WO2021241493A1 - 呼吸器オルガノイドの製造方法 - Google Patents

呼吸器オルガノイドの製造方法 Download PDF

Info

Publication number
WO2021241493A1
WO2021241493A1 PCT/JP2021/019593 JP2021019593W WO2021241493A1 WO 2021241493 A1 WO2021241493 A1 WO 2021241493A1 JP 2021019593 W JP2021019593 W JP 2021019593W WO 2021241493 A1 WO2021241493 A1 WO 2021241493A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory
cells
hbo
epithelial cells
pathogen
Prior art date
Application number
PCT/JP2021/019593
Other languages
English (en)
French (fr)
Inventor
和雄 高山
徹 岡本
Original Assignee
国立大学法人京都大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 国立大学法人大阪大学 filed Critical 国立大学法人京都大学
Priority to JP2022527025A priority Critical patent/JPWO2021241493A1/ja
Publication of WO2021241493A1 publication Critical patent/WO2021241493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing a respiratory organoid. More specifically, the present invention relates to a method for producing a respiratory organoid, a method for screening a respiratory organoid, a prophylactic or therapeutic agent for a respiratory infection, a regenerating agent for damaged respiratory epithelial cells, and a damaged breathing. Regarding the medium for regeneration of organ epithelial cells.
  • This application applies to U.S. Patent Application No. 63 / 029,567 tentatively filed in the United States on May 25, 2020, and U.S. Patent Application No. 63 / tentatively filed in the United States on February 8, 2021. Priority is claimed under Specification 146,720, the contents of which are incorporated herein by reference.
  • Non-Patent Document 1 In order to develop a therapeutic drug for COVID-19, it is indispensable to develop not only a model animal but also an excellent in vitro evaluation system. To date, the reproduction of the life cycle of the new coronavirus (SARS-CoV-2) and the analysis of organ responses due to viral infection have been advanced using organoid technology that can reproduce part of organ functions in vitro (for example). , Non-Patent Document 1).
  • the present invention includes the following aspects.
  • a method for producing a respiratory organoid wherein (1-1) respiratory epithelial cells are cultured in an expanded culture medium containing fibroblast growth factor (FGF), and (1-2) obtained.
  • a production method comprising a step of culturing the obtained culture in a differentiation medium containing FGF.
  • the production method according to [1] further comprising a step of dissociating the obtained culture and performing gas-liquid interfacial culture before or after the step (1-2).
  • the respiratory epithelial cell is one or more cells selected from the group consisting of bronchial epithelial cells, small airway epithelial cells, and alveolar epithelial cells.
  • the respiratory epithelial cells are embedded in a gel and then cultured in the expanded culture medium.
  • the expanded culture medium further comprises one or more substances selected from the group consisting of a BMP signal inhibitor, a Wnt signal activator and a p38 inhibitor, according to any one of [1] to [6].
  • FGF is one or more substances selected from the group consisting of FGF2, FGF7 and FGF10.
  • FGF is FGF2, FGF7 and FGF10.
  • Artificial cells comprising any one or more of the cell group consisting of basal stem cells, ciliated cells, goblet cells, club cells, pulmonary neuroendocrine cells, type I alveolar epithelial cells and type II alveolar epithelial cells. Respiratory organicoid.
  • [17] (i) One or more cells of the cell group consisting of basal stem cells, filiform cells, goblet cells, club cells and pulmonary nerve endocrine cells, (ii) type I alveolar epithelial cells and type II alveolar epithelium.
  • the respiratory organoid according to [16] which comprises any one or more cells of a cell group consisting of cells, or (iii) the above-mentioned (i) and (ii).
  • the respiratory organoid according to any one of [16] to [18] which is produced by the production method according to any one of [1] to [15].
  • ACE2 angiotensin converting enzyme 2
  • TMPRSS2 type II transmembrane serine protease
  • the step (2-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells. 22. The method according to [22], wherein the method is carried out by at least one step selected from the group consisting of (iV) a step of detecting the release of lactate dehydrogenase (LDH).
  • iV lactate dehydrogenase
  • [24] The method according to [22] or [23], wherein the pathogen is a virus.
  • the virus is any one virus selected from the group consisting of influenza virus, coronavirus and respiratory syncytial virus (RSV).
  • RSV respiratory syncytial virus
  • the coronavirus is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • the respiratory organ according to any one of [16] to [21], which is a method for screening a therapeutic agent for a respiratory tract infection, wherein (3-1) the pathogen of the respiratory tract infection is infected.
  • the step of contacting the organoid with the candidate substance (3-2) the step of detecting the growth of the pathogen in the respiratory organoid after the contact with the candidate substance, and (3-3) the growth as compared with the negative control.
  • a method comprising the step of selecting a candidate substance that has been suppressed, wherein the pathogen is one or more pathogens selected from the group consisting of virus, Hosono and Shinzo.
  • the step (3-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells.
  • (iV) the step of detecting the release of lactate dehydrogenase (LDH).
  • LDH lactate dehydrogenase
  • a method comprising the step of selecting a candidate substance with enhanced recovery, wherein the pathogen is one or more pathogens selected from the group consisting of virus, Hosono and Shinzo.
  • a method for screening a preventive agent for a respiratory tract infection wherein the respiratory organoid according to any one of [16] to [21], which has been brought into contact with a candidate substance (5-1), is subjected to the above-mentioned breathing.
  • a method comprising the step of selecting a candidate substance, wherein the pathogen is one or more pathogens selected from the group consisting of virus, Hosono and Shinzo.
  • the step (5-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells.
  • the method according to [30] wherein the method is carried out by at least one step selected from the group consisting of (iV) a step of detecting the release of lactate dehydrogenase (LDH).
  • LDH lactate dehydrogenase
  • [P1] A method for producing a respiratory organoid, wherein (1-1) respiratory epithelial cells are cultured in an expanded culture medium containing fibroblast growth factor (FGF), and (1-2) are obtained.
  • a method comprising culturing a culture medium in a differentiation medium containing FGF.
  • the respiratory epithelial cell is one or more cells selected from the group consisting of bronchial epithelial cells, small airway epithelial cells, and alveolar epithelial cells.
  • [P3] The method according to [P1] or [P2], wherein the respiratory epithelial cells are derived from frozen cells.
  • [P4] The method according to [P1] or [P2], wherein the respiratory epithelial cells are induced to differentiate from somatic stem cells or pluripotent stem cells.
  • [P5] The method according to any one of [P1] to [P4], wherein the respiratory epithelial cells are embedded in Matrigel.
  • the expanded culture medium further contains one or more substances selected from the group consisting of a BMP signal inhibitor, R-spondin, [P1] to [P5].
  • [P7] The method according to any one of claims 1 to 6, wherein the FGF is one or more substances selected from the group consisting of FGF2, FGF7 and FGF10.
  • [P8] The method according to any one of [P1] to [P7], wherein the FGF is FGF2, FGF7 and FGF10.
  • [P9] The method according to any one of [P6] to [P8], wherein the BMP signal inhibitor is Noggin.
  • [P10] The method according to any one of [P6] to [P9], wherein the R-spondin is R-spondin 1.
  • [P12] (i) One or more cells of the cell group consisting of basal stem cells, ciliated cells, goblet cells, club cells, and pulmonary nerve endocrine cells, (ii) type I alveolar epithelial cells, and type II lungs.
  • the respiratory organoid according to [P11] which comprises any one or more cells of a cell group consisting of follicular epithelial cells, or (iii) the above-mentioned (i) and (ii).
  • [P13] The respiratory organoid according to [P11] or [P12], which is produced by the method according to any one of [P1] to [P10].
  • the respiratory organoid according to any one of [P11] to [P13], which indicates an adult phenotype.
  • the phenotype is (i) high expression of angiotensin converting enzyme 2 (ACE2) in the respiratory epithelial cells of the respiratory organoid, and (ii) type II membrane in the respiratory epithelial cells of the respiratory organoid.
  • ACE2 angiotensin converting enzyme 2
  • TMPRSS2 penetrating serine protease
  • [P16] A method for evaluating the infectious ability and / or the proliferative ability of a pathogen of a respiratory tract infection, wherein the pathogen is added to the respiratory organoid according to any one of (2-1) [P11] to [P15]. And (2-2) a step of detecting the growth of the pathogen, wherein the pathogen is one or more pathogens selected from viruses, bacteria, and fungi. .. [P17]
  • the step (2-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells.
  • [P21] The respiratory organ according to any one of [P11] to [P15], which is a method for screening a therapeutic agent for a respiratory tract infection and (3-1) infected with the pathogen of the respiratory tract infection.
  • the step of contacting the organoid with the candidate substance (3-2) the step of detecting the growth of the pathogen in the respiratory organoid after the contact with the candidate substance, and (3-3) the step of detecting the growth in comparison with a negative subject.
  • a method comprising the step of selecting a candidate substance that is suppressed, wherein the pathogen is one or more pathogens selected from viruses, bacteria, and fungi.
  • the step (3-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells. And (iv) the method according to [P21], which is carried out by at least one step selected from the steps of detecting the release of lactate dehydrogenase (LDH).
  • [P23] A method for screening a preventive agent for a respiratory tract infection, wherein the respiratory organoid according to any one of [P11] to [P15], which has been brought into contact with the candidate substance (4-1), is used.
  • the step of infecting the pathogen of the respiratory tract infection (4-2) the step of detecting the growth of the pathogen in the respiratory organoid after infection, and (4-3) the step of suppressing the growth as compared with a negative subject.
  • a method comprising the step of selecting a candidate substance, wherein the pathogen is one or more pathogens selected from viruses, bacteria, and fungi.
  • the step (4-2) is (i) a step of detecting amplification of the genome of the pathogen, (ii) a step of detecting a protein derived from the pathogen, and (iii) a step of detecting pinosis of cells.
  • a respiratory organoid technology capable of not only reproducing the life cycle of a pathogen of a respiratory tract infection but also screening a preventive agent or a therapeutic agent for a respiratory tract infection.
  • FIG. 1 is a photograph showing the results of fluorescent immunostaining of acetylated ⁇ -tubulin and KRT5 in bronchial epithelial cells (normal human epithelial cells, hereinafter sometimes referred to as “NHBE”) in Experimental Example 1.
  • NHBE normal human epithelial cells
  • FIG. 2 shows the results of quantitative real-time PCR measurement of the expression levels of ACE2 and TMPRSS2 in a three-dimensional culture model of human respiratory organoids (hereinafter, may be referred to as “hBO”) in Experimental Example 1. It is a graph which shows.
  • FIG. 3 is a micrograph showing a phase difference observation image and a hematoxylin / eosin-stained image of the hBO three-dimensional culture model taken in Experimental Example 1.
  • FIG. 4 is a graph showing the results of quantitative real-time PCR measurement of the expression levels of ACE2 and TMPRSS2 in the hBO three-dimensional culture model, NHBE, and the human lung cancer cell line A549 in Experimental Example 1.
  • FIG. 5 is a photograph showing the results of detecting the expression of ACE2 and TMPRSS2 in the hBO three-dimensional culture model by immunochemical staining in Experimental Example 1.
  • FIG. 4 is a graph showing the results of quantitative real-time PCR measurement of the expression levels of ACE2 and TMPRSS2 in the hBO three-dimensional culture model, NHBE, and the human lung cancer cell line A549 in Experimental Example 1.
  • FIG. 5 is a photograph showing the results of detecting the expression of ACE2 and TMPRSS2 in the h
  • FIG. 6 is a photograph showing the results of detecting the expression of ACE2 and KRT5 in the hBO three-dimensional culture model by fluorescent immunostaining in Experimental Example 1.
  • FIG. 7 is a graph showing the measurement results of the expression levels of NGFR and PROM1, which are marker genes for basal stem cells, in the hBO three-dimensional culture model, NHBE, A549 in Experimental Example 1.
  • FIG. 8 is a graph showing the measurement results of the expression levels of TUBA1A and MCIDAS, which are marker genes for hairline cells, in the hBO 3D culture model, NHBE, A549 in Experimental Example 1.
  • FIG. 9 is a graph showing the measurement results of the expression levels of MUC20 and MUC5B, which are marker genes for goblet cells, in the hBO 3D culture model, NHBE, A549 in Experimental Example 1.
  • FIG. 10 is a graph showing the measurement results of the expression levels of SCGB1A1 and KLF5, which are marker genes for club cells, in the hBO 3D culture model, NHBE, A549 in Experimental Example 1.
  • FIG. 11 shows KRT5 (marker of basal stem cells), acetylated ⁇ -tubulin (marker of hairline cells), MUC5AC (marker of goblet cells) and MUC5AC (marker of goblet cells) by immunochemical staining of hBO three-dimensional culture model in Experimental Example 1.
  • FIG. 12 is a transmission electron micrograph image of an ultrathin section of the hBO three-dimensional culture model taken in Experimental Example 1.
  • FIG. 13 is a transmission electron micrograph image of an ultrathin section of the hBO three-dimensional culture model taken in Experimental Example 1.
  • FIG. 14 is a graph showing the results of quantitative real-time PCR measurement of the expression levels of the bronchial markers KRT5, MUC20, MCIDAS, NGFR, MUC5B, and SCGB1A1 in the hBO 3D culture model in Experimental Example 2.
  • FIG. 15 shows the results of quantitative real-time PCR measurement of the expression levels of TMPRSS2, MCIDAS, MUC20, MUC5B, and SCGB1A1 in NHBE, expanded-cultured hBO three-dimensional culture model, and differentiated hBO three-dimensional culture model in Experimental Example 3. It is a graph which shows.
  • FIG. 16 is a heat map created for bronchial markers based on the results of RNA-seq analysis of the hBO 3D culture model in Experimental Example 4.
  • FIG. 17 is a schematic diagram showing the experimental schedule in Experimental Example 5.
  • FIG. 18 is a photograph showing the results of detecting SARS-CoV-2 S protein (SP) by immunohistochemical staining of a hBO three-dimensional culture model infected with SARS-CoV-2 in Experimental Example 5.
  • FIG. 19 is a photograph showing the results of detecting SP and KRT5 in Experimental Example 5 by fluorescent immunostaining of a hBO three-dimensional culture model infected with SARS-CoV-2.
  • FIG. 20 is a photograph showing the results of detecting SP and CC10 by fluorescent immunostaining of a hBO three-dimensional culture model infected with SARS-CoV-2 in Experimental Example 5.
  • FIG. 21 is a graph showing the results of infecting an hBO three-dimensional culture model with SARS-CoV-2 in the presence or absence of Camostat and measuring the virus titer by the TCID50 assay in Experimental Example 5.
  • FIG. 22 shows, in Experimental Example 5, lactate dehydrogenase 1, 2, 3, 4, 5 days after infection with SARS-CoV-2 in a hBO three-dimensional culture model in the presence or absence of Camostat. It is a graph which shows the result of having performed (LDH) assay.
  • FIG. 23 shows the hBO three-dimensional culture model (control) not infected with the virus, the hBO three-dimensional culture model (SARS-CoV-2) infected with the virus, and the hBO infected with the virus in the presence of Camostat in Experimental Example 5.
  • PGSEA parametric gene set enrichment analysis
  • FIG. 24 shows, in Experimental Example 5, a virus-infected hBO three-dimensional culture model (control), a virus-infected hBO three-dimensional culture model (SARS-CoV-2), and a virus-infected hBO in the presence of Camostat. It is a graph which shows the result of having measured the expression level of interferon (IFN) - ⁇ , IFN- ⁇ , ISG56 and ISG15 gene by quantitative real-time PCR about the three-dimensional culture model (SARS-CoV + Camostat).
  • IFN interferon
  • FIG. 25 was created based on the results of RNA-seq in the virus-infected hBO three-dimensional culture model (control) and the virus-infected hBO three-dimensional culture model (SARS-CoV-2) in Experimental Example 5.
  • FIG. 26 is a schematic diagram showing the experimental schedule in Experimental Example 6.
  • FIG. 27 shows acetylated ⁇ in Experimental Example 6 by fluorescent immunostaining of a human respiratory organoid-derived gas-liquid interface cell culture model (hereinafter, may be referred to as “hBO-ALI”) which is not infected with a virus.
  • hBO-ALI human respiratory organoid-derived gas-liquid interface cell culture model
  • FIG. 28 is a photograph showing the results of detecting acetylated ⁇ -tubulin and ACE2 by fluorescent immunostaining of hBO-ALI not infected with virus in Experimental Example 6.
  • FIG. 29 quantifies the expression levels of the ACE2, TMPRSS2, FURIN, NGFR, MCIDAS, MUC5B, and SCGB1A genes in the hBO three-dimensional culture model, hBO-ALI, and bronchial basal stem cells (basal stem cells) in Experimental Example 6. It is a graph which shows the result measured by the real-time PCR.
  • FIG. 29 quantifies the expression levels of the ACE2, TMPRSS2, FURIN, NGFR, MCIDAS, MUC5B, and SCGB1A genes in the hBO three-dimensional culture model, hBO-ALI, and bronchial basal stem cells (basal stem cells) in Experimental Example 6. It is a graph which shows the result measured by the real-time PCR.
  • FIG. 30 is a graph showing the results of measuring the infectious virus in the hBO three-dimensional culture model and the culture supernatant of hBO-ALI infected with SARS-CoV-2 by the TCID50 assay in Experimental Example 6. Is.
  • FIG. 31 shows the results of detecting SARS-CoV-2 SP, acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining of hBO-ALI 2 days after infection with SARS-CoV-2 in Experimental Example 6. It is a photograph showing.
  • FIG. 31 shows the results of detecting SARS-CoV-2 SP, acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining of hBO-ALI 2 days after infection with SARS-CoV-2 in Experimental Example 6. It is a photograph showing.
  • FIG. 32 shows that in Experimental Example 7, SARS-CoV-2 was infected with hBO-ALI, and 7 days after the infection, acetylated ⁇ -tubulin, SARS-CoV-2 SP, and KRT5 were detected by fluorescent immunostaining. It is a photograph showing the result of the infection.
  • FIG. 33 is a photograph showing the results of infecting hBO-ALI with SARS-CoV-2 in Experimental Example 7 and detecting acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining 15 days after the infection. .. FIG.
  • FIG. 34 shows the infectivity contained in the culture supernatant after infecting SARS-CoV-2 with hBO-ALI in Experimental Example 7 and culturing in a differentiation medium containing or not containing FGF2, FGF7, FGF10 for 2 days. It is a graph which shows the result of having measured the certain virus by the TCID50 assay.
  • FIG. 35 is a photograph showing the results of detecting acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining 15 days after virus infection in Experimental Example 7.
  • FIG. 36 shows an infectious virus contained in the culture supernatant 2 days after infection with SARS-CoV-2 in each hBO-ALI prepared from NHBEs derived from different donors in Experimental Example 8. Is a graph showing the results measured by the TCID50 assay.
  • the present invention is a method for producing a respiratory organoid, wherein (1-1) a step of culturing respiratory epithelial cells in an expanded culture medium containing fibroblast growth factor (FGF), and (1-2) Provided is a production method comprising a step of culturing the obtained culture in a differentiation medium containing FGF.
  • FGF fibroblast growth factor
  • the production method of the present embodiment can not only reproduce the life cycle of the pathogen of the respiratory tract infection but also screen the preventive agent or the therapeutic agent for the respiratory tract infection. (Hereinafter, it may be referred to as "BO”. Further, a human BO may be referred to as "hBO").
  • the respiratory epithelial cells to be cultured in step (1-1) can be one or more cells selected from the group consisting of bronchial epithelial cells, small airway epithelial cells and alveolar epithelial cells.
  • Respiratory epithelial cells may be cells collected from a living body of a human or non-human animal, or may be cryopreserved cells.
  • the respiratory epithelial cells may be those derived from human or non-human animal-derived somatic stem cells or pluripotent stem cells. Examples of pluripotent stem cells include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC).
  • ESC embryonic stem cells
  • iPSC induced pluripotent stem cells
  • the non-human animal is not particularly limited, and examples thereof include mice, rats, rabbits, pigs, sheep, goats, cows, and monkeys.
  • respiratory epithelial cells are cultured in an expanded culture medium containing fibroblast growth factor (FGF).
  • FGF fibroblast growth factor
  • the culture method may be plate culture, three-dimensional culture, or gas-liquid interfacial culture.
  • Organoids may also be cultured without extracellular matrix components. By using this method, it is possible to produce organoids (apical-out 3D organoids) in which the apical portion is exposed (the apical surface is exposed). This forms a respiratory organoid.
  • Examples of the gel include those in which the extracellular matrix component is gelled, those in which the extracellular matrix component is composed of components other than the extracellular matrix component, and the like.
  • Examples of the extracellular matrix component include a component contained in the basement membrane and a glycoprotein present in the intercellular space.
  • Examples of the components contained in the basement membrane include type IV collagen, laminin, heparan sulfate proteoglycan, and entactin.
  • Examples of glycoproteins present in the intercellular spaces include collagen, laminin, entactin, fibronectin, fibrinogen, heparin sulfate and the like.
  • Examples of the gel composed of components other than the extracellular matrix component include gelled carboxymethyl cellulose and calcium alginate gel.
  • Matrigel (Corning) is preferably used.
  • the expanded culture medium preferably further contains, in addition to FGF, one or more substances selected from the group consisting of BMP signal inhibitors, Wnt signal activators and p38 inhibitors.
  • the FGF contained in the expanded culture medium is preferably one or more substances selected from the group consisting of FGF2, FGF7 and FGF10, and more preferably FGF2, FGF7 and FGF10.
  • the NCBI accession numbers of the human FGF2 protein are NP_001348594.1, NP_0019975, and the like.
  • the NCBI accession number of the human FGF7 protein is NP_002000.1.
  • the NCBI accession number of the human FGF10 protein is NP_004456.1 or the like.
  • the concentration of FGF contained in the expanded culture medium may be about 1 ng / mL to 1,000 ng / mL.
  • BMP signal inhibitor examples include Noggin, Chordin, LDN-193189 (CAS number: 1062366-62-0), DMH-1 (CAS number: 1206711-16-1) and the like, and among them, Noggin may be used. preferable.
  • concentration of the BMP signal inhibitor contained in the expanded culture medium may be about 1 ng / mL to 1,000 ng / mL.
  • Examples of the Wnt signal activator include R-spondin, CHIR99021 (CAS number: 252917-06-9), and among them, R-spondin is preferable.
  • Examples of the R-spondin include R-spondin 1, R-spondin 2, R-spondin 3, and the like, and among them, R-spondin 1 is preferable.
  • the concentration of the Wnt signal activator contained in the expanded culture medium may be about 1 ng / mL to 1,000 ng / mL.
  • Examples of the p38 inhibitor include SB202190 (CAS number: 152121-30-7), Doramapimod (CAS number: 285983-48-4), SB203580 (CAS number: 152121-47-6), FR167653 (CAS number: 158876-66). -5) and the like, and SB202190 is preferable.
  • the concentration of the p38 inhibitor contained in the expanded culture medium may be about 10 ⁇ M to 1,000 ⁇ M.
  • Respiratory organoids obtained by culturing in an expanded culture medium can be subcultured.
  • Subculture can be performed by dissociating the respiratory organoids once and culturing them again in the expanded culture medium.
  • Dissociation of respiratory organoids can be performed by mechanical shearing and / or enzymatic treatment. Even when the respiratory organoid is subcultured, it is preferable to embed the dissociated respiratory organoid in a gel and then culture it in an expansion culture medium.
  • step (1-2) the culture (respiratory organoid) obtained in step (1-1) is cultured in a differentiation medium containing FGF.
  • a differentiation medium containing FGF As will be described later in the Examples, the expression level of the bronchial marker in the respiratory organoid can be increased and matured by culturing the respiratory organoid in a differentiation medium.
  • the bronchial marker include TMPRSS2, MCIDAS, MUC20, MUC5B, SCGB1A1 and the like.
  • the differentiation medium further contains a TGF- ⁇ inhibitor in addition to FGF.
  • the FGF contained in the differentiation medium is preferably one or more substances selected from the group consisting of FGF2, FGF7 and FGF10, and more preferably FGF2, FGF7 and FGF10.
  • the concentration of FGF contained in the differentiation culture medium may be about 1 ng / mL to 1,000 ng / mL.
  • TGF- ⁇ inhibitors examples include A83-01 (CAS number: 909910-43-6), SB525334 (CAS number: 356559-20-1), SB431542 (CAS number: 301836-41-9), and LY2109761 (CAS number). : 700874-71-1) and the like, and A83-01 is preferable.
  • the concentration of the TGF- ⁇ inhibitor contained in the expanded culture medium may be about 0.1 ⁇ M to 100 ⁇ M.
  • the respiratory organoids produced by the production method including the steps (1-1) and (1-2) are at least basal stem cells, ciliated cells, and goblet cells, as in the living body. And contains club cells.
  • Respiratory organoids are spherical with a diameter of about 100-200 ⁇ m, the outer edge of the organoid contains basal stem cells, and the lumen of the organoid contains filiform cells.
  • the inventors have clarified that the basal stem cells of respiratory organoids have low infection / replication efficiency of the new coronavirus (SARS-CoV-2) and high in hairline cells. .. Therefore, when SARS-CoV-2 is infected with a respiratory organoid containing basal stem cells in the outer edge and ciliated cells in the lumen, SARS-CoV-2 is infected from the basal stem cell side, resulting in infection. -Replication efficiency is not high.
  • a respiratory organoid of the present embodiment it is preferable to further include a step of dissociating the obtained culture (respiratory organoid) and performing a gas-liquid interfacial culture before or after the above step (1-2). ..
  • a respiratory organoid-derived gas-liquid interface cell culture model (BO-ALI) can be obtained.
  • BO-ALI the apical surface where the ciliated cells are present is exposed.
  • the infection / replication efficiency of SARS-CoV-2 can be significantly improved as compared with the BO three-dimensional culture model.
  • the present invention is one or more of a cell group consisting of basal stem cells, ciliated cells, goblet cells, club cells, pulmonary neuroendocrine cells, type I alveolar epithelial cells and type II alveolar epithelial cells.
  • a cell group consisting of basal stem cells, ciliated cells, goblet cells, club cells, pulmonary neuroendocrine cells, type I alveolar epithelial cells and type II alveolar epithelial cells.
  • artificial respiratory organoids including cells.
  • the respiratory organoid of the present embodiment can be produced by the production method described above.
  • Respiratory organoids with exposed apical surfaces in which hairy cells are present can be obtained by dissociating the respiratory organoids and culturing them in a plane, preferably in a gas-liquid interface culture.
  • the respiratory organoids of this embodiment preferably exhibit a phenotype of (i) angiotensin converting enzyme 2 (ACE2) positive and / or (ii) type II transmembrane serine protease (TMPRSS2) positive.
  • ACE2 angiotensin converting enzyme 2
  • TMPRSS2 type II transmembrane serine protease
  • ACE2-positive means that the expression level of the ACE2 gene or ACE2 protein is significantly increased as compared with the respiratory epithelial cells used for producing the respiratory organoid.
  • TMPRSS2 positive means that the expression level of TMPRSS2 gene or TMPRSS2 protein is significantly increased as compared with the respiratory epithelial cells used for producing respiratory organoids.
  • ACE is a receptor for SARS-CoV-2
  • TMPRSS2 is a protease that cleaves and activates the S protein of SARS-CoV-2. Therefore, respiratory organoids in which either ACE2 or TMPRSS2, preferably both are positively expressed, have high infection / replication efficiency of SARS-CoV-2 and can reproduce the life cycle of SARS-CoV-2 as an in vitro model. It is useful.
  • the invention is a method of screening for a prophylactic or therapeutic agent for a respiratory tract infection, wherein (3-1) any of the above-mentioned breaths infected with the pathogen of the respiratory tract infection.
  • the step of bringing the vessel organoid into contact with the candidate substance (3-2) the step of detecting the injury caused by the growth of the pathogen or the infection of the pathogen in the respiratory organoid after the contact with the candidate substance, and (3-3). 3) The step of selecting a candidate substance in which the growth or the injury is suppressed as compared with a negative control, wherein the pathogen is selected from the group consisting of virus, Hosono and Shinzo.
  • a method of being the above pathogen is provided.
  • step (3-1) the respiratory organoid infected with the pathogen of the respiratory infection is brought into contact with the candidate substance.
  • examples of the respiratory organoids include those described above, and specifically, BO or BO-ALI is preferably used.
  • the pathogen includes one or more pathogens selected from the group consisting of virus, Hosono and Shinzo. Depending on the purpose, the pathogen may infect one species alone or a mixture of two or more species.
  • the pathogen may be a virus. Examples of the virus include influenza virus, coronavirus, respiratory syncytial virus (RSV) and the like. Examples of the coronavirus include havee acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
  • the candidate substance is not particularly limited, and examples thereof include a natural compound library, a synthetic compound library, an existing drug library, and a metabolite library.
  • step (3-2) the injury caused by the growth of the pathogen or the infection of the pathogen in the respiratory organoid after contact with the candidate substance is detected.
  • the method for detecting the growth of a pathogen is not particularly limited, and examples thereof include a method for detecting amplification of the genome of the pathogen, a method for detecting a protein derived from the pathogen, and the like.
  • the method for detecting the injury of the respiratory organoid caused by the infection of the pathogen is not particularly limited, and the method for detecting the pycnosis of the cells constituting the respiratory organoid, the lactate dehydrogenase from the respiratory organoid (LDH). ) Is released, and the like can be mentioned. Any one of these methods may be carried out alone, or two or more may be carried out in combination.
  • the candidate substance in which the proliferation or the injury is suppressed as compared with the negative control is a prophylactic or therapeutic agent for respiratory infections.
  • a negative control a respiratory organoid or the like that is not in contact with the candidate substance can be used.
  • the pathogen, respiratory organoid, and candidate substance may be brought into contact with each other in any order.
  • the pathogen may be contacted with the respiratory organoid, infected, and then contacted with the candidate substance.
  • the candidate substance that suppresses the growth of the pathogen or the candidate substance that suppresses the injury caused by the infection of the pathogen is a therapeutic agent for respiratory infections. It can be said.
  • the pathogen may be contacted after the candidate substance is contacted with the respiratory organoid.
  • the candidate substance that suppresses the growth of the pathogen, or the candidate substance that suppresses the injury caused by the infection of the pathogen (prevents the injury caused by the infection of the pathogen) is a preventive agent for respiratory infections. It can be said that there is.
  • basal stem cells can differentiate into other epithelial cells that compose the airway, if the mechanism of replication and differentiation of basal stem cells can be elucidated and the basal stem cells can be freely controlled, airway tissue regeneration targeting the basal stem cells should be performed. Is thought to be possible. If it is possible to develop a drug having an action point different from that of an antiviral drug or an anti-inflammatory drug through such efforts, it is expected that the treatment options for COVID-19 will increase.
  • the present invention provides a regenerating agent for damaged respiratory epithelial cells containing FGF10 as an active ingredient. As described below in the Examples, the inventors have demonstrated that FGF10 is essential for the regeneration of respiratory epithelial cells damaged by infection with a pathogen of respiratory infections.
  • the regenerating agent of the present embodiment can regenerate respiratory epithelial cells damaged by infection with a pathogen of a respiratory infection.
  • the pathogen is the same as that described above, and examples thereof include one or more pathogens selected from the group consisting of virus, Hosono and Shinzo.
  • the pathogen may be a virus.
  • the virus include influenza virus, coronavirus, RSV and the like.
  • examples of the coronavirus include SARS-CoV-2.
  • the regenerating agent of the present embodiment is a therapeutic agent for respiratory infections by regenerating respiratory epithelial cells damaged by infection with a pathogen of respiratory infections.
  • the invention provides a method of treating a respiratory infection, comprising administering an effective amount of FGF10 to a patient in need of treatment.
  • the FGF10 is preferably formulated into a dosage form such as an injection, a nasal spray, and an air spray.
  • the invention provides FGF10 for use in the treatment of respiratory infections.
  • the present invention provides the use of FGF10 for producing a therapeutic agent for respiratory infections.
  • the invention provides a medium for regeneration of damaged respiratory epithelial cells containing FGF10.
  • a medium containing FGF10 can regenerate respiratory epithelial cells damaged by infection with a pathogen of a respiratory infection.
  • the medium of the present embodiment preferably further contains a Rho-kinase (ROCK) inhibitor and a TGF- ⁇ inhibitor.
  • ROCK Rho-kinase
  • ROCK inhibitor examples include Y-27632 (CAS number: 129830-38-2), HA1077 (CAS number: 103745-39-7), H-1152 (CAS number: 871543-07-6) and the like.
  • the TGF- ⁇ inhibitor is the same as that described above.
  • the formed hBO 3D culture model was subcultured as follows.
  • the hBO three-dimensional culture model was suspended in 1 mL of 0.5 mM EDTA / PBS (Nacalai Tesque) and mechanically sheared using a P1000 pipette tip. Subsequently, 2 mL of TrypLE Select (Thermo Fisher Scientific) was added to the suspension. Subsequently, after incubating for 5 minutes at room temperature, the hBO 3D culture model was mechanically sheared again with a P1000 pipette tip. Subsequently, 7 mL of expanded culture medium was added, transferred to a tube, and centrifuged at 400 rpm. Subsequently, the organoid fragments were resuspended in chilled expanded culture medium and seeded as described above. The hBO 3D culture model was subcultured every 10 days.
  • the expanded hBO 3D culture model was cultured in a differentiation medium for 5 days.
  • the composition of the differentiation medium is shown in Table 1 below. In Table 1, “+” indicates that it is contained, and “-” indicates that it is not contained.
  • the hBO 3D culture model could be cryopreserved using STEM-CELLBANKER GMP grade (Takara Bio).
  • hBO-ALI When preparing hBO-ALI, a growing hBO three-dimensional culture model cultured in a 24-well plate was dissociated and then seeded in a Transwell insert (Corning) mounted on a 24-well plate. To promote maturation, hBO-ALI was cultured in differentiation medium for 5 days.
  • A549 a human lung cancer cell line, is in Ham's F12 medium (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS), 1 ⁇ GlutaMAX (Thermo Fisher Scientific), and penicillin-streptomycin. It was cultured. A549 was replaced every 4 days.
  • SARS-CoV-2 (SARS-CoV-2 / Hu / DP / Kng / 19-020 strain and SARS-CoV-2 / Hu / DP / Kng / 19-027 strain) was obtained from Kanagawa Prefectural Institute of Public Health. SARS-CoV-2 was isolated from COVID-19 patients in Japan (GenBank accession numbers: LC528232.1 and LC528233.1, respectively). Each virus formed plaques, purified and propagated in Vero cells. SARS-CoV-2 was stored at ⁇ 80 ° C. All experiments, including virus infection experiments, were performed at biosafety level 3 facilities at Kyoto University and Osaka University in strict compliance with regulations.
  • the post-infection hBO 3D culture model was cultured for 5 days in a differentiation medium containing Camostat (catalog number "SML0057", Sigma-Aldrich). Camostat is one of the compounds that has been clinically tested as a therapeutic agent for COVID-19.
  • hBO-ALI was cultured for 90 minutes in a differentiation medium containing SARS-CoV-2. Then, the differentiation medium containing SARS-CoV-2 was replaced with a new differentiation medium.
  • Virus titers were measured by the median tissue culture infection dose (TCID50) assay in a biosafety level 3 laboratory at Kyoto University.
  • TMPRSS2 / Vero cells (catalog number "JCRB1818", JCRB cell bank) were seeded on a 96-well plate (Thermo Fisher Scientific).
  • MEM Minimum Essential Media
  • FBS penicillin / streptomycin
  • Real-time RT-PCR was performed using SYBR Green PCR Master Mix (Thermo Fisher Scientific) and StepOnePlus real-time PCR system (Thermo Fisher Scientific).
  • Relative quantification of the expression level of target mRNA was performed by the 2- ⁇ CT method.
  • the values were standardized by the values of the housekeeping gene glyceraldehyde triphosphate dehydrogenase.
  • the base sequence of the primers used is shown in Table 2 below.
  • the fixed hBO 3D culture model sample was treated and embedded in paraffin. Subsequently, the sections were cut to a thickness of 2 ⁇ m, the sections were deparaffinized, rehydrated, and stained with hematoxylin and eosin (HE). Sections were observed using a microscope (BX53, Olympus) and a camera (DP73, Olympus).
  • Immunostaining was performed as follows. A formalin-fixed, paraffin-embedded hBO three-dimensional culture model sample was treated with a pressure cooker (Dako Japan) in citric acid buffer (pH 6.0) at 125 ° C. for 30 seconds to activate the antigen. The sections were reacted with each antibody and subsequently with Histofine Simple Stein MAX-PO (Nichirei Bioscience). The antibodies used are shown in Table 3 below. The sections were stained with Peroxidase Stein DAB Kit (Nacalai Tesque) and then counterstained with Meyer's hematoxylin solution.
  • Double fluorescent immunostaining of the infected hBO 3D culture model was performed as follows. Sections were treated with deparaffinized paper, 0.5% trypsin for 30 minutes for antigen activation. Subsequently, in order to suppress non-specific reactions, the sections were blocked with 5% skim milk and albumin (derived from fetal bovine serum Cohn Fraction V, pH 7.0, Wako Pure Chemical Industries, Ltd.) in PBS at room temperature for 30 minutes. .. Subsequently, the sections were reacted with the primary antibody (Table 3) at 4 ° C. overnight, washed and reacted with the secondary antibody at room temperature for 1 hour.
  • the primary antibody Table 3
  • Double fluorescent immunostaining of uninfected hBO-ALI and infected hBO-ALI was performed as follows. Cells were fixed at 4 ° C. in PBS containing 4% paraformaldehyde. The cells were subsequently blocked in PBS containing 2% bovine serum albumin and 0.2% Triton X-100 for 45 minutes at room temperature. Subsequently, the cells were reacted with the primary antibody (Table 3) at 4 ° C. overnight, washed, and reacted with the secondary antibody at room temperature for 1 hour.
  • RNA-seq Total RNA was prepared using RNeasy Mini Kit (Qiagen). Subsequently, RNA integrity was confirmed with a 2100 Bioanalyzer (Agilent Technologies). Subsequently, using NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB) or TruSeq strange mRNA sample prep kit (Illumina), library preparation was performed according to the instructions of each manufacturer.
  • NEB NEBNext Ultra II Directional RNA Library Prep Kit for Illumina
  • Illumina TruSeq strange mRNA sample prep kit
  • NextSeq500 (Illumina) or NovaSeq6000 (Illumina) were used and sequenced in single-ended mode with 152 or 101 bases, respectively. Subsequently, a Fastq file was generated using bcl2fastq2. Subsequently, the adapter sequence was trimmed from the raw read using cutadapt ver 2.7. The trimmed reads were mapped to the human reference genomic sequence (hg19) using HISAT2 ver 2.1.0.
  • the raw count was calculated using featureCounts ver 2.0.0 and used for visualization of the heat map by integrated differential expression and analysis analysis (iDEP, http://ge-lab.org/idep/).
  • the raw data of this experiment was submitted to Gene Expression Omnibus (GEO) as accession number: GSE150819.
  • LDH assay After SARS-CoV-2 infection, lactate dehydrogenase (LDH) present in 250 ⁇ L of culture supernatant was monitored using LDH-Glo cytotoxicity assay (Promega) according to the manufacturer's instructions. Absorbance was measured at a wavelength of 490 nm using a Bio-Rad microplate reader (Bio-Rad). The release of LDH in uninfected cells was used as a control.
  • Example 1 Preparation of human respiratory organoids from cryopreserved adult-derived bronchial epithelial cells
  • the inventors investigated the conditions under which a human respiratory organoid (hBO) three-dimensional culture model could be prepared from cryopreserved adult-derived bronchial epithelial cells (NHBE).
  • hBO human respiratory organoid
  • NHBE cryopreserved adult-derived bronchial epithelial cells
  • FIG. 1 is a photograph showing the results of fluorescent immunostaining of acetylated ⁇ -tubulin and KRT5 in NHBE.
  • the nuclei were stained with DAPI (4', 6-diamidino-2-phenylindole).
  • DAPI 4-', 6-diamidino-2-phenylindole
  • NHBE was embedded in Matrigel, and an advanced DMEM / F12 medium containing FGF2, FGF7, FGF10, Noggin, R-spondin 1, Y-27632 and SB202190 (expanded culture medium, composition in Table 1 above). It was clarified that the hBO three-dimensional culture model can be prepared by culturing in (shown).
  • the hBO 3D culture model is matured by culturing in an advanced DMEM / F12 medium (differentiation medium, composition shown in Table 1 above) containing FGF2, FGF7, FGF10, Y-27632 and A83-01. It became clear that it could be done.
  • FIG. 3 is a micrograph showing a phase difference observation image and a hematoxylin / eosin-stained image of the hBO three-dimensional culture model.
  • FIG. 5 is a photograph showing the results of immunochemical staining.
  • the scale bar is 20 ⁇ m.
  • the arrow indicates the position where the expression of TMPRSS2 was detected.
  • the expression of ACE2 and KRT5 on hBO was detected by fluorescent immunostaining.
  • KRT5 is a marker for basal stem cells.
  • FIG. 6 is a photograph showing the results of fluorescent immunostaining.
  • the scale bar is 20 ⁇ m.
  • the nuclei were counterstained with DAPI.
  • Bronchi include basal stem cells, ciliated cells, goblet cells and club cells. Therefore, the expression levels of the marker genes in each of these cells in the hBO three-dimensional culture model were measured by quantitative real-time PCR.
  • the values shown in FIGS. 7 to 10 are relative values with the measured value in the hBO 3D culture model as 1. Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Dunnett's post-test. The values shown in FIGS. 7 to 10 are relative values with the measured value in the hBO 3D culture model as 1. In FIGS. 7 to 10, groups that do not share the same character are shown to be significantly different from each other at p ⁇ 0.05.
  • FIG. 11 shows KRT5 (marker of basal stem cells), acetylated ⁇ -tubulin (marker of hairline cells), MUC5AC (marker of goblet cells) and CC10 (marker of club cells) by immunochemical staining of hBO three-dimensional culture model. It is a micrograph showing the result of detecting the expression of a marker). As a result, it was confirmed from the results of immunochemical staining that the hBO 3D culture model expressed KRT5, acetylated ⁇ -tubulin, MUC5AC, and CC10. It was also revealed that the outer edge of hBO was KRT5 positive and the lumen was acetylated ⁇ -tubulin positive.
  • basal stem cells express both ACE2 and TMPRSS2, and ciliated cells express only TMPRSS2.
  • FIGS. 12 and 13 are transmission electron micrograph images of ultrathin sections of the hBO 3D culture model. As a result, pili cells, goblet cells, basal stem cells, 9 + 2 structures, pili and microvilli were observed.
  • Example 3 Comparison of expression levels of bronchial markers in NHBE, expanded-cultured hBO 3D culture model and differentiated hBO 3D culture model
  • the expression levels of bronchial markers in NHBE, expanded hBO 3D culture models and differentiated hBO 3D culture models were measured by quantitative real-time PCR.
  • TMPRSS2, MCIDAS, MUC20, MUC5B, SCGB1A1 were examined.
  • PCA principal component analysis
  • FIG. 16 is a heat map created for markers of bronchial epithelial cells. From FIG. 16, it was revealed that the hBO three-dimensional culture model expresses the marker of bronchial epithelial cells more strongly than NHBE or A549.
  • FIG. 17 is a schematic diagram showing an experiment schedule.
  • FIG. 18 is a photograph showing the results of detecting SARS-CoV-2 S protein (SP) by immunohistochemical staining of a hBO three-dimensional culture model infected with SARS-CoV-2.
  • the scale bar is 20 ⁇ m.
  • "control” is the result of the hBO three-dimensional culture model not infected with SARS-CoV-2
  • SARS-CoV-2 is the result of the hBO three-dimensional culture model infected with SARS-CoV-2. Is the result of.
  • SP-positive cells were observed on a part of the outer edge of hBO.
  • FIG. 19 is a photograph showing the results of fluorescent immunostaining of a hBO three-dimensional culture model infected with SARS-CoV-2.
  • the scale bar is 20 ⁇ m. SP and KRT5 were detected. In addition, the nuclei were counterstained with DAPI.
  • FIG. 20 is a photograph showing the results of fluorescent immunostaining of hBO infected with SARS-CoV-2.
  • the scale bar is 20 ⁇ m. SP and CC10 were detected.
  • the nuclei were counterstained with DAPI.
  • SP co-localizes with KRT5 but not with CC10-positive Club cells. This result indicates that SARS-CoV-2 is less likely to replicate in the hBO 3D culture model.
  • FIG. 21 is a graph showing the results of infecting a hBO three-dimensional culture model with SARS-CoV-2 in the presence or absence of Camostat and measuring the virus titer by the TCID50 assay. As a result, a small amount of infectious virus was detected in the hBO 3D culture model infected with the virus. In addition, the production of this virus was reduced by the Camostat treatment.
  • FIG. 22 shows an hBO 3D culture model infected with 1.3 ⁇ 10 5 TCID50 / mL SARS-CoV-2 in the presence or absence of 10 ⁇ M Camostat and cultured in differentiation medium for 5 days. It is a graph which shows the result of performing the LDH assay 1, 2, 3, 4, 5 days after the virus infection. Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Danette's post-test, resulting in infection of the hBO three-dimensional culture model with SARS-CoV-2 in the absence of 10 ⁇ M Camostat. Compared with. As a result, no accumulation of lactate dehydrogenase (LDH) was observed in the medium of the virus-infected hBO 3D culture model. This result suggests that cytotoxicity is not the cause of viral infection.
  • ANOVA one-way analysis of variance
  • FIG. 23 shows a virus-infected hBO three-dimensional culture model (control), a virus-infected hBO three-dimensional culture model (SARS-CoV-2), and a virus-infected hBO three-dimensional culture in the presence of 10 ⁇ M Camostat. It is a graph which shows the result of having performed the parametric gene set enrichment analysis (PGSEA) with respect to the GO viral gene set based on the result of RNA-seq in the model (SARS-CoV + Camostat).
  • PGSEA parametric gene set enrichment analysis
  • FIG. 24 shows a virus-infected hBO three-dimensional culture model (control), a virus-infected hBO three-dimensional culture model (SARS-CoV-2), and a virus-infected hBO three-dimensional culture in the presence of 10 ⁇ M Camostat. It is a graph which shows the result of having measured the expression level of interferon (IFN) - ⁇ , IFN- ⁇ , ISG56 and ISG15 gene by quantitative real-time PCR about a model (SARS-CoV + Camostat).
  • IFN interferon
  • FIG. 25 shows a type I IFN signal prepared based on the results of RNA-seq in a virus-infected hBO three-dimensional culture model (control) and a virus-infected hBO three-dimensional culture model (SARS-CoV-2). It is a heat map of genes related to transmission.
  • FIG. 26 is a schematic diagram showing an experiment schedule.
  • FIG. 27 and 28 are photographs showing the results of fluorescent immunostaining of hBO-ALI not infected with the virus.
  • acetylated ⁇ -tubulin and KRT5 were detected.
  • the nuclei were counterstained with DAPI.
  • FIG. 28 acetylated ⁇ -tubulin and ACE2 were detected.
  • the nuclei were counterstained with DAPI.
  • acetylated ⁇ -tubulin-positive cells and KRT5-positive cells were present in hBO-ALI.
  • ACE2 co-localizes with acetylated ⁇ -tubulin.
  • FIG. 29 shows the expression levels of ACE2, TMPRSS2, FURIN, NGFR, MCIDAS, MUC5B, and SCGB1A genes in the hBO three-dimensional culture model, hBO-ALI, and bronchial basal stem cells (basal stem cells) measured by quantitative real-time PCR. It is a graph which shows the result of this. Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Tukey's post-test.
  • ANOVA analysis of variance
  • hBO indicates the result of the hBO three-dimensional culture model
  • hBO-ALI indicates the result of hBO-ALI
  • Basal cells indicates the result of basal stem cells. Is shown.
  • “*” indicates that there is a significant difference at p ⁇ 0.05
  • "**” indicates that there is a significant difference at p ⁇ 0.01.
  • FIG. 30 is a graph showing the results of measuring infectious viruses in the hBO three-dimensional culture model and the culture supernatant of hBO-ALI by the TCID50 assay. Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Tukey's post-test. In FIG. 30, “*” indicates that there is a significant difference at p ⁇ 0.05. As a result, it was revealed that the replication of infectious virus in hBO-ALI was significantly higher than that in the hBO 3D culture model.
  • FIG. 31 is a photograph showing the results of fluorescent immunostaining of hBO-ALI 2 days after infection with the virus.
  • SARS-CoV-2 SP, acetylated ⁇ -tubulin and KRT5 were detected.
  • the nuclei were counterstained with DAPI.
  • the nuclei were counterstained with DAPI.
  • SP co-localizes with acetylated ⁇ -tubulin but not with KRT5.
  • FIG. 32 shows that 7.0 ⁇ 10 4 TCID50 / well SARS-CoV-2 was infected with hBO-ALI, and 7 days after infection, acetylated ⁇ -tubulin, SARS-CoV-2 by fluorescent immunostaining. It is a photograph which shows the result of having detected SP, KRT5. In addition, the nuclei were counterstained with DAPI. As a result, it was clarified that acetylated ⁇ -tubulin-positive cells and SP-positive cells were not observed. This result indicates that the ciliated cells were killed by the viral infection. On the other hand, it was revealed that KRT5-positive basal stem cells remained even 7 days after the virus infection.
  • FIG. 33 is a photograph showing the results of detecting acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining 15 days after virus infection.
  • the nuclei were counterstained with DAPI.
  • FIG. 34 shows in the culture supernatant after infecting hBO-ALI with 7.0 ⁇ 10 4 TCID50 / well SARS-CoV-2 and culturing in a differentiation medium containing or not containing FGF2, FGF7, FGF10 for 2 days.
  • 3 is a graph showing the results of measuring the infectious virus contained in the TCID50 assay by the TCID50 assay.
  • Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Tukey's post-test.
  • “*” indicates that there is a significant difference at p ⁇ 0.05. Further, it indicates that "w / o" is not included. As a result, it was revealed that the production of infectious virus was significantly increased when FGF10 was removed from the differentiation medium.
  • FIG. 35 is a photograph showing the results of detecting acetylated ⁇ -tubulin and KRT5 by fluorescent immunostaining 15 days after virus infection.
  • the nuclei were counterstained with DAPI.
  • FIG. 35 it is shown that "w / o" is not included.
  • FGF10 was removed from the differentiation medium, the remaining basal stem cells did not proliferate and did not differentiate into acetylated ⁇ -tubulin-positive ciliated cells.
  • FGF2 or FGF7 was removed from the differentiation medium, the remaining basal stem cells could proliferate and also differentiate into acetylated ⁇ -tubulin-positive filamentous hair cells.
  • FGF10 is essential for the remaining basal stem cells to regenerate the bronchial epithelial layer.
  • FIG. 36 shows the infectious virus contained in the culture supernatant after infecting each hBO-ALI with 7.0 ⁇ 10 4 TCID50 / well SARS-CoV-2 and culturing in the differentiation medium for 2 days.
  • Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by Tukey's post-test.
  • ANOVA analysis of variance
  • Tukey's post-test Tukey's post-test.
  • hBO-ALI can reflect individual differences in virus replication efficiency, including gender differences.
  • a respiratory organoid technology capable of not only reproducing the life cycle of a pathogen of a respiratory tract infection but also screening a preventive agent or a therapeutic agent for a respiratory tract infection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する工程、及び、得られた培養物をFGFを含む分化培地で培養する工程を含む、呼吸器オルガノイドの製造方法により、呼吸器感染症の病原体の生活環を再現できるだけでなく、呼吸器感染症の予防剤又は治療剤をスクリーニングすることができる呼吸器オルガノイドを製造することができる。

Description

呼吸器オルガノイドの製造方法
 本発明は、呼吸器オルガノイドの製造方法に関する。より詳細には、本発明は、呼吸器オルガノイドの製造方法、呼吸器オルガノイド、呼吸器感染症の予防剤又は治療剤をスクリーニングする方法、損傷した呼吸器上皮細胞の再生剤、及び、損傷した呼吸器上皮細胞の再生用培地に関する。本願は、2020年5月25日に米国に仮出願された米国特許出願第63/029,567号明細書、及び、2021年2月8日に米国に仮出願された米国特許出願第63/146,720号明細書に基づき優先権を主張し、それらの内容をここに援用する。
 新型コロナウイルス感染症(COVID-19)では、ウイルス感染時だけでなく、ウイルス排除後も、頻繁に重篤な呼吸器機能障害が観察される。COVID-19の治療を目的として抗ウイルス薬の開発が国内外で活発に行われているが、ウイルス排除後の呼吸器機能障害を治療できる薬の開発は十分には進んでいない。抗炎症薬による治療も試みられているが、炎症治癒後も呼吸器機能障害が後遺症として残ることがある。そのため、気管支肺炎等により傷害を受けた気道組織を再生できる新規医薬品の開発が不可欠である。
 COVID-19の治療薬を開発するためには、モデル動物だけでなく、優れたインビトロ評価系の開発が不可欠である。現在までに、臓器機能の一部をインビトロで再現できるオルガノイド技術を用いて、新型コロナウイルス(SARS-CoV-2)の生活環の再現とウイルス感染による臓器応答の解析が進められてきた(例えば、非特許文献1を参照。)。
Takayama, K., In Vitro and Animal Models for SARS-CoV-2 research, Trends Pharmacol Sci., 41 (8), 513-517, 2020.
 本発明は、呼吸器感染症の病原体の生活環を再現できるだけでなく、呼吸器感染症の予防剤又は治療剤をスクリーニングすることができる呼吸器オルガノイド技術を提供することを目的とする。
 本発明は以下の態様を含む。
[1]呼吸器オルガノイドの製造方法であって、(1-1)呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する工程、及び、(1-2)得られた培養物を、FGFを含む分化培地で培養する工程、を含む、製造方法。
[2]前記工程(1-2)の前又は後に、得られた培養物を解離して気液
界面培養する工程を更に含む、[1]に記載の製造方法。
[3]前記呼吸器上皮細胞が、気管支上皮細胞、小気道上皮細胞及び肺胞上皮細胞からなる群より選択される1種以上の細胞である、[1]又は[2]に記載の製造方法。
[4]前記呼吸器上皮細胞が凍結細胞由来である、[1]~[3]のいずれかに記載の製造方法。
[5]前記呼吸器上皮細胞が、体性幹細胞又は多能性幹細胞を分化誘導したものである、[1]~[3]のいずれかに記載の製造方法。
[6]前記工程(1-1)において、前記呼吸器上皮細胞をゲルに包埋したうえで前記拡大培養培地で培養する、[1]~[5]のいずれかに記載の製造方法。
[7]前記拡大培養培地が、BMPシグナル阻害剤、Wntシグナル活性化剤及びp38阻害剤からなる群より選択される1つ以上の物質を更に含む、[1]~[6]のいずれかに記載の製造方法。
[8]前記BMPシグナル阻害剤がNogginである、[7]に記載の製造方法。
[9]前記Wntシグナル活性化剤がR-spondinである、[7]又は[8]に記載の製造方法。
[10]前記R-spondinがR-spondin 1である、[9]に記載の製造方法。
[11]前記p38阻害剤がSB202190である、[7]~[10]のいずれかに記載の製造方法。
[12]前記分化培地がTGF-β阻害剤を更に含む[1]~[11]のいずれかに記載の製造方法。
[13]前記TGF-β阻害剤がA83-01である、[12]に記載の製造方法。
[14]前記FGFが、FGF2、FGF7及びFGF10からなる群より選択される1つ以上の物質である、[1]~[13]のいずれかに記載の製造方法。
[15]前記FGFが、FGF2、FGF7及びFGF10である、[1]~[14]のいずれかに記載の製造方法。
[16]基底幹細胞、線毛細胞、ゴブレット細胞、クラブ細胞、肺神経内分泌細胞、I型肺胞上皮細胞及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞を含む、人工の呼吸器オルガノイド。
[17](i)基底幹細胞、線毛細胞、ゴブレット細胞、クラブ細胞及び肺神経内分泌細胞からなる細胞群のいずれか1以上の細胞、(ii)I型肺胞上皮細胞及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞、又は、(iii)前記(i)及び(ii)、を含む、[16]に記載の呼吸器オルガノイド。
[18]頂端面が露出している、[16]又は[17]に記載の呼吸器オルガノイド。
[19][1]~[15]のいずれかに記載の製造方法によって製造された、[16]~[18]のいずれかに記載の呼吸器オルガノイド。
[20]成人型の表現型を示す、[16]~[19]のいずれかに記載の呼吸器オルガノイド。
[21](i)アンジオテンシン変換酵素2(ACE2)陽性、及び/又は、(ii)II型膜貫通型セリンプロテアーゼ(TMPRSS2)陽性の表現型を示す、[20』に記載の呼吸器オルガノイド。
[22]呼吸器感染症の病原体の感染能及び/又は増殖能を評価する方法であって、(2-1)[16]~[21]のいずれかに記載の呼吸器オルガノイドに、前記病原体を感染させる工程、及び、(2-2)前記病原体の増殖を検出する工程、を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である、方法。
[23]前記工程(2-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び、(iV)乳酸脱水素酵素(LDH)の放出を検出する工程、からなる群より選択される少なくとも1つの工程によって実施される、[22]に記載の方法。
[24]前記病原体がウイルスである、[22]又は[23』に記載の方法。
[25]前記ウイルスが、インフルエンザウイルス、コロナウイルス及びrespiratory syncytial virus(RSV)からなる群より選択されるいずれか1種のウイルスである、[24]に記載の方法。
[26]前記コロナウイルスが、severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)である、[25]に記載の方法。
[27]呼吸器感染症の治療剤をスクリーニングする方法であって、(3-1)前記呼吸器感染症の病原体を感染させた、[16]~[21]のいずれかに記載の呼吸器オルガノイドを、候補物質と接触させる工程、(3-2)前記候補物質接触後の呼吸器オルガノイドにおける、前記病原体の増殖を検出する工程、及び、(3-3)陰性対照と比較して前記増殖が抑制された候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である、方法。
[28]前記工程(3-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び、(iV)乳酸脱水素酵素(LDH)の放出を検出する工程、からなる群より選択される少なくとも1つの工程によって実施される、[27]に記載の方法。
[29]呼吸器感染症の治療剤をスクリーニングする方法であって、(4-1)前記呼吸器感染症の病原体の感染により傷害された、[16]~[21]のいずれかに記載の呼吸器オルガノイドを、候補物質と接触させる工程、(4-2)前記候補物質接触後の呼吸器オルガノイドにおける、前記呼吸器オルガノイドの回復を評価する工程、及び、(4-3)陰性対照と比較して前記回復が亢進した候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である、方法。
[30]呼吸器感染症の予防剤をスクリーニングする方法であって、(5-1)候補物質と接触させた、[16]~[21]のいずれかに記載の呼吸器オルガノイドに、前記呼吸器感染症の病原体を感染させる工程、(5-2)感染後の呼吸器オルガノイドにおける、前記病原体の増殖を検出する工程、及び、(5-3)陰性対照と比較して前記増殖が抑制された候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である、方法。
[31]前記工程(5-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び、(iV)乳酸脱水素酵素(LDH)の放出を検出する工程、からなる群より選択される少なくとも1つの工程によって実施される、[30]に記載の方法。
[32]前記病原体がウイルスである、[30]又は[31]に記載の方法。
[33]前記ウイルスが、インフルエンザウイルス、コロナウイルス及びRSVからなる群より選択されたいずれか1種のウイルスである、[32]に記載の方法。
[34]前記コロナウイルスがSARS-CoV-2である、[33]に記載の方法。
[35][16]~[21]のいずれか一項に記載の呼吸器オルガノイドを含む、[22]~[34]のいずれかに記載の方法に用いるためのキット。
[36]FGF10を有効成分とする、損傷した呼吸器上皮細胞の再生剤。
[37]FGF10を含む、損傷した呼吸器上皮細胞の再生用培地。
[38]ROCK阻害剤、TGF-β阻害剤を更に含む、[37]に記載の損傷した呼吸器上皮細胞の再生用培地。
 本発明は以下の態様を含むものであるということもできる。
[P1]呼吸器オルガノイドの製造方法であって、(1-1)呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する工程、及び(1-2)得られた培養物を、FGFを含む分化培地で培養する工程を含む、方法。
[P2]前記呼吸器上皮細胞が、気管支上皮細胞、小気道上皮細胞、及び肺胞上皮細胞からなる群から選択される1種以上の細胞である、[P1]に記載の方法。
[P3]前記呼吸器上皮細胞が凍結細胞由来である、[P1]又は[P2]に記載の方法。
[P4]前記呼吸器上皮細胞が、体性幹細胞又は多能性幹細胞より分化誘導させたものである、[P1]又は[P2]に記載の方法。
[P5]前記呼吸器上皮細胞がマトリゲルに包埋されている、[P1]~[P4]のいずれかに記載の方法。
[P6]前記工程(1-1)において、前記拡大培養培地がさらに、BMPシグナル阻害剤、R-spondin、からなる群から選択される1つ以上の物質を含む、[P1]~[P5]のいずれかに記載の方法。
[P7]前記FGFが、FGF2、FGF7及びFGF10からなる群から選択される1つ以上の物質である、請求項1~6のいずれかに記載の方法。
[P8]前記FGFが、FGF2、FGF7及びFGF10である、[P1]~[P7]のいずれかに記載の方法。
[P9]前記BMPシグナル阻害剤がNogginである、[P6]~[P8]のいずれかに記載の方法。
[P10]前記R-spondinがR-spondin 1である、[P6]~[P9]のいずれかに記載の方法。
[P11]基底細胞(基底幹細胞)、線毛細胞、ゴブレット細胞、クラブ細胞、肺神経内分泌細胞、I型肺胞上皮細胞、及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞を含む、人工の呼吸器オルガノイド。
[P12](i)基底幹細胞、線毛細胞、ゴブレット細胞、クラブ細胞、及び肺神経内分泌細胞からなる細胞群のいずれか1以上の細胞、(ii)I型肺胞上皮細胞、及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞、又は(iii)前記(i)及び(ii)を含む、[P11]に記載の呼吸器オルガノイド。
[P13][P1]~[P10]のいずれかに記載の方法によって製造される、[P11]又は[P12]に記載の呼吸器オルガノイド。
[P14]成人型の表現型を示す、[P11]~[P13]のいずれかに記載の呼吸器オルガノイド。
[P15]前記表現型が、(i)前記呼吸器オルガノイドの呼吸器上皮細胞におけるアンジオテンシン変換酵素2(ACE2)の高発現、及び、(ii)前記呼吸器オルガノイドの呼吸器上皮細胞におけるII 型膜貫通型セリンプロテアーゼ(TMPRSS2)の高発現から選択される少なくとも1つの表現型である、[P14]に記載の呼吸器オルガノイド。
[P16]呼吸器感染症の病原体の感染能及び/又は増殖能を評価する方法であって、(2-1)[P11]~[P15]のいずれかに記載の呼吸器オルガノイドに、前記病原体を感染させる工程、及び、(2-2)前記病原体の増殖を検出する工程、を含み、ここで、前記病原体が、ウイルス、細菌、及び真菌から選択される1つ以上の病原体である、方法。
[P17]前記工程(2-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び(iv)乳酸脱水素酵素(LDH)の放出を検出する工程から選択される少なくとも1つの工程によって実施される、[P16]に記載の方法。
[P18]前記病原体がウイルスである、[P16]又は[P17]に記載の方法。
[P19]前記病原体がインフルエンザウイルス、コロナウイルス及びrespiratory syncytial virus(RSV)のいずれか1種のウイルスである、[P18]に記載の方法。
[P20]前記コロナウイルスがsevere acute respiratory syndrome coronavirus 2(SARS-CoV-2)である、[P19]に記載の方法。
[P21]呼吸器感染症の治療剤をスクリーニングする方法であって、(3-1)前記呼吸器感染症の病原体を感染させた、[P11]~[P15]のいずれかに記載の呼吸器オルガノイドを、候補物質と接触させる工程、(3-2)前記候補物質接触後の呼吸器オルガノイドにおける、前記病原体の増殖を検出する工程、及び(3-3)陰性対象と比較して前記増殖が抑制されている候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細菌、及び真菌から選択される1つ以上の病原体である、方法。
[P22]前記工程(3-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び(iv)乳酸脱水素酵素(LDH)の放出を検出する工程から選択される少なくとも1つの工程によって実施される、[P21]に記載の方法。
[P23]呼吸器感染症の予防剤をスクリーニングする方法であって、(4-1)候補物質と接触させた、[P11]~[P15]のいずれか一項に記載の呼吸器オルガノイドに、前記呼吸器感染症の病原体を感染させる工程、(4-2)感染後の呼吸器オルガノイドにおける、前記病原体の増殖を検出する工程、及び(4-3)陰性対象と比較して前記増殖が抑制されている候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細菌、及び真菌から選択される1つ以上の病原体である、方法。
[P24]前記工程(4-2)が、(i)前記病原体のゲノムの増幅を検出する工程、(ii)前記病原体由来のタンパク質を検出する工程、(iii)細胞のピクノーシスを検出する工程、及び(iv)乳酸脱水素酵素(LDH)の放出を検出する工程から選択される少なくとも1つの工程によって実施される、[P23]に記載の方法。
[P25]前記病原体がウイルスである、[P21]~[P24]のいずれかに記載の方法。
[P26]前記病原体がインフルエンザウイルス、コロナウイルス及びRSVのいずれか1種のウイルスである、[P25]に記載の方法。
[P27]前記コロナウイルスがSARS-CoV-2である、[P25]に記載の方法。
[P28][P11]~[P15]のいずれかに記載の呼吸器オルガノイドを含む、[P16]~[P27]のいずれかに記載の方法に用いるためのキット。
 本発明によれば、呼吸器感染症の病原体の生活環を再現できるだけでなく、呼吸器感染症の予防剤又は治療剤をスクリーニングすることができる呼吸器オルガノイド技術を提供することができる。
図1は、実験例1において、気管支上皮細胞(normal human bronchial epithelial cells、以下、「NHBE」という場合がある。)におけるアセチル化α-チューブリン及びKRT5を蛍光免疫染色した結果を示す写真である。核をDAPI(4’,6-ジアミジノ-2-フェニルインドール)で染色した。 図2は、実験例1において、ヒト呼吸器オルガノイド(human Bronchial Organoids、以下、「hBO」という場合がある。)三次元培養モデルにおけるACE2及びTMPRSS2の発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。 図3は、実験例1において撮影した、hBO三次元培養モデルの位相差観察画像及びヘマトキシリン・エオシン染色画像を示す顕微鏡写真である。 図4は、実験例1において、hBO三次元培養モデル、NHBE及びヒト肺癌細胞株であるA549におけるACE2及びTMPRSS2の発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。 図5は、実験例1において、免疫化学染色により、hBO三次元培養モデルにおけるACE2及びTMPRSS2の発現を検出した結果を示す写真である。 図6は、実験例1において、蛍光免疫染色により、hBO三次元培養モデルにおけるACE2及びKRT5の発現を検出した結果を示す写真である。 図7は、実験例1において、基底幹細胞のマーカー遺伝子である、NGFR及びPROM1の、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである。 図8は、実験例1において、線毛細胞のマーカー遺伝子である、TUBA1A及びMCIDASの、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである。 図9は、実験例1において、ゴブレット細胞のマーカー遺伝子である、MUC20及びMUC5Bの、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである。 図10は、実験例1において、クラブ細胞のマーカー遺伝子である、SCGB1A1及びKLF5の、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである。 図11は、実験例1において、hBO三次元培養モデルの免疫化学染色により、KRT5(基底幹細胞のマーカー)、アセチル化α-チューブリン(線毛細胞のマーカー)、MUC5AC(ゴブレット細胞のマーカー)及びCC10(クラブ細胞のマーカー)の発現を検出した結果を示す顕微鏡写真である。 図12は、実験例1において撮影した、hBO三次元培養モデルの超薄切片の透過型電子顕微鏡写真画像である。 図13は、実験例1において撮影した、hBO三次元培養モデルの超薄切片の透過型電子顕微鏡写真画像である。 図14は、実験例2において、気管支マーカーである、KRT5、MUC20、MCIDAS、NGFR、MUC5B、SCGB1A1の、hBO三次元培養モデルにおける発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。 図15は、実験例3において、TMPRSS2、MCIDAS、MUC20、MUC5B、SCGB1A1の、NHBE、拡大培養したhBO三次元培養モデル及び分化したhBO三次元培養モデルにおける発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。 図16は、実験例4において、hBO三次元培養モデルのRNA-seq解析の結果に基づいて、気管支のマーカーについて作成したヒートマップである。 図17は、実験例5における実験スケジュールを示す模式図である。 図18は、実験例5において、SARS-CoV-2を感染させたhBO三次元培養モデルの免疫組織化学染色により、SARS-CoV-2のSタンパク質(SP)を検出した結果を示す写真である。 図19は、実験例5において、SARS-CoV-2を感染させたhBO三次元培養モデルの蛍光免疫染色により、SP及びKRT5を検出した結果を示す写真である。 図20は、実験例5において、SARS-CoV-2を感染させたhBO三次元培養モデルの蛍光免疫染色により、SP及びCC10を検出した結果を示す写真である。 図21は、実験例5において、Camostatの存在下又は非存在下でhBO三次元培養モデルにSARS-CoV-2を感染させ、TCID50アッセイによりウイルス力価を測定した結果を示すグラフである。 図22は、実験例5において、Camostatの存在下又は非存在下で、hBO三次元培養モデルにSARS-CoV-2を感染させ、ウイルス感染から1、2、3、4、5日後に乳酸デヒドロゲナーゼ(LDH)アッセイを行った結果を示すグラフである。 図23は、実験例5において、ウイルス感染させていないhBO三次元培養モデル(control)、ウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)、Camostatの存在下でウイルス感染させたhBO三次元培養モデル(SARS-CoV+Camostat)におけるRNA-seqの結果に基づいて、GO biological遺伝子セットに対してパラメトリック遺伝子セット濃縮解析(PGSEA)を行った結果を示すグラフである。 図24は、実験例5において、ウイルス感染させていないhBO三次元培養モデル(control)、ウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)、Camostatの存在下でウイルス感染させたhBO三次元培養モデル(SARS-CoV+Camostat)について、インターフェロン(IFN)-α、IFN-β、ISG56及びISG15遺伝子の発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。 図25は、実験例5において、ウイルス感染させていないhBO三次元培養モデル(control)及びウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)におけるRNA-seqの結果に基づいて作成した、I型IFNシグナル伝達に関連する遺伝子のヒートマップである。 図26は、実験例6における実験スケジュールを示す模式図である。 図27は、実験例6において、ウイルスを感染させていない、ヒト呼吸器オルガノイド由来気液界面細胞培養モデル(以下、「hBO-ALI」という場合がある。)の蛍光免疫染色により、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。 図28は、実験例6において、ウイルスを感染させていないhBO-ALIの蛍光免疫染色により、アセチル化α-チューブリン及びACE2を検出した結果を示す写真である。 図29は、実験例6において、hBO三次元培養モデル、hBO-ALI及び気管支基底幹細胞(基底幹細胞)における、ACE2、TMPRSS2、FURIN、NGFR、MCIDAS、MUC5B、SCGB1Aの各遺伝子の発現レベルを、定量的リアルタイムPCRにより測定した結果を示すグラフである。 図30は、実験例6において、SARS-CoV-2を感染させた、hBO三次元培養モデル及びhBO-ALIの培養上清中の感染性のあるウイルスを、TCID50アッセイにより測定した結果を示すグラフである。 図31は、実験例6において、SARS-CoV-2を感染させてから2日後のhBO-ALIの蛍光免疫染色により、SARS-CoV-2 SP、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。 図32は、実験例7において、SARS-CoV-2をhBO-ALIに感染させ、感染から7日後に、蛍光免疫染色により、アセチル化α-チューブリン、SARS-CoV-2 SP、KRT5を検出した結果を示す写真である。 図33は、実験例7において、SARS-CoV-2をhBO-ALIに感染させ、感染から15日後に、蛍光免疫染色により、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。 図34は、実験例7において、SARS-CoV-2をhBO-ALIに感染させ、FGF2、FGF7、FGF10を含む又は含まない分化培地で2日間培養した後に、培養上清中に含まれる感染性のあるウイルスを、TCID50アッセイにより測定した結果を示すグラフである。 図35は、実験例7において、ウイルス感染から15日後に、蛍光免疫染色により、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。 図36は、実験例8において、それぞれ異なるドナー由来のNHBEから作製した各hBO-ALIにSARS-CoV-2を感染させ、感染から2日後に、培養上清中に含まれる感染性のあるウイルスを、TCID50アッセイにより測定した結果を示すグラフである。
[呼吸器オルガノイドの製造方法]
 1実施形態において、本発明は、呼吸器オルガノイドの製造方法であって、(1-1)呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する工程、及び、(1-2)得られた培養物を、FGFを含む分化培地で培養する工程、を含む、製造方法を提供する。
 実施例において後述するように、本実施形態の製造方法により、呼吸器感染症の病原体の生活環を再現できるだけでなく、呼吸器感染症の予防剤又は治療剤をスクリーニングすることができる呼吸器オルガノイド(以下、「BO」という場合がある。また、ヒトBOを「hBO」という場合がある。)を製造することができる。
 工程(1-1)で培養する呼吸器上皮細胞は、気管支上皮細胞、小気道上皮細胞及び肺胞上皮細胞からなる群より選択される1種以上の細胞であることができる。呼吸器上皮細胞は、ヒト又は非ヒト動物の生体から採取された細胞であってもよく、凍結保存された細胞であってもよい。あるいは、呼吸器上皮細胞は、ヒト又は非ヒト動物由来の体性幹細胞又は多能性幹細胞を分化誘導したものであってもよい。多能性幹細胞としては、胚性幹細胞(ESC)、人工多能性幹細胞(iPSC)等が挙げられる。本明細書において、非ヒト動物としては、特に限定されず、マウス、ラット、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、サル等が挙げられる。
 まず、工程(1-1)において、呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する。培養方法は平板培養であってもよく、三次元培養であってもよく、気液界面培養であってもよい。また細胞外マトリックス成分無しでオルガノイドを培養してもよい。この方法を用いれば、頂端部が外になる(頂端面が露出した)オルガノイド(apical-out 3D organoids)作製が可能となる。これにより、呼吸器オルガノイドが形成される。工程(1-1)では、呼吸器上皮細胞をゲルに包埋したうえで拡大培養培地で培養することが好ましい。これにより、呼吸器オルガノイドを形成させやすくなる。
 ゲルとしては、細胞外マトリックス成分がゲル化したもの、細胞外マトリックス成分以外の成分から構成されたもの等が挙げられる。細胞外マトリックス成分としては、例えば、基底膜に含まれる成分、細胞間隙に存在する糖タンパク質が挙げられる。基底膜に含まれる成分としては、例えば、IV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン、及びエンタクチンが挙げられる。細胞間隙に存在する糖タンパク質としては、コラーゲン、ラミニン、エンタクチン、フィブロネクチン、フィブリノーゲン、ヘパリン硫酸塩等が挙げられる。細胞外マトリックス成分以外の成分から構成されたゲルとしては、例えば、ゲル化したカルボキシメチルセルロース、アルギン酸カルシウムゲル等が挙げられる。ゲルとしては、中でも、マトリゲル(コーニング)が好ましく用いられる。
 例えば、マトリゲルに細胞を包埋して、細胞培養ディッシュの表面にドーム構造を作製し、そこに拡大培養培地を加えて培養するとよい。
 拡大培養培地は、FGFに加えて、BMPシグナル阻害剤、Wntシグナル活性化剤及びp38阻害剤からなる群より選択される1つ以上の物質を更に含むことが好ましい。
 拡大培養培地が含むFGFは、FGF2、FGF7及びFGF10からなる群より選択される1つ以上の物質であることが好ましく、FGF2、FGF7及びFGF10であることがより好ましい。ヒトFGF2タンパク質のNCBIアクセッション番号はNP_001348594.1、NP_001997.5等である。ヒトFGF7タンパク質のNCBIアクセッション番号はNP_002000.1等である。ヒトFGF10タンパク質のNCBIアクセッション番号はNP_004456.1等である。拡大培養培地が含むFGFの濃度は、1ng/mL~1,000ng/mL程度であってよい。
 BMPシグナル阻害剤としては、Noggin、Chordin、LDN-193189(CAS番号:1062368-62-0)、DMH-1(CAS番号:1206711-16-1)等が挙げられ、中でも、Nogginであることが好ましい。拡大培養培地が含むBMPシグナル阻害剤の濃度は、1ng/mL~1,000ng/mL程度であってよい。
 Wntシグナル活性化剤としては、R-spondin、CHIR99021(CAS番号:252917-06-9)等が挙げられ、中でも、R-spondinであることが好ましい。R-spondinとしては、R-spondin 1、R-spondin 2、R-spondin 3等が挙げられ、中でもR-spondin 1であることが好ましい。拡大培養培地が含むWntシグナル活性化剤の濃度は、1ng/mL~1,000ng/mL程度であってよい。
 p38阻害剤としては、SB202190(CAS番号:152121-30-7)、Doramapimod(CAS番号:285983-48-4)、SB203580(CAS番号:152121-47-6)、FR167653(CAS番号:158876-66-5)等が挙げられ、中でもSB202190であることが好ましい。拡大培養培地が含むp38阻害剤の濃度は、10μM~1,000μM程度であってよい。
 拡大培養培地で培養して得られた呼吸器オルガノイドは、継代することができる。継代は、呼吸器オルガノイドを一度解離させて、再度拡大培養培地で培養することにより行うことができる。呼吸器オルガノイドの解離は、機械的せん断処理及び/又は酵素処理により行うことができる。呼吸器オルガノイドを継代する場合においても、解離させた呼吸器オルガノイドをゲルに包埋したうえで拡大培養培地で培養することが好ましい。
 続いて、工程(1-2)において、工程(1-1)で得られた培養物(呼吸器オルガノイド)を、FGFを含む分化培地で培養する。実施例において後述するように、呼吸器オルガノイドを分化培地で培養することにより、呼吸器オルガノイドにおける気管支マーカーの発現レベルを上昇させ、成熟させることができる。気管支マーカーとしては、TMPRSS2、MCIDAS、MUC20、MUC5B、SCGB1A1等が挙げられる。
 分化培地は、FGFに加えて、TGF-β阻害剤を更に含むことが好ましい。
 分化培地が含むFGFは、FGF2、FGF7及びFGF10からなる群より選択される1つ以上の物質であることが好ましく、FGF2、FGF7及びFGF10であることがより好ましい。分化培養培地が含むFGFの濃度は、1ng/mL~1,000ng/mL程度であってよい。
 TGF-β阻害剤としては、A83-01(CAS番号:909910-43-6)、SB525334(CAS番号:356559-20-1)、SB431542(CAS番号:301836-41-9)、LY2109761(CAS番号:700874-71-1)等が挙げられ、中でもA83-01であることが好ましい。拡大培養培地が含むTGF-β阻害剤の濃度は、0.1μM~100μM程度であってよい。
 実施例において後述するように、工程(1-1)及び工程(1-2)を含む製造方法により製造された呼吸器オルガノイドは、生体と同様に、少なくとも、基底幹細胞、線毛細胞、ゴブレット細胞及びクラブ細胞を含む。呼吸器オルガノイドは直径約100~200μmの球形であり、オルガノイドの外縁は基底幹細胞を含み、オルガノイドの内腔に線毛細胞を含む。
 また、実施例において後述するように、発明者らは、呼吸器オルガノイドの基底幹細胞は新型コロナウイルス(SARS-CoV-2)の感染・複製効率が低く、線毛細胞では高いことを明らかにした。したがって、外縁に基底幹細胞を含み、内腔に線毛細胞を含む呼吸器オルガノイドにSARS-CoV-2を感染させた場合、SARS-CoV-2が基底幹細胞側から感染することになるため、感染・複製効率は高くない。
 本実施形態の呼吸器オルガノイドの製造方法において、上記工程(1-2)の前又は後に、得られた培養物(呼吸器オルガノイド)を解離して気液界面培養する工程を更に含むことが好ましい。
 呼吸器オルガノイドを解離して気液界面培養することにより、呼吸器オルガノイド由来気液界面細胞培養モデル(BO-ALI)を得ることができる。実施例において後述するように、BO-ALIでは、線毛細胞が存在する頂端面が露出する。その結果、BO三次元培養モデルと比較して、SARS-CoV-2の感染・複製効率を格段に向上させることができる。
[呼吸器オルガノイド]
 1実施形態において、本発明は、基底幹細胞、線毛細胞、ゴブレット細胞、クラブ細胞、肺神経内分泌細胞、I型肺胞上皮細胞及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞を含む、人工の呼吸器オルガノイドを提供する。本実施形態の呼吸器オルガノイドは、上述した製造方法により製造することができる。
 呼吸器オルガノイドは、頂端面が露出していることが好ましい。線毛細胞が存在する頂端面が露出した呼吸器オルガノイドは、呼吸器オルガノイドを解離して平面培養、好ましくは気液界面培養することにより得ることができる。
 本実施形態の呼吸器オルガノイドは、(i)アンジオテンシン変換酵素2(ACE2)陽性、及び/又は、(ii)II型膜貫通型セリンプロテアーゼ(TMPRSS2)陽性の表現型を示すことが好ましい。
 ここで、ACE2陽性であるとは、呼吸器オルガノイドの作製に使用した呼吸器上皮細胞と比較して、ACE2遺伝子又はACE2タンパク質の発現レベルが有意に上昇していることを意味する。
 また、TMPRSS2陽性であるとは、呼吸器オルガノイドの作製に使用した呼吸器上皮細胞と比較して、TMPRSS2遺伝子又はTMPRSS2タンパク質の発現レベルが有意に上昇していることを意味する。
 ACEはSARS-CoV-2の受容体であり、TMPRSS2は、SARS-CoV-2のSタンパク質を切断して活性化するプロテアーゼである。したがって、ACE2及びTMPRSS2のいずれか、好ましくは双方の発現が陽性である呼吸器オルガノイドは、SARS-CoV-2の感染・複製効率が高く、SARS-CoV-2の生活環を再現できるインビトロモデルとして有用である。
[呼吸器感染症の予防剤又は治療剤をスクリーニングする方法]
 1実施形態において、本発明は、呼吸器感染症の予防剤又は治療剤をスクリーニングする方法であって、(3-1)前記呼吸器感染症の病原体を感染させた、上述したいずれかの呼吸器オルガノイドを、候補物質と接触させる工程、(3-2)前記候補物質接触後の呼吸器オルガノイドにおける、前記病原体の増殖又は前記病原体の感染により生じた傷害を検出する工程、及び、(3-3)陰性対照と比較して前記増殖又は前記傷害が抑制された候補物質を選択する工程、を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である方法を提供する。
 まず、工程(3-1)において、呼吸器感染症の病原体を感染させた呼吸器オルガノイドを候補物質と接触させる。
 ここで、呼吸器オルガノイドとしては、上述したものが挙げられ、具体的には、BO又はBO-ALIが好ましく用いられる。
 病原体は、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体が挙げられる。目的に応じて、病原体は1種を単独で感染させてもよいし、2種以上を混合して感染させてもよい。病原体はウイルスであってもよい。ウイルスとしては、インフルエンザウイルス、コロナウイルス、respiratory syncytial virus(RSV)等が挙げられる。コロナウイルスとしては、severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)が挙げられる。
 候補物質としては、特に制限されず、例えば、天然化合物ライブラリ、合成化合物ライブラリ、既存薬ライブラリ、代謝物ライブラリ等が挙げられる。
 続いて、工程(3-2)において、候補物質接触後の呼吸器オルガノイドにおける、病原体の増殖又は前記病原体の感染により生じた傷害を検出する。
 病原体の増殖を検出する方法としては、特に限定されず、例えば、前記病原体のゲノムの増幅を検出する方法、病原体由来のタンパク質を検出する方法等が挙げられる。また、病原体の感染により生じた呼吸器オルガノイドの傷害を検出する方法としては、特に限定されず、呼吸器オルガノイドを構成する細胞のピクノーシスを検出する方法、呼吸器オルガノイドからの乳酸脱水素酵素(LDH)の放出を検出する方法等が挙げられる。これらの方法は、いずれか1つを単独で実施してもよいし、2つ以上を組み合わせて実施してもよい。
 陰性対照と比較して前記増殖又は前記傷害が抑制された候補物質は、呼吸器感染症の予防剤又は治療剤であるということができる。ここで、陰性対照としては、候補物質を接触させていない呼吸器オルガノイド等を用いることができる。
 工程(3-1)において、病原体、呼吸器オルガノイド、候補物質はいずれの順序で接触させてもよい。例えば、病原体を呼吸器オルガノイドに接触させ、感染させた後に、候補物質を接触させてもよい。この場合に、病原体の増殖を抑制する候補物質、あるいは、病原体の感染により生じた傷害を抑制する(病原体の感染により生じた傷害を回復させる)候補物質は、呼吸器感染症の治療剤であるということができる。
 あるいは、工程(3-1)において、呼吸器オルガノイドに候補物質を接触させた後に病原体を接触させてもよい。この場合に病原体の増殖を抑制する候補物質、あるいは、病原体の感染により生じた傷害を抑制する(病原体の感染により発生する傷害を未然に抑制する)候補物質は、呼吸器感染症の予防剤であるということができる。
 実施例において後述するように、発明者らは、BO-ALIへのSARS-CoV-2感染後、線毛細胞は死滅するが、基底幹細胞は残存することを明らかにした。基底幹細胞は気道を構成する他の上皮細胞に分化可能であることから、基底幹細胞の複製・分化機構を解明し、基底幹細胞を自在に制御できれば、基底幹細胞を標的とした気道組織再生を行うことができると考えられる。このような取り組みにより、抗ウイルス薬や抗炎症薬とは異なる作用点を持つ薬を開発できれば、COVID-19の治療法の選択肢が増えると期待できる。
[損傷した呼吸器上皮細胞の再生剤]
 1実施形態において、本発明は、FGF10を有効成分とする、損傷した呼吸器上皮細胞の再生剤を提供する。実施例において後述するように、発明者らは、呼吸器感染症の病原体の感染により損傷した呼吸器上皮細胞の再生にFGF10が必須であることを明らかにした。
 したがって、本実施形態の再生剤により、呼吸器感染症の病原体の感染により損傷した呼吸器上皮細胞を再生させることができる。
 病原体としては、上述したものと同様であり、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体が挙げられる。病原体はウイルスであってもよい。ウイルスとしては、インフルエンザウイルス、コロナウイルス、RSV等が挙げられる。コロナウイルスとしては、SARS-CoV-2が挙げられる。
 本実施形態の再生剤は、呼吸器感染症の病原体の感染により損傷した呼吸器上皮細胞を再生させることによる、呼吸器感染症の治療剤であるということができる。
 1実施形態において、本発明は、FGF10の有効量を、治療を必要とする患者に投与することを含む、呼吸器感染症の治療方法を提供する。FGF10は、注射剤、点鼻薬、エアースプレー剤等の剤型に製剤化されていることが好ましい。
 1実施形態において、本発明は、呼吸器感染症の治療における使用のためのFGF10を提供する。
 1実施形態において、本発明は、呼吸器感染症の治療剤を製造するためのFGF10の使用を提供する。
[損傷した呼吸器上皮細胞の再生用培地]
 1実施形態において、本発明は、FGF10を含む、損傷した呼吸器上皮細胞の再生用培地を提供する。実施例において後述するように、発明者らは、FGF10を含む培地により、呼吸器感染症の病原体の感染により損傷した呼吸器上皮細胞を再生させることができることを明らかにした。
 本実施形態の培地は、Rho-キナーゼ(ROCK)阻害剤、TGF-β阻害剤を更に含むことが好ましい。
 ROCK阻害剤としては、Y-27632(CAS番号:129830-38-2)、HA1077(CAS番号:103745-39-7)、H-1152(CAS番号:871543-07-6)等が挙げられる。TGF-β阻害剤については上述したものと同様である。
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[材料および方法]
(ヒト呼吸器オルガノイド(hBO)三次元培養モデル及びヒト呼吸器オルガノイド由来気液界面細胞培養モデル(hBO-ALI)の培養)
 hBO三次元培養モデルを調製する場合には、まず、正常ヒト気管支上皮細胞(NHBE、ロンザ)を10mg/mLの冷やしたマトリゲル(成長因子低減、GFR)に懸濁した。続いて、細胞懸濁液50μLずつの液滴を、予め37℃に温めた24ウェルプレート(Nunc)上で10分間インキュベートし固化した。続いて、500μLの拡大培養培地を各ウェルに添加した。拡大培養培地の組成を下記表1に示す。培地は2日ごとに交換した。
 形成されたhBO三次元培養モデルは次のようにして継代した。hBO三次元培養モデルを1mLの0.5mM EDTA/PBS(ナカライテスク)に懸濁し、P1000ピペットチップを用いて機械的にせん断した。続いて、2mLのTrypLE Select(サーモフィッシャーサイエンティフィック)を懸濁液に加えた。続いて、室温で5分間インキュベートした後に、hBO三次元培養モデルを再びP1000ピペットチップを用いて機械的にせん断した。続いて、7mLの拡大培養培地を加えてチューブに移し、400rpmで遠心した。続いて、オルガノイドの断片を冷やした拡大培養培地で再懸濁し、上述したように播種した。hBO三次元培養モデルは10日ごとに継代した。
 hBO三次元培養モデルを成熟させる場合には、拡大培養したhBO三次元培養モデルを分化培地中で5日間培養した。分化培地の組成を下記表1に示す。表1中、「+」は含有していることを示し、「-」は含有していないことを示す。hBO三次元培養モデルはSTEM-CELLBANKER GMP grade(タカラバイオ)を使用して凍結保存することができた。
 hBO-ALIを調製する場合には、24ウェルプレートで培養された増殖中のhBO三次元培養モデルを解離させた後、24ウェルプレートに装着したトランズウェルインサート(コーニング)内に播種した。成熟を促進するために、hBO-ALIを分化培地中で5日間培養した。
Figure JPOXMLDOC01-appb-T000001
(A549の培養)
 ヒト肺癌細胞株であるA549は、10%ウシ胎児血清(FBS)、1×GlutaMAX(サーモフィッシャーサイエンティフィック)、ペニシリン-ストレプトマイシンを添加した、Ham’s F12培地(サーモフィッシャーサイエンティフィック)中で培養した。A549は4日ごとに継代した。
(SARS-CoV-2の調製)
 SARS-CoV-2(SARS-CoV-2/Hu/DP/Kng/19-020株及びSARS-CoV-2/Hu/DP/Kng/19-027株)は神奈川県衛生研究所から入手した。SARS-CoV-2は日本におけるCOVID-19患者から単離された(それぞれ、GenBankアクセッション番号:LC528232.1及びLC528233.1)。各ウイルスはプラークを形成させて精製し、Vero細胞中で増殖させた。SARS-CoV-2は-80℃で保存した。ウイルスの感染実験を含むすべての実験は、京都大学及び大阪大学のバイオセーフティーレベル3の施設で規制に厳密に従って行った。
(SARS-CoV-2の感染及び薬剤処理)
 24ウェルプレートで培養したhBO三次元培養モデル(約100個のオルガノイド)及び24ウェルプレートに装着したトランズウェルインサート中で培養したhBO-ALI(約100個のオルガノイドから調製した。)に、0.7×10又は1.3×10 TCID50のSARS-CoV-2を感染させた。
 hBO三次元培養モデルへの感染実験では、毎日、SARS-CoV-2を含む分化培地の半分を新しい分化培地に交換した。薬剤処理実験では感染後のhBO三次元培養モデルをCamostat(カタログ番号「SML0057」、シグマ-アルドリッチ)を含む分化培地で5日間培養した。なお、Camostatは、COVID-19の治療薬としての臨床試験が行われている化合物の1つである。
 hBO-ALIへの感染実験では、SARS-CoV-2を含む分化培地でhBO-ALIを90分間培養した。その後、SARS-CoV-2を含む分化培地を新しい分化培地と交換した。
(SARS-CoV-2のウイルス力価測定)
 ウイルスの力価は、京都大学のバイオセーフティーレベル3の研究室でmedian tissue culture infectious dose(TCID50)アッセイにより測定した。
 96ウェルプレート(サーモフィッシャーサイエンティフィック)にTMPRSS2/Vero細胞(カタログ番号「JCRB1818」、JCRBセルバンク)を播種した。培地としては、5%FBS及び1%ペニシリン/ストレプトマイシンを添加したMinimum Essential Media(MEM、シグマ-アルドリッチ)を使用した。
 試料を10-1~10-8まで10倍ずつ希釈した。希釈した試料をTMPRSS2/Vero細胞に添加し、37℃で96時間インキュベートした(n=3)。続いて、顕微鏡で観察し、細胞変性効果を評価し、リード-ミュンヒの方法によりTCID50/mLを計算した。
 hBO三次元培養モデル、hBO-ALI、気管支基底幹細胞からISOGENE II(ニッポンジーン)を用いて全RNAを抽出した。続いて、Superscript VILO cDNA synthesis kit(サーモフィッシャーサイエンティフィック)を用いて全RNA500ngからcDNAを合成した。
 SYBR Green PCR Master Mix(サーモフィッシャーサイエンティフィック)及びStepOnePlus リアルタイムPCRシステム(サーモフィッシャーサイエンティフィック)を用いてリアルタイムRT-PCRを行った。
 標的mRNAの発現レベルの相対的定量は2-ΔΔCT法により行った。値はハウスキーピング遺伝子であるグリセルアルデヒド3リン酸デヒドロゲナーゼの値で基準化した。使用したプライマーの塩基配列を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
(超薄切片の透過型電子顕微鏡観察)
 hBO三次元培養モデルをリン酸緩衝された2%グルタルアルデヒドで固定した。続いて、2%四酸化オスミウム中4℃で2時間後固定を行った。固定の後、試料を一連のエタノール中で脱水し、エポキシ樹脂中に包埋した。続いて、超薄切片を切り取り、酢酸ウラニルと鉛染色液で染色し、電子顕微鏡(HITACHI H-7600)を用いて100kVで観察した。
(組織病理学及び免疫蛍光法)
 固定したhBO三次元培養モデル試料を処理し、パラフィン中に包埋した。続いて、2μmの厚さに切り出し、切片を脱パラフィンし、再水和し、ヘマトキシリン・エオシン(HE)で染色した。切片は顕微鏡(BX53、オリンパス)及びカメラ(DP73、オリンパス)を用いて観察した。
 免疫染色は、次のようにして行った。ホルマリン固定し、パラフィン包埋したhBO三次元培養モデル試料を、pressure cooker(ダコジャパン)を用いてクエン酸バッファー(pH6.0)中、125℃30秒間処理し、抗原賦活化した。切片を各抗体と反応させ、続いて、Histofine Simple Stain MAX-PO(ニチレイバイオサイエンス)と反応させた。使用した抗体を下記表3に示す。切片をPeroxidase Stain DAB Kit(ナカライテスク)で染色した後、マイヤーヘマトキシリン溶液で対比染色した。
Figure JPOXMLDOC01-appb-T000003
 感染させたhBO三次元培養モデルの二重蛍光免疫染色は、次のようにして行った。切片を脱パラフィン紙、0.5%トリプシンで30分間処理して抗原賦活化した。続いて、非特異反応を抑制するために、切片を、PBS中の5%スキムミルク及びアルブミン(ウシ胎児血清Cohn Fraction V由来、pH7.0、富士フイルム和光純薬)で、室温、30分間ブロッキングした。続いて、切片を1次抗体(表3)と4℃で一晩反応させ、洗浄し、2次抗体と室温で1時間反応させた。
 感染させていないhBO-ALI及び感染させたhBO-ALIの二重蛍光免疫染色は、次のようにして行った。細胞を4%パラホルムアルデヒドを含むPBS中、4℃で固定した。続いて、細胞を2%ウシ血清アルブミン及び0.2%Triton X-100を含むPBS中、室温で45分間ブロッキングした。続いて、細胞を1次抗体(表3)と4℃で一晩反応させ、洗浄し、2次抗体と室温で1時間反応させた。
(RNA-seq)
 RNeasy Mini Kit(キアゲン)を用いて全RNAを調製した。続いて、2100 Bioanalyzer(アジレントテクノロジー)でRNAの完全性を確認した。続いて、NEBNext Ultra II Directional RNA Library Prep Kit for Illumina(NEB)又はTruSeq stranded mRNA sample prep kit(イルミナ)を用いて、各メーカーの説明書にしたがってライブラリ調製を行った。
 NextSeq500(イルミナ)又はNovaSeq6000(イルミナ)を用い、それぞれ152塩基又は101塩基のシングルエンドモードでシーケンスした。続いて、bcl2fastq2を用いてFastqファイルを生成した。続いて、cutadapt ver 2.7を用いて生のリードからアダプター配列をトリミングした。HISAT2 ver 2.1.0を用いて、トリミングされたリードをヒト参照ゲノム配列(hg19)にマッピングした。
 featureCounts ver 2.0.0を使用してrawカウントを計算し、integrated differential expression and pathway analysis(iDEP、http://ge-lab.org/idep/)によるヒートマップの可視化に使用した。本実験の生データはGene Expression Omnibus(GEO)にアクセッション番号:GSE150819として提出した。
(LDHアッセイ)
 SARS-CoV-2感染の後に、培養上清250μL中に存在する乳酸デヒドロゲナーゼ(LDH)をLDH-Glo cytotoxicity assay(Promega)を用いてメーカーの説明書にしたがってモニターした。吸光度は、Bio-Radマイクロプレートリーダー(Bio-Rad)を使用して波長490nmで測定した。感染していない細胞におけるLDHの放出を対照として使用した。
(統計解析)
 統計解析は対応のない両側スチューデントのt検定により行った。統計的有意性は、一元配置分散分析(ANOVA)と、それに続くテューキーまたはダネットの事後検定によって評価した。3つの独立した実験の代表的な結果を使用した。
[実験例1]
(凍結保存された成人由来気管支上皮細胞からのヒト呼吸器オルガノイドの作製)
 発明者らは、凍結保存された成人由来気管支上皮細胞(NHBE)からヒト呼吸器オルガノイド(hBO)三次元培養モデルを作製することができる条件を検討した。
 図1は、NHBEにおけるアセチル化α-チューブリン及びKRT5を蛍光免疫染色した結果を示す写真である。核をDAPI(4’,6-ジアミジノ-2-フェニルインドール)で染色した。その結果、ほとんどのNHBEがKRT5陽性であるが、アセチル化α-チューブリン陰性であることが明らかとなり、ほとんどのNHBEが基底幹細胞であることが明らかとなった。
 また、検討の結果、NHBEをマトリゲルに包埋し、FGF2、FGF7、FGF10、Noggin、R-spondin 1、Y-27632及びSB202190を含むadvanced DMEM/F12培地(拡大培養培地、上記表1に組成を示す。)中で培養することにより、hBO三次元培養モデルを作製することができることが明らかとなった。
 更に、hBO三次元培養モデルを、FGF2、FGF7、FGF10、Y-27632及びA83-01を含むadvanced DMEM/F12培地(分化培地、上記表1に組成を示す。)中で培養することにより、成熟させることができることが明らかとなった。
 続いて、拡大培養したhBO三次元培養モデルを、FGF2、EGF、HGF、R-spondin 1又はNogginを含む培地で5日間培養した。続いて、ACE2及びTMPRSS2の発現レベルを定量的リアルタイムPCRにより測定した。図2は、定量的リアルタイムPCRの結果を示すグラフである(n=3)。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価した。図2に示す値は、FGF2を含む培地における測定値を1とする相対値で示した。図2中、「*」はp<0.05で有意差があることを示し、「**」はp<0.01で有意差があることを示す。その結果、培地に含まれる増殖因子のうち、FGF2がACE2及びTMPRSS2の発現レベルの増強に重要であることが明らかとなった。
 図3は、hBO三次元培養モデルの位相差観察画像及びヘマトキシリン・エオシン染色画像を示す顕微鏡写真である。50μLのマトリゲル中に約100個のhBOが存在し、各hBOの直径は約100~200μmであった。
 hBO三次元培養モデル、NHBE及びA549におけるACE2及びTMPRSS2の発現レベルを定量的リアルタイムPCRにより測定した。図4は、定量的リアルタイムPCRの結果を示すグラフである(n=3)。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価した。図4に示す値は、hBO三次元培養モデルにおける測定値を1とする相対値で示した。図4中、同じ文字を共有していないグループは互いにp<0.05で有意差があることを示す。その結果、hBO三次元培養モデルにおけるACE2及びTMPRSS2の発現レベルは、NHBE及びA549におけるACE2及びTMPRSS2の発現レベルよりも有意に高いことが明らかとなった。
 続いて、免疫化学染色により、hBO三次元培養モデルにおけるACE2及びTMPRSS2の発現を検出した。図5は免疫化学染色の結果を示す写真である。スケールバーは20μmである。図5中、矢印はTMPRSS2の発現が検出された位置を示す。また、hBOにおけるACE2及びKRT5の発現を蛍光免疫染色により検出した。KRT5は基底幹細胞のマーカーである。図6は蛍光免疫染色の結果を示す写真である。スケールバーは20μmである。核をDAPIで対比染色した。その結果、ACE2はhBOの外縁の一部に発現しており、TMPRSS2はhBOの外縁の一部及び内腔の一部に発現することが明らかとなった。
 気管支は、基底幹細胞、線毛細胞、ゴブレット細胞及びクラブ細胞を含む。そこで、hBO三次元培養モデルにおけるこれらの各細胞のマーカー遺伝子の発現レベルを定量的リアルタイムPCRにより測定した。
 図7は、基底幹細胞のマーカー遺伝子である、NGFR及びPROM1の、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである(n=3)。図8は、線毛細胞のマーカー遺伝子である、TUBA1A及びMCIDASの、hBO、NHBE、A549における発現レベルの測定結果を示すグラフである(n=3)。図9は、ゴブレット細胞のマーカー遺伝子である、MUC20及びMUC5Bの、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである(n=3)。図10は、クラブ細胞のマーカー遺伝子である、SCGB1A1及びKLF5の、hBO三次元培養モデル、NHBE、A549における発現レベルの測定結果を示すグラフである(n=3)。
 図7~10に示す値は、hBO三次元培養モデルにおける測定値を1とする相対値で示した。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価した。図7~10に示す値は、hBO三次元培養モデルにおける測定値を1とする相対値で示した。図7~10中、同じ文字を共有していないグループは互いにp<0.05で有意差があることを示す。
 その結果、hBO三次元培養モデルにおける、基底幹細胞、線毛細胞、ゴブレット細胞及びクラブ細胞のマーカー遺伝子の発現レベルは、NHBEにおける発現レベルよりも有意に高いことが明らかとなった。
 図11は、hBO三次元培養モデルの免疫化学染色により、KRT5(基底幹細胞のマーカー)、アセチル化α-チューブリン(線毛細胞のマーカー)、MUC5AC(ゴブレット細胞のマーカー)及びCC10(クラブ細胞のマーカー)の発現を検出した結果を示す顕微鏡写真である。その結果、免疫化学染色の結果からも、hBO三次元培養モデルは、KRT5、アセチル化α-チューブリン、MUC5AC、CC10を発現することが確認された。また、hBOの外縁はKRT5陽性であり、内腔はアセチル化α-チューブリン陽性であることが明らかとなった。
 以上の結果から、基底幹細胞がACE2及びTMPRSS2の双方を発現し、線毛細胞はTMPRSS2のみを発現することが示された。
 図12、13は、hBO三次元培養モデルの超薄切片の透過型電子顕微鏡写真画像である。その結果、線毛細胞、ゴブレット細胞、基底幹細胞、9+2構造、線毛及び微絨毛観察された。
 以上の結果から、凍結保存された成人由来のNHBEから拡大培養可能な機能的なhBOを作製できたことが示された。
[実験例2]
(FGF2処理が気管支マーカーの発現レベルを増強させた)
 拡大培養したhBO三次元培養モデルを、FGF2、EGF、HGF、R-spondin 1又はNogginを含む培地で5日間培養した。続いて、気管支マーカーである、KRT5、MUC20、MCIDAS、NGFR、MUC5B、SCGB1A1の発現レベルを定量的リアルタイムPCRにより測定した。図14は、定量的リアルタイムPCRの結果を示すグラフである(n=3)。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価した。図14に示す値は、FGF2を含む培地における測定値を1とする相対値で示した。図14中、「*」はp<0.05で有意差があることを示し、「**」はp<0.01で有意差があることを示し、「***」はp<0.001で有意差があることを示し、「****」はp<0.0001で有意差があることを示す。その結果、培地に含まれる増殖因子のうち、FGF2が気管支マーカーの発現レベルの増強に重要であることが明らかとなった。
[実験例3]
(NHBE、拡大培養したhBO三次元培養モデル及び分化したhBO三次元培養モデルにおける気管支マーカーの発現レベルの比較)
 NHBE、拡大培養したhBO三次元培養モデル及び分化したhBO三次元培養モデルにおける気管支マーカーの発現レベルを定量的リアルタイムPCRにより測定した。気管支マーカーとしては、TMPRSS2、MCIDAS、MUC20、MUC5B、SCGB1A1を検討した。
 図15は、定量的リアルタイムPCRの結果を示すグラフである(n=3)。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価した。図15に示す値は、NHBEにおける測定値を1とする相対値で示した。その結果、気管支マーカーの発現レベルは、NHBE、拡大培養したhBO三次元培養モデル及び分化したhBO三次元培養モデルの順に高くなることが明らかとなった。
[実験例4]
(hBO三次元培養モデルのRNA-seq解析)
 hBO三次元培養モデルのRNA-seq解析を行った(n=3)。また、比較のために、NHBE、A549についてもRNA-seq解析を行った。ヒートマップ解析、主成分分析(PCA)遺伝子発現プロファイルのスキャッタープロットの結果は、全て、hBO三次元培養モデルがA549よりもNHBEに近いことを示した。
 図16は、気管支上皮細胞のマーカーについて作成したヒートマップである。図16より、hBO三次元培養モデルは気管支上皮細胞のマーカーをNHBE又はA549よりも強く発現することが明らかとなった。
 以上の結果は、hBO三次元培養モデルが、NHBE又はA549よりも高い気管支機能を有することを示す。
[実験例5]
(SARS-CoV-2のhBO三次元培養モデルでの感染と複製)
 hBOにSARS-CoV-2を感染させ、分化培地中で5日間培養した。図17は実験スケジュールを示す模式図である。
 培地中に含まれるウイルスは、基底膜側からhBOに感染した。図18はSARS-CoV-2を感染させたhBO三次元培養モデルの免疫組織化学染色により、SARS-CoV-2のSタンパク質(SP)を検出した結果を示す写真である。スケールバーは20μmである。図18中、「control」はSARS-CoV-2を感染させていないhBO三次元培養モデルの結果であり、「SARS-CoV-2」はSARS-CoV-2を感染させたhBO三次元培養モデルの結果である。その結果、SP陽性の細胞はhBOの外縁の一部で観察された。
 図19は、SARS-CoV-2を感染させたhBO三次元培養モデルの蛍光免疫染色の結果を示す写真である。スケールバーは20μmである。SP及びKRT5を検出した。また、DAPIで核を対比染色した。図20は、SARS-CoV-2を感染させたhBOの蛍光免疫染色の結果を示す写真である。スケールバーは20μmである。SP及びCC10を検出した。また、DAPIで核を対比染色した。その結果、SPはKRT5と共局在するが、CC10陽性のクラブ細胞とは共局在しないことが明らかとなった。この結果は、SARS-CoV-2がhBO三次元培養モデルでは複製されにくいことを示す。
 図21は、Camostatの存在下又は非存在下でhBO三次元培養モデルにSARS-CoV-2を感染させ、TCID50アッセイによりウイルス力価を測定した結果を示すグラフである。その結果、ウイルスを感染させたhBO三次元培養モデル中に、感染性のあるウイルスが少し検出された。また、このウイルスの産生はCamostat処理により減少した。
 図22は、10μMのCamostatの存在下又は非存在下で、hBO三次元培養モデルに1.3×10TCID50/mLのSARS-CoV-2を感染させ、分化培地中で5日間培養し、ウイルス感染から1、2、3、4、5日後にLDHアッセイを行った結果を示すグラフである。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くダネットの事後検定によって評価し、10μMのCamostatの非存在下でhBO三次元培養モデルにSARS-CoV-2を感染させた結果と比較した。その結果、ウイルス感染させたhBO三次元培養モデルの培地中に乳酸デヒドロゲナーゼ(LDH)の蓄積は観察されなかった。この結果は、細胞毒性がウイルス感染の原因でないことを示唆する。
 図23は、ウイルス感染させていないhBO三次元培養モデル(control)、ウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)、10μMのCamostatの存在下でウイルス感染させたhBO三次元培養モデル(SARS-CoV+Camostat)におけるRNA-seqの結果に基づいて、GO biological遺伝子セットに対してパラメトリック遺伝子セット濃縮解析(PGSEA)を行った結果を示すグラフである。
 図24は、ウイルス感染させていないhBO三次元培養モデル(control)、ウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)、10μMのCamostatの存在下でウイルス感染させたhBO三次元培養モデル(SARS-CoV+Camostat)について、インターフェロン(IFN)-α、IFN-β、ISG56及びISG15遺伝子の発現レベルを定量的リアルタイムPCRにより測定した結果を示すグラフである。
 図25は、ウイルス感染させていないhBO三次元培養モデル(control)及びウイルス感染させたhBO三次元培養モデル(SARS-CoV-2)におけるRNA-seqの結果に基づいて作成した、I型IFNシグナル伝達に関連する遺伝子のヒートマップである。
 図23~25の結果から、ウイルス感染により、自然免疫応答関連遺伝子の発現が少し増強されたことが明らかとなった。
 以上の結果は、ウイルスが、hBOの外縁に存在する基底幹細胞に感染しにくく、ウイルスの複製があまり行われなかったことを示す。
[実験例6]
(SARS-CoV-2のhBO-ALIでの感染と複製)
 気管支の管腔側からのウイルスの感染を模倣するために、hBO-ALIを使用した。拡大培養したhBO三次元培養モデルを解離させてトランズウェルインサートに播種し、分化培地中で5日間培養した。図26は実験スケジュールを示す模式図である。
 図27、図28は、ウイルスを感染させていないhBO-ALIの蛍光免疫染色の結果を示す写真である。図27では、アセチル化α-チューブリン及びKRT5を検出した。また、DAPIで核を対比染色した。図28では、アセチル化α-チューブリン及びACE2を検出した。また、DAPIで核を対比染色した。その結果、hBO-ALIにはアセチル化α-チューブリン陽性細胞及びKRT5陽性細胞が存在することが確認された。また、ACE2はアセチル化α-チューブリンと共局在することが明らかとなった。これらの結果は、hBO-ALIが、ウイルス受容体であるACE2を強く発現する線毛細胞を含むことを示す。
 図29は、hBO三次元培養モデル、hBO-ALI及び気管支基底幹細胞(基底幹細胞)における、ACE2、TMPRSS2、FURIN、NGFR、MCIDAS、MUC5B、SCGB1Aの各遺伝子の発現レベルを、定量的リアルタイムPCRにより測定した結果を示すグラフである。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くテューキーの事後検定によって評価した。図29中、「hBO」はhBO三次元培養モデルの結果であることを示し、「hBO-ALI」はhBO-ALIの結果であることを示し、「Basal cells」は基底幹細胞の結果であることを示す。また、「*」はp<0.05で有意差があることを示し、「**」はp<0.01で有意差があることを示す。
 その結果、hBO三次元培養モデル及びhBO-ALIの間で、multiciliate differentiation and DNA synthesis associated cell cycle protein(MCIDAS)遺伝子以外のSARS-CoV-2関連マーカー遺伝子及び気管支上皮細胞マーカー遺伝子の発現レベルに違いがないことが明らかとなった。hBO三次元培養モデルと比較して、hBO-ALIにおいて、MCIDAS遺伝子の発現レベルが増強されたことは、hBO-ALIでは線毛細胞の成熟が促進されることを示唆する。
 続いて、hBO三次元培養モデル及びhBO-ALIにSARS-CoV-2を感染させ、分化培地中で2日間培養した。図30は、TCID50アッセイにより、hBO三次元培養モデル及びhBO-ALIの培養上清中の感染性のあるウイルスを測定した結果を示すグラフである。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くテューキーの事後検定によって評価した。図30中、「*」はp<0.05で有意差があることを示す。その結果、hBO三次元培養モデルと比較して、hBO-ALIにおける感染性のあるウイルスの複製は有意に多いことが明らかとなった。
 図31は、ウイルスを感染させてから2日後のhBO-ALIの蛍光免疫染色の結果を示す写真である。SARS-CoV-2 SP、アセチル化α-チューブリン及びKRT5を検出した。また、DAPIで核を対比染色した。また、DAPIで核を対比染色した。その結果、SPはアセチル化α-チューブリンと共局在するが、KRT5とは共局在しないことが確認された。
 以上の結果は、hBO-ALIにおいて、SARS-CoV-2が線毛細胞中で効率よく複製されるが、基底幹細胞では複製されないことを示す。これは、上述した図29に示すように、基底幹細胞ではACE2の発現レベルが低いためであると考えられた。
[実験例7]
(FGF10は、残存した基底幹細胞から気管支上皮細胞層を再生するために必須である)
 図32は、7.0×10TCID50/ウェルのSARS-CoV-2をhBO-ALIに感染させ、感染から7日後に、蛍光免疫染色により、アセチル化α-チューブリン、SARS-CoV-2 SP、KRT5を検出した結果を示す写真である。また、DAPIで核を対比染色した。その結果、アセチル化α-チューブリン陽性細胞及びSP陽性細胞が観察されないことが明らかとなった。この結果は、ウイルス感染により、線毛細胞が死滅したことを示す。一方、KRT5陽性の基底幹細胞はウイルス感染から7日後においても残存していることが明らかとなった。
 図33は、ウイルス感染から15日後に、蛍光免疫染色により、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。また、DAPIで核を対比染色した。その結果、残存した基底幹細胞がアセチル化α-チューブリン陽性の線毛細胞に分化し、気管支上皮層を形成したことが明らかとなった。これらの結果は、ウイルス感染後の気管支上皮層の修復に、基底幹細胞が重要な役割を有していることを示唆した。
 続いて、ウイルス感染及びそれに続く気管支上皮層の再生におけるヒトFGFの効果を検討した。図34は、7.0×10TCID50/ウェルのSARS-CoV-2をhBO-ALIに感染させ、FGF2、FGF7、FGF10を含む又は含まない分化培地で2日間培養した後に、培養上清中に含まれる感染性のあるウイルスを、TCID50アッセイにより測定した結果を示すグラフである。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くテューキーの事後検定によって評価した。図34中、「*」はp<0.05で有意差があることを示す。また、「w/o」は含まないことを示す。その結果、分化培地からFGF10を除くと、感染性のあるウイルスの産生が有意に増加することが明らかとなった。
 図35は、ウイルス感染から15日後に、蛍光免疫染色により、アセチル化α-チューブリン及びKRT5を検出した結果を示す写真である。また、DAPIで核を対比染色した。図35中、「w/o」は含まないことを示す。その結果、分化培地からFGF10を除くと、残存した基底幹細胞が増殖せず、また、アセチル化α-チューブリン陽性の線毛細胞にも分化しないことが明らかとなった。これに対し、分化培地からFGF2又はFGF7を除いても、残存した基底幹細胞は増殖することができ、また、アセチル化α-チューブリン陽性の線毛細胞にも分化できることが明らかとなった。
 これらの結果から、残存した基底幹細胞が気管支上皮層を再生するために、FGF10が必須であることが明らかとなった。
[実験例8]
(ドナーによるウイルス複製効率の違いの検討)
 hBO-ALIの作製に使用するNHBEのドナーによる、ウイルス複製効率の違いを検討した。4人のドナーから得られたNHBEからhBO-ALIをそれぞれ作製した。各ドナーの情報を表4にまとめた。
 図36は、7.0×10TCID50/ウェルのSARS-CoV-2を各hBO-ALIに感染させ、分化培地で2日間培養した後に、培養上清中に含まれる感染性のあるウイルスを、TCID50アッセイにより測定した結果を示すグラフである。統計学的有意性は、一元配置分散分析(ANOVA)と、それに続くテューキーの事後検定によって評価した。図36中、「*」はp<0.05で有意差があることを示し、「**」はp<0.01で有意差があることを示す。
 その結果、ドナー4由来のhBO-ALIにおけるウイルスの産生が、ドナー1由来のhBO-ALI及びドナー2由来のhBO-ALIにおけるウイルスの産生と比較して有意に高いことが明らかとなった。
 以上の結果から、hBO-ALIは、性別の違いを含む、ウイルス複製効率における個別の相違を反映することができることが示された。
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、呼吸器感染症の病原体の生活環を再現できるだけでなく、呼吸器感染症の予防剤又は治療剤をスクリーニングすることができる呼吸器オルガノイド技術を提供することができる。

Claims (20)

  1.  呼吸器オルガノイドの製造方法であって、
     (1-1)呼吸器上皮細胞を、線維芽細胞増殖因子(FGF)を含む拡大培養培地で培養する工程、及び
     (1-2)得られた培養物を、FGFを含む分化培地で培養する工程、
     を含む、製造方法。
  2.  前記工程(1-2)の前又は後に、得られた培養物を解離して気液界面培養する工程を更に含む、請求項1に記載の製造方法。
  3.  前記呼吸器上皮細胞が、気管支上皮細胞、小気道上皮細胞及び肺胞上皮細胞からなる群より選択される1種以上の細胞である、請求項1又は2に記載の製造方法。
  4.  前記呼吸器上皮細胞が、体性幹細胞又は多能性幹細胞を分化誘導したものである、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記工程(1-1)において、前記呼吸器上皮細胞をゲルに包埋したうえで前記拡大培養培地で培養する、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記拡大培養培地が、BMPシグナル阻害剤、Wntシグナル活性化剤及びp38阻害剤からなる群より選択される1つ以上の物質を更に含む、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記BMPシグナル阻害剤がNogginである、請求項6に記載の製造方法。
  8.  前記Wntシグナル活性化剤がR-spondinである、請求項6又は7に記載の製造方法。
  9.  前記p38阻害剤がSB202190である、請求項6~8のいずれか一項に記載の製造方法。
  10.  前記分化培地がTGF-β阻害剤を更に含む請求項1~9のいずれか一項に記載の製造方法。
  11.  前記TGF-β阻害剤がA83-01である、請求項10に記載の製造方法。
  12.  前記FGFが、FGF2、FGF7及びFGF10からなる群より選択される1つ以上の物質である、請求項1~11のいずれか一項に記載の製造方法。
  13.  前記FGFが、FGF2、FGF7及びFGF10である、請求項1~12のいずれか一項に記載の製造方法。
  14.  基底幹細胞、線毛細胞、ゴブレット細胞、クラブ細胞、肺神経内分泌細胞、I型肺胞上皮細胞及びII型肺胞上皮細胞からなる細胞群のいずれか1以上の細胞を含む、人工の呼吸器オルガノイド。
  15.  頂端面が露出している、請求項14に記載の呼吸器オルガノイド。
  16.  (i)アンジオテンシン変換酵素2(ACE2)陽性、及び/又は、(ii)II型膜貫通型セリンプロテアーゼ(TMPRSS2)陽性の表現型を示す、請求項14又は15に記載の呼吸器オルガノイド。
  17.  呼吸器感染症の予防剤又は治療剤をスクリーニングする方法であって、
     (3-1)前記呼吸器感染症の病原体を感染させた、請求項14~16のいずれか一項に記載の呼吸器オルガノイドを、候補物質と接触させる工程、
     (3-2)前記候補物質接触後の呼吸器オルガノイドにおける、前記病原体の増殖又は前記病原体の感染により生じた傷害を検出する工程、及び
     (3-3)陰性対照と比較して前記増殖又は前記傷害が抑制された候補物質を選択する工程、
     を含み、ここで、前記病原体が、ウイルス、細薗及び真薗からなる群より選択される1つ以上の病原体である、方法。
  18.  FGF10を有効成分とする、損傷した呼吸器上皮細胞の再生剤。
  19.  FGF10を含む、損傷した呼吸器上皮細胞の再生用培地。
  20.  ROCK阻害剤、TGF-β阻害剤を更に含む、請求項19に記載の損傷した呼吸器上皮細胞の再生用培地。
PCT/JP2021/019593 2020-05-25 2021-05-24 呼吸器オルガノイドの製造方法 WO2021241493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527025A JPWO2021241493A1 (ja) 2020-05-25 2021-05-24

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063029567P 2020-05-25 2020-05-25
US63/029,567 2020-05-25
US202163146720P 2021-02-08 2021-02-08
US63/146,720 2021-02-08

Publications (1)

Publication Number Publication Date
WO2021241493A1 true WO2021241493A1 (ja) 2021-12-02

Family

ID=78744398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019593 WO2021241493A1 (ja) 2020-05-25 2021-05-24 呼吸器オルガノイドの製造方法

Country Status (2)

Country Link
JP (1) JPWO2021241493A1 (ja)
WO (1) WO2021241493A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506883A (ja) * 2014-01-14 2017-03-16 イエール ユニバーシティ 気道細胞を作製するための組成物および方法
WO2017199811A1 (ja) * 2016-05-18 2017-11-23 学校法人慶應義塾 オルガノイド培養用細胞培養培地、培養方法、及びオルガノイド
JP2018503360A (ja) * 2014-11-27 2018-02-08 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 培養培地
JP2018531603A (ja) * 2015-10-16 2018-11-01 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ 多層気道オルガノイドならびにそれを調製および使用する方法
JP2020511968A (ja) * 2017-03-24 2020-04-23 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク 分岐構造を有する肺芽オルガノイドの生成および肺疾患のモデリングのためのその使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506883A (ja) * 2014-01-14 2017-03-16 イエール ユニバーシティ 気道細胞を作製するための組成物および方法
JP2018503360A (ja) * 2014-11-27 2018-02-08 コーニンクレッカ ネザーランド アカデミー ヴァン ウェテンシャッペン 培養培地
JP2018531603A (ja) * 2015-10-16 2018-11-01 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ 多層気道オルガノイドならびにそれを調製および使用する方法
WO2017199811A1 (ja) * 2016-05-18 2017-11-23 学校法人慶應義塾 オルガノイド培養用細胞培養培地、培養方法、及びオルガノイド
JP2020511968A (ja) * 2017-03-24 2020-04-23 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク 分岐構造を有する肺芽オルガノイドの生成および肺疾患のモデリングのためのその使用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HEGAB, A. E. ET AL.: "Mimicking the niche of lung epithelial stem cells and characterization of several effectors of their in vitro behavior", STEM CELL RESEARCH, vol. 15, 2015, pages 109 - 121, XP055277415, DOI: 10.1016/j.scr.2015.05.005 *
LUKASSEN, S. ET AL.: "SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells", THE EMBO JOURNAL, vol. 39, no. 10, 14 April 2020 (2020-04-14), pages 1 - 15, XP055880254 *
MILLER, A. J. ET AL.: "Generation of lung organoids from human pluripotent stem cells in vitro", NATURE PROTOCOLS, vol. 14, no. 2, 2019, pages 518 - 540, XP036687606, DOI: https://doi.org/10.1038/s41596-018-0104-8. *
SUZUKI, T. ET AL.: "Generation of human bronchial organoids for SARS-CoV-2 research", BIORXIV, - 1 June 2020 (2020-06-01), XP055880262, [retrieved on 20210729], DOI: https://doi.org/10.1101/ 2020.05.25.115600 *
TAKAYAMA, KAZUO: "Airway and alveolar organoids for respiratory infectious disease", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 276, no. 6, 6 February 2021 (2021-02-06), pages 590 - 596 *
WU, J. ET AL.: "Role of Fibroblast Growth Factor 10 in Mesenchymal Cell Differentiation During Lung Development and Disease", FRONTIERS IN GENETICS, vol. 9, no. 545, 2018, pages 1 - 10, XP055880261 *
YUAN, T. ET AL.: "Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury", FRONTIERS IN GENETICS, vol. 9, no. 418, 2018, pages 1 - 8, XP055880257 *
YUAN, T. ET AL.: "FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury", STEM CELL REPORTS, vol. 12, 2019, pages 1041 - 1055, XP055880256 *

Also Published As

Publication number Publication date
JPWO2021241493A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
Mulay et al. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery
JP6931635B2 (ja) 単離ヒト肺前駆細胞およびその使用
Zhang et al. Biomimetic human disease model of SARS‐CoV‐2‐induced lung injury and immune responses on organ chip system
Liu et al. SARS-CoV-2 infects endothelial cells in vivo and in vitro
Mossel et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells
Amarasinghe et al. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions
KR20190022939A (ko) 성체 간 전구 세포 제조 방법
WO2019228516A1 (en) Mature airway organoids, methods of making and uses thereof
Chiu et al. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant
US20230174946A1 (en) Organ infection models
Boecking et al. A simple method to generate human airway epithelial organoids with externally orientated apical membranes
JP2009514509A (ja) 肺幹細胞および関連の方法およびキット
Chen et al. ACE2 expression in organotypic human airway epithelial cultures and airway biopsies
WO2021241493A1 (ja) 呼吸器オルガノイドの製造方法
Koennecke et al. Neuronal differentiation capability of nasal polyps of chronic rhinosinusitis
Sun et al. Humanized mice for investigating SARS‐CoV‐2 lung infection and associated human immune responses
WO2013028702A1 (en) Methods and materials for obtaining induced pluripotent stem cells
KR20220017870A (ko) 오가노이드를 이용한 SARS-CoV-2 감염 모델
Pei et al. Human embryonic stem cell-derived lung organoids: a model for SARS-CoV-2 infection and drug test
Takenouchi et al. Establishment and characterization of the immortalized porcine lung-derived mononuclear phagocyte cell line
Di Teodoro et al. Replication kinetics and cellular tropism of emerging reoviruses in sheep and swine respiratory ex vivo organ cultures
Miranda et al. Cost‐effective 3D lung tissue spheroid as a model for SARS‐CoV‐2 infection and drug screening
Hong et al. SARS-CoV-2 and Malayan pangolin coronavirus infect human endoderm, ectoderm and induced lung progenitor cells
WO2023195509A1 (ja) 血管内皮バリア破綻の阻害剤及びその使用
WO2024008116A1 (en) Human nasal organoids and methods of making and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812079

Country of ref document: EP

Kind code of ref document: A1