WO2021241402A1 - Electrolyte sheet, solid-electrolyte-coated fiber, and lithium-ion battery - Google Patents

Electrolyte sheet, solid-electrolyte-coated fiber, and lithium-ion battery Download PDF

Info

Publication number
WO2021241402A1
WO2021241402A1 PCT/JP2021/019212 JP2021019212W WO2021241402A1 WO 2021241402 A1 WO2021241402 A1 WO 2021241402A1 JP 2021019212 W JP2021019212 W JP 2021019212W WO 2021241402 A1 WO2021241402 A1 WO 2021241402A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
solid electrolyte
fiber
sheet
electrolyte sheet
Prior art date
Application number
PCT/JP2021/019212
Other languages
French (fr)
Japanese (ja)
Inventor
厚範 松田
和浩 引間
貴宏 小原
康史 高橋
Original Assignee
日本板硝子株式会社
国立大学法人豊橋技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社, 国立大学法人豊橋技術科学大学 filed Critical 日本板硝子株式会社
Priority to JP2022526958A priority Critical patent/JPWO2021241402A1/ja
Publication of WO2021241402A1 publication Critical patent/WO2021241402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte sheet, a solid electrolyte-coated fiber, and a lithium ion battery, which contain a solid electrolyte and are suitable for forming an electrolyte layer or the like constituting a lithium ion battery.
  • a lithium-ion battery is a secondary battery having a structure in which lithium is desorbed as ions from the positive electrode during charging, moves to the negative electrode and is stored, and lithium ions are inserted from the negative electrode to the positive electrode and returned during discharge. Since this lithium-ion battery has features such as high energy density and long life, it has been conventionally used for home appliances such as personal computers and cameras, portable electronic devices or communication devices such as mobile phones, and power tools. It is widely used as a power source for electric tools and the like, and has recently been applied to large batteries mounted on electric vehicles (EV), hybrid electric vehicles (HEV), and the like.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • the sulfide solid electrolyte is usually in the form of powder.
  • a solid electrolyte sheet in which a solid electrolyte is attached to a fiber such as an electronically insulating inorganic fiber has been proposed (see Patent Document 1).
  • Patent Document 1 includes a solid electrolyte and a support having a plurality of openings, the solid electrolyte is filled in the openings of the support, the support is made of glass (glass fiber woven fabric), and the opening ratio of the support is high.
  • the solid electrolyte is 40 to 90%, the solid electrolyte is made of lithium sulfide and diphosphorus pentasulfide as raw materials, and the molar ratio of lithium sulfide to diphosphorus pentasulfide is 68:32 to 80:20, and the solid electrolyte is dissolved in a solvent.
  • Disclosed is a solid electrolyte sheet for a lithium battery obtained by applying the above to a support and drying it.
  • the internal structure of the lithium-ion battery is diverse, and the electrolyte layer may be flat or curved. In the latter case, it is necessary to bend the solid electrolyte sheet, so that it is necessary to have a structure in which cracks and cracks do not occur on the surface. Further, in the solid electrolyte sheet for a lithium battery shown in Patent Document 1, solid electrolyte particles may be detached during transportation or the like, and stable performance cannot be obtained when a lithium ion battery is mass-produced. There was something.
  • the problem of the present invention is that the desorption (powder falling) of the solid electrolyte is suppressed and it is easy to handle, and the generation of cracks and the powder falling during the bending process are suppressed so that the lithium ion battery can be efficiently manufactured.
  • Another object of the present invention is to provide a product containing the electrolyte sheet and having excellent transportability.
  • the present invention is shown below. 1.
  • An electrolyte sheet containing a plurality of inorganic fibers and a solid electrolyte An electrolyte sheet characterized in that the proportion of the inorganic fibers present is 60% or more in a cross section in the thickness direction cut perpendicular to the surface stretching direction of the electrolyte sheet.
  • 2. Item 2. The electrolyte sheet according to Item 1, wherein the content ratio of the solid electrolyte is 60 to 95% by mass when the total amount of the inorganic fibers and the solid electrolyte is 100% by mass.
  • 3. Item 2.
  • the electrolyte sheet according to Item 1 or 2 wherein the inorganic fiber contains glass fiber. 4. Item 2.
  • the electrolyte sheet of the present invention is easy to handle because it is difficult for the solid electrolyte to come off (powder fall off) and has excellent shape stability. In addition, cracks and powder falling are less likely to occur when bending or the like is performed during the manufacture of a lithium ion battery, so that a lithium ion battery having the desired performance can be efficiently manufactured. According to the electrolyte sheet-containing product of the present invention, the electrolyte sheet can be opened at the manufacturing site of the lithium ion battery, and the electrolyte sheet can be taken out and used for manufacturing the lithium ion battery while maintaining the above-mentioned excellent effects of the electrolyte sheet.
  • the lithium ion battery of the present invention contains an electrolyte sheet having high lithium ion conductivity, it exhibits excellent battery performance. Since the solid electrolyte-coated fiber of the present invention is not a bond between the fiber and the solid electrolyte via an adhesive, it is suitable for forming an electrolyte sheet having high lithium ion conductivity.
  • 6 is a cross-sectional image of the electrolyte sheet obtained in Example 1. It is a Si element map of the part surrounded by the dotted line in FIG. It is a graph which shows the profile of Si in the thickness direction of an electrolyte sheet based on the Si element map of FIG. It is a cross-sectional image of the electrolyte sheet obtained in Comparative Example 1. It is a Si element map of the part surrounded by the dotted line in FIG. It is a graph which shows the profile of Si in the thickness direction of an electrolyte sheet based on the Si element map of FIG. It is a schematic sectional drawing which shows an example of a lithium ion battery. It is a schematic perspective view which shows an example of the solid electrolyte coating fiber of this invention.
  • the electrolyte sheet of the present invention is a sheet containing a plurality of inorganic fibers and a solid electrolyte, and may contain other fibers as needed.
  • the electrolyte sheet of the present invention has a structure in which the proportion of the inorganic fibers present is 60% or more in a cross section in the thickness direction cut perpendicular to the surface stretching direction.
  • a "sheet" includes not only a sheet but also a long one.
  • the inorganic fiber is not particularly limited as long as it contains a portion made of an inorganic compound.
  • a fiber composed of only an inorganic compound, a fiber having a film containing an inorganic material on at least a part of the surface of the resin fiber, or a fiber having a granular portion can be mentioned.
  • the inorganic fiber according to the present invention is preferably a fiber composed of only an inorganic compound.
  • the inorganic compound is not particularly limited, but is preferably an oxide, a nitride, a carbonate, a titanate or the like.
  • Specific inorganic fibers include glass fiber, silica fiber, alumina fiber, silica-alumina fiber, silica-alumina-magnesia fiber, silica-alumina-zirconia fiber, silica-magnesia-calcia fiber, rock wool, slag wool, and titanium.
  • examples thereof include potassium acid whiskers, calcium carbonate whiskers, basalt fibers, sepilite, mineral fibers such as apparaljite and the like.
  • glass fiber is preferable.
  • the glass constituting the glass fiber is not particularly limited, but when the electrolyte sheet of the present invention is used for forming the electrolyte layer of the lithium ion battery, C glass, B glass, E glass and the like are preferable because they are excellent in chemical resistance.
  • the fiber diameter of the inorganic fiber is not particularly limited, but the upper limit is preferably 50 ⁇ m, more preferably 10 ⁇ m, and the lower limit is from the viewpoint of the mechanical strength of the electrolyte sheet of the present invention, flexibility against bending, and the like. It is preferably 0.01 ⁇ m, more preferably 0.1 ⁇ m.
  • the fiber length is not particularly limited, but is preferably in the range of 0.1 to 10 mm, more preferably 0.5 to 6 mm from the viewpoint of productivity of the nonwoven fabric of the electrolyte sheet of the present invention and uniformity of opening. be.
  • the electrolyte sheet of the present invention contains a plurality of inorganic fibers, and in the present invention, the size (diameter or length) of each fiber is uniform or non-uniform among the inorganic fibers containing the same material. But it may be. Further, when the constituent materials include a plurality of types of inorganic fibers different from each other, the diameter or length between the fibers made of one material and the fibers made of another material may be uniform or non-uniform.
  • the electrolyte sheet of the present invention may contain other fibers as described above.
  • the upper limit of the content ratio thereof with respect to the entire fibers is preferably 65% by mass, more preferably 55% by mass.
  • other fibers include organic fibers and natural fibers, and organic fibers are preferable.
  • a resin fiber is preferable.
  • polyester resin polyethylene terephthalate, etc.
  • aliphatic polyamide resin aramid resin
  • polyolefin resin polyolefin resin
  • cyclic olefin resin acrylic resin
  • polyacrylonitrile resin polyvinyl alcohol resin
  • polyacetal resin polyvinyl chloride resin
  • examples thereof include polyvinylidene chloride resin, ethylene / vinyl acetate copolymer, fluororesin, polyether sulfone resin, polyphenylene sulfide resin, cellulose and the like.
  • the resin fiber is a fiber composed of a single phase containing only one type of resin or a plurality of types of resin, or a fiber having a double-phase structure including a low melting point resin portion and a high melting point resin portion (hereinafter referred to as "composite resin fiber"). And so on.
  • composite resin fiber for example, a core-sheath type fiber, a side-by-side type fiber, or the like can be used.
  • the resin combination in the case of the composite resin fiber include PET / low melting point copolymerized polyester, PET / PE, PP (polypropylene) / PE (polyethylene), PP / low melting point copolymerized PP and the like.
  • the low melting point copolymerized polyester a modified resin having PET, PPT (polypropylene terephthalate), PBT (polybutylene terephthalate) or the like as a basic skeleton, that is, these polyesters, isophthalic acid, 5-sodium sulfoisophthalic acid, etc. , Aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, and / or aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and aliphatic polyhydric alcohols such as diethylene glycol, propylene glycol and 1,4-butanediol. Examples include copolymers.
  • polyester fiber is particularly preferable.
  • the fiber diameter and fiber length of the organic fiber are not particularly limited, but can be the same as the fiber diameter and fiber length of the inorganic fiber.
  • the fibers in the electrolyte sheet of the present invention may be either those in which the fibers are simply entangled with each other or those in which the fibers are intertwined with each other and the fibers are joined to each other. In the latter case, it is preferable that the fibers are in a bonded state by an adhesive at the contact point between the fibers.
  • the solid electrolyte is not particularly limited as long as it is conventionally known as a constituent material of the lithium ion battery, and is a sulfide-based solid electrolyte, a garnet-based solid electrolyte, a nitride-based solid electrolyte, and a perovskite-based solid.
  • examples thereof include an electrolyte, a zeolite-based solid electrolyte, a phosphoric acid-based solid electrolyte, and a NASICON-type solid electrolyte.
  • Li 3 PS 4 since it is excellent in lithium ion conductivity, Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P 2 S 5 , Li 6 PS 5 X, Li 9.
  • a sulfide-based solid electrolyte such as 6 P 3 S 12 is preferable.
  • X is Cl, Br or I.
  • the solid electrolyte contained in the electrolyte sheet of the present invention may be only one type or two or more types. Further, the crystallinity of the solid electrolyte is not particularly limited, and the solid electrolyte contained in the electrolyte sheet may be either crystalline or amorphous, or may be both.
  • the volume ratio of all fibers and solid electrolytes contained in the electrolyte sheet of the present invention is not particularly limited. From the viewpoint of lithium ion conductivity, mechanical strength and flexibility, the volume ratios of the fiber and the solid electrolyte are preferably 5 to 60% by volume and 40 to 95% by volume, respectively, when the total of the two is 100% by volume. , More preferably 5 to 50% by volume and 50 to 95% by volume.
  • the mass ratio of the inorganic fiber and the solid electrolyte contained in the electrolyte sheet of the present invention is not particularly limited. From the viewpoint of mechanical strength and flexibility, the content ratios of the inorganic fiber and the solid electrolyte are preferably 5 to 50% by mass and 50 to 95% by mass, respectively, more preferably when the total of both is 100% by mass. It is 5 to 40% by mass and 60 to 95% by mass.
  • the electrolyte sheet of the present invention is substantially a medium-solid sheet mainly composed of a fiber containing an inorganic fiber and a solid electrolyte, and as shown in FIG. 1, the fiber 3 from one surface side to the other surface side.
  • the sheet 1 having a structure in which the solid electrolyte (unsigned) is uniformly contained, and the fiber and the solid electrolyte are uniformly contained in the sheet 1, while the surface layer on the one side and the surface layer on the other side are uniformly contained.
  • the thickness of the electrolyte sheet of the present invention is preferably 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m.
  • the electrolyte sheet of the present invention has a structure in which the proportion of the inorganic fibers present is 60% or more in the cross section in the thickness direction cut perpendicular to the surface stretching direction. This ratio is preferably 70% or more.
  • the method for measuring this ratio is shown in [Example], but is as follows. (1) The electrolyte sheet is photographed with an electron microscope so that the entire cross section in the thickness direction is included in the image (see FIGS. 2 and 5).
  • an element constituting an inorganic fiber contained in an electrolyte sheet by an energy dispersive X-ray analysis method in a region set so as to include the entire cross section in the thickness direction (hereinafter referred to as “measurement region”). Perform mapping analysis on elements not contained in the solid electrolyte.
  • the measurement element the inorganic fiber is a glass fiber containing a Si element, and when the Si element is not contained in the solid electrolyte, it is preferable to select the Si element.
  • the measurement region preferably has a lateral length of at least 40 ⁇ m.
  • the existence range of the Si element is determined by the following method using software.
  • the Si element map After converting the Si element map into an 8-bit grayscale image, this is binarized with a lower limit threshold value of 0 and an upper limit threshold value of 10, and the gray value of each pixel is set to 255 where the Si element is present and non-Si element. Converts the existing location to 0.
  • the range is set so that the upper end to the lower end of the Si element map fits exactly, and the profile of the range from the upper end to the lower end is created and graphed (see FIGS. 4 and 7).
  • the horizontal axis is the vertical distance of the Si element map, and the vertical axis is the average value of the horizontal gray values of the Si element map.
  • the ratio of the region where the pixel determined to be the presence of the Si element is 20% or more, that is, the region where the average value of the horizontal gray values is 51 or more is relative to the measurement region. Calculate whether it is (area ratio).
  • the electrolyte sheet of the present invention is a medium-solid sheet mainly composed of fibers containing inorganic fibers and a solid electrolyte, and has a shape that makes it difficult for the solid electrolyte to come off (powder fall off). Due to its excellent stability, the percentage of voids (presence rate) is low. The percentage of voids is preferably 20% or less, more preferably 10% or less. The void ratio can be calculated in an arbitrary range based on an image of a cross section obtained by cutting the electrolyte sheet in the thickness direction with, for example, an optical microscope, a laser microscope, an electron microscope, or the like. ..
  • the electrolyte sheet of the present invention has excellent lithium ion conductivity, and the conductivity measured at 25 ° C. by the AC impedance method is preferably 10 -4 S / cm or more.
  • Method (1) In a container, an aggregate of fibers containing inorganic fibers, which has a sheet shape (hereinafter referred to as "fiber sheet"), a solid electrolyte forming raw material, and an organic solvent are put into a container to form a solid electrolyte.
  • fiber sheet an aggregate of fibers containing inorganic fibers, which has a sheet shape (hereinafter referred to as "fiber sheet")
  • a solid electrolyte forming raw material and an organic solvent are put into a container to form a solid electrolyte.
  • Method (2) A container contains a plurality of inorganic fibers that are not immobilized on each other, a solid electrolyte forming raw material, and an organic solvent, and then the solid electrolyte forming raw material is reacted to cause a solid electrolyte.
  • Method (3) In a container, the fiber sheet and a solid electrolyte solution in which a solid electrolyte is dissolved in an organic solvent, or a solid electrolyte dispersion in which a solid electrolyte is dispersed in a dispersion medium made of an organic solvent.
  • Method (4) A solid electrolyte solution containing a plurality of inorganic fibers in a container and not immobilized with each other and a solid electrolyte dissolved in an organic solvent, or a dispersion in which the solid electrolyte is composed of an organic solvent. After adding the solid electrolyte dispersion liquid dispersed in the medium, the organic solvent is devolatile and the fiber surface is coated with the solid electrolyte to fill the voids between all the fibers with the solid electrolyte. How to make a medium solid sheet. In all of the above methods, heat treatment, press treatment, or the like may be performed after forming the sheet, if necessary.
  • the fiber sheet used in the above methods (1) and (3) is not particularly limited, and may be a fiber deposit, a non-woven fabric, a woven fabric, a woven fabric, or the like.
  • the fiber sheet may be composed of only fibers, or may be one in which a plurality of fibers are bonded by an adhesive.
  • the fiber sheet preferably contains 35% by mass or more of inorganic fibers with respect to the whole, and the inorganic fibers preferably contain glass fibers. This makes it possible to obtain an electrolyte sheet suitable as an electrolyte layer forming material for a lithium ion battery.
  • the porosity and basis weight of the fiber sheet are not particularly limited.
  • the porosity is preferably 50 to 95%, more preferably 60 to 90%.
  • the basis weight is preferably 1 to 100 g / m 2 , more preferably 1 to 20 g / m 2 .
  • the above fiber sheet is preferably a non-woven fabric.
  • the non-woven fabric may be either one in which the fibers are simply entangled with each other, or one in which the fibers are intertwined with each other and the fibers are joined to each other. In the case of the latter non-woven fabric, it is preferable that the fibers are in a bonded state by an adhesive at the contact point between the fibers.
  • the content ratio of the adhesive to the entire non-woven fabric is preferably 15% by mass or less, more preferably 15% by mass or less, in order to make the obtained electrolyte sheet excellent in conductivity. Is 12% by mass or less.
  • the thickness of the nonwoven fabric is usually 20 ⁇ m or more, but the obtained electrolyte sheet is suitable as an electrolyte layer forming material for giving a lithium ion battery having excellent performance, so it is preferably 5 to 100 ⁇ m, more preferably. It is 10 to 75 ⁇ m.
  • a plurality of fibers are used as a solid electrolyte forming raw material and an organic solvent, an organic solution of a solid electrolyte, or a solid electrolyte is an organic solvent. It means that most of the fibers are scattered before being placed in a container together with the solid electrolyte dispersion liquid dispersed in the dispersion medium consisting of the above to form the solid electrolyte on the fiber surface.
  • the inorganic fiber used in the above methods (2) and (4) is preferably a glass fiber containing C glass, B glass, E glass and the like. The preferred size of the inorganic fiber is as described above. Further, in the methods (2) and (4), the inorganic fiber and the organic fiber or the natural fiber can be used in combination, and in this case, the ratio of the inorganic fiber to the whole fiber is preferably 35% by mass or more. be.
  • the solid electrolyte forming raw material used for forming the solid electrolyte in the presence of the organic solvent is usually composed of a plurality of kinds of compounds. Then, in the organic solvent, a plurality of kinds of compounds are contact-reacted to form a solid electrolyte.
  • the preferred solid electrolyte is a sulfide-based solid electrolyte
  • the raw materials for forming the solid electrolyte are Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P 2 S. 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like are preferably contained.
  • X is Cl, Br or I.
  • Examples of the raw material for forming the sulfide-based solid electrolyte include lithium sulfide, phosphorus sulfide, lithium halide and the like.
  • Examples of phosphorus sulfide include diphosphorus pentasulfide (P 2 S 5 ), tetraphosphorus trisulfide (P 4 S 3 ), tetraphosphorus sesquioxide (P 4 S 7 ), and tetraphosphorus pentasulfide (P 4 S 5 ).
  • diphosphorus pentasulfide is preferable.
  • Examples of lithium halide include lithium fluoride, lithium chloride, lithium bromide, lithium iodide and the like.
  • the solid electrolyte forming raw material preferably contains lithium sulfide and diphosphorus pentasulfide, and it is also preferable that it contains lithium sulfide, diphosphorus pentasulfide and lithium halide.
  • the solid electrolyte used in the above methods (3) and (4) is preferably the above sulfide-based solid electrolyte, and is Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P. 2 S 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like.
  • Examples of the organic solvent that can be used in the above methods (1), (2), (3) and (4) include alcohols (aliphatic alcohols, alicyclic alcohols, aromatic alcohols, etc.), carboxylic acids, and carboxylic acid esters. Examples thereof include (saturated fatty acid esters and the like), ethers (including cyclic ethers), aldehydes, ketones, carbonate esters (dialkyl carbonates and the like), nitriles, amides, nitros, phosphate esters, halogenated hydrocarbons and the like. Of these, alcohols, carboxylic acid esters and carbonic acid esters are preferable, and carboxylic acid esters and carbonic acid esters are particularly preferable.
  • the organic solvent may be used alone or in combination of two or more.
  • the container used in the above methods (1), (2), (3) and (4) is not particularly limited, and for example, the shape and size are the size of the fiber sheet, the size of the sheet formed of inorganic fibers and the like. Is selected as appropriate.
  • the solid electrolyte formed by the reaction is not suspended alone in the organic solvent, and the fibers constituting the fiber sheet are efficiently coated with the solid electrolyte, and the voids between the fibers are solid.
  • a container in which the contact angle of the organic solvent on the inner surface of the container is 5 degrees or more higher than the contact angle of the organic solvent in at least one kind of fiber (preferably inorganic fiber) constituting the fiber sheet. Is preferable.
  • the contact angle with respect to the fibers made of at least one kind of material is 5 degrees or more lower than the contact angle with respect to the inner surface of the container. good.
  • the contact angle of the organic solvent on the inner surface of the container is at least at least in order to efficiently fill the voids between the fibers with the solid electrolyte while efficiently covering the fiber surface with the solid electrolyte. It is preferable to use a container having a contact angle of 5 degrees or more higher than the contact angle of the organic solvent in one type of fiber (preferably inorganic fiber).
  • the contact angle with respect to the fiber made of at least one kind material may be 5 degrees or more lower than the contact angle with respect to the inner surface of the container. ..
  • a plurality of non-immobilized fiber sheets or inorganic fibers are contained on the inner surface of the container before the electrolyte sheet is formed. Since at least the organic solvent of the fiber, the solid electrolyte forming raw material, the solid electrolyte and the organic solvent comes into contact with the fiber, a fluororesin; a silicone resin or the like is preferable as the material constituting the inner surface thereof.
  • fluororesins are preferable, and for example, polytetrafluoroethylene (hereinafter, may be referred to as “PTFE”), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / hexafluoropropylene are used together.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • tetrafluoroethylene / hexafluoropropylene are used together.
  • the container may be made of these materials, or a film or sheet made of these materials may be processed into a container shape and arranged on the inner surface of a container made of another material. May be good. Further, the inner surface of the container made of other materials may have a film made of these materials.
  • the volume ratio of the fiber sheet and the solid electrolyte forming raw material or the solid electrolyte to be put in the container is preferably 5:95 to 60:40, more preferably 5:95 to 50:50.
  • the total amount of the plurality of fibers and the volume ratio of the solid electrolyte forming raw material or the solid electrolyte to be put in the container are preferably 5:95 to 60:40, more preferably 5. : 95 to 50:50.
  • the mass ratio of the solid electrolyte forming raw material or the solid electrolyte and the organic solvent is preferably 1:10 to 1:22, more preferably 1. : 14 to 1:18.
  • the reaction conditions for reacting the solid electrolyte forming raw materials to form the solid electrolyte are not particularly limited.
  • the reaction temperature is appropriately selected depending on the type of solid electrolyte to be formed, but is preferably 20 ° C to 200 ° C, more preferably 120 ° C to 180 ° C.
  • the solid electrolyte may be formed in an organic solvent, and depending on the type of the organic solvent, the reaction temperature may be the same as or close to the boiling point of the organic solvent. When the organic solvent is volatilized at the reaction temperature of No. 1, a solid electrolyte can be formed by this volatilization.
  • the atmosphere in the container can be an argon atmosphere, a dew point: ⁇ 30 ° C. or lower, or the like.
  • a method of reacting a solid electrolyte forming raw material in two steps can be applied.
  • the rest of the solid electrolyte forming raw material is organically prepared.
  • the organic solvent when the organic solvent adheres to the obtained electrolyte sheet, the organic solvent is applied by natural drying, heat drying, vacuum drying or the like. It is preferable to evaporate.
  • the electrolyte sheet can be heat-treated in order to obtain a solid electrolyte having the desired chemical properties or physical properties. This heat treatment may be performed in the above-mentioned heat drying or vacuum drying. By this heat treatment, for example, the solid electrolyte can be crystallized or non-crystallized.
  • the electrolyte sheet after devolatile or heat treatment may be pressed.
  • the above heat treatment may be performed after the press treatment.
  • the electrolyte sheet of the present invention is suitable for forming an electrolyte layer of a lithium ion battery, and can also be used for forming an electrode layer.
  • the electrolyte sheet of the present invention When the electrolyte sheet of the present invention is used for forming an electrolyte layer or an electrode layer of a lithium ion battery, it is a precision component regardless of its size, so that it is transported from the electrolyte sheet manufacturing site to the lithium ion battery manufacturing site. It is preferable that the air is shut off from the outside air. In such a case, since it is possible to suppress deterioration, deterioration, etc. of the electrolyte sheet, the electrolyte sheet-containing product of the present invention (electrolyte sheet packaging product) in which the electrolyte sheet is housed in the package. Is useful.
  • the package it is preferable to seal the package with the electrolyte sheet and an inert gas such as argon contained therein.
  • an inert gas such as argon contained therein.
  • two films can be used, and the electrolyte sheet can be accommodated in the space of the package forming a space between them.
  • a resin film or a metal-deposited resin film (aluminum-deposited resin film, etc.) is used, and the peripheral portion thereof is sealed so that one electrolyte sheet is held between the two films.
  • a resin film or a metal-deposited resin film aluminum-deposited resin film, etc.
  • the electrolyte sheet may be housed in the recess of the package having a container portion having a recess and a flange portion and a lid portion for at least sealing the recess. can. In this case, it can be obtained by using the resin container portion and the resin film lid portion.
  • the lithium ion battery of the present invention includes the above-mentioned electrolyte sheet of the present invention, and the structure thereof is not particularly limited, but can have, for example, the laminated structure shown in FIG.
  • the lithium ion battery 10 of FIG. 8 includes a positive electrode layer 11, a negative electrode layer 13, and an electrolyte layer 15 arranged between the positive electrode layer 11 and the negative electrode layer 13, and the electrolyte layer 15 is the electrolyte sheet of the present invention. Can consist of.
  • the electrolyte layer 15 is a layer capable of moving lithium ions by an electric field applied from the outside.
  • the thickness of the electrolyte layer 15 is preferably 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m.
  • the positive electrode layer 11 is an electrode layer containing a positive electrode active material that emits lithium ions during charging and occludes lithium ions during discharging.
  • the positive electrode active material is an oxide containing at least one metal element selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo) and vanadium (V). Examples include sulfides and phosphor oxides.
  • the negative electrode layer 13 is an electrode layer containing a negative electrode active material that occludes lithium ions during charging and releases lithium ions during discharging.
  • a carbon material lithium (Li), indium (In), aluminum (Al), silicon (Si) or the like of a metal or an alloy containing these; Sn x O y, MoO x , WO x, Li x Oxides such as CoO y (LiCoO 2 etc.), Li x Mn y Ni z Co w O (LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc.), Li x CuP x O y ( LiCuPO 4 etc.) And so on.
  • the negative electrode layer 13 may be a composite negative electrode layer further containing a solid electrolyte, a conductive auxiliary agent and the like.
  • a material made of a carbon material, a metal powder, a metal compound, or the like can be used, and among these, the carbon material is preferably used.
  • carbon materials plate-like conductive substances such as graphene; linear conductive substances such as carbon nanotubes and carbon fibers; carbon black such as Ketjen black, acetylene black, thermal black and channel black, and granular conductivity such as graphite. Substances and the like can be mentioned.
  • the lithium ion battery of the present invention may further include a positive electrode collector that collects electricity from the positive electrode layer 11 and a negative electrode collector that collects electricity from the negative electrode layer 15.
  • the positive electrode current collector or the negative electrode current collector may be made of, for example, stainless steel, gold, platinum, copper, zinc, nickel, tin, aluminum or an alloy thereof, and may be a plate-like body or a foil-like body. , A mesh-like body and the like can be provided.
  • the solid electrolyte-coated fiber of the present invention is a composite fiber including a fiber portion made of a fiber and a solid electrolyte-coated layer containing a solid electrolyte and covering at least a part of the surface of the fiber portion.
  • the structure of the solid electrolyte-coated fiber of the present invention is not particularly limited, but may be, for example, the structure shown in FIG. FIG. 9 is a solid electrolyte-coated fiber 20 having a fiber portion 21 and a solid electrolyte-coated portion 23 that covers the surface of the fiber portion 21. Further, although not shown, the solid electrolyte-coated portion 23 may be a solid electrolyte-coated fiber formed on all the side surfaces of the fiber portion 21.
  • the mass ratio of the solid electrolyte in the solid electrolyte-coated fiber of the present invention depends on the constituent material of the fiber portion, but is preferably 50 to 95% by mass.
  • the fiber portion 21 constituting the solid electrolyte-coated fiber of the present invention may be derived from any of inorganic fiber, organic fiber and natural fiber. These fibers can be fibers made of the materials exemplified above.
  • the solid electrolyte contained in the solid electrolyte coating portion 23 is not particularly limited, but is preferably a sulfide-based solid electrolyte, and particularly preferably Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3. S 11 , Li 2 P 2 S 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like. In addition, X is Cl, Br or I.
  • the solid electrolyte contained in the solid electrolyte coating portion 23 may be only one type or two or more types.
  • the method for producing the solid electrolyte-coated fiber of the present invention is not particularly limited.
  • a preferred production method is, for example, to put the fiber, the solid electrolyte forming raw material, and the organic solvent in a container, and react the solid electrolyte forming raw material in the organic solvent to form a solid electrolyte on the surface of the fiber. It is a method of covering.
  • fibers can be used in place of the fiber sheet used in the above-mentioned method for manufacturing an electrolyte sheet.
  • heat treatment after the reaction for forming the solid electrolyte the same method as in the above-mentioned method for producing an electrolyte sheet can be used, and the description thereof will be omitted.
  • a nonwoven fabric containing a solid electrolyte-coated fiber By subjecting the solid electrolyte-coated fiber of the present invention to a conventionally known nonwoven fabric manufacturing process or the like, a nonwoven fabric containing a solid electrolyte-coated fiber can be produced.
  • the obtained solid electrolyte-coated fiber-containing nonwoven fabric can be further subjected to a heat treatment step, a pressing step, or the like.
  • non-woven fabric electrolyte sheets glass fibers (fiber diameter: 0.3 ⁇ m, fiber length: about 0.1 to 1 mm) produced by subjecting B glass to the flame method as inorganic fibers, and polyester resin as organic fibers.
  • a non-woven fabric (hereinafter referred to as "nonwoven fabric (N1)") obtained by wet-making using fibers (fiber diameter: 2 ⁇ m, fiber length: 3 mm) and then dip-coated with styrene / butadiene rubber as a binder is used. Using.
  • This non-woven fabric (N1) contains inorganic fibers, organic fibers and a binder in proportions of 52% by mass, 37% by mass and 11% by mass, respectively, when the total of these is 100% by mass, and the void ratio is It is 73% by volume, has a thickness of 22 ⁇ m, and has a basis weight of 10 g / m 2 .
  • Electrolyte sheets of Examples and Comparative Examples were produced using the above-mentioned non-woven fabric (N1) or the above-mentioned glass fibers, and various evaluations were performed.
  • Example 1 Under an argon atmosphere, charged with Li 2 S powder of ethanol 5 ml, and stirred to obtain a Li 2 S solution. Then, the polytetrafluoroethylene in the Petri dish, put and the Li 2 S solution and a circular nonwoven diameter 30 mm (N1), allowed to stand for 30 minutes at 25 ° C., vacuum dried (0.99 ° C., 1 hour) Was done. Thus, the surface of the fibers of the nonwoven fabric (N1) Li 2 S was obtained impregnated nuclear adhered nonwoven fabric.
  • Li 2 S powder and P 2 S 5 powder and LiI powders 1: 1: 1 (molar ratio)
  • Li 2 This P 2 S 5 powder was impregnated in the above nucleus adhesion nonwoven
  • Each was weighed and mixed so as to have a molar ratio of 1/3 with respect to the total Li 2 S composed of S and the above Li 2 S powder.
  • the ethyl propionate of the mixed powder and 10 ml stirred while irradiating ultrasonic waves, Li 2 S powder was dissolved P 2 S 5 powder and LiI powders.
  • the obtained solution was put into a petri dish made of polytetrafluoroethylene, and then the above-mentioned non-woven fabric with nuclei was put in, and the mixture was allowed to stand at room temperature for 6 hours. Then, vacuum drying (170 ° C., 2 hours) was performed.
  • a sheet (A1) with an electrolyte is obtained in which the voids of the nonwoven fabric (N1) are filled with the solid electrolyte Li 7 P 2 S 8 I (crystalline) and both sides are coated with Li 7 P 2 S 8 I. rice field.
  • the volume ratio of the non-woven fabric (N1) to the solid electrolyte in the sheet with electrolyte (A1) was 11:89.
  • the mass ratio of the glass fiber and the solid electrolyte was 8:92.
  • a test piece obtained by punching the obtained sheet with electrolyte (A1) to ⁇ 10 mm with a punch is filled inside a tubular body (inner diameter 10 mm) made of polyetheretherketone (PEEK), and then a flat surface having a diameter of 10 mm.
  • the test piece was inserted from both sides of the tubular body and pressed at 250 MPa with a hydraulic press to obtain an electrolyte sheet with a thickness of 52 ⁇ m. Then, in order to observe the cross section of this electrolyte sheet, the surface of the sheet was used under the conditions of a temperature of -70 ° C. and an acceleration voltage of 4 kW using a cross-section sample preparation device "IB-19520CCP" (model name) manufactured by JEOL Ltd.
  • FIG. 2 It was cut perpendicular to the stretching direction, and the image of FIG. 2 was obtained with a scanning electron microscope "JSM-7800F" (model name) manufactured by JEOL Ltd. Then, by the energy dispersive X-ray analysis method, mapping analysis on the Si element contained in the glass fiber constituting the nonwoven fabric (N1) was performed.
  • the analysis target is the portion surrounded by the dotted line in FIG. 2 (horizontal: about 54 ⁇ m, vertical: about 52 ⁇ m).
  • the image surrounded by the dotted line was cut out and shown in FIG. 3 as a mapping image of Si element (Si element map).
  • the black portion is a portion having a Si element.
  • the existence range of the Si element was determined by the following procedure using the software "ImageJ".
  • the Si element map of FIG. 3 was converted into an 8-bit grayscale image, which was binarized with a lower limit threshold value of 0 and an upper limit threshold value of 10.
  • the range was set so that the upper end to the lower end of the cross section of FIG. 3 fit exactly, and the profile of the selected range was created by using the "Plot profile" function of the above software, and the graph of FIG. 4 was obtained.
  • the horizontal axis is the vertical distance of the image of FIG. 3, and the vertical axis is the average value of the horizontal gray values of the image of FIG.
  • the ratio of the region where the average value of the gray values in the horizontal direction is 51 or more (that is, the number of pixels determined to be the presence of the Si element is 20% or more) to the cross-sectional thickness is calculated to be 73.
  • Was% see Table 1).
  • Powder drop test The electrolyte sheet was finely moved on the black sheet, and at this time, whether or not the solid electrolyte powder fell was visually observed and the weight change was confirmed to determine the powder drop property.
  • the weight change due to the weight loss was investigated by the following method. That is, the solid electrolyte sheet was punched into a circular shape ( ⁇ 10 mm) by punching, and this was designated as “test piece A”. Then, the weight (mg) of the test piece A is measured, placed in a cylindrical screw tube bottle (Maruem Co., Ltd., No.
  • Example 2 Under an argon atmosphere, the Li 2 S powder, the P 2 S 5 powder, and the Li I powder were weighed to a ratio of 3: 1: 1 (molar ratio) to obtain a total of 1.37 g of mixed powder. Next, this mixed powder, 10 ml of ethyl propionate, and 30 g of zirconia balls (diameter 4 mm) were placed in a resin conical tube (capacity 50 ml), and the shaker "ASCM-1" (model name) manufactured by AS ONE Co., Ltd. was placed. ) Was shaken at 25 ° C.
  • ASCM-1 model name
  • a slurry (suspension) containing a precursor of the solid electrolyte Li 7 P 2 S 8 I. Then, in this slurry, 0.15 g of glass fiber (fiber diameter: 0.3 ⁇ m, fiber length: about 0.1 to 1 mm) produced by subjecting B glass to the flame method was well dispersed in ethyl propionate. The dispersion was added and mixed well. Then, this mixed solution was put into a petri dish made of polytetrafluoroethylene, allowed to stand at room temperature for 1 hour, and then vacuum dried (170 ° C., 2 hours).
  • a sheet (A2) with an electrolyte was obtained in which glass fibers were contained as a dispersed phase in the matrix phase composed of the solid electrolyte Li 7 P 2 S 8 I and the glass fibers did not protrude on both sides of the sheet.
  • the mass ratio of the glass fiber and the solid electrolyte in the sheet with electrolyte (A2) was 10:90.
  • Example 2 the sheet with an electrolyte (A2) was press-processed in the same manner as in Example 1 to obtain an electrolyte sheet having a thickness of 20 ⁇ m. Then, in the same manner as in Example 1, a graph (not shown) showing the Si profile in the thickness direction of the electrolyte sheet is created, and the average value of the gray values in the horizontal direction is 51 or more (that is, the location where the Si element is present). When the ratio of the area where the pixel determined to be (20% or more) to the cross-sectional thickness was determined, it was 100% (see Table 1). Further, in the same manner as in Example 1, a powder drop test, a bending test and a conductivity measurement were performed, and the results are also shown in Table 1.
  • the lithium ion conductivity of this solid electrolyte was 1.5 ⁇ 10 -4 S / cm (room temperature).
  • the solid electrolyte powder was ground with a pestle and a pestle until the average particle size was 10 ⁇ m or less.
  • the obtained solid electrolyte particles were dispersed in dehydrated heptane under an argon atmosphere to obtain a solid electrolyte-containing slurry.
  • the mass ratio of the solid electrolyte particles and the dehydrated heptane in this solid electrolyte-containing slurry is 1: 1.
  • the solid electrolyte-containing slurry was applied to the nonwoven fabric (N1) having a size of 30 mm ⁇ 90 mm by the following operation.
  • the nonwoven fabric (N1) was placed on a fluororesin plate, and the gap between the nonwoven fabric (N1) and the applicator roll was set to 200 ⁇ m, and the solid electrolyte-containing slurry was applied to the one-sided surface of the nonwoven fabric (N1). After air-drying, the solid electrolyte-containing slurry was applied to the other surface of the nonwoven fabric (N1) under the same conditions and air-dried.
  • the obtained solid electrolyte-coated sheet was placed on a hot plate at 100 ° C. and desolubilized to obtain a sheet with an electrolyte (B1).
  • the volume ratio of the non-woven fabric (N1) to the solid electrolyte in the sheet with electrolyte (B1) was 12:88.
  • the mass ratio of the glass fiber and the solid electrolyte was 9:91.
  • the sheet with an electrolyte (B1) was press-processed in the same manner as in Example 1 to obtain an electrolyte sheet having a thickness of 88 ⁇ m.
  • the image of FIG. 5 was obtained with a scanning electron microscope in the same manner as in the electrolyte sheet of Example 1.
  • mapping analysis on the Si element contained in the glass fiber constituting the nonwoven fabric (N1) was performed.
  • the analysis target is the portion surrounded by the dotted line in FIG. 5 (horizontal: about 142 ⁇ m, vertical: about 88 ⁇ m). The image surrounded by the dotted line was cut out and shown in FIG.
  • the black portion is a portion having a Si element.
  • the region where the average value of the gray values in the horizontal direction is 51 or more that is, the number of pixels determined to be the presence of the Si element is 20% or more
  • the ratio to the thickness was calculated, it was 50% (see Table 1).
  • a powder drop test, a bending test and a conductivity measurement were performed, and the results are also shown in Table 1.
  • Examples 1 and 2 are examples of the electrolyte sheet of the present invention, and there was no desorption (powder drop) of the solid electrolyte, and no cracks or cracks were confirmed in the bending test.
  • the present invention is not limited to Examples 1 and 2 described above, and the electrolyte sheet may be obtained by improving individual steps.
  • Li 2 S powder after obtaining a slurry containing P 2 S 5 powder and LiI powders, although mixed with a dispersion of glass fibers, glass fibers, during the preparation of the slurry may be produced the mixture was added, from the beginning, a glass fiber, Li 2 S powder, used with P 2 S 5 powder and LiI powders, the mixture may be produced.
  • the electrolyte sheet of the present invention includes personal computers, home appliances such as cameras, power storage devices, portable electronic devices or communication devices such as mobile phones, electric tools such as power tools, electric bicycles, passenger cars such as electric vehicles, and wind power generation. It is suitable for forming an electrolyte layer for a lithium ion battery, which constitutes a stationary storage battery of a solar cell device, a watch, glasses, a wearable terminal, a drone, a flying object, a robot structure, etc., which make the best use of safety.
  • Electrolyte sheet 3 Fiber (inorganic fiber) 10: Lithium ion battery 11: Positive electrode layer 13: Negative electrode layer 15: Electrolyte layer 20: Solid electrolyte coated fiber 21: Fiber 23: Solid electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention addresses the problem of providing an electrolyte sheet in which dislodgement of a solid electrolyte (grain shedding) is minimized so as to facilitate handling, and cracking and grain shedding during bending work are minimized so as to enable efficient manufacture of a lithium-ion battery. This electrolyte sheet contains a plurality of inorganic fibers and a solid electrolyte. The inorganic fibers are present in a ratio of at least 60% in said sheet in a thickness-direction cross-section cut perpendicular to the direction of surface stretching of the electrolyte sheet. The solid electrolyte content is preferably 60-95 mass%, where 100 mass% represents the total amount of the inorganic fibers and the solid electrolyte.

Description

電解質シート、固体電解質被覆繊維及びリチウムイオン電池Electrolyte sheet, solid electrolyte coated fiber and lithium ion battery
 本発明は、固体電解質を含み、リチウムイオン電池を構成する電解質層等の形成に好適な電解質シート及び固体電解質被覆繊維並びにリチウムイオン電池に関する。 The present invention relates to an electrolyte sheet, a solid electrolyte-coated fiber, and a lithium ion battery, which contain a solid electrolyte and are suitable for forming an electrolyte layer or the like constituting a lithium ion battery.
 リチウムイオン電池は、充電時には正極からリチウムがイオンとして脱離して負極へ移動して吸蔵され、放電時には負極から正極へリチウムイオンが挿入されて戻る構造の二次電池である。このリチウムイオン電池は、エネルギー密度が大きく、長寿命である等の特徴を有しているため、従来、パソコン、カメラ等の家電製品や、携帯電話機等の携帯型電子機器又は通信機器、パワーツール等の電動工具等の電源として広く用いられており、最近では、電気自動車(EV)、ハイブリッド電気自動車(HEV)等に搭載される大型電池にも応用されている。このようなリチウムイオン電池において、可燃性の有機溶剤を含む電解液に代えて固体電解質を用いると、安全装置の簡素化が図られるだけでなく、製造コスト、生産性等にも優れることから、各種材料、特に、導電率(リチウムイオン伝導度)が高い硫化物固体電解質の研究が盛んに進められている。 A lithium-ion battery is a secondary battery having a structure in which lithium is desorbed as ions from the positive electrode during charging, moves to the negative electrode and is stored, and lithium ions are inserted from the negative electrode to the positive electrode and returned during discharge. Since this lithium-ion battery has features such as high energy density and long life, it has been conventionally used for home appliances such as personal computers and cameras, portable electronic devices or communication devices such as mobile phones, and power tools. It is widely used as a power source for electric tools and the like, and has recently been applied to large batteries mounted on electric vehicles (EV), hybrid electric vehicles (HEV), and the like. In such a lithium ion battery, if a solid electrolyte is used instead of the electrolytic solution containing a flammable organic solvent, not only the safety device can be simplified but also the manufacturing cost and productivity are excellent. Research on various materials, especially sulfide solid electrolytes with high conductivity (lithium ion conductivity), is being actively pursued.
 硫化物固体電解質は、通常、粉末状である。リチウムイオン電池の製造の際には、取り扱いの便宜上、シート状とすることが求められているが、粉末の固体電解質からなる単一層の薄膜シートの形成が困難であることが多いため、これに代わるものとして、電子絶縁性無機繊維等の繊維に固体電解質が付着している固体電解質シートが提案された(特許文献1参照)。 The sulfide solid electrolyte is usually in the form of powder. When manufacturing a lithium-ion battery, it is required to form a sheet for convenience of handling, but it is often difficult to form a single-layer thin sheet made of a powdered solid electrolyte. As an alternative, a solid electrolyte sheet in which a solid electrolyte is attached to a fiber such as an electronically insulating inorganic fiber has been proposed (see Patent Document 1).
 特許文献1には、固体電解質及び複数の開口を有する支持体を含み、固体電解質が支持体の開口に充填されており、支持体がガラス(ガラス繊維織物)からなり、支持体の開口率が40~90%であり、固体電解質が硫化リチウムと五硫化二リンを原料とし、硫化リチウムと五硫化二リンのモル比が68:32~80:20であり、固体電解質を溶媒に溶かしたスラリーを支持体に塗布し乾燥することにより得られたリチウム電池用固体電解質シートが開示されている。 Patent Document 1 includes a solid electrolyte and a support having a plurality of openings, the solid electrolyte is filled in the openings of the support, the support is made of glass (glass fiber woven fabric), and the opening ratio of the support is high. The solid electrolyte is 40 to 90%, the solid electrolyte is made of lithium sulfide and diphosphorus pentasulfide as raw materials, and the molar ratio of lithium sulfide to diphosphorus pentasulfide is 68:32 to 80:20, and the solid electrolyte is dissolved in a solvent. Disclosed is a solid electrolyte sheet for a lithium battery obtained by applying the above to a support and drying it.
特開2013-127982号公報Japanese Unexamined Patent Publication No. 2013-127892
 リチウムイオン電池の内部構造は多様であり、電解質層が平面状であったり、曲面状であったりする。後者の場合、固体電解質シートを折り曲げ加工する必要があるため、それによって、表面にクラックやひび割れが発生しない構造とする必要がある。また、特許文献1に示されたリチウム電池用固体電解質シートは、搬送時等において、固体電解質粒子が脱離することがあり、リチウムイオン電池を大量生産した場合に、安定した性能が得られないことがあった。本発明の課題は、固体電解質の脱離(粉落ち)が抑制されてハンドリングしやすく、折り曲げ加工の際にクラックの発生や粉落ちが抑制されて効率よくリチウムイオン電池を製造することができる電解質シートを提供することである。また、本発明の他の課題は、この電解質シートを含み、搬送性に優れた電解質シート含有製品を提供することである。 The internal structure of the lithium-ion battery is diverse, and the electrolyte layer may be flat or curved. In the latter case, it is necessary to bend the solid electrolyte sheet, so that it is necessary to have a structure in which cracks and cracks do not occur on the surface. Further, in the solid electrolyte sheet for a lithium battery shown in Patent Document 1, solid electrolyte particles may be detached during transportation or the like, and stable performance cannot be obtained when a lithium ion battery is mass-produced. There was something. The problem of the present invention is that the desorption (powder falling) of the solid electrolyte is suppressed and it is easy to handle, and the generation of cracks and the powder falling during the bending process are suppressed so that the lithium ion battery can be efficiently manufactured. To provide a sheet. Another object of the present invention is to provide a product containing the electrolyte sheet and having excellent transportability.
 本発明は、以下に示される。
1.複数の無機繊維と、固体電解質とを含む電解質シートにおいて、
 上記電解質シートの表面延伸方向に対して垂直に切断した厚み方向断面において、上記無機繊維が存在する割合が60%以上であることを特徴とする電解質シート。
2.上記固体電解質の含有割合が、上記無機繊維及び上記固体電解質の合計量を100質量%とした場合に、60~95質量%である上記項1に記載の電解質シート。
3.上記無機繊維がガラス繊維を含む上記項1又は2に記載の電解質シート。
4.上記固体電解質が、リチウム元素、リン元素及び硫黄元素を含む化合物を含有する上記項1乃至3のいずれか一項に記載の電解質シート。
5.上記固体電解質が、リチウム元素、リン元素、硫黄元素及びハロゲン元素を含む化合物を含有する上記項1乃至3のいずれか一項に記載の電解質シート。
6.上記固体電解質が非晶性を有する上記項1乃至5のいずれか一項に記載の電解質シート。
7.上記固体電解質が結晶性を有する上記項1乃至5のいずれか一項に記載の電解質シート。
8.上記無機繊維が、繊維径が50μm以下の繊維を含む上記項1乃至7のいずれか一項に記載の電解質シート。
9.上記電解質シートの断面を見た場合に、ボイドの割合が20%以下である上記項1乃至8のいずれか一項に記載の電解質シート。
10.上記項1乃至9のいずれか一項に記載の電解質シートが包装体の中に収容されていることを特徴とする電解質シート含有製品。
11.上記項1乃至9のいずれか一項に記載の電解質シートを含むことを特徴とするリチウムイオン電池。
12.繊維からなる繊維部と、固体電解質を含み、上記繊維部の表面の少なくとも一部を被覆する固体電解質被覆層とを備えることを特徴とする固体電解質被覆繊維。
The present invention is shown below.
1. 1. In an electrolyte sheet containing a plurality of inorganic fibers and a solid electrolyte,
An electrolyte sheet characterized in that the proportion of the inorganic fibers present is 60% or more in a cross section in the thickness direction cut perpendicular to the surface stretching direction of the electrolyte sheet.
2. 2. Item 2. The electrolyte sheet according to Item 1, wherein the content ratio of the solid electrolyte is 60 to 95% by mass when the total amount of the inorganic fibers and the solid electrolyte is 100% by mass.
3. 3. Item 2. The electrolyte sheet according to Item 1 or 2, wherein the inorganic fiber contains glass fiber.
4. Item 2. The electrolyte sheet according to any one of Items 1 to 3, wherein the solid electrolyte contains a compound containing a lithium element, a phosphorus element and a sulfur element.
5. Item 2. The electrolyte sheet according to any one of Items 1 to 3, wherein the solid electrolyte contains a compound containing a lithium element, a phosphorus element, a sulfur element and a halogen element.
6. The electrolyte sheet according to any one of Items 1 to 5, wherein the solid electrolyte has amorphous properties.
7. The electrolyte sheet according to any one of Items 1 to 5, wherein the solid electrolyte has crystallinity.
8. Item 2. The electrolyte sheet according to any one of Items 1 to 7, wherein the inorganic fiber contains a fiber having a fiber diameter of 50 μm or less.
9. The electrolyte sheet according to any one of Items 1 to 8 above, wherein the proportion of voids is 20% or less when the cross section of the electrolyte sheet is viewed.
10. A product containing an electrolyte sheet, wherein the electrolyte sheet according to any one of the above items 1 to 9 is housed in a package.
11. A lithium ion battery comprising the electrolyte sheet according to any one of the above items 1 to 9.
12. A solid electrolyte-coated fiber comprising a fiber portion made of a fiber and a solid electrolyte-coated layer containing a solid electrolyte and covering at least a part of the surface of the fiber portion.
 本発明の電解質シートは、固体電解質の脱離(粉落ち)がしにくく形状安定性に優れるため、ハンドリングしやすい。また、リチウムイオン電池の製造の際に折り曲げ加工等を行う場合にはクラックや粉落ちが発生しにくいため、所期の性能を有するリチウムイオン電池を効率よく製造することができる。
 本発明の電解質シート含有製品によれば、リチウムイオン電池の製造現場で開封して電解質シートを取り出し、電解質シートの優れた上記効果を維持しつつリチウムイオン電池の製造に供することができる。
 本発明のリチウムイオン電池は、リチウムイオン伝導性が高い電解質シートを含むので、優れた電池性能を発揮する。
 本発明の固体電解質被覆繊維は、接着剤を介して繊維と固体電解質とが接合したものではないため、リチウムイオン伝導性が高い電解質シートの形成等に好適である。
The electrolyte sheet of the present invention is easy to handle because it is difficult for the solid electrolyte to come off (powder fall off) and has excellent shape stability. In addition, cracks and powder falling are less likely to occur when bending or the like is performed during the manufacture of a lithium ion battery, so that a lithium ion battery having the desired performance can be efficiently manufactured.
According to the electrolyte sheet-containing product of the present invention, the electrolyte sheet can be opened at the manufacturing site of the lithium ion battery, and the electrolyte sheet can be taken out and used for manufacturing the lithium ion battery while maintaining the above-mentioned excellent effects of the electrolyte sheet.
Since the lithium ion battery of the present invention contains an electrolyte sheet having high lithium ion conductivity, it exhibits excellent battery performance.
Since the solid electrolyte-coated fiber of the present invention is not a bond between the fiber and the solid electrolyte via an adhesive, it is suitable for forming an electrolyte sheet having high lithium ion conductivity.
本発明の電解質シートの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the electrolyte sheet of this invention. 実施例1で得られた電解質シートの断面画像である。6 is a cross-sectional image of the electrolyte sheet obtained in Example 1. 図2において点線で包囲した部分のSi元素マップである。It is a Si element map of the part surrounded by the dotted line in FIG. 図3のSi元素マップをもとに電解質シートの厚み方向にSiのプロファイルを示すグラフである。It is a graph which shows the profile of Si in the thickness direction of an electrolyte sheet based on the Si element map of FIG. 比較例1で得られた電解質シートの断面画像である。It is a cross-sectional image of the electrolyte sheet obtained in Comparative Example 1. 図5において点線で包囲した部分のSi元素マップである。It is a Si element map of the part surrounded by the dotted line in FIG. 図6のSi元素マップをもとに電解質シートの厚み方向にSiのプロファイルを示すグラフである。It is a graph which shows the profile of Si in the thickness direction of an electrolyte sheet based on the Si element map of FIG. リチウムイオン電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a lithium ion battery. 本発明の固体電解質被覆繊維の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the solid electrolyte coating fiber of this invention.
 本発明の電解質シートは、複数の無機繊維と、固体電解質とを含み、必要に応じて、他の繊維を含んでもよいシートである。本発明の電解質シートは、その表面延伸方向に対して垂直に切断した厚み方向断面において、上記無機繊維が存在する割合が60%以上である構造を有する。尚、本明細書において、「シート」は、枚葉のみでなく、長尺のものも含む。 The electrolyte sheet of the present invention is a sheet containing a plurality of inorganic fibers and a solid electrolyte, and may contain other fibers as needed. The electrolyte sheet of the present invention has a structure in which the proportion of the inorganic fibers present is 60% or more in a cross section in the thickness direction cut perpendicular to the surface stretching direction. In addition, in this specification, a "sheet" includes not only a sheet but also a long one.
 上記無機繊維は、無機化合物からなる部分を含むものであれば、特に限定されない。例えば、無機化合物のみからなる繊維、樹脂繊維の表面の少なくとも一部に無機材料を含む膜又は粒状の部分を有する繊維等が挙げられる。本発明に係る無機繊維は、無機化合物のみからなる繊維であることが好ましい。上記無機化合物は、特に限定されないが、好ましくは、酸化物、窒化物、炭酸塩、チタン酸塩等である。具体的な無機繊維としては、ガラス繊維、シリカ繊維、アルミナ繊維、シリカ・アルミナ繊維、シリカ・アルミナ・マグネシア繊維、シリカ・アルミナ・ジルコニア繊維、シリカ・マグネシア・カルシア繊維、ロックウール、スラグウール、チタン酸カリウムウイスカー、炭酸カルシウムウイスカー、バサルト繊維、セピライト、アパラルジャイト等の鉱物繊維等が挙げられる。これらのうち、ガラス繊維が好ましい。
 ガラス繊維を構成するガラスは、特に限定されないが、本発明の電解質シートをリチウムイオン電池の電解質層形成に用いると、耐薬品性に優れることから、Cガラス、Bガラス、Eガラス等が好ましい。
The inorganic fiber is not particularly limited as long as it contains a portion made of an inorganic compound. For example, a fiber composed of only an inorganic compound, a fiber having a film containing an inorganic material on at least a part of the surface of the resin fiber, or a fiber having a granular portion can be mentioned. The inorganic fiber according to the present invention is preferably a fiber composed of only an inorganic compound. The inorganic compound is not particularly limited, but is preferably an oxide, a nitride, a carbonate, a titanate or the like. Specific inorganic fibers include glass fiber, silica fiber, alumina fiber, silica-alumina fiber, silica-alumina-magnesia fiber, silica-alumina-zirconia fiber, silica-magnesia-calcia fiber, rock wool, slag wool, and titanium. Examples thereof include potassium acid whiskers, calcium carbonate whiskers, basalt fibers, sepilite, mineral fibers such as apparaljite and the like. Of these, glass fiber is preferable.
The glass constituting the glass fiber is not particularly limited, but when the electrolyte sheet of the present invention is used for forming the electrolyte layer of the lithium ion battery, C glass, B glass, E glass and the like are preferable because they are excellent in chemical resistance.
 上記無機繊維の繊維径は、特に限定されないが、本発明の電解質シートの機械強度、折り曲げに対する柔軟性等の観点から、上限値は、好ましくは50μm、より好ましくは10μmであり、下限値は、好ましくは0.01μm、より好ましくは0.1μmである。また、繊維長は、特に限定されないが、本発明の電解質シートの不織布の生産性、目開きの均一性の観点から、好ましくは0.1~10mm、より好ましくは0.5~6mmの範囲にある。本発明の電解質シートは、複数の無機繊維を含むものであり、本発明において、同じ材料を含む無機繊維どうしのあいだでは、各繊維のサイズ(径又は長さ)は、均一及び不均一のいずれでもよい。また、構成材料が互いに異なる複数種の無機繊維を含む場合、1の材料からなる繊維と、他の材料からなる繊維との間で径又は長さは、均一及び不均一のいずれでもよい。 The fiber diameter of the inorganic fiber is not particularly limited, but the upper limit is preferably 50 μm, more preferably 10 μm, and the lower limit is from the viewpoint of the mechanical strength of the electrolyte sheet of the present invention, flexibility against bending, and the like. It is preferably 0.01 μm, more preferably 0.1 μm. The fiber length is not particularly limited, but is preferably in the range of 0.1 to 10 mm, more preferably 0.5 to 6 mm from the viewpoint of productivity of the nonwoven fabric of the electrolyte sheet of the present invention and uniformity of opening. be. The electrolyte sheet of the present invention contains a plurality of inorganic fibers, and in the present invention, the size (diameter or length) of each fiber is uniform or non-uniform among the inorganic fibers containing the same material. But it may be. Further, when the constituent materials include a plurality of types of inorganic fibers different from each other, the diameter or length between the fibers made of one material and the fibers made of another material may be uniform or non-uniform.
 本発明の電解質シートは、上記のように、他の繊維を含むことができる。本発明の電解質シートが他の繊維を含む場合、繊維全体に対するその含有割合の上限は、好ましくは65質量%、より好ましくは55質量%である。
 他の繊維としては、有機繊維、天然繊維等が挙げられ、有機繊維が好ましい。
The electrolyte sheet of the present invention may contain other fibers as described above. When the electrolyte sheet of the present invention contains other fibers, the upper limit of the content ratio thereof with respect to the entire fibers is preferably 65% by mass, more preferably 55% by mass.
Examples of other fibers include organic fibers and natural fibers, and organic fibers are preferable.
 有機繊維としては、樹脂繊維が好ましい。樹脂繊維の構成材料としては、ポリエステル樹脂(ポリエチレンテレフタレート等)、脂肪族ポリアミド樹脂、アラミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、アクリル樹脂、ポリアクリロニトリル樹脂、ポリビニルアルコール樹脂、ポリアセタール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、エチレン・酢酸ビニル共重合体、フッ素樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、セルロース等が挙げられる。樹脂繊維は、樹脂1種のみ又は複数種の樹脂を含む単一相からなる繊維、又は、低融点樹脂部及び高融点樹脂部を備える複相構造の繊維(以下、「複合樹脂繊維」という)等とすることができる。複合樹脂繊維の場合、例えば、芯鞘型繊維、サイドバイサイド型繊維等とすることができる。複合樹脂繊維の場合の樹脂の組み合わせとしては、例えば、PET/低融点共重合ポリエステル、PET/PE、PP(ポリプロピレン)/PE(ポリエチレン)、PP/低融点共重合PP等が挙げられる。ここで、低融点共重合ポリエステルとしては、PET、PPT(ポリプロピレンテレフタレート)、PBT(ポリブチレンテレフタレート)等を基本骨格とした変性樹脂、即ち、これらのポリエステルと、イソフタル酸、5-ナトリウムスルホイソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類、及び/又は、アジピン酸、セバシン酸等の脂肪族ジカルボン酸と、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール等の脂肪族多価アルコール等との変性共重合体が挙げられる。
 上記有機繊維(樹脂繊維)としては、ポリエステル繊維が特に好ましい。
As the organic fiber, a resin fiber is preferable. As the constituent materials of the resin fiber, polyester resin (polyethylene terephthalate, etc.), aliphatic polyamide resin, aramid resin, polyolefin resin, cyclic olefin resin, acrylic resin, polyacrylonitrile resin, polyvinyl alcohol resin, polyacetal resin, polyvinyl chloride resin, etc. Examples thereof include polyvinylidene chloride resin, ethylene / vinyl acetate copolymer, fluororesin, polyether sulfone resin, polyphenylene sulfide resin, cellulose and the like. The resin fiber is a fiber composed of a single phase containing only one type of resin or a plurality of types of resin, or a fiber having a double-phase structure including a low melting point resin portion and a high melting point resin portion (hereinafter referred to as "composite resin fiber"). And so on. In the case of the composite resin fiber, for example, a core-sheath type fiber, a side-by-side type fiber, or the like can be used. Examples of the resin combination in the case of the composite resin fiber include PET / low melting point copolymerized polyester, PET / PE, PP (polypropylene) / PE (polyethylene), PP / low melting point copolymerized PP and the like. Here, as the low melting point copolymerized polyester, a modified resin having PET, PPT (polypropylene terephthalate), PBT (polybutylene terephthalate) or the like as a basic skeleton, that is, these polyesters, isophthalic acid, 5-sodium sulfoisophthalic acid, etc. , Aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, and / or aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and aliphatic polyhydric alcohols such as diethylene glycol, propylene glycol and 1,4-butanediol. Examples include copolymers.
As the organic fiber (resin fiber), polyester fiber is particularly preferable.
 上記有機繊維の繊維径及び繊維長は、特に限定されないが、上記無機繊維における繊維径及び繊維長と同様とすることができる。 The fiber diameter and fiber length of the organic fiber are not particularly limited, but can be the same as the fiber diameter and fiber length of the inorganic fiber.
 本発明の電解質シートにおける繊維について、繊維どうしが単に絡み合った状態にあるもの、及び、繊維どうしが絡み合っており且つ繊維どうしが接合された状態にあるもののいずれでもよい。後者の場合、繊維どうしの接触点において接着剤により接合状態にあることが好ましい。 The fibers in the electrolyte sheet of the present invention may be either those in which the fibers are simply entangled with each other or those in which the fibers are intertwined with each other and the fibers are joined to each other. In the latter case, it is preferable that the fibers are in a bonded state by an adhesive at the contact point between the fibers.
 次に、上記固体電解質は、リチウムイオン電池の構成材料として、従来、公知のものであれば、特に限定されず、硫化物系固体電解質、ガーネット系固体電解質、窒化物系固体電解質、ペロブスカイト系固体電解質、ゼオライト系固体電解質、リン酸系固体電解質、NASICON型固体電解質等が挙げられる。本発明においては、リチウムイオン導電性に優れることから、LiPS、LiX、Li11、Li、LiPSX、Li9.612等の硫化物系固体電解質が好ましい。尚、XはCl、Br又はIである。本発明の電解質シートに含まれる固体電解質は、1種のみでも2種以上でもよい。また、上記固体電解質の結晶性も特に限定されず、電解質シートに含まれる固体電解質は、結晶性及び非晶性のいずれでもよく、両方であってもよい。 Next, the solid electrolyte is not particularly limited as long as it is conventionally known as a constituent material of the lithium ion battery, and is a sulfide-based solid electrolyte, a garnet-based solid electrolyte, a nitride-based solid electrolyte, and a perovskite-based solid. Examples thereof include an electrolyte, a zeolite-based solid electrolyte, a phosphoric acid-based solid electrolyte, and a NASICON-type solid electrolyte. In the present invention, since it is excellent in lithium ion conductivity, Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P 2 S 5 , Li 6 PS 5 X, Li 9. A sulfide-based solid electrolyte such as 6 P 3 S 12 is preferable. In addition, X is Cl, Br or I. The solid electrolyte contained in the electrolyte sheet of the present invention may be only one type or two or more types. Further, the crystallinity of the solid electrolyte is not particularly limited, and the solid electrolyte contained in the electrolyte sheet may be either crystalline or amorphous, or may be both.
 本発明の電解質シートに含まれる全ての繊維及び固体電解質の体積比は、特に限定されない。リチウムイオン導電性、機械強度及び柔軟性の観点から、繊維及び固体電解質の体積割合は、両者の合計を100体積%とした場合に、それぞれ、好ましくは5~60体積%及び40~95体積%、より好ましくは5~50体積%及び50~95体積%である。 The volume ratio of all fibers and solid electrolytes contained in the electrolyte sheet of the present invention is not particularly limited. From the viewpoint of lithium ion conductivity, mechanical strength and flexibility, the volume ratios of the fiber and the solid electrolyte are preferably 5 to 60% by volume and 40 to 95% by volume, respectively, when the total of the two is 100% by volume. , More preferably 5 to 50% by volume and 50 to 95% by volume.
 本発明の電解質シートに含まれる無機繊維及び固体電解質の質量比は、特に限定されない。機械強度及び柔軟性の観点から、無機繊維及び固体電解質の含有割合は、両者の合計を100質量%とした場合に、それぞれ、好ましくは5~50質量%及び50~95質量%、より好ましくは5~40質量%及び60~95質量%である。 The mass ratio of the inorganic fiber and the solid electrolyte contained in the electrolyte sheet of the present invention is not particularly limited. From the viewpoint of mechanical strength and flexibility, the content ratios of the inorganic fiber and the solid electrolyte are preferably 5 to 50% by mass and 50 to 95% by mass, respectively, more preferably when the total of both is 100% by mass. It is 5 to 40% by mass and 60 to 95% by mass.
 本発明の電解質シートは、実質的に、無機繊維を含む繊維と、固体電解質とを主とする中実体のシートであり、図1に示されるように、1面側から他面側に繊維3及び固体電解質(符号なし)が均一に含まれる構造を有するシート1であってよいし、内部に、繊維及び固体電解質が均一に含まれる一方、1面側の表面層及び他面側の表面層を、固体電解質からなる被覆層とした構造を有するシート(図示せず)であってもよい。 The electrolyte sheet of the present invention is substantially a medium-solid sheet mainly composed of a fiber containing an inorganic fiber and a solid electrolyte, and as shown in FIG. 1, the fiber 3 from one surface side to the other surface side. And the sheet 1 having a structure in which the solid electrolyte (unsigned) is uniformly contained, and the fiber and the solid electrolyte are uniformly contained in the sheet 1, while the surface layer on the one side and the surface layer on the other side are uniformly contained. May be a sheet (not shown) having a structure as a coating layer made of a solid electrolyte.
 本発明の電解質シートの厚さは、好ましくは5~100μm、より好ましくは10~75μmである。本発明の電解質シートは、上記のように、表面延伸方向に対して垂直に切断した厚み方向断面において、上記無機繊維が存在する割合が60%以上である構造を有する。この割合は、好ましくは70%以上である。この割合の測定方法は、〔実施例〕に示されるが、以下の操作による。
(1)電子顕微鏡により電解質シートを、その厚み方向の断面全体が画像に入るように撮影する(図2及び図5参照)。
(2)厚み方向の断面全体が入るように設定した領域(以下、「測定領域」という)において、エネルギー分散型X線分析法により、電解質シートに含まれる無機繊維を構成する元素であって、固体電解質に含まれない元素に係るマッピング分析を行う。測定元素は、無機繊維がSi元素を含むガラス繊維であり、Si元素が固体電解質に含まれない場合には、Si元素を選択することが好ましい。測定領域は横方向長さを少なくとも40μmとすることが好ましい。
(3)マッピング分析により得られた、例えば、図3及び図6で示されるSi元素マップをもとに、ソフトウェアを用いて、以下の方法で、Si元素の存在範囲を求める。即ち、Si元素マップを8ビットグレースケール画像に変換したうえで、これを下限閾値0、上限閾値10で2値化し、各画素のグレイ値として、Si元素の存在箇所を255、Si元素の非存在箇所を0に変換させる。次いで、ソフトウェアの操作において、Si元素マップの上端から下端までがちょうど収まるように範囲設定し、上端から下端までの範囲のプロファイルを作成しグラフ化する(図4及び図7参照)。横軸は、Si元素マップの垂直方向の距離、縦軸は、Si元素マップの水平方向のグレイ値の平均値である。その後、このグラフにおいて、Si元素の存在箇所と判定した画素が20%以上となる領域、即ち、水平方向のグレイ値の平均値が51以上となる領域が、測定領域に対してどれぐらいの割合(面積割合)であるかを算出する。
The thickness of the electrolyte sheet of the present invention is preferably 5 to 100 μm, more preferably 10 to 75 μm. As described above, the electrolyte sheet of the present invention has a structure in which the proportion of the inorganic fibers present is 60% or more in the cross section in the thickness direction cut perpendicular to the surface stretching direction. This ratio is preferably 70% or more. The method for measuring this ratio is shown in [Example], but is as follows.
(1) The electrolyte sheet is photographed with an electron microscope so that the entire cross section in the thickness direction is included in the image (see FIGS. 2 and 5).
(2) An element constituting an inorganic fiber contained in an electrolyte sheet by an energy dispersive X-ray analysis method in a region set so as to include the entire cross section in the thickness direction (hereinafter referred to as “measurement region”). Perform mapping analysis on elements not contained in the solid electrolyte. As the measurement element, the inorganic fiber is a glass fiber containing a Si element, and when the Si element is not contained in the solid electrolyte, it is preferable to select the Si element. The measurement region preferably has a lateral length of at least 40 μm.
(3) Based on, for example, the Si element map shown in FIGS. 3 and 6 obtained by mapping analysis, the existence range of the Si element is determined by the following method using software. That is, after converting the Si element map into an 8-bit grayscale image, this is binarized with a lower limit threshold value of 0 and an upper limit threshold value of 10, and the gray value of each pixel is set to 255 where the Si element is present and non-Si element. Converts the existing location to 0. Next, in the operation of the software, the range is set so that the upper end to the lower end of the Si element map fits exactly, and the profile of the range from the upper end to the lower end is created and graphed (see FIGS. 4 and 7). The horizontal axis is the vertical distance of the Si element map, and the vertical axis is the average value of the horizontal gray values of the Si element map. After that, in this graph, the ratio of the region where the pixel determined to be the presence of the Si element is 20% or more, that is, the region where the average value of the horizontal gray values is 51 or more is relative to the measurement region. Calculate whether it is (area ratio).
 本発明の電解質シートは、上記のように、実質的に、無機繊維を含む繊維と、固体電解質とを主とする中実体のシートであり、固体電解質の脱離(粉落ち)がしにくく形状安定性に優れるため、ボイドの割合(存在率)は低い。ボイドの割合は、好ましくは20%以下、より好ましくは10%以下である。ボイドの割合は、電解質シートを厚み方向に切断して、例えば、光学顕微鏡、レーザー顕微鏡、電子顕微鏡等により断面の画像を得て、その画像をもとに、任意の範囲において算出することができる。 As described above, the electrolyte sheet of the present invention is a medium-solid sheet mainly composed of fibers containing inorganic fibers and a solid electrolyte, and has a shape that makes it difficult for the solid electrolyte to come off (powder fall off). Due to its excellent stability, the percentage of voids (presence rate) is low. The percentage of voids is preferably 20% or less, more preferably 10% or less. The void ratio can be calculated in an arbitrary range based on an image of a cross section obtained by cutting the electrolyte sheet in the thickness direction with, for example, an optical microscope, a laser microscope, an electron microscope, or the like. ..
 本発明の電解質シートは、リチウムイオン導電性に優れ、交流インピーダンス法により25℃で測定される導電率は、好ましくは10-4S/cm以上である。 The electrolyte sheet of the present invention has excellent lithium ion conductivity, and the conductivity measured at 25 ° C. by the AC impedance method is preferably 10 -4 S / cm or more.
 本発明の電解質シートを製造する方法は、特に限定されない。好ましい製造方法は、以下に示される。
 方法(1):容器に、無機繊維を含む繊維の集合体からなり、シート状を有するもの(以下、「繊維シート」という)と、固体電解質形成原料と、有機溶剤とを入れ、固体電解質形成原料を反応させて固体電解質を形成させ、繊維表面への固体電解質による被覆を行って、繊維どうしの空隙を固体電解質で満たし、中実体のシートを作製する方法。
 方法(2):容器に、複数の無機繊維を含み、互いに固定化されていない複数の繊維と、固体電解質形成原料と、有機溶剤とを入れた後、固体電解質形成原料を反応させて固体電解質を形成させ、繊維表面への固体電解質による被覆を行って、全ての繊維どうしの空隙を固体電解質で満たし、中実体のシートを作製する方法。
 方法(3):容器に、上記繊維シートと、固体電解質が有機溶剤に溶解されてなる固体電解質溶液、又は、固体電解質が有機溶剤からなる分散媒の中で分散されてなる固体電解質分散液とを入れた後、有機溶剤を脱揮して、繊維シートを構成する繊維表面への固体電解質による被覆を行って、繊維どうしの空隙を固体電解質で満たし、中実体のシートを作製する方法。
 方法(4):容器に、複数の無機繊維を含み、互いに固定化されていない複数の繊維と、固体電解質が有機溶剤に溶解されてなる固体電解質溶液、又は、固体電解質が有機溶剤からなる分散媒の中で分散されてなる固体電解質分散液とを入れた後、有機溶剤を脱揮して、繊維表面への固体電解質による被覆を行って、全ての繊維どうしの空隙を固体電解質で満たし、中実体のシートを作製する方法。
 上記の全ての方法において、シート化の後、必要に応じて、熱処理、プレス処理等を行ってもよい。
The method for producing the electrolyte sheet of the present invention is not particularly limited. Preferred manufacturing methods are shown below.
Method (1): In a container, an aggregate of fibers containing inorganic fibers, which has a sheet shape (hereinafter referred to as "fiber sheet"), a solid electrolyte forming raw material, and an organic solvent are put into a container to form a solid electrolyte. A method in which raw materials are reacted to form a solid electrolyte, the surface of the fiber is coated with the solid electrolyte, and the voids between the fibers are filled with the solid electrolyte to prepare a solid sheet.
Method (2): A container contains a plurality of inorganic fibers that are not immobilized on each other, a solid electrolyte forming raw material, and an organic solvent, and then the solid electrolyte forming raw material is reacted to cause a solid electrolyte. A method in which the surface of a fiber is coated with a solid electrolyte, and the voids between all the fibers are filled with the solid electrolyte to prepare a solid sheet.
Method (3): In a container, the fiber sheet and a solid electrolyte solution in which a solid electrolyte is dissolved in an organic solvent, or a solid electrolyte dispersion in which a solid electrolyte is dispersed in a dispersion medium made of an organic solvent. A method in which the organic solvent is devolatile, the surface of the fiber constituting the fiber sheet is coated with a solid electrolyte, and the voids between the fibers are filled with the solid electrolyte to prepare a solid sheet.
Method (4): A solid electrolyte solution containing a plurality of inorganic fibers in a container and not immobilized with each other and a solid electrolyte dissolved in an organic solvent, or a dispersion in which the solid electrolyte is composed of an organic solvent. After adding the solid electrolyte dispersion liquid dispersed in the medium, the organic solvent is devolatile and the fiber surface is coated with the solid electrolyte to fill the voids between all the fibers with the solid electrolyte. How to make a medium solid sheet.
In all of the above methods, heat treatment, press treatment, or the like may be performed after forming the sheet, if necessary.
 上記方法(1)及び(3)で用いる繊維シートは、特に限定されず、繊維堆積物、不織布、織布、織物等とすることができる。上記繊維シートは、繊維のみからなるものであってよいし、複数の繊維が接着剤により結着されたものであってもよい。 The fiber sheet used in the above methods (1) and (3) is not particularly limited, and may be a fiber deposit, a non-woven fabric, a woven fabric, a woven fabric, or the like. The fiber sheet may be composed of only fibers, or may be one in which a plurality of fibers are bonded by an adhesive.
 上記繊維シートは、その全体に対して35質量%以上の無機繊維を含むことが好ましく、無機繊維は、ガラス繊維を含むことが好ましい。これにより、リチウムイオン電池の電解質層形成材料として好適な電解質シートを得ることができる。 The fiber sheet preferably contains 35% by mass or more of inorganic fibers with respect to the whole, and the inorganic fibers preferably contain glass fibers. This makes it possible to obtain an electrolyte sheet suitable as an electrolyte layer forming material for a lithium ion battery.
 上記繊維シートの空隙率及び坪量は、特に限定されない。空隙率は、好ましくは50~95%、より好ましくは60~90%である。また、坪量は、好ましくは1~100g/m、より好ましくは1~20g/mである。 The porosity and basis weight of the fiber sheet are not particularly limited. The porosity is preferably 50 to 95%, more preferably 60 to 90%. The basis weight is preferably 1 to 100 g / m 2 , more preferably 1 to 20 g / m 2 .
 上記方法(1)及び(3)において、上記繊維シートは、好ましくは不織布である。不織布は、繊維どうしが単に絡み合った状態にあるもの、及び、繊維どうしが絡み合っており且つ繊維どうしが接合された状態にあるもののいずれでもよい。後者の不織布の場合、繊維どうしの接触点において接着剤により接合状態にあることが好ましい。 In the above methods (1) and (3), the above fiber sheet is preferably a non-woven fabric. The non-woven fabric may be either one in which the fibers are simply entangled with each other, or one in which the fibers are intertwined with each other and the fibers are joined to each other. In the case of the latter non-woven fabric, it is preferable that the fibers are in a bonded state by an adhesive at the contact point between the fibers.
 上記不織布が接着剤により結着された繊維を含む場合、不織布全体に対する接着剤の含有割合は、得られる電解質シートを導電性に優れたものとするために、好ましくは15質量%以下、より好ましくは12質量%以下である。 When the non-woven fabric contains fibers bonded by an adhesive, the content ratio of the adhesive to the entire non-woven fabric is preferably 15% by mass or less, more preferably 15% by mass or less, in order to make the obtained electrolyte sheet excellent in conductivity. Is 12% by mass or less.
 上記不織布の厚さは、通常、20μm以上であるが、得られる電解質シートが、優れた性能のリチウムイオン電池を与える電解質層形成材料として好適であることから、好ましくは5~100μm、より好ましくは10~75μmである。 The thickness of the nonwoven fabric is usually 20 μm or more, but the obtained electrolyte sheet is suitable as an electrolyte layer forming material for giving a lithium ion battery having excellent performance, so it is preferably 5 to 100 μm, more preferably. It is 10 to 75 μm.
 上記方法(2)及び(4)で用いる「互いに固定化されていない複数の繊維」は、複数の繊維を、固体電解質形成原料及び有機溶剤、固体電解質の有機溶液、又は、固体電解質が有機溶剤からなる分散媒の中で分散されてなる固体電解質分散液とともに容器に入れて繊維表面に固体電解質を形成させる前においてほとんどの繊維が散らばっている状態にあることを意味する。
 上記方法(2)及び(4)で用いる無機繊維は、好ましくは、Cガラス、Bガラス、Eガラス等を含むガラス繊維である。無機繊維の好ましいサイズは、上記の通りである。また、方法(2)及び(4)においては、無機繊維と有機繊維又は天然繊維とを組み合わせて用いることができ、この場合、繊維の全体に対する無機繊維の割合は、好ましくは35質量%以上である。
In the "plurality of fibers not immobilized with each other" used in the above methods (2) and (4), a plurality of fibers are used as a solid electrolyte forming raw material and an organic solvent, an organic solution of a solid electrolyte, or a solid electrolyte is an organic solvent. It means that most of the fibers are scattered before being placed in a container together with the solid electrolyte dispersion liquid dispersed in the dispersion medium consisting of the above to form the solid electrolyte on the fiber surface.
The inorganic fiber used in the above methods (2) and (4) is preferably a glass fiber containing C glass, B glass, E glass and the like. The preferred size of the inorganic fiber is as described above. Further, in the methods (2) and (4), the inorganic fiber and the organic fiber or the natural fiber can be used in combination, and in this case, the ratio of the inorganic fiber to the whole fiber is preferably 35% by mass or more. be.
 上記方法(1)及び(2)において、有機溶剤の存在下、固体電解質の形成に用いる固体電解質形成原料は、通常、複数種の化合物からなる。そして、有機溶剤の中で、複数種の化合物を接触反応させて、固体電解質を形成させる。好ましい固体電解質は、上記のように、硫化物系固体電解質であり、上記固体電解質形成原料は、LiPS、LiX、Li11、Li、LiPSX、Li9.612等を形成せしめる化合物を含むことが好ましい。尚、XはCl、Br又はIである。 In the above methods (1) and (2), the solid electrolyte forming raw material used for forming the solid electrolyte in the presence of the organic solvent is usually composed of a plurality of kinds of compounds. Then, in the organic solvent, a plurality of kinds of compounds are contact-reacted to form a solid electrolyte. As described above, the preferred solid electrolyte is a sulfide-based solid electrolyte, and the raw materials for forming the solid electrolyte are Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P 2 S. 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like are preferably contained. In addition, X is Cl, Br or I.
 硫化物系固体電解質を形成する原料としては、硫化リチウム、硫化リン、ハロゲン化リチウム等が挙げられる。硫化リンとしては、五硫化二リン(P)、三硫化四リン(P)、七硫化四リン(P)、五硫化四リン(P)等が挙げられる。これらのうち、五硫化二リンが好ましい。ハロゲン化リチウムとしては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等が挙げられる。これらのうち、ヨウ化リチウムが好ましい。
 上記固体電解質形成原料は、硫化リチウム及び五硫化二リンを含むことが好ましく、硫化リチウム、五硫化二リン及びハロゲン化リチウムを含むことも好ましい態様である。
Examples of the raw material for forming the sulfide-based solid electrolyte include lithium sulfide, phosphorus sulfide, lithium halide and the like. Examples of phosphorus sulfide include diphosphorus pentasulfide (P 2 S 5 ), tetraphosphorus trisulfide (P 4 S 3 ), tetraphosphorus sesquioxide (P 4 S 7 ), and tetraphosphorus pentasulfide (P 4 S 5 ). Can be mentioned. Of these, diphosphorus pentasulfide is preferable. Examples of lithium halide include lithium fluoride, lithium chloride, lithium bromide, lithium iodide and the like. Of these, lithium iodide is preferred.
The solid electrolyte forming raw material preferably contains lithium sulfide and diphosphorus pentasulfide, and it is also preferable that it contains lithium sulfide, diphosphorus pentasulfide and lithium halide.
 上記方法(3)及び(4)において用いる固体電解質は、好ましくは、上記硫化物系固体電解質であり、LiPS、LiX、Li11、Li、LiPSX、Li9.612等である。 The solid electrolyte used in the above methods (3) and (4) is preferably the above sulfide-based solid electrolyte, and is Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3 S 11 , Li 2 P. 2 S 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like.
 上記方法(1)、(2)、(3)及び(4)で用いることができる有機溶剤としては、アルコール(脂肪族アルコール、脂環式アルコール、芳香族アルコール等)、カルボン酸、カルボン酸エステル(飽和脂肪酸エステル等)、エーテル(環状エーテルを含む)、アルデヒド、ケトン、炭酸エステル(ジアルキルカーボネート等)、ニトリル、アミド、ニトロ、リン酸エステル、ハロゲン化炭化水素等が挙げられる。これらのうち、アルコール、カルボン酸エステル及び炭酸エステルが好ましく、カルボン酸エステル及び炭酸エステルが特に好ましい。上記有機溶剤は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Examples of the organic solvent that can be used in the above methods (1), (2), (3) and (4) include alcohols (aliphatic alcohols, alicyclic alcohols, aromatic alcohols, etc.), carboxylic acids, and carboxylic acid esters. Examples thereof include (saturated fatty acid esters and the like), ethers (including cyclic ethers), aldehydes, ketones, carbonate esters (dialkyl carbonates and the like), nitriles, amides, nitros, phosphate esters, halogenated hydrocarbons and the like. Of these, alcohols, carboxylic acid esters and carbonic acid esters are preferable, and carboxylic acid esters and carbonic acid esters are particularly preferable. The organic solvent may be used alone or in combination of two or more.
 上記方法(1)、(2)、(3)及び(4)で用いる容器は、特に限定されず、例えば、形状及びサイズは、繊維シートのサイズ、無機繊維等により形成されるシートのサイズ等により、適宜、選択される。
 方法(1)及び(3)では、反応形成される固体電解質を有機溶剤の中で単独で浮遊させることなく、繊維シートを構成する繊維を固体電解質により効率よく被覆させつつ繊維どうしの空隙を固体電解質で効率よく満たすために、容器の内表面における有機溶剤の接触角が、繊維シートを構成する少なくとも1種の繊維(好ましくは無機繊維)における有機溶剤の接触角より5度以上高い容器を用いることが好ましい。繊維シートが複数種の材料からなる多種の繊維を含む場合には、少なくとも1種の材料からなる繊維(好ましくは無機繊維)に対する接触角が、容器の内表面に対する接触角より5度以上低ければよい。
 また、方法(2)及び(4)では、繊維表面を固体電解質により効率よく被覆させつつ繊維どうしの空隙を固体電解質で効率よく満たすために、容器の内表面における有機溶剤の接触角が、少なくとも1種の繊維(好ましくは無機繊維)における有機溶剤の接触角より5度以上高い容器を用いることが好ましい。繊維が複数種の材料からなる多種の繊維を含む場合には、少なくとも1種の材料からなる繊維(好ましくは無機繊維)に対する接触角が、容器の内表面に対する接触角より5度以上低ければよい。
The container used in the above methods (1), (2), (3) and (4) is not particularly limited, and for example, the shape and size are the size of the fiber sheet, the size of the sheet formed of inorganic fibers and the like. Is selected as appropriate.
In the methods (1) and (3), the solid electrolyte formed by the reaction is not suspended alone in the organic solvent, and the fibers constituting the fiber sheet are efficiently coated with the solid electrolyte, and the voids between the fibers are solid. In order to efficiently fill with the electrolyte, use a container in which the contact angle of the organic solvent on the inner surface of the container is 5 degrees or more higher than the contact angle of the organic solvent in at least one kind of fiber (preferably inorganic fiber) constituting the fiber sheet. Is preferable. When the fiber sheet contains various kinds of fibers made of a plurality of kinds of materials, the contact angle with respect to the fibers made of at least one kind of material (preferably inorganic fibers) is 5 degrees or more lower than the contact angle with respect to the inner surface of the container. good.
Further, in the methods (2) and (4), the contact angle of the organic solvent on the inner surface of the container is at least at least in order to efficiently fill the voids between the fibers with the solid electrolyte while efficiently covering the fiber surface with the solid electrolyte. It is preferable to use a container having a contact angle of 5 degrees or more higher than the contact angle of the organic solvent in one type of fiber (preferably inorganic fiber). When the fiber contains various kinds of fibers made of a plurality of kinds of materials, the contact angle with respect to the fiber made of at least one kind material (preferably an inorganic fiber) may be 5 degrees or more lower than the contact angle with respect to the inner surface of the container. ..
 上記方法(1)、(2)、(3)及び(4)において、電解質シートが形成される前の容器の内表面には、繊維シート、又は、無機繊維を含む互いに固定化されていない複数の繊維、固体電解質形成原料、固体電解質及び有機溶剤のうちの少なくとも有機溶剤が接触するため、その内表面を構成する材料としては、フッ素樹脂;シリコーン樹脂等が好ましい。これらのうち、フッ素樹脂が好ましく、例えば、ポリテトラフルオロエチレン(以下、「PTFE」ということがある。)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、パーフルオロエチレン・プロピレン共重合体、エチレン・テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・パーフルオロアルコキシエチレン共重合体、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)等が挙げられる。尚、上記容器は、これらの材料からなるものであってよいし、これらの材料からなるフィルム又はシートを容器状に加工し、他の材料からなる容器の内表面に配設したものであってもよい。また、他の材料からなる容器の内表面にこれらの材料からなる皮膜を有するものであってもよい。 In the above methods (1), (2), (3) and (4), a plurality of non-immobilized fiber sheets or inorganic fibers are contained on the inner surface of the container before the electrolyte sheet is formed. Since at least the organic solvent of the fiber, the solid electrolyte forming raw material, the solid electrolyte and the organic solvent comes into contact with the fiber, a fluororesin; a silicone resin or the like is preferable as the material constituting the inner surface thereof. Of these, fluororesins are preferable, and for example, polytetrafluoroethylene (hereinafter, may be referred to as “PTFE”), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / hexafluoropropylene are used together. Polymer, perfluoroethylene / propylene copolymer, ethylene / tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / perfluoroalkoxyethylene copolymer , Polyfluoride vinylidene (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE) and the like. The container may be made of these materials, or a film or sheet made of these materials may be processed into a container shape and arranged on the inner surface of a container made of another material. May be good. Further, the inner surface of the container made of other materials may have a film made of these materials.
 上記方法(1)及び(3)において、容器に入れる、繊維シート及び固体電解質形成原料又は固体電解質の体積比は、好ましくは5:95~60:40、より好ましくは5:95~50:50である。また、上記方法(2)及び(4)において、容器に入れる、複数の繊維の合計量及び固体電解質形成原料又は固体電解質の体積比は、好ましくは5:95~60:40、より好ましくは5:95~50:50である。
 更に、上記方法(1)、(2)、(3)及び(4)において、固体電解質形成原料又は固体電解質及び有機溶剤の質量比は、好ましくは1:10~1:22、より好ましくは1:14~1:18である。
In the above methods (1) and (3), the volume ratio of the fiber sheet and the solid electrolyte forming raw material or the solid electrolyte to be put in the container is preferably 5:95 to 60:40, more preferably 5:95 to 50:50. Is. Further, in the above methods (2) and (4), the total amount of the plurality of fibers and the volume ratio of the solid electrolyte forming raw material or the solid electrolyte to be put in the container are preferably 5:95 to 60:40, more preferably 5. : 95 to 50:50.
Further, in the above methods (1), (2), (3) and (4), the mass ratio of the solid electrolyte forming raw material or the solid electrolyte and the organic solvent is preferably 1:10 to 1:22, more preferably 1. : 14 to 1:18.
 上記方法(1)及び(2)において、固体電解質形成原料を反応させて固体電解質を形成するための反応条件は、特に限定されない。反応温度は、形成する固体電解質の種類により、適宜、選択されるが、好ましくは20℃~200℃、より好ましくは120℃~180℃である。固体電解質は、有機溶剤の中で形成されたものであってよいし、有機溶剤の種類によっては、反応温度が有機溶剤の沸点と同じか該沸点に近い温度となることがあるので、この場合の反応温度において有機溶剤が脱揮される場合には、この脱揮に伴って固体電解質を形成させることができる。上記方法(2)では、互いに固定化されていない複数の繊維を用いているので、容器内に全ての製造原料が収容されて十分に混合された後、反応により固体電解質が形成される。そして、内容物が容器に入った状態で、有機溶剤を脱揮することにより、全ての繊維が固体電解質により被覆及び結着されつつ高密度で含まれた一体化シートを得ることができる。
 また、上記方法(1)及び(2)において、容器内の雰囲気は、アルゴン雰囲気下、露点:-30℃以下等とすることができる。
In the above methods (1) and (2), the reaction conditions for reacting the solid electrolyte forming raw materials to form the solid electrolyte are not particularly limited. The reaction temperature is appropriately selected depending on the type of solid electrolyte to be formed, but is preferably 20 ° C to 200 ° C, more preferably 120 ° C to 180 ° C. The solid electrolyte may be formed in an organic solvent, and depending on the type of the organic solvent, the reaction temperature may be the same as or close to the boiling point of the organic solvent. When the organic solvent is volatilized at the reaction temperature of No. 1, a solid electrolyte can be formed by this volatilization. In the above method (2), since a plurality of fibers that are not immobilized on each other are used, all the production raw materials are contained in the container and sufficiently mixed, and then a solid electrolyte is formed by the reaction. Then, by devolving the organic solvent with the contents in the container, it is possible to obtain an integrated sheet in which all the fibers are coated and bound by the solid electrolyte and contained at a high density.
Further, in the above methods (1) and (2), the atmosphere in the container can be an argon atmosphere, a dew point: −30 ° C. or lower, or the like.
 上記方法(1)において、本発明の効果を十分に発揮する電解質シートを効率よく製造するために、固体電解質形成原料を2段階で反応させる方法を適用することができる。この場合、上記容器の中で、固体電解質形成原料の少なくとも一部(例えば、硫化リチウム)の成分(以下、「核形成成分」という。)を上記有機溶剤に溶解させてなる溶液と、繊維シートとを接触させ、上記核形成成分を含む核を、繊維の表面の少なくとも一部に形成し、核付着繊維シートを得る第1工程と、上記容器の中で、固体電解質形成原料の残部を有機溶剤に溶解させてなる溶液と、核付着繊維シートとを接触させる第2工程とを備える製造方法とすることができる。上記方法(2)においても、方法(1)における繊維シートに代えて、互いに固定化されていない複数の繊維を用いて、第1工程及び第2工程を備える製造方法を適用することができる。 In the above method (1), in order to efficiently produce an electrolyte sheet that fully exerts the effect of the present invention, a method of reacting a solid electrolyte forming raw material in two steps can be applied. In this case, in the above container, a solution obtained by dissolving at least a part (for example, lithium sulfide) component (hereinafter referred to as “nucleation component”) of the solid electrolyte forming raw material in the above organic solvent, and a fiber sheet. In the first step of forming a nucleation containing the nucleation component on at least a part of the surface of the fiber to obtain a nucleation-attached fiber sheet, and in the container, the rest of the solid electrolyte forming raw material is organically prepared. It can be a manufacturing method including a second step of bringing the solution dissolved in the solvent into contact with the nucleated fiber sheet. Also in the above method (2), instead of the fiber sheet in the method (1), a manufacturing method including a first step and a second step can be applied by using a plurality of fibers that are not immobilized on each other.
 上記方法(3)では、容器内において、繊維シートと、固体電解質溶液とが十分に接触するので、内容物が容器に入った状態で、固体電解質溶液に含まれた有機溶剤を脱揮することにより、繊維シートを構成する全ての繊維が固体電解質により被覆及び結着されつつ高密度で含まれた一体化シートを得ることができる。
 また、上記方法(4)では、互いに固定化されていない複数の繊維を用いているので、容器内に全ての製造原料が収容されて十分に混合されると、全ての繊維の表面が満遍なく固体電解質溶液に接触することとなる。そして、内容物が容器に入った状態で、固体電解質溶液に含まれた有機溶剤を脱揮することにより、全ての繊維が固体電解質により被覆及び結着されつつ高密度で含まれた一体化シートを得ることができる。
In the above method (3), since the fiber sheet and the solid electrolyte solution are sufficiently in contact with each other in the container, the organic solvent contained in the solid electrolyte solution is volatilized while the contents are in the container. As a result, it is possible to obtain an integrated sheet in which all the fibers constituting the fiber sheet are coated and bound by the solid electrolyte and contained in a high density.
Further, in the above method (4), since a plurality of fibers that are not immobilized on each other are used, when all the manufacturing raw materials are contained in the container and sufficiently mixed, the surfaces of all the fibers are evenly solid. It will come into contact with the electrolyte solution. Then, by devolatile the organic solvent contained in the solid electrolyte solution while the contents are in the container, all the fibers are covered and bound by the solid electrolyte, and the integrated sheet is contained at high density. Can be obtained.
 上記方法(1)、(2)、(3)及び(4)において、得られた電解質シートに有機溶剤が付着している場合には、自然乾燥、加熱乾燥、真空乾燥等により、有機溶剤を脱揮することが好ましい。その後、所期の化学的性質又は物理的性質を有する固体電解質とするために、電解質シートの熱処理を行うことができる。この熱処理は、上記の加熱乾燥又は真空乾燥においてなされるものであってもよい。この熱処理により、例えば、固体電解質を結晶化又は非結晶化させることができる。 In the above methods (1), (2), (3) and (4), when the organic solvent adheres to the obtained electrolyte sheet, the organic solvent is applied by natural drying, heat drying, vacuum drying or the like. It is preferable to evaporate. After that, the electrolyte sheet can be heat-treated in order to obtain a solid electrolyte having the desired chemical properties or physical properties. This heat treatment may be performed in the above-mentioned heat drying or vacuum drying. By this heat treatment, for example, the solid electrolyte can be crystallized or non-crystallized.
 また、脱揮後又は熱処理後の電解質シートに対して、プレス処理を行ってもよい。尚、プレス処理の後に、上記熱処理を行ってもよい。 Further, the electrolyte sheet after devolatile or heat treatment may be pressed. The above heat treatment may be performed after the press treatment.
 本発明の電解質シートは、リチウムイオン電池の電解質層の形成に好適であり、電極層の形成に用いることもできる。 The electrolyte sheet of the present invention is suitable for forming an electrolyte layer of a lithium ion battery, and can also be used for forming an electrode layer.
 本発明の電解質シートをリチウムイオン電池の電解質層又は電極層の形成に用いる場合には、そのサイズに関わらず精密部品であるため、電解質シートの製造現場からリチウムイオン電池の製造現場へ搬送する場合には、外気と遮断した状態とすることが好ましい。このような場合には、電解質シートの変質、劣化等を抑制することも可能であることから、電解質シートが包装体の中に収容されてなる本発明の電解質シート含有製品(電解質シート包装製品)は有用である。例えば、包装体の中に、電解質シートと、アルゴン等の不活性ガスとを収容した状態で密封することが好ましい。
 本発明の電解質シート含有製品は、フィルムを2枚用いて、これらの間に空間を形成する包装体の該空間に、電解質シートが収容されたものとすることができる。この場合、例えば、樹脂フィルム又は金属蒸着樹脂フィルム(アルミニウム蒸着樹脂フィルム等)を用いて、2枚のフィルムの間に1つの電解質シートが保持されるように、その周縁部が封止された構造を有するものとすることができる。また、本発明の電解質シート含有製品は、凹部及びフランジ部を有する容器部と、該凹部を少なくとも封止する蓋部とを有する包装体の該凹部に電解質シートが収容されたものとすることができる。この場合、樹脂製容器部と、樹脂フィルム製蓋部とを用いて得られたものとすることができる。
When the electrolyte sheet of the present invention is used for forming an electrolyte layer or an electrode layer of a lithium ion battery, it is a precision component regardless of its size, so that it is transported from the electrolyte sheet manufacturing site to the lithium ion battery manufacturing site. It is preferable that the air is shut off from the outside air. In such a case, since it is possible to suppress deterioration, deterioration, etc. of the electrolyte sheet, the electrolyte sheet-containing product of the present invention (electrolyte sheet packaging product) in which the electrolyte sheet is housed in the package. Is useful. For example, it is preferable to seal the package with the electrolyte sheet and an inert gas such as argon contained therein.
In the electrolyte sheet-containing product of the present invention, two films can be used, and the electrolyte sheet can be accommodated in the space of the package forming a space between them. In this case, for example, a resin film or a metal-deposited resin film (aluminum-deposited resin film, etc.) is used, and the peripheral portion thereof is sealed so that one electrolyte sheet is held between the two films. Can be. Further, in the electrolyte sheet-containing product of the present invention, the electrolyte sheet may be housed in the recess of the package having a container portion having a recess and a flange portion and a lid portion for at least sealing the recess. can. In this case, it can be obtained by using the resin container portion and the resin film lid portion.
 本発明のリチウムイオン電池は、上記本発明の電解質シートを含み、その構造は、特に限定されないが、例えば、図8に示す積層構造を有することができる。図8のリチウムイオン電池10は、正極層11と、負極層13と、正極層11及び負極層13の間に配された電解質層15とを備え、電解質層15は、上記本発明の電解質シートからなるものとすることができる。電解質層15は、外部から印加された電場によってリチウムイオンを移動させることのできる層である。電解質層15の厚さは、好ましくは5~100μmであり、より好ましくは10~75μmである。 The lithium ion battery of the present invention includes the above-mentioned electrolyte sheet of the present invention, and the structure thereof is not particularly limited, but can have, for example, the laminated structure shown in FIG. The lithium ion battery 10 of FIG. 8 includes a positive electrode layer 11, a negative electrode layer 13, and an electrolyte layer 15 arranged between the positive electrode layer 11 and the negative electrode layer 13, and the electrolyte layer 15 is the electrolyte sheet of the present invention. Can consist of. The electrolyte layer 15 is a layer capable of moving lithium ions by an electric field applied from the outside. The thickness of the electrolyte layer 15 is preferably 5 to 100 μm, more preferably 10 to 75 μm.
 正極層11は、充電時にはリチウムイオンを放出し放電時にはリチウムイオンを吸蔵する、正極活物質を含む電極層である。正極活物質としては、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)及びバナジウム(V)から選ばれる少なくとも1種の金属元素を含む、酸化物、硫化物、リン酸化物等が挙げられる。具体的には、MoO、WO、VO、LiCoO(LiCoO等)、LiMnO(LiMnO、LiMn等)、LiNiO(LiNiO等)、LiVO(LiVO等)、LiMnNiCoO(LiNi1/3Co1/3Mn1/3等)、LiFeP(LiFePO等)、LiMnP(LiMnPO等)、LiNiP(LiNiPO等)、LiCuP(LiCuPO等)、MoS,CuS,TiS,WS、Li、Li等が挙げられる。また、正極層11は、更に、固体電解質、導電助剤等を含む複合型正極層であってもよい。 The positive electrode layer 11 is an electrode layer containing a positive electrode active material that emits lithium ions during charging and occludes lithium ions during discharging. The positive electrode active material is an oxide containing at least one metal element selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo) and vanadium (V). Examples include sulfides and phosphor oxides. Specifically, MoO x , WO x , VO x , Li x CoO y (LiCoO 2 etc.), Li x MnO y (LiMnO 2 , LiMn 2 O 4 etc.), Li x NiO y (LiNiO 2 etc.), Li x VO y (LiVO 2, etc.), Li x Mn y Ni z Co w O (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , etc.), Li x FeP x O y (LiFePO 4 , etc.), Li x MnP x O y (LiMnPO 4, etc.), Li x NiP x O y (LiNiPO 4 , etc.), Li x CuP x O y (LiCuPO 4 , etc.), MoS x, CuS x, TiS x, WS x, Li x S y , Li x P y S z and the like. Further, the positive electrode layer 11 may be a composite positive electrode layer further containing a solid electrolyte, a conductive auxiliary agent, and the like.
 負極層13は、充電時にはリチウムイオンを吸蔵し放電時にはリチウムイオンを放出する、負極活物質を含む電極層である。負極活物質としては、炭素材料;リチウム(Li)、インジウム(In)、アルミニウム(Al)、ケイ素(Si)等の金属又はこれらを含む合金;Sn、MoO、WO、LiCoO(LiCoO等)、LiMnNiCoO(LiNi1/3Co1/3Mn1/3等)、LiCuP(LiCuPO等)等の酸化物等が挙げられる。また、負極層13は、更に、固体電解質、導電助剤等を含む複合型負極層であってもよい。 The negative electrode layer 13 is an electrode layer containing a negative electrode active material that occludes lithium ions during charging and releases lithium ions during discharging. As the negative electrode active material, a carbon material; lithium (Li), indium (In), aluminum (Al), silicon (Si) or the like of a metal or an alloy containing these; Sn x O y, MoO x , WO x, Li x Oxides such as CoO y (LiCoO 2 etc.), Li x Mn y Ni z Co w O (LiNi 1/3 Co 1/3 Mn 1/3 O 2 etc.), Li x CuP x O y ( LiCuPO 4 etc.) And so on. Further, the negative electrode layer 13 may be a composite negative electrode layer further containing a solid electrolyte, a conductive auxiliary agent and the like.
 上記導電助剤としては、炭素材料、金属粉末、金属化合物等からなるものを用いることができ、これらのうち、炭素材料が好ましく用いられる。炭素材料としては、グラフェン等の板状導電性物質;カーボンナノチューブ、炭素繊維等の線状導電性物質;ケッチェンブラック、アセチレンブラック、サーマルブラック、チャンネルブラック等のカーボンブラック、黒鉛等の粒状導電性物質等が挙げられる。 As the conductive auxiliary agent, a material made of a carbon material, a metal powder, a metal compound, or the like can be used, and among these, the carbon material is preferably used. As carbon materials, plate-like conductive substances such as graphene; linear conductive substances such as carbon nanotubes and carbon fibers; carbon black such as Ketjen black, acetylene black, thermal black and channel black, and granular conductivity such as graphite. Substances and the like can be mentioned.
 本発明のリチウムイオン電池は、図8の構成に加えて、更に、正極層11の集電を行う正極集電体と、負極層15の集電を行う負極集電体とを備えることができる(図示せず)。
 正極集電体又は負極集電体は、例えば、ステンレス鋼、金、白金、銅、亜鉛、ニッケル、スズ、アルミニウム又はこれらの合金等からなるものとすることができ、板状体、箔状体、網目状体等を有することができる。
In addition to the configuration shown in FIG. 8, the lithium ion battery of the present invention may further include a positive electrode collector that collects electricity from the positive electrode layer 11 and a negative electrode collector that collects electricity from the negative electrode layer 15. (Not shown).
The positive electrode current collector or the negative electrode current collector may be made of, for example, stainless steel, gold, platinum, copper, zinc, nickel, tin, aluminum or an alloy thereof, and may be a plate-like body or a foil-like body. , A mesh-like body and the like can be provided.
 本発明の固体電解質被覆繊維は、繊維からなる繊維部と、固体電解質を含み、上記繊維部の表面の少なくとも一部を被覆する固体電解質被覆層とを備える複合繊維である。本発明の固体電解質被覆繊維の構造は、特に限定されないが、例えば、図9に示す構造とすることができる。図9は、繊維部21と、この繊維部21の表面を被覆する固体電解質被覆部23とを有する固体電解質被覆繊維20である。また、図示しないが、固体電解質被覆部23が繊維部21の全側面に形成された固体電解質被覆繊維であってもよい。本発明の固体電解質被覆繊維における固体電解質の質量割合は、繊維部の構成材料によるが、好ましくは50~95質量%である。 The solid electrolyte-coated fiber of the present invention is a composite fiber including a fiber portion made of a fiber and a solid electrolyte-coated layer containing a solid electrolyte and covering at least a part of the surface of the fiber portion. The structure of the solid electrolyte-coated fiber of the present invention is not particularly limited, but may be, for example, the structure shown in FIG. FIG. 9 is a solid electrolyte-coated fiber 20 having a fiber portion 21 and a solid electrolyte-coated portion 23 that covers the surface of the fiber portion 21. Further, although not shown, the solid electrolyte-coated portion 23 may be a solid electrolyte-coated fiber formed on all the side surfaces of the fiber portion 21. The mass ratio of the solid electrolyte in the solid electrolyte-coated fiber of the present invention depends on the constituent material of the fiber portion, but is preferably 50 to 95% by mass.
 本発明の固体電解質被覆繊維を構成する繊維部21は、無機繊維、有機繊維及び天然繊維のいずれに由来するものでもよい。これらの繊維は、上記に例示した材料からなる繊維とすることができる。
 また、固体電解質被覆部23に含まれる固体電解質は、特に限定されないが、好ましくは硫化物系固体電解質であり、特に好ましくは、LiPS、LiX、Li11、Li、LiPSX、Li9.612等である。尚、XはCl、Br又はIである。固体電解質被覆部23に含まれる固体電解質は、1種のみでも2種以上でもよい。
The fiber portion 21 constituting the solid electrolyte-coated fiber of the present invention may be derived from any of inorganic fiber, organic fiber and natural fiber. These fibers can be fibers made of the materials exemplified above.
The solid electrolyte contained in the solid electrolyte coating portion 23 is not particularly limited, but is preferably a sulfide-based solid electrolyte, and particularly preferably Li 3 PS 4 , Li 7 P 2 S 8 X, Li 7 P 3. S 11 , Li 2 P 2 S 5 , Li 6 PS 5 X, Li 9.6 P 3 S 12 and the like. In addition, X is Cl, Br or I. The solid electrolyte contained in the solid electrolyte coating portion 23 may be only one type or two or more types.
 本発明の固体電解質被覆繊維を製造する方法は、特に限定されない。好ましい製造方法は、例えば、容器に、繊維と、固体電解質形成原料と、有機溶剤とを入れ、該有機溶剤の中で、固体電解質形成原料を反応させて繊維の表面に固体電解質を形成させつつ被覆させる方法である。この製造方法は、上記の電解質シートを製造する方法で用いた繊維シートに代えて繊維を用いるものとすることができる。固体電解質を形成させる反応の後、熱処理する場合には、上記の電解質シート製造方法における方法と同様とすることができ、記載を省略する。 The method for producing the solid electrolyte-coated fiber of the present invention is not particularly limited. A preferred production method is, for example, to put the fiber, the solid electrolyte forming raw material, and the organic solvent in a container, and react the solid electrolyte forming raw material in the organic solvent to form a solid electrolyte on the surface of the fiber. It is a method of covering. In this manufacturing method, fibers can be used in place of the fiber sheet used in the above-mentioned method for manufacturing an electrolyte sheet. In the case of heat treatment after the reaction for forming the solid electrolyte, the same method as in the above-mentioned method for producing an electrolyte sheet can be used, and the description thereof will be omitted.
 本発明の固体電解質被覆繊維を、従来、公知の不織布製造工程等に供することにより、固体電解質被覆繊維含有不織布を製造することができる。得られた固体電解質被覆繊維含有不織布を、更に、熱処理工程、プレス工程等に供することができる。 By subjecting the solid electrolyte-coated fiber of the present invention to a conventionally known nonwoven fabric manufacturing process or the like, a nonwoven fabric containing a solid electrolyte-coated fiber can be produced. The obtained solid electrolyte-coated fiber-containing nonwoven fabric can be further subjected to a heat treatment step, a pressing step, or the like.
 以下、実施例及び比較例を挙げて、本発明の実施形態を更に具体的に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples.
1.不織布
 電解質シートの製造において、無機繊維として、Bガラスを火炎法に供することにより製造したガラス繊維(繊維径:0.3μm、繊維長:0.1~1mm程度)と、有機繊維として、ポリエステル樹脂繊維(繊維径:2μm、繊維長:3mm)とを用いて湿式抄造した後、バインダーとして、スチレン・ブタジエンゴムをディップコートすることにより得られた不織布(以下、「不織布(N1)」という)を用いた。この不織布(N1)は、無機繊維、有機繊維及びバインダーを、これらの合計を100質量%とした場合に、それぞれ、52質量%、37質量%及び11質量%の割合で含有し、空隙率は73体積%、厚さは22μm及び坪量は10g/mである。
1. 1. In the production of non-woven fabric electrolyte sheets, glass fibers (fiber diameter: 0.3 μm, fiber length: about 0.1 to 1 mm) produced by subjecting B glass to the flame method as inorganic fibers, and polyester resin as organic fibers. A non-woven fabric (hereinafter referred to as "nonwoven fabric (N1)") obtained by wet-making using fibers (fiber diameter: 2 μm, fiber length: 3 mm) and then dip-coated with styrene / butadiene rubber as a binder is used. Using. This non-woven fabric (N1) contains inorganic fibers, organic fibers and a binder in proportions of 52% by mass, 37% by mass and 11% by mass, respectively, when the total of these is 100% by mass, and the void ratio is It is 73% by volume, has a thickness of 22 μm, and has a basis weight of 10 g / m 2 .
2.電解質シートの製造及び評価
 上記不織布(N1)又は上記ガラス繊維を用いて、実施例及び比較例の電解質シートを製造し、各種評価を行った。
2. 2. Production and Evaluation of Electrolyte Sheets Electrolyte sheets of Examples and Comparative Examples were produced using the above-mentioned non-woven fabric (N1) or the above-mentioned glass fibers, and various evaluations were performed.
  実施例1
 アルゴン雰囲気下、LiS粉末を5mlのエタノールに投入、撹拌し、LiS溶液を得た。次いで、ポリテトラフルオロエチレン製シャーレ内に、このLiS溶液と、直径30mmの円形の不織布(N1)とを入れ、25℃で30分間静置した後、真空乾燥(150℃、1時間)を行った。これにより、不織布(N1)の繊維の表面にLiSが添着された核付着不織布を得た。
 次に、LiS粉末とP粉末とLiI粉末とを、1:1:1(モル比)で、且つ、このP粉末が上記の核付着不織布に添着されたLiSと、上記LiS粉末とからなる全LiSに対して1/3のモル比になるように、それぞれ、秤量、混合した。そして、混合粉末と10mlのプロピオン酸エチルとを、超音波を照射しながら撹拌して、LiS粉末、P粉末及びLiI粉末を溶解させた。
 その後、得られた溶液を、ポリテトラフルオロエチレン製シャーレに入れ、続いて、上記核付着不織布を入れ、常温で6時間静置した。そして、真空乾燥(170℃、2時間)を行った。これにより、不織布(N1)の空隙が固体電解質LiI(結晶質)で満たされ、且つ、両面側がLiIで被覆された電解質付きシート(A1)を得た。この電解質付きシート(A1)における不織布(N1)と固体電解質との体積比は、11:89であった。また、ガラス繊維及び固体電解質の質量比は、8:92であった。
Example 1
Under an argon atmosphere, charged with Li 2 S powder of ethanol 5 ml, and stirred to obtain a Li 2 S solution. Then, the polytetrafluoroethylene in the Petri dish, put and the Li 2 S solution and a circular nonwoven diameter 30 mm (N1), allowed to stand for 30 minutes at 25 ° C., vacuum dried (0.99 ° C., 1 hour) Was done. Thus, the surface of the fibers of the nonwoven fabric (N1) Li 2 S was obtained impregnated nuclear adhered nonwoven fabric.
Then, a Li 2 S powder and P 2 S 5 powder and LiI powders, 1: 1: 1 (molar ratio), and, Li 2 This P 2 S 5 powder was impregnated in the above nucleus adhesion nonwoven Each was weighed and mixed so as to have a molar ratio of 1/3 with respect to the total Li 2 S composed of S and the above Li 2 S powder. Then, the ethyl propionate of the mixed powder and 10 ml, and stirred while irradiating ultrasonic waves, Li 2 S powder was dissolved P 2 S 5 powder and LiI powders.
Then, the obtained solution was put into a petri dish made of polytetrafluoroethylene, and then the above-mentioned non-woven fabric with nuclei was put in, and the mixture was allowed to stand at room temperature for 6 hours. Then, vacuum drying (170 ° C., 2 hours) was performed. As a result, a sheet (A1) with an electrolyte is obtained in which the voids of the nonwoven fabric (N1) are filled with the solid electrolyte Li 7 P 2 S 8 I (crystalline) and both sides are coated with Li 7 P 2 S 8 I. rice field. The volume ratio of the non-woven fabric (N1) to the solid electrolyte in the sheet with electrolyte (A1) was 11:89. The mass ratio of the glass fiber and the solid electrolyte was 8:92.
 得られた電解質付きシート(A1)をポンチにてφ10mmに打ち抜いた試験片を、ポリエーテルエーテルケトン(PEEK)製の筒状体(内径10mm)の内部に充填した後、直径10mmの平坦な面を先端に有するステンレス製ピンを筒状体の両側から挿入して試験片を挟み、油圧式プレス機により250MPaでプレスし、厚さ52μmの電解質シートを得た。その後、この電解質シートの断面を観察するために、日本電子社製断面試料作製装置「IB-19520CCP」(型式名)を用いて、温度-70℃及び加速電圧4kWの条件にて、シートの表面延伸方向に対して垂直に切断し、日本電子社製走査型電子顕微鏡「JSM-7800F」(型式名)にて図2の画像を得た。そして、エネルギー分散型X線分析法により、不織布(N1)を構成するガラス繊維に含まれるSi元素に係るマッピング分析を行った。分析対象は、図2において、点線で包囲した部分(横:約54μm、縦:約52μm)である。点線で包囲した画像を切り取り、Si元素のマッピング画像(Si元素マップ)として図3に示した。図3において、黒色部は、Si元素を有する部分である。 A test piece obtained by punching the obtained sheet with electrolyte (A1) to φ10 mm with a punch is filled inside a tubular body (inner diameter 10 mm) made of polyetheretherketone (PEEK), and then a flat surface having a diameter of 10 mm. The test piece was inserted from both sides of the tubular body and pressed at 250 MPa with a hydraulic press to obtain an electrolyte sheet with a thickness of 52 μm. Then, in order to observe the cross section of this electrolyte sheet, the surface of the sheet was used under the conditions of a temperature of -70 ° C. and an acceleration voltage of 4 kW using a cross-section sample preparation device "IB-19520CCP" (model name) manufactured by JEOL Ltd. It was cut perpendicular to the stretching direction, and the image of FIG. 2 was obtained with a scanning electron microscope "JSM-7800F" (model name) manufactured by JEOL Ltd. Then, by the energy dispersive X-ray analysis method, mapping analysis on the Si element contained in the glass fiber constituting the nonwoven fabric (N1) was performed. The analysis target is the portion surrounded by the dotted line in FIG. 2 (horizontal: about 54 μm, vertical: about 52 μm). The image surrounded by the dotted line was cut out and shown in FIG. 3 as a mapping image of Si element (Si element map). In FIG. 3, the black portion is a portion having a Si element.
 この図3をもとに、ソフトウェア「ImageJ」を用いて、以下の要領でSi元素の存在範囲を求めた。
 まず、図3のSi元素マップを8ビットグレースケール画像に変換したうえで、これを下限閾値0、上限閾値10で2値化した。これにより、各画素のグレイ値として、Si元素の存在箇所を255、Si元素の非存在箇所を0に変換させた。
 次に、図3の断面の上端から下端までがちょうど収まるように範囲設定し、上記ソフトウェアの「Plot profile」機能を用いて、選択範囲のプロファイルを作成し、図4のグラフを得た。図4のプロファイルにおいて、横軸は、図3の画像の垂直方向の距離、縦軸は、図3の画像の水平方向のグレイ値の平均値である。このプロファイルにおいて、水平方向のグレイ値の平均値が51以上(即ち、Si元素の存在箇所と判定した画素が20%以上)となる領域が、断面厚みに対して占める割合を求めたところ、73%であった(表1参照)。
Based on this FIG. 3, the existence range of the Si element was determined by the following procedure using the software "ImageJ".
First, the Si element map of FIG. 3 was converted into an 8-bit grayscale image, which was binarized with a lower limit threshold value of 0 and an upper limit threshold value of 10. As a result, as the gray value of each pixel, the location where the Si element was present was converted to 255, and the location where the Si element was not present was converted to 0.
Next, the range was set so that the upper end to the lower end of the cross section of FIG. 3 fit exactly, and the profile of the selected range was created by using the "Plot profile" function of the above software, and the graph of FIG. 4 was obtained. In the profile of FIG. 4, the horizontal axis is the vertical distance of the image of FIG. 3, and the vertical axis is the average value of the horizontal gray values of the image of FIG. In this profile, the ratio of the region where the average value of the gray values in the horizontal direction is 51 or more (that is, the number of pixels determined to be the presence of the Si element is 20% or more) to the cross-sectional thickness is calculated to be 73. Was% (see Table 1).
 また、以下の方法で、粉落ち試験、折り曲げ試験及び導電率測定を行い、その結果を表1に併記した。
(1)粉落ち試験
 黒色シートの上で、電解質シートを細かく動かし、このとき、固体電解質の粉体が落下するか否かを目視観察及び重量変化で確認し、粉落ち性を判定した。尚、重量減少に基づく重量変化を、以下の方法で調べた。即ち、固体電解質シートをポンチ抜きにて円形状(φ10mm)に打抜いて、これを「試験片A」とした。そして、この試験片Aの重さ(mg)を測定し、これを円柱状のスクリュー管瓶(マルエム社製、No.5、内容積20ml)に入れ、このスクリュー管瓶を、短軸方向に(左右に)、振幅150mmとして200回振とうした。そして、試験片Aを取り出して重さ(mg)を測定し、重量測定を行い、重量減少率を算出した。
〇:全く粉落ちがなかった
×:粉体が落下し、5質量%以上の重量減少が確認された
(2)折り曲げ試験
 黒色シートの上で、電解質シートを半径35mm(R35)の円柱状の基材に巻き付け、このとき、クラックや割れ、粉落ちが発生するか否かを目視観察し、耐折り曲げ性を判定した。
〇:クラックや割れ、粉落ちがなかった
×:クラック若しくは割れ又は粉落ちが発生した
(3)導電率測定
 電解質シートを導電率測定用試験片として、アルゴンガス雰囲気下、測定用ユニット(ステンレス製ピンを両側から挿入したPEEK製筒状体)に入れた状態で、SOLATRON社製IMPEDANCE ANALYZER「S1260」(型式名)を用いて、25℃における導電率を測定した。
In addition, the powder drop test, bending test and conductivity measurement were performed by the following methods, and the results are also shown in Table 1.
(1) Powder drop test The electrolyte sheet was finely moved on the black sheet, and at this time, whether or not the solid electrolyte powder fell was visually observed and the weight change was confirmed to determine the powder drop property. The weight change due to the weight loss was investigated by the following method. That is, the solid electrolyte sheet was punched into a circular shape (φ10 mm) by punching, and this was designated as “test piece A”. Then, the weight (mg) of the test piece A is measured, placed in a cylindrical screw tube bottle (Maruem Co., Ltd., No. 5, internal volume 20 ml), and the screw tube bottle is placed in the minor axis direction. (Left and right), shaken 200 times with an amplitude of 150 mm. Then, the test piece A was taken out, the weight (mg) was measured, the weight was measured, and the weight loss rate was calculated.
〇: No powder fell off ×: Powder fell and weight loss of 5% by mass or more was confirmed. (2) Bending test On a black sheet, the electrolyte sheet was placed in a columnar shape with a radius of 35 mm (R35). It was wound around a base material, and at this time, it was visually observed whether cracks, cracks, and powder falling occurred, and the bending resistance was determined.
〇: No cracks, cracks, or powder falling ×: Cracks, cracks, or powder falling occurred (3) Conductance measurement Using an electrolyte sheet as a test piece for conductivity measurement, a measurement unit (made of stainless steel) in an argon gas atmosphere. The conductivity at 25 ° C. was measured using an Impedance ANALYZER "S1260" (model name) manufactured by SOLATRON with the pins inserted in a PEEK tubular body inserted from both sides.
  実施例2
 アルゴン雰囲気下、LiS粉末と、P粉末と、LiI粉末とを、3:1:1(モル比)となるよう秤量して合計1.37gの混合粉末とした。次いで、この混合粉末と、10mlのプロピオン酸エチルと、30gのジルコニアボール(直径4mm)とを、樹脂製コニカルチューブ(容量50ml)に入れ、アズワン社製振とう機「ASCM-1」(型式名)を用いて、25℃で1500回/分の条件で3時間振とうし、固体電解質LiIの前駆体を含むスラリー(サスペンション)を得た。
 その後、このスラリーに、Bガラスを火炎法に供することにより製造したガラス繊維(繊維径:0.3μm、繊維長:0.1~1mm程度)0.15gをプロピオン酸エチルの中によく分散させた分散液を加え、十分に混合した。そして、この混合液をポリテトラフルオロエチレン製シャーレに入れて、常温で1時間静置し、その後、真空乾燥(170℃、2時間)を行った。これにより、固体電解質LiIからなるマトリックス相の中に、ガラス繊維が分散相として含まれ、シートの両面にガラス繊維が突き出していない電解質付きシート(A2)を得た。この電解質付きシート(A2)におけるガラス繊維及び固体電解質の質量比は、10:90であった。
Example 2
Under an argon atmosphere, the Li 2 S powder, the P 2 S 5 powder, and the Li I powder were weighed to a ratio of 3: 1: 1 (molar ratio) to obtain a total of 1.37 g of mixed powder. Next, this mixed powder, 10 ml of ethyl propionate, and 30 g of zirconia balls (diameter 4 mm) were placed in a resin conical tube (capacity 50 ml), and the shaker "ASCM-1" (model name) manufactured by AS ONE Co., Ltd. was placed. ) Was shaken at 25 ° C. at 1500 times / minute for 3 hours to obtain a slurry (suspension) containing a precursor of the solid electrolyte Li 7 P 2 S 8 I.
Then, in this slurry, 0.15 g of glass fiber (fiber diameter: 0.3 μm, fiber length: about 0.1 to 1 mm) produced by subjecting B glass to the flame method was well dispersed in ethyl propionate. The dispersion was added and mixed well. Then, this mixed solution was put into a petri dish made of polytetrafluoroethylene, allowed to stand at room temperature for 1 hour, and then vacuum dried (170 ° C., 2 hours). As a result, a sheet (A2) with an electrolyte was obtained in which glass fibers were contained as a dispersed phase in the matrix phase composed of the solid electrolyte Li 7 P 2 S 8 I and the glass fibers did not protrude on both sides of the sheet. The mass ratio of the glass fiber and the solid electrolyte in the sheet with electrolyte (A2) was 10:90.
 その後、実施例1と同様にして、電解質付きシート(A2)をプレス加工し、厚さ20μmの電解質シートを得た。そして、実施例1と同様にして、電解質シートの厚み方向にSiのプロファイルを示すグラフ(図示せず)を作成し、水平方向のグレイ値の平均値が51以上(即ち、Si元素の存在箇所と判定した画素が20%以上)となる領域が、断面厚みに対して占める割合を求めたところ、100%であった(表1参照)。
 また、実施例1と同様にして、粉落ち試験、折り曲げ試験及び導電率測定を行い、その結果を表1に併記した。
Then, the sheet with an electrolyte (A2) was press-processed in the same manner as in Example 1 to obtain an electrolyte sheet having a thickness of 20 μm. Then, in the same manner as in Example 1, a graph (not shown) showing the Si profile in the thickness direction of the electrolyte sheet is created, and the average value of the gray values in the horizontal direction is 51 or more (that is, the location where the Si element is present). When the ratio of the area where the pixel determined to be (20% or more) to the cross-sectional thickness was determined, it was 100% (see Table 1).
Further, in the same manner as in Example 1, a powder drop test, a bending test and a conductivity measurement were performed, and the results are also shown in Table 1.
  比較例1
 アルゴン雰囲気下、LiS粉末とP粉末とを、モル比が3:1となるように秤量し、これらの粉末と、プロピオン酸エチルと、ジルコニアボールとを遠心管に入れ、加振処理して、固体電解質前駆体を含むスラリー(サスペンション)を得た。その後、遠心管からジルコニアボールを取り出し、170℃で減圧乾燥を行って脱溶し、固体電解質の粉末を得た。得られた固体電解質は、XRDにより、LiPSの結晶相に起因するピークを含むことを確認した。この固体電解質のリチウムイオン導電率は、1.5×10-4S/cm(室温)であった。
 次に、固体電解質含有スラリーを調製するため、上記固体電解質粉末を、平均粒径を10μm以下となるまで、乳棒及び乳鉢によりすり潰した。そして、得られた固体電解質粒子を、アルゴン雰囲気下、脱水ヘプタン中に分散させ、固体電解質含有スラリーを得た。この固体電解質含有スラリーにおける固体電解質粒子及び脱水ヘプタンの質量比は1:1である。
Comparative Example 1
Under an argon atmosphere, the Li 2 S powder and the P 2 S 5 powder are weighed so as to have a molar ratio of 3: 1, and these powders, ethyl propionate, and zirconia balls are placed in a centrifuge tube and added. The shaking treatment was performed to obtain a slurry (suspension) containing a solid electrolyte precursor. Then, the zirconia balls were taken out from the centrifuge tube, dried under reduced pressure at 170 ° C. and desolubilized to obtain a solid electrolyte powder. The obtained solid electrolyte was confirmed by XRD to contain a peak due to the crystalline phase of Li 3 PS 4. The lithium ion conductivity of this solid electrolyte was 1.5 × 10 -4 S / cm (room temperature).
Next, in order to prepare a solid electrolyte-containing slurry, the solid electrolyte powder was ground with a pestle and a pestle until the average particle size was 10 μm or less. Then, the obtained solid electrolyte particles were dispersed in dehydrated heptane under an argon atmosphere to obtain a solid electrolyte-containing slurry. The mass ratio of the solid electrolyte particles and the dehydrated heptane in this solid electrolyte-containing slurry is 1: 1.
 その後、オールグッド社製4面式フィルムアプリケーターを用いて、以下の操作で、30mm×90mmのサイズを有する不織布(N1)に固体電解質含有スラリーを塗布した。
 上記不織布(N1)をフッ素樹脂製プレートの上に載置し、不織布(N1)とアプリケーターロールとの隙間を200μmとして、不織布(N1)の1面側表面に固体電解質含有スラリーを塗布した。風乾後、同じ条件で、不織布(N1)の他面側表面に固体電解質含有スラリーを塗布し、風乾した。次いで、得られた固体電解質塗布シートを100℃のホットプレート上に載置して脱溶することにより、電解質付きシート(B1)を得た。この電解質付きシート(B1)における不織布(N1)と固体電解質との体積比は、12:88であった。また、ガラス繊維及び固体電解質の質量比は、9:91であった。
Then, using a four-sided film applicator manufactured by Allgood Co., Ltd., the solid electrolyte-containing slurry was applied to the nonwoven fabric (N1) having a size of 30 mm × 90 mm by the following operation.
The nonwoven fabric (N1) was placed on a fluororesin plate, and the gap between the nonwoven fabric (N1) and the applicator roll was set to 200 μm, and the solid electrolyte-containing slurry was applied to the one-sided surface of the nonwoven fabric (N1). After air-drying, the solid electrolyte-containing slurry was applied to the other surface of the nonwoven fabric (N1) under the same conditions and air-dried. Next, the obtained solid electrolyte-coated sheet was placed on a hot plate at 100 ° C. and desolubilized to obtain a sheet with an electrolyte (B1). The volume ratio of the non-woven fabric (N1) to the solid electrolyte in the sheet with electrolyte (B1) was 12:88. The mass ratio of the glass fiber and the solid electrolyte was 9:91.
 その後、実施例1と同様にして、電解質付きシート(B1)をプレス加工し、厚さ88μmの電解質シートを得た。そして、得られた電解質シートを断面観察するために、実施例1の電解質シートと同様にして走査型電子顕微鏡にて図5の画像を得た。そして、エネルギー分散型X線分析法により、不織布(N1)を構成したガラス繊維に含まれるSi元素に係るマッピング分析を行った。分析対象は、図5において、点線で包囲した部分(横:約142μm、縦:約88μm)である。点線で包囲した画像を切り取り、Si元素マップとして図6に示した。図6において、黒色部は、Si元素を有する部分である。次いで、実施例1と同様にして、図7を用いて、水平方向のグレイ値の平均値が51以上(即ち、Si元素の存在箇所と判定した画素が20%以上)となる領域が、断面厚みに対して占める割合を求めたところ、50%であった(表1参照)。
 また、実施例1と同様にして、粉落ち試験、折り曲げ試験及び導電率測定を行い、その結果を表1に併記した。
Then, the sheet with an electrolyte (B1) was press-processed in the same manner as in Example 1 to obtain an electrolyte sheet having a thickness of 88 μm. Then, in order to observe the cross section of the obtained electrolyte sheet, the image of FIG. 5 was obtained with a scanning electron microscope in the same manner as in the electrolyte sheet of Example 1. Then, by the energy dispersive X-ray analysis method, mapping analysis on the Si element contained in the glass fiber constituting the nonwoven fabric (N1) was performed. The analysis target is the portion surrounded by the dotted line in FIG. 5 (horizontal: about 142 μm, vertical: about 88 μm). The image surrounded by the dotted line was cut out and shown in FIG. 6 as a Si element map. In FIG. 6, the black portion is a portion having a Si element. Next, in the same manner as in Example 1, the region where the average value of the gray values in the horizontal direction is 51 or more (that is, the number of pixels determined to be the presence of the Si element is 20% or more) is the cross section. When the ratio to the thickness was calculated, it was 50% (see Table 1).
Further, in the same manner as in Example 1, a powder drop test, a bending test and a conductivity measurement were performed, and the results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例1は、電解質シートにおける無機繊維の存在割合が60%未満であったため、固体電解質の脱離(粉落ち)が顕著であり外観不良であり、折り曲げ試験においても固体電解質の脱離(粉落ち)が確認された。一方、実施例1及び2は、本発明の電解質シートの例であり、固体電解質の脱離(粉落ち)がなく、折り曲げ試験においてもクラック及び割れが確認されなかった。 As is clear from Table 1, in Comparative Example 1, since the abundance ratio of the inorganic fibers in the electrolyte sheet was less than 60%, the desorption (powder drop) of the solid electrolyte was remarkable and the appearance was poor, and in the bending test. Desorption (powder drop) of the solid electrolyte was also confirmed. On the other hand, Examples 1 and 2 are examples of the electrolyte sheet of the present invention, and there was no desorption (powder drop) of the solid electrolyte, and no cracks or cracks were confirmed in the bending test.
 本発明は、上記の実施例1及び2に限定されるものではなく、電解質シートは、個々の工程を改良して得られたものであってもよい。
 例えば、実施例2において、LiS粉末、P粉末及びLiI粉末を含むスラリーを得た後、ガラス繊維の分散液と混合しているが、ガラス繊維を、このスラリーの調製中に添加して混合液を製造してもよいし、初めから、ガラス繊維を、LiS粉末、P粉末及びLiI粉末とともに用いて、混合液を製造してもよい。
The present invention is not limited to Examples 1 and 2 described above, and the electrolyte sheet may be obtained by improving individual steps.
For example, in Example 2, Li 2 S powder, after obtaining a slurry containing P 2 S 5 powder and LiI powders, although mixed with a dispersion of glass fibers, glass fibers, during the preparation of the slurry may be produced the mixture was added, from the beginning, a glass fiber, Li 2 S powder, used with P 2 S 5 powder and LiI powders, the mixture may be produced.
 本発明の電解質シートは、パーソナルコンピューター、カメラ等の家電製品、電力貯蔵装置、携帯電話機等の携帯型電子機器又は通信機器、パワーツール等の電動工具、電動自転車、電気自動車等の乗用車、風力発電、太陽電池装置の定置用蓄電池、安全性の高さを生かした腕時計、眼鏡、ウエアラブル端末、ドローン、飛行体、ロボットの構造体等を構成するリチウムイオン電池用電解質層の形成に好適である。 The electrolyte sheet of the present invention includes personal computers, home appliances such as cameras, power storage devices, portable electronic devices or communication devices such as mobile phones, electric tools such as power tools, electric bicycles, passenger cars such as electric vehicles, and wind power generation. It is suitable for forming an electrolyte layer for a lithium ion battery, which constitutes a stationary storage battery of a solar cell device, a watch, glasses, a wearable terminal, a drone, a flying object, a robot structure, etc., which make the best use of safety.
1:電解質シート
3:繊維(無機繊維)
10:リチウムイオン電池
11:正極層
13:負極層
15:電解質層
20:固体電解質被覆繊維
21:繊維
23:固体電解質
1: Electrolyte sheet 3: Fiber (inorganic fiber)
10: Lithium ion battery 11: Positive electrode layer 13: Negative electrode layer 15: Electrolyte layer 20: Solid electrolyte coated fiber 21: Fiber 23: Solid electrolyte

Claims (12)

  1.  複数の無機繊維と、固体電解質とを含む電解質シートにおいて、
     上記電解質シートの表面延伸方向に対して垂直に切断した厚み方向断面において、上記無機繊維が存在する割合が60%以上であることを特徴とする電解質シート。
    In an electrolyte sheet containing a plurality of inorganic fibers and a solid electrolyte,
    An electrolyte sheet characterized in that the proportion of the inorganic fibers present is 60% or more in a cross section in the thickness direction cut perpendicular to the surface stretching direction of the electrolyte sheet.
  2.  上記固体電解質の含有割合が、上記無機繊維及び上記固体電解質の合計量を100質量%とした場合に、60~95質量%である請求項1に記載の電解質シート。 The electrolyte sheet according to claim 1, wherein the content ratio of the solid electrolyte is 60 to 95% by mass when the total amount of the inorganic fibers and the solid electrolyte is 100% by mass.
  3.  上記無機繊維がガラス繊維を含む請求項1又は2に記載の電解質シート。 The electrolyte sheet according to claim 1 or 2, wherein the inorganic fiber contains glass fiber.
  4.  上記固体電解質が、リチウム元素、リン元素及び硫黄元素を含む化合物を含有する請求項1乃至3のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 3, wherein the solid electrolyte contains a compound containing a lithium element, a phosphorus element and a sulfur element.
  5.  上記固体電解質が、リチウム元素、リン元素、硫黄元素及びハロゲン元素を含む化合物を含有する請求項1乃至3のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 3, wherein the solid electrolyte contains a compound containing a lithium element, a phosphorus element, a sulfur element and a halogen element.
  6.  上記固体電解質が非晶性を有する請求項1乃至5のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 5, wherein the solid electrolyte has amorphous properties.
  7.  上記固体電解質が結晶性を有する請求項1乃至5のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 5, wherein the solid electrolyte has crystallinity.
  8.  上記無機繊維が、繊維径が50μm以下の繊維を含む請求項1乃至7のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 7, wherein the inorganic fiber contains a fiber having a fiber diameter of 50 μm or less.
  9.  上記電解質シートの断面を見た場合に、ボイドの割合が20%以下である請求項1乃至8のいずれか一項に記載の電解質シート。 The electrolyte sheet according to any one of claims 1 to 8, wherein the ratio of voids is 20% or less when the cross section of the electrolyte sheet is viewed.
  10.  請求項1乃至9のいずれか一項に記載の電解質シートが包装体の中に収容されていることを特徴とする電解質シート含有製品。 A product containing an electrolyte sheet, wherein the electrolyte sheet according to any one of claims 1 to 9 is housed in a package.
  11.  請求項1乃至9のいずれか一項に記載の電解質シートを含むことを特徴とするリチウムイオン電池。 A lithium ion battery comprising the electrolyte sheet according to any one of claims 1 to 9.
  12.  繊維からなる繊維部と、固体電解質を含み、上記繊維部の表面の少なくとも一部を被覆する固体電解質被覆層とを備えることを特徴とする固体電解質被覆繊維。 A solid electrolyte-coated fiber comprising a fiber portion made of fibers and a solid electrolyte-coated layer containing a solid electrolyte and covering at least a part of the surface of the fiber portion.
PCT/JP2021/019212 2020-05-29 2021-05-20 Electrolyte sheet, solid-electrolyte-coated fiber, and lithium-ion battery WO2021241402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022526958A JPWO2021241402A1 (en) 2020-05-29 2021-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095000 2020-05-29
JP2020-095000 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241402A1 true WO2021241402A1 (en) 2021-12-02

Family

ID=78745519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019212 WO2021241402A1 (en) 2020-05-29 2021-05-20 Electrolyte sheet, solid-electrolyte-coated fiber, and lithium-ion battery

Country Status (2)

Country Link
JP (1) JPWO2021241402A1 (en)
WO (1) WO2021241402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072960A (en) * 2023-03-24 2023-05-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072960A (en) * 2023-03-24 2023-05-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device
CN116072960B (en) * 2023-03-24 2023-09-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device

Also Published As

Publication number Publication date
JPWO2021241402A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6710692B2 (en) Composite electrolyte for secondary battery, secondary battery and battery pack
Zeng et al. Architecture and performance of the novel sulfur host material based on Ti2O3 microspheres for lithium–sulfur batteries
CN108604705A (en) It is formed containing lithium, phosphorus, sulphur, the electrolyte of iodine and catholyte, is used for the dielectric film of electrochemical appliance, and prepare the method for annealing of these electrolyte and catholyte
KR101891013B1 (en) Electrical device
RU2540321C1 (en) Active material for negative electrode of electric device
JP7010697B2 (en) Composite electrolyte for secondary batteries, secondary batteries and battery packs
KR20140038884A (en) Electrode material for power storage device, electrode for power storage device, and power storage device
CN104919627A (en) All-solid battery and method for manufacturing the same
US20210091376A1 (en) Methods for producing cathode and all-solid-state battery
JP7064613B2 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
JPWO2018193992A1 (en) All-solid-state lithium-ion secondary battery
KR101660151B1 (en) Anode for secondary battery, method for producing same, and secondary battery
WO2022168994A1 (en) Secondary battery
US10276866B2 (en) Electric device
WO2021241402A1 (en) Electrolyte sheet, solid-electrolyte-coated fiber, and lithium-ion battery
CN105934840A (en) Electrical device
JP6965860B2 (en) All solid state battery
US20190372103A1 (en) Cathode, all-solid-state battery and methods for producing them
JP7030322B2 (en) Composite particles for lithium-ion batteries and their manufacturing methods
JP5228501B2 (en) Electrode active material particles, electrode, electrochemical device, and electrode manufacturing method
JP6674072B1 (en) Current collecting layer for all-solid-state battery, all-solid-state battery, and carbon material
JP2018120817A (en) Method for manufacturing battery
JP6252604B2 (en) Electrical device
WO2021033469A1 (en) Secondary battery
JP2023047702A (en) lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812945

Country of ref document: EP

Kind code of ref document: A1