a plurality of ASICs. Further, the processor may include an amplifier circuit, a filter circuit, and the like for processing an analog signal.
  • the memory may be a semiconductor memory such as SRAM or DRAM, a register, a magnetic storage device such as a hard disk device, or an optical storage device such as an optical disk device. You may.

Abstract

A radio wave sensor according to the present disclosure comprises: a transmitter that transmits radio waves; a receiver that receives reflected waves due to reflection of the radio waves from an object; a storage device that stores effective range data indicating an effective range which is set in a detection area for the radio wave sensor and in which the object is to be detected; and a processing device configured to perform an estimation process for estimating a direction of arrival of the reflected waves on the basis of reception data generated on the basis of the reflected waves. The reception data is obtained through reception by the receiver of the reflected waves from within the effective range and the reflected waves from a non-effective range which corresponds to the detection area excluding the effective range and in which the object is not to be detected. The processing device only performs the estimation process in the effective range indicated by the effective range data.

Description

電波センサ、物体検知方法および設定方法Radio wave sensor, object detection method and setting method
 本開示は、電波センサ、物体検知方法および設定方法に関する。
 本出願は、2020年5月28日出願の日本出願第2020-093071号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to radio wave sensors, object detection methods and setting methods.
This application claims priority based on Japanese Application No. 2020-93071 filed on May 28, 2020, and incorporates all the contents described in the Japanese application.
 特許文献1は、道路に設置された電波センサを開示している。特許文献2は、横断歩道を含むよう設定された対象エリア内に設置された参照物体の方向を測定することで、道路に設置された電波センサの向きのずれを認識することを開示している。 Patent Document 1 discloses a radio wave sensor installed on a road. Patent Document 2 discloses that by measuring the direction of a reference object installed in a target area set to include a pedestrian crossing, it is possible to recognize a deviation in the direction of a radio wave sensor installed on a road. ..
 特許文献3は、車両に搭載されたレーダ装置を開示している。 Patent Document 3 discloses a radar device mounted on a vehicle.
特開2017-90138号公報Japanese Unexamined Patent Publication No. 2017-90138 特開2018-162977号公報Japanese Unexamined Patent Publication No. 2018-162977 特開2008-275460号公報Japanese Unexamined Patent Publication No. 2008-275460
 本開示のある側面は、電波センサである。本開示の電波センサは、電波を送信する送信器と、前記電波が物体から反射した反射波を受信する受信器と、前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶する記憶装置と、前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行するよう構成された処理装置と、を備え、前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータであり、前記処理装置は、前記有効範囲データが示す前記有効範囲に限定して、前記推定処理を実行する。 One aspect of this disclosure is the radio wave sensor. The radio wave sensor of the present disclosure includes a transmitter that transmits radio waves, a receiver that receives reflected waves from which the radio waves are reflected from an object, and an effective detection target set in the detection area of the radio wave sensor. It includes a storage device that stores effective range data indicating a range, and a processing device configured to perform estimation processing of the arrival direction of the reflected wave based on the received data generated based on the reflected wave. The received data includes the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not a detection target. It is the data obtained by receiving the receiver, and the processing apparatus executes the estimation process only in the effective range indicated by the effective range data.
 本開示の他の側面は、電波を送信する送信器と前記電波が物体から反射した反射波を受信する受信器とを備える電波センサによる物体検知方法である。本開示の方法は、前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶すること、前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行すること、を備え、前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータであり、前記推定処理は、前記有効範囲データが示す前記有効範囲に限定して実行される。 Another aspect of the present disclosure is an object detection method using a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object. The method of the present disclosure stores the effective range data indicating the effective range for which the object is to be detected, which is set in the detection area of the radio wave sensor, and is based on the received data generated based on the reflected wave. The received data includes the reflected wave from within the effective range and the range obtained by removing the effective range from the detection area. The data is obtained by the receiver receiving the reflected wave from an invalid range in which the object is not a detection target, and the estimation process is executed only in the effective range indicated by the effective range data. NS.
 本開示の他の側面は、電波を送信する送信器と前記電波が物体から反射した反射波を受信する受信器とを備える電波センサの検知エリアにおいて前記物体が検知対象となる有効範囲を設定する設定方法である。本開示の方法は、前記反射波の反射強度値の強度分布を示す情報を表示すること、前記強度分布を示す情報に基づいて、前記検知エリアに存在する前記物体の位置を特定すること、前記位置に対応する実空間上の位置に存在する前記物体が前記電波センサの検知対象か否かを判別すること、前記判別の結果に基づいて、前記物体が検知対象となる有効範囲を設定すること、を備える設定方法。 Another aspect of the present disclosure sets an effective range in which the object is to be detected in a detection area of a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object. This is the setting method. The method of the present disclosure is to display information indicating the intensity distribution of the reflected intensity value of the reflected wave, to specify the position of the object existing in the detection area based on the information indicating the intensity distribution, and the above-mentioned. Determining whether or not the object existing at a position in the real space corresponding to the position is the detection target of the radio wave sensor, and setting an effective range in which the object is the detection target based on the result of the determination. A setting method that includes.
図1は、電波センサの概略構成図である。FIG. 1 is a schematic configuration diagram of a radio wave sensor. 図2は、検知エリアの一例を示す概略図である。FIG. 2 is a schematic view showing an example of the detection area. 図3は、有効範囲設定処理のフローチャートである。FIG. 3 is a flowchart of the effective range setting process. 図4は、検知エリアと有効範囲との関係を示す概略図である。FIG. 4 is a schematic diagram showing the relationship between the detection area and the effective range. 図5は、検知エリアの他の例を示す概略図である。FIG. 5 is a schematic diagram showing another example of the detection area. 図6は、検知エリアの他の例を示す概略図である。FIG. 6 is a schematic diagram showing another example of the detection area. 図7は、有効範囲データのデータ構造図である。FIG. 7 is a data structure diagram of effective range data. 図8は、距離帯における反射強度分布である。FIG. 8 shows the reflection intensity distribution in the distance zone. 図9は、距離帯における反射強度分布である。FIG. 9 shows the reflection intensity distribution in the distance zone. 図10は、角度帯の概略図である。FIG. 10 is a schematic view of an angle band. 図11は、有効範囲データのデータ構造図である。FIG. 11 is a data structure diagram of effective range data. 図12は、物体検知処理のフローチャートである。FIG. 12 is a flowchart of the object detection process. 図13は、反射強度データのデータ構造図である。FIG. 13 is a data structure diagram of the reflection intensity data.
 特許文献1は、道路に設置された電波センサを開示している。特許文献1の電波センサは、横断歩道を含むよう設定された対象エリアに電波を放射し、物体を検知する。特許文献2は、横断歩道を含むよう設定された対象エリア内に設置された参照物体の方向を測定することで、道路に設置された電波センサの向きのずれを認識することを開示している。 Patent Document 1 discloses a radio wave sensor installed on a road. The radio wave sensor of Patent Document 1 radiates radio waves to a target area set to include a pedestrian crossing and detects an object. Patent Document 2 discloses that by measuring the direction of a reference object installed in a target area set to include a pedestrian crossing, it is possible to recognize a deviation in the direction of a radio wave sensor installed on a road. ..
 特許文献3は、車両に搭載されたレーダ装置を開示している。特許文献3のレーダ装置は、車両からの距離によって目標物体の検知角度範囲を変化させることを開示している。特許文献3のレーダ装置は、近距離の場合は検知角度範囲を広くし、遠距離の場合は検知角度範囲を狭くする。 Patent Document 3 discloses a radar device mounted on a vehicle. The radar device of Patent Document 3 discloses that the detection angle range of a target object is changed depending on the distance from the vehicle. The radar device of Patent Document 3 widens the detection angle range in the case of a short distance and narrows the detection angle range in the case of a long distance.
[本開示が解決しようとする課題] [Problems to be solved by this disclosure]
 道路等にインフラストラクチャーとして設置される電波センサの場合、電波センサが物体を検知する為に監視するエリアである検知エリアが設定されることがある。なお、特許文献1及び特許文献2において、検知エリアは、対象エリアとして記載されている。 In the case of a radio wave sensor installed as an infrastructure on a road or the like, a detection area, which is an area monitored by the radio wave sensor to detect an object, may be set. In Patent Document 1 and Patent Document 2, the detection area is described as a target area.
 設定された検知エリアを監視する電波センサの場合、特許文献3のように、単に距離に応じて角度範囲が異なるだけでは、検知エリアの形状によっては、電波センサにおいて無駄な演算処理が発生することがある。例えば、特許文献3のレーダ装置のように、近距離の場合は角度範囲が広く設定されており、遠距離の場合は角度範囲が狭く設定されていても、検知エリアの形状又は電波センサの設置場所によっては検知エリアが適切にカバーされないこともある。検知エリアの形状又は電波センサの設置場所によっては、近距離の場合に角度範囲が狭く設定されるべき場合もある。また、検知エリア内に物体検知が不要なエリアが設定されることもある。そのような場合も、単に距離に応じて角度範囲が異なるだけでは、無駄な演算が発生する。 In the case of a radio wave sensor that monitors a set detection area, as in Patent Document 3, if the angle range is simply different depending on the distance, unnecessary arithmetic processing may occur in the radio wave sensor depending on the shape of the detection area. There is. For example, as in the radar device of Patent Document 3, even if the angle range is set wide in the case of a short distance and the angle range is set narrow in the case of a long distance, the shape of the detection area or the installation of the radio wave sensor Depending on the location, the detection area may not be covered properly. Depending on the shape of the detection area or the installation location of the radio wave sensor, the angle range may need to be set narrower in the case of a short distance. In addition, an area that does not require object detection may be set in the detection area. Even in such a case, if the angle range is simply different depending on the distance, useless calculation occurs.
 このように、検知エリアの形状及び電波センサの設置場所は、様々であるため、単に距離に応じて角度範囲が異なるだけでは、電波センサによって無駄な演算処理が発生することがある。 As described above, since the shape of the detection area and the installation location of the radio wave sensor are various, if the angle range is simply different depending on the distance, the radio wave sensor may generate unnecessary arithmetic processing.
 したがって、無駄な演算処理を抑えることが望まれる。 Therefore, it is desirable to suppress unnecessary arithmetic processing.
[本開示の効果] [Effect of this disclosure]
 本開示によれば、無駄な演算処理を抑えることができる。 According to the present disclosure, unnecessary arithmetic processing can be suppressed.
[本開示の実施形態の説明] [Explanation of Embodiments of the present disclosure]
(1)実施形態に係る電波センサは、電波を送信する送信器と、前記電波が物体から反射した反射波を受信する受信器と、前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶する記憶装置と、前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行するよう構成された処理装置と、を備え、前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータであり、前記処理装置は、前記有効範囲データが示す前記有効範囲に限定して、前記推定処理を実行する。有効範囲内に限定して推定処理が実行されるため、無駄な演算処理を抑えることができる。 (1) The radio wave sensor according to the embodiment is detected by a transmitter that transmits radio waves, a receiver that receives reflected waves from which the radio waves are reflected from an object, and the object set in the detection area of the radio wave sensor. A storage device that stores effective range data indicating a target effective range, and a processing device configured to execute estimation processing of the arrival direction of the reflected wave based on received data generated based on the reflected wave. The received data includes the reflected wave from the effective range and the reflection from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is data obtained by receiving a wave by the receiver, and the processing apparatus executes the estimation process only in the effective range indicated by the effective range data. Since the estimation process is executed only within the effective range, unnecessary arithmetic processing can be suppressed.
(2)前記処理装置は、前記検知エリアを示す検知エリアデータに基づいて前記有効範囲データを生成する有効範囲設定処理を更に実行するよう構成されていてもよい。この場合、処理装置が有効範囲を設定できる。なお、電波センサは、外部で設定された有効範囲データを取得して、記憶してもよい。 (2) The processing device may be configured to further execute the effective range setting process for generating the effective range data based on the detection area data indicating the detection area. In this case, the processing device can set the effective range. The radio wave sensor may acquire and store the effective range data set externally.
(3)前記有効範囲データは、前記電波センサを原点とする極座標系の動径方向における距離範囲である距離帯の値と、前記極座標系の周方向における角度範囲の値と、を含んでいてもよい。この場合、極座標系で有効範囲が設定される。 (3) The effective range data includes a value of a distance band which is a distance range in the radial direction of a polar coordinate system with the radio wave sensor as an origin, and a value of an angle range in the circumferential direction of the polar coordinate system. May be good. In this case, the effective range is set in the polar coordinate system.
(4)前記記憶装置は、前記反射波の反射強度値を示す反射強度データを記憶していてもよい。前記角度範囲の値は、前記反射強度値の強度分布に基づいて決定される基準値以上であってもよい。この場合、有効範囲が小さくなりすぎるのを防止できる。 (4) The storage device may store reflection intensity data indicating the reflection intensity value of the reflected wave. The value in the angle range may be greater than or equal to the reference value determined based on the intensity distribution of the reflection intensity value. In this case, it is possible to prevent the effective range from becoming too small.
(5)前記反射強度データは、予め設定された最大範囲における前記反射強度データを格納可能に構成されていてもよい。前記有効範囲は、前記最大範囲内の一部の範囲であり、前記反射強度データは、前記有効範囲に対応した第1範囲と、前記無効範囲に対応した第2範囲と、を有していてもよい。前記第1範囲には前記反射波の反射強度値が格納され、前記第2範囲には前記推定処理が行われていないことを示す値が格納されていてもよい。この場合、反射強度データにおいて、推定処理が行われてない箇所の判別が可能である。 (5) The reflection intensity data may be configured to be able to store the reflection intensity data in a preset maximum range. The effective range is a part of the maximum range, and the reflection intensity data has a first range corresponding to the effective range and a second range corresponding to the invalid range. May be good. The reflection intensity value of the reflected wave may be stored in the first range, and a value indicating that the estimation process has not been performed may be stored in the second range. In this case, it is possible to discriminate the portion of the reflection intensity data where the estimation process has not been performed.
(6)前記電波センサには、前記極座標系の周方向における前記電波センサの分解能である角度帯が設定されていてもよい。前記処理装置は、前記推定処理において、前記有効範囲内に設定された複数の前記角度帯毎に、前記到来方向を推定するよう構成されていてもよい。前記複数の角度帯は、第1角度帯と、前記第1角度帯とは角度範囲が異なる第2角度帯と、を含んでいてもよい。この場合、異なる角度帯毎に到来方向を推定できる。 (6) The radio wave sensor may be set with an angle band which is the resolution of the radio wave sensor in the circumferential direction of the polar coordinate system. The processing device may be configured to estimate the arrival direction for each of a plurality of the angle bands set within the effective range in the estimation process. The plurality of angle bands may include a first angle band and a second angle band having an angle range different from that of the first angle band. In this case, the arrival direction can be estimated for each different angle band.
(7)複数の前記距離帯は、前記第1角度帯を有する第1距離帯と、前記第2角度帯を有する第2距離帯と、を含んでいてもよい。この場合、第1距離帯と第2距離帯とが、それぞれ、異なる角度帯を有することができる。 (7) The plurality of distance bands may include a first distance band having the first angle band and a second distance band having the second angle band. In this case, the first distance band and the second distance band can each have different angle bands.
(8)前記第2距離帯の前記電波センサからの距離は、前記第1距離帯の前記電波センサからの距離より長く、前記第2角度帯の角度範囲は、前記第1角度帯の角度範囲より小さくてもよい。この場合、電波センサから遠方ほど電波センサの分解能が高くなる。 (8) The distance from the radio wave sensor in the second distance band is longer than the distance from the radio wave sensor in the first distance band, and the angle range of the second angle band is the angle range of the first angle band. It may be smaller. In this case, the farther from the radio wave sensor, the higher the resolution of the radio wave sensor.
(9)前記推定処理は、前記受信データに基づいて前記電波センサに対する前記反射波の入射角を変数とする前記反射波の反射強度値を算出し、前記反射強度値の強度分布のピークに基づいて前記反射波の到来方向を決定する処理であってもよい。前記処理装置は、前記反射強度値を前記有効範囲データが示す前記有効範囲に限定して算出してもよい。この場合、反射強度値の算出が有効範囲データに限定されるので、演算負荷が抑えられる。 (9) The estimation process calculates the reflected intensity value of the reflected wave with the incident angle of the reflected wave on the radio wave sensor as a variable based on the received data, and is based on the peak of the intensity distribution of the reflected intensity value. The process may be a process of determining the arrival direction of the reflected wave. The processing device may calculate the reflection intensity value by limiting it to the effective range indicated by the effective range data. In this case, since the calculation of the reflection intensity value is limited to the effective range data, the calculation load can be suppressed.
(10)実施形態に係る電波センサによる物体検知方法は、前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶すること、前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行すること、を備える。前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータである。前記推定処理は、前記有効範囲データが示す前記有効範囲に限定して実行される。実施形態に係るコンピュータプログラムは、処理装置に前述の処理を実行させる。コンピュータプログラムは、コンピュータ読み取り可能な、非一時的な記憶媒体に格納される。 (10) The object detection method by the radio wave sensor according to the embodiment is based on storing the effective range data indicating the effective range in which the object is to be detected, which is set in the detection area of the radio wave sensor, and the reflected wave. It is provided to execute the estimation process of the arrival direction of the reflected wave based on the received data generated in the above. The received data receives the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is the data obtained by receiving the device. The estimation process is executed only in the effective range indicated by the effective range data. The computer program according to the embodiment causes the processing apparatus to execute the above-mentioned processing. Computer programs are stored on computer-readable, non-temporary storage media.
(11)実施形態に係る電波センサによる設定方法は、前記反射波の反射強度値の強度分布を示す情報を表示すること、前記強度分布を示す情報に基づいて、前記検知エリアに存在する前記物体の位置を特定すること、前記位置に対応する実空間上の位置に存在する前記物体が前記電波センサの検知対象か否かを判別すること、前記判別の結果に基づいて、前記物体が検知対象となる有効範囲を設定すること、を備える。実施形態に係るコンピュータプログラムは、処理装置に前述の処理を実行させる。コンピュータプログラムは、コンピュータ読み取り可能な、非一時的な記憶媒体に格納される。 (11) The setting method using the radio wave sensor according to the embodiment is to display information indicating the intensity distribution of the reflected intensity value of the reflected wave, and based on the information indicating the intensity distribution, the object existing in the detection area. The object is to be detected based on the result of the determination, the determination of whether or not the object existing in the position in the real space corresponding to the position is the detection target of the radio wave sensor, and the result of the determination. It is provided to set the effective range. The computer program according to the embodiment causes the processing apparatus to execute the above-mentioned processing. Computer programs are stored on computer-readable, non-temporary storage media.
[本開示の実施形態の詳細] [Details of Embodiments of the present disclosure]
 図1は、実施形態に係る電波センサ10を示している。実施形態に係る電波センサ10は、例えば、道路における車両の監視、又は、歩道又は横断歩道における歩行者の監視に用いられる。電波センサ10は、例えば、インフラストラクチャーである道路設備として設置される。実施形態に係る電波センサ10は、インフラストラクチャー電波センサ又はインフラストラクチャーレーダとも呼ばれる。実施形態に係る電波センサ10は、車両に搭載される電波センサとは異なり、電波センサ10が物体を検知する領域である検知エリア近傍のインフラに固定された状態で設置される。 FIG. 1 shows a radio wave sensor 10 according to an embodiment. The radio wave sensor 10 according to the embodiment is used, for example, for monitoring a vehicle on a road or monitoring a pedestrian on a sidewalk or a pedestrian crossing. The radio wave sensor 10 is installed, for example, as road equipment which is an infrastructure. The radio wave sensor 10 according to the embodiment is also referred to as an infrastructure radio wave sensor or an infrastructure radar. Unlike the radio wave sensor mounted on the vehicle, the radio wave sensor 10 according to the embodiment is installed in a state of being fixed to the infrastructure near the detection area, which is the area where the radio wave sensor 10 detects an object.
 実施形態に係る電波センサ10は、図2に例示される検知エリアT1内の物体を監視するために設置される。検知エリアT1は、電波センサ10による監視領域である。図2では、検知エリアT1は、横断歩道200を含む範囲として設置される。この場合、電波センサ10は、検知エリアT1内を移動する歩行者等の物体を検知する。 The radio wave sensor 10 according to the embodiment is installed to monitor an object in the detection area T1 exemplified in FIG. The detection area T1 is a monitoring area by the radio wave sensor 10. In FIG. 2, the detection area T1 is installed as a range including the pedestrian crossing 200. In this case, the radio wave sensor 10 detects an object such as a pedestrian moving in the detection area T1.
 なお、検知エリアT1は、車両が走行する道路を含む範囲として設置されてもよい。この場合、電波センサ10は、検知エリアT1内を移動する車両等の物体を検知する。 The detection area T1 may be installed as a range including the road on which the vehicle travels. In this case, the radio wave sensor 10 detects an object such as a vehicle moving in the detection area T1.
 実施形態に係る電波センサ10は、照射した電波の反射によって物体を検知する。実施形態の電波センサ10は、ミリ波レーダセンサとして構成されている。図1に示すように、電波センサ10は、物体検知のための電波を送信する送信器11と、送信した電波の反射波を受信する受信器13と、信号処理装置15と、処理装置110と、記憶装置120と、通信インターフェース130と、を備える。受信器13は、反射波の受信信号を信号処理装置15に出力する。電波センサ10は、電波センサ10から物体まで距離と、物体の存在角度と、を求める。距離と角度から、物体の2次元位置座標が特定される。なお、送信器11と受信器13は別々の装置でもよいし、1つの装置でもよい。 The radio wave sensor 10 according to the embodiment detects an object by the reflection of the irradiated radio wave. The radio wave sensor 10 of the embodiment is configured as a millimeter wave radar sensor. As shown in FIG. 1, the radio wave sensor 10 includes a transmitter 11 that transmits a radio wave for detecting an object, a receiver 13 that receives a reflected wave of the transmitted radio wave, a signal processing device 15, and a processing device 110. , A storage device 120, and a communication interface 130. The receiver 13 outputs the received signal of the reflected wave to the signal processing device 15. The radio wave sensor 10 obtains the distance from the radio wave sensor 10 to the object and the existence angle of the object. The two-dimensional position coordinates of the object are specified from the distance and the angle. The transmitter 11 and the receiver 13 may be separate devices or may be one device.
 電波センサ10は、信号処理装置15を備える。信号処理装置15は、反射波の受信信号に対して信号処理を施した受信データを処理装置110へ出力する。処理装置110は、例えば、CPU(Central Processing Unit)である。 The radio wave sensor 10 includes a signal processing device 15. The signal processing device 15 outputs the received data obtained by processing the received signal of the reflected wave to the processing device 110. The processing device 110 is, for example, a CPU (Central Processing Unit).
 実施形態に係る処理装置110は、有効範囲設定処理111を実行する。また、実施形態に係る処理装置110は、物体検知処理113を実行する。有効範囲設定処理111及び物体検知処理113については後述する。 The processing device 110 according to the embodiment executes the effective range setting process 111. Further, the processing device 110 according to the embodiment executes the object detection processing 113. The effective range setting process 111 and the object detection process 113 will be described later.
 電波センサ10は、処理装置110に接続された記憶装置120を備える。記憶装置120は、例えば、一次記憶装置及び二次記憶装置を有する。一次記憶装置は、例えば、RAM(Random access memory)である。二次記憶装置は、例えば、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)である。 The radio wave sensor 10 includes a storage device 120 connected to the processing device 110. The storage device 120 includes, for example, a primary storage device and a secondary storage device. The primary storage device is, for example, a RAM (Random access memory). The secondary storage device is, for example, a hard disk drive (HDD) or a solid state drive (SSD).
 記憶装置120は、検知エリアデータ121及び有効範囲データ123を記憶する。また、記憶装置120は、反射強度データ125を記憶する。検知エリアデータ121、有効範囲データ123、及び反射強度データ125については後述する。 The storage device 120 stores the detection area data 121 and the effective range data 123. Further, the storage device 120 stores the reflection intensity data 125. The detection area data 121, the effective range data 123, and the reflection intensity data 125 will be described later.
 記憶装置120には、コンピュータプログラム150が格納されている。コンピュータプログラム150は、処理装置110に有効範囲設定処理111を実行させる。コンピュータプログラム150は、処理装置110に有効範囲設定処理111を実行させるためのプログラムコードを備える。またコンピュータプログラム150は、処理装置110に物体検知処理113を実行させる。コンピュータプログラム150は、処理装置110に物体検知処理113を実行させるプログラムコードを備える。処理装置110は、記憶装置120に格納されたコンピュータプログラム150を読み出して実行する。 The computer program 150 is stored in the storage device 120. The computer program 150 causes the processing device 110 to execute the effective range setting process 111. The computer program 150 includes a program code for causing the processing device 110 to execute the effective range setting process 111. Further, the computer program 150 causes the processing device 110 to execute the object detection process 113. The computer program 150 includes a program code for causing the processing device 110 to execute the object detection process 113. The processing device 110 reads out and executes the computer program 150 stored in the storage device 120.
 電波センサ10は、外部装置との間で通信をするための通信インタフェース130を備える。通信インタフェース130は、無線通信又は有線通信用のインターフェースである。電波センサ10は、通信インタフェース130を介して、外部装置との間でデータを送受信することができる。外部装置は、例えば、ネットワーク上のサーバであってもよいし、他の電波センサ又は電波センサ以外の路側センサであってもよいし、電波センサ10に接続された機器であってもよい。 The radio wave sensor 10 includes a communication interface 130 for communicating with an external device. The communication interface 130 is an interface for wireless communication or wired communication. The radio wave sensor 10 can transmit and receive data to and from an external device via the communication interface 130. The external device may be, for example, a server on a network, a roadside sensor other than another radio wave sensor or a radio wave sensor, or a device connected to the radio wave sensor 10.
 通信インタフェース130には、外部装置として、検知エリア設定装置20が接続される。検知エリア設定装置20は、検知エリアT1の設定のためのコンピュータプログラムが格納されたコンピュータである。検知エリアT1の設定作業者は、検知エリア設定装置20を用いて、検知エリアT1を設定する。検知エリアT1は、例えば、監視領域である横断歩道200の大きさ及び形状に応じて、横断歩道200及びその近傍を包含する大きさ及び形状に設定される。 A detection area setting device 20 is connected to the communication interface 130 as an external device. The detection area setting device 20 is a computer in which a computer program for setting the detection area T1 is stored. Setting the detection area T1 The worker sets the detection area T1 by using the detection area setting device 20. The detection area T1 is set to a size and shape including the pedestrian crossing 200 and its vicinity, for example, according to the size and shape of the pedestrian crossing 200 which is a monitoring area.
 検知エリア設定装置20は、設定作業者による決定エリア設定の操作に応じて、検知エリアT1を示す検知エリアデータ121を生成する。検知エリアデータ121は、検知エリアT1の大きさ及び形状を示す。検知エリアデータ121は、例えば、検知エリアT1近傍に設置された電波センサ10の位置を基準位置として、検知エリアデータ121の形状を画定するための座標データ等を含む。監視領域となる横断歩道又は道路の大きさ及び形状は、様々であるため、検知エリアT1の大きさ及び形状も様々である。検知エリアT1の設定作業によって、様々な監視領域に応じた適切な検知エリアT1が設定される。 The detection area setting device 20 generates the detection area data 121 indicating the detection area T1 in response to the operation of the determination area setting by the setting worker. The detection area data 121 indicates the size and shape of the detection area T1. The detection area data 121 includes, for example, coordinate data for defining the shape of the detection area data 121 with the position of the radio wave sensor 10 installed in the vicinity of the detection area T1 as a reference position. Since the size and shape of the pedestrian crossing or the road serving as the monitoring area are various, the size and shape of the detection area T1 are also various. By the setting work of the detection area T1, an appropriate detection area T1 corresponding to various monitoring areas is set.
 電波センサ10の処理装置110は、検知エリアT1のどこに物体が存在しているかを示す2次元位置座標を求めることができる。これにより、検知エリアT1内における、歩行者等の移動軌跡等を求めることができる。 The processing device 110 of the radio wave sensor 10 can obtain two-dimensional position coordinates indicating where an object exists in the detection area T1. As a result, it is possible to obtain the movement locus of a pedestrian or the like in the detection area T1.
 検知エリア設定装置20は、検知エリアデータ121を生成すると、検知エリアデータ121を電波センサ10へ出力する。電波センサ10は、通信インタフェース130を介して、検知エリアデータ121を受信すると、検知エリアデータ121を記憶装置120に保存する。保存された検知エリアデータ121は、電波センサ10の処理装置110による、有効範囲データ123の生成に用いられる。 When the detection area setting device 20 generates the detection area data 121, the detection area data 121 is output to the radio wave sensor 10. When the radio wave sensor 10 receives the detection area data 121 via the communication interface 130, the radio wave sensor 10 stores the detection area data 121 in the storage device 120. The stored detection area data 121 is used to generate the effective range data 123 by the processing device 110 of the radio wave sensor 10.
 図3は、処理装置110によって実行される有効範囲設定処理111の手順を示している。実施形態において、有効範囲は、電波センサ10からみた角度方向の有効範囲と距離方向の有効範囲とを有する。ここで角度方向とは、電波センサ10を原点とする極座標系の周方向を指し、距離方向とは、電波センサ10を原点とする極座標系の動径方向(半径方向)を指す。ステップS11において、処理装置110は、記憶装置120から検知エリアデータ121を読み出す。ステップS12において、処理装置110は、検知エリアデータ121が示す検知エリアT1(第1検知エリア)の周囲に所定幅のマージンを確保した第2検知エリアT2を設定する。図4は、第1検知エリアT1及び第2検知エリアT2(マージン付き検知エリアT2)を示している。なお、第1検知エリアT1の周囲のマージンは確保されていなくてもよいが、マージンを確保すると、第1検知エリアT1外であるが、マージン内の物体を検知でき有利である。 FIG. 3 shows the procedure of the effective range setting process 111 executed by the processing device 110. In the embodiment, the effective range has an effective range in the angular direction and an effective range in the distance direction as seen from the radio wave sensor 10. Here, the angular direction refers to the circumferential direction of the polar coordinate system with the radio wave sensor 10 as the origin, and the distance direction refers to the radial direction (radial direction) of the polar coordinate system with the radio wave sensor 10 as the origin. In step S11, the processing device 110 reads the detection area data 121 from the storage device 120. In step S12, the processing device 110 sets a second detection area T2 having a predetermined width margin around the detection area T1 (first detection area) indicated by the detection area data 121. FIG. 4 shows a first detection area T1 and a second detection area T2 (a detection area T2 with a margin). The margin around the first detection area T1 may not be secured, but if the margin is secured, an object outside the first detection area T1 but within the margin can be detected, which is advantageous.
 ステップS13において、処理装置110は、第2検知エリアT2をカバーするために必要な有効角度範囲Cを複数の距離帯D毎に設定する。距離帯Dは、電波センサ10を原点とする極座標系の動径方向における距離範囲である。例えば、電波センサ10から動径方向に10mの距離を距離A、電波センサ10から動径方向に20mの距離を距離B、電波センサ10から動径方向に30mの距離を距離C、電波センサ10から動径方向に40mの距離を距離Dと定義する。この場合、距離Aと距離Bとの間の範囲が、動径方向における10mから20mの距離範囲で定義される距離帯Dであり、距離Bと距離Cとの間の範囲が、動径方向における20mから30mの距離範囲で定義される距離帯Dであり、距離Cと距離Dとの間の範囲が、動径方向における30mから40mの距離範囲で定義される距離帯Dである。距離帯Dは、例えば、1m単位で設定されるが、距離帯Dの単位は特に限定されない。例えば、第2検知エリアT2が電波センサ10から20m先まで存在する場合、1m単位の距離帯Dが20個設定される。距離帯D毎に設定される有効角度範囲Cは、第2検知エリアT2をカバーするために必要最小限でよい。したがって、図4に示すように、距離帯D毎に、有効角度範囲Cは異なる。検知エリアT1の設定作業者は、第2検知エリアT2の形状に応じて、距離帯D毎の有効角度範囲Cを自由に設定できるため、柔軟な有効角度範囲Cを設定できる。 In step S13, the processing device 110 sets the effective angle range C required to cover the second detection area T2 for each of the plurality of distance bands D. The distance band D is a distance range in the radial direction of the polar coordinate system with the radio wave sensor 10 as the origin. For example, a distance A of 10 m in the radial direction from the radio wave sensor 10, a distance B of 20 m in the radial direction from the radio wave sensor 10, a distance C of 30 m in the radial direction from the radio wave sensor 10, and a radio wave sensor 10 A distance of 40 m in the radial direction from the distance is defined as a distance D. In this case, the range between the distance A and the distance B is the distance zone D defined by the distance range of 10 m to 20 m in the radial direction, and the range between the distance B and the distance C is the radial direction. Is the distance zone D defined in the distance range of 20 m to 30 m in the above, and the range between the distance C and the distance D is the distance zone D defined in the distance range of 30 m to 40 m in the radial direction. The distance band D is set, for example, in units of 1 m, but the unit of the distance band D is not particularly limited. For example, when the second detection area T2 exists 20 m ahead of the radio wave sensor 10, 20 distance zones D in 1 m units are set. The effective angle range C set for each distance zone D may be the minimum necessary to cover the second detection area T2. Therefore, as shown in FIG. 4, the effective angle range C is different for each distance band D. Setting of the detection area T1 Since the operator can freely set the effective angle range C for each distance zone D according to the shape of the second detection area T2, the flexible effective angle range C can be set.
 図4では、電波センサ10から遠い距離帯Dほど、有効角度範囲Cが小さくなっている。ただし、図4の有効角度範囲Cの設定は、一例であり、このような設定に限定されるわけではない。例えば、図5に示す電波センサ10の配置であると、電波センサ10に比較的近い距離帯における第1角度範囲G1よりも、やや遠い距離帯における第2角度範囲G2の方が広くなる。また、第2角度範囲G2よりも、さらに遠い距離帯における第2角度範囲G3の方が狭くなる。このように、電波センサ10から遠くなっても、一律に角度範囲が小さくならない場合もある。しかし、本実施形態によれば、検知エリアT1の設定作業者は、距離帯D毎に有効角度範囲Cを設定できるため、図5の場合であっても、必要最小限の有効角度範囲Cを設定できる。 In FIG. 4, the effective angle range C becomes smaller as the distance band D farther from the radio wave sensor 10. However, the setting of the effective angle range C in FIG. 4 is an example, and is not limited to such a setting. For example, in the arrangement of the radio wave sensor 10 shown in FIG. 5, the second angle range G2 in a slightly distant distance zone is wider than the first angle range G1 in a distance zone relatively close to the radio wave sensor 10. Further, the second angle range G3 in a farther distance zone is narrower than the second angle range G2. As described above, the angle range may not be uniformly reduced even if the distance from the radio wave sensor 10 is increased. However, according to the present embodiment, the worker who sets the detection area T1 can set the effective angle range C for each distance zone D, so that even in the case of FIG. 5, the minimum necessary effective angle range C is set. Can be set.
 また、図6に示すように、検知エリアT1内に電柱220又は木が存在する場合、検知エリアT1内に非検知エリア230が設定される場合がある。電柱220等が存在する場所が、非検知エリア230として設定されることで、電柱220等が人などの検知対象の物体として検知されなくなる。その結果、誤検知が防止される。なお、検知エリアT1内の非検知エリア230は、人が入れない場所であってもよい。検知対象から除外される物体は、電柱や木以外に、ガードレール、中央分離帯、側溝、看板等が該当する。 Further, as shown in FIG. 6, when the utility pole 220 or the tree exists in the detection area T1, the non-detection area 230 may be set in the detection area T1. By setting the place where the utility pole 220 or the like exists as the non-detection area 230, the utility pole 220 or the like is not detected as an object to be detected such as a person. As a result, false positives are prevented. The non-detection area 230 in the detection area T1 may be a place where no one can enter. Objects excluded from detection targets include guardrails, medians, gutters, signboards, etc., in addition to utility poles and trees.
 例えば、ある距離帯Dの-10°から+10°の範囲に電柱220が存在し、検知エリアT1の設定作業者がその範囲を非検知エリア230にしたい場合、本実施形態では、設置作業者は、その距離帯Dの有効角度範囲Cを例えば、-40°から-10°及び+10°から+40°に設定することができる。このように、本実施形態によれば、距離帯D毎に有効角度範囲Cを設定できるため、図6のように非検知エリア230に対応する角度を避けて、有効角度範囲Cを設定できる。なお、設置作業者は、カメラ等の撮像装置が撮像した検知エリアの画像を参照する、または検知エリアを目視することによって、電波センサ10が検知した物体が検知対象か否かを判別する。例えば、設置作業者は、画像や目視により、電波センサ10が検知した物体の位置に対応する実空間上の位置に存在する物体が木や電柱であると分かれば、この物体を検知対象でないと判別する。設置作業者は、この判別結果に基づいて、非検知エリアを設定することができる。 For example, if the utility pole 220 exists in a range of −10 ° to + 10 ° in a certain distance zone D, and the setting worker of the detection area T1 wants to set the range to the non-detection area 230, in the present embodiment, the installation worker , The effective angle range C of the distance zone D can be set, for example, from −40 ° to −10 ° and from + 10 ° to + 40 °. As described above, according to the present embodiment, since the effective angle range C can be set for each distance zone D, the effective angle range C can be set while avoiding the angle corresponding to the non-detection area 230 as shown in FIG. The installation worker determines whether or not the object detected by the radio wave sensor 10 is the detection target by referring to the image of the detection area captured by the image pickup device such as a camera or by visually observing the detection area. For example, if the installation worker finds out from an image or visual inspection that an object existing at a position in the real space corresponding to the position of the object detected by the radio wave sensor 10 is a tree or a utility pole, the installation worker must detect this object. Determine. The installation worker can set the non-detection area based on the determination result.
 図7は、ステップS13の設定によって、処理装置110によって生成される有効範囲データ123の例を示している。有効範囲データ123は、予め設定された最大範囲内における有効範囲及び無効範囲を示すよう構成されている。有効範囲は、前述した複数の有効角度範囲Cの集合である。有効範囲は、後述の到来方向の推定処理S24が実行される範囲である。無効範囲は、後述の到来方向の推定処理S24が実行されない範囲である。有効範囲は、ステップS13の処理により、最大範囲内において、検知エリアT1に応じた範囲として設定される。無効範囲は、最大範囲内において、有効範囲以外の範囲である。 FIG. 7 shows an example of the effective range data 123 generated by the processing device 110 according to the setting in step S13. The valid range data 123 is configured to indicate a valid range and an invalid range within a preset maximum range. The effective range is a set of the plurality of effective angle ranges C described above. The effective range is the range in which the estimation process S24 in the arrival direction, which will be described later, is executed. The invalid range is a range in which the estimation process S24 in the arrival direction, which will be described later, is not executed. The effective range is set as a range corresponding to the detection area T1 within the maximum range by the process of step S13. The invalid range is a range other than the valid range within the maximum range.
 実施形態において、最大範囲は、電波センサ10からの最大距離と最大角度範囲Mとによって画定される。最大距離は、例えば、電波センサ10から100mである。最大角度範囲Mは、例えば、図4に示すように-90°から90°である。 In the embodiment, the maximum range is defined by the maximum distance from the radio wave sensor 10 and the maximum angle range M. The maximum distance is, for example, 100 m from the radio wave sensor 10. The maximum angle range M is, for example, −90 ° to 90 ° as shown in FIG.
 図7に示す有効範囲データ123は、距離帯D毎に有効範囲及び無効範囲を示す。図7では、距離帯D毎の有効範囲は、有効角度範囲C1,C2,C3として示されている。図7に示す有効範囲データ123は、一例として、電波センサ10から9mの距離帯Dにおける有効角度範囲C1及び無効範囲F、10mの距離帯Dにおける有効角度範囲C2及び無効範囲F、並びに11mの距離帯Dにおける有効角度範囲C3及び無効範囲Fを示している。 The effective range data 123 shown in FIG. 7 shows the effective range and the invalid range for each distance band D. In FIG. 7, the effective range for each distance band D is shown as an effective angle range C1, C2, and C3. The effective range data 123 shown in FIG. 7 is, for example, the effective angle range C1 and the invalid range F in the distance band D 9 m from the radio wave sensor 10, the effective angle range C2 and the invalid range F in the distance band D of 10 m, and 11 m. The effective angle range C3 and the invalid range F in the distance zone D are shown.
 有効範囲データ123では、各距離帯Dにおいて、有効範囲にある角度は「1」で示され、無効範囲にある角度は「0」で示されている。「1」で示された範囲の集合が有効範囲となり、「0」で示された範囲の集合が無効範囲となる。図7では、距離帯D毎に異なる有効角度範囲C1,C2,C3が設定されている。図7に示す有効範囲データ123では、検知エリアT1の設定作業者は、各距離帯Dにおいて角度毎に有効又は無効を設定可能である。したがって、検知エリアT1の設定作業者は、任意の形状の検知エリアT1に対応した有効範囲を柔軟に設定できる。 In the effective range data 123, in each distance band D, the angle in the effective range is indicated by "1", and the angle in the invalid range is indicated by "0". The set of ranges indicated by "1" is the valid range, and the set of ranges indicated by "0" is the invalid range. In FIG. 7, different effective angle ranges C1, C2, and C3 are set for each distance band D. In the effective range data 123 shown in FIG. 7, the setting operator of the detection area T1 can set valid or invalid for each angle in each distance band D. Therefore, the worker who sets the detection area T1 can flexibly set the effective range corresponding to the detection area T1 having an arbitrary shape.
 図3のステップS14において、処理装置110は、ステップS13において設定された各距離帯Dの有効角度範囲Cが基準値以上であるか否かを判定する。なお、ここでの判定の対象となる距離帯Dは、有効角度範囲Cが存在する距離帯Dである。有効角度範囲Cが全く存在しない距離帯Dは、判定の対象にならない。 In step S14 of FIG. 3, the processing device 110 determines whether or not the effective angle range C of each distance band D set in step S13 is equal to or greater than the reference value. The distance zone D to be determined here is the distance zone D in which the effective angle range C exists. The distance zone D in which the effective angle range C does not exist at all is not the target of the determination.
 ある距離帯Dにおいて、有効角度範囲Cが基準値以上(ステップS14において「YES」)であれば、ステップS13において設定された有効角度範囲Cを維持する。ある距離帯Dにおいて、有効角度範囲Cが、基準値未満(ステップS14において「NO」)であれば、その距離帯Dにおける有効角度範囲Cを、基準値に設定する(ステップS15)。これにより、小さすぎる有効角度範囲Cの設定が防止される。 If the effective angle range C is equal to or greater than the reference value (“YES” in step S14) in a certain distance zone D, the effective angle range C set in step S13 is maintained. If the effective angle range C is less than the reference value (“NO” in step S14) in a certain distance band D, the effective angle range C in the distance band D is set to the reference value (step S15). This prevents the setting of an effective angle range C that is too small.
 基準値は、電波センサ10を基準とする角度方向における範囲を示し、電波センサ10が物体を検知するために必要とされる大きさに設定される。図8のグラフは、特定の距離帯Dにおける受信電波の強度分布を示す。グラフの横軸は、電波センサ10を原点とする極座標系における周方向の角度を示し、グラフの縦軸は、電波センサ10が受信した電波の強度を示す。電波センサ10からの距離に関わらず横軸の0°を通る直線は、電波が放射されるエリアの形状が扇形である場合に上記扇形のエリアの中心と、上記扇形のエリアの円弧の両端を結ぶ線分の中点と、を結ぶ直線と一致する。電波センサ10による物体の検知においては、図8に示すように、距離帯D毎の反射波の反射強度の分布において、極大点Pと極小点V1,V2との差が閾値以上であれば、その極大点Pが、物体に対応したピーク点であると判定される。したがって、ピーク点の存在を判定するには、極大点Pの近傍の極小点V1,V2が算出される必要がある。図8に示すように、有効角度範囲Cが十分に広ければ、有効範囲内に、極大点Pと極小点V1,V2とが存在するため、処理装置110が極大点Pをピーク点として求めることが可能である。ピーク点に対応する角度が、物体の存在角度になる。設置作業者は、図8に示す強度分布から物体の位置を特定すると、その位置に対応する実空間上の位置に存在する物体をカメラの画像や目視により確認する。そして、設置作業者は、その物体が電柱や木であれば、その物体を電波センサ10の検知対象ではないと判断する。 The reference value indicates a range in the angular direction with respect to the radio wave sensor 10, and is set to a size required for the radio wave sensor 10 to detect an object. The graph of FIG. 8 shows the intensity distribution of the received radio wave in the specific distance band D. The horizontal axis of the graph shows the angle in the circumferential direction in the polar coordinate system with the radio wave sensor 10 as the origin, and the vertical axis of the graph shows the intensity of the radio wave received by the radio wave sensor 10. A straight line passing through 0 ° on the horizontal axis regardless of the distance from the radio wave sensor 10 forms the center of the fan-shaped area and both ends of the arc of the fan-shaped area when the shape of the area where the radio wave is emitted is fan-shaped. It coincides with the midpoint of the connecting line segment and the straight line connecting them. In the detection of an object by the radio wave sensor 10, as shown in FIG. 8, if the difference between the maximum point P and the minimum points V1 and V2 in the distribution of the reflected intensity of the reflected wave for each distance band D is equal to or larger than the threshold value, It is determined that the maximum point P is the peak point corresponding to the object. Therefore, in order to determine the existence of the peak point, it is necessary to calculate the minimum points V1 and V2 in the vicinity of the maximum point P. As shown in FIG. 8, if the effective angle range C is sufficiently wide, the maximum point P and the minimum points V1 and V2 exist within the effective range, so that the processing apparatus 110 obtains the maximum point P as the peak point. Is possible. The angle corresponding to the peak point is the angle of existence of the object. When the installation worker specifies the position of the object from the intensity distribution shown in FIG. 8, the installation worker confirms the object existing at the position in the real space corresponding to the position by the image of the camera or visually. Then, if the object is a utility pole or a tree, the installation worker determines that the object is not the detection target of the radio wave sensor 10.
 一方、図9に示すように、有効角度範囲Cが狭すぎると、有効範囲内に、極小点V1,V2とが存在しなくなり、処理装置110が極大点Pをピーク点として求めることができなくなる。したがって、有効角度範囲Cは、ピーク点を検出できるようにある程度以上の大きさを持ってもよい。ステップS13の設定では、検知エリアT2に応じた必要最小限の有効角度範囲Cが設定されるため、有効角度範囲Cが小さすぎることがあり得る。しかし、ステップS15において、有効角度範囲Cが、予め基準値以上の広さに設定されることで、狭すぎる有効角度範囲Cの設定が防止される。なお、図9の0°は、なお、各距離帯有効角度範囲における0°は、電波が放射されるエリアの形状が扇形である場合に前記扇型のエリアの中心と前記扇型のエリアの円弧の両端を結ぶ線分の中点とを結ぶ直線を0°とする On the other hand, as shown in FIG. 9, if the effective angle range C is too narrow, the minimum points V1 and V2 do not exist in the effective range, and the processing device 110 cannot obtain the maximum point P as the peak point. .. Therefore, the effective angle range C may have a size larger than a certain level so that the peak point can be detected. In the setting of step S13, the minimum necessary effective angle range C corresponding to the detection area T2 is set, so that the effective angle range C may be too small. However, in step S15, the effective angle range C is set to a width equal to or larger than the reference value in advance, so that the setting of the effective angle range C that is too narrow is prevented. Note that 0 ° in FIG. 9 is the center of the fan-shaped area and the fan-shaped area when the shape of the area where the radio wave is radiated is fan-shaped. Let 0 ° be the straight line connecting the midpoint of the line segment connecting both ends of the arc.
 なお、基準値は、距離帯D毎に異なっていても良いし、距離帯Dにかかわらず一律の値であってもよい。また、基準値は、予め設定された値である必要はなく、反射波の強度分布に応じて適宜設定されてもよいし、電波センサ10の運用中に変更されてもよい。 The reference value may be different for each distance band D, or may be a uniform value regardless of the distance band D. Further, the reference value does not have to be a preset value, and may be appropriately set according to the intensity distribution of the reflected wave, or may be changed during the operation of the radio wave sensor 10.
 図3のステップS16において、処理装置110は、距離帯D毎に角度帯A1,A2の大きさを設定する。実施形態の処理装置110は、反射波の到来方向の推定処理S24を、予め規定された角度帯A1,A2毎に行う。図10に示すように、角度帯A1,A2は、電波センサ10を基準とした角度方向における角度範囲を示す。 In step S16 of FIG. 3, the processing device 110 sets the sizes of the angle bands A1 and A2 for each distance band D. The processing device 110 of the embodiment performs the estimation processing S24 of the arrival direction of the reflected wave for each of the predetermined angle bands A1 and A2. As shown in FIG. 10, the angle bands A1 and A2 indicate an angle range in the angle direction with respect to the radio wave sensor 10.
 図10では、第1距離帯D1においては、第1角度帯A1に設定され、第1距離帯D1よりも電波センサ10からみて遠方にある第2距離帯D2においては、第2角度帯A2に設定されている。図10において、第1角度帯A1と第2角度帯A2とは、角度範囲が異なり、より具体的には、第1角度帯A1は第2角度帯A2よりも狭い。第1角度帯A1の角度範囲は、例えば、1°であり、第2角度帯A2の角度範囲は、例えば、0.5°である。角度帯A1,A2の大きさは、反射強度分布の分解能を規定する。よって、角度帯A1,A2は、電波センサ10を原点とする極座標系の周方向における電波センサ10の分解能に相当する。角度帯A1,A2が大きければ、分解能が粗くなり、角度帯A1,A2が小さくなれば、分解能が細かくなる。 In FIG. 10, in the first distance band D1, the first angle band A1 is set, and in the second distance band D2, which is farther from the radio wave sensor 10 than the first distance band D1, the second angle band A2 is set. It is set. In FIG. 10, the first angle band A1 and the second angle band A2 have different angle ranges, and more specifically, the first angle band A1 is narrower than the second angle band A2. The angle range of the first angle band A1 is, for example, 1 °, and the angle range of the second angle band A2 is, for example, 0.5 °. The size of the angle bands A1 and A2 defines the resolution of the reflection intensity distribution. Therefore, the angle bands A1 and A2 correspond to the resolution of the radio wave sensor 10 in the circumferential direction of the polar coordinate system with the radio wave sensor 10 as the origin. If the angle bands A1 and A2 are large, the resolution becomes coarse, and if the angle bands A1 and A2 are small, the resolution becomes fine.
 電波センサ10から比較的近い第1距離帯D1においては、仮に有効角度範囲Cが広くても、その有効角度範囲Cに対応した物理的な範囲は比較的狭い。したがって、第1距離帯D1においては、第1角度帯A1を大きくして分解能が粗くなっても、物理的な範囲が元々狭いため、十分な分解能が確保される。 In the first distance band D1 relatively close to the radio wave sensor 10, even if the effective angle range C is wide, the physical range corresponding to the effective angle range C is relatively narrow. Therefore, in the first distance band D1, even if the first angle band A1 is increased and the resolution becomes coarse, the physical range is originally narrow, so that sufficient resolution is ensured.
 一方、電波センサ10から比較的遠い第2距離帯D2においては、仮に有効角度範囲Cが狭くても、その有効角度範囲Cに対応した物理的な範囲が狭いわけではない。したがって、第2距離帯D2においては、第2角度帯A2を小さくして分解能を細かくすることで、十分な分解能が確保される。 On the other hand, in the second distance band D2, which is relatively far from the radio wave sensor 10, even if the effective angle range C is narrow, the physical range corresponding to the effective angle range C is not narrow. Therefore, in the second distance band D2, sufficient resolution is ensured by making the second angle band A2 smaller and making the resolution finer.
 図11は、有効範囲内に設定された複数の角度帯A1,A2を示す有効範囲データ123の例を示している。図11の有効範囲データ123では、各距離帯において、有効「1」又は無効「0」を設定できる角度単位が0.5°になっている。図10に示すように、1°の角度範囲を持つ第1角度帯A1が設定される第1距離帯D1においては、有効を示す「1」が、1°毎に設定され、無効を示す「0」が-0.5°、0.5°、1.5°、2.5°等に設定される。つまり、第1距離帯D1では、1度単位の第1角度帯A1が設定されている。したがって、第1距離帯D1では、1°毎に到来方向が推定される。 FIG. 11 shows an example of effective range data 123 showing a plurality of angle bands A1 and A2 set within the effective range. In the effective range data 123 of FIG. 11, the angle unit in which the valid “1” or the invalid “0” can be set is 0.5 ° in each distance band. As shown in FIG. 10, in the first distance band D1 in which the first angle band A1 having an angle range of 1 ° is set, "1" indicating validity is set for each 1 ° and "1" indicating invalidity is set. "0" is set to −0.5 °, 0.5 °, 1.5 °, 2.5 °, etc. That is, in the first distance band D1, the first angle band A1 in units of 1 degree is set. Therefore, in the first distance band D1, the arrival direction is estimated every 1 °.
 0.5°の角度範囲を持つ第2角度帯A2が設定される第2距離帯D2においては、有効を示す「1」が、0.5°毎に設定される。つまり、第2距離帯D2では、0.5°単位の第2角度帯A2が設定されている。したがって、第2距離帯D2では、0.5°毎に到来方向が推定される。 In the second distance band D2 where the second angle band A2 having an angle range of 0.5 ° is set, "1" indicating effectiveness is set every 0.5 °. That is, in the second distance band D2, the second angle band A2 in units of 0.5 ° is set. Therefore, in the second distance band D2, the arrival direction is estimated every 0.5 °.
 角度帯A1,A2の設定は、距離帯に応じて処理装置110により自動的に行われてもよいし、ユーザによる操作を処理装置110が受け付けることで、ユーザにより手動で行われてもよい。 The angle bands A1 and A2 may be set automatically by the processing device 110 according to the distance band, or may be manually set by the user when the processing device 110 accepts an operation by the user.
 図2のステップS17において、処理装置110は、以上のようにして設定された有効範囲データ123を、記憶装置120に保存する。保存された有効範囲データ123は、反射波の到来方向推定の際に処理装置110によって参照される。 In step S17 of FIG. 2, the processing device 110 stores the effective range data 123 set as described above in the storage device 120. The stored effective range data 123 is referred to by the processing device 110 when estimating the arrival direction of the reflected wave.
 図12は、電波センサ10によって実行される物体検知処理113の手順を示している。ステップS11において、電波センサ10の送信器11は、物体検知のための送信波を放射する。ステップS12において、電波センサの受信器13は、放射された送信波が物体によって反射された反射波を受信する。受信器13によって受信された反射波の受信信号は、信号処理装置15に与えられる。信号処理装置15は、受信データを、処理装置110に与える。受信データは、例えば、反射波を示すデジタルデータである。 FIG. 12 shows the procedure of the object detection process 113 executed by the radio wave sensor 10. In step S11, the transmitter 11 of the radio wave sensor 10 radiates a transmitted wave for detecting an object. In step S12, the receiver 13 of the radio wave sensor receives the reflected wave in which the emitted transmitted wave is reflected by the object. The received signal of the reflected wave received by the receiver 13 is given to the signal processing device 15. The signal processing device 15 feeds the received data to the processing device 110. The received data is, for example, digital data showing a reflected wave.
 ステップS23において、処理装置110は、距離プロファイル計算処理を実行する。物体までの距離は、送信器11が送信波を送信した時刻から受信器13が反射波を受信した時刻までの所要時間によって算出される。この所要時間は、電波が、電波センサ10と物体との間を往復するのに要した時間である。したがって、処理装置110は、この所要時間から、電波センサ10から物体までの距離を求めることができる。処理装置110は、距離プロファイル計算処理で、受信データに対して高速フーリエ変換(FFT)を施すことで、距離のプロファイルを計算する。 In step S23, the processing device 110 executes the distance profile calculation process. The distance to the object is calculated by the time required from the time when the transmitter 11 transmits the transmitted wave to the time when the receiver 13 receives the reflected wave. This required time is the time required for the radio wave to reciprocate between the radio wave sensor 10 and the object. Therefore, the processing device 110 can obtain the distance from the radio wave sensor 10 to the object from this required time. The processing device 110 calculates the distance profile by performing a fast Fourier transform (FFT) on the received data in the distance profile calculation process.
 ステップS24において、処理装置110は、反射波の受信データに基づいて、反射波の到来方向の推定処理を実行する。到来方向は、受信器13が有する複数のアンテナ素子間における反射波の位相差に基づいて算出される。到来方向の推定処理は、有効範囲データ123が示す有効範囲内に限定して実行され、有効範囲外、すなわち無効範囲Fでは、実行されない。処理装置110が無効範囲Fで推定処理を実行しないことで、処理装置110の演算負荷は軽減される。 In step S24, the processing device 110 executes estimation processing of the arrival direction of the reflected wave based on the received data of the reflected wave. The arrival direction is calculated based on the phase difference of the reflected wave between the plurality of antenna elements of the receiver 13. The estimation process in the arrival direction is executed only within the effective range indicated by the effective range data 123, and is not executed outside the effective range, that is, in the invalid range F. Since the processing device 110 does not execute the estimation process in the invalid range F, the calculation load of the processing device 110 is reduced.
 ここで一般的な反射波の到来方向の推定処理の方法を説明する。電波センサは複数のアンテナを備え、各アンテナが物体からの反射波を入射角θで受信したとする。各アンテナは受信した反射波に基づいて受信信号(受信データ)を生成し、電波センサは各アンテナが生成した受信信号の和をとる。言い換えると、電波センサは各アンテナが生成した受信信号を合成した合成信号を生成する。このとき、電波センサは、各アンテナの受信信号に重み関数を乗じてから受信信号の和をとる。重み関数は各アンテナの受信信号を同位相にするための関数であり、入射角θを変数に含む。各アンテナの受信信号が同位相に揃うことにより、各受信信号の和の振幅が最大になる。各受信信号の和である合成信号も入射角θを変数に含む関数である。電波センサは、上記合成信号の振幅の絶対値の2乗に係数を乗じて合成信号の信号強度(電波強度)を演算する。合成信号の信号強度も、入射角θを変数に含む関数になる。電波センサは、最大角度範囲内で入射角θの値を変更しながら合成信号の信号強度を演算する。その結果、例えば図8に示す角度(入射角θ)の変化に応じた合成信号の信号強度の変化を示す信号強度の分布が得られる。電波センサは、上記信号強度の分布のピークに対応する角度を反射波の到来方向と推定する。電波センサはこの推定を距離帯毎に行う。このように、各アンテナの受信信号の位相を一定の角度範囲にわたって操作し、信号強度の値が大きくなる方向を探す方法が到来方向の推定処理に一般的に用いられている。例えばビームフォーマ法、Capon法、線形予測法が上記方法を到来方向の推定処理に用いている。これに対し、本開示の到来方向の推定処理は、入射角θを変更して合成信号の信号強度を演算する処理を有効範囲に含まれる角度(入射角)に限定する。例えば、0°から90°が有効範囲であれば、上記演算は0°から90°の範囲で実行され、-90°から0°未満の範囲では実行されない。これにより演算負荷が軽減される。以下、図24の物体検知処理の説明に戻る。 Here, a method of estimating the arrival direction of a general reflected wave will be explained. It is assumed that the radio wave sensor has a plurality of antennas, and each antenna receives the reflected wave from the object at the incident angle θ. Each antenna generates a received signal (received data) based on the received reflected wave, and the radio wave sensor takes the sum of the received signals generated by each antenna. In other words, the radio wave sensor generates a composite signal by synthesizing the received signals generated by each antenna. At this time, the radio wave sensor multiplies the received signal of each antenna by a weighting function and then sums the received signals. The weighting function is a function for making the received signals of each antenna in phase, and includes the incident angle θ as a variable. By aligning the received signals of each antenna in the same phase, the amplitude of the sum of the received signals is maximized. The combined signal, which is the sum of each received signal, is also a function that includes the incident angle θ as a variable. The radio wave sensor calculates the signal strength (radio wave strength) of the composite signal by multiplying the square of the absolute value of the amplitude of the composite signal by a coefficient. The signal strength of the combined signal is also a function that includes the incident angle θ as a variable. The radio wave sensor calculates the signal strength of the combined signal while changing the value of the incident angle θ within the maximum angle range. As a result, for example, a signal intensity distribution showing a change in the signal intensity of the combined signal according to the change in the angle (incident angle θ) shown in FIG. 8 can be obtained. The radio wave sensor estimates the angle corresponding to the peak of the signal intensity distribution as the arrival direction of the reflected wave. The radio wave sensor makes this estimation for each distance band. As described above, a method of manipulating the phase of the received signal of each antenna over a certain angle range and searching for a direction in which the value of the signal strength increases is generally used for the estimation process of the arrival direction. For example, the beamformer method, the Capon method, and the linear prediction method use the above method for the estimation process in the arrival direction. On the other hand, in the estimation process of the arrival direction of the present disclosure, the process of changing the incident angle θ to calculate the signal strength of the combined signal is limited to the angle (incident angle) included in the effective range. For example, if 0 ° to 90 ° is an effective range, the above calculation is performed in the range of 0 ° to 90 ° and not in the range of −90 ° to less than 0 °. This reduces the computational load. Hereinafter, the description of the object detection process of FIG. 24 will be returned to.
 有効範囲内に限定して推定処理を実行するため、処理装置110は、記憶装置120から有効範囲データ123を読み出し、有効範囲を把握する。処理装置110は、有効範囲データ123における各距離帯Dにおいて、「1」で示される角度に限定して、推定処理を実行する。処理装置110は、「0」で示される角度においては、推定処理を実行しない。 In order to execute the estimation process only within the effective range, the processing device 110 reads the effective range data 123 from the storage device 120 and grasps the effective range. The processing device 110 executes the estimation process only at the angle indicated by "1" in each distance band D in the effective range data 123. The processing device 110 does not execute the estimation process at the angle indicated by "0".
 反射波は、有効範囲外、すなわち無効範囲からも到来するため、受信データは、有効範囲外からの反射波に関する情報も示している。つまり、受信データは、有効範囲内及び有効範囲外からの反射波を電波センサ10が受信することで得られるデータである。実施形態に係る処理装置110は、有効範囲外の情報を含む受信データを用いつつも、有効範囲外についての推定処理を省略することで、演算負荷を軽減する。 Since the reflected wave comes from outside the effective range, that is, from the invalid range, the received data also shows information about the reflected wave from outside the effective range. That is, the received data is data obtained by the radio wave sensor 10 receiving the reflected wave from within the effective range and outside the effective range. The processing device 110 according to the embodiment reduces the calculation load by omitting the estimation processing for the outside of the effective range while using the received data including the information outside the effective range.
 ステップS24の到来波の推定処理においては、有効範囲データ123が示す距離帯D毎に、設定された各角度帯A1,A2において、反射波の反射強度が算出される。つまり、処理装置110は、有効範囲データ123における各距離帯Dにおいて、「1」で示される角度に限定して、反射波の反射強度を算出する。処理装置110は、「0」で示される角度においては、反射強度を算出しない。 In the arrival wave estimation process in step S24, the reflected intensity of the reflected wave is calculated in each of the set angle bands A1 and A2 for each distance band D indicated by the effective range data 123. That is, the processing device 110 calculates the reflected intensity of the reflected wave only at the angle indicated by "1" in each distance band D in the effective range data 123. The processing device 110 does not calculate the reflection intensity at the angle indicated by "0".
 算出された反射強度は、反射強度データ125に格納される。図13は、反射強度データ125の一例を示している。反射強度データ125は、予め設定された最大範囲内における各位置の反射強度を格納できるよう構成されている。反射強度は、受信器120が受信した反射波の受信強度である。受信強度の値を反射強度値と称してもよい。ここでの最大範囲は、有効範囲データ123の最大範囲と同じである。すなわち、最大範囲は、電波センサ10からの最大距離と最大角度範囲Mとによって画定される。最大距離は、例えば、電波センサ10から100mである。最大角度範囲Mは、例えば、図4に示すように-90°から90°である。有効範囲は、最大範囲内の一部の範囲である。反射強度データ125は、電波センサ10が物体を検知可能な最大範囲内における反射強度を格納できるため、様々な大きさ又は形状の有効範囲に対応できる。 The calculated reflection intensity is stored in the reflection intensity data 125. FIG. 13 shows an example of the reflection intensity data 125. The reflection intensity data 125 is configured to store the reflection intensity at each position within a preset maximum range. The reflection intensity is the reception intensity of the reflected wave received by the receiver 120. The value of the reception intensity may be referred to as the reflection intensity value. The maximum range here is the same as the maximum range of the effective range data 123. That is, the maximum range is defined by the maximum distance from the radio wave sensor 10 and the maximum angle range M. The maximum distance is, for example, 100 m from the radio wave sensor 10. The maximum angle range M is, for example, −90 ° to 90 ° as shown in FIG. The effective range is a part of the maximum range. Since the reflection intensity data 125 can store the reflection intensity within the maximum range in which the radio wave sensor 10 can detect an object, it can correspond to an effective range of various sizes or shapes.
 図13に示す反射強度データ125は、距離帯D毎に各角度における反射強度を格納可能に構成されている。図13の反射強度データ125は、一例として、第1距離帯D1における各角度の反射強度vと、第2距離帯D2における各角度の反射強度vと、を示している。 The reflection intensity data 125 shown in FIG. 13 is configured to be able to store the reflection intensity at each angle for each distance band D. The reflection intensity data 125 of FIG. 13 shows, as an example, the reflection intensity v at each angle in the first distance band D1 and the reflection intensity v at each angle in the second distance band D2.
 反射強度データ125における最大範囲は、有効範囲よりも広いため、反射強度データ125は、有効範囲(各距離帯Dにおける有効角度範囲C1,C2)に対応した第1範囲Rと、有効範囲外(無効範囲)に対応した第2範囲Nと、を有する。 Since the maximum range in the reflection intensity data 125 is wider than the effective range, the reflection intensity data 125 includes the first range R corresponding to the effective range (effective angle range C1 and C2 in each distance band D) and the outside of the effective range (the effective range R). It has a second range N corresponding to the invalid range).
 図13に示すように、有効角度範囲C1,C2に対応した第1範囲Rには、実行された推定処理の結果である反射強度vが格納される。一方、有効範囲外(無効範囲F)に対応した第2範囲Nには、上記推定処理が実行されていないことを示す値が格納される。推定処理が実行されていないことを示す値は、例えば、反射強度vがとり得ない値を示す。反射強度vがとり得ない値は、例えば、null値である。 As shown in FIG. 13, the reflection intensity v, which is the result of the executed estimation process, is stored in the first range R corresponding to the effective angle ranges C1 and C2. On the other hand, in the second range N corresponding to the outside of the effective range (invalid range F), a value indicating that the estimation process is not executed is stored. The value indicating that the estimation process has not been executed indicates, for example, a value that the reflection intensity v cannot take. The value that the reflection intensity v cannot take is, for example, a null value.
 反射強度データ125は、推定処理の有効範囲外においても反射強度を格納するための領域を有している。このため、推定処理が実行されていない領域に、反射強度がとり得る値(例えば、0)が格納されていると、処理装置110は、推定処理が実行されていない領域の反射強度を推定処理結果の値として誤認識するおそれがある。これに対して、有効範囲外(無効範囲F)に対応した第2範囲Nには、上記推定処理が実行されていないことを示す値が格納されるので、上記誤認識が防止される。 The reflection intensity data 125 has a region for storing the reflection intensity even outside the effective range of the estimation process. Therefore, when a value (for example, 0) that the reflection intensity can take is stored in the region where the estimation process is not executed, the processing device 110 estimates the reflection intensity in the region where the estimation process is not executed. There is a risk of misrecognition as the resulting value. On the other hand, in the second range N corresponding to the outside of the effective range (invalid range F), a value indicating that the estimation process is not executed is stored, so that the erroneous recognition is prevented.
 ステップS24の推定処理によって得られた反射強度データ125は、複数の距離帯D毎の反射強度スペクトラムを示す。ステップS24で得られる反射強度スペクトラムは、図8に示す強度分布のうち、有効角度範囲C内の分布に対応する。つまり、ステップS24の推定処理では、図8の無効範囲Fにおける強度分布は求められない。 The reflection intensity data 125 obtained by the estimation process in step S24 shows the reflection intensity spectrum for each of the plurality of distance bands D. The reflection intensity spectrum obtained in step S24 corresponds to the distribution within the effective angle range C among the intensity distributions shown in FIG. That is, in the estimation process of step S24, the intensity distribution in the invalid range F in FIG. 8 is not obtained.
 ステップS25において、処理装置110は、有効角度範囲C内の反射強度分布における極大点Pと極小点V1,V2との差が閾値以上であれば、その極大点Pが、物体に対応したピーク点であると判定する(図8参照)。ピーク点に対応する角度が、物体の存在角度になる。ステップS26において、処理装置110は、電波センサ10からピーク点が存在する距離帯Dまでの距離と、電波センサ10を極座標系の原点とした場合における上記ピーク点が存在する角度と、に基づいて、物体が存在する位置を検知する。処理装置110は、検知エリアT1のどこに物体が存在しているかを示す2次元位置座標を求める。これにより、検知エリアT1内における、歩行者等の移動軌跡等を求めることができる。 In step S25, if the difference between the maximum point P and the minimum points V1 and V2 in the reflection intensity distribution within the effective angle range C is equal to or greater than the threshold value, the maximum point P is the peak point corresponding to the object. (See FIG. 8). The angle corresponding to the peak point is the angle of existence of the object. In step S26, the processing device 110 is based on the distance from the radio wave sensor 10 to the distance zone D where the peak point exists and the angle at which the peak point exists when the radio wave sensor 10 is the origin of the polar coordinate system. , Detects the position where the object exists. The processing device 110 obtains two-dimensional position coordinates indicating where the object exists in the detection area T1. As a result, it is possible to obtain the movement locus of a pedestrian or the like in the detection area T1.
 上述の実施形態の各処理(各機能)は、処理回路により実現できる。例えば本実施形態の各処理は、プログラム等の情報に基づき動作するプロセッサと、プログラム等の情報を記憶する記憶装置(メモリ)により実現できる。ここでのプロセッサは、例えば各部の機能が個別のハードウェアで実現されてもよいし、或いは各部の機能が一体のハードウェアで実現されてもよい。例えば、プロセッサはハードウェアを含み、そのハードウェアは、デジタル信号を処理する回路及びアナログ信号を処理する回路の少なくとも一方を含むことができる。例えば、プロセッサは、回路基板に実装された1又は複数の回路装置(例えばIC等)や、1又は複数の回路素子(例えば抵抗、キャパシター等)で構成することができる。プロセッサは、例えばCPUであってもよい。ただし、プロセッサはCPUに限定されるものではなく、GPU(Graphics Processing Unit)、或いはDSP(Digital Signal Processor)等、各種のプロセッサを用いることが可能である。またプロセッサはASICによるハードウェア回路でもよい。またプロセッサは、複数のCPUにより構成されていてもよいし、複数のASICによるハードウェア回路により構成されていてもよい。また、プロセッサは、複数のCPUと、複数のASICによるハードウェア回路と、の組み合わせにより構成されていてもよい。またプロセッサは、アナログ信号を処理するアンプ回路やフィルター回路等を含んでもよい。メモリは、SRAM、DRAMなどの半導体メモリであってもよいし、レジスターであってもよいし、ハードディスク装置等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。 Each process (each function) of the above-described embodiment can be realized by a process circuit. For example, each process of the present embodiment can be realized by a processor that operates based on information such as a program and a storage device (memory) that stores information such as a program. In the processor here, for example, the functions of each part may be realized by individual hardware, or the functions of each part may be realized by integrated hardware. For example, the processor includes hardware, which hardware can include at least one of a circuit that processes a digital signal and a circuit that processes an analog signal. For example, a processor can be composed of one or more circuit devices (eg, ICs, etc.) mounted on a circuit board, or one or more circuit elements (eg, resistors, capacitors, etc.). The processor may be, for example, a CPU. However, the processor is not limited to the CPU, and various processors such as GPU (Graphics Processing Unit) or DSP (Digital Signal Processor) can be used. Further, the processor may be a hardware circuit by ASIC. Further, the processor may be configured by a plurality of CPUs or may be configured by a hardware circuit by a plurality of ASICs. Further, the processor may be configured by a combination of a plurality of CPUs and a hardware circuit by a plurality of ASICs. Further, the processor may include an amplifier circuit, a filter circuit, and the like for processing an analog signal. The memory may be a semiconductor memory such as SRAM or DRAM, a register, a magnetic storage device such as a hard disk device, or an optical storage device such as an optical disk device. You may.
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include the meaning equivalent to the scope of claims and all modifications within the scope.
10 電波センサ、11 送信器、13 受信器、15 信号処理装置、20 検知エリア設定装置、110 処理装置、111 有効範囲設定処理、113 物体検知処理、120 記憶装置、121 検知エリアデータ、123 有効範囲データ、125 反射強度データ、130 通信インタフェース、150 コンピュータプログラム、200 横断歩道、220 電柱、230 非検知エリア、A1 第1角度帯、A2 第2角度帯、C 有効角度範囲、C1 有効角度範囲、C2 有効角度範囲、C3 有効角度範囲、D 距離帯、D1 第1距離帯、D2 第2距離帯、F 無効範囲、G1 第1角度範囲、G2 第2角度範囲、G3 第2角度範囲、M 最大角度範囲、N 第2範囲、P 極大点、R 第1範囲、S24 推定処理、T1 第1検知エリア、T2 第2検知エリア、V1 極小点、V2 極小点、v 反射強度 10 radio wave sensor, 11 transmitter, 13 receiver, 15 signal processing device, 20 detection area setting device, 110 processing device, 111 effective range setting processing, 113 object detection processing, 120 storage device, 121 detection area data, 123 effective range Data, 125 reflection intensity data, 130 communication interface, 150 computer program, 200 crosswalk, 220 electric pole, 230 non-detection area, A1 first angle band, A2 second angle band, C effective angle range, C1 effective angle range, C2 Effective angle range, C3 effective angle range, D distance band, D1 first distance band, D2 second distance band, F invalid range, G1 first angle range, G2 second angle range, G3 second angle range, M maximum angle Range, N 2nd range, P maximum point, R 1st range, S24 estimation processing, T1 1st detection area, T2 2nd detection area, V1 minimum point, V2 minimum point, v reflection intensity

Claims (11)

  1.  電波センサであって、
     電波を送信する送信器と、
     前記電波が物体から反射した反射波を受信する受信器と、
     前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶する記憶装置と、
     前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行するよう構成された処理装置と、
     を備え、
     前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータであり、
     前記処理装置は、前記有効範囲データが示す前記有効範囲に限定して、前記推定処理を実行する
     電波センサ。
    It ’s a radio wave sensor.
    A transmitter that transmits radio waves and
    A receiver that receives the reflected wave reflected from the object by the radio wave, and
    A storage device set in the detection area of the radio wave sensor and storing effective range data indicating an effective range in which the object is to be detected, and a storage device.
    A processing device configured to perform estimation processing of the arrival direction of the reflected wave based on the received data generated based on the reflected wave, and
    Equipped with
    The received data receives the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is the data obtained by receiving the device,
    The processing device is a radio wave sensor that executes the estimation process only in the effective range indicated by the effective range data.
  2.  前記処理装置は、前記検知エリアを示す検知エリアデータに基づいて前記有効範囲データを生成する有効範囲設定処理を更に実行する
     請求項1に記載の電波センサ。
    The radio wave sensor according to claim 1, wherein the processing device further executes an effective range setting process for generating the effective range data based on the detection area data indicating the detection area.
  3.  前記有効範囲データは、前記電波センサを原点とする極座標系の動径方向における距離範囲である距離帯の値と、前記極座標系の周方向における角度範囲の値と、を含む請求項1又は2に記載の電波センサ。 The effective range data is claimed 1 or 2 including a value of a distance band which is a distance range in the radial direction of a polar coordinate system with the radio wave sensor as an origin and a value of an angle range in the circumferential direction of the polar coordinate system. Radio sensor described in.
  4.  前記記憶装置は、前記反射波の反射強度値を示す反射強度データを記憶しており、
     前記角度範囲の値は、前記反射強度値の強度分布に基づいて決定される基準値以上である、
     請求項3に記載の電波センサ。
    The storage device stores reflection intensity data indicating the reflection intensity value of the reflected wave.
    The value in the angle range is equal to or greater than the reference value determined based on the intensity distribution of the reflection intensity value.
    The radio wave sensor according to claim 3.
  5.  前記反射強度データは、予め設定された最大範囲における前記反射強度データを格納可能に構成され、
     前記有効範囲は、前記最大範囲内の一部の範囲であり、
     前記反射強度データは、前記有効範囲に対応した第1範囲と、前記無効範囲に対応した第2範囲と、を有し、
     前記第1範囲には前記反射波の反射強度値が格納され、前記第2範囲には前記推定処理が行われていないことを示す値が格納される
     請求項1から請求項4のいずれか1項に記載の電波センサ。
    The reflection intensity data is configured to be able to store the reflection intensity data in a preset maximum range.
    The effective range is a part of the maximum range.
    The reflection intensity data has a first range corresponding to the effective range and a second range corresponding to the invalid range.
    Any one of claims 1 to 4, wherein the reflected intensity value of the reflected wave is stored in the first range, and a value indicating that the estimation process is not performed is stored in the second range. The radio wave sensor described in the section.
  6.  前記電波センサには、前記極座標系の周方向における前記電波センサの分解能である角度帯が設定されており、
     前記処理装置は、前記推定処理において、前記有効範囲に設定された複数の前記角度帯毎に、前記到来方向を推定し、
     前記複数の角度帯は、第1角度帯と、前記第1角度帯とは角度範囲が異なる第2角度帯と、を含む
     請求項1から請求項5のいずれか1項に記載の電波センサ。
    The radio wave sensor is set with an angle band which is the resolution of the radio wave sensor in the circumferential direction of the polar coordinate system.
    In the estimation process, the processing device estimates the arrival direction for each of the plurality of angle bands set in the effective range.
    The radio wave sensor according to any one of claims 1 to 5, wherein the plurality of angle bands include a first angle band and a second angle band having an angle range different from that of the first angle band.
  7.  複数の前記距離帯は、前記第1角度帯を有する第1距離帯と、前記第2角度帯を有する第2距離帯と、を含む
     請求項6に記載の電波センサ。
    The radio wave sensor according to claim 6, wherein the plurality of distance bands include a first distance band having the first angle band and a second distance band having the second angle band.
  8.  前記第2距離帯の前記電波センサからの距離は、前記第1距離帯の前記電波センサからの距離より長く、
     前記第2角度帯の角度範囲は、前記第1角度帯の角度範囲より小さい
     請求項7に記載の電波センサ。
    The distance from the radio wave sensor in the second distance band is longer than the distance from the radio wave sensor in the first distance band.
    The radio wave sensor according to claim 7, wherein the angle range of the second angle band is smaller than the angle range of the first angle band.
  9.  前記推定処理は、前記受信データに基づいて前記電波センサに対する前記反射波の入射角を変数とする前記反射波の反射強度値を算出し、前記反射強度値の強度分布のピークに基づいて前記反射波の到来方向を決定する処理であり、
     前記処理装置は、前記反射強度値を前記有効範囲データが示す前記有効範囲に限定して算出する、
     請求項1に記載の電波センサ。
    In the estimation process, the reflected intensity value of the reflected wave with the incident angle of the reflected wave on the radio wave sensor as a variable is calculated based on the received data, and the reflection is based on the peak of the intensity distribution of the reflected intensity value. It is a process that determines the direction of arrival of waves.
    The processing device calculates the reflection intensity value by limiting it to the effective range indicated by the effective range data.
    The radio wave sensor according to claim 1.
  10.  電波を送信する送信器と前記電波が物体から反射した反射波を受信する受信器とを備える電波センサによる物体検知方法であって、
     前記電波センサの検知エリアに設定された、前記物体が検知対象となる有効範囲を示す有効範囲データを記憶すること、
     前記反射波に基づいて生成された受信データに基づいて、前記反射波の到来方向の推定処理を実行すること、
     を備え、
     前記受信データは、前記有効範囲内からの前記反射波、及び、前記検知エリアから前記有効範囲が除かれた範囲であって前記物体が検知対象とならない無効範囲からの前記反射波とを前記受信器が受信することで得られるデータであり、
     前記推定処理は、前記有効範囲データが示す前記有効範囲に限定して実行される
     物体検知方法。
    An object detection method using a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object.
    To store effective range data indicating the effective range for which the object is to be detected, which is set in the detection area of the radio wave sensor.
    Performing estimation processing of the arrival direction of the reflected wave based on the received data generated based on the reflected wave,
    Equipped with
    The received data receives the reflected wave from the effective range and the reflected wave from the invalid range in which the effective range is excluded from the detection area and the object is not the detection target. It is the data obtained by receiving the device,
    The estimation process is an object detection method executed only in the effective range indicated by the effective range data.
  11.  電波を送信する送信器と前記電波が物体から反射した反射波を受信する受信器とを備える電波センサの検知エリアにおいて前記物体が検知対象となる有効範囲を設定する設定方法であって、
     前記反射波の反射強度値の強度分布を示す情報を表示すること、
     前記強度分布を示す情報に基づいて、前記検知エリアに存在する前記物体の位置を特定すること、
     前記位置に対応する実空間上の位置に存在する前記物体が前記電波センサの検知対象か否かを判別すること、
     前記判別の結果に基づいて、前記物体が検知対象となる有効範囲を設定すること、
     を備える設定方法。
    A setting method for setting an effective range in which an object is to be detected in a detection area of a radio wave sensor including a transmitter for transmitting radio waves and a receiver for receiving reflected waves from which the radio waves are reflected from an object.
    Displaying information indicating the intensity distribution of the reflected intensity value of the reflected wave,
    To identify the position of the object existing in the detection area based on the information indicating the intensity distribution.
    Determining whether or not the object existing in the position in the real space corresponding to the position is the detection target of the radio wave sensor.
    To set the effective range for the object to be detected based on the result of the determination.
    Setting method to provide.
PCT/JP2021/019614 2020-05-28 2021-05-24 Radio wave sensor, object detection method, and setting method WO2021241501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093071 2020-05-28
JP2020093071A JP2023099239A (en) 2020-05-28 2020-05-28 Radio wave sensor and object detection method

Publications (1)

Publication Number Publication Date
WO2021241501A1 true WO2021241501A1 (en) 2021-12-02

Family

ID=78744411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019614 WO2021241501A1 (en) 2020-05-28 2021-05-24 Radio wave sensor, object detection method, and setting method

Country Status (2)

Country Link
JP (1) JP2023099239A (en)
WO (1) WO2021241501A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275460A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Radar device
JP2009210410A (en) * 2008-03-04 2009-09-17 Fujitsu Ltd Detection and ranging device, and detection and ranging method
US7671789B1 (en) * 2008-10-03 2010-03-02 Lockheed Martin Corporation Method and system for target detection and angle estimation based on a radar signal
JP2016001175A (en) * 2014-06-06 2016-01-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Hybrid data adaptive and decision adaptive antenna array for automotive radar
JP2020038187A (en) * 2018-09-03 2020-03-12 三星電子株式会社Samsung Electronics Co.,Ltd. Device and method for processing radar data
JP2020051802A (en) * 2018-09-25 2020-04-02 パナソニックIpマネジメント株式会社 Radar device and target determination method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275460A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Radar device
JP2009210410A (en) * 2008-03-04 2009-09-17 Fujitsu Ltd Detection and ranging device, and detection and ranging method
US7671789B1 (en) * 2008-10-03 2010-03-02 Lockheed Martin Corporation Method and system for target detection and angle estimation based on a radar signal
JP2016001175A (en) * 2014-06-06 2016-01-07 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Hybrid data adaptive and decision adaptive antenna array for automotive radar
JP2020038187A (en) * 2018-09-03 2020-03-12 三星電子株式会社Samsung Electronics Co.,Ltd. Device and method for processing radar data
JP2020051802A (en) * 2018-09-25 2020-04-02 パナソニックIpマネジメント株式会社 Radar device and target determination method

Also Published As

Publication number Publication date
JP2023099239A (en) 2023-07-12

Similar Documents

Publication Publication Date Title
US9939522B2 (en) Systems and methods for 4-dimensional radar tracking
US10386462B1 (en) Systems and methods for stereo radar tracking
KR20190129622A (en) Method of clustering targets detected by automotive radar system and apparatus for the same
US20200408892A1 (en) Radar data processing device and local range resolving power adjusting method
JP7436149B2 (en) Apparatus and method for processing radar data
US10429500B2 (en) Tracking apparatus, tracking method, and computer-readable storage medium
US20160154099A1 (en) Object detection apparatus and road mirror
CN109358317B (en) Whistling signal detection method, device, equipment and readable storage medium
US10495743B2 (en) Direction error detection method and apparatus using estimated directions, and in-vehicle radar apparatus
BRPI0905183A2 (en) obstacle detection system
US20220179062A1 (en) Detection apparatus and method
US9429649B2 (en) Radar device
US20210080556A1 (en) Object detection device, in-vehicle radar system, monitoring radar system, object detection method of object detection device, and program
CN110837079B (en) Target detection method and device based on radar
JP2003217099A (en) On-vehicle surrounding monitoring device
US8199012B2 (en) Microwave curtain sensor
JP2004361155A (en) Target discriminating apparatus, target determining apparatus, and discrimination auxiliary equipment
WO2021241501A1 (en) Radio wave sensor, object detection method, and setting method
JP6825794B2 (en) Radar signal processing device, radar device and radar signal processing method
JP6745489B2 (en) Detector
JP7119628B2 (en) Target object detection method and device for vehicle
US9223019B2 (en) TCAS bearing estimation with reduced antenna elements
WO2021250876A1 (en) Road shape estimation device, road shape estimation method, and road shape estimation program
EP3480624A1 (en) Detection of parking row orientation
KR102192761B1 (en) Method and apparatus for detecting target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP