WO2021241367A1 - Friction-charging nonwoven fabric and method for manufacturing same - Google Patents

Friction-charging nonwoven fabric and method for manufacturing same Download PDF

Info

Publication number
WO2021241367A1
WO2021241367A1 PCT/JP2021/019046 JP2021019046W WO2021241367A1 WO 2021241367 A1 WO2021241367 A1 WO 2021241367A1 JP 2021019046 W JP2021019046 W JP 2021019046W WO 2021241367 A1 WO2021241367 A1 WO 2021241367A1
Authority
WO
WIPO (PCT)
Prior art keywords
triboelectric
fibers
web
water flow
fiber
Prior art date
Application number
PCT/JP2021/019046
Other languages
French (fr)
Japanese (ja)
Inventor
拓磨 白武
悠一郎 高島
Original Assignee
日本バイリーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バイリーン株式会社 filed Critical 日本バイリーン株式会社
Priority to CN202180038066.8A priority Critical patent/CN115667610A/en
Priority to JP2021545840A priority patent/JP6955645B1/en
Publication of WO2021241367A1 publication Critical patent/WO2021241367A1/en
Priority to TW111108462A priority patent/TW202245898A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets

Definitions

  • the present invention relates to a triboelectric nonwoven fabric and a method for producing the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-218342 provides a needle punching process on a web in which two or more types of fibers having different constituent resins (hereinafter, may be referred to as triboelectric fibers) are mixed. Disclosed is a triboelectric non-woven fabric that is charged by rubbing the triboelectric fibers against each other.
  • a triboelectric non-woven fabric can be prepared by rubbing friction-charged fibers with each other by performing a needle punching process on a web subjected to a water flow entanglement treatment.
  • the applicant of the present application tried to provide a thin triboelectric non-woven fabric so as to meet the needs of air filters and masks having various thicknesses and shapes.
  • a thin triboelectric non-woven fabric for example, a triboelectric non-woven fabric having a thickness of 1.2 mm or less
  • the triboelectric non-woven fabric prepared by performing needle punching on a web with a light weight mixed with triboelectric fibers is thin, the needle punching forms holes derived from needle processing such as through holes in the web. Probably because of this, the strength was greatly reduced.
  • Such a friction-charged non-woven fabric having a weak strength (for example, a friction-charged non-woven fabric having a maximum point strength of 43.0 N / 50 mm or less) is processed so as to have a three-dimensional shape such as pleats by punching with tension applied.
  • breaks or cracks may occur, which may cause deterioration of the filtration performance of the prepared air filter or mask.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed, which is thin and has excellent strength. Is to be.
  • the present inventors have succeeded in realizing a triboelectric non-woven fabric that is thin and has excellent strength. Specifically, we have succeeded in realizing a triboelectric non-woven fabric having the physical characteristics of "thickness is 1.2 mm or less and maximum point strength is higher than 43.0 N / 50 mm". Further, the present inventors have described in a method for producing a triboelectric non-woven fabric, in which a water flow entangled web prepared by subjecting a web containing triboelectric fibers to a water flow entanglement treatment is subjected to a step of rubbing and charging the triboelectric fibers.
  • the water flow entangled web was deformed in the thickness direction, and tension was applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. It has been found that a triboelectric non-woven fabric that is thin and has excellent strength can be realized for the first time by efficiently rubbing the constituent fibers of the water flow entangled web with each other without using the needle punching process by the manufacturing method having this step. .. Specifically, by the method for producing a triboelectric nonwoven fabric according to the present invention, a triboelectric nonwoven fabric having the physical characteristics of "thickness is 1.2 mm or less and maximum point strength is higher than 43.0 N / 50 mm" is realized. succeeded in.
  • the first invention is a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed, and the thickness is 1.2 mm or less, and the maximum point strength is higher than 43.0 N / 50 mm. , Triboelectric non-woven fabric.
  • the second invention is a method for producing a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed.
  • various configurations such as the following configurations can be appropriately selected.
  • the various measurements described in the present invention were carried out under normal pressure under 25 ° C. temperature conditions. Then, unless otherwise specified or specified, the various measurement results described in the present invention were obtained by measurement up to a value one digit smaller than the desired value, and the value to be obtained was calculated by rounding off the value.
  • the value up to the first decimal place is the value to be obtained
  • the value up to the first decimal place is calculated by finding the value up to the second decimal place by measurement and rounding off the obtained value to the second decimal place. Then, this value was used as the value to be calculated.
  • each upper limit value and each lower limit value exemplified in the present invention can be arbitrarily combined.
  • the triboelectric nonwoven fabric according to the present invention is a charged nonwoven fabric composed of two or more types of charged fibers having different constituent resins.
  • the term "two or more types of fibers having different constituent resins" as used herein means that two or more types of fibers are mixed in the triboelectric non-woven fabric, and in the two or more types of fibers, the surface (both ends) of the first type of fiber is used. It means that the constituent resin of (excluding the portion) and the constituent resin of the surface of other fibers (excluding both ends) are different.
  • the fiber constituting the triboelectric nonwoven fabric according to the present invention may be referred to as a triboelectric fiber.
  • a mixture of two or more types of fibers having different constituent resins here means that the above-mentioned two or more types of triboelectric fibers are intertwined with each other.
  • a web prepared by uniformly mixing two or more types of triboelectric fibers and supplying them to a card machine two or more types of fibers having different constituent resins are mixed, and the present invention can be made by using the web.
  • Such a triboelectric non-woven fabric can be prepared.
  • the triboelectric non-woven fabric is breathable and the constituent fibers are randomly present, so that it provides an air filter and mask with high void ratio, uniform pore diameter, low pressure loss, and excellent breathability and collection efficiency. can.
  • the type of triboelectric fibers may be appropriately selected as long as it is a combination of fibers that are charged by rubbing against each other.
  • a combination of the first kind of friction charged fiber and the second kind of friction charged fiber for example, a combination of a polyolefin fiber and an acrylic fiber; a fluorine fiber and a polyamide fiber, wool, a glass fiber, silk or rayon.
  • the amount of charge can be increased by rubbing the triboelectric fibers against each other, and it is possible to provide an air filter or mask having excellent collection efficiency. It is preferable because a triboelectric non-woven fabric can be realized.
  • the constituent resin of the polyolefin-based fiber examples include polypropylene resin, polyethylene resin, polystyrene resin, vinyl acetate copolymer resin, ethylene-propylene copolymer, or a part of these resins using a nitrile group, a cyano group, or a halogen.
  • the polyolefin-based fiber can be a composite fiber composed of one kind or two or more kinds of these constituent resins.
  • it may be a core-sheath type composite fiber
  • the sheath component may be a polyolefin-based fiber made of a polyolefin-based resin.
  • the constituent resin of the polyolefin fiber contains a phosphorus-based additive or a sulfur-based additive.
  • a phosphorus-based additive or a sulfur-based additive By containing a phosphorus-based additive or a sulfur-based additive, the amount of charge can be increased and the initial collection efficiency can be improved.
  • other additives such as phenol-based and amine-based additives may be further contained. If the total amount of these additives is large, the spinnability may be deteriorated. Therefore, the total amount of the additives is preferably 5% by mass or less of the polyolefin fiber, and preferably 2% by mass or less. It is more preferably 1% by mass or less, and further preferably 1% by mass or less.
  • Examples of the phosphorus-based additive include trisnonylphenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearylpentaerythritol diphosphite, and bis (2,4-di-t-butyl).
  • This phosphorus-based additive is preferably contained in an amount of 0.01% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.3% by mass or more in the polyolefin-based fiber. Is more preferable, and it is more preferable that the content is 0.6% by mass or more.
  • Sulfur-based additives include sulfur such as dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, disstearyl-3,3'-thiodipropionate, and pentaerythritol tetrakis. A system antioxidant or the like can be preferably used.
  • the sulfur-based additive is preferably contained in the polyolefin fiber in an amount of 0.01% by mass or more, more preferably 0.1% by mass or more.
  • acrylic fiber either a polyacrylonitrile fiber containing acrylonitrile as a main component (85% or more) or a modacrylic fiber containing acrylonitrile 35% or more and less than 85% can be used. Further, there are two types of polyacrylonitrile-based fibers, one spun using an organic solvent and one spun using an inorganic solvent, and any polyacrylonitrile-based fiber may be used.
  • the friction-charged fiber is, for example, a melt spinning method, a dry spinning method, a wet spinning method, a direct spinning method (melt blow method, spunbond method, electrostatic spinning method, etc.), and removal of one or more resin components from a composite fiber. It can be obtained by a known method such as a method of extracting a fiber having a small fiber diameter and a method of beating the fiber to obtain a divided fiber.
  • the fineness of the triboelectric fiber is not particularly limited as long as the object of the present invention can be achieved.
  • the fineness of the triboelectric fiber is preferably 0.1 to 10 dtex, preferably 0.3 to 7 dtex, so that the triboelectric non-woven fabric can provide an air filter or mask having low pressure loss and excellent air permeability and collection efficiency. It is preferably 0.6 to 5 dtex, and most preferably 0.8 to 3 dtex.
  • the "fineness" is obtained by the method A specified in JIS L1015: 2010, 8.5.1 (positive amount fineness).
  • the fineness of various triboelectric fibers can be increased because the triboelectric fibers can be efficiently rubbed against each other for two or more types of triboelectric fibers that are intertwined with each other and exist in the triboelectric non-woven fabric. Is preferably close. Specifically, the percentage of the fineness of the other type of triboelectric fiber to the fineness of one type of triboelectric fiber is preferably 250% or less, more preferably 220% or less, 130. It is more preferably% or less. Ideally, the fineness of the various triboelectric fibers is most preferably the same (ie, the percentage is 100%). When the triboelectric non-woven fabric contains three or more types of triboelectric fibers, the fineness is confirmed for the two types of triboelectric fibers having a large mass ratio as described above.
  • the fiber length of the triboelectric fiber is not particularly limited as long as the object of the present invention can be achieved, and may be a short fiber, a long fiber or a continuous fiber. However, by realizing a triboelectric non-woven fabric in which triboelectric fibers are randomly present, it is possible to provide an air filter or mask having a high void ratio, a uniform pore diameter, low pressure loss, and excellent air permeability and collection efficiency.
  • the fiber length is preferably 3 to 150 mm, more preferably 10 to 100 mm, and even more preferably 30 to 80 mm, because it is a triboelectric non-woven fabric.
  • the "fiber length" is obtained by JIS L1015: 2010, 8.4.1 [corrected staple diagram method (B method)].
  • the mixing ratio of each triboelectric fiber is appropriately adjusted.
  • the mixing ratio of the triboelectric fiber A and the triboelectric fiber B is 5% by mass: 95% by mass. It can be up to 95% by mass: 5% by mass, 15% by mass: 85% by mass to 85% by mass: 15% by mass, 25% by mass: 75% by mass to 75% by mass: 25% by mass. Can be.
  • the triboelectric non-woven fabric may contain fibers other than the triboelectric fibers.
  • the percentage of the mass of triboelectric fibers in the mass of the fibers that make up the triboelectric non-woven fabric can be adjusted as appropriate, but triboelectric charging can provide air filters and masks with low pressure loss and excellent air permeability and collection efficiency.
  • triboelectric it is preferably 50% by mass or more, more preferably 65% by mass or more, further preferably 80% by mass or more, and the fibers constituting the triboelectric non-woven fabric are triboelectric fibers. Most preferably only.
  • the fibers constituting the triboelectric non-woven fabric may contain an oil agent.
  • the type of oil agent can be appropriately selected, and a hydrophilic oil agent or a non-hydrophilic oil agent can be adopted.
  • the hydrophilic oil agent referred to here refers to a treatment agent that enhances the hydrophilicity of the fiber surface, and known components and formulations can be used.
  • a lubricant such as mineral oil or synthetic oil containing a wetting agent such as an anionic surfactant or a nonionic surfactant may be mentioned.
  • the non-hydrophilic oil agent refers to a treatment agent that reduces the hydrophilicity of the fiber surface, and known components and formulations can be used.
  • those in which the type and amount of the surfactant are adjusted, and those in which a lubricant such as mineral oil or synthetic oil contains a fluorine-based or silicone-based component can be mentioned.
  • the type of the oil agent can be confirmed by subjecting the oil agent extracted from the fibers constituting the triboelectric nonwoven fabric as described later to a known analyzer such as FT-IR (ATR method).
  • the triboelectric non-woven fabric can be used as a constituent fiber because it can prevent an increase in the water content of the triboelectric non-woven fabric and increase the amount of charge due to rubbing between the triboelectric fibers to realize a triboelectric-charged non-woven fabric having excellent collection efficiency. It is preferable to contain triboelectric fibers to which a non-hydrophilic oil agent is applied.
  • the percentage of the oil agent contained in the constituent fibers of the friction-charged non-woven fabric can be adjusted as appropriate, but the percentage of the oil agent mass in the fiber mass is preferably 0.01% by mass or more, preferably 0.05% by mass or more. It is more preferably 0.08% by mass or more, further preferably 0.10% by mass or more, and particularly preferably 0.11% by mass or more. The upper limit can be adjusted as appropriate, but it is realistic that it is 1% by mass or less.
  • the percentage (unit: mass%) of the oil agent mass contained in the fibers constituting the triboelectric nonwoven fabric was first subjected to the sampled test piece to the methanol extraction method described in the JIS L-1015 chemical staple test method.
  • the mass of the oil contained in the test piece is obtained from the measured mass. Then, determine the conversion value in terms of the mass of oil contained in the test piece of 1 m 2 around (g / m 2), further, the converted value to total fiber mass constituting the test piece (g / m 2) The percentage of oil is calculated, and the calculated value is taken as the percentage of the oil mass (unit: mass%).
  • the fibers constituting the triboelectric non-woven fabric may be in a state where the fibers are integrated with each other by a binder or fiber adhesion.
  • the triboelectric fibers can efficiently rub against each other to provide a triboelectric non-woven fabric having a large amount of charge, and the constituent fibers of the triboelectric non-woven fabric can be connected to each other while the gas passes through the triboelectric non-woven fabric. Since the triboelectric fibers are maintained in charge by efficiently rubbing against each other, it is possible to provide a triboelectric non-woven fabric that can provide an air filter or mask having excellent collection efficiency.
  • the fibers constituting the triboelectric non-woven fabric are triboelectric non-woven fabrics in which the fibers are not integrated with each other by a binder or fiber adhesion, and the fibers are simply entangled with each other. Further, it is preferable to use a triboelectric nonwoven fabric in which fibers are simply entangled with each other, because it is possible to provide a triboelectric nonwoven fabric in which contamination is less likely to occur and the texture is less likely to deteriorate.
  • the friction-charged nonwoven fabric has a fiber layer in which fibers are oriented in one direction (for example, a direction parallel to the transport direction) (fiber layer A, for example, a fiber layer derived from a one-way web) and a direction different from the above-mentioned one direction. It is preferable to have a structure in which a fiber layer in which the fibers are oriented (fiber layer B, for example, a fiber layer derived from crosslay web) is laminated.
  • fiber layer B for example, a fiber layer derived from crosslay web
  • a fiber layer made by laminating one-way webs containing triboelectric fibers so as to have different fiber orientations, and one-way webs and crosslay webs containing triboelectric fibers are laminated.
  • the fiber layer is made of the Chris Crossweb. Due to the triboelectric non-woven fabric having such a layer structure, the fiber layer B is applied to the non-woven fabric or the web in the transport direction in the step of rubbing the constituent fibers of the web according to the present invention. The fiber orientation of the fabric moves so as to be parallel to the transport direction. As a result, the triboelectric fibers in the fiber layer B are strongly rubbed against each other, and the triboelectric fibers existing between the layers are rubbed more strongly due to the rubbing between the fiber layer A and the fiber layer B. It is preferable because a triboelectric non-woven fabric can be realized.
  • a non-woven fabric having a fiber layer in which the fibers are oriented in various directions is preferable.
  • the orientation of the fibers in the fiber layer of the triboelectric non-woven fabric can be confirmed visually or by a micrograph of the surface or cross section of the fiber layer. Further, when the manufacturing process of the triboelectric nonwoven fabric is known, the orientation of the fibers in the fiber layer can be determined from the type of web used in the manufacturing process.
  • the texture of the triboelectric nonwoven fabric is not particularly limited, but it is preferably 15 to 200 g / m 2 and 25 to 150 g / m 2 so that a triboelectric nonwoven fabric having excellent rigidity such as the maximum point strength described later can be prepared. It is more preferably present, and even more preferably 30 to 100 g / m 2 .
  • the "Metsuke” is the mass per 1 m 2 , and is obtained by the method specified in JIS L1085: 1998, 6.2 "Mass per unit area".
  • the thickness of the triboelectric nonwoven fabric according to the present invention is 1.2 mm or less, which can meet the needs of air filters and masks having various thicknesses and shapes. If the thickness of the triboelectric non-woven fabric is 1.2 mm or less, the value can be adjusted as appropriate according to the needs, but it can be widely met by the needs of air filters and masks having various thicknesses and shapes (for example, thick air filters). However, if it is a thin charged nonwoven fabric, it can meet the needs by laminating a plurality of thin charged nonwoven fabrics), and it is 1.1 mm or less. It is preferably 1.0 mm or less, more preferably 0.9 mm or less, and particularly preferably 0.8 mm or less.
  • the lower limit value can be adjusted as appropriate, but it is realistic that it is 0.1 mm or more.
  • the apparent density of the frictional charging nonwoven can be 0.15 g / cm 3 or less, preferably less than 0.15 g / cm 3, more preferably 0.14 g / cm 3 or less , further preferably 0.13 g / cm 3 or less, particularly preferably 0.12 g / cm 3 or less.
  • the lower limit can be adjusted as appropriate, but since it is possible to realize an air filter or mask that is less likely to reduce pressure loss due to its high strength, it is higher than 0 g / cm 3 and 0.04 g / cm 3 or more. Is preferable.
  • the apparent density (g / cm 3 ) of the triboelectric nonwoven fabric can be calculated by dividing the triboelectric nonwoven fabric's texture (g / m 2 ) by the thickness (mm).
  • the triboelectric nonwoven fabric according to the present invention is characterized in that it is highly rigid even though its thickness is 1.2 mm or less, and its maximum point strength is higher than 43.0 N / 50 mm. Since the triboelectric nonwoven fabric according to the present invention has a maximum point strength higher than 43.0 N / 50 mm, it can be used for air filters and masks, for example, by punching it in a state where tension is applied or by processing it into a three-dimensional shape such as pleats. It is prevented from breaking or cracking during processing, and it is difficult to deteriorate the filtration performance of the prepared air filter or mask.
  • the maximum point strength of the triboelectric nonwoven fabric is higher than 43.0 N / 50 mm, the value can be appropriately adjusted according to the needs. It is preferably 50 N / 50 mm or more, more preferably 60 N / 50 mm or more, further preferably 70 N / 50 mm or more, further preferably 80 N / 50 mm or more, and 90 N / 50 mm or more. Is particularly preferable.
  • the upper limit value can be adjusted as appropriate, but it is realistic that it is 300 N / 50 mm or less.
  • the maximum point strength referred to in the present invention is a value obtained by subjecting the object to be measured to the following measuring method.
  • the initial grip interval is adjusted to be longer than the fiber length of the short fiber with the longest fiber length excluding the long fiber.
  • a test piece collected from the object to be measured is provided to a rapid extension type tensile tester, and the maximum point strength (unit: N / 50 mm) of the object to be measured is obtained by the same measurement.
  • the initial gripping interval of 10 mm or more can be secured, and the maximum point strength (unit: N / 50 mm) of the object to be measured can be obtained by the same measurement.
  • the length of the test piece (shape: rectangle, long side: length that can be measured by the above-mentioned constant speed extension type tensile tester) from various directions of the object to be measured. Collect multiple pieces (short side: 50 mm) longer than 100 mm. Then, each of the collected test pieces is subjected to the above-mentioned measurement method. Then, among the maximum values of the measured intensities in each measured test piece, the highest value is regarded as the maximum point intensity (unit: N / 50 mm) of the object to be measured.
  • a test piece (shape: rectangular, long side: length that can be measured by the above-mentioned constant speed extension type tensile tester) collected from the measurement object. (Longer than 100 mm, short side: smaller than 50 mm) is applied to a constant-speed elongation type tensile tester in the same manner as described above, and the maximum per length of the short side in the object to be measured is measured in the same manner. Find the point strength.
  • the maximum point strength of the object to be measured ( Unit: N / 50 mm) can be calculated. Specifically, a test piece having a short side length of 10 mm was subjected to a constant-speed extension type tensile tester, and the maximum point strength per 10 mm short side length in the measurement object obtained by measurement was 1N. If so, it can be calculated that the maximum point strength of the object to be measured is 5N / 50 mm by conversion.
  • Triboelectric non-woven fabric can be collected from an air filter or mask in order to obtain each of the above-mentioned values. At that time, a section is collected from a portion other than the welded portion of the air filter or mask which has a flat plate shape by opening the pleated fold. Then, by removing unnecessary components such as a cover material from the section, a test piece used for obtaining each value can be collected.
  • the points where the triboelectric fibers rub against each other are positively or negatively charged. That is, positively charged portions and negatively charged portions are randomly distributed and exist on the surface of the triboelectric fiber.
  • the charged nonwoven fabric obtained for the corona charging treatment positively charged portions are unevenly distributed on the surface of one main surface side of the charged nonwoven fabric in the constituent fibers, and the positively charged portions are unevenly distributed on the other main surface side of the charged nonwoven fabric. Negatively charged parts are unevenly distributed on the surface. Therefore, the triboelectric nonwoven fabric according to the present invention and the charged nonwoven fabric provided for the corona charging treatment have different charged states in the constituent fibers.
  • the triboelectric non-woven fabric according to the present invention has the triboelectric fibers in the charged state described above, dust, pollen and the like tend to be uniformly collected on the surface of the triboelectric fibers. As a result, it is possible to realize an air filter or mask having excellent collection efficiency.
  • This manufacturing method includes (1) a step of preparing a web in which two or more types of fibers having different constituent resins are mixed.
  • the two or more types of fibers having different constituent resins are a plurality of types of triboelectric fibers constituting the triboelectric nonwoven fabric according to the present invention, or a plurality of types of triboelectric fibers and fibers other than the triboelectric fibers.
  • the method of preparing the web in which these fibers are mixed can be appropriately selected, but the method of preparing the web by blending each fiber at the desired blending ratio and supplying it to the card device, and the method of preparing the web by supplying each fiber of the desired blending ratio to the air array device and depositing them.
  • a method of preparing a web, or a method of preparing a web in which each fiber is mixed at a required compounding ratio by using direct spinning such as a melt blow nonwoven fabric, a spunbonded nonwoven fabric, or an electrostatically spun nonwoven fabric can be adopted.
  • the web may contain a binder or an adhesive fiber
  • the web may contain a triboelectric non-woven fabric having a large amount of charge by efficiently rubbing the triboelectric fibers with each other in the charging method according to the present invention. It is preferable that it does not contain binders or adhesive fibers, and it is preferable that the web is composed of only constituent fibers (more preferably only triboelectric fibers).
  • the fiber is provided with a hydrophilic oil agent or a non-hydrophilic oil agent. Since the web contains an oil agent, it is possible to prevent the occurrence of fiber breakage in the step of rubbing the constituent fibers of the step (3) described later. As a result, it is possible to provide a triboelectric non-woven fabric that can prevent a decrease in the amount of charge and provide an air filter or mask having excellent collection efficiency. In particular, it is preferable to use triboelectric fibers to which a non-hydrophilic oil agent is applied, because it is possible to prevent an increase in water content and increase the amount of charge due to rubbing between the triboelectric fibers.
  • This manufacturing method has (2) a step of applying a water flow entanglement treatment to the web to prepare a water flow entanglement web.
  • water flow entanglement process applied to the web adjust the strength of the water flow and the spacing and arrangement of the nozzles that radiate the water flow as appropriate.
  • the type of water used for the water flow entanglement treatment can be appropriately selected, and may be, for example, industrial water, clean water, distilled water, pure water, or the like.
  • water after being used for the water flow entanglement treatment (which may contain an oil agent or the like that has fallen off from the fiber) may be repeated and used for the water flow entanglement treatment.
  • the average water pressure per nozzle is preferably 2 MPa or more, preferably 3 MPa or more, so that the fibers can be entangled with each other and have excellent rigidity and a thin triboelectric non-woven fabric can be prepared. It is more preferably 4 MPa or more, and further preferably 4 MPa or more.
  • the average water pressure is preferably 25 MPa or less, more preferably 20 MPa or less, further preferably 18 MPa or less, and most preferably 16 MPa or less.
  • only one main surface of the web may be subjected to the water flow entanglement treatment, or both main surfaces of the web may be subjected to the water flow entanglement treatment. Further, the number of times of the water flow entanglement treatment may be once or a plurality of times.
  • the water flow entanglement web thus prepared may be subjected to the next step in a wet state by the water flow entanglement treatment, but the dry water flow is so that triboelectric charging is performed more efficiently. It is preferable to use the entangled web for the next step.
  • a method of drying the water flow entangled web moistened by the water flow entanglement treatment can be appropriately selected, but a method of providing the web to a heating device, a method of drying by exposing to atmospheric pressure or reduced pressure, and the like can be adopted.
  • the type of heating device can be selected as appropriate, and for example, a method using a device that heats or pressurizes with a roller, an oven dryer, a far-infrared heater, a dry heat dryer, a hot air dryer, a device that can irradiate and heat infrared rays, etc. is adopted. can.
  • the heating temperature by the heating device is appropriately selected, but it is appropriately adjusted so that the water content can be evaporated and the constituent components such as constituent fibers are not unintentionally decomposed or denatured.
  • the binder may be bonded or the fiber may be bonded by subjecting the web to a heat treatment, or the crosslinkable resin may be crosslinked. ..
  • the water flow entangled web is deformed in the thickness direction, and tension is applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. It has a step of rubbing the constituent fibers of the water flow entangled web.
  • the triboelectric fibers contained in the water flow entangled web can be rubbed against each other to charge the water flow entangled web. ..
  • the method of deforming the water flow entangled web in the thickness direction can be appropriately selected, but a method of applying a roller to the water flow entangled web, a method of providing the water flow entangled web with a clearance that can be deformed in the thickness direction, and the like can be adopted.
  • a mode to provide a water flow entanglement web -A mode in which the water flow entanglement web is provided to the clearance formed by a member such as a plate, a rod, a conveyor, and a roller, which is adjusted to have a clearance thinner than the thickness of the water flow entanglement web. -For plates, rods, conveyors, etc.
  • the length of the clearance may be any as long as the water flow entangled web can be deformed in the thickness direction, and the length can be adjusted as appropriate, but it is preferably less than 100% of the thickness of the water flow entangled web, and is preferably 80% or less. It is preferably 60% or less, and preferably 40% or less.
  • the clearance may be 0.
  • the material of the pressure member (hereinafter referred to as the pressure member) used to deform the water flow entangled web such as rollers and conveyors in the thickness direction, and various physical properties such as the hardness of the surface thereof are efficient. Select as appropriate so that a triboelectric non-woven fabric can be produced well.
  • -The contact is made by bringing the water entangled web into contact with the surface of the roller and changing the transport direction of the water entangled web before contacting the roller and the transport direction of the water entangled web after contacting the roller.
  • Examples thereof include a mode in which a force acts in the thickness direction of the water flow entangled web in the portion where the water flow is entangled.
  • pressure is applied to the main surface of the water flow entangled web in contact with the surface of the roller on the opposite side to the roller side by using another roller or a conveyor so that the triboelectric nonwoven fabric can be efficiently manufactured. May act.
  • a speed difference may be provided between the speed at which the roller conveys the water flow entangled web and the speed at which the other roller or the transfer conveyor conveys the water flow entangled web.
  • the presence or absence of rotation, the rotation speed, and the rotation direction of the roller can be selected as appropriate.
  • the presence / absence of rotation, the rotation speed, and the rotation direction between the two rollers may be different combinations.
  • the speed at which the conveyor conveys the water flow entangled web can be appropriately adjusted.
  • the pressure acting in the thickness direction of the water flow entangled web and the magnitude of the tension acting on the water flow entangled web during transportation are appropriately adjusted so that the desired triboelectric non-woven fabric can be produced. Adjust appropriately so that the entangled web does not crack, break, or change unintended physical properties.
  • tension is applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction of the water flow entangled web.
  • the triboelectric fibers contained in the water flow entangled web can be further rubbed against each other to further charge the water flow entangled web.
  • "tension is applied in a direction perpendicular to the thickness direction” means that the water flow entanglement web acts on the water flow entanglement web before it comes into contact with the pressurizing member.
  • a method of applying tension to the water flow entangled web after contact with the pressurizing member in a direction perpendicular to the thickness direction can be appropriately selected.
  • Method, Etc. can be adopted.
  • the transport direction of the water flow entangled web until the pressurizing member is applied and the transport direction of the water flow entangled web after the pressurizing member is acted on may be the same direction or different directions. However, when the directions are different from each other, tension can be applied more effectively in the thickness direction of the water flow entangled web and the direction perpendicular to the thickness direction, and a triboelectric non-woven fabric having a large amount of charge can be produced, which is preferable.
  • the magnitude of the tension applied to the water flow entangled web after contacting the pressure member is appropriately adjusted so that the desired triboelectric nonwoven fabric can be produced, but the water flow entangled web is cracked, broken or has unintended physical properties. Adjust appropriately so that no change occurs.
  • the frictionally charged fibers which are constituent fibers, are not only in the thickness direction (one dimension in the Z-axis direction) but also in the thickness direction and the transport direction (Z-axis direction and the X-axis direction).
  • Friction-charged fibers efficiently interact with each other in a three-dimensional direction (Z-axis direction, X-axis direction, and Y-axis direction) other than the transport direction (Z-axis direction, X-axis direction, and Y-axis direction) that are perpendicular to the thickness direction, the transfer direction, and the thickness direction. Rubbing and friction charging are performed. Therefore, it is possible to realize a triboelectric non-woven fabric having a large amount of charge and excellent filter performance even though the thickness is as thin as 1.2 mm or less.
  • the triboelectric non-woven fabric produced in this way can be used as a filter material by itself, but a cover material, a support, and / or a pre-filter, a backup filter, etc. are laminated on the triboelectric non-woven fabric to form a filter material.
  • a cover material, a support, and / or a pre-filter, a backup filter, etc. are laminated on the triboelectric non-woven fabric to form a filter material.
  • the cover material, the support, and / or the pre-filter and the backup filter known ones can be adopted, and for example, a cloth, a porous film, a breathable foam, or the like can be adopted.
  • the laminated filter material is made by simply laminating the illustrated material and the triboelectric non-woven fabric, it can be bonded by using a binder, hot melt web, or fiber bonding to perform bonding treatment such as heat sealing or ultrasonic welding. It may be a laminated filter material made of.
  • the outer shape of the filter material provided with the triboelectric nonwoven fabric and the triboelectric nonwoven fabric can be appropriately adjusted and is not particularly limited, but for example, a two-dimensional sheet shape, a three-dimensional corrugated shape, a pleated shape, or a cylinder. It can be a shape or the like.
  • the filter material provided with the triboelectric nonwoven fabric and the triboelectric nonwoven fabric may have a cutout portion, a punched portion, or a notch portion.
  • a unidirectional web and a crosslay web were prepared by uniformly mixing 70% by mass of polypropylene fibers having the configurations shown in Table 1 and 30% by mass of acrylic fibers and feeding them to a card machine. Then, a Chris Crossley web was prepared by laminating a one-way web and a crosslay web. A water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) was performed from one main surface side (A) to the other main surface side (B) of the Chris Rossley web.
  • the prepared water flow entangled web was a web formed by laminating a fiber layer A in which fibers are oriented in one direction and a fiber layer B in which fibers are oriented in a direction different from the above one direction. ..
  • Comparative Example 2 A water flow entangled web was prepared in the same manner as in the reference example, except that the basis weight of the Chris Crosley web used was increased. A triboelectric nonwoven fabric was prepared in the same manner as in Comparative Example 1 except that the water flow entangled web prepared in this manner was used.
  • Example 1 With the water flow entangled web prepared in the reference example placed on a transport conveyor whose surface is made of polyurethane material and is easily deformed, the fiber orientation of the fiber layer A constituting the water flow entangled web and the transport direction are parallel to each other. Then, it was conveyed at a transfer speed of 25.0 m / min. Then, the water flow is brought into contact with the metal roller (roller rotation direction: rotation direction in which the water flow entanglement web can be conveyed downstream in the transfer direction) whose clearance with the transfer conveyor is adjusted to 0 mm. The entangled web was deformed in the thickness direction and triboelectrically charged.
  • a speed difference (conveying speed of the water flow entangled web by the transport conveyor: 25.0 m / min, moving speed on the surface of the metal roller: 24.5 m / min) is generated between the conveyor in contact with the water flow entangled web and the metal roller. By providing it, the friction between the triboelectric fibers is further promoted.
  • the water flow entangled web after contacting the metal roller was conveyed toward the downstream side in the transport direction of the water flow entangled web at a transport speed of 25.5 m / min.
  • Example 2 A water flow entangled web was prepared in the same manner as in the reference example, except that the basis weight of the web used was increased.
  • a triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web prepared in this manner was used.
  • Table 1 shows various physical properties of the water flow entangled web of the reference example and each triboelectric nonwoven fabric manufactured as described above.
  • the fibers to which the alkylphosphate ester, which is a non-hydrophilic oil agent, is given are marked with the NH mark, and the fibers to which the hydrophilic oil agent is given are marked with the H mark.
  • the percentage of the oil agent mass contained in the fibers constituting the water flow entangled web or the triboelectric non-woven fabric is described in the "percentage of the oil agent (mass%)" column.
  • the ventilation resistance (unit: Pa) and the collection efficiency (unit:%) were determined by using the water flow entangled web of the reference example and each triboelectric non-woven fabric for the following measurement methods. Further, a QF value capable of evaluating the filter performance was calculated from the obtained values of the aeration resistance (unit: Pa) and the collection efficiency (unit:%).
  • Specimens were collected from each of the water flow entangled webs and each triboelectric non-woven fabric of the reference example. Then, the collected test piece was attached to a measuring device "AP-9000" manufactured by Sibata Scientific Technology Co., Ltd., and the collection efficiency and the ventilation resistance were measured. At the time of measurement, the test piece was attached so that the main surface side derived from one main surface side (A) of the web in the test piece faces the upstream side of the measuring device.
  • the test flow rate is adjusted so that the effective filtration area of the test piece is 40 liters per minute per 124 cm 2 (for example, the test flow rate supplied to the test piece having an effective filtration area of 12.4 cm 2 is 4 liters per minute).
  • the differential pressure between the upstream and the downstream in the piece was measured, and the ventilation resistance (unit: Pa) of the test piece was obtained from the measured differential pressure.
  • test flow rate is adjusted so that the effective filtration area of the test piece is 30 liters per minute at 124 cm 2 (for example, the test flow rate supplied to the test piece having an effective filtration area of 12.4 cm 2 is 3 liters per minute).
  • Test containing sodium chloride particles (median particle size distribution: 0.06 to 0.10 ⁇ m, geometric standard deviation: 1.8 or less) at a concentration of 50 mg / m 3 or less (concentration variation: ⁇ 15% or less)
  • concentration variation ⁇ 15% or less
  • the concentrations of the sodium chloride particles present on the upstream side and the downstream side of the test piece were measured using a light scattering type dust densitometer, and the test was performed from both of the measured concentrations.
  • the concentration of sodium chloride particles collected in the pieces was calculated.
  • the percentage of the concentration of the sodium chloride particles collected in the test piece to the concentration of the sodium chloride particles supplied to the upstream side of the test piece is calculated, and the value is used as the collection efficiency of the test piece (unit::). %).
  • the aeration resistance is preferably 50 Pa or less, preferably 40 Pa or less, preferably 30 Pa or less, preferably 20 Pa or less, preferably 10 Pa or less, and most preferably 5 Pa or less.
  • the lower limit can be adjusted as appropriate, but 0.5 Pa or more is realistic.
  • the collection efficiency is preferably 50% or more, preferably 60% or more, preferably 70% or more, preferably 80% or more, preferably 90% or more, and most preferably 95 or more.
  • such a friction-charged nonwoven fabric having a weak strength (for example, a friction-charged nonwoven fabric having a maximum point strength of 43.0 N / 50 mm or less) has a three-dimensional shape such as pleats, which is punched in a state where tension is applied.
  • a friction-charged nonwoven fabric having a maximum point strength 43.0 N / 50 mm or less
  • has a three-dimensional shape such as pleats, which is punched in a state where tension is applied.
  • the triboelectric nonwoven fabrics prepared in Examples 1 and 2 are triboelectric nonwoven fabrics having physical properties such that the thickness is 1.2 mm or less and the maximum point strength is higher than 43.0 N / 50 mm. rice field.
  • the reason for this is that in the method for producing a triboelectric nonwoven fabric according to the present invention, the constituent fibers of the water flow entangled web can be rubbed against each other to be triboelectricly charged without performing needle punching on the web, so that the web is thin and has excellent strength. It was possible to realize a triboelectric non-woven fabric.
  • Example 3 A water flow entangled web was prepared in the same manner as in the reference example except that the acrylic fiber having the composition shown in Table 2 was adopted. A triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web thus prepared was used.
  • Example 4 A water flow entangled web was prepared in the same manner as in the reference example except that polypropylene fibers having the configurations shown in Table 2 were adopted.
  • a triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web thus prepared was used.
  • Table 2 shows various physical properties of each triboelectric nonwoven fabric manufactured as described above. In Table 2, the results of Example 1 are also shown for easy understanding.
  • the triboelectric nonwoven fabrics prepared in Examples 3 to 4 were all triboelectric nonwoven fabrics having a thickness of 1.2 mm or less and a maximum point strength of more than 43.0 N / 50 mm. From this, according to the present invention, even when various triboelectric fibers having different fineness and fiber length are adopted, "the thickness is 1.2 mm or less and the maximum point strength is more than 43.0 N / 50 mm". It was possible to realize a triboelectric non-woven fabric having the physical characteristics of "high".
  • Example 5 A water flow entangled web was prepared in the same manner as in the reference example, except that polypropylene fibers and acrylic fibers having the configurations shown in Table 3 were adopted. Then, the water flow entangled web is placed in a calendar roll whose surface is made of a metal material so that the fiber orientation of the fiber layer A constituting the water flow entangled web is parallel to the transport direction (rotation direction: transport direction of the water flow entangled web). The water flow entangled web was pressurized under the conditions of a rotation direction capable of transporting to the downstream side and a linear pressure of 100 kg / cm), deformed in the thickness direction, and frictionally charged.
  • Example 6 A triboelectric nonwoven fabric was prepared in the same manner as in Example 5 except that the water flow entangled web was pressurized under the condition of a linear pressure of 60 kg / cm.
  • Example 7 A unidirectional web was prepared by uniformly mixing 70% by mass of polypropylene fibers having the configurations shown in Table 3 and 30% by mass of acrylic fibers and feeding them to a card machine.
  • a water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) was performed from one main surface side (A) of the one-way web to the other main surface side (B). Then, under the same conditions, water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) is performed again from the other main surface side (B) of the one-way web to the one main surface side (A). bottom.
  • the prepared water flow entangled web was a web composed of only the fiber layer A in which the fibers were oriented in one direction.
  • a triboelectric nonwoven fabric was prepared in the same manner as in Example 5, except that the water flow entangled web thus prepared was used.
  • Example 8 A water flow entangled web was prepared in the same manner as in the reference example except that polypropylene fibers and acrylic fibers having the configurations shown in Table 3 were adopted. A triboelectric nonwoven fabric was prepared in the same manner as in Example 5, except that the water flow entangled web thus prepared was used. Table 3 shows various physical properties of each triboelectric nonwoven fabric manufactured as described above.
  • the triboelectric nonwoven fabrics prepared in Examples 5 to 8 were all triboelectric nonwoven fabrics having a thickness of 1.2 mm or less and a maximum point strength of more than 43.0 N / 50 mm.
  • a triboelectric non-woven fabric having a low ventilation resistance is provided because the apparent density is less than 0.15 g / cm 3 (more preferably 0.12 g / cm 3 or less). It turned out that it could be done. From the result of comparing Example 5 and Example 7, the fiber layer A in which the fibers are oriented in one direction and the fiber layer B in which the fibers are oriented in a direction different from the one direction are laminated. It has been found that by having the structure, it is possible to provide a triboelectric non-woven fabric having high collection efficiency.
  • the triboelectric fibers constituting the triboelectric nonwoven fabric contain a non-hydrophilic oil agent, so that the triboelectric nonwoven fabric with high collection efficiency can be provided. bottom.
  • the fiber layer A in which the fibers are oriented in one direction and the fiber layer B in which the fibers are oriented in a direction different from the above one direction are used. It had a structure in which and were laminated. Further, since it is manufactured without performing needle punching, the triboelectric nonwoven fabric prepared in each example does not have holes derived from needle processing such as through holes by needle punching.
  • the frictionally charged non-woven fabric according to the present invention for example, it is used in a production factory for foods and medical products, a manufacturing factory for precision equipment, an indoor cultivation facility for agricultural products, a general household use or an industrial facility such as an office building, and air. It is possible to prepare air filters for electric appliances such as purifiers and OA equipment, and for various vehicles such as automobiles and aircraft. Further, a mask can be prepared by using the triboelectric nonwoven fabric according to the present invention. Further, the above-mentioned triboelectric nonwoven fabric can be produced by the method for producing a triboelectric nonwoven fabric according to the present invention.

Abstract

The problem to be solved by the present invention is providing a friction-charging nonwoven fabric in which two or more types of fibers having differing constituent resins are mixed, the nonwoven fabric being thin and having superior strength. The present invention is a friction-charging nonwoven fabric in which two or more types of fibers having differing constituent resins are mixed, the thickness of the nonwoven fabric being 1.2 mm or less, and the maximum point strength being greater than 43.0 N/50 mm. Moreover, the present invention is a method for manufacturing a friction-charging nonwoven fabric in which two or more types of fibers having differing constituent resins are mixed, said method having: (1) a step for preparing a web in which two or more types of fibers having different constituent resins are mixed; (2) a step for performing a hydroentangling process on the web and formulating a hydroentangled web; and (3) a step for deforming the hydroentangled web in the thickness direction and applying, to the hydroentangled web that was deformed in the thickness direction, tensile force in a direction perpendicular to the thickness direction, whereby constituent fibers of the hydroentangled web are twisted together.

Description

摩擦帯電不織布、および、その製造方法Triboelectric non-woven fabric and its manufacturing method
 本発明は、摩擦帯電不織布、および、その製造方法に関する。 The present invention relates to a triboelectric nonwoven fabric and a method for producing the same.
 従来からエアフィルタやマスクには、圧力損失が低く通気性に優れると共に、大気塵やPM2.5などの塵埃ならびに花粉などの捕集効率に優れるという性能が求められている。この相反する性能を共に満足するため、摩擦帯電不織布を備えるエアフィルタやマスクが検討されてきた。
 このような摩擦帯電不織布として、特開2006-218342(特許文献1)には、構成樹脂の異なる2種類以上の繊維(以降、摩擦帯電繊維と称することがある)が混在したウェブへニードルパンチ処理を行い、摩擦帯電繊維同士を擦り合せることで帯電させてなる摩擦帯電不織布が開示されている。具体的に特許文献1の実施例には、水流絡合処理を施したウェブへニードルパンチ処理を行うことで、摩擦帯電繊維同士を擦り合せ摩擦帯電不織布を調製できることが開示されている。
Conventionally, air filters and masks have been required to have low pressure loss, excellent air permeability, and excellent collection efficiency of atmospheric dust, dust such as PM2.5, and pollen. In order to satisfy both of these contradictory performances, air filters and masks provided with triboelectric non-woven fabrics have been studied.
As such a triboelectric non-woven fabric, Japanese Patent Application Laid-Open No. 2006-218342 (Patent Document 1) provides a needle punching process on a web in which two or more types of fibers having different constituent resins (hereinafter, may be referred to as triboelectric fibers) are mixed. Disclosed is a triboelectric non-woven fabric that is charged by rubbing the triboelectric fibers against each other. Specifically, in the examples of Patent Document 1, it is disclosed that a triboelectric non-woven fabric can be prepared by rubbing friction-charged fibers with each other by performing a needle punching process on a web subjected to a water flow entanglement treatment.
特開2006-218342JP 2006-218342
 本願出願人は、厚さや形状などが様々であるエアフィルタやマスクのニーズに応えることができるように、薄手の摩擦帯電不織布の提供を試みた。 The applicant of the present application tried to provide a thin triboelectric non-woven fabric so as to meet the needs of air filters and masks having various thicknesses and shapes.
 しかしながら、ニードルパンチ処理によって摩擦帯電繊維同士を擦り合せることで帯電させるという従来技術を用いる限り、薄手の摩擦帯電不織布を提供することは困難であった。その理由として、後述する本願の実施例中の記載からも明らかである通り、摩擦帯電繊維同士を擦り合せるため摩擦帯電繊維が混在したウェブへニードルパンチ処理を行うと、当該ウェブの厚さが倍増するためである。そのため、薄手の摩擦帯電不織布(例えば、厚さが1.2mm以下の摩擦帯電不織布)を提供するためには、摩擦帯電繊維が混在したウェブの目付を軽くする必要があった。 However, it has been difficult to provide a thin triboelectric non-woven fabric as long as the conventional technique of rubbing the triboelectric fibers with each other by needle punching to charge the fibers is used. The reason for this is that, as is clear from the description in the examples of the present application described later, when a needle punching process is performed on a web in which triboelectric fibers are mixed in order to rub the triboelectric fibers against each other, the thickness of the web is doubled. To do. Therefore, in order to provide a thin triboelectric non-woven fabric (for example, a triboelectric non-woven fabric having a thickness of 1.2 mm or less), it is necessary to lighten the basis weight of the web in which the triboelectric fibers are mixed.
 しかし、摩擦帯電繊維が混在した目付が軽いウェブへニードルパンチ処理を行うことで調製された摩擦帯電不織布は、薄手ではあるものの、ニードルパンチ処理によってウェブに貫通孔などのニードル処理由来の穴が形成されるためか、強度が大きく低下しているものであった。このような強度が弱い摩擦帯電不織布(例えば、最大点強度が43.0N/50mm以下の摩擦帯電不織布)では、例えば、張力を作用させた状態で打ち抜く、プリーツなど立体形状を有するように加工するなどエアフィルタやマスクへ加工する際に、破断や亀裂が発生して、調製したエアフィルタやマスクの濾過性能を低下させる原因となる恐れがあった。 However, although the triboelectric non-woven fabric prepared by performing needle punching on a web with a light weight mixed with triboelectric fibers is thin, the needle punching forms holes derived from needle processing such as through holes in the web. Probably because of this, the strength was greatly reduced. Such a friction-charged non-woven fabric having a weak strength (for example, a friction-charged non-woven fabric having a maximum point strength of 43.0 N / 50 mm or less) is processed so as to have a three-dimensional shape such as pleats by punching with tension applied. When processing into an air filter or mask, breaks or cracks may occur, which may cause deterioration of the filtration performance of the prepared air filter or mask.
 本発明は上記事情に鑑みてなされたものであり、構成樹脂の異なる2種類以上の繊維が混在した摩擦帯電不織布であって、薄手であると共に、強度に優れる摩擦帯電不織布を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed, which is thin and has excellent strength. Is to be.
 本発明者らは、鋭意検討を続けた結果、薄手であると共に強度に優れる摩擦帯電不織布の実現に成功した。具体的には「厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高い」という物性を有する摩擦帯電不織布の実現に成功した。
 また、本発明者らは、摩擦帯電繊維を含むウェブへ水流絡合処理を施して調製した水流絡合ウェブを、摩擦帯電繊維同士を擦り合せ帯電させる工程へ供する摩擦帯電不織布の製造方法において、水流絡合ウェブを厚さ方向に変形させると共に、厚さ方向に変形させた後の水流絡合ウェブに対し厚さ方向と垂直を成す方向へ張力を作用させた。本工程を有する製造方法によって、ニードルパンチ処理を用いなくとも水流絡合ウェブの構成繊維同士を効率良く擦り合せることができ、はじめて、薄手であると共に強度に優れる摩擦帯電不織布を実現できることを見出した。具体的には、本発明にかかる摩擦帯電不織布の製造方法によって、「厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高い」という物性を有する摩擦帯電不織布の実現に成功した。
As a result of diligent studies, the present inventors have succeeded in realizing a triboelectric non-woven fabric that is thin and has excellent strength. Specifically, we have succeeded in realizing a triboelectric non-woven fabric having the physical characteristics of "thickness is 1.2 mm or less and maximum point strength is higher than 43.0 N / 50 mm".
Further, the present inventors have described in a method for producing a triboelectric non-woven fabric, in which a water flow entangled web prepared by subjecting a web containing triboelectric fibers to a water flow entanglement treatment is subjected to a step of rubbing and charging the triboelectric fibers. The water flow entangled web was deformed in the thickness direction, and tension was applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. It has been found that a triboelectric non-woven fabric that is thin and has excellent strength can be realized for the first time by efficiently rubbing the constituent fibers of the water flow entangled web with each other without using the needle punching process by the manufacturing method having this step. .. Specifically, by the method for producing a triboelectric nonwoven fabric according to the present invention, a triboelectric nonwoven fabric having the physical characteristics of "thickness is 1.2 mm or less and maximum point strength is higher than 43.0 N / 50 mm" is realized. succeeded in.
 すなわち、第一の本発明は、構成樹脂が異なる2種類以上の繊維が混在した摩擦帯電不織布であって、厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高い、摩擦帯電不織布
である。
That is, the first invention is a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed, and the thickness is 1.2 mm or less, and the maximum point strength is higher than 43.0 N / 50 mm. , Triboelectric non-woven fabric.
 また、第二の本発明は、構成樹脂が異なる2種類以上の繊維が混在した摩擦帯電不織布の製造方法であって、
(1)構成樹脂の異なる2種類以上の繊維が混在したウェブを用意する工程、
(2)前記ウェブへ水流絡合処理を施して、水流絡合ウェブを調製する工程、
(3)前記水流絡合ウェブを厚さ方向に変形させると共に、前記厚さ方向に変形させた後の水流絡合ウェブに対し前記厚さ方向と垂直を成す方向へ張力を作用させることで、前記水流絡合ウェブの構成繊維同士を擦り合せる工程、
を有する、摩擦帯電不織布の製造方法
である。
The second invention is a method for producing a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed.
(1) A process of preparing a web in which two or more types of fibers having different constituent resins are mixed.
(2) A step of preparing a water flow entangled web by subjecting the web to a water flow entanglement treatment.
(3) By deforming the water flow entangled web in the thickness direction and applying tension to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. The step of rubbing the constituent fibers of the water flow entangled web with each other,
It is a method of manufacturing a triboelectric non-woven fabric having the above.
 本発明によれば、薄手であると共に強度に優れる摩擦帯電不織布を得ることができる。 According to the present invention, it is possible to obtain a triboelectric nonwoven fabric that is thin and has excellent strength.
 本発明では、例えば以下の構成など、各種構成を適宜選択できる。なお、本発明で説明する各種測定は特に記載や規定のない限り、常圧のもと25℃温度条件下で測定を行った。そして、本発明で説明する各種測定結果は特に記載や規定のない限り、求める値よりも一桁小さな値まで測定で求め、当該値を四捨五入することで求める値を算出した。具体例として、小数第一位までが求める値である場合、測定によって小数第二位まで値を求め、得られた小数第二位の値を四捨五入することで小数第一位までの値を算出し、この値を求める値とした。また、本発明で例示する各上限値および各下限値は、任意に組み合わせることができる。 In the present invention, various configurations such as the following configurations can be appropriately selected. Unless otherwise specified or specified, the various measurements described in the present invention were carried out under normal pressure under 25 ° C. temperature conditions. Then, unless otherwise specified or specified, the various measurement results described in the present invention were obtained by measurement up to a value one digit smaller than the desired value, and the value to be obtained was calculated by rounding off the value. As a specific example, if the value up to the first decimal place is the value to be obtained, the value up to the first decimal place is calculated by finding the value up to the second decimal place by measurement and rounding off the obtained value to the second decimal place. Then, this value was used as the value to be calculated. Further, each upper limit value and each lower limit value exemplified in the present invention can be arbitrarily combined.
 本発明にかかる摩擦帯電不織布は、構成樹脂が異なる2種類以上の帯電した繊維が混在して構成された、帯電している不織布である。ここでいう「構成樹脂が異なる2種類以上の繊維」とは、摩擦帯電不織布中に2種類以上の繊維が混在しており、当該2種類以上の繊維において、1種類目の繊維の表面(両端部を除く)の構成樹脂と、他の繊維の表面(両端部を除く)の構成樹脂が異なっていることを意味する。以降、本発明にかかる摩擦帯電不織布を構成する当該繊維を、摩擦帯電繊維と称することがある。 The triboelectric nonwoven fabric according to the present invention is a charged nonwoven fabric composed of two or more types of charged fibers having different constituent resins. The term "two or more types of fibers having different constituent resins" as used herein means that two or more types of fibers are mixed in the triboelectric non-woven fabric, and in the two or more types of fibers, the surface (both ends) of the first type of fiber is used. It means that the constituent resin of (excluding the portion) and the constituent resin of the surface of other fibers (excluding both ends) are different. Hereinafter, the fiber constituting the triboelectric nonwoven fabric according to the present invention may be referred to as a triboelectric fiber.
 また、ここでいう「構成樹脂が異なる2種類以上の繊維が混在」しているとは、上述した2種類以上の摩擦帯電繊維同士が互いに絡み合って存在していることを意味する。例えば、2種類以上の摩擦帯電繊維を均一に混ぜ合わせカード機へ供することで調製されたウェブでは、構成樹脂が異なる2種類以上の繊維が混在しており、当該ウェブを用いることで本発明にかかる摩擦帯電不織布を調製できる。 Further, "a mixture of two or more types of fibers having different constituent resins" here means that the above-mentioned two or more types of triboelectric fibers are intertwined with each other. For example, in a web prepared by uniformly mixing two or more types of triboelectric fibers and supplying them to a card machine, two or more types of fibers having different constituent resins are mixed, and the present invention can be made by using the web. Such a triboelectric non-woven fabric can be prepared.
 摩擦帯電不織布は通気性を有すると共に構成繊維同士がランダムに存在していることで、空隙率が高く孔径が均一となり、圧力損失が低く通気性と捕集効率に優れたエアフィルタやマスクを提供できる。 The triboelectric non-woven fabric is breathable and the constituent fibers are randomly present, so that it provides an air filter and mask with high void ratio, uniform pore diameter, low pressure loss, and excellent breathability and collection efficiency. can.
 摩擦帯電繊維の種類は、互いに擦り合せることで帯電する繊維の組み合わせであればよく適宜選択できる。1種類目の摩擦帯電繊維と2種類目の摩擦帯電繊維との組み合わせとして、例えば、ポリオレフィン系繊維とアクリル系繊維との組合せ;フッ素系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;ウレタン系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;塩化ビニル系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;ポリオレフィン系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;アクリル系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維の組合せ;ビニロン系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;ポリエステル系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;アセテート系繊維とポリアミド系繊維、羊毛、ガラス系繊維、絹又はレーヨン系繊維との組合せ;ポリオレフィン系繊維とポリエステル系繊維との組合せなどを挙げることができる。
 これらの中でも、ポリオレフィン系繊維とアクリル系繊維との組合せであると、摩擦帯電繊維同士を擦り合せることで帯電量を多くすることができ、捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布を実現でき好ましい。
The type of triboelectric fibers may be appropriately selected as long as it is a combination of fibers that are charged by rubbing against each other. As a combination of the first kind of friction charged fiber and the second kind of friction charged fiber, for example, a combination of a polyolefin fiber and an acrylic fiber; a fluorine fiber and a polyamide fiber, wool, a glass fiber, silk or rayon. Combination with fiber; Urethane fiber and polyamide fiber, wool, glass fiber, silk or rayon fiber; Vinyl chloride fiber and polyamide fiber, wool, glass fiber, silk or rayon fiber Combination of polyolefin fiber and polyamide fiber, wool, glass fiber, silk or rayon fiber; combination of acrylic fiber and polyamide fiber, wool, glass fiber, silk or rayon fiber; vinylon type Combination of fiber with polyamide fiber, wool, glass fiber, silk or rayon fiber; combination of polyester fiber with polyamide fiber, wool, glass fiber, silk or rayon fiber; acetate fiber and polyamide fiber Combinations with fibers, wool, glass fibers, silk or rayon fibers; combinations of polyolefin fibers and polyester fibers and the like can be mentioned.
Among these, if the combination of the polyolefin fiber and the acrylic fiber is used, the amount of charge can be increased by rubbing the triboelectric fibers against each other, and it is possible to provide an air filter or mask having excellent collection efficiency. It is preferable because a triboelectric non-woven fabric can be realized.
 ポリオレフィン系繊維の構成樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、酢酸ビニル共重合体樹脂、エチレン-プロピレン共重合体、又は、これら樹脂の一部をニトリル基やシアノ基あるいはハロゲンで置換した樹脂などを挙げることができ、ポリオレフィン系繊維はこれら構成樹脂1種類、又は2種類以上からなる複合繊維であることができる。例えば、芯鞘型複合繊維であり、鞘成分がポリオレフィン系樹脂からなるポリオレフィン系繊維であってもよい。 Examples of the constituent resin of the polyolefin-based fiber include polypropylene resin, polyethylene resin, polystyrene resin, vinyl acetate copolymer resin, ethylene-propylene copolymer, or a part of these resins using a nitrile group, a cyano group, or a halogen. Examples thereof include a substituted resin, and the polyolefin-based fiber can be a composite fiber composed of one kind or two or more kinds of these constituent resins. For example, it may be a core-sheath type composite fiber, and the sheath component may be a polyolefin-based fiber made of a polyolefin-based resin.
 また、ポリオレフィン系繊維の構成樹脂は、リン系添加剤やイオウ系添加剤を含有しているのが好ましい。リン系添加剤やイオウ系添加剤を含有していることによって帯電量を多くすることができ、初期捕集効率が向上できる。なお、リン系添加剤やイオウ系添加剤に加えて、更に、フェノール系、アミン系などの他の添加剤が含まれていてもよい。なお、これら添加剤の合計量が多くなると、紡糸性が悪くなる恐れがあるため、添加剤の合計量がポリオレフィン系繊維の5質量%以下であるのが好ましく、2質量%以下であるのがより好ましく、1質量%以下であるのが更に好ましい。 Further, it is preferable that the constituent resin of the polyolefin fiber contains a phosphorus-based additive or a sulfur-based additive. By containing a phosphorus-based additive or a sulfur-based additive, the amount of charge can be increased and the initial collection efficiency can be improved. In addition to the phosphorus-based additive and the sulfur-based additive, other additives such as phenol-based and amine-based additives may be further contained. If the total amount of these additives is large, the spinnability may be deteriorated. Therefore, the total amount of the additives is preferably 5% by mass or less of the polyolefin fiber, and preferably 2% by mass or less. It is more preferably 1% by mass or less, and further preferably 1% by mass or less.
 リン系添加剤としては、例えば、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6,ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレン-ジ-ホスホナイト、ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜リン酸、テトラキス(2,4-ジ-t-ブチルフェニル)(1,1-ビフェニル)-4,4’-ジイルビスホスフォナイト、ビス(ビス(2,4-ジ-t-ブチル-5-メチルフェノキシ)ホスフィノ)などのリン系酸化防止剤を挙げることができる。このリン系添加剤はポリオレフィン系繊維中、0.01質量%以上含有しているのが好ましく、0.2質量%以上含有しているのがより好ましく、0.3質量%以上含有しているのが更に好ましく、0.6質量%以上含有しているのが更に好ましい。イオウ系添加剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトールテトラキスなどのイオウ系酸化防止剤などが好適に使用できる。このイオウ系添加剤はポリオレフィン系繊維中、0.01質量%以上含まれているのが好ましく、0.1質量%以上含まれているのがより好ましい。 Examples of the phosphorus-based additive include trisnonylphenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearylpentaerythritol diphosphite, and bis (2,4-di-t-butyl). Phenyl) pentaerythritol phosphite, bis (2,6,di-t-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite, Tetrax (2,4-di-t-butylphenyl) -4,4'-biphenylene-di-phosphonite, bis (2,4-bis (1,1-dimethylethyl) -6-methylphenyl) ethyl ester subphosphorus Acid, tetrakis (2,4-di-t-butylphenyl) (1,1-biphenyl) -4,4'-diylbisphosphonite, bis (bis (2,4-di-t-butyl-5-) Phenyl antioxidants such as methylphenoxy) phosphino) can be mentioned. This phosphorus-based additive is preferably contained in an amount of 0.01% by mass or more, more preferably 0.2% by mass or more, and more preferably 0.3% by mass or more in the polyolefin-based fiber. Is more preferable, and it is more preferable that the content is 0.6% by mass or more. Sulfur-based additives include sulfur such as dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, disstearyl-3,3'-thiodipropionate, and pentaerythritol tetrakis. A system antioxidant or the like can be preferably used. The sulfur-based additive is preferably contained in the polyolefin fiber in an amount of 0.01% by mass or more, more preferably 0.1% by mass or more.
 アクリル系繊維としては、アクリロニトリルを主成分(85%以上)とするポリアクリロニトリル系繊維と、アクリロニトリルを35%以上85%未満含むモダクリル系繊維のいずれであっても使用できる。また、ポリアクリロニトリル系繊維は有機系溶媒を用いて紡糸したものと、無機系溶媒を用いて紡糸したものの2種類があるが、いずれのポリアクリロニトリル系繊維であってもよい。 As the acrylic fiber, either a polyacrylonitrile fiber containing acrylonitrile as a main component (85% or more) or a modacrylic fiber containing acrylonitrile 35% or more and less than 85% can be used. Further, there are two types of polyacrylonitrile-based fibers, one spun using an organic solvent and one spun using an inorganic solvent, and any polyacrylonitrile-based fiber may be used.
 摩擦帯電繊維は、例えば、溶融紡糸法、乾式紡糸法、湿式紡糸法、直接紡糸法(メルトブロー法、スパンボンド法、静電紡糸法など)、複合繊維から1種類以上の樹脂成分を除去することで繊維径が細い繊維を抽出する方法、繊維を叩解して分割された繊維を得る方法など公知の方法により得ることができる。 The friction-charged fiber is, for example, a melt spinning method, a dry spinning method, a wet spinning method, a direct spinning method (melt blow method, spunbond method, electrostatic spinning method, etc.), and removal of one or more resin components from a composite fiber. It can be obtained by a known method such as a method of extracting a fiber having a small fiber diameter and a method of beating the fiber to obtain a divided fiber.
 摩擦帯電繊維の繊度は、本発明の目的を達成できるのであれば特に限定されるものではない。圧力損失が低く通気性と捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布となるよう、摩擦帯電繊維の繊度は0.1~10dtexであるのが好ましく、0.3~7dtexであるのが好ましく、0.6~5dtexであるのが好ましく、0.8~3dtexであるのが最も好ましい。なお、「繊度」はJIS L1015:2010、8.5.1(正量繊度)に規定されているA法により得られる。
 なお、摩擦帯電不織布を構成している、互いに絡み合って存在している2種類以上の摩擦帯電繊維について、効率よく摩擦帯電繊維同士を擦り合せて帯電量を多くできることから、各種摩擦帯電繊維の繊度は近い方が好ましい。具体的には、一方の種類の摩擦帯電繊維の繊度に対する、もう一方の種類の摩擦帯電繊維の繊度の百分率が、250%以下であるのが好ましく、220%以下であるのがより好ましく、130%以下であるのが更に好ましい。理想的には、各種摩擦帯電繊維の繊度が同じ(すなわち、上記百分率が100%)であるのが最も好ましい。
 なお、摩擦帯電不織布が3種類以上の摩擦帯電繊維を含んでいる場合には、存在する質量割合が多い2種類の摩擦帯電繊維に対し上記の通り繊度を確認する。
The fineness of the triboelectric fiber is not particularly limited as long as the object of the present invention can be achieved. The fineness of the triboelectric fiber is preferably 0.1 to 10 dtex, preferably 0.3 to 7 dtex, so that the triboelectric non-woven fabric can provide an air filter or mask having low pressure loss and excellent air permeability and collection efficiency. It is preferably 0.6 to 5 dtex, and most preferably 0.8 to 3 dtex. The "fineness" is obtained by the method A specified in JIS L1015: 2010, 8.5.1 (positive amount fineness).
It should be noted that the fineness of various triboelectric fibers can be increased because the triboelectric fibers can be efficiently rubbed against each other for two or more types of triboelectric fibers that are intertwined with each other and exist in the triboelectric non-woven fabric. Is preferably close. Specifically, the percentage of the fineness of the other type of triboelectric fiber to the fineness of one type of triboelectric fiber is preferably 250% or less, more preferably 220% or less, 130. It is more preferably% or less. Ideally, the fineness of the various triboelectric fibers is most preferably the same (ie, the percentage is 100%).
When the triboelectric non-woven fabric contains three or more types of triboelectric fibers, the fineness is confirmed for the two types of triboelectric fibers having a large mass ratio as described above.
 摩擦帯電繊維の繊維長は、本発明の目的を達成できるのであれば特に限定されるものではなく、短繊維や長繊維あるいは連続繊維であってもよい。しかし、摩擦帯電繊維同士がランダムに存在してなる摩擦帯電不織布を実現できることで、空隙率が高く孔径が均一となり、圧力損失が低く通気性と捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布となることから、繊維長は3~150mmであるのが好ましく、10~100mmであるのがより好ましく、30~80mmであるのが更に好ましい。
 なお、「繊維長」は、JIS L1015:2010、8.4.1[補正ステープルダイヤグラム法(B法)]により得られる。
The fiber length of the triboelectric fiber is not particularly limited as long as the object of the present invention can be achieved, and may be a short fiber, a long fiber or a continuous fiber. However, by realizing a triboelectric non-woven fabric in which triboelectric fibers are randomly present, it is possible to provide an air filter or mask having a high void ratio, a uniform pore diameter, low pressure loss, and excellent air permeability and collection efficiency. The fiber length is preferably 3 to 150 mm, more preferably 10 to 100 mm, and even more preferably 30 to 80 mm, because it is a triboelectric non-woven fabric.
The "fiber length" is obtained by JIS L1015: 2010, 8.4.1 [corrected staple diagram method (B method)].
 摩擦帯電不織布が含有している複数種類の摩擦帯電繊維について、各摩擦帯電繊維の混合比率は適宜調整するものである。例えば、摩擦帯電不織布に2種類の摩擦帯電繊維(摩擦帯電繊維Aと摩擦帯電繊維B)が含有されている場合、摩擦帯電繊維Aと摩擦帯電繊維Bの混合比率は5質量%:95質量%~95質量%:5質量%であることができ、15質量%:85質量%~85質量%:15質量%であることができ、25質量%:75質量%~75質量%:25質量%であることができる。 For the plurality of types of triboelectric fibers contained in the triboelectric non-woven fabric, the mixing ratio of each triboelectric fiber is appropriately adjusted. For example, when the triboelectric non-woven fabric contains two types of triboelectric fibers (triboelectric fiber A and triboelectric fiber B), the mixing ratio of the triboelectric fiber A and the triboelectric fiber B is 5% by mass: 95% by mass. It can be up to 95% by mass: 5% by mass, 15% by mass: 85% by mass to 85% by mass: 15% by mass, 25% by mass: 75% by mass to 75% by mass: 25% by mass. Can be.
 摩擦帯電不織布は摩擦帯電繊維以外の繊維を含有していてもよい。摩擦帯電不織布を構成している繊維の質量に占める、摩擦帯電繊維の質量の百分率は適宜調整できるが、圧力損失が低く通気性と捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布であるよう、50質量%以上であるのが好ましく、65質量%以上であるのがより好ましく、80質量%以上であるのが更に好ましく、摩擦帯電不織布を構成している繊維が摩擦帯電繊維のみであるのが最も好ましい。 The triboelectric non-woven fabric may contain fibers other than the triboelectric fibers. The percentage of the mass of triboelectric fibers in the mass of the fibers that make up the triboelectric non-woven fabric can be adjusted as appropriate, but triboelectric charging can provide air filters and masks with low pressure loss and excellent air permeability and collection efficiency. Like a triboelectric, it is preferably 50% by mass or more, more preferably 65% by mass or more, further preferably 80% by mass or more, and the fibers constituting the triboelectric non-woven fabric are triboelectric fibers. Most preferably only.
 摩擦帯電不織布を構成している繊維は油剤を含んでいてもよい。油剤の種類は適宜選択でき、親水性油剤や非親水性油剤を採用できる。なお、ここでいう親水性油剤とは、繊維表面の親水性を高める処理剤を指すものであり、公知の成分や配合を用いることができる。例えば、鉱物油や合成油などの潤滑剤に、アニオン系界面活性剤やノニオン系界面活性剤などの湿潤剤を含有させたものが挙げられる。また、非親水性油剤とは、繊維表面の親水性を低下させる処理剤を指すものであり、公知の成分や配合を用いることができる。例えば、界面活性剤の種類や量を調整したものや、鉱物油や合成油などの潤滑剤にフッ素系やシリコーン系の成分を含有させたものが挙げられる。 The fibers constituting the triboelectric non-woven fabric may contain an oil agent. The type of oil agent can be appropriately selected, and a hydrophilic oil agent or a non-hydrophilic oil agent can be adopted. The hydrophilic oil agent referred to here refers to a treatment agent that enhances the hydrophilicity of the fiber surface, and known components and formulations can be used. For example, a lubricant such as mineral oil or synthetic oil containing a wetting agent such as an anionic surfactant or a nonionic surfactant may be mentioned. Further, the non-hydrophilic oil agent refers to a treatment agent that reduces the hydrophilicity of the fiber surface, and known components and formulations can be used. For example, those in which the type and amount of the surfactant are adjusted, and those in which a lubricant such as mineral oil or synthetic oil contains a fluorine-based or silicone-based component can be mentioned.
 なお、油剤の種類は、摩擦帯電不織布を構成している繊維から後述するようにして抽出した油剤を、FT-IR(ATR法)など公知の分析装置へ供することで確認できる。
 なお、摩擦帯電不織布における含水率の上昇を防止して、摩擦帯電繊維同士の擦り合せによる帯電量を多くして、捕集効率に優れる摩擦帯電不織布を実現できることから、摩擦帯電不織布は構成繊維として、非親水性油剤が付与された摩擦帯電繊維を含んでいるのが好ましい。
The type of the oil agent can be confirmed by subjecting the oil agent extracted from the fibers constituting the triboelectric nonwoven fabric as described later to a known analyzer such as FT-IR (ATR method).
The triboelectric non-woven fabric can be used as a constituent fiber because it can prevent an increase in the water content of the triboelectric non-woven fabric and increase the amount of charge due to rubbing between the triboelectric fibers to realize a triboelectric-charged non-woven fabric having excellent collection efficiency. It is preferable to contain triboelectric fibers to which a non-hydrophilic oil agent is applied.
 摩擦帯電不織布の構成繊維が含む油剤の百分率は適宜調整できるが、当該繊維質量に占める油剤質量の百分率は、0.01質量%以上であるのが好ましく、0.05質量%以上であるのがより好ましく、0.08質量%以上であるのが更に好ましく、0.10質量%以上であるのがより更に好ましく、0.11質量%以上であるのが特に好ましい。上限値は適宜調整できるが、1質量%以下であるのが現実的である。なお、摩擦帯電不織布を構成している繊維が含む油剤質量の百分率(単位:質量%)は、まず採取した試験片をJIS L-1015化学ステープル試験方法に記載されているメタノール抽出方法へ供し、測定された質量から試験片に含まれていた油剤の質量を求める。次いで、1m辺りの試験片に含まれている油剤の質量(g/m)に換算した換算値を求め、更に、試験片を構成する繊維質量(g/m)に占める上記換算値の百分率を算出して、当該算出値を油剤質量の百分率(単位:質量%)とする。 The percentage of the oil agent contained in the constituent fibers of the friction-charged non-woven fabric can be adjusted as appropriate, but the percentage of the oil agent mass in the fiber mass is preferably 0.01% by mass or more, preferably 0.05% by mass or more. It is more preferably 0.08% by mass or more, further preferably 0.10% by mass or more, and particularly preferably 0.11% by mass or more. The upper limit can be adjusted as appropriate, but it is realistic that it is 1% by mass or less. The percentage (unit: mass%) of the oil agent mass contained in the fibers constituting the triboelectric nonwoven fabric was first subjected to the sampled test piece to the methanol extraction method described in the JIS L-1015 chemical staple test method. The mass of the oil contained in the test piece is obtained from the measured mass. Then, determine the conversion value in terms of the mass of oil contained in the test piece of 1 m 2 around (g / m 2), further, the converted value to total fiber mass constituting the test piece (g / m 2) The percentage of oil is calculated, and the calculated value is taken as the percentage of the oil mass (unit: mass%).
 摩擦帯電不織布を構成している繊維は、バインダや繊維接着によって繊維同士が一体化されている状態であってもよい。しかし、本発明にかかる帯電方法において摩擦帯電繊維同士が効率良く擦れ合うことで帯電量の多い摩擦帯電不織布を提供できること、及び、摩擦帯電不織布を気体が通過する間も摩擦帯電不織布の構成繊維同士が効率良く擦れ合うことで摩擦帯電繊維の帯電が維持されることから、捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布を提供できる。そのため、摩擦帯電不織布を構成している繊維はバインダや繊維接着によって繊維同士が一体化されておらず、繊維同士がただ絡合してなる摩擦帯電不織布であるのが好ましい。また、繊維同士がただ絡合してなる摩擦帯電不織布であると、コンタミネーションが発生し難く、また、風合いが劣化し難い摩擦帯電不織布を提供でき好ましい。 The fibers constituting the triboelectric non-woven fabric may be in a state where the fibers are integrated with each other by a binder or fiber adhesion. However, in the charging method according to the present invention, the triboelectric fibers can efficiently rub against each other to provide a triboelectric non-woven fabric having a large amount of charge, and the constituent fibers of the triboelectric non-woven fabric can be connected to each other while the gas passes through the triboelectric non-woven fabric. Since the triboelectric fibers are maintained in charge by efficiently rubbing against each other, it is possible to provide a triboelectric non-woven fabric that can provide an air filter or mask having excellent collection efficiency. Therefore, it is preferable that the fibers constituting the triboelectric non-woven fabric are triboelectric non-woven fabrics in which the fibers are not integrated with each other by a binder or fiber adhesion, and the fibers are simply entangled with each other. Further, it is preferable to use a triboelectric nonwoven fabric in which fibers are simply entangled with each other, because it is possible to provide a triboelectric nonwoven fabric in which contamination is less likely to occur and the texture is less likely to deteriorate.
 摩擦帯電不織布は、一方向(例えば、搬送方向と平行を成す方向)へ繊維が配向している繊維層(繊維層A、例えば一方向ウェブ由来の繊維層)と、上記一方向と異なる方向へ繊維が配向している繊維層(繊維層B、例えばクロスレイウェブ由来の繊維層)とが積層してなる構造を有するのが好ましい。具体例として、摩擦帯電繊維を含んだ一方向ウェブを繊維配向が相違するように積層したクロスレイウェブを用いてなる繊維層や、摩擦帯電繊維を含んだ一方向ウェブおよびクロスレイウェブが積層しているクリスクロスウェブを用いてなる繊維層であるのが好ましい。このような層構造を有する摩擦帯電不織布であることによって、本発明にかかるウェブの構成繊維同士を擦り合せる工程において、不織布あるいはウェブに対しその搬送方向へ張力を作用させた際に、繊維層Bの繊維配向が搬送方向と平行に近づくように移動する。その結果、繊維層B中の摩擦帯電繊維同士が強く擦れると共に、繊維層Aと繊維層Bが擦れることで層間に存在する摩擦帯電繊維同士がより強く擦れ、帯電量に富み捕集効率に優れる摩擦帯電不織布を実現でき好ましい。
 あるいは、繊維層中の摩擦帯電繊維同士が強く擦れることから、様々な方向に繊維が配向している繊維層(例えば、ランダムウェブ由来の繊維層)を備える不織布であるのが好ましい。
 なお、摩擦帯電不織布が有する繊維層における繊維の配向は、目視あるいは繊維層の表面や断面を撮影した顕微鏡写真により確認できる。また、摩擦帯電不織布の製造工程が判明している場合には、その製造工程で使用したウェブの種類から、繊維層における繊維の配向を判断できる。
The friction-charged nonwoven fabric has a fiber layer in which fibers are oriented in one direction (for example, a direction parallel to the transport direction) (fiber layer A, for example, a fiber layer derived from a one-way web) and a direction different from the above-mentioned one direction. It is preferable to have a structure in which a fiber layer in which the fibers are oriented (fiber layer B, for example, a fiber layer derived from crosslay web) is laminated. As a specific example, a fiber layer made by laminating one-way webs containing triboelectric fibers so as to have different fiber orientations, and one-way webs and crosslay webs containing triboelectric fibers are laminated. It is preferable that the fiber layer is made of the Chris Crossweb. Due to the triboelectric non-woven fabric having such a layer structure, the fiber layer B is applied to the non-woven fabric or the web in the transport direction in the step of rubbing the constituent fibers of the web according to the present invention. The fiber orientation of the fabric moves so as to be parallel to the transport direction. As a result, the triboelectric fibers in the fiber layer B are strongly rubbed against each other, and the triboelectric fibers existing between the layers are rubbed more strongly due to the rubbing between the fiber layer A and the fiber layer B. It is preferable because a triboelectric non-woven fabric can be realized.
Alternatively, since the triboelectric fibers in the fiber layer rub against each other strongly, a non-woven fabric having a fiber layer in which the fibers are oriented in various directions (for example, a fiber layer derived from a random web) is preferable.
The orientation of the fibers in the fiber layer of the triboelectric non-woven fabric can be confirmed visually or by a micrograph of the surface or cross section of the fiber layer. Further, when the manufacturing process of the triboelectric nonwoven fabric is known, the orientation of the fibers in the fiber layer can be determined from the type of web used in the manufacturing process.
 摩擦帯電不織布の目付は特に限定するものではないが、後述する最大点強度など剛性が優れる摩擦帯電不織布を調製できるよう、15~200g/mであるのが好ましく、25~150g/mであるのがより好ましく、30~100g/mであるのが更に好ましい。なお、「目付」は1mあたりの質量であり、JIS L1085:1998、6.2「単位面積当たりの質量」に規定する方法により得られる。 The texture of the triboelectric nonwoven fabric is not particularly limited, but it is preferably 15 to 200 g / m 2 and 25 to 150 g / m 2 so that a triboelectric nonwoven fabric having excellent rigidity such as the maximum point strength described later can be prepared. It is more preferably present, and even more preferably 30 to 100 g / m 2 . The "Metsuke" is the mass per 1 m 2 , and is obtained by the method specified in JIS L1085: 1998, 6.2 "Mass per unit area".
 本発明にかかる摩擦帯電不織布の厚さは1.2mm以下であり、厚さや形状などが様々であるエアフィルタやマスクのニーズに応えることができる。摩擦帯電不織布の厚さは1.2mm以下であれば、その値はニーズに合せ適宜調整できるが、厚さや形状などが様々であるエアフィルタやマスクのニーズにより広く応えられる(例えば、厚いエアフィルタが求められている場合であっても、厚さの薄い帯電不織布であれば、当該厚さの薄い帯電不織布を複数積層することでニーズに応えることができる)ように、1.1mm以下であるのが好ましく、1.0mm以下であるのがより好ましく、0.9mm以下であるのが更に好ましく、0.8mm以下であるのが特に好ましい。下限値も適宜調整できるものであるが、0.1mm以上であるのが現実的である。
 本発明における「厚さ」は、基材の主面に対して、面積5cmあたり厚さ方向へ0.98N(=100gf)を荷重して行う荷重領域における厚さの測定を、無作為に選択した5カ所で実施し、それら厚さを算術平均した値を意味する。このような厚さの測定は、例えば、高精度デジタル測長機(株式会社ミツトヨ社製、ライトマチック(登録商標))により実施できる。
The thickness of the triboelectric nonwoven fabric according to the present invention is 1.2 mm or less, which can meet the needs of air filters and masks having various thicknesses and shapes. If the thickness of the triboelectric non-woven fabric is 1.2 mm or less, the value can be adjusted as appropriate according to the needs, but it can be widely met by the needs of air filters and masks having various thicknesses and shapes (for example, thick air filters). However, if it is a thin charged nonwoven fabric, it can meet the needs by laminating a plurality of thin charged nonwoven fabrics), and it is 1.1 mm or less. It is preferably 1.0 mm or less, more preferably 0.9 mm or less, and particularly preferably 0.8 mm or less. The lower limit value can be adjusted as appropriate, but it is realistic that it is 0.1 mm or more.
The "thickness" in the present invention is a random measurement of the thickness in a load region performed by loading 0.98 N (= 100 gf) in the thickness direction per 5 cm 2 area on the main surface of the base material. It is carried out at 5 selected places, and means the value obtained by arithmetically averaging those thicknesses. Such a thickness measurement can be performed by, for example, a high-precision digital length measuring machine (Mitutoyo Co., Ltd., Lightmatic (registered trademark)).
 本発明にかかる摩擦帯電不織布の見掛け密度が低いほど、圧力損失が低く通気性に優れるエアフィルタやマスクを実現できる。そのため、摩擦帯電不織布の見掛け密度は、0.15g/cm以下であることができるが、0.15g/cm未満であることが好ましく、0.14g/cm以下であることがより好ましく、0.13g/cm以下であることが更に好ましく、0.12g/cm以下であることが特に好ましい。
 下限値は適宜調整することができるが、強度に富むことで圧力損失の低下が生じ難いエアフィルタやマスクを実現できることから、0g/cmより高い値であって、0.04g/cm以上であるのが好ましい。なお、摩擦帯電不織布の見掛け密度(g/cm)は、摩擦帯電不織布の目付(g/m)を厚さ(mm)で割り算出できる。
The lower the apparent density of the triboelectric nonwoven fabric according to the present invention, the lower the pressure loss and the better the air permeability of the air filter or mask. Therefore, the apparent density of the frictional charging nonwoven can be 0.15 g / cm 3 or less, preferably less than 0.15 g / cm 3, more preferably 0.14 g / cm 3 or less , further preferably 0.13 g / cm 3 or less, particularly preferably 0.12 g / cm 3 or less.
The lower limit can be adjusted as appropriate, but since it is possible to realize an air filter or mask that is less likely to reduce pressure loss due to its high strength, it is higher than 0 g / cm 3 and 0.04 g / cm 3 or more. Is preferable. The apparent density (g / cm 3 ) of the triboelectric nonwoven fabric can be calculated by dividing the triboelectric nonwoven fabric's texture (g / m 2 ) by the thickness (mm).
 本発明にかかる摩擦帯電不織布は、厚さが1.2mm以下であるにも関わらず剛性に富み、その最大点強度が43.0N/50mmよりも高いことを特徴としている。本発明にかかる摩擦帯電不織布は、最大点強度が43.0N/50mmよりも高いため、例えば、張力を作用させた状態で打ち抜く、プリーツなど立体形状を有するように加工するなどエアフィルタやマスクへ加工する際に破断や亀裂が発生するのが防止されており、調製したエアフィルタやマスクの濾過性能を低下させ難い。摩擦帯電不織布の最大点強度は43.0N/50mmよりも高いのであれば、その値は当該ニーズによって適宜調整できる。50N/50mm以上であるのが好ましく、60N/50mm以上であるのがより好ましく、70N/50mm以上であるのが更に好ましく、80N/50mm以上であるのがより更に好ましく、90N/50mm以上であるのが特に好ましい。上限値も適宜調整できるものであるが、300N/50mm以下であるのが現実的である。なお、本発明でいう最大点強度とは、測定対象物を以下の測定方法へ供し得られた値である。 The triboelectric nonwoven fabric according to the present invention is characterized in that it is highly rigid even though its thickness is 1.2 mm or less, and its maximum point strength is higher than 43.0 N / 50 mm. Since the triboelectric nonwoven fabric according to the present invention has a maximum point strength higher than 43.0 N / 50 mm, it can be used for air filters and masks, for example, by punching it in a state where tension is applied or by processing it into a three-dimensional shape such as pleats. It is prevented from breaking or cracking during processing, and it is difficult to deteriorate the filtration performance of the prepared air filter or mask. If the maximum point strength of the triboelectric nonwoven fabric is higher than 43.0 N / 50 mm, the value can be appropriately adjusted according to the needs. It is preferably 50 N / 50 mm or more, more preferably 60 N / 50 mm or more, further preferably 70 N / 50 mm or more, further preferably 80 N / 50 mm or more, and 90 N / 50 mm or more. Is particularly preferable. The upper limit value can be adjusted as appropriate, but it is realistic that it is 300 N / 50 mm or less. The maximum point strength referred to in the present invention is a value obtained by subjecting the object to be measured to the following measuring method.
(最大点強度の測定方法)
 測定対象物から機械方向(製造時の搬送方向)と長辺方向が一致するようにして、試験片(形状:長方形、長辺:後述する定速伸長型引張試験機により測定可能な長さであって100mmより長い、短辺:50mm)を採取した。そして、採取した試験片を、定速伸長型引張試験機(オリエンテック社製、テンシロン、初期つかみ間隔:100mm、引張速度:300mm/分)へ供し、試験片が破断するまで試験片の長辺方向へ引っ張った。試験片が破断するまでに測定された測定強度のうち最大値を、測定対象物の最大点強度(単位:N/50mm)とした。
(Measurement method of maximum point strength)
Make sure that the machine direction (transportation direction at the time of manufacture) and the long side direction match from the object to be measured, and the length can be measured by the test piece (shape: rectangle, long side: constant speed extension type tensile tester described later). It was longer than 100 mm, and the short side: 50 mm) was collected. Then, the collected test piece is subjected to a constant-speed extension type tensile tester (Orientec, Tensilon, initial grip interval: 100 mm, tensile speed: 300 mm / min), and the long side of the test piece is obtained until the test piece breaks. I pulled it in the direction. The maximum value of the measured intensities measured before the test piece broke was defined as the maximum point intensity (unit: N / 50 mm) of the object to be measured.
 また、長辺方向の長さが100mmよりも小さい測定対象物については、その構成繊維のうち、長繊維を除く最も繊維長の長い短繊維の繊維長よりも、初期つかみ間隔を長く調整した定速伸長型引張試験機へ当該測定対象物から採取した試験片を供し、同様の測定により測定対象物の最大点強度(単位:N/50mm)を求める。なお、構成繊維が長繊維のみで構成されている場合には、初期つかみ間隔を10mm以上確保し、同様の測定により測定対象物の最大点強度(単位:N/50mm)を求めることができる。 For objects to be measured whose length in the long side direction is smaller than 100 mm, the initial grip interval is adjusted to be longer than the fiber length of the short fiber with the longest fiber length excluding the long fiber. A test piece collected from the object to be measured is provided to a rapid extension type tensile tester, and the maximum point strength (unit: N / 50 mm) of the object to be measured is obtained by the same measurement. When the constituent fibers are composed of only long fibers, the initial gripping interval of 10 mm or more can be secured, and the maximum point strength (unit: N / 50 mm) of the object to be measured can be obtained by the same measurement.
 なお、測定対象物の機械方向が不明である場合には、測定対象物の様々な方向から試験片(形状:長方形、長辺:上述した定速伸長型引張試験機により測定可能な長さであって100mmより長い、短辺:50mm)を複数採取する。そして、採取した各試験片を上述した測定方法へ供する。そして、測定された各試験片における測定強度の最大値のうち、最も高い値を測定対象物の最大点強度(単位:N/50mm)とみなす。 If the mechanical direction of the object to be measured is unknown, the length of the test piece (shape: rectangle, long side: length that can be measured by the above-mentioned constant speed extension type tensile tester) from various directions of the object to be measured. Collect multiple pieces (short side: 50 mm) longer than 100 mm. Then, each of the collected test pieces is subjected to the above-mentioned measurement method. Then, among the maximum values of the measured intensities in each measured test piece, the highest value is regarded as the maximum point intensity (unit: N / 50 mm) of the object to be measured.
 なお、短辺方向の長さが50mmよりも小さい測定対象物については、当該測定対象物から採取した試験片(形状:長方形、長辺:上述した定速伸長型引張試験機により測定可能な長さであって100mmより長い、短辺:50mmよりも小さい)を上述した方法と同様に定速伸長型引張試験機へ供し、同様にして測定により測定対象物における短辺の長さ当たりの最大点強度を求める。そして得られた、測定対象物における短辺の長さ当たりの最大点強度を、測定対象物における短辺の長さ50mm当たりの最大点強度に換算することで、測定対象物の最大点強度(単位:N/50mm)を算出できる。具体的には、短辺の長さが10mmの試験片を定速伸長型引張試験機へ供し、測定により得られた測定対象物における短辺の長さ10mm当たりの最大点強度が1Nであった場合、換算することで、測定対象物の最大点強度は5N/50mmであると算出できる。 For a measurement object whose length in the short side direction is smaller than 50 mm, a test piece (shape: rectangular, long side: length that can be measured by the above-mentioned constant speed extension type tensile tester) collected from the measurement object. (Longer than 100 mm, short side: smaller than 50 mm) is applied to a constant-speed elongation type tensile tester in the same manner as described above, and the maximum per length of the short side in the object to be measured is measured in the same manner. Find the point strength. Then, by converting the obtained maximum point strength per length of the short side of the object to be measured into the maximum point strength per 50 mm of the length of the short side of the object to be measured, the maximum point strength of the object to be measured ( Unit: N / 50 mm) can be calculated. Specifically, a test piece having a short side length of 10 mm was subjected to a constant-speed extension type tensile tester, and the maximum point strength per 10 mm short side length in the measurement object obtained by measurement was 1N. If so, it can be calculated that the maximum point strength of the object to be measured is 5N / 50 mm by conversion.
 上述した各値を求めるため、エアフィルタやマスクから摩擦帯電不織布(試験片)を採取できる。その際、プリーツ折りを開くなどして平板形状としたエアフィルタやマスクにおける溶着部分以外の箇所から切片を採取する。次いで、当該切片からカバー材などの不要な構成物を取り除くことで、各値を求めるために用いる試験片を採取できる。 Triboelectric non-woven fabric (test piece) can be collected from an air filter or mask in order to obtain each of the above-mentioned values. At that time, a section is collected from a portion other than the welded portion of the air filter or mask which has a flat plate shape by opening the pleated fold. Then, by removing unnecessary components such as a cover material from the section, a test piece used for obtaining each value can be collected.
 本発明にかかる摩擦帯電不織布では、摩擦帯電繊維同士の擦れ合った箇所がプラスあるいはマイナスに帯電する。つまり、摩擦帯電繊維の表面上にプラスに帯電した箇所やマイナスに帯電した箇所がランダムに分布し存在するものとなる。一方、コロナ帯電処理へ供し得られた帯電不織布では、構成繊維における帯電不織布の一方の主面側の表面上にプラスに帯電した箇所が偏在しており、帯電不織布のもう一方の主面側の表面上にマイナスに帯電した箇所が偏在している。そのため、本発明にかかる摩擦帯電不織布とコロナ帯電処理へ供し得られた帯電不織布とでは、構成繊維における帯電状態が異なるものである。 In the triboelectric nonwoven fabric according to the present invention, the points where the triboelectric fibers rub against each other are positively or negatively charged. That is, positively charged portions and negatively charged portions are randomly distributed and exist on the surface of the triboelectric fiber. On the other hand, in the charged nonwoven fabric obtained for the corona charging treatment, positively charged portions are unevenly distributed on the surface of one main surface side of the charged nonwoven fabric in the constituent fibers, and the positively charged portions are unevenly distributed on the other main surface side of the charged nonwoven fabric. Negatively charged parts are unevenly distributed on the surface. Therefore, the triboelectric nonwoven fabric according to the present invention and the charged nonwoven fabric provided for the corona charging treatment have different charged states in the constituent fibers.
 本発明にかかる摩擦帯電不織布は、上述した帯電状態の摩擦帯電繊維を有していることによって、塵埃ならびに花粉などが当該摩擦帯電繊維の表面上に均一的に捕集される傾向がある。その結果、捕集効率に優れるエアフィルタやマスクを実現できる。 Since the triboelectric non-woven fabric according to the present invention has the triboelectric fibers in the charged state described above, dust, pollen and the like tend to be uniformly collected on the surface of the triboelectric fibers. As a result, it is possible to realize an air filter or mask having excellent collection efficiency.
 次いで、本発明に係る摩擦帯電不織布を製造可能な、摩擦帯電不織布の製造方法について説明する。なお、上述において説明した構成については、説明を省略する。 Next, a method for manufacturing a triboelectric nonwoven fabric capable of producing the triboelectric nonwoven fabric according to the present invention will be described. The configuration described above will be omitted.
 本製造方法は
(1)構成樹脂の異なる2種類以上の繊維が混在したウェブを用意する工程を有している。
This manufacturing method includes (1) a step of preparing a web in which two or more types of fibers having different constituent resins are mixed.
 構成樹脂の異なる2種類以上の繊維は、本発明にかかる摩擦帯電不織布を構成する複数種類の摩擦帯電繊維、あるいは、複数種類の摩擦帯電繊維と摩擦帯電繊維以外の繊維である。これらの繊維が混在したウェブを調製する方法は適宜選択できるが、各繊維を求める配合比で混綿しカード装置へ供しウェブを調製する方法、求める配合比の各繊維をエアレイ装置へ供し堆積させてウェブを調製する方法、あるいは、メルトブロー不織布やスパンボンド不織布や静電紡糸不織布などの直接紡糸を用いることで各繊維が求める配合比で混在してなるウェブを調製する方法などを採用できる。 The two or more types of fibers having different constituent resins are a plurality of types of triboelectric fibers constituting the triboelectric nonwoven fabric according to the present invention, or a plurality of types of triboelectric fibers and fibers other than the triboelectric fibers. The method of preparing the web in which these fibers are mixed can be appropriately selected, but the method of preparing the web by blending each fiber at the desired blending ratio and supplying it to the card device, and the method of preparing the web by supplying each fiber of the desired blending ratio to the air array device and depositing them. A method of preparing a web, or a method of preparing a web in which each fiber is mixed at a required compounding ratio by using direct spinning such as a melt blow nonwoven fabric, a spunbonded nonwoven fabric, or an electrostatically spun nonwoven fabric can be adopted.
 ウェブの目付や厚さなどの各種値は、本発明にかかる摩擦帯電不織布を調製できるよう適宜調整する。なお、ウェブにはバインダや接着繊維を含んでいてもよいが、本発明にかかる帯電方法において摩擦帯電繊維同士が効率良く擦れ合うことで帯電量の多い摩擦帯電不織布を提供できるように、ウェブにはバインダや接着繊維が含まれていないのが好ましく、構成繊維のみ(より好ましくは摩擦帯電繊維のみ)で構成されたウェブであるのが好ましい。 Various values such as the basis weight and thickness of the web are appropriately adjusted so that the triboelectric nonwoven fabric according to the present invention can be prepared. Although the web may contain a binder or an adhesive fiber, the web may contain a triboelectric non-woven fabric having a large amount of charge by efficiently rubbing the triboelectric fibers with each other in the charging method according to the present invention. It is preferable that it does not contain binders or adhesive fibers, and it is preferable that the web is composed of only constituent fibers (more preferably only triboelectric fibers).
 また、当該繊維は親水性油剤や非親水性油剤が付与されているのが好ましい。油剤を含んだウェブであることによって、後述の工程(3)の構成繊維同士を擦り合せる工程において、繊維切れなどの発生を防止できる。その結果、帯電量が低下するのを防止して、捕集効率に優れたエアフィルタやマスクを提供可能な摩擦帯電不織布を提供できる。特に、非親水性油剤が付与された摩擦帯電繊維を採用することで、含水率の上昇を防止して、摩擦帯電繊維同士の擦り合せによる帯電量を多くすることができ好ましい。 Further, it is preferable that the fiber is provided with a hydrophilic oil agent or a non-hydrophilic oil agent. Since the web contains an oil agent, it is possible to prevent the occurrence of fiber breakage in the step of rubbing the constituent fibers of the step (3) described later. As a result, it is possible to provide a triboelectric non-woven fabric that can prevent a decrease in the amount of charge and provide an air filter or mask having excellent collection efficiency. In particular, it is preferable to use triboelectric fibers to which a non-hydrophilic oil agent is applied, because it is possible to prevent an increase in water content and increase the amount of charge due to rubbing between the triboelectric fibers.
 本製造方法は(2)ウェブへ水流絡合処理を施して、水流絡合ウェブを調製する工程を有している。 This manufacturing method has (2) a step of applying a water flow entanglement treatment to the web to prepare a water flow entanglement web.
 ウェブへ施す水流絡合処理における、水流の強さや水流を放射するノズルの間隔や配置などは適宜調整する。また、水流絡合処理に使用する水の種類は適宜選択できるが、例えば、工業用水、上水、蒸留水、純水などであることができる。なお、水流絡合処理に使用した後の水(繊維から脱落した油剤などが含まれていることがある)を繰り返し、水流絡合処理に使用してもよい。 In the water flow entanglement process applied to the web, adjust the strength of the water flow and the spacing and arrangement of the nozzles that radiate the water flow as appropriate. The type of water used for the water flow entanglement treatment can be appropriately selected, and may be, for example, industrial water, clean water, distilled water, pure water, or the like. In addition, water after being used for the water flow entanglement treatment (which may contain an oil agent or the like that has fallen off from the fiber) may be repeated and used for the water flow entanglement treatment.
 繊維同士の絡み合いを促進して剛性に優れると共に薄手の摩擦帯電不織布を調製できるように、プレシャワーを除く、ノズル1本あたりの平均水圧を2MPa以上とするのが好ましく、3MPa以上とするのがより好ましく、4MPa以上とするのが更に好ましい。一方、平均水圧が高過ぎると、構成繊維同士の絡み合いが強固になり過ぎてしまい、空隙率が意図せず低くなり圧力損失が低いエアフィルタやマスクを提供するのが困難となる恐れがあることから、25MPa以下とするのが好ましく、20MPa以下とするのがより好ましく、18MPa以下とするのが更に好ましく、16MPa以下とするのが最も好ましい。
 なお、本工程において、ウェブの一方の主面のみへ水流絡合処理を施しても、ウェブの両主面へ水流絡合処理を施してもよい。また水流絡合処理の回数は、一回であっても複数回であってもよい。
The average water pressure per nozzle, excluding the pre-shower, is preferably 2 MPa or more, preferably 3 MPa or more, so that the fibers can be entangled with each other and have excellent rigidity and a thin triboelectric non-woven fabric can be prepared. It is more preferably 4 MPa or more, and further preferably 4 MPa or more. On the other hand, if the average water pressure is too high, the entanglement between the constituent fibers becomes too strong, and the porosity becomes unintentionally low, which may make it difficult to provide an air filter or mask having a low pressure loss. Therefore, it is preferably 25 MPa or less, more preferably 20 MPa or less, further preferably 18 MPa or less, and most preferably 16 MPa or less.
In this step, only one main surface of the web may be subjected to the water flow entanglement treatment, or both main surfaces of the web may be subjected to the water flow entanglement treatment. Further, the number of times of the water flow entanglement treatment may be once or a plurality of times.
 なお、このようにして調製された水流絡合ウェブは、水流絡合処理によって湿潤した状態のまま次の工程へ供してもよいが、より効率良く摩擦帯電が成されるように、乾燥した水流絡合ウェブを次の工程へ供するのが好ましい。水流絡合処理によって湿潤した水流絡合ウェブを乾燥する方法は適宜選択できるが、加熱装置へ供する方法、大気圧下あるいは減圧下へ曝すことで加熱することなく乾燥させる方法などを採用できる。加熱装置の種類は適宜選択でき、例えば、ローラにより加熱または加熱加圧する装置、オーブンドライヤー、遠赤外線ヒーター、乾熱乾燥機、熱風乾燥機、赤外線を照射し加熱できる装置などを用いた方法を採用できる。加熱装置による加熱温度は適宜選択するが、水分を蒸発可能であると共に、構成繊維などの構成成分が意図せず分解や変性しない温度であるように適宜調整する。なお、ウェブにバインダや接着繊維などの接着成分や架橋可能な樹脂が存在する場合は、加熱処理へ供することでバインダ接着や繊維接着を行っても、当該架橋可能な樹脂を架橋させてもよい。 The water flow entanglement web thus prepared may be subjected to the next step in a wet state by the water flow entanglement treatment, but the dry water flow is so that triboelectric charging is performed more efficiently. It is preferable to use the entangled web for the next step. A method of drying the water flow entangled web moistened by the water flow entanglement treatment can be appropriately selected, but a method of providing the web to a heating device, a method of drying by exposing to atmospheric pressure or reduced pressure, and the like can be adopted. The type of heating device can be selected as appropriate, and for example, a method using a device that heats or pressurizes with a roller, an oven dryer, a far-infrared heater, a dry heat dryer, a hot air dryer, a device that can irradiate and heat infrared rays, etc. is adopted. can. The heating temperature by the heating device is appropriately selected, but it is appropriately adjusted so that the water content can be evaporated and the constituent components such as constituent fibers are not unintentionally decomposed or denatured. If an adhesive component such as a binder or an adhesive fiber or a crosslinkable resin is present on the web, the binder may be bonded or the fiber may be bonded by subjecting the web to a heat treatment, or the crosslinkable resin may be crosslinked. ..
 本製造方法は(3)水流絡合ウェブを厚さ方向に変形させると共に、厚さ方向に変形させた後の水流絡合ウェブに対し、厚さ方向と垂直を成す方向へ張力を作用させることで、水流絡合ウェブの構成繊維同士を擦り合せる工程を有している。 In this manufacturing method, (3) the water flow entangled web is deformed in the thickness direction, and tension is applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. It has a step of rubbing the constituent fibers of the water flow entangled web.
 本発明にかかる摩擦帯電不織布の製造方法では、水流絡合ウェブを厚さ方向に変形させることで、水流絡合ウェブに含まれている摩擦帯電繊維同士を擦り合せ、水流絡合ウェブを帯電できる。水流絡合ウェブを厚さ方向に変形させる方法は適宜選択できるが、水流絡合ウェブへローラを作用させる方法、水流絡合ウェブを厚さ方向に変形可能なクリアランスへ供する方法などを採用できる。 In the method for producing a triboelectric nonwoven fabric according to the present invention, by deforming the water flow entangled web in the thickness direction, the triboelectric fibers contained in the water flow entangled web can be rubbed against each other to charge the water flow entangled web. .. The method of deforming the water flow entangled web in the thickness direction can be appropriately selected, but a method of applying a roller to the water flow entangled web, a method of providing the water flow entangled web with a clearance that can be deformed in the thickness direction, and the like can be adopted.
 具体例として、
・水流絡合ウェブの厚さよりも薄いクリアランスを有するように調整した、二本のローラ間へ水流絡合ウェブを供する態様、
・水流絡合ウェブの厚さと当該水流絡合ウェブを搬送する部材(例えば、搬送コンベア)の厚さを足した厚さよりも、薄いクリアランスを有するように調整した二本のローラ間へ、当該部材ごと水流絡合ウェブを供する態様、
・水流絡合ウェブの厚さよりも薄いクリアランスを有するように調整した、板や棒、搬送コンベアなどの部材と一本のローラなどが成すクリアランスへ水流絡合ウェブを供する態様、
・水流絡合ウェブの厚さと当該水流絡合ウェブを搬送する部材(例えば、搬送コンベア)の厚さを足した厚さよりも、薄いクリアランスを有するように調整した、板や棒、搬送コンベアなどの部材と一本のローラなどが成すクリアランスへ水流絡合ウェブを供する態様、
などを挙げることができる。
As a specific example
A mode in which a water flow entanglement web is provided between two rollers adjusted to have a clearance thinner than the thickness of the water flow entanglement web.
-The member between the two rollers adjusted to have a thinner clearance than the thickness of the water flow entangled web and the thickness of the member (for example, a transport conveyor) that conveys the water flow entangled web. A mode to provide a water flow entanglement web,
-A mode in which the water flow entanglement web is provided to the clearance formed by a member such as a plate, a rod, a conveyor, and a roller, which is adjusted to have a clearance thinner than the thickness of the water flow entanglement web.
-For plates, rods, conveyors, etc. adjusted to have a thinner clearance than the thickness of the water flow entangled web and the thickness of the member (for example, a conveyor) that conveys the water flow entangled web. A mode in which a water flow entanglement web is provided to the clearance formed by a member and a single roller, etc.
And so on.
 クリアランスの長さは水流絡合ウェブを厚さ方向に変形可能であればよく、その長さは適宜調整できるが、水流絡合ウェブの厚さの100%未満であるのが好ましく、80%以下であるのが好ましく、60%以下であるのが好ましく、40%以下であるのが好ましい。なお、本工程において、ゴムローラやポリウレタンコンベアなど表面に弾性部材を備えた変形容易な部材を用いて水流絡合ウェブを厚さ方向に変形させる場合には、クリアランスは0であってもよい。 The length of the clearance may be any as long as the water flow entangled web can be deformed in the thickness direction, and the length can be adjusted as appropriate, but it is preferably less than 100% of the thickness of the water flow entangled web, and is preferably 80% or less. It is preferably 60% or less, and preferably 40% or less. In this step, when the water flow entangled web is deformed in the thickness direction by using an easily deformable member having an elastic member on the surface such as a rubber roller or a polyurethane conveyor, the clearance may be 0.
 なお、ローラやコンベアなどの水流絡合ウェブを厚さ方向に変形させるため使用する加圧部材(以降、加圧部材と称することがある)の材質や、その表面の硬度など諸物性は、効率よく摩擦帯電不織布を製造できるよう、適宜選択する。 The material of the pressure member (hereinafter referred to as the pressure member) used to deform the water flow entangled web such as rollers and conveyors in the thickness direction, and various physical properties such as the hardness of the surface thereof are efficient. Select as appropriate so that a triboelectric non-woven fabric can be produced well.
 また、他の具体例として、
・ローラの表面に水流絡合ウェブを接触させると共に、ローラに接触する前の水流絡合ウェブの搬送方向と、ローラに接触した後の水流絡合ウェブの搬送方向を変化させることで、当該接触している部分において水流絡合ウェブの厚さ方向へ力が作用するようにする態様、などを挙げることができる。
 なお、効率よく摩擦帯電不織布を製造できるよう本工程において、ローラの表面に接触している水流絡合ウェブにおけるローラ側と反対側の主面に対し、別のローラや搬送コンベアなどを用いて圧力を作用させてもよい。また、当該ローラが水流絡合ウェブを搬送する速度と、当該別のローラや当該搬送コンベアが水流絡合ウェブを搬送する速度との間に、速度差を設けてもよい。
Also, as another specific example,
-The contact is made by bringing the water entangled web into contact with the surface of the roller and changing the transport direction of the water entangled web before contacting the roller and the transport direction of the water entangled web after contacting the roller. Examples thereof include a mode in which a force acts in the thickness direction of the water flow entangled web in the portion where the water flow is entangled.
In this step, pressure is applied to the main surface of the water flow entangled web in contact with the surface of the roller on the opposite side to the roller side by using another roller or a conveyor so that the triboelectric nonwoven fabric can be efficiently manufactured. May act. Further, a speed difference may be provided between the speed at which the roller conveys the water flow entangled web and the speed at which the other roller or the transfer conveyor conveys the water flow entangled web.
 ローラの、回転の有無や回転速度、ならびに、回転方向は適宜選択できる。例えば、二本のローラ間へ水流絡合ウェブを供する場合、両ローラ間で回転の有無や回転速度、ならびに、回転方向は互いに異なる組み合わせであってもよい。また、搬送コンベアが水流絡合ウェブを搬送する速度は適宜調整できる。 The presence or absence of rotation, the rotation speed, and the rotation direction of the roller can be selected as appropriate. For example, when a water flow entangled web is provided between two rollers, the presence / absence of rotation, the rotation speed, and the rotation direction between the two rollers may be different combinations. Further, the speed at which the conveyor conveys the water flow entangled web can be appropriately adjusted.
 なお、水流絡合ウェブの厚さ方向へ作用させる圧力や、搬送する際に水流絡合ウェブへ作用している張力の大きさは、求める摩擦帯電不織を製造できるよう適宜調整するが、水流絡合ウェブに亀裂や破断あるいは意図しない物性の変化が発生しないよう適宜調整する。 The pressure acting in the thickness direction of the water flow entangled web and the magnitude of the tension acting on the water flow entangled web during transportation are appropriately adjusted so that the desired triboelectric non-woven fabric can be produced. Adjust appropriately so that the entangled web does not crack, break, or change unintended physical properties.
 本発明にかかる摩擦帯電不織布の製造方法では、厚さ方向に変形させた後の水流絡合ウェブに対し、水流絡合ウェブの厚さ方向と垂直を成す方向へ張力を作用させる。本工程によって、水流絡合ウェブに含まれている摩擦帯電繊維同士をさらに擦り合せ、水流絡合ウェブをより帯電できる。なお、本発明でいう「厚さ方向と垂直を成す方向へ張力を作用させる」とは、水流絡合ウェブが加圧部材と接触する前の水流絡合ウェブへ作用している、水流絡合ウェブの厚さ方向と垂直を成す方向へ作用している張力よりも、水流絡合ウェブが加圧部材と接触した後に水流絡合ウェブへ作用している、水流絡合ウェブの厚さ方向と垂直を成す方向へ作用している張力の方が大きいことを意味する。 In the method for manufacturing a triboelectric nonwoven fabric according to the present invention, tension is applied to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction of the water flow entangled web. By this step, the triboelectric fibers contained in the water flow entangled web can be further rubbed against each other to further charge the water flow entangled web. In the present invention, "tension is applied in a direction perpendicular to the thickness direction" means that the water flow entanglement web acts on the water flow entanglement web before it comes into contact with the pressurizing member. Rather than the tension acting in the direction perpendicular to the thickness direction of the web, the thickness direction of the water entanglement web acting on the water entanglement web after the water entanglement web comes into contact with the pressurizing member. It means that the tension acting in the vertical direction is larger.
 加圧部材と接触した後の水流絡合ウェブに対し、厚さ方向と垂直を成す方向へ張力を作用させる方法は適宜選択できる。例えば、
・加圧部材と接触している時点での水流絡合ウェブの搬送速度よりも、高速で搬送可能な速度で回転する別のローラや搬送コンベアにより、加圧部材に接触した後の水流絡合ウェブを搬送あるいは巻取る方法、
・加圧部材に接触した後の水流絡合ウェブへ、水流絡合ウェブの厚さ方向と垂直を成す方向へ張力を作用させた状態のまま、水流絡合ウェブを打ち抜くなど次の工程へ供する方法、
などを採用できる。
A method of applying tension to the water flow entangled web after contact with the pressurizing member in a direction perpendicular to the thickness direction can be appropriately selected. for example,
・ Water flow entanglement after contact with the pressurizing member by another roller or conveyor that rotates at a speed that can be conveyed at a higher speed than the transfer speed of the web at the time of contact with the pressurizing member. How to transport or wind the web,
・ Punch the water entangled web after it comes into contact with the pressurizing member while applying tension to the water entangled web in the direction perpendicular to the thickness direction of the water entangled web. Method,
Etc. can be adopted.
 なお、加圧部材を作用させるまでの水流絡合ウェブの搬送方向と、加圧部材を作用させた後の水流絡合ウェブの搬送方向は、同一方向であっても異なる方向であってもよいが、互いに異なる方向であると水流絡合ウェブの厚さ方向や厚さ方向と垂直を成す方向へ、より効果的に張力を作用でき、帯電量に富む摩擦帯電不織布を製造でき好ましい。 The transport direction of the water flow entangled web until the pressurizing member is applied and the transport direction of the water flow entangled web after the pressurizing member is acted on may be the same direction or different directions. However, when the directions are different from each other, tension can be applied more effectively in the thickness direction of the water flow entangled web and the direction perpendicular to the thickness direction, and a triboelectric non-woven fabric having a large amount of charge can be produced, which is preferable.
 なお、加圧部材に接触した後の水流絡合ウェブに対し作用させる張力の大きさは、求める摩擦帯電不織布を製造できるよう適宜調整するが、水流絡合ウェブに亀裂や破断あるいは意図しない物性の変化が発生しないよう適宜調整する。 The magnitude of the tension applied to the water flow entangled web after contacting the pressure member is appropriately adjusted so that the desired triboelectric nonwoven fabric can be produced, but the water flow entangled web is cracked, broken or has unintended physical properties. Adjust appropriately so that no change occurs.
 本発明の製造方法により、構成繊維である摩擦帯電繊維同士が厚さ方向(Z軸方向である1次元)のみならず、厚さ方向と搬送方向(Z軸方向とX軸方向)の2次元方向、あるいは、厚さ方向と搬送方向ならびに厚さ方向と垂直をなす搬送方向以外の方向(Z軸方向とX軸方向ならびにY軸方向)の3次元方向で、摩擦帯電繊維同士が互いに効率よく擦れ合い摩擦帯電がなされる。そのため、厚さが1.2mm以下と薄手であるにも関わらず帯電量に富みフィルタ性能に優れる摩擦帯電不織布を実現できる。 According to the manufacturing method of the present invention, the frictionally charged fibers, which are constituent fibers, are not only in the thickness direction (one dimension in the Z-axis direction) but also in the thickness direction and the transport direction (Z-axis direction and the X-axis direction). Friction-charged fibers efficiently interact with each other in a three-dimensional direction (Z-axis direction, X-axis direction, and Y-axis direction) other than the transport direction (Z-axis direction, X-axis direction, and Y-axis direction) that are perpendicular to the thickness direction, the transfer direction, and the thickness direction. Rubbing and friction charging are performed. Therefore, it is possible to realize a triboelectric non-woven fabric having a large amount of charge and excellent filter performance even though the thickness is as thin as 1.2 mm or less.
 なお、本発明者らが検討を行った結果、ニードルパンチ処理を行うことで調製した摩擦帯電不織布をカレンダー処理へ供し厚さを薄くすることを試みたが、一時的に厚さは薄くできるもののカレンダー処理では繊維の絡合状態が変わらないため経時と共に厚さが元に戻るものであった。 As a result of the study by the present inventors, an attempt was made to reduce the thickness of the triboelectric non-woven fabric prepared by performing the needle punching process by subjecting it to the calendar process, although the thickness can be temporarily reduced. In the calendar processing, the entangled state of the fibers did not change, so the thickness returned to the original with time.
 このようにして製造した摩擦帯電不織布は単体でフィルタ材として使用可能であるが、摩擦帯電不織布にカバー材や支持体、および/または、プレフィルタやバックアップフィルタなどを積層してフィルタ材を構成してもよい。カバー材や支持体、および/または、プレフィルタやバックアップフィルタは公知のものを採用でき、例えば、布帛あるいは多孔フィルムや通気性発泡体などを採用できる。なお、例示したものと摩擦帯電不織布とをただ重ね合わせてなる積層フィルタ材であっても、バインダやホットメルトウェブあるいは繊維接着によって、ヒートシールや超音波溶着などの接着処理へ供することによって層間接着してなる積層フィルタ材であってもよい。 The triboelectric non-woven fabric produced in this way can be used as a filter material by itself, but a cover material, a support, and / or a pre-filter, a backup filter, etc. are laminated on the triboelectric non-woven fabric to form a filter material. You may. As the cover material, the support, and / or the pre-filter and the backup filter, known ones can be adopted, and for example, a cloth, a porous film, a breathable foam, or the like can be adopted. Even if the laminated filter material is made by simply laminating the illustrated material and the triboelectric non-woven fabric, it can be bonded by using a binder, hot melt web, or fiber bonding to perform bonding treatment such as heat sealing or ultrasonic welding. It may be a laminated filter material made of.
 また、摩擦帯電不織布および摩擦帯電不織布を備えてなるフィルタ材の外形は適宜調整でき、特に限定するものではないが、例えば、二次元的なシート形状、三次元的なコルゲート形状やプリーツ形状、円筒形状などであることができる。なお、摩擦帯電不織布および摩擦帯電不織布を備えてなるフィルタ材は切り抜き部、打ち抜き部、又は切れ込み部を有することができる。 Further, the outer shape of the filter material provided with the triboelectric nonwoven fabric and the triboelectric nonwoven fabric can be appropriately adjusted and is not particularly limited, but for example, a two-dimensional sheet shape, a three-dimensional corrugated shape, a pleated shape, or a cylinder. It can be a shape or the like. The filter material provided with the triboelectric nonwoven fabric and the triboelectric nonwoven fabric may have a cutout portion, a punched portion, or a notch portion.
 以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例における評価方法は次の通りである。 Examples of the present invention will be described below, but the present invention is not limited to the following examples. The evaluation method in the following examples is as follows.
(参考例)
 表1中に記載した構成を有するポリプロピレン繊維70質量%とアクリル系繊維30質量%とを均一に混ぜ合わせ、カード機へ供することで一方向ウェブとクロスレイウェブを調製した。そして、一方向ウェブとクロスレイウェブを積層してクリスクロスレイウェブを調製した。
 クリスクロスレイウェブの一方の主面側(A)からもう一方の主面側(B)へ向け水流絡合処理(水圧:3MPa、工程搬送速度:5m/min)を施した。その後、同条件で再度、クリスクロスレイウェブのもう一方の主面側(B)から一方の主面側(A)へ向け水流絡合処理(水圧:3MPa、工程搬送速度:5m/min)を施した。そして、水流絡合処理を施したクリスクロスレイウェブをオーブンドライヤー(加熱温度:80℃)へ供することで、クリスクロスレイウェブ中に含まれている水を除去した。
 このようにして水流絡合ウェブを調製した。なお、調製した水流絡合ウェブは、一方向へ繊維が配向している繊維層Aと、上記一方向と異なる方向へ繊維が配向している繊維層Bとが積層してなるウェブであった。
(Reference example)
A unidirectional web and a crosslay web were prepared by uniformly mixing 70% by mass of polypropylene fibers having the configurations shown in Table 1 and 30% by mass of acrylic fibers and feeding them to a card machine. Then, a Chris Crossley web was prepared by laminating a one-way web and a crosslay web.
A water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) was performed from one main surface side (A) to the other main surface side (B) of the Chris Rossley web. Then, under the same conditions, the water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) is performed again from the other main surface side (B) of the Chris Crosslay web to the one main surface side (A). provided. Then, the water contained in the Chris Crosley web was removed by subjecting the Chris Crosley web subjected to the water flow entanglement treatment to an oven dryer (heating temperature: 80 ° C.).
In this way, a water flow entangled web was prepared. The prepared water flow entangled web was a web formed by laminating a fiber layer A in which fibers are oriented in one direction and a fiber layer B in which fibers are oriented in a direction different from the above one direction. ..
(比較例1)
 参考例で調製した水流絡合ウェブに対し、一方の主面側(A)からもう一方の主面側(B)へ向け、針密度50本/cmの条件下でニードルパンチ処理を施し、摩擦帯電した。
 このようにして、摩擦帯電不織布を調製した。
(Comparative Example 1)
The water flow entangled web prepared in the reference example was subjected to needle punching from one main surface side (A) to the other main surface side (B) under the condition of a needle density of 50 lines / cm 2. Triboelectrically charged.
In this way, a triboelectric non-woven fabric was prepared.
(比較例2)
 使用するクリスクロスレイウェブの目付を増量したこと以外は、参考例と同様にして水流絡合ウェブを調製した。このようにして調製した水流絡合ウェブを使用したこと以外は比較例1と同様にして、摩擦帯電不織布を調製した。
(Comparative Example 2)
A water flow entangled web was prepared in the same manner as in the reference example, except that the basis weight of the Chris Crosley web used was increased. A triboelectric nonwoven fabric was prepared in the same manner as in Comparative Example 1 except that the water flow entangled web prepared in this manner was used.
(実施例1)
 参考例で調製した水流絡合ウェブを、表面がポリウレタン素材からなり変形容易な搬送コンベア上に乗せた状態で、水流絡合ウェブを構成する繊維層Aの繊維配向と搬送方向が平行をなすようにして、搬送速度25.0m/minで搬送した。そして、水流絡合ウェブを当該搬送コンベアとのクリアランスを0mmに調整した金属ローラ(ローラの回転方向:水流絡合ウェブを搬送方向下流側へ搬送可能となる回転方向)と接触させることで、水流絡合ウェブを厚さ方向に変形させ摩擦帯電した。このとき、水流絡合ウェブと接する搬送コンベアと金属ローラ間に速度差(搬送コンベアによる水流絡合ウェブの搬送速度:25.0m/min、金属ローラ表面における移動速度:24.5m/min)を設けることで、摩擦帯電繊維同士の摩擦をより促進した。
 次いで、金属ローラに接触した後の水流絡合ウェブを、水流絡合ウェブの搬送方向における下流側に向けて搬送速度25.5m/minで搬送した。このようにして、水流絡合ウェブに対し厚さ方向と垂直を成す方向へ張力を作用させることで、水流絡合ウェブの構成繊維同士を擦り合せ、更に摩擦帯電した。
 このようにして、摩擦帯電不織布を調製した。
(Example 1)
With the water flow entangled web prepared in the reference example placed on a transport conveyor whose surface is made of polyurethane material and is easily deformed, the fiber orientation of the fiber layer A constituting the water flow entangled web and the transport direction are parallel to each other. Then, it was conveyed at a transfer speed of 25.0 m / min. Then, the water flow is brought into contact with the metal roller (roller rotation direction: rotation direction in which the water flow entanglement web can be conveyed downstream in the transfer direction) whose clearance with the transfer conveyor is adjusted to 0 mm. The entangled web was deformed in the thickness direction and triboelectrically charged. At this time, a speed difference (conveying speed of the water flow entangled web by the transport conveyor: 25.0 m / min, moving speed on the surface of the metal roller: 24.5 m / min) is generated between the conveyor in contact with the water flow entangled web and the metal roller. By providing it, the friction between the triboelectric fibers is further promoted.
Next, the water flow entangled web after contacting the metal roller was conveyed toward the downstream side in the transport direction of the water flow entangled web at a transport speed of 25.5 m / min. In this way, by applying tension to the water flow entangled web in a direction perpendicular to the thickness direction, the constituent fibers of the water flow entangled web were rubbed against each other and further triboelectrically charged.
In this way, a triboelectric non-woven fabric was prepared.
(実施例2)
 使用するウェブの目付を増量したこと以外は、参考例と同様にして水流絡合ウェブを調製した。このようにして調製した水流絡合ウェブを使用したこと以外は実施例1と同様にして、摩擦帯電不織布を調製した。
(Example 2)
A water flow entangled web was prepared in the same manner as in the reference example, except that the basis weight of the web used was increased. A triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web prepared in this manner was used.
 上述のようにして製造した、参考例の水流絡合ウェブと各摩擦帯電不織布の諸物性を表1に示す。なお、以降の表中では非親水性油剤であるアルキルリン酸エステルが付与されている繊維にはNH印を記載し、親水性油剤が付与されている繊維にはH印を記載した。また、水流絡合ウェブあるいは摩擦帯電不織布を構成している繊維が含む油剤質量の百分率を「油剤の百分率(質量%)」欄に記載した。
 また、通気抵抗(単位:Pa)と捕集効率(単位:%)は、参考例の水流絡合ウェブと各摩擦帯電不織布を以下の測定方法へ供することで求めた。更に、求められた通気抵抗(単位:Pa)と捕集効率(単位:%)の値から、フィルタ性能を評価可能なQF値を算出した。
Table 1 shows various physical properties of the water flow entangled web of the reference example and each triboelectric nonwoven fabric manufactured as described above. In the following tables, the fibers to which the alkylphosphate ester, which is a non-hydrophilic oil agent, is given are marked with the NH mark, and the fibers to which the hydrophilic oil agent is given are marked with the H mark. In addition, the percentage of the oil agent mass contained in the fibers constituting the water flow entangled web or the triboelectric non-woven fabric is described in the "percentage of the oil agent (mass%)" column.
The ventilation resistance (unit: Pa) and the collection efficiency (unit:%) were determined by using the water flow entangled web of the reference example and each triboelectric non-woven fabric for the following measurement methods. Further, a QF value capable of evaluating the filter performance was calculated from the obtained values of the aeration resistance (unit: Pa) and the collection efficiency (unit:%).
(通気抵抗と捕集効率の測定方法)
 参考例の水流絡合ウェブと各摩擦帯電不織布の各々から、試験片を採取した。そして、採取した試験片を柴田科学株式会社製の測定装置「AP-9000」に装着して、捕集効率および通気抵抗を測定した。なお、測定に際し、試験片におけるウェブの一方の主面側(A)由来の主面側が、測定装置の上流側に面するようにして試験片を装着した。
 まず、試験片の有効ろ過面積124cmあたり毎分40リットルとなるよう試験流量を調整(例えば、有効ろ過面積が12.4cmの試験片へ供給する試験流量は毎分4リットル)し、試験片における上流と下流との差圧を測定し、測定された差圧から試験片の通気抵抗(単位:Pa)を求めた。
(Measurement method of ventilation resistance and collection efficiency)
Specimens were collected from each of the water flow entangled webs and each triboelectric non-woven fabric of the reference example. Then, the collected test piece was attached to a measuring device "AP-9000" manufactured by Sibata Scientific Technology Co., Ltd., and the collection efficiency and the ventilation resistance were measured. At the time of measurement, the test piece was attached so that the main surface side derived from one main surface side (A) of the web in the test piece faces the upstream side of the measuring device.
First, the test flow rate is adjusted so that the effective filtration area of the test piece is 40 liters per minute per 124 cm 2 (for example, the test flow rate supplied to the test piece having an effective filtration area of 12.4 cm 2 is 4 liters per minute). The differential pressure between the upstream and the downstream in the piece was measured, and the ventilation resistance (unit: Pa) of the test piece was obtained from the measured differential pressure.
 次いで、試験片の有効ろ過面積124cmあたり毎分30リットルとなるよう試験流量を調整(例えば、有効ろ過面積が12.4cmの試験片へ供給する試験流量は毎分3リットル)すると共に、塩化ナトリウム粒子(粒径分布の中央値:0.06~0.10μm、幾何標準偏差:1.8以下)が、濃度50mg/m以下(濃度変動:±15%以下)含有されている試験気流を、試験片の上流側へ供給した。そして、試験気流を1分間供給した後の、試験片における上流側と下流側に存在する当該塩化ナトリウム粒子の濃度を、光散乱式粉じん濃度計を用いて測定し、測定された両濃度から試験片に捕集されている塩化ナトリウム粒子の濃度を算出した。そして、試験片の上流側へ供給された塩化ナトリウム粒子の濃度に占める、試験片に捕集されている塩化ナトリウム粒子の濃度の百分率を算出し、その値を試験片の捕集効率(単位:%)とした。 Next, the test flow rate is adjusted so that the effective filtration area of the test piece is 30 liters per minute at 124 cm 2 (for example, the test flow rate supplied to the test piece having an effective filtration area of 12.4 cm 2 is 3 liters per minute). Test containing sodium chloride particles (median particle size distribution: 0.06 to 0.10 μm, geometric standard deviation: 1.8 or less) at a concentration of 50 mg / m 3 or less (concentration variation: ± 15% or less) The airflow was supplied to the upstream side of the test piece. Then, after the test air flow was supplied for 1 minute, the concentrations of the sodium chloride particles present on the upstream side and the downstream side of the test piece were measured using a light scattering type dust densitometer, and the test was performed from both of the measured concentrations. The concentration of sodium chloride particles collected in the pieces was calculated. Then, the percentage of the concentration of the sodium chloride particles collected in the test piece to the concentration of the sodium chloride particles supplied to the upstream side of the test piece is calculated, and the value is used as the collection efficiency of the test piece (unit::). %).
 なお、通気抵抗は低いほど、マスク用フィルタであれば呼吸が楽になり、エアフィルタであればエネルギーや設備負荷を小さくできるなど、フィルタ性能に富むことを意味する。そのため、通気抵抗は50Pa以下が好ましく、40Pa以下が好ましく、30Pa以下が好ましく、20Pa以下が好ましく、10Pa以下が好ましく、5Pa以下であるのが最も好ましい。下限値も適宜調整できるものであるが、0.5Pa以上が現実的である。 It should be noted that the lower the ventilation resistance, the easier it is to breathe if it is a mask filter, and if it is an air filter, it means that the energy and equipment load can be reduced, and the filter performance is rich. Therefore, the aeration resistance is preferably 50 Pa or less, preferably 40 Pa or less, preferably 30 Pa or less, preferably 20 Pa or less, preferably 10 Pa or less, and most preferably 5 Pa or less. The lower limit can be adjusted as appropriate, but 0.5 Pa or more is realistic.
 また、捕集効率は、高いほど大気塵や花粉などのろ過性能に優れることを意味する。そのため、捕集効率は50%以上が好ましく、60%以上が好ましく、70%以上が好ましく、80%以上が好ましく、90%以上が好ましく、95以上であるのが最も好ましい。 In addition, the higher the collection efficiency, the better the filtration performance of atmospheric dust and pollen. Therefore, the collection efficiency is preferably 50% or more, preferably 60% or more, preferably 70% or more, preferably 80% or more, preferably 90% or more, and most preferably 95 or more.
(QF値の算出方法)
 上述のようにして算出された通気抵抗(単位:Pa)と捕集効率(単位:%)の値を次式へ代入することで、QF値(単位なし)を算出した。なお、QF値が高いほど、通気抵抗値の低さと捕集効率の高さのバランスに優れ、フィルタ性能に優れることを意味する。
QF値=-Ln(1-A/100)/B
Ln:自然対数
A:捕集効率(単位:%)
B:通気抵抗(単位:Pa)
(Calculation method of QF value)
The QF value (without unit) was calculated by substituting the values of the aeration resistance (unit: Pa) and the collection efficiency (unit:%) calculated as described above into the following equation. It should be noted that the higher the QF value, the better the balance between the low ventilation resistance value and the high collection efficiency, and the better the filter performance.
QF value = -Ln (1-A / 100) / B
Ln: Natural logarithm A: Collection efficiency (unit:%)
B: Ventilation resistance (unit: Pa)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 参考例の水流絡合ウェブと比較例1で調製した摩擦帯電不織布の厚さを比較した結果から、摩擦帯電繊維同士を擦り合せるため摩擦帯電繊維が混在したウェブへニードルパンチ処理を行うと、当該ウェブの厚さが倍増することが判明した。更に、参考例の水流絡合ウェブと比較例1で調製した摩擦帯電不織布の最大点強度を比較した結果から、ニードルパンチ処理を行うと強度が大きく低下することが判明した。
 なお、このような強度が弱い摩擦帯電不織布(例えば、最大点強度が43.0N/50mm以下の摩擦帯電不織布)では、例えば、張力を作用させた状態で打ち抜く、プリーツなど立体形状を有するように加工するなどエアフィルタやマスクへ加工する際に破断や亀裂が発生して、調製したエアフィルタやマスクの濾過性能を低下させる原因となる恐れがある。
From the result of comparing the thickness of the water flow entangled web of the reference example and the triboelectric non-woven fabric prepared in Comparative Example 1, a needle punching process was performed on the web in which the triboelectric fibers were mixed in order to rub the triboelectric fibers against each other. It turns out that the thickness of the web doubles. Furthermore, from the results of comparing the maximum point strengths of the water flow entangled web of Reference Example and the triboelectric nonwoven fabric prepared in Comparative Example 1, it was found that the strength was significantly reduced when the needle punching treatment was performed.
It should be noted that such a friction-charged nonwoven fabric having a weak strength (for example, a friction-charged nonwoven fabric having a maximum point strength of 43.0 N / 50 mm or less) has a three-dimensional shape such as pleats, which is punched in a state where tension is applied. When processing into an air filter or mask such as processing, breakage or cracks may occur, which may cause deterioration of the filtration performance of the prepared air filter or mask.
 そして、比較例1と比較例2で調製した摩擦帯電不織布を比較した結果から、薄手の摩擦帯電不織布(例えば、厚さが1.2mm以下の摩擦帯電不織布)を調製するためには、摩擦帯電繊維が混在したウェブの目付を軽くする必要があることが判明した。しかし、比較例1と比較例2で調製した摩擦帯電不織布の最大点強度を比較した結果から、摩擦帯電繊維が混在した目付が軽いウェブへニードルパンチ処理を行うことで調製された摩擦帯電不織布は、強度が大きく低下することが判明した。 Then, from the result of comparing the triboelectric nonwoven fabrics prepared in Comparative Example 1 and Comparative Example 2, in order to prepare a thin triboelectric nonwoven fabric (for example, a triboelectric nonwoven fabric having a thickness of 1.2 mm or less), it is frictionally charged. It turned out that it was necessary to lighten the texture of the web mixed with fibers. However, from the results of comparing the maximum point strengths of the triboelectric nonwoven fabrics prepared in Comparative Example 1 and Comparative Example 2, the triboelectric nonwoven fabric prepared by performing needle punching on a web having a light texture mixed with triboelectric fibers is , It turned out that the strength is greatly reduced.
 以上から、構成樹脂の異なる2種類以上の繊維が混在した摩擦帯電不織布において、従来技術を用いる限り、薄手(具体的には、厚さが1.2mm以下)であると共に強度に優れる(具体的には、最大点強度が43.0N/50mmよりも高い)摩擦帯電不織布を調製できないものであった。 From the above, in a triboelectric nonwoven fabric in which two or more types of fibers having different constituent resins are mixed, as long as the prior art is used, it is thin (specifically, the thickness is 1.2 mm or less) and has excellent strength (specifically). It was not possible to prepare a triboelectric non-woven fabric (with a maximum point strength higher than 43.0 N / 50 mm).
 上述の知見に対し、実施例1~2で調製した摩擦帯電不織布は、厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高いという物性を有する摩擦帯電不織布であった。この理由として、本願発明にかかる摩擦帯電不織布の製造方法では、ウェブへニードルパンチ処理を施すことなく、水流絡合ウェブの構成繊維同士を擦り合せて摩擦帯電できるため、薄手であると共に強度に優れる摩擦帯電不織布を実現できたものである。 In contrast to the above findings, the triboelectric nonwoven fabrics prepared in Examples 1 and 2 are triboelectric nonwoven fabrics having physical properties such that the thickness is 1.2 mm or less and the maximum point strength is higher than 43.0 N / 50 mm. rice field. The reason for this is that in the method for producing a triboelectric nonwoven fabric according to the present invention, the constituent fibers of the water flow entangled web can be rubbed against each other to be triboelectricly charged without performing needle punching on the web, so that the web is thin and has excellent strength. It was possible to realize a triboelectric non-woven fabric.
(実施例3)
 表2中に記載した構成を有するアクリル系繊維を採用したこと以外は、参考例と同様にして、水流絡合ウェブを調製した。このようにして調製した水流絡合ウェブを使用したこと以外は、実施例1と同様にして、摩擦帯電不織布を調製した。
(Example 3)
A water flow entangled web was prepared in the same manner as in the reference example except that the acrylic fiber having the composition shown in Table 2 was adopted. A triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web thus prepared was used.
(実施例4)
 表2中に記載した構成を有するポリプロピレン繊維を採用したこと以外は、参考例と同様にして、水流絡合ウェブを調製した。このようにして調製した水流絡合ウェブを使用したこと以外は、実施例1と同様にして、摩擦帯電不織布を調製した。
 上述のようにして製造した、各摩擦帯電不織布の諸物性を表2に示す。なお、表2では理解し易いよう、実施例1の結果も併せて記載した。

(Example 4)
A water flow entangled web was prepared in the same manner as in the reference example except that polypropylene fibers having the configurations shown in Table 2 were adopted. A triboelectric nonwoven fabric was prepared in the same manner as in Example 1 except that the water flow entangled web thus prepared was used.
Table 2 shows various physical properties of each triboelectric nonwoven fabric manufactured as described above. In Table 2, the results of Example 1 are also shown for easy understanding.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002


 実施例3~4で調製した摩擦帯電不織布は、いずれも厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高いという物性を有する摩擦帯電不織布であった。このことから、本発明によって、繊度や繊維長が異なる様々な摩擦帯電繊維を採用した場合であっても、「厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高い」という物性を有する摩擦帯電不織布を実現できるものであった。 The triboelectric nonwoven fabrics prepared in Examples 3 to 4 were all triboelectric nonwoven fabrics having a thickness of 1.2 mm or less and a maximum point strength of more than 43.0 N / 50 mm. From this, according to the present invention, even when various triboelectric fibers having different fineness and fiber length are adopted, "the thickness is 1.2 mm or less and the maximum point strength is more than 43.0 N / 50 mm". It was possible to realize a triboelectric non-woven fabric having the physical characteristics of "high".
(実施例5)
 表3中に記載した構成を有するポリプロピレン繊維とアクリル系繊維を採用したこと以外は、参考例と同様にして水流絡合ウェブを調製した。
 そして水流絡合ウェブを、水流絡合ウェブを構成する繊維層Aの繊維配向と搬送方向が平行をなすようにして、表面が金属素材からなるカレンダーロール(回転方向:水流絡合ウェブを搬送方向下流側へ搬送可能となる回転方向、線圧100kg/cmの条件で水流絡合ウェブを加圧)へ供し、厚さ方向に変形させ摩擦帯電した。そして、カレンダーロールを通過した直後から、水流絡合ウェブを搬送方向に張力(1.7N/50mm)を掛けることで、摩擦帯電繊維同士の摩擦をより促進した。
 このようにして、水流絡合ウェブに対し厚さ方向と垂直を成す方向へ張力を作用させることで、水流絡合ウェブの構成繊維同士を擦り合せ、更に摩擦帯電した。このようにして、摩擦帯電不織布を調製した。
(Example 5)
A water flow entangled web was prepared in the same manner as in the reference example, except that polypropylene fibers and acrylic fibers having the configurations shown in Table 3 were adopted.
Then, the water flow entangled web is placed in a calendar roll whose surface is made of a metal material so that the fiber orientation of the fiber layer A constituting the water flow entangled web is parallel to the transport direction (rotation direction: transport direction of the water flow entangled web). The water flow entangled web was pressurized under the conditions of a rotation direction capable of transporting to the downstream side and a linear pressure of 100 kg / cm), deformed in the thickness direction, and frictionally charged. Immediately after passing through the calendar roll, tension (1.7 N / 50 mm) was applied to the water flow entangled web in the transport direction to further promote friction between the triboelectric fibers.
In this way, by applying tension to the water flow entangled web in a direction perpendicular to the thickness direction, the constituent fibers of the water flow entangled web were rubbed against each other and further triboelectrically charged. In this way, a triboelectric non-woven fabric was prepared.
(実施例6)
 線圧60kg/cmの条件で水流絡合ウェブを加圧したこと以外は、実施例5と同様にして摩擦帯電不織布を調製した。
(Example 6)
A triboelectric nonwoven fabric was prepared in the same manner as in Example 5 except that the water flow entangled web was pressurized under the condition of a linear pressure of 60 kg / cm.
(実施例7)
 表3中に記載した構成を有するポリプロピレン繊維70質量%とアクリル系繊維30質量%とを均一に混ぜ合わせ、カード機へ供することで一方向ウェブを調製した。
 一方向ウェブの一方の主面側(A)からもう一方の主面側(B)へ向け水流絡合処理(水圧:3MPa、工程搬送速度:5m/min)を施した。その後、同条件で再度、一方向ウェブのもう一方の主面側(B)から一方の主面側(A)へ向け水流絡合処理(水圧:3MPa、工程搬送速度:5m/min)を施した。そして、水流絡合処理を施した一方向ウェブをオーブンドライヤー(加熱温度:80℃)へ供することで、一方向ウェブ中に含まれている水を除去した。
 このようにして水流絡合ウェブを調製した。なお、調製した水流絡合ウェブは、一方向へ繊維が配向している繊維層Aのみからなるウェブであった。
 このようにして調製した水流絡合ウェブを使用したこと以外は、実施例5と同様にして摩擦帯電不織布を調製した。
(Example 7)
A unidirectional web was prepared by uniformly mixing 70% by mass of polypropylene fibers having the configurations shown in Table 3 and 30% by mass of acrylic fibers and feeding them to a card machine.
A water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) was performed from one main surface side (A) of the one-way web to the other main surface side (B). Then, under the same conditions, water flow entanglement treatment (water pressure: 3 MPa, process transfer speed: 5 m / min) is performed again from the other main surface side (B) of the one-way web to the one main surface side (A). bottom. Then, the water contained in the one-way web was removed by subjecting the one-way web subjected to the water flow entanglement treatment to an oven dryer (heating temperature: 80 ° C.).
In this way, a water flow entangled web was prepared. The prepared water flow entangled web was a web composed of only the fiber layer A in which the fibers were oriented in one direction.
A triboelectric nonwoven fabric was prepared in the same manner as in Example 5, except that the water flow entangled web thus prepared was used.
(実施例8)
 表3中に記載した構成を有するポリプロピレン繊維とアクリル系繊維を採用したこと以外は、参考例と同様にして、水流絡合ウェブを調製した。このようにして調製した水流絡合ウェブを使用したこと以外は、実施例5と同様にして、摩擦帯電不織布を調製した。
 上述のようにして製造した、各摩擦帯電不織布の諸物性を表3に示す。

(Example 8)
A water flow entangled web was prepared in the same manner as in the reference example except that polypropylene fibers and acrylic fibers having the configurations shown in Table 3 were adopted. A triboelectric nonwoven fabric was prepared in the same manner as in Example 5, except that the water flow entangled web thus prepared was used.
Table 3 shows various physical properties of each triboelectric nonwoven fabric manufactured as described above.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003


 実施例5~8で調製した摩擦帯電不織布は、いずれも厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高いという物性を有する摩擦帯電不織布であった。 The triboelectric nonwoven fabrics prepared in Examples 5 to 8 were all triboelectric nonwoven fabrics having a thickness of 1.2 mm or less and a maximum point strength of more than 43.0 N / 50 mm.
 更に、実施例5~8を比較した結果から、以下のことが判明した。
・実施例5と実施例6を比較した結果から、見掛け密度が0.15g/cm未満(より好ましくは0.12g/cm以下)であることによって、通気抵抗が低い摩擦帯電不織布を提供できることが判明した。
・実施例5と実施例7を比較した結果から、一方向へ繊維が配向している繊維層Aと、上記一方向と異なる方向へ繊維が配向している繊維層Bとが積層してなる構造を有することによって、捕集効率に富む摩擦帯電不織布を提供できることが判明した。
・実施例5と実施例8を比較した結果から、摩擦帯電不織布を構成している摩擦帯電繊維が非親水性油剤を含んでいることによって、捕集効率に富む摩擦帯電不織布を提供できることが判明した。
 なお、以上のようにして調製した実施例7以外の各摩擦帯電不織布は、一方向へ繊維が配向している繊維層Aと、上記一方向と異なる方向へ繊維が配向している繊維層Bとが積層してなる構造を有していた。また、ニードルパンチ処理を施すことなく製造されるため、各実施例で調製した摩擦帯電不織布は、ニードルパンチ処理による貫通孔などのニードル処理由来の穴を有していないものであった。
Further, from the results of comparing Examples 5 to 8, the following was found.
-From the results of comparing Example 5 and Example 6, a triboelectric non-woven fabric having a low ventilation resistance is provided because the apparent density is less than 0.15 g / cm 3 (more preferably 0.12 g / cm 3 or less). It turned out that it could be done.
From the result of comparing Example 5 and Example 7, the fiber layer A in which the fibers are oriented in one direction and the fiber layer B in which the fibers are oriented in a direction different from the one direction are laminated. It has been found that by having the structure, it is possible to provide a triboelectric non-woven fabric having high collection efficiency.
From the results of comparing Examples 5 and 8, it was found that the triboelectric fibers constituting the triboelectric nonwoven fabric contain a non-hydrophilic oil agent, so that the triboelectric nonwoven fabric with high collection efficiency can be provided. bottom.
In each triboelectric nonwoven fabric other than Example 7 prepared as described above, the fiber layer A in which the fibers are oriented in one direction and the fiber layer B in which the fibers are oriented in a direction different from the above one direction are used. It had a structure in which and were laminated. Further, since it is manufactured without performing needle punching, the triboelectric nonwoven fabric prepared in each example does not have holes derived from needle processing such as through holes by needle punching.
 以上から、本発明にかかる摩擦帯電不織布およびその製造方法によって、厚さや形状などが様々であるエアフィルタやマスクのニーズに応えることができる。 From the above, it is possible to meet the needs of air filters and masks having various thicknesses and shapes depending on the triboelectric nonwoven fabric and the manufacturing method thereof according to the present invention.
 本発明にかかる摩擦帯電不織布を用いることで、例えば、食品や医療品の生産工場用途、精密機器の製造工場用途、農作物の室内栽培施設用途、一般家庭用途あるいはオフィスビルなどの産業施設用途、空気清浄機用途やOA機器用途などの電化製品用途、自動車や航空機などの各種車両用途のエアフィルタを調製できる。更に、本発明にかかる摩擦帯電不織布を用いることで、マスクを調製できる。
 また、本発明にかかる摩擦帯電不織布の製造方法によって、上述した摩擦帯電不織布を製造できる。
By using the frictionally charged non-woven fabric according to the present invention, for example, it is used in a production factory for foods and medical products, a manufacturing factory for precision equipment, an indoor cultivation facility for agricultural products, a general household use or an industrial facility such as an office building, and air. It is possible to prepare air filters for electric appliances such as purifiers and OA equipment, and for various vehicles such as automobiles and aircraft. Further, a mask can be prepared by using the triboelectric nonwoven fabric according to the present invention.
Further, the above-mentioned triboelectric nonwoven fabric can be produced by the method for producing a triboelectric nonwoven fabric according to the present invention.

Claims (2)

  1.  構成樹脂が異なる2種類以上の繊維が混在した摩擦帯電不織布であって、
    厚さが1.2mm以下であり、最大点強度が43.0N/50mmよりも高い、
    摩擦帯電不織布。
    A triboelectric non-woven fabric in which two or more types of fibers with different constituent resins are mixed.
    The thickness is 1.2 mm or less, and the maximum point strength is higher than 43.0 N / 50 mm.
    Triboelectric non-woven fabric.
  2.  構成樹脂が異なる2種類以上の繊維が混在した摩擦帯電不織布の製造方法であって、
    (1)構成樹脂の異なる2種類以上の繊維が混在したウェブを用意する工程、
    (2)前記ウェブへ水流絡合処理を施して、水流絡合ウェブを調製する工程、
    (3)前記水流絡合ウェブを厚さ方向に変形させると共に、前記厚さ方向に変形させた後の水流絡合ウェブに対し前記厚さ方向と垂直を成す方向へ張力を作用させることで、前記水流絡合ウェブの構成繊維同士を擦り合せる工程、
    を有する、摩擦帯電不織布の製造方法。
    This is a method for manufacturing a triboelectric non-woven fabric in which two or more types of fibers having different constituent resins are mixed.
    (1) A process of preparing a web in which two or more types of fibers having different constituent resins are mixed.
    (2) A step of preparing a water flow entangled web by subjecting the web to a water flow entanglement treatment.
    (3) By deforming the water flow entangled web in the thickness direction and applying tension to the water flow entangled web after being deformed in the thickness direction in a direction perpendicular to the thickness direction. The step of rubbing the constituent fibers of the water flow entangled web with each other,
    A method for manufacturing a triboelectric nonwoven fabric.
PCT/JP2021/019046 2020-05-27 2021-05-19 Friction-charging nonwoven fabric and method for manufacturing same WO2021241367A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180038066.8A CN115667610A (en) 2020-05-27 2021-05-19 Triboelectrically charged nonwoven fabric and method for producing same
JP2021545840A JP6955645B1 (en) 2020-05-27 2021-05-19 Triboelectric non-woven fabric and its manufacturing method
TW111108462A TW202245898A (en) 2021-05-19 2022-03-09 Friction-charging nonwoven fabric and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020092116 2020-05-27
JP2020-092116 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241367A1 true WO2021241367A1 (en) 2021-12-02

Family

ID=78744764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019046 WO2021241367A1 (en) 2020-05-27 2021-05-19 Friction-charging nonwoven fabric and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2021241367A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220773A (en) * 2000-11-28 2002-08-09 Carl Freudenberg:Fa Method for producing nonwoven fabric charged with frictional electricity
JP2008093501A (en) * 2006-10-06 2008-04-24 Toyobo Co Ltd Reproducibly usable friction charge filter material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220773A (en) * 2000-11-28 2002-08-09 Carl Freudenberg:Fa Method for producing nonwoven fabric charged with frictional electricity
JP2008093501A (en) * 2006-10-06 2008-04-24 Toyobo Co Ltd Reproducibly usable friction charge filter material

Similar Documents

Publication Publication Date Title
EP2987544B1 (en) Filter material for air filter, method for manufacturing same, and air filter provided with same
US6808553B2 (en) Filter medium for turbine and methods of using and producing the same
EP3006096B1 (en) Filtering medium for deodorizing filter
JP6801643B2 (en) Laminated non-woven fabric
US20180236385A1 (en) Electret-containing filter media
EP3351671A1 (en) Nonwoven fabric and air filter including same
JP2018038983A (en) Production method of filtering medium for air filter
WO2016017484A1 (en) Filtration material, filter element using same, and manufacturing method of filtration material
EP3292906B1 (en) Filter material and filter unit
JP6955645B1 (en) Triboelectric non-woven fabric and its manufacturing method
JP2013154269A (en) Filter material
WO2021241367A1 (en) Friction-charging nonwoven fabric and method for manufacturing same
EP3777991A1 (en) Wet non-woven fabric for filter, filter medium for filter, and filter
JPH11137930A (en) Heat-resistant filter material
JP7386670B2 (en) Base material for filters
JP2022054779A (en) Method for using mask
JPH11226337A (en) Activated carbon fiber sheet for filter
TW202245898A (en) Friction-charging nonwoven fabric and method for manufacturing same
JP7117174B2 (en) glass filter
JP2014208318A (en) Antibacterial electret filter medium
JP7047593B2 (en) Wet non-woven fabric
JP7422576B2 (en) Filter medium, filter element, and method for manufacturing filter medium
JP2015157250A (en) Filter medium
JP2006281108A (en) Filter for ventilation fan and production method of the same
JP2004160394A (en) Surface filtration filter material having high efficiency and low pressure loss

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812398

Country of ref document: EP

Kind code of ref document: A1