WO2021241230A1 - Optical system, optical device, and method for manufacturing optical system - Google Patents

Optical system, optical device, and method for manufacturing optical system Download PDF

Info

Publication number
WO2021241230A1
WO2021241230A1 PCT/JP2021/018064 JP2021018064W WO2021241230A1 WO 2021241230 A1 WO2021241230 A1 WO 2021241230A1 JP 2021018064 W JP2021018064 W JP 2021018064W WO 2021241230 A1 WO2021241230 A1 WO 2021241230A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical system
lens
conditional expression
focusing
Prior art date
Application number
PCT/JP2021/018064
Other languages
French (fr)
Japanese (ja)
Inventor
壮基 原田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2022526866A priority Critical patent/JP7398060B2/en
Publication of WO2021241230A1 publication Critical patent/WO2021241230A1/en
Priority to JP2023191930A priority patent/JP2023184737A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.
  • a photographing lens whose main purpose is to photograph a short-distance object, such as Patent Document 1
  • a photographic lens having a large aperture that can correct various aberrations more satisfactorily and is also suitable for manual focus has been desired.
  • the optical system according to the first embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, and satisfies the following conditional expression.
  • h (max) The height at which the marginal ray is the highest in the front group
  • h (1) Marginal ray height on the front surface
  • h (s) Marginal ray height at the aperture surface
  • FNo Open F value during infinite shooting
  • f Focal length of the whole system at the time of infinite shooting
  • Bf Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
  • the optical system according to the second embodiment is composed of a front group having a positive refractive power, a aperture, and a rear group having a positive refractive power as a whole in order from the object side, and is the most among the front groups.
  • the lens group from the lens arranged on the object side to the lens arranged on the most object side with the concave surface facing the object side is defined as the AF group, and the lens group arranged on the image side from the AF group is defined as the AR group. Satisfy the conditional expression.
  • fAF Focal length of AF group during infinite shooting
  • fAR Focal length during infinite shooting of AR group
  • fA Focal length of the front group during infinite shooting.
  • optical device has the above optical system.
  • the method for manufacturing an optical system according to the fourth embodiment is configured to include a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side. It is configured to satisfy the following conditional expression.
  • h (max) The height at which the marginal ray is the highest in the front group
  • h (1) Marginal ray height on the front surface
  • h (s) Marginal ray height at the aperture surface
  • FNo Open F value during infinite shooting
  • f Focal length of the whole system at the time of infinite shooting
  • Bf Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
  • each reference numeral for the figure according to each embodiment may be used independently for each drawing in order to avoid complicated explanation due to an increase in the reference numeral. Therefore, even if they have a reference code common to other drawings, they do not necessarily have a common configuration with other drawings.
  • the optical system according to the first embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side.
  • the optical system of the first embodiment can appropriately correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object.
  • the optical system of the first embodiment satisfies the following conditional expression (1). 0.600 ⁇ ((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) ⁇ FNo ⁇ 2.100 (1)
  • h (max) The height at which the marginal ray is the highest in the front group
  • h (1) Marginal ray height on the front surface
  • h (s) Marginal ray height at the aperture surface
  • FNo Open F value during infinite shooting.
  • the "marginal ray” means a ray having the highest incident light among the incident light flux parallel to the optical axis.
  • the “marginal ray height” is the distance from the optical axis to the marginal ray (distance in the direction perpendicular to the optical axis).
  • the conditional expression (1) is the highest in the front group in terms of the ratio between the difference between the highest marginal ray height in the front group and the marginal ray height in the first diaphragm and the marginal ray height in the first plane. It is a conditional expression that defines the product of the value obtained by adding the ratio of the difference between the marginal ray height and the marginal ray height on the diaphragm surface and the marginal ray height on the diaphragm surface and the open F value.
  • the corresponding value of the conditional expression (1) of the first embodiment is less than the lower limit value, the height of the marginal ray on the lens surface on the object side of the rear lens group becomes low, and spherical aberration and coma aberration in the rear lens group. It becomes difficult to correct the problem well.
  • the lower limit of the conditional expression (1) it is preferable to set the lower limit values of the conditional expression (1) to 0.800, 0.900, and further 1.000. It was
  • the corresponding value of the conditional expression (1) of the first embodiment exceeds the upper limit value, the marginal ray height on the lens surface on the object side of the rear lens group becomes low, and spherical aberration occurs in the rear lens group. It becomes difficult to correct coma aberration well.
  • the upper limit value of the conditional expression (1) 2.000, the effect of the first embodiment can be further ensured.
  • the lower limit value of the conditional expression (1) it is preferable to set to 1.900, 1.800, and further 1.750. It was
  • the optical system of the first embodiment can satisfactorily correct various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and can be used for both auto focus and manual focus. It is possible to realize a suitable large-diameter optical system.
  • the optical system of the first embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object. can.
  • the optical system of the first embodiment satisfies the following conditional expression (2). 1.500 ⁇ f / Bf ⁇ 10.000 (2) f: Focal length of the whole system at the time of infinite shooting, Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
  • conditional expression (2) is a conditional expression that defines the ratio between the focal length of the entire system during infinite photography and the air conversion length from the final surface of the lens to the paraxial image plane on the optical axis during infinite photography. ..
  • conditional expression (2) it is possible to satisfy the miniaturization of the entire optical system and good optical performance, and an optical system suitable for a mirrorless camera can be obtained.
  • the corresponding value of the conditional expression (2) of the optical system of the first embodiment is less than the lower limit value, the entire optical system becomes large in the radial direction due to the large numerical aperture, and it becomes difficult to correct the curvature of field.
  • the lower limit of the conditional expression (2) it is preferable to set the lower limit value of the conditional expression (2) to 1.700, 1.800, 1.900, and further 2.000.
  • the corresponding value of the conditional expression (2) of the optical system of the first embodiment exceeds the upper limit value
  • the diameter of the final lens group becomes large due to the peripheral light beam, and a strong negative power is applied to the optical system for miniaturization. It is required on the rear side of the entire system, and it is particularly difficult to correct spherical aberration.
  • the upper limit value of the conditional expression (2) it is preferable to set the upper limit value of the conditional expression (2) to 8,000 and further to 7.500.
  • the optical system of the first embodiment satisfies the following conditional expression (3). 0.600 ⁇ fA / (2 ⁇ f) ⁇ 1.50 (3)
  • fA Focal length of the front group during infinite shooting.
  • the above conditional expression (3) defines the ratio between the focal length of the front group of the first embodiment and the value obtained by doubling the focal length of the entire optical system.
  • the refractive power of the front group becomes weak and it becomes difficult to satisfactorily correct spherical aberration and coma. ..
  • the upper limit value of the conditional expression (3) it is preferable to set the upper limit values of the conditional expression (3) to 1.300, 1.250, and further 1.200.
  • the corresponding value of the conditional expression (3) of the optical system of the first embodiment is less than the lower limit value, the power of the front group becomes strong and it becomes difficult to satisfactorily correct the coma aberration.
  • the lower limit of the conditional expression (3) is set to 0.650, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (3) to 0.700, further 0.750, and further 0.800.
  • the front group is fixed at the time of focusing
  • the rear group includes at least one focusing group moving on the optical axis, satisfying the following conditional expression (4). It is desirable to do. 0.500 ⁇ (fF ⁇ FNo 2 ) / f ⁇ 2.900 (4)
  • fF The combined focal length of the entire in-focus group during infinite shooting.
  • conditional equation (4) is the product of the combined focal length of the in-focus group at infinity focusing and the square of the open F value at infinity shooting, and the focal length of the entire optical system at infinity focusing. It defines an appropriate power balance with.
  • the refractive power of the rear group becomes weak and it becomes difficult to satisfactorily correct spherical aberration and coma. ..
  • the upper limit value of the conditional expression (4) it is preferable to set the upper limit value of the conditional expression (4) to 2.700, 2.600, and further 2.500.
  • the corresponding value of the conditional expression (4) of the optical system of the first embodiment is less than the lower limit value, the power of the rear group becomes strong and it becomes difficult to satisfactorily correct the coma aberration.
  • the lower limit of the conditional expression (4) it is preferable to set the lower limit of the conditional expression (4) to 0.700, further 0.800, and further 0.900.
  • the front group is fixed at the time of focusing
  • the rear group includes at least one focusing group moving on the optical axis, satisfying the following conditional expression (5). It is desirable to do. 0.500 ⁇ F / ⁇ B ⁇ 2000 (5)
  • ⁇ F Magnification of the in-focus group during infinite shooting
  • ⁇ B Magnification of the rear group during infinite shooting.
  • the conditional expression (5) is a conditional expression that defines the ratio between the magnification of the in-focus group at the time of infinite photography and the magnification of the rear group at the time of infinite photography. Normally, when the distance between lenses or between lens groups is changed, not only spherical aberration but also other aberrations change. When the optical system according to the first embodiment moves along the optical axis, the angle of view variation is reduced by satisfying the conditional equation (5), and coma aberration, curvature of field, astigmatism, and so on. Changes such as chromatic aberration can be suppressed as much as possible.
  • the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit values of the conditional expression (5) to 1.600, 1.400, and further 1.300. Further, by setting the lower limit value of the conditional expression (5) to 0.600, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit values of the conditional expression (5) to 0.650, 0.700, and further 0.720.
  • the optical system of the first embodiment has at least one negative lens satisfying the following conditional expression (6).
  • ⁇ dLn Abbe number for the d line of the negative lens
  • ⁇ gFLn Partial dispersion ratio of the g-line and F-line of the negative lens.
  • the Abbe number ⁇ dLn and the partial dispersion ratio ⁇ gFLn have a refractive index for the C line (wavelength 656.3 nm) of nC, a refractive index for the d line (wavelength 587.6 nm) of nd, and a refractive index for the F line (wavelength 486.1 nm).
  • the refractive index is nF
  • the refractive index for g-line (wavelength 435.8 nm) ng
  • ⁇ dLn (nd-1) / (nF-nC)
  • ⁇ gFLn (ng-nF) / (nF-nC)
  • conditional expression (6) is a conditional expression that defines the glass material used for the negative lens of the optical system.
  • the corresponding value of the conditional expression (6) of the optical system of the first embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes large, and it becomes difficult to correct the axial chromatic aberration.
  • the upper limit value of the conditional expression (6) it is preferable to set the upper limit values of the conditional expression (6) to 0.657, 0.656, and further 0.655.
  • the corresponding value of the conditional expression (6) of the optical system of the first embodiment is less than the lower limit value, the abnormal dispersibility of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration.
  • the lower limit of the conditional expression (6) it is preferable to set the lower limit value of the conditional expression (6) to 0.620 and further to 0.630.
  • the optical system of the first embodiment includes a configuration in which the front group has three or more positive lenses arranged in succession.
  • the optical system of the first embodiment there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and among the concave surfaces facing each other.
  • the radius of curvature of the image side surface of the negative lens on the object side is r1
  • the radius of curvature of the object side surface of the negative lens on the image side is r2
  • conditional equation (7) there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and the negative lens on the object side of the concave surfaces facing each other. It is a conditional expression that defines the ratio between the radius of curvature of the image side surface and the radius of curvature of the object side surface of the negative lens on the image side.
  • the optical system of the first embodiment contributes to reducing the Petzval sum, satisfactorily corrects curvature of field, and suppresses deterioration of coma aberration and spherical aberration. doing.
  • the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (7) to 1.800 and further to 1.750. Further, by setting the lower limit value of the conditional expression (7) to 0.530, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (7) to 0.550 and further to 0.580.
  • optical system of the first embodiment satisfies the following conditional expression (8). 0.500 ⁇ (r1-r2) /f ⁇ 5.000 (8)
  • conditional expression (8) is a conditional expression that defines the ratio between the difference between the radius of curvature of the concave surface on the object side and the radius of curvature of the concave surface on the image side among the concave surfaces facing each other and the focal length of the entire optical system. Is.
  • the optical system of the first embodiment can further effectively reduce the Petzval sum and correct the curvature of field even better.
  • the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (8) to 3.500 and further to 3.200. Further, by setting the lower limit value of the conditional expression (8) to 0.750, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit values of the conditional expression (8) to 0.900, 1.000, and further 1.100.
  • the optical system according to the first embodiment has a plurality of groups in which the front group is fixed and the rear group moves on the optical axis at the time of focusing.
  • the front group is fixed at the time of focusing
  • the rear group has a plurality of groups moving on the optical axis, so that spherical aberration, coma aberration, and image are formed.
  • the curvature of field can be corrected even better.
  • the optical system of the first embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (9). -0.500 ⁇ fF2 / fF1 ⁇ 0.500 (9) However, fF2: Focal length of the F2 group, fF1: Focal length of the F1 group.
  • the conditional expression (9) defines an appropriate power balance between the F1 group and the F2 group, which move independently of each other.
  • the optical system according to the first embodiment can further suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. It is possible to obtain an optical system.
  • the upper limit of the conditional expression (9) is exceeded, the refractive power of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing.
  • the upper limit of the conditional expression (9) is preferably 0.400, with 0.300, 0.200, 0.150, and further 0.100. It is more preferable to have.
  • the lower limit of the conditional expression (9) is preferably ⁇ 0.450, ⁇ 0.400, ⁇ 0.350, ⁇ 0.300, and further. -0.250 is more preferable.
  • the optical system of the first embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy the equation (10). -0.300 ⁇ F2 / ⁇ F1 ⁇ 1.200 (10) However, ⁇ F2: Horizontal magnification of the F2 group, ⁇ F1: Horizontal magnification of the F1 group.
  • the conditional expression (10) defines the ratio of the two focusing groups, the F2 group and the F1 group, which move on the optical axis, at the lateral magnifications.
  • the optical system according to the first embodiment can suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. You can get the system. If the upper limit of the conditional expression (10) is exceeded, the lateral magnification of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
  • the upper limit value of the conditional expression (10) is 1.100, 1.000, 0.900, 0.800, 0.750, 0. More preferably, it is .700, 0.680, and more preferably 0.650. If it falls below the lower limit of the conditional expression (10), the lateral magnification of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
  • the lower limit of the conditional expression (10) is preferably ⁇ 0.250, ⁇ 0.200, ⁇ 0.150, ⁇ 0.100, ⁇ . More preferably, it is 0.050, 0.000, and even 0.040.
  • the optical system of the first embodiment includes a lens having at least one aspherical surface in the rear group.
  • the optical system according to the second embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side.
  • the optical system of the second embodiment can appropriately correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object.
  • the optical system of the second embodiment is from the lens arranged on the most object side to the lens arranged on the most object side with the concave surface facing the object side in the front group.
  • the lens group is defined as an AF group
  • the lens group arranged on the image side of the AF group is defined as an AR group, and the following conditional expression (11) is satisfied. 0.750 ⁇ (
  • fAF Focal length of AF group during infinite shooting
  • fAR Focal length during infinite shooting of AR group
  • fA Focal length of the front group during infinite shooting.
  • the conditional expression (11) is a conditional expression that defines the product of the sum of the refractive powers of the AF group and the refractive powers of the AR group and the focal length of the front group.
  • the marginal ray is once raised high in the group A and lowered in the group B.
  • the Petzval sum can be reduced, and both spherical aberration and curvature of field in a large-diameter lens can be corrected at the same time.
  • the corresponding value of the conditional expression (11) of the second embodiment is less than the lower limit value, the amount of raising it once becomes small, and it becomes impossible to correct both spherical aberration and curvature of field at the same time, and the curvature of field becomes particularly worse.
  • the lower limit of the conditional expression (11) it is preferable to set the lower limit values of the conditional expression (11) to 1.000, 2.000, 2.500, and further 3.000.
  • the corresponding value of the conditional expression (11) of the second embodiment exceeds the upper limit value, the spherical aberration will be severely corrected because it is raised too high in the group A.
  • the upper limit of the conditional expression (11) it is preferable to set the upper limit value of the conditional expression (11) to 6,000, 5.500, and further 5.000. It was
  • the optical system of the second embodiment can satisfactorily correct various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and can be used for both auto focus and manual focus. It is possible to realize a suitable large-diameter optical system.
  • the optical system of the second embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object. can.
  • the optical system of the second embodiment has at least one negative lens satisfying the following conditional expression (12). -0.060 ⁇ -NdL-0.011 x ⁇ dL + 2.12 ⁇ 0.034 (12) 24.7 ⁇ dL ⁇ 58.0 (13)
  • ⁇ dL Abbe number for the d line of the negative lens
  • NdL Partial dispersion ratio of the g-line and F-line of the negative lens.
  • the Abbe number ⁇ dL and the partial dispersion ratio NdL have a refractive index of nC for the C line (wavelength 656.3 nm), nd for the d line (wavelength 587.6 nm), and an F line (wavelength 486).
  • the refractive index for (1 nm) is nF
  • the refractive index for g-line (wavelength 435.8 nm) is ng
  • ⁇ dL (nd-1) / (nF-nC)
  • NdL (ng-nF) / (nF-nC)
  • conditional expressions (12) and (13) are conditional expressions that define the glass material used for the negative lens of the optical system.
  • axial chromatic aberration can be satisfactorily corrected.
  • the corresponding value of the conditional expression (12) of the optical system of the second embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes large, and it becomes difficult to correct the axial chromatic aberration.
  • the upper limit value of the conditional expression (12) it is preferable to set the upper limit values of the conditional expression (12) to 0.030, 0.029, and further 0.028.
  • the corresponding value of the conditional expression (12) of the optical system of the second embodiment is less than the lower limit value, the Abbe number of the negative lens becomes large and it becomes difficult to correct the axial chromatic aberration.
  • the lower limit of the conditional expression (12) it is preferable to set the lower limit value of the conditional expression (12) to ⁇ 0.050 and further to ⁇ 0.045.
  • the corresponding value of the conditional expression (13) of the optical system of the second embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration.
  • the upper limit value of the conditional expression (13) it is preferable to set the upper limit value of the conditional expression (13) to 56.0 and further to 55.5.
  • the corresponding value of the conditional expression (13) of the optical system of the second embodiment is less than the lower limit value, the Abbe number of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration.
  • the lower limit of the conditional expression (13) is set to 25.0, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (13) to 26.0, 27.0, and further 29.5.
  • optical system of the second embodiment satisfies the following conditional expression (14). 0.400 ⁇ fA / fB ⁇ 2.5500 (14)
  • fB Focal length of the rear group during infinite shooting.
  • the conditional expression (14) is a conditional expression for defining the ratio between the focal length of the front group and the focal length of the rear group at the time of infinite shooting.
  • the corresponding value of the conditional expression (14) of the optical system of the second embodiment exceeds the upper limit value, the Petzval sum cannot be effectively reduced, and it becomes difficult to satisfactorily correct the curvature of field. It ends up.
  • the upper limit value of the conditional expression (14) it is preferable to set the upper limit value of the conditional expression (9) to 2.000 and further to 1.800.
  • the corresponding value of the conditional expression (14) of the optical system of the second embodiment is less than the lower limit value, spherical aberration and coma aberration will be deteriorated.
  • the lower limit of the conditional expression (14) it is preferable to set the lower limit values of the conditional expression (14) to 0.500, 0.550, and further to 0.600.
  • the optical system of the second embodiment there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and among the concave surfaces facing each other.
  • the radius of curvature of the image side surface of the negative lens on the object side is r1
  • the radius of curvature of the object side surface of the negative lens on the image side is r2
  • conditional equation (15) is a condition for defining a scherrer of the radius of curvature of the image side surface of the negative lens on the object side and the radius of curvature of the object side surface of the negative lens on the image side in the concave surfaces facing each other. It is an expression.
  • the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit values of the conditional expression (15) to 0.350, 0.300, and further 0.280. Further, by setting the lower limit value of the conditional expression (15) to ⁇ 0.400, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (15) to ⁇ 0.350, ⁇ 0.300, and further ⁇ 0.250.
  • the optical system of the second embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (16). -0.500 ⁇ fF2 / fF1 ⁇ 0.500 (16) However, fF2: Focal length of the F2 group, fF1: Focal length of the F1 group.
  • the conditional expression (16) defines an appropriate power balance between the F1 group and the F2 group, which move independently of each other.
  • the optical system according to the second embodiment can further suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. It is possible to obtain an optical system.
  • the upper limit of the conditional expression (16) is exceeded, the refractive power of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing.
  • the upper limit of the conditional expression (16) is preferably 0.400, and 0.300, 0.200, 0.150, and further 0.100. It is more preferable to have.
  • the lower limit of the conditional expression (16) is preferably ⁇ 0.450, ⁇ 0.400, ⁇ 0.350, ⁇ 0.300, and further. -0.250 is more preferable.
  • the optical system of the second embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (17). -0.300 ⁇ F2 / ⁇ F1 ⁇ 1.200 (17) However, ⁇ F2: Horizontal magnification of the F2 group, ⁇ F1: Horizontal magnification of the F1 group.
  • the conditional expression (17) defines the ratio of the two focusing groups, the F2 group and the F1 group, which move on the optical axis, at the lateral magnifications.
  • the optical system according to the second embodiment can suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. You can get the system. If the upper limit of the conditional expression (17) is exceeded, the lateral magnification of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
  • the upper limit value of the conditional expression (17) is 1.100, 1.000, 0.900, 0.800, 0.750, 0. More preferably, it is .700, 0.680, and more preferably 0.650. If it falls below the lower limit of the conditional expression (17), the lateral magnification of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
  • the lower limit of the conditional expression (17) is preferably ⁇ 0.250, ⁇ 0.200, ⁇ 0.150, ⁇ 0.100, ⁇ . More preferably, it is 0.050, 0.000, and even 0.040.
  • the optical device has an optical system having the above-mentioned configuration.
  • various aberrations can be satisfactorily corrected from the in-focus state of an infinite object to the in-focus state of a short-range object, and an optical device equipped with a large-diameter optical system suitable for both autofocus and manual focus. Can be realized.
  • FIG. 22 is a diagram showing an example of the configuration of the camera 1 having the lens OL.
  • the camera 1 is a so-called mirrorless camera with interchangeable lenses equipped with an optical system OL as a photographing lens 2.
  • the light from an object (subject) (not shown) is focused by the photographing lens 2 and is placed on the image pickup surface of the image pickup unit 3 via an OLPF (Optical low pass filter) (not shown).
  • OLPF Optical low pass filter
  • the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit 3, and the image of the subject is generated.
  • This image is displayed on an EVF (Electronic Viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.
  • the release button (not shown)
  • the image of the subject generated by the image pickup unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the optical system OL provided in the camera 1 as the photographing lens 2 has a large diameter and the aberration is satisfactorily corrected over the entire in-focus region by its characteristic lens configuration. Has a system. Therefore, according to the camera 1, it is possible to realize an optical device having an optical system having a large aperture and satisfactorily corrected aberration over the entire focusing region.
  • the optical device of the present embodiment is not limited to this.
  • the same effect as that of the camera 1 can be obtained.
  • the method for manufacturing an optical system of the present embodiment is configured to include a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, and the following conditional expression is used. It is a method of manufacturing an optical system configured to satisfy (1) and (2).
  • h (max) The height at which the marginal ray is the highest in the front group
  • h (1) Marginal ray height on the front surface
  • h (s) Marginal ray height at the aperture surface
  • FNo Open F value during infinite shooting
  • f Focal length of the whole system at the time of infinite shooting
  • Bf Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
  • the optical system is arranged so as to consist of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole (S1).
  • S1 a front group having a positive refractive power
  • S2 a rear group having a positive refractive power as a whole
  • S2 a predetermined conditional expression
  • conditions and configurations described above are those that exert the above-mentioned effects, and are not limited to those that satisfy all the conditions and configurations, and are any of the conditions or configurations, or any of them. It is possible to obtain the above-mentioned effect even if the combination of the above conditions or configurations is satisfied.
  • each of the examples described below shows a specific example of the present invention, and the present invention is not limited thereto.
  • the following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.
  • each of the examples described below shows a three-group or four-group configuration as a numerical example of an optical system, but the present embodiment is not limited to this, and other group configurations (for example, five groups, etc.) can be used.
  • An optical system can also be configured. Specifically, a lens or a lens group may be added to the most object side or the most image side of the optical system of each of the following examples. Alternatively, a lens or a lens group may be added between adjacent lens groups.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes at the time of focusing, but is composed of at least one or more lenses separated by an air interval. If it is, it may be a lens group.
  • the in-focus lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (for example, an ultrasonic motor, a stepping motor, a VCM motor, etc.).
  • a motor for autofocus for example, an ultrasonic motor, a stepping motor, a VCM motor, etc.
  • the lens group or partial lens group is moved so as to have a displacement component in the direction orthogonal to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to cause image blur caused by camera shake or the like. It may be a group of anti-vibration lenses to be corrected.
  • the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable.
  • the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the surface of glass into an aspherical shape. Any aspherical surface may be used.
  • the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
  • GRIN lens refractive index distribution type lens
  • the aperture diaphragm S is preferably arranged inside or outside the lens group, but the role may be substituted by the frame of the lens without providing the member as the aperture diaphragm.
  • each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range.
  • Tables 1 to 7 are shown below, and these are tables of specifications in the first to seventh embodiments.
  • the cross-sectional view of the optical system shown in FIG. 1 is a cross-sectional view of the optical system of the first embodiment.
  • the focusing state of the distance object is described, and the movement locus of each lens group at the time of focusing is shown between the two.
  • Each lens in FIG. 1 is shown as L11, L12, L13, ... In order from the object side (left side of the paper surface).
  • the focusing lens group is shown as F (F1, F2) together with the movement locus at the time of focusing.
  • FIGS. 2 and 3 are aberration diagrams of the point at infinity (FIG. 2) and the short-distance focusing (FIG. 3) of the first embodiment, and the aberrations are well corrected. Recognize.
  • FNo indicates an F number
  • Y indicates an image height
  • d and g indicate aberration curves of the d-line and g-line, respectively.
  • the solid line indicates the sagittal image plane and the dotted line indicates the meridional image plane.
  • each reference numeral with respect to FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference numeral. Therefore, even if they have a reference reference numeral common to the drawings according to the other embodiments, they do not necessarily have the same configuration as the other embodiments.
  • C line (wavelength 656.3 nm), d line (wavelength 587.6 nm), F line (wavelength 486.1 nm), and g line (wavelength 435.8 nm) are selected as the calculation targets of the aberration characteristics.
  • f is the focal length of the entire optical system OL
  • FNo is the F number
  • is the half angle (maximum incident angle unit: °)
  • Y is the image height
  • TL is the total lens length (TL).
  • BF is the back focal length (actually through a filter from the final surface of the lens to the near-axis image plane on the optical axis).
  • Distance) and BF air equivalent length
  • the plane number is the order of the optical planes from the object side along the traveling direction of the light beam
  • r is the radius of refraction of each optical plane
  • d is the next optical plane (or the next optical plane) from each optical plane.
  • nd indicates the refractive index of the material of the optical member with respect to the d-line
  • ⁇ d indicates the Abbe number based on the d-line of the material of the optical member.
  • (Object surface) is an object surface
  • (variable) is a variable surface spacing
  • " ⁇ " of curvature radius is a plane or an aperture
  • (aperture) is an aperture diaphragm S
  • an image plane is an image plane I
  • BF is a back focus ( The distance from the final surface of the lens on the optical axis to the paraxial image plane) is shown.
  • BF includes the case where it is variable even if it is not shown as (variable).
  • the refractive index of air "1.00000" is omitted.
  • the aspherical surface has a height in the direction perpendicular to the optical axis as y, and is along the optical axis from the tangent plane of the apex of each aspherical surface to each aspherical surface at the height y.
  • the distance (sag amount) is S (y)
  • the radius of curvature (near axis radius of curvature) of the reference sphere is r
  • the conical constant is ⁇
  • nth order (n 4,6,8,10,12,14
  • en indicates " ⁇ 10 -n”.
  • "-4.54914e-06" indicates "-4.54914 ⁇ 10-6 ".
  • the second-order aspherical coefficient A2 is 0. Further, in the table of each embodiment, the aspherical surface is marked with * on the right side of the surface number.
  • the start surface indicates the surface number on the most object side of each group
  • the end surface indicates the surface number on the image side of each group
  • the group focal length indicates the focal length of each group. ..
  • each variable interval di at infinity (infinity focusing state) and close (short distance focusing state) is shown.
  • di indicates a variable interval between the i-th plane and the (i + 1) th plane.
  • d0 indicates the distance on the optical axis from the object to the apex of the lens surface on the object side.
  • mm is generally used for the focal length f, the radius of curvature r, the surface spacing d, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed. Further, the unit is not limited to "mm", and other appropriate units can be used.
  • FIG. 1 is a cross-sectional view of an optical system according to the first embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • a negative lens L11 having a meniscus lens shape with a convex surface facing the object side
  • a positive lens L12 having a meniscus lens shape with a convex surface facing the object side
  • a meniscus lens shape having a concave surface facing the object side
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a plano-convex positive lens L22 with a convex surface facing the object side
  • the F2 group consists of a biconvex positive lens L31 and a biconvex positive lens L32.
  • the R group is composed of a positive lens L41 having a meniscus lens shape with a convex surface facing the object side, a junction negative lens in which a biconvex positive lens L42 and a biconcave negative lens L43 are joined, and a biconcave negative lens L44.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L11 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 1 shows an optical system and an image plane I of the optical system.
  • Table 1 below shows the values of each specification in the first embodiment.
  • FIGS. 2 and 3 are aberration diagrams of the optical system according to the first embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 4 is a cross-sectional view of the optical system according to the second embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • a biconvex positive lens L11, a biconcave negative lens L12, a meniscus lens-shaped negative lens L13 with a concave surface facing the object side, and a meniscus lens-shaped positive lens with a concave surface facing the object side is composed of L14, a biconvex positive lens L15, a biconvex positive lens L16, a positive lens L17 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L18, and a junction negative lens L19 joined together.
  • the rear group B is composed of the F1 group and the R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side, a positive lens L22 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L23, and a biconvex positive lens L24.
  • the R group is composed of a junction negative lens in which a biconvex positive lens L31 and a biconcave negative lens L32 are joined, a meniscus lens-shaped positive lens L33 with a convex surface facing the object side, and a biconvex negative lens L34.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group toward the object side along the optical axis.
  • FIG. 4 shows an optical system and an image plane I of the optical system.
  • Table 2 below shows the values of each specification in the second embodiment.
  • 5 and 6 are aberration diagrams of the optical system according to the second embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 7 is a cross-sectional view of the optical system according to the third embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • the front group A is a bonded negative lens in which a positive lens L11 having a meniscus lens shape with a convex surface facing the object side and a negative lens L12 having a meniscus lens shape having a convex surface facing the object side are joined in order from the object side.
  • Negative lens L13 in the shape of a meniscus lens with a concave surface positive lens L14 in the shape of a meniscus lens with a concave surface facing the object side, biconvex positive lens L15, biconvex positive lens L16, biconvex positive lens L17, concave surface on the object side It is composed of a junction negative lens in which a positive lens L18 having a meniscus lens shape and a biconcave negative lens L19 are joined.
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side
  • the F2 group is a biconvex positive lens L31 and biconvex positive.
  • It is composed of a lens L32
  • the R group is composed of a junction negative lens in which a biconvex positive lens L41 and a biconcave negative lens L42 are joined, a meniscus lens-shaped positive lens L43 with a convex surface facing the object side, and a biconcave negative lens L44. Has been done.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 7 shows an optical system and an image plane I of the optical system.
  • Table 3 below shows the values of each specification in the third embodiment.
  • FIGS. 8 and 9 are aberration diagrams of the optical system according to the third embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 10 is a cross-sectional view of the optical system according to the fourth embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • a negative lens L11 having a meniscus lens shape with a convex surface facing the object side
  • a positive lens L12 having a meniscus lens shape with a convex surface facing the object side
  • a meniscus lens shape having a convex surface facing the object side in order from the object side, a negative lens L11 having a meniscus lens shape with a convex surface facing the object side, a positive lens L12 having a meniscus lens shape with a convex surface facing the object side, and a meniscus lens shape having a convex surface facing the object side.
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a biconvex positive lens L22
  • the F2 group is composed of a biconvex positive lens L31 and a biconvex positive lens L32
  • the R group is composed of a biconvex positive lens L32.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L13 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 10 shows an optical system and an image plane I of the optical system.
  • Table 4 below shows the values of each specification in the fourth embodiment.
  • 11 and 12 are aberration diagrams of the optical system according to the fourth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 13 is a cross-sectional view of the optical system according to the fifth embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • a meniscus lens-shaped negative lens L11 having a convex surface facing the object side
  • a meniscus lens-shaped negative lens L12 having a convex surface facing the object side
  • a meniscus lens shape having a convex surface facing the object side.
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a biconcave negative lens L21 and a biconvex positive lens L22
  • the F2 group is composed of a meniscus lens-shaped positive lens L31 and a biconvex positive lens L32 with the concave surface facing the object side.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 13 shows an optical system and an image plane I of the optical system.
  • Table 5 below shows the values of each specification in the fifth embodiment.
  • 14 and 15 are aberration diagrams of the optical system according to the fifth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 16 is a cross-sectional view of the optical system according to the sixth embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • a meniscus lens-shaped positive lens L11 with a concave surface facing the object side in order from the object side, a meniscus lens-shaped positive lens L11 with a concave surface facing the object side, a biconcave negative lens L12, a meniscus lens-shaped positive lens L13 with a concave surface facing the object side, and a biconvex positive lens.
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side. It is composed of a positive lens L32 having a meniscus lens shape with a convex surface, and the R group is a junction negative lens and a biconvex positive lens in which a positive lens L41 with a meniscus lens shape with a concave surface facing the object side and a biconcave negative lens L42 are joined. It is composed of L43 and both concave and negative lenses L44.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 16 shows an optical system and an image plane I of the optical system.
  • Table 6 below shows the values of each specification in the sixth embodiment.
  • 17 and 18 are aberration diagrams of the optical system according to the sixth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • FIG. 19 is a cross-sectional view of the optical system according to the seventh embodiment.
  • the optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
  • the front group A is a junction in which a positive lens L11 having a meniscus lens shape with a concave surface facing the object side, a biconcave negative lens L12, and a positive lens L13 having a meniscus lens shape with a convex surface facing the object side are joined in this order from the object side.
  • Negative lens negative lens L14 with a meniscus lens shape with a concave surface facing the object side
  • biconvex positive lens L16 meniscus lens shape with a convex surface facing the object side
  • It is composed of a positive lens L17, a positive lens L18 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L19, and a junction negative lens L110 in which a biconcave negative lens L110 is joined.
  • the rear group B is composed of an F1, F2 group, and an R group.
  • the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side
  • the F2 group is a meniscus lens with a concave surface facing the object side. It is composed of a positive lens L31 with a shape and a plano-convex positive lens L32 with a convex surface facing the object side. It is composed of a positive lens L43 having a lens shape and a biconcave negative lens L44.
  • the aperture stop S is arranged between the front group A and the rear group B.
  • a filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I.
  • An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
  • focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
  • FIG. 19 shows an optical system and an image plane I of the optical system.
  • Table 7 below shows the values of each specification in the seventh embodiment.
  • 20 and 21 are aberration diagrams of the optical system according to the seventh embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
  • Conditional expression (1) 0.600 ⁇ ((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) ⁇ FNo ⁇ 2.100 (2) 1.500 ⁇ f / Bf ⁇ 10.000 (3) 0.600 ⁇ fA / (2 ⁇ f) ⁇ 1.500 (4) 0.500 ⁇ (fFR x FNo 2 ) /f ⁇ 2.900 (5) 0.500 ⁇ F / ⁇ B ⁇ 2.000 (6) 0.600 ⁇ gFLn + 0.0021 ⁇ ⁇ dLn ⁇ 0.660 (7) 0.500 ⁇ -r1 / r2 ⁇ 2.000 (8) 0.500 ⁇ (r1-r2) /f ⁇ 5.000 (9) -0.500 ⁇ fF2 / fF1 ⁇ 0.500 (10)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Desired is an optical system in which an imaging lens has a large aperture appropriate also for manual focusing and has aberration satisfactorily corrected over the entire focusing region. The optical system comprises, in order from the object side, a front group having positive refractive power, a stop, and a rear group having positive refractive power as a whole, and satisfies the following conditional expressions. 0.600 < ((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo < 2.100 1.500 < f/Bf < 10.000 where h(max) is a height at which a marginal ray becomes the highest in the front group, h(1) is the height of the marginal ray on a first surface, h(s) is the height of the marginal ray at a stop surface, FNo is a maximum aperture when imaging at infinity, f is the focal length of the entire system when imaging at infinity, and Bf is an air equivalent length from a lens final surface to a paraxial image surface on an optical axis when imaging at infinity.

Description

光学系、光学機器、および光学系の製造方法Optical systems, optical instruments, and methods for manufacturing optical systems
 本発明は、光学系、光学機器、および光学系の製造方法に関する。 The present invention relates to an optical system, an optical device, and a method for manufacturing the optical system.
 従来、近距離物体の撮影を主たる目的とした撮影レンズにおいて、例えば特許文献1のようにオートフォーカスに適したものが知られている。近年、このような撮影レンズにおいて、諸収差をさらに良好に補正することができると共に、マニュアルフォーカスにも適した大口径の撮影レンズが望まれている。 Conventionally, a photographing lens whose main purpose is to photograph a short-distance object, such as Patent Document 1, is known to be suitable for autofocus. In recent years, in such a photographic lens, a photographic lens having a large aperture that can correct various aberrations more satisfactorily and is also suitable for manual focus has been desired.
特開昭和63-147124号公報Japanese Unexamined Patent Publication No. 63-147124
 第一の形態に係る光学系は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなり、以下の条件式を満足する。
0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100
1.500 < f/Bf < 10.000
 ただし、
 h(max) :マージナル光線が前群で最も高くなる高さ、
 h(1)  :第一面でのマージナル光線高さ、
 h(s)    :絞り面でのマージナル光線高さ、
 FNo   :無限撮影時の開放F値、
 f   :無限撮影時の全系の焦点距離、
 Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
The optical system according to the first embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, and satisfies the following conditional expression.
0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo < 2.100
1.500 <f / Bf <10.000
However,
h (max): The height at which the marginal ray is the highest in the front group,
h (1): Marginal ray height on the front surface,
h (s): Marginal ray height at the aperture surface,
FNo: Open F value during infinite shooting,
f: Focal length of the whole system at the time of infinite shooting,
Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
 また、第二の形態に係る光学系は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなり、前記前群の内、最も物体側に配置されたレンズから物体側へ凹面を向けた最も物体側に配置されたレンズまでのレンズ群をAF群、前記AF群より像側に配置されたレンズ群をAR群とし、以下の条件式を満足する。
0.750 < (|1/fAF|+|1/fAR|)×fA < 7.000
 ただし、
 fAF:AF群の無限撮影時の焦点距離、
 fAR:AR群の無限撮影時の焦点距離、
 fA :無限撮影時の前群の焦点距離。
Further, the optical system according to the second embodiment is composed of a front group having a positive refractive power, a aperture, and a rear group having a positive refractive power as a whole in order from the object side, and is the most among the front groups. The lens group from the lens arranged on the object side to the lens arranged on the most object side with the concave surface facing the object side is defined as the AF group, and the lens group arranged on the image side from the AF group is defined as the AR group. Satisfy the conditional expression.
0.750 <(| 1 / fAF | + | 1 / fAR |) x fA <7,000
However,
fAF: Focal length of AF group during infinite shooting,
fAR: Focal length during infinite shooting of AR group,
fA: Focal length of the front group during infinite shooting.
 また、第三の形態に係る光学機器は、上記光学系を有する。 Further, the optical device according to the third embodiment has the above optical system.
 また、第四の形態に係る光学系の製造方法は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなるように構成し、以下の条件式を満足するように構成する。
0.600<((h(max)-h(1))/h(1)+(h(max)-h(s)) /h(s))×FNo<2.100
1.500 < f/Bf < 10.000
 ただし、
 h(max) :マージナル光線が前群で最も高くなる高さ、
 h(1)  :第一面でのマージナル光線高さ、
 h(s)    :絞り面でのマージナル光線高さ、
 FNo   :無限撮影時の開放F値、
 f   :無限撮影時の全系の焦点距離、
 Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
Further, the method for manufacturing an optical system according to the fourth embodiment is configured to include a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side. It is configured to satisfy the following conditional expression.
0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo < 2.100
1.500 <f / Bf <10.000
However,
h (max): The height at which the marginal ray is the highest in the front group,
h (1): Marginal ray height on the front surface,
h (s): Marginal ray height at the aperture surface,
FNo: Open F value during infinite shooting,
f: Focal length of the whole system at the time of infinite shooting,
Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
第1実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 1st Example. 第1実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of infinity object focusing of the optical system which concerns on 1st Embodiment. 第1実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the first embodiment. 第2実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of infinity object focusing of the optical system which concerns on 2nd Embodiment. 第2実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the second embodiment. 第3実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of infinity object focusing of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the third embodiment. 第4実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of infinity object focusing of the optical system which concerns on 4th Embodiment. 第4実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing a short-distance object of the optical system which concerns on 4th Embodiment. 第5実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 5th Embodiment. 第5実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on an infinity object of the optical system according to the fifth embodiment. 第5実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the fifth embodiment. 第6実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 6th Embodiment. 第6実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on an infinity object of the optical system according to the sixth embodiment. 第6実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the sixth embodiment. 第7実施例に係る光学系の断面図である。It is sectional drawing of the optical system which concerns on 7th Example. 第7実施例に係る光学系の無限遠物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of infinity object focusing of the optical system which concerns on 7th Embodiment. 第7実施例に係る光学系の近距離物体合焦時の諸収差図である。It is a diagram of various aberrations at the time of focusing on a short-distance object of the optical system according to the seventh embodiment. 光学系を備えた光学機器の構成を示す図である。It is a figure which shows the structure of the optical device provided with the optical system. 光学機器の製造方法の概略を示すフロー図である。It is a flow figure which shows the outline of the manufacturing method of an optical device.
 以下、本願の第1実施形態及び第2実施形態に係る光学系、光学機器および光学系の製造方法について説明する。ただし、以下の各実施形態に限定されるものではなく、任意の組み合わせでも良い。また、各実施形態に係る図に対する各参照符号は、参照符号の増大による説明の煩雑化を避けるため、図面ごとに独立して用いている場合がある。ゆえに、他の図面と共通の参照符号を付していても、それらは他の図面とは必ずしも共通の構成ではない。 Hereinafter, the optical system, the optical device, and the method for manufacturing the optical system according to the first embodiment and the second embodiment of the present application will be described. However, the present invention is not limited to each of the following embodiments, and any combination may be used. Further, each reference numeral for the figure according to each embodiment may be used independently for each drawing in order to avoid complicated explanation due to an increase in the reference numeral. Therefore, even if they have a reference code common to other drawings, they do not necessarily have a common configuration with other drawings.
 まず、本第1実施形態に係る光学系について説明する。
 本第1実施形態に係る光学系は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなる。
First, the optical system according to the first embodiment will be described.
The optical system according to the first embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side.
 このような構成により、本第1実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を適切に補正することができる。 With such a configuration, the optical system of the first embodiment can appropriately correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object.
 このような構成のもと、本第1実施形態の光学系は、以下の条件式(1)を満足する。
0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100 (1)
 ただし、
 h(max) :マージナル光線が前群で最も高くなる高さ、
 h(1)  :第一面でのマージナル光線高さ、
 h(s)    :絞り面でのマージナル光線高さ、
 FNo   :無限撮影時の開放F値。
Under such a configuration, the optical system of the first embodiment satisfies the following conditional expression (1).
0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo <2.100 (1)
However,
h (max): The height at which the marginal ray is the highest in the front group,
h (1): Marginal ray height on the front surface,
h (s): Marginal ray height at the aperture surface,
FNo: Open F value during infinite shooting.
 ここで、「マージナル光線」とは、光軸に平行な入射光束のうち、最も入射光が高い光線のことをいう。また、「マージナル光線高さ」とは、光軸からマージナル光線までの距離(光軸と垂直な方向の距離)のことである。 Here, the "marginal ray" means a ray having the highest incident light among the incident light flux parallel to the optical axis. The "marginal ray height" is the distance from the optical axis to the marginal ray (distance in the direction perpendicular to the optical axis).
 条件式(1)は、前記前群における最も高いマージナル光線高さと前記第一面でのマージナル光線高さの差と前記第一面でのマージナル光線高さとの比に、前記前群における最も高いマージナル光線高さと前記絞り面でのマージナル光線高さの差と前記絞り面でのマージナル光線高さとの比を足した値と開放F値との積とを規定する条件式である。条件式(1)を満足することにより、マージナル光線が所定以上の高さで後側レンズ群を通過し、後側レンズ群において球面収差、コマ収差、および像面湾曲を良好に補正することができる。 The conditional expression (1) is the highest in the front group in terms of the ratio between the difference between the highest marginal ray height in the front group and the marginal ray height in the first diaphragm and the marginal ray height in the first plane. It is a conditional expression that defines the product of the value obtained by adding the ratio of the difference between the marginal ray height and the marginal ray height on the diaphragm surface and the marginal ray height on the diaphragm surface and the open F value. By satisfying the conditional equation (1), the marginal ray passes through the rear lens group at a height equal to or higher than a predetermined height, and spherical aberration, coma aberration, and curvature of field can be satisfactorily corrected in the rear lens group. can.
 本第1実施形態の条件式(1)の対応値が下限値を下回ると、後側レンズ群の物体側のレンズ面におけるマージナル光線高さが低くなり、後側レンズ群において球面収差、コマ収差を良好に補正することが困難になってしまう。なお、条件式(1)の下限値を0.700に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (1)の下限値を0.800、0.900、更に1.000にすることが好ましい。  When the corresponding value of the conditional expression (1) of the first embodiment is less than the lower limit value, the height of the marginal ray on the lens surface on the object side of the rear lens group becomes low, and spherical aberration and coma aberration in the rear lens group. It becomes difficult to correct the problem well. By setting the lower limit of the conditional expression (1) to 0.700, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit values of the conditional expression (1) to 0.800, 0.900, and further 1.000. It was
 一方、本第1実施形態の条件式(1)の対応値が上限値を上回ると、後側レンズ群の物体側のレンズ面におけるマージナル光線高さが低くなり、後側レンズ群において球面収差、コマ収差を良好に補正することが困難になってしまう。なお、条件式(1)の上限値を2.000に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (1)の下限値を1.900、1.800、更に1.750にすることが好ましい。  On the other hand, when the corresponding value of the conditional expression (1) of the first embodiment exceeds the upper limit value, the marginal ray height on the lens surface on the object side of the rear lens group becomes low, and spherical aberration occurs in the rear lens group. It becomes difficult to correct coma aberration well. By setting the upper limit value of the conditional expression (1) to 2.000, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (1) to 1.900, 1.800, and further 1.750. It was
 以上の構成により、本第1実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を実現することができる。 With the above configuration, the optical system of the first embodiment can satisfactorily correct various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and can be used for both auto focus and manual focus. It is possible to realize a suitable large-diameter optical system.
 また、このような構成により、本第1実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を良好に補正することができる。 Further, with such a configuration, the optical system of the first embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object. can.
 さらに、このような構成のもと、本第1実施形態の光学系は、以下の条件式(2)を満足する。
1.500 < f/Bf < 10.000   (2)
 f   :無限撮影時の全系の焦点距離、
 Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
Further, under such a configuration, the optical system of the first embodiment satisfies the following conditional expression (2).
1.500 <f / Bf <10.000 (2)
f: Focal length of the whole system at the time of infinite shooting,
Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
 上記条件式(2)は、無限撮影時の全系の焦点距離と無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長との比を規定する条件式である。条件式(2)を満足することにより、光学系全体の小型化と良好な光学性能を満足することができ、ミラーレスカメラにも適した光学系が得られる。 The above conditional expression (2) is a conditional expression that defines the ratio between the focal length of the entire system during infinite photography and the air conversion length from the final surface of the lens to the paraxial image plane on the optical axis during infinite photography. .. By satisfying the conditional expression (2), it is possible to satisfy the miniaturization of the entire optical system and good optical performance, and an optical system suitable for a mirrorless camera can be obtained.
 本第1実施形態の光学系の条件式(2)の対応値が下限値を下回ると、大きな開口数によって光学系全体が径方向に大きくなり、像面湾曲の補正が困難となる。なお、条件式(2)の下限値を1.600に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (2)の下限値を1.700、1.800、1.900、更に2.000に設定することが好ましい。 When the corresponding value of the conditional expression (2) of the optical system of the first embodiment is less than the lower limit value, the entire optical system becomes large in the radial direction due to the large numerical aperture, and it becomes difficult to correct the curvature of field. By setting the lower limit of the conditional expression (2) to 1.600, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (2) to 1.700, 1.800, 1.900, and further 2.000.
 一方、本第1実施形態の光学系の条件式(2)の対応値が上限値を上回ると、周辺光束によって最終レンズ群の径が大きくなり、小型化するために強い負のパワーが光学系全系の後側に必要となり、特に球面収差の補正が困難となる。なお、条件式(2)の上限値を9.000に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (2)の上限値を8.000、更に7.500に設定することが好ましい。 On the other hand, when the corresponding value of the conditional expression (2) of the optical system of the first embodiment exceeds the upper limit value, the diameter of the final lens group becomes large due to the peripheral light beam, and a strong negative power is applied to the optical system for miniaturization. It is required on the rear side of the entire system, and it is particularly difficult to correct spherical aberration. By setting the upper limit value of the conditional expression (2) to 9.000, the effect of the first embodiment can be made more reliable. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (2) to 8,000 and further to 7.500.
 また、本第1実施形態の光学系は、以下の条件式(3)を満足することが望ましい。
0.600 < fA/(2×f) < 1.500   (3)
 ただし、
 fA  :無限撮影時の前群の焦点距離。
Further, it is desirable that the optical system of the first embodiment satisfies the following conditional expression (3).
0.600 <fA / (2 × f) <1.50 (3)
However,
fA: Focal length of the front group during infinite shooting.
  上記条件式(3)は、本第1実施形態の前群の焦点距離と光学系全系の焦点距離を2倍した値との比を規定するものである。条件式(3)を満足することにより、絞り前後における対称性が良好となり、画角に対する収差を拡大させず、至近距離撮影性能を向上させることができる。特に、至近距離撮影時の球面収差およびコマ収差を良好に補正することができる。 The above conditional expression (3) defines the ratio between the focal length of the front group of the first embodiment and the value obtained by doubling the focal length of the entire optical system. By satisfying the conditional expression (3), the symmetry before and after the aperture is improved, the aberration with respect to the angle of view is not enlarged, and the close-range shooting performance can be improved. In particular, spherical aberration and coma aberration during close-range photography can be satisfactorily corrected.
 本第1実施形態の光学系の条件式(3)の対応値が上限値を上回ると、前群の屈折力が弱くなり、球面収差およびコマ収差を良好に補正することが困難になってしまう。なお、条件式(3)の上限値を1.400に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (3)の上限値を1.300、1.250、更に1.200にすることが好ましい。 If the corresponding value of the conditional expression (3) of the optical system of the first embodiment exceeds the upper limit value, the refractive power of the front group becomes weak and it becomes difficult to satisfactorily correct spherical aberration and coma. .. By setting the upper limit value of the conditional expression (3) to 1.400, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit values of the conditional expression (3) to 1.300, 1.250, and further 1.200.
 一方、本第1実施形態の光学系の条件式(3)の対応値が下限値を下回ると、前群のパワーが強くなり、コマ収差を良好に補正することが困難になってしまう。なお、条件式(3)の下限値を0.650に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (3)の下限値を0.700、更に0.750、更に0.800にすることが好ましい。 On the other hand, if the corresponding value of the conditional expression (3) of the optical system of the first embodiment is less than the lower limit value, the power of the front group becomes strong and it becomes difficult to satisfactorily correct the coma aberration. By setting the lower limit of the conditional expression (3) to 0.650, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (3) to 0.700, further 0.750, and further 0.800.
 また、本第1実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する少なくとも一つの合焦群を含み、以下の条件式(4)を満足することが望ましい。
0.500 < (fF×FNo)/f < 2.900   (4)
 ただし、
 fF :無限撮影時の前記合焦群全体の合成焦点距離。
Further, in the optical system of the first embodiment, the front group is fixed at the time of focusing, and the rear group includes at least one focusing group moving on the optical axis, satisfying the following conditional expression (4). It is desirable to do.
0.500 <(fF × FNo 2 ) / f <2.900 (4)
However,
fF: The combined focal length of the entire in-focus group during infinite shooting.
 条件式(4)は、無限遠合焦時の合焦群の合成焦点距離と無限撮影時の開放F値の2乗との積と、無限遠合焦時の前記光学系全系の焦点距離との適切なパワーバランスを規定するものである。条件式(4)を満足することにより、諸収差を拡大させず、至近距離撮影性能を向上させることができる。特に、至近距離撮影時の球面収差およびコマ収差を良好に補正することができる。 The conditional equation (4) is the product of the combined focal length of the in-focus group at infinity focusing and the square of the open F value at infinity shooting, and the focal length of the entire optical system at infinity focusing. It defines an appropriate power balance with. By satisfying the conditional expression (4), it is possible to improve the close-range shooting performance without expanding various aberrations. In particular, spherical aberration and coma aberration during close-range photography can be satisfactorily corrected.
 本第1実施形態の光学系の条件式(4)の対応値が上限値を上回ると、後群の屈折力が弱くなり、球面収差およびコマ収差を良好に補正することが困難になってしまう。なお、条件式(4)の上限値を2.800に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (4)の上限値を2.700、2.600、更に2.500にすることが好ましい。 If the corresponding value of the conditional expression (4) of the optical system of the first embodiment exceeds the upper limit value, the refractive power of the rear group becomes weak and it becomes difficult to satisfactorily correct spherical aberration and coma. .. By setting the upper limit value of the conditional expression (4) to 2.800, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (4) to 2.700, 2.600, and further 2.500.
 一方、本第1実施形態の光学系の条件式(4)の対応値が下限値を下回ると、後群のパワーが強くなり、コマ収差を良好に補正することが困難になってしまう。なお、条件式(4)の下限値を0.600に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (4)の下限値を0.700、更に0.800、更に0.900にすることが好ましい。 On the other hand, if the corresponding value of the conditional expression (4) of the optical system of the first embodiment is less than the lower limit value, the power of the rear group becomes strong and it becomes difficult to satisfactorily correct the coma aberration. By setting the lower limit of the conditional expression (4) to 0.600, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit of the conditional expression (4) to 0.700, further 0.800, and further 0.900.
 また、本第1実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する少なくとも一つの合焦群を含み、以下の条件式(5)を満足することが望ましい。
0.500 < βF/βB < 2.000   (5)
 ただし、
 βF:無限撮影時の前記合焦群の倍率、
 βB:無限撮影時の後群の倍率。
Further, in the optical system of the first embodiment, the front group is fixed at the time of focusing, and the rear group includes at least one focusing group moving on the optical axis, satisfying the following conditional expression (5). It is desirable to do.
0.500 <βF / βB <2000 (5)
However,
βF: Magnification of the in-focus group during infinite shooting,
βB: Magnification of the rear group during infinite shooting.
 条件式(5)は、無限撮影時の前記合焦群の倍率と無限撮影時の後群の倍率との比を規定する条件式である。通常、レンズ間或いはレンズ群間の間隔を変化させると、球面収差だけではなくて他の収差も変化してしまう。本第1実施形態に係る光学系は、光軸に沿って移動する際に、条件式(5)を満足することにより、画角変動が少なくなり、コマ収差、像面湾曲、非点収差、色収差などの変化を極力抑えることができる。 The conditional expression (5) is a conditional expression that defines the ratio between the magnification of the in-focus group at the time of infinite photography and the magnification of the rear group at the time of infinite photography. Normally, when the distance between lenses or between lens groups is changed, not only spherical aberration but also other aberrations change. When the optical system according to the first embodiment moves along the optical axis, the angle of view variation is reduced by satisfying the conditional equation (5), and coma aberration, curvature of field, astigmatism, and so on. Changes such as chromatic aberration can be suppressed as much as possible.
 本第1実施形態の光学系の条件式(5)の範囲を外れてしまうと、合焦に伴う画角変動で主にコマ収差、像面湾曲が変動してしまい、望ましくない。 If the range of the conditional expression (5) of the optical system of the first embodiment is out of range, coma aberration and curvature of field mainly fluctuate due to fluctuations in the angle of view due to focusing, which is not desirable.
 なお、条件式(5)の上限値を1.800に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (5)の上限値を1.600、1.400、更に1.300にすることが好ましい。
 また、条件式(5)の下限値を0.600に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (5)の下限値を0.650、0.700、更に0.720にすることが好ましい。
By setting the upper limit value of the conditional expression (5) to 1.800, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit values of the conditional expression (5) to 1.600, 1.400, and further 1.300.
Further, by setting the lower limit value of the conditional expression (5) to 0.600, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit values of the conditional expression (5) to 0.650, 0.700, and further 0.720.
 また、本第1実施形態の光学系は、以下の条件式(6)を満たす負レンズを少なくとも1枚有することが望ましい。
0.600<θgFLn+0.0021×νdLn<0.660 (6)
 ただし、
 νdLn  : 前記負レンズのd線に対するアッベ数、
 θgFLn: 前記負レンズのg線とF線とによる部分分散比。
Further, it is desirable that the optical system of the first embodiment has at least one negative lens satisfying the following conditional expression (6).
0.600 <θgFLn + 0.0021 × νdLn <0.660 (6)
However,
νdLn: Abbe number for the d line of the negative lens,
θgFLn: Partial dispersion ratio of the g-line and F-line of the negative lens.
 ここで、アッベ数νdLnおよび部分分散比θgFLnは、C線(波長656.3nm)に対する屈折率をnC、d線(波長587.6nm)に対する屈折率をnd、F線(波長486.1nm)に対する屈折率をnF、g線(波長435.8nm)に対する屈折率をngとしたとき、それぞれ次の式で表される。
νdLn=(nd-1)/(nF-nC)
θgFLn=(ng-nF)/(nF-nC)
Here, the Abbe number νdLn and the partial dispersion ratio θgFLn have a refractive index for the C line (wavelength 656.3 nm) of nC, a refractive index for the d line (wavelength 587.6 nm) of nd, and a refractive index for the F line (wavelength 486.1 nm). When the refractive index is nF and the refractive index for g-line (wavelength 435.8 nm) is ng, they are expressed by the following equations, respectively.
νdLn = (nd-1) / (nF-nC)
θgFLn = (ng-nF) / (nF-nC)
 上記条件式(6)は、前記光学系が有する負レンズに用いる硝材を規定する条件式である。条件式(6)を満足する負レンズを有することにより、少ないレンズ枚数で軸上色収差を良好に補正することができる。 The above conditional expression (6) is a conditional expression that defines the glass material used for the negative lens of the optical system. By having a negative lens that satisfies the conditional expression (6), axial chromatic aberration can be satisfactorily corrected with a small number of lenses.
 本第1実施形態の光学系の条件式(6)の対応値が上限値を上回ると、前記負レンズの異常分散性が大きくなり、軸上色収差の補正が困難となってしまう。なお、条件式(6)の上限値を0.659に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (6)の上限値を0.657、0.656、更に0.655にすることが好ましい。 If the corresponding value of the conditional expression (6) of the optical system of the first embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes large, and it becomes difficult to correct the axial chromatic aberration. By setting the upper limit value of the conditional expression (6) to 0.659, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit values of the conditional expression (6) to 0.657, 0.656, and further 0.655.
 一方、本第1実施形態の光学系の条件式(6)の対応値が下限値を下回ると、前記負レンズの異常分散性が小さくなり、軸上色収差の補正が困難となってしまう。なお、条件式(6)の下限値を0.610に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (6)の下限値を0.620、更に0.630にすることが好ましい。 On the other hand, if the corresponding value of the conditional expression (6) of the optical system of the first embodiment is less than the lower limit value, the abnormal dispersibility of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration. By setting the lower limit of the conditional expression (6) to 0.610, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (6) to 0.620 and further to 0.630.
 また、本第1実施形態の光学系は、前記前群が連続して3枚以上の正レンズが並んだ構成を含むことが望ましい。 Further, it is desirable that the optical system of the first embodiment includes a configuration in which the front group has three or more positive lenses arranged in succession.
 これより、マージナル光線の高さが高い箇所において収差が発生するのを抑えることができるので、光学系全系における球面収差と軸上色収差及び像面湾曲を良好に補正できる。 As a result, it is possible to suppress the occurrence of aberrations in places where the height of the marginal rays is high, so that spherical aberrations, axial chromatic aberrations, and curvature of field in the entire optical system can be satisfactorily corrected.
 また、本第1実施形態の光学系は、前記前群の物体側から順に、最物体側レンズから4枚目のレンズまでの間に負レンズが2枚以上あり、それらの向かい合った凹面の内、物体側にある負レンズの像側面の曲率半径をr1、像側にある負レンズの物体側面の曲率半径をr2とすると、以下の条件式(7)を満足することが望ましい。
0.500 < -r1/r2 < 2.000   (7)
Further, in the optical system of the first embodiment, there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and among the concave surfaces facing each other. Assuming that the radius of curvature of the image side surface of the negative lens on the object side is r1 and the radius of curvature of the object side surface of the negative lens on the image side is r2, it is desirable that the following conditional expression (7) is satisfied.
0.500 <-r1 / r2 <2000 (7)
 条件式(7)は、前群の物体側から順に、最物体側レンズから4枚目のレンズまでの間に負レンズが2枚以上あり、それらの向かい合う凹面の内、物体側にある負レンズの像側面の曲率半径と像側にある負レンズの物体側面の曲率半径との比を規定する条件式である。 In the conditional equation (7), there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and the negative lens on the object side of the concave surfaces facing each other. It is a conditional expression that defines the ratio between the radius of curvature of the image side surface and the radius of curvature of the object side surface of the negative lens on the image side.
 本第1実施形態の光学系は、条件式(7)を満足することにより、ペッツバール和を小さくすることに寄与させて像面湾曲を良好に補正すると共に、コマ収差、球面収差の悪化を抑制している。 By satisfying the conditional equation (7), the optical system of the first embodiment contributes to reducing the Petzval sum, satisfactorily corrects curvature of field, and suppresses deterioration of coma aberration and spherical aberration. doing.
 条件式 (7)の上限値を1.900に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (7)の上限値を1.800、更に1.750にすることが好ましい。
 また、条件式 (7)の下限値を0.530に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (7)の下限値を0.550、更に0.580にすることが好ましい。
By setting the upper limit value of the conditional expression (7) to 1.900, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (7) to 1.800 and further to 1.750.
Further, by setting the lower limit value of the conditional expression (7) to 0.530, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit value of the conditional expression (7) to 0.550 and further to 0.580.
 また、本第1実施形態の光学系は、以下の条件式(8)を満足することが望ましい。
0.500 < (r1-r2)/f < 5.000   (8)
Further, it is desirable that the optical system of the first embodiment satisfies the following conditional expression (8).
0.500 <(r1-r2) /f <5.000 (8)
 条件式(8)は、前記向かい合う前記凹面のうち、物体側の凹面の曲率半径と像側の凹面の曲率半径との差と、前記光学系全系の焦点距離との比を規定する条件式である。 The conditional expression (8) is a conditional expression that defines the ratio between the difference between the radius of curvature of the concave surface on the object side and the radius of curvature of the concave surface on the image side among the concave surfaces facing each other and the focal length of the entire optical system. Is.
 本第1実施形態の光学系は、条件式(8)を満足することにより、ペッツバール和を更に効果的に小さくし、像面湾曲を更に良好に補正することができる。 By satisfying the conditional expression (8), the optical system of the first embodiment can further effectively reduce the Petzval sum and correct the curvature of field even better.
 条件式 (8)の上限値を4.000に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (8)の上限値を3.500、更に3.200にすることが好ましい。
 また、条件式 (8)の下限値を0.750に設定することで、本第1実施形態の効果をより確実なものとすることができる。また、本第1実施形態の効果をより確実にするために、条件式 (8)の下限値を0.900、1.000、更に1.100にすることが好ましい。
By setting the upper limit value of the conditional expression (8) to 4.000, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the upper limit value of the conditional expression (8) to 3.500 and further to 3.200.
Further, by setting the lower limit value of the conditional expression (8) to 0.750, the effect of the first embodiment can be further ensured. Further, in order to further ensure the effect of the first embodiment, it is preferable to set the lower limit values of the conditional expression (8) to 0.900, 1.000, and further 1.100.
 また、本第1実施形態に係る光学系は、合焦に際して前記前群は固定、前記後群は光軸上を移動する複数の群を持つことが望ましい。 Further, it is desirable that the optical system according to the first embodiment has a plurality of groups in which the front group is fixed and the rear group moves on the optical axis at the time of focusing.
 このように、本第1実施形態に係る光学系は、合焦に際して前記前群は固定、前記後群は光軸上を移動する複数の群を持つ構成により、球面収差、コマ収差、および像面湾曲をさらに良好に補正することができる。 As described above, in the optical system according to the first embodiment, the front group is fixed at the time of focusing, and the rear group has a plurality of groups moving on the optical axis, so that spherical aberration, coma aberration, and image are formed. The curvature of field can be corrected even better.
 また、本第1実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式(9)を満足することが望ましい。
-0.500 < fF2/fF1 < 0.500     (9)
 ただし、
 fF2:前記F2群の焦点距離、
 fF1:前記F1群の焦点距離。
Further, the optical system of the first embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (9).
-0.500 <fF2 / fF1 <0.500 (9)
However,
fF2: Focal length of the F2 group,
fF1: Focal length of the F1 group.
 条件式(9)は、それぞれ独立して移動するF1群とF2群との適切なパワーバランスを規定するものである。本第1実施形態に係る光学系は、条件式(9)を満足することにより、合焦に伴う像倍率の変化を一層抑えることができ、合焦領域全体にわたりさらに極めて良好な光学性能を備えた光学系を得ることができる。
 条件式(9)の上限値を上回ると、F2群に対してF1群の屈折力が過剰になってしまい、合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(9)の効果をより確実にするために、条件式(9)の上限値を0.400とすることが好ましく、0.300、0.200、0.150、さらに0.100であることがより好ましい。
 条件式(9)の下限値を下回ると、F1群に対してF2群の屈折力が過剰になってしまい、領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(9)の効果をより確実にするために、条件式(9)の下限値を-0.450とすることが好ましく、-0.400、-0.350、-0.300、さらに-0.250であることがより好ましい。
The conditional expression (9) defines an appropriate power balance between the F1 group and the F2 group, which move independently of each other. By satisfying the conditional expression (9), the optical system according to the first embodiment can further suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. It is possible to obtain an optical system.
If the upper limit of the conditional expression (9) is exceeded, the refractive power of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing.
In order to further ensure the effect of the conditional expression (9), the upper limit of the conditional expression (9) is preferably 0.400, with 0.300, 0.200, 0.150, and further 0.100. It is more preferable to have.
If it is less than the lower limit of the conditional expression (9), the refractive power of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire region.
In order to further ensure the effect of the conditional expression (9), the lower limit of the conditional expression (9) is preferably −0.450, −0.400, −0.350, −0.300, and further. -0.250 is more preferable.
 また、本第1実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式(10)を満足することが望ましい。
-0.300 < βF2/βF1 < 1.200   (10)
 ただし、
 βF2:前記F2群の横倍率、
 βF1:前記F1群の横倍率。
Further, the optical system of the first embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy the equation (10).
-0.300 <βF2 / βF1 <1.200 (10)
However,
βF2: Horizontal magnification of the F2 group,
βF1: Horizontal magnification of the F1 group.
 条件式(10)は、光軸上を移動する二つの合焦群であるF2群及びF1群のそれぞれの横倍率での比を規定するものである。本第1実施形態に係る光学系は、条件式(10)を満足することにより、合焦に伴う像倍率の変化を抑えることができ、合焦領域全体にわたり極めて良好な光学性能を備えた光学系を得ることができる。
 条件式(10)の上限値を上回ると、F1群に対してF2群の横倍率が過剰になってしまい、合焦領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(10)の効果をより確実にするために、条件式(10)の上限値を1.100とすることが好ましく、1.000、0.900、0.800、0.750、0.700、0.680、さらに0.650であることがより好ましい。
 条件式(10)の下限値を下回ると、F2群に対してF1群の横倍率が過剰になってしまい、合焦領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(10)の効果をより確実にするために、条件式(10)の下限値を-0.250とすることが好ましく、-0.200、-0.150、-0.100、-0.050、0.000、さらに0.040であることがより好ましい。
The conditional expression (10) defines the ratio of the two focusing groups, the F2 group and the F1 group, which move on the optical axis, at the lateral magnifications. By satisfying the conditional expression (10), the optical system according to the first embodiment can suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. You can get the system.
If the upper limit of the conditional expression (10) is exceeded, the lateral magnification of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
In order to make the effect of the conditional expression (10) more reliable, it is preferable to set the upper limit value of the conditional expression (10) to 1.100, 1.000, 0.900, 0.800, 0.750, 0. More preferably, it is .700, 0.680, and more preferably 0.650.
If it falls below the lower limit of the conditional expression (10), the lateral magnification of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
In order to further ensure the effect of the conditional expression (10), the lower limit of the conditional expression (10) is preferably −0.250, −0.200, −0.150, −0.100, −. More preferably, it is 0.050, 0.000, and even 0.040.
 また、本第1実施形態の光学系は、前記後群には少なくとも1面が非球面であるレンズを備えることが望ましい。 Further, it is desirable that the optical system of the first embodiment includes a lens having at least one aspherical surface in the rear group.
 これより、本願発明は大口径光学系であるにもかかわらず、特に球面収差を効果的に低減できる。 From this, although the invention of the present application is a large-diameter optical system, spherical aberration can be effectively reduced in particular.
 次に、本第2実施形態に係る光学系について説明する。
 本第2実施形態に係る光学系は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなる。
Next, the optical system according to the second embodiment will be described.
The optical system according to the second embodiment is composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole, in order from the object side.
 このような構成により、本第2実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を適切に補正することができる。 With such a configuration, the optical system of the second embodiment can appropriately correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object.
 このような構成のもと、本第2実施形態の光学系は、前記前群の内、最も物体側に配置されたレンズから物体側へ凹面を向けた最も物体側に配置されたレンズまでのレンズ群をAF群、前記AF群より像側に配置されたレンズ群をAR群とし、以下の条件式(11)を満足する。
0.750 < (|1/fAF|+|1/fAR|)×fA < 7.000(11)
 ただし、
 fAF:AF群の無限撮影時の焦点距離、
 fAR:AR群の無限撮影時の焦点距離、
 fA :無限撮影時の前群の焦点距離。 
Under such a configuration, the optical system of the second embodiment is from the lens arranged on the most object side to the lens arranged on the most object side with the concave surface facing the object side in the front group. The lens group is defined as an AF group, and the lens group arranged on the image side of the AF group is defined as an AR group, and the following conditional expression (11) is satisfied.
0.750 <(| 1 / fAF | + | 1 / fAR |) x fA <7.70 (11)
However,
fAF: Focal length of AF group during infinite shooting,
fAR: Focal length during infinite shooting of AR group,
fA: Focal length of the front group during infinite shooting.
 条件式(11)は、前記AF群の屈折力と前記AR群の屈折力の和と前群の焦点距離との積を規定する条件式である。条件式(11)を満足することにより、マージナル光線を一旦A群で高く上げてB群で低く下げる。これによりペッツバール和を減少させ、大口径レンズにおける球面収差と像面湾曲を両立して補正することができる。 The conditional expression (11) is a conditional expression that defines the product of the sum of the refractive powers of the AF group and the refractive powers of the AR group and the focal length of the front group. By satisfying the conditional expression (11), the marginal ray is once raised high in the group A and lowered in the group B. As a result, the Petzval sum can be reduced, and both spherical aberration and curvature of field in a large-diameter lens can be corrected at the same time.
 本第2実施形態の条件式(11)の対応値が下限値を下回ると、一旦高く上げる量が少なくなり球面収差と像面湾曲の両立した補正ができなくなり、特に像面湾曲が悪化する。なお、条件式 (11)の下限値を0.800に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (11)の下限値を1.000、2.000、2.500、更に3.000にすることが好ましい。 When the corresponding value of the conditional expression (11) of the second embodiment is less than the lower limit value, the amount of raising it once becomes small, and it becomes impossible to correct both spherical aberration and curvature of field at the same time, and the curvature of field becomes particularly worse. By setting the lower limit of the conditional expression (11) to 0.800, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (11) to 1.000, 2.000, 2.500, and further 3.000.
 一方、本第2実施形態の条件式(11)の対応値が上限値を上回ると、A群で高く上げすぎることで球面収差の補正が厳しくなってしまう。なお、条件式(11)の上限値を6.500に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (11)の上限値を6.000、5.500、更に5.000にすることが好ましい。  On the other hand, if the corresponding value of the conditional expression (11) of the second embodiment exceeds the upper limit value, the spherical aberration will be severely corrected because it is raised too high in the group A. By setting the upper limit of the conditional expression (11) to 6.500, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit value of the conditional expression (11) to 6,000, 5.500, and further 5.000. It was
 以上の構成により、本第2実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を実現することができる。 With the above configuration, the optical system of the second embodiment can satisfactorily correct various aberrations from the in-focus state of an infinite object to the in-focus state of a short-range object, and can be used for both auto focus and manual focus. It is possible to realize a suitable large-diameter optical system.
 また、このような構成により、本第2実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を良好に補正することができる。 Further, with such a configuration, the optical system of the second embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma aberration, from the in-focus state of an infinite object to the in-focus state of a short-range object. can.
 また、本第2実施形態の光学系は、以下の条件式(12)を満たす負レンズを少なくとも1枚有することが望ましい。
-0.060 < -NdL-0.011×νdL+2.12 < 0.034 (12)
24.7 < νdL < 58.0    (13)
 ただし、
 νdL : 前記負レンズのd線に対するアッベ数、
  NdL  : 前記負レンズのg線とF線とによる部分分散比。
Further, it is desirable that the optical system of the second embodiment has at least one negative lens satisfying the following conditional expression (12).
-0.060 <-NdL-0.011 x νdL + 2.12 <0.034 (12)
24.7 <νdL <58.0 (13)
However,
νdL: Abbe number for the d line of the negative lens,
NdL: Partial dispersion ratio of the g-line and F-line of the negative lens.
 ここで、アッベ数νdLおよび部分分散比NdLは、前述のとおり、C線(波長656.3nm)に対する屈折率をnC、d線(波長587.6nm)に対する屈折率をnd、F線(波長486.1nm)に対する屈折率をnF、g線(波長435.8nm)に対する屈折率をngとしたとき、それぞれ次の式で表される。
νdL=(nd-1)/(nF-nC)
NdL=(ng-nF)/(nF-nC)
Here, as described above, the Abbe number νdL and the partial dispersion ratio NdL have a refractive index of nC for the C line (wavelength 656.3 nm), nd for the d line (wavelength 587.6 nm), and an F line (wavelength 486). When the refractive index for (1 nm) is nF and the refractive index for g-line (wavelength 435.8 nm) is ng, they are expressed by the following equations, respectively.
νdL = (nd-1) / (nF-nC)
NdL = (ng-nF) / (nF-nC)
 上記条件式(12)、(13)は、前記光学系が有する負レンズに用いる硝材を規定する条件式である。条件式(12)、(13)を満足する負レンズを有することにより、軸上色収差を良好に補正することができる。 The above conditional expressions (12) and (13) are conditional expressions that define the glass material used for the negative lens of the optical system. By having a negative lens that satisfies the conditional equations (12) and (13), axial chromatic aberration can be satisfactorily corrected.
 本第2実施形態の光学系の条件式(12)の対応値が上限値を上回ると、前記負レンズの異常分散性が大きくなり、軸上色収差の補正が困難となってしまう。なお、条件式(12)の上限値を0.032に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (12)の上限値を0.030、0.029、更に0.028にすることが好ましい。 If the corresponding value of the conditional expression (12) of the optical system of the second embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes large, and it becomes difficult to correct the axial chromatic aberration. By setting the upper limit value of the conditional expression (12) to 0.032, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit values of the conditional expression (12) to 0.030, 0.029, and further 0.028.
 一方、本第2実施形態の光学系の条件式(12)の対応値が下限値を下回ると、前記負レンズのアッベ数が大きくなり、軸上色収差の補正が困難となってしまう。なお、条件式(12)の下限値を-0.055に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (12)の下限値を-0.050、更に-0.045にすることが好ましい。 On the other hand, if the corresponding value of the conditional expression (12) of the optical system of the second embodiment is less than the lower limit value, the Abbe number of the negative lens becomes large and it becomes difficult to correct the axial chromatic aberration. By setting the lower limit of the conditional expression (12) to −0.055, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit value of the conditional expression (12) to −0.050 and further to −0.045.
 また、本第2実施形態の光学系の条件式(13)の対応値が上限値を上回ると、前記負レンズの異常分散性が小さくなり、軸上色収差の補正が困難となってしまう。なお、条件式(13)の上限値を57.0に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (13)の上限値を56.0、更に55.5にすることが好ましい。 Further, when the corresponding value of the conditional expression (13) of the optical system of the second embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration. By setting the upper limit value of the conditional expression (13) to 57.0, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit value of the conditional expression (13) to 56.0 and further to 55.5.
 一方、本第2実施形態の光学系の条件式(13)の対応値が下限値を下回ると、前記負レンズのアッベ数が小さくなり、軸上色収差の補正が困難となってしまう。なお、条件式(13)の下限値を25.0に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (13)の下限値を26.0、27.0、更に29.5にすることが好ましい。 On the other hand, if the corresponding value of the conditional expression (13) of the optical system of the second embodiment is less than the lower limit value, the Abbe number of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration. By setting the lower limit of the conditional expression (13) to 25.0, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (13) to 26.0, 27.0, and further 29.5.
 また、本第2実施形態の光学系は、以下の条件式(14)を満たすことが望ましい。
0.400 < fA/fB < 2.500   (14)
 ただし、
 fB:無限撮影時の後群の焦点距離。
Further, it is desirable that the optical system of the second embodiment satisfies the following conditional expression (14).
0.400 <fA / fB <2.5500 (14)
However,
fB: Focal length of the rear group during infinite shooting.
 条件式(14)は、無限撮影時の前群の焦点距離と後群の焦点距離との比を規定するための条件式である。条件式(14)を満足することにより、ペッツバール和を効果的に小さくしつつコマ収差および球面収差の悪化を抑制することができ、その結果、像面湾曲も良好に補正することができる。 The conditional expression (14) is a conditional expression for defining the ratio between the focal length of the front group and the focal length of the rear group at the time of infinite shooting. By satisfying the conditional equation (14), deterioration of coma aberration and spherical aberration can be suppressed while effectively reducing the Petzval sum, and as a result, curvature of field can be satisfactorily corrected.
 本第2実施形態の光学系の条件式(14)の対応値が上限値を上回ると、ペッツバール和を効果的に小さくすることができず、像面湾曲を良好に補正することが困難となってしまう。なお、条件式(14)の上限値を2.200に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式(9)の上限値を2.000、更に1.800に設定することが好ましい。 If the corresponding value of the conditional expression (14) of the optical system of the second embodiment exceeds the upper limit value, the Petzval sum cannot be effectively reduced, and it becomes difficult to satisfactorily correct the curvature of field. It ends up. By setting the upper limit value of the conditional expression (14) to 2.200, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit value of the conditional expression (9) to 2.000 and further to 1.800.
 一方、本第2実施形態の光学系の条件式(14)の対応値が下限値を下回ると、球面収差、コマ収差が悪化してしまう。なお、条件式(14)の下限値を0.450に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式(14)の下限値を0.500、0.550、更に0.600に設定することが好ましい。 On the other hand, if the corresponding value of the conditional expression (14) of the optical system of the second embodiment is less than the lower limit value, spherical aberration and coma aberration will be deteriorated. By setting the lower limit of the conditional expression (14) to 0.450, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (14) to 0.500, 0.550, and further to 0.600.
 また、本第2実施形態の光学系は、前記前群の物体側から順に、最物体側レンズから4枚目のレンズまでの間に負レンズが2枚以上あり、それらの向かい合った凹面の内、物体側にある負レンズの像側面の曲率半径をr1、像側にある負レンズの物体側面の曲率半径をr2とすると、以下の条件式(15)を満足することが望ましい。
-0.500<(r1+r2)/(r1-r2)<0.500 (15)
Further, in the optical system of the second embodiment, there are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and among the concave surfaces facing each other. Assuming that the radius of curvature of the image side surface of the negative lens on the object side is r1 and the radius of curvature of the object side surface of the negative lens on the image side is r2, it is desirable that the following conditional expression (15) is satisfied.
-0.500 <(r1 + r2) / (r1-r2) <0.500 (15)
 条件式(15)は、前記向かい合った前記凹面の内、物体側にある負レンズの像側面の曲率半径と像側にある負レンズの物体側面の曲率半径との形状因子を規定するための条件式である。 The conditional equation (15) is a condition for defining a scherrer of the radius of curvature of the image side surface of the negative lens on the object side and the radius of curvature of the object side surface of the negative lens on the image side in the concave surfaces facing each other. It is an expression.
 条件式(15)の上限値を0.400に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (15)の上限値を0.350、0.300、更に0.280にすることが好ましい。
 また、条件式 (15)の下限値を-0.400に設定することで、本第2実施形態の効果をより確実なものとすることができる。また、本第2実施形態の効果をより確実にするために、条件式 (15)の下限値を-0.350、-0.300、更に-0.250にすることが好ましい。
By setting the upper limit value of the conditional expression (15) to 0.400, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the upper limit values of the conditional expression (15) to 0.350, 0.300, and further 0.280.
Further, by setting the lower limit value of the conditional expression (15) to −0.400, the effect of the second embodiment can be further ensured. Further, in order to further ensure the effect of the second embodiment, it is preferable to set the lower limit values of the conditional expression (15) to −0.350, −0.300, and further −0.250.
 また、本第2実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式(16)を満足することが望ましい。
-0.500 < fF2/fF1 < 0.500    (16)
 ただし、
 fF2:前記F2群の焦点距離、
 fF1:前記F1群の焦点距離。
Further, the optical system of the second embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (16).
-0.500 <fF2 / fF1 <0.500 (16)
However,
fF2: Focal length of the F2 group,
fF1: Focal length of the F1 group.
 条件式(16)は、それぞれ独立して移動するF1群とF2群との適切なパワーバランスを規定するものである。本第2実施形態に係る光学系は、条件式(16)を満足することにより、合焦に伴う像倍率の変化を一層抑えることができ、合焦領域全体にわたりさらに極めて良好な光学性能を備えた光学系を得ることができる。
 条件式(16)の上限値を上回ると、F2群に対してF1群の屈折力が過剰になってしまい、合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(16)の効果をより確実にするために、条件式(16)の上限値を0.400とすることが好ましく、0.300、0.200、0.150、さらに0.100であることがより好ましい。
 条件式(16)の下限値を下回ると、F1群に対してF2群の屈折力が過剰になってしまい、領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(16)の効果をより確実にするために、条件式(16)の下限値を-0.450とすることが好ましく、-0.400、-0.350、-0.300、さらに-0.250であることがより好ましい。
The conditional expression (16) defines an appropriate power balance between the F1 group and the F2 group, which move independently of each other. By satisfying the conditional expression (16), the optical system according to the second embodiment can further suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. It is possible to obtain an optical system.
If the upper limit of the conditional expression (16) is exceeded, the refractive power of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing.
In order to further ensure the effect of the conditional expression (16), the upper limit of the conditional expression (16) is preferably 0.400, and 0.300, 0.200, 0.150, and further 0.100. It is more preferable to have.
If it is below the lower limit of the conditional expression (16), the refractive power of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire region.
In order to further ensure the effect of the conditional expression (16), the lower limit of the conditional expression (16) is preferably −0.450, −0.400, −0.350, −0.300, and further. -0.250 is more preferable.
 また、本第2実施形態の光学系は、合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式(17)を満足することが望ましい。
-0.300 < βF2/βF1 < 1.200   (17)
 ただし、
 βF2:前記F2群の横倍率、
 βF1:前記F1群の横倍率。
Further, the optical system of the second embodiment includes the F1 group and the F2 group, which are two focusing groups moving on the optical axis, in which the front group is fixed and the rear group moves on the optical axis at the time of focusing, and the following conditions are met. It is desirable to satisfy equation (17).
-0.300 <βF2 / βF1 <1.200 (17)
However,
βF2: Horizontal magnification of the F2 group,
βF1: Horizontal magnification of the F1 group.
 条件式(17)は、光軸上を移動する二つの合焦群であるF2群及びF1群のそれぞれの横倍率での比を規定するものである。本第2実施形態に係る光学系は、条件式(17)を満足することにより、合焦に伴う像倍率の変化を抑えることができ、合焦領域全体にわたり極めて良好な光学性能を備えた光学系を得ることができる。
 条件式(17)の上限値を上回ると、F1群に対してF2群の横倍率が過剰になってしまい、合焦領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(17)の効果をより確実にするために、条件式(17)の上限値を1.100とすることが好ましく、1.000、0.900、0.800、0.750、0.700、0.680、さらに0.650であることがより好ましい。
 条件式(17)の下限値を下回ると、F2群に対してF1群の横倍率が過剰になってしまい、合焦領域全体にわたり合焦に伴う収差変動を抑制するのが難しくなる。
 条件式(17)の効果をより確実にするために、条件式(17)の下限値を-0.250とすることが好ましく、-0.200、-0.150、-0.100、-0.050、0.000、さらに0.040であることがより好ましい。
The conditional expression (17) defines the ratio of the two focusing groups, the F2 group and the F1 group, which move on the optical axis, at the lateral magnifications. By satisfying the conditional expression (17), the optical system according to the second embodiment can suppress the change in image magnification due to focusing, and has extremely good optical performance over the entire focusing region. You can get the system.
If the upper limit of the conditional expression (17) is exceeded, the lateral magnification of the F2 group becomes excessive with respect to the F1 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
In order to make the effect of the conditional expression (17) more reliable, it is preferable to set the upper limit value of the conditional expression (17) to 1.100, 1.000, 0.900, 0.800, 0.750, 0. More preferably, it is .700, 0.680, and more preferably 0.650.
If it falls below the lower limit of the conditional expression (17), the lateral magnification of the F1 group becomes excessive with respect to the F2 group, and it becomes difficult to suppress the aberration fluctuation due to focusing over the entire focusing region.
In order to further ensure the effect of the conditional expression (17), the lower limit of the conditional expression (17) is preferably −0.250, −0.200, −0.150, −0.100, −. More preferably, it is 0.050, 0.000, and even 0.040.
 本実施形態に係る光学機器は上述した構成の光学系を有する。これにより、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を備えた光学機器を実現することができる。 The optical device according to this embodiment has an optical system having the above-mentioned configuration. As a result, various aberrations can be satisfactorily corrected from the in-focus state of an infinite object to the in-focus state of a short-range object, and an optical device equipped with a large-diameter optical system suitable for both autofocus and manual focus. Can be realized.
 ここで、本実施形態の光学系OLを備えたカメラ(光学機器)の一例について説明する。図22は、レンズOLを有したカメラ1の構成の一例を示す図である。 Here, an example of a camera (optical device) equipped with the optical system OL of the present embodiment will be described. FIG. 22 is a diagram showing an example of the configuration of the camera 1 having the lens OL.
 図22に示すように、カメラ1は、撮影レンズ2として光学系OLを備えたレンズ交換式のいわゆるミラーレスカメラである。
 カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical  low  pass  filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic  view  finder:電子ビューファインダ)4に表示される。これにより、撮影者は、EVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリーに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
As shown in FIG. 22, the camera 1 is a so-called mirrorless camera with interchangeable lenses equipped with an optical system OL as a photographing lens 2.
In the camera 1, the light from an object (subject) (not shown) is focused by the photographing lens 2 and is placed on the image pickup surface of the image pickup unit 3 via an OLPF (Optical low pass filter) (not shown). Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit 3, and the image of the subject is generated. This image is displayed on an EVF (Electronic Viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4. Further, when the photographer presses the release button (not shown), the image of the subject generated by the image pickup unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
 カメラ1に撮影レンズ2として有した光学系OLは、後述の各実施例からも分かるようにその特徴的なレンズ構成によって、大口径で合焦領域全体に亘って収差が良好に補正された光学系を有している。したがって、カメラ1によれば、大口径で合焦領域全体に亘って収差が良好に補正された光学系を有する光学機器を実現することができる。 As can be seen from each of the embodiments described later, the optical system OL provided in the camera 1 as the photographing lens 2 has a large diameter and the aberration is satisfactorily corrected over the entire in-focus region by its characteristic lens configuration. Has a system. Therefore, according to the camera 1, it is possible to realize an optical device having an optical system having a large aperture and satisfactorily corrected aberration over the entire focusing region.
 なお、カメラ1として、ミラーレスカメラの例を説明したが、本実施形態の光学機器は、これに限定されるものではない。例えば、カメラ本体にクイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の光学系OLを有した場合でも、カメラ1と同様の効果を奏することができる。 Although an example of a mirrorless camera has been described as the camera 1, the optical device of the present embodiment is not limited to this. For example, even when a single-lens reflex type camera having a quick return mirror in the camera body and observing a subject by a finder optical system has the above-mentioned optical system OL, the same effect as that of the camera 1 can be obtained.
 本実施形態の光学系の製造方法は、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなるように構成し、以下の条件式(1)、(2)を満足するように構成する光学系の製造方法である。
0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100  (1)
1.500 < f/Bf < 10.000     (2)
 ただし、
 h(max) :マージナル光線が前群で最も高くなる高さ、
 h(1)  :第一面でのマージナル光線高さ、
 h(s)    :絞り面でのマージナル光線高さ、
 FNo   :無限撮影時の開放F値、
 f   :無限撮影時の全系の焦点距離、
 Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
The method for manufacturing an optical system of the present embodiment is configured to include a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, and the following conditional expression is used. It is a method of manufacturing an optical system configured to satisfy (1) and (2).
0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo <2.100 (1)
1.500 <f / Bf <10.000 (2)
However,
h (max): The height at which the marginal ray is the highest in the front group,
h (1): Marginal ray height on the front surface,
h (s): Marginal ray height at the aperture surface,
FNo: Open F value during infinite shooting,
f: Focal length of the whole system at the time of infinite shooting,
Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
 これにより、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径で合焦領域全体に亘って収差が良好に補正された光学系を製造することができる。 As a result, various aberrations can be satisfactorily corrected from the in-focus state of an infinite object to the in-focus state of a short-range object, and the large diameter suitable for both autofocus and manual focus covers the entire in-focus region. It is possible to manufacture an optical system in which aberrations are well corrected.
 以下、本実施形態に係る光学系OLの製造方法の概略について、図23を参照して説明する。まず、物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなるように光学系配置する(S1)。次に、所定の条件式を満足するように配置する(S2)。 Hereinafter, the outline of the manufacturing method of the optical system OL according to the present embodiment will be described with reference to FIG. 23. First, in order from the object side, the optical system is arranged so as to consist of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole (S1). Next, it is arranged so as to satisfy a predetermined conditional expression (S2).
 上述の光学系の製造方法によれば、大口径で合焦領域全体に亘って収差が良好に補正された光学系を製造することができる。 According to the above-mentioned method for manufacturing an optical system, it is possible to manufacture an optical system having a large aperture and well corrected for aberrations over the entire in-focus region.
 なお、以上で説明した条件及び構成は、それぞれが上述した効果を発揮するものであり、全ての条件及び構成を満たすものに限定されることはなく、いずれかの条件又は構成、或いは、いずれかの条件又は構成の組み合わせを満たすものでも、上述した効果を得ることが可能である。 It should be noted that the conditions and configurations described above are those that exert the above-mentioned effects, and are not limited to those that satisfy all the conditions and configurations, and are any of the conditions or configurations, or any of them. It is possible to obtain the above-mentioned effect even if the combination of the above conditions or configurations is satisfied.
  また、以下に記載の各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 Further, each of the examples described below shows a specific example of the present invention, and the present invention is not limited thereto. The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.
 例えば、以下に記載の各実施例は光学系の数値実施例として3群または4群構成のものを示すが、本実施形態はこれに限られず、その他の群構成(例えば、5群等)の光学系を構成することもできる。具体的には、下記各実施例の光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。或いは、隣り合うレンズ群とレンズ群との間にレンズ又はレンズ群を追加しても良い。なお、本明細書において、レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すが、空気間隔で分離された少なくとも1枚以上のレンズで構成されたものであればレンズ群とする場合もある。 For example, each of the examples described below shows a three-group or four-group configuration as a numerical example of an optical system, but the present embodiment is not limited to this, and other group configurations (for example, five groups, etc.) can be used. An optical system can also be configured. Specifically, a lens or a lens group may be added to the most object side or the most image side of the optical system of each of the following examples. Alternatively, a lens or a lens group may be added between adjacent lens groups. In the present specification, the lens group refers to a portion having at least one lens separated by an air interval that changes at the time of focusing, but is composed of at least one or more lenses separated by an air interval. If it is, it may be a lens group.
  また、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(例えば、超音波モータ、ステッピングモータ、VCMモータ等の)モータ駆動にも適している。 The in-focus lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (for example, an ultrasonic motor, a stepping motor, a VCM motor, etc.).
  また、レンズ群または部分レンズ群を光軸に直交方向の変位成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手振れなどによって生じる像ブレを補正する防振レンズ群としてもよい。 In addition, the lens group or partial lens group is moved so as to have a displacement component in the direction orthogonal to the optical axis, or is rotationally moved (swinged) in the in-plane direction including the optical axis to cause image blur caused by camera shake or the like. It may be a group of anti-vibration lenses to be corrected.
  また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface may be formed of a spherical surface or a flat surface, or may be formed of an aspherical surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is aspherical, the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the surface of glass into an aspherical shape. Any aspherical surface may be used. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
  開口絞りSは、レンズ群の中或いは外に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。 The aperture diaphragm S is preferably arranged inside or outside the lens group, but the role may be substituted by the frame of the lens without providing the member as the aperture diaphragm.
  さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。 Further, in order to reduce flare and ghost and achieve high optical performance with high contrast, each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range.
  以上のような構成により、良好な光学性能を有し、明るい光学系OL及びこの光学系OLを有する撮影装置を提供することができる。 With the above configuration, it is possible to provide a bright optical system OL and a photographing apparatus having this optical system OL, which have good optical performance.
 以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1~表7を示すが、これらは第1実施例~第7実施例における各諸元の表である。 Hereinafter, each embodiment according to this embodiment will be described with reference to the drawings. Tables 1 to 7 are shown below, and these are tables of specifications in the first to seventh embodiments.
 図1に示す光学系断面図は、実施例1の光学系断面図であり、光学系の左側を物体側、右側を像側とすると、紙面上部に無限遠物体合焦状態、紙面下部に近距離物体合焦状態がそれぞれ記載され、両者間には合焦時の各レンズ群の移動軌跡が示されている。
 図1の各レンズは物体側(紙面左側)から順にL11、L12、L13、・・・と示されている。
 また、図1において合焦レンズ群は合焦時の移動軌跡と共にF(F1、F2)と示されている。
 更に、図2、図3は、実施例1の無限遠合焦時(図2)及び、近距離合焦時(図3)の収差図であり、良好に収差補正が成されていることがわかる。但し、FNoはFナンバー、Yは像高、d,gはそれぞれd線,g線の収差曲線であることを示している。また非点収差において、実線はサジタル像面、点線はメリジオナル像面を示している。
The cross-sectional view of the optical system shown in FIG. 1 is a cross-sectional view of the optical system of the first embodiment. The focusing state of the distance object is described, and the movement locus of each lens group at the time of focusing is shown between the two.
Each lens in FIG. 1 is shown as L11, L12, L13, ... In order from the object side (left side of the paper surface).
Further, in FIG. 1, the focusing lens group is shown as F (F1, F2) together with the movement locus at the time of focusing.
Further, FIGS. 2 and 3 are aberration diagrams of the point at infinity (FIG. 2) and the short-distance focusing (FIG. 3) of the first embodiment, and the aberrations are well corrected. Recognize. However, FNo indicates an F number, Y indicates an image height, and d and g indicate aberration curves of the d-line and g-line, respectively. In astigmatism, the solid line indicates the sagittal image plane and the dotted line indicates the meridional image plane.
  なお、第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。 Note that each reference numeral with respect to FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference numeral. Therefore, even if they have a reference reference numeral common to the drawings according to the other embodiments, they do not necessarily have the same configuration as the other embodiments.
  各実施例では収差特性の算出対象として、C線(波長656.3nm)、d線(波長587.6nm)、F線(波長486.1nm)、g線(波長435.8nm)を選んでいる。 In each embodiment, C line (wavelength 656.3 nm), d line (wavelength 587.6 nm), F line (wavelength 486.1 nm), and g line (wavelength 435.8 nm) are selected as the calculation targets of the aberration characteristics.
  表中の(基本諸元)において、fは光学系OL全系の焦点距離、FNoはFナンバー、ωは半画角(最大入射角単位:°)、Yは像高、TLはレンズ全長(光軸上でのレンズ最前面からレンズ最終面までの距離に、BFを加えたもの)、BFはバックフォーカス(光軸上でのレンズ最終面から近軸像面までのフィルタ等を介した実距離)、BF(空気換算長)はバックフォーカス(光軸上でのレンズ最終面から近軸像面までの距離を空気換算した距離)を示す。 In the (basic specifications) in the table, f is the focal length of the entire optical system OL, FNo is the F number, ω is the half angle (maximum incident angle unit: °), Y is the image height, and TL is the total lens length (TL). The distance from the front surface of the lens to the final surface of the lens on the optical axis plus BF), and BF is the back focal length (actually through a filter from the final surface of the lens to the near-axis image plane on the optical axis). Distance) and BF (air equivalent length) indicate back focus (distance converted by air from the final surface of the lens on the optical axis to the near-axis image plane).
  表中の(面データ)において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、rは各光学面の曲率半径、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。また、(物面)は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞り)は開口絞りS、像面は像面I、BFはバックフォーカス(光軸上でのレンズ最終面から近軸像面までの距離)をそれぞれ示す。BFは(可変)と示されなくても可変である場合を含む。空気の屈折率「1.00000」は省略する。 In the (plane data) in the table, the plane number is the order of the optical planes from the object side along the traveling direction of the light beam, r is the radius of refraction of each optical plane, and d is the next optical plane (or the next optical plane) from each optical plane. The plane spacing, which is the distance on the optical axis to the image plane), nd indicates the refractive index of the material of the optical member with respect to the d-line, and νd indicates the Abbe number based on the d-line of the material of the optical member. (Object surface) is an object surface, (variable) is a variable surface spacing, "∞" of curvature radius is a plane or an aperture, (aperture) is an aperture diaphragm S, an image plane is an image plane I, and BF is a back focus ( The distance from the final surface of the lens on the optical axis to the paraxial image plane) is shown. BF includes the case where it is variable even if it is not shown as (variable). The refractive index of air "1.00000" is omitted.
  表中の(非球面データ)において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次(n=4,6,8,10,12,14,16)の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「e-n」は「×10-n」を示す。例えば、「-4.54914e-06」は「-4.54914×10-6」を示す。 In the (aspherical surface data) in the table, the aspherical surface has a height in the direction perpendicular to the optical axis as y, and is along the optical axis from the tangent plane of the apex of each aspherical surface to each aspherical surface at the height y. The distance (sag amount) is S (y), the radius of curvature (near axis radius of curvature) of the reference sphere is r, the conical constant is κ, and the nth order (n = 4,6,8,10,12,14, When the aspherical coefficient of 16) is An, it is expressed by the following equation (a). In the following examples, " en " indicates "× 10 -n". For example, "-4.54914e-06" indicates "-4.54914 × 10-6 ".
 S(y)=(y2/r)/{1+(1-κ×y2/r21/2
   +A4×y4+A6×y6+A8×y8+A10×y10+A12×y12+A14×y14+A16×y16 (a)
S (y) = (y 2 / r) / {1 + (1-κ × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 + A12 × y 12 + A14 × y 14 + A16 × y 16 (a)
  なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。 In each embodiment, the second-order aspherical coefficient A2 is 0. Further, in the table of each embodiment, the aspherical surface is marked with * on the right side of the surface number.
  表中の(レンズ群焦点距離)において、始面は各群の最も物体側の面番号を、終面は各群の最も像側の面番号を、群焦点距離は各群の焦点距離を示す。 In the table (lens group focal length), the start surface indicates the surface number on the most object side of each group, the end surface indicates the surface number on the image side of each group, and the group focal length indicates the focal length of each group. ..
  表中の(可変間隔データ)において、無限遠(無限遠合焦状態)及び至近(近距離合焦状態)のそれぞれにおける各可変間隔diを示す。ここで、diは、第i面と第(i+1)面の可変間隔を示す。なお、d0は物体から最も物体側のレンズ面の頂点までの光軸上の距離を示す。 In the (variable interval data) in the table, each variable interval di at infinity (infinity focusing state) and close (short distance focusing state) is shown. Here, di indicates a variable interval between the i-th plane and the (i + 1) th plane. Note that d0 indicates the distance on the optical axis from the object to the apex of the lens surface on the object side.
  以下、全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔d、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。 Hereinafter, in all the specification values, "mm" is generally used for the focal length f, the radius of curvature r, the surface spacing d, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed. Further, the unit is not limited to "mm", and other appropriate units can be used.
  ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。 The explanation of the table so far is common to all the examples, and the explanation below is omitted.
(第1実施例)
 図1は、第1実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(First Example)
FIG. 1 is a cross-sectional view of an optical system according to the first embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凸面を向けたメニスカスレンズ形状の負レンズL11、物体側に凸面を向けたメニスカスレンズ形状の正レンズL12、物体側に凹面を向けたメニスカスレンズ形状の負レンズL13、物体側に凹面を向けたメニスカスレンズ形状の正レンズL14、両凸正レンズL15、物体側に凸面を向けたメニスカスレンズ形状の正レンズL16、物体側に凸面を向けたメニスカスレンズ形状の正レンズL17、両凸正レンズL18及び両凹負レンズL19とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、物体側に凸面を向けた平凸正レンズL22で構成され、F2群は両凸正レンズL31、両凸正レンズL32で構成され、R群は物体側に凸面を向けたメニスカスレンズ形状の正レンズL41、両凸正レンズL42と両凹負レンズL43とを接合した接合負レンズ、両凹負レンズL44で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
In the front group A, in order from the object side, a negative lens L11 having a meniscus lens shape with a convex surface facing the object side, a positive lens L12 having a meniscus lens shape with a convex surface facing the object side, and a meniscus lens shape having a concave surface facing the object side. Negative lens L13, a positive lens L14 with a meniscus lens shape with a concave surface facing the object side, a biconvex positive lens L15, a positive lens L16 with a meniscus lens shape with a convex surface facing the object side, and a meniscus lens with a convex surface facing the object side. It is composed of a junction negative lens in which a positive lens L17 having a shape, a biconvex positive lens L18, and a biconcave negative lens L19 are joined.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a plano-convex positive lens L22 with a convex surface facing the object side, and the F2 group consists of a biconvex positive lens L31 and a biconvex positive lens L32. The R group is composed of a positive lens L41 having a meniscus lens shape with a convex surface facing the object side, a junction negative lens in which a biconvex positive lens L42 and a biconcave negative lens L43 are joined, and a biconcave negative lens L44. There is.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL11の像側面(曲率半径r1)と負レンズL13の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L11 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群とF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図1には光学系、及び光学系の像面Iが図示されている。
 以下の表1に、第1実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 1 shows an optical system and an image plane I of the optical system.
Table 1 below shows the values of each specification in the first embodiment.
(表1)第1実施例
(基本諸元)
f               51.29
FNo              1.23
ω              22.8
Y               21.60
TL             163.307
BF              13.112
BF(空気換算長)  12.567
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1     280.68270    2.650    1.64000         60.1        
 2      46.02198    3.540                                r1
 3      50.87481    4.190    1.94595         18.0     
 4      62.23366   16.510 
 5     -43.98849    3.200    1.55298         55.1        r2
 6    -158.30791    4.050 
 7     -82.01412    6.700    1.59349         67.0     
 8     -52.72274   -3.000  
 9       0.00000    3.100   
10     113.04472   10.810    1.59349         67.0     
11    -113.04472    0.200  
12      75.49059    6.540    1.59349         67.0     
13     275.33026    0.200  
14      48.85546   10.350    1.59349         67.0     
15     571.46325    0.680 
16     290.13527    6.040    1.59319         67.9  
17    -109.11000    2.160    1.73800         32.3     
18      40.04126    7.790  
19(絞り)∞       (可変)  
20     -37.07012    1.700    1.72047         34.7 
21     -95.03209    0.200  
22      58.85968    6.200    1.59319         67.9     
23       0.00000   (可変) 
24     391.60810    6.460    1.59306         67.0     
25*   -165.00000    2.600  
26*     71.00000    4.000    1.76450         49.1     
27    -430.72555   (可変)
28     137.78125    3.100    1.61800         63.3     
29     795.36428    0.100  
30      87.92389    5.700    1.90265         35.8     
31    -127.68000    1.800    1.61266         44.5  
32      40.89766    7.760   
33*    -64.58764    1.800    1.51680         64.0     
34     423.87378   10.810  
35       0.00000    1.600    1.51680         63.9     
36       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10
25  1.52295e+01 -2.31391e-05  7.84797e-08 -2.22440e-10  4.85260e-13
                     A12          A14          A16      
                -7.08430e-16  6.01460e-19 -2.27720e-22
面     κ            A4           A6           A8          A10
26 -1.15900e-01 -2.10400e-05  5.52111e-08 -1.44760e-10  2.04610e-13
                     A12          A14          A16      
                 1.63620e-16 -1.08770e-18  1.17040e-21
面     κ            A4           A6           A8          A10
33  9.47940e+00  9.45827e-07  1.06743e-08 -3.94910e-11  1.67840e-13
                     A12          A14          A16      
                -4.43900e-16  6.53730e-19  0.00000e+00
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
   A           1      18    114.58
   F1        20      23   -707.60
   F2        24      27     57.73
   R         28      34   -157.33
                    
(可変間隔データ)
            無限遠        至近
d0           ∞         467.50
倍率         -           -0.1000
f          51.29           -   
d19        19.164        11.437
d23         2.000         3.584
d27         1.900         8.043
d36         0.702         0.701
 
(Table 1) First Example (Basic Specifications)
f 51.29
FNo 1.23
ω 22.8
Y 21.60
TL 163.307
BF 13.112
BF (air equivalent length) 12.567

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 280.68270 2.650 1.64000 60.1
2 46.02198 3.540 r1
3 50.87481 4.190 1.94595 18.0
4 62.23366 16.510
5 -43.98849 3.200 1.55298 55.1 r2
6 -158.30791 4.050
7 -82.01412 6.700 1.59349 67.0
8-52.72274 -3.000
9 0.00000 3.100
10 113.04472 10.810 1.59349 67.0
11 -113.04472 0.200
12 75.49059 6.540 1.59349 67.0
13 275.33026 0.200
14 48.85546 10.350 1.59349 67.0
15 571.46325 0.680
16 290.13527 6.040 1.59319 67.9
17 -109.11000 2.160 1.73800 32.3
18 40.04126 7.790
19 (Aperture) ∞ (Variable)
20 -37.07012 1.700 1.72047 34.7
21 -95.03209 0.200
22 58.85968 6.200 1.59319 67.9
23 0.00000 (variable)
24 391.60810 6.460 1.59306 67.0
25 * -165.00000 2.600
26 * 71.00000 4.000 1.76450 49.1
27 -430.72555 (variable)
28 137.78125 3.100 1.61800 63.3
29 795.36428 0.100
30 87.92389 5.700 1.90265 35.8
31 -127.68000 1.800 1.61266 44.5
32 40.89766 7.760
33 * -64.58764 1.800 1.51680 64.0
34 423.87378 10.810
35 0.00000 1.600 1.51680 63.9
36 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
25 1.52295e + 01 -2.31391e-05 7.84797e-08 -2.22440e-10 4.85260e-13
A12 A14 A16
-7.08430e-16 6.01460e-19 -2.27720e-22
Surface κ A4 A6 A8 A10
26 -1.15900e-01 -2.10400e-05 5.52111e-08 -1.44760e-10 2.04610e-13
A12 A14 A16
1.63620e-16 -1.08770e-18 1.17040e-21
Surface κ A4 A6 A8 A10
33 9.47940e + 00 9.45827e-07 1.06743e-08 -3.94910e-11 1.67840e-13
A12 A14 A16
-4.43900e-16 6.53730e-19 0.00000e + 00

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 18 114.58
F1 20 23 -707.60
F2 24 27 57.73
R 28 34 -157.33

(Variable interval data)
Close to infinity
d0 ∞ 467.50
Magnification --- 0.1000
f 51.29-
d19 19.164 11.437
d23 2.000 3.584
d27 1.900 8.043
d36 0.702 0.701
 図2、及び図3はそれぞれ、第1実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 2 and 3 are aberration diagrams of the optical system according to the first embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第2実施例)
 図4は、第2実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(Second Example)
FIG. 4 is a cross-sectional view of the optical system according to the second embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、両凸正レンズL11、両凹負レンズL12、物体側に凹面を向けたメニスカスレンズ形状の負レンズL13、物体側に凹面を向けたメニスカスレンズ形状の正レンズL14、両凸正レンズL15、両凸正レンズL16、物体側に凸面を向けたメニスカスレンズ形状の正レンズL17、両凸正レンズL18及び両凹負レンズL19とを接合した接合負レンズで構成されている。
 また、後群BはF1群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、物体側に凸面を向けたメニスカスレンズ形状の正レンズL22、両凸正レンズL23、両凸正レンズL24で構成され、R群は両凸正レンズL31と両凹負レンズL32とを接合した接合負レンズ、物体側に凸面を向けたメニスカスレンズ形状の正レンズL33、両凹負レンズL34で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
In the front group A, in order from the object side, a biconvex positive lens L11, a biconcave negative lens L12, a meniscus lens-shaped negative lens L13 with a concave surface facing the object side, and a meniscus lens-shaped positive lens with a concave surface facing the object side. It is composed of L14, a biconvex positive lens L15, a biconvex positive lens L16, a positive lens L17 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L18, and a junction negative lens L19 joined together. ing.
The rear group B is composed of the F1 group and the R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side, a positive lens L22 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L23, and a biconvex positive lens L24. The R group is composed of a junction negative lens in which a biconvex positive lens L31 and a biconcave negative lens L32 are joined, a meniscus lens-shaped positive lens L33 with a convex surface facing the object side, and a biconvex negative lens L34.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL12の像側面(曲率半径r1)と負レンズL13の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図4には光学系、及び光学系の像面Iが図示されている。
 以下の表2に、第2実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 4 shows an optical system and an image plane I of the optical system.
Table 2 below shows the values of each specification in the second embodiment.
(表2)第2実施例
(基本諸元)
f               51.60
FNo              1.23
ω              23.2
Y               21.60
TL             159.001
BF              13.301
BF(空気換算長)  12.756
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1     561.29662    3.472    1.94595         18.0     
 2    -305.56196    2.894    1.00000    
 3     -98.58907    2.400    1.64000         60.2     
 4      59.18522   16.590    1.00000                     r1
 5     -38.57810    2.000    1.61266         44.5        r2
 6     -77.71819    1.125    1.00000    
 7     -66.43595    7.639    1.48749         70.3     
 8     -40.96684   -5.500 
 9       0.00000    5.600 
10     208.08414    8.046    1.59349         67.0     
11    -131.00411    0.200   
12      66.25297   12.563    1.59349         67.0     
13    -226.94593    0.200   
14      47.98878   10.340    1.59349         67.0     
15     602.32269    0.100 
16     227.35510    6.148    1.49782         82.6     
17    -119.73996    2.100    1.73800         32.3 
18      38.44017    8.050  
19(絞り)∞       (可変)  
20     -38.72427    1.700    1.67300         38.1    
21    -200.60706    0.200 
22      46.90854    6.300    1.59349         67.0     
23     281.98159    2.937 
24   10173.51700    5.973    1.59349         67.0     
25     -60.25114    1.938  
26*    125.33569    4.027    1.74389         49.5     
27    -171.03743   (可変)  
28     103.50665    4.719    1.92286         20.9     
29    -306.58773    1.800    1.66111         32.7     
30      36.00000    2.023 
31      52.72529    5.109    1.84850         43.8     
32     442.08579    3.792  
33*    -74.13130    1.800    1.88202         37.2    
34     182.21660   10.710  
35       0.00000    1.600    1.51680         64.1     
36       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10      
26 -4.41960e+01 -1.67080e-06 -5.36140e-09 -1.35087e-13  0.00000e+00
33  1.08477e+01  4.00275e-06  8.47101e-09 -1.45201e-11  3.36098e-14
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
     A           1      18     96.06
     F1        20      27     56.72
     R          28      34   -102.22
                    
(可変間隔データ)
            無限遠        至近
d0           ∞         468.42
倍率         -           -0.1000
f          51.60           -   
d19        17.715        12.059
d27         1.700         7.357
d36         0.991         0.991
 
(Table 2) Second Example (Basic Specifications)
f 51.60
FNo 1.23
ω 23.2
Y 21.60
TL 159.001
BF 13.301
BF (air equivalent length) 12.756

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 561.29662 3.472 1.94595 18.0
2 -305.56196 2.894 1.00000
3 -98.58907 2.400 1.64000 60.2
4 59.18522 16.590 1.00000 r1
5 -38.57810 2.000 1.61266 44.5 r2
6 -77.71819 1.125 1.00000
7 -66.43595 7.639 1.48749 70.3
8 -40.96684 -5.500
9 0.00000 5.600
10 208.08414 8.046 1.59349 67.0
11 -131.00411 0.200
12 66.25297 12.563 1.59349 67.0
13 -226.94593 0.200
14 47.98878 10.340 1.59349 67.0
15 602.32269 0.100
16 227.35510 6.148 1.49782 82.6
17 -119.73996 2.100 1.73800 32.3
18 38.44017 8.050
19 (Aperture) ∞ (Variable)
20 -38.72427 1.700 1.67300 38.1
21 -200.60706 0.200
22 46.90854 6.300 1.59349 67.0
23 281.98159 2.937
24 10173.51700 5.973 1.59349 67.0
25 -60.25114 1.938
26 * 125.33569 4.027 1.74389 49.5
27 -171.03743 (variable)
28 103.50665 4.719 1.92286 20.9
29 -306.58773 1.800 1.66111 32.7
30 36.00000 2.023
31 52.72529 5.109 1.84850 43.8
32 442.08579 3.792
33 * -74.13130 1.800 1.88202 37.2
34 182.21660 10.710
35 0.00000 1.600 1.51680 64.1
36 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
26 -4.41960e + 01 -1.67080e-06 -5.36140e-09 -1.35087e-13 0.00000e + 00
33 1.08477e + 01 4.00275e-06 8.47101e-09 -1.45201e-11 3.36098e-14

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 18 96.06
F1 20 27 56.72
R 28 34 -102.22

(Variable interval data)
Close to infinity
d0 ∞ 468.42
Magnification --- 0.1000
f 51.60-
d19 17.715 12.059
d27 1.700 7.357
d36 0.991 0.991
 図5、及び図6はそれぞれ、第2実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 5 and 6 are aberration diagrams of the optical system according to the second embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第3実施例)
 図7は、第3実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(Third Example)
FIG. 7 is a cross-sectional view of the optical system according to the third embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凸面を向けたメニスカスレンズ形状の正レンズL11と物体側に凸面を向けたメニスカスレンズ形状の負レンズL12とを接合した接合負レンズ、物体側に凹面を向けたメニスカスレンズ形状の負レンズL13、物体側に凹面を向けたメニスカスレンズ形状の正レンズL14、両凸正レンズL15、両凸正レンズL16、両凸正レンズL17、物体側に凹面を向けたメニスカスレンズ形状の正レンズL18及び両凹負レンズL19とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、物体側に凸面を向けたメニスカスレンズ形状の正レンズL22で構成され、F2群は両凸正レンズL31、両凸正レンズL32で構成され、R群は両凸正レンズL41と両凹負レンズL42とを接合した接合負レンズ、物体側に凸面を向けたメニスカスレンズ形状の正レンズL43、両凹負レンズL44で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
The front group A is a bonded negative lens in which a positive lens L11 having a meniscus lens shape with a convex surface facing the object side and a negative lens L12 having a meniscus lens shape having a convex surface facing the object side are joined in order from the object side. Negative lens L13 in the shape of a meniscus lens with a concave surface, positive lens L14 in the shape of a meniscus lens with a concave surface facing the object side, biconvex positive lens L15, biconvex positive lens L16, biconvex positive lens L17, concave surface on the object side It is composed of a junction negative lens in which a positive lens L18 having a meniscus lens shape and a biconcave negative lens L19 are joined.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side, and the F2 group is a biconvex positive lens L31 and biconvex positive. It is composed of a lens L32, and the R group is composed of a junction negative lens in which a biconvex positive lens L41 and a biconcave negative lens L42 are joined, a meniscus lens-shaped positive lens L43 with a convex surface facing the object side, and a biconcave negative lens L44. Has been done.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL12の像側面(曲率半径r1)と負レンズL13の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群とF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図7には光学系、及び光学系の像面Iが図示されている。
 以下の表3に、第3実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 7 shows an optical system and an image plane I of the optical system.
Table 3 below shows the values of each specification in the third embodiment.
(表3)第3実施例
(基本諸元)
f               50.44
FNo              1.23
ω              23.6
Y               21.60
TL             161.001
BF              11.501
BF(空気換算長)  10.956
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1      71.68293    3.506    1.94595         18.0     
 2      98.68966    2.400    1.51680         63.9     
 3*     34.17342   23.790                                 r1
 4     -36.23950    2.000    1.58144         41.0         r2
 5    -109.48322    3.227 
 6     -54.61894    8.468    1.59349         67.0     
 7     -39.57217    0.200  
 8     152.50213    6.564    1.59349         67.0     
 9    -235.07193    0.200 
10     101.07244    6.599    1.59349         67.0     
11   -2010.92240    0.200 
12      64.86498   11.625    1.59349         67.0     
13    -128.09154    0.200  
14   -9456.76000    8.595    1.59349         67.0     
15     -50.42595    2.100    1.67300         38.1 
16      52.95853    6.325  
17(絞り)∞       (可変)  
18     -39.28674    1.700    1.73800         32.3  
19     -83.98274    0.200  
20      43.45027    6.300    1.59349         67.0     
21      88.65078   (可変)  
22     189.04968    6.862    1.59349         67.0     
23     -64.92428    1.131  
24     145.44614    3.138    1.74320         49.3     
25*   -320.04070   (可変)  
26      72.64919    5.823    1.92286         20.9     
27    -228.15986    1.800    1.73012         28.7 
28      34.16027    2.269 
29      51.49364    4.937    1.75500         52.3     
30     482.77881    4.157 
31     -63.36088    1.800    1.88202         37.2    
32*    149.98309    8.898   
33       0.00000    1.600    1.51680         64.1     
34       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10   
 3  1.32680e+00 -1.10898e-06  1.31476e-12 -4.13742e-12  5.96666e-15
                     A12      
                -5.43510e-18
面     κ            A4           A6           A8          A10  
25  1.00000e+00  4.73166e-06  5.64935e-10  4.85981e-12  0.00000e+00
32  1.00000e+00 -2.51953e-06  2.05941e-09 -7.81003e-12  9.64611e-15
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
     A           1      16     99.25
     F1        18      21   -381.48
     F2        22      25     51.77
     R          26      32    -81.32
                    
(可変間隔データ)
            無限遠        至近
d0           ∞         452.37
倍率         -           -0.1000
f          50.44           -   
d17        18.108        10.946
d21         3.575         5.079
d25         1.700         7.358
d34         1.002         1.002
 
(Table 3) Third Example (Basic Specifications)
f 50.44
FNo 1.23
ω 23.6
Y 21.60
TL 161.001
BF 11.501
BF (air equivalent length) 10.956

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 71.68293 3.506 1.94595 18.0
2 98.68966 2.400 1.51680 63.9
3 * 34.17342 23.790 r1
4-36.23950 2.000 1.58144 41.0 r2
5 -109.48322 3.227
6 -54.61894 8.468 1.59349 67.0
7 -39.57217 0.200
8 152.50213 6.564 1.59349 67.0
9 -235.07193 0.200
10 101.07244 6.599 1.59349 67.0
11 -2010.92240 0.200
12 64.86498 11.625 1.59349 67.0
13 -128.09154 0.200
14 -9456.76000 8.595 1.59349 67.0
15 -50.42595 2.100 1.67300 38.1
16 52.95853 6.325
17 (Aperture) ∞ (Variable)
18 -39.28674 1.700 1.73800 32.3
19 -83.98274 0.200
20 43.45027 6.300 1.59349 67.0
21 88.65078 (variable)
22 189.04968 6.862 1.59349 67.0
23 -64.92428 1.131
24 145.44614 3.138 1.74320 49.3
25 * -320.04070 (variable)
26 72.64919 5.823 1.92286 20.9
27 -228.15986 1.800 1.73012 28.7
28 34.16027 2.269
29 51.49364 4.937 1.75500 52.3
30 482.77881 4.157
31 -63.36088 1.800 1.88202 37.2
32 * 149.98309 8.898
33 0.00000 1.600 1.51680 64.1
34 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
3 1.32680e + 00 -1.10898e-06 1.31476e-12 -4.13742e-12 5.96666e-15
A12
-5.43510e-18
Surface κ A4 A6 A8 A10
25 1.00000e + 00 4.73166e-06 5.64935e-10 4.85981e-12 0.00000e + 00
32 1.00000e + 00 -2.51953e-06 2.05941e-09 -7.81003e-12 9.64611e-15

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 16 99.25
F1 18 21 -381.48
F2 22 25 51.77
R 26 32 -81.32

(Variable interval data)
Close to infinity
d0 ∞ 452.37
Magnification --- 0.1000
f 50.44-
d17 18.108 10.946
d21 3.575 5.079
d25 1.700 7.358
d34 1.002 1.002
 図8、及び図9はそれぞれ、第3実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 8 and 9 are aberration diagrams of the optical system according to the third embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第4実施例)
 図10は、第4実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(Fourth Example)
FIG. 10 is a cross-sectional view of the optical system according to the fourth embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凸面を向けたメニスカスレンズ形状の負レンズL11、物体側に凸面を向けたメニスカスレンズ形状の正レンズL12と物体側に凸面を向けたメニスカスレンズ形状の負レンズL13とを接合した接合正レンズ、物体側に凹面を向けたメニスカスレンズ形状の負レンズL14、両凸正レンズL15、物体側に凹面を向けたメニスカスレンズ形状の正レンズL16、両凸正レンズL17、両凸正レンズL18、両凸正レンズL19及び両凹負レンズL110とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、両凸正レンズL22で構成され、F2群は両凸正レンズL31、両凸正レンズL32で構成され、R群は物体側に凸面を向けたメニスカスレンズ形状の正レンズL41、両凸正レンズL42と両凹負レンズL43とを接合した接合負レンズ、物体側に凹面を向けたメニスカスレンズ形状の負レンズL44で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
In the front group A, in order from the object side, a negative lens L11 having a meniscus lens shape with a convex surface facing the object side, a positive lens L12 having a meniscus lens shape with a convex surface facing the object side, and a meniscus lens shape having a convex surface facing the object side. Negative positive lens L13 joined with the negative lens L13, negative lens L14 with a meniscus lens shape with a concave surface facing the object side, biconvex positive lens L15, positive lens L16 with a meniscus lens shape with a concave surface facing the object side, biconvex It is composed of a junction negative lens in which a positive lens L17, a biconvex positive lens L18, a biconvex positive lens L19, and a biconcave negative lens L110 are joined.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a biconvex positive lens L22, the F2 group is composed of a biconvex positive lens L31 and a biconvex positive lens L32, and the R group is composed of a biconvex positive lens L32. Consists of a positive lens L41 with a meniscus lens shape with a convex surface facing the object side, a bonded negative lens L42 with a biconvex positive lens L42 and a biconcave negative lens L43 bonded together, and a negative lens L44 with a meniscus lens shape with the concave surface facing the object side. Has been done.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL13の像側面(曲率半径r1)と負レンズL14の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L13 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群とF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図10には光学系、及び光学系の像面Iが図示されている。
 以下の表4に、第4実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 10 shows an optical system and an image plane I of the optical system.
Table 4 below shows the values of each specification in the fourth embodiment.
(表4)第4実施例
(基本諸元)
f               35.25
FNo              1.24
ω              32.2
Y               21.60
TL             165.000
BF              11.500
BF(空気換算長)  10.955
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1      89.32754    2.500    1.64000         60.2     
 2*     28.41029    7.398  
 3      50.53314    5.851    2.00100         29.1     
 4     130.33728    2.500    1.55298         55.1  
 5      35.48671   23.791                                r1
 6     -34.72160    2.192    1.55298         55.1        r2
 7   -3763.19840    0.200     
 8     161.94880    6.456    1.59349         67.0               
 9    -102.83340    0.200   
10    -524.15678    8.697    1.59349         67.0     
11     -50.23150    0.200   
12      96.65872    5.534    1.59349         67.0     
13    -862.05167    0.200   
14     123.28920    6.007    1.59349         67.0     
15    -177.55812    0.200  
16     268.09904   10.649    1.59319         67.9     
17     -40.38897    2.000    1.67300         38.1  
18      91.36172    4.426   
19(絞り)∞       (可変)  
20     -37.46768    1.700    1.73800         32.3  
21    -123.38467    0.200   
22      70.54203    5.800    1.72916         54.6     
23    -511.93789   (可変)
24     102.38447    5.700    1.59349         67.0     
25*   -170.75720    5.061  
26*     80.00000    3.800    1.76450         49.1     
27    -532.36896   (可変)
28      91.55721    3.834    1.49782         82.6     
29    4513.25730    0.200  
30     201.76955    4.942    1.95375         32.3     
31    -172.46641    1.800    1.67300         38.1     
32      48.75165    7.616    
33*    -58.06622    1.800    1.69680         55.5     
34    -196.84782    9.495   
35       0.00000    1.600    1.51680         64.1     
36       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10
 2  8.63700e-01 -4.94390e-07 -2.25643e-10 -7.45212e-13  7.07578e-17
25  1.00000e+00 -8.53553e-06  1.43475e-08 -1.72696e-11  1.07404e-14
26  1.00000e+00 -1.11143e-05  6.17280e-09 -6.48775e-12  3.59508e-15
                     A12      
                -7.05540e-19
面     κ            A4           A6           A8          A10
33  1.00000e+00 -2.42337e-06  3.58561e-09 -9.77205e-12 -1.08954e-16
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
     A           1      18     79.30
     F1        20      23   -638.37
     F2        24      27     51.55
     R          28      34   -104.22
                    
(可変間隔データ)
            無限遠        至近
d0           ∞         312.47
倍率         -           -0.1000
f          35.25           -   
d19        18.347        13.608
d23         2.000         3.137
d27         1.700         5.302
d36         0.405         0.405
 
(Table 4) Fourth Example (Basic Specifications)
f 35.25
FNo 1.24
ω 32.2
Y 21.60
TL 165.000
BF 11.500
BF (air equivalent length) 10.955

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 89.32754 2.500 1.64000 60.2
2 * 28.41029 7.398
3 50.53314 5.851 2.00100 29.1
4 130.33728 2.500 1.55298 55.1
5 35.48671 23.791 r1
6 -34.72160 2.192 1.55298 55.1 r2
7 -3763.19840 0.200
8 161.94880 6.456 1.59349 67.0
9 -102.83340 0.200
10 -524.15678 8.697 1.59349 67.0
11 -50.23150 0.200
12 96.65872 5.534 1.59349 67.0
13 -862.05167 0.200
14 123.28920 6.007 1.59349 67.0
15 -177.55812 0.200
16 268.09904 10.649 1.59319 67.9
17 -40.38897 2.000 1.67300 38.1
18 91.36172 4.426
19 (Aperture) ∞ (Variable)
20 -37.46768 1.700 1.73800 32.3
21 -123.38467 0.200
22 70.54203 5.800 1.72916 54.6
23 -511.93789 (variable)
24 102.38447 5.700 1.59349 67.0
25 * -170.75720 5.061
26 * 80.00000 3.800 1.76450 49.1
27 -532.36896 (variable)
28 91.55721 3.834 1.49782 82.6
29 4513.25730 0.200
30 201.76955 4.942 1.95375 32.3
31 -172.46641 1.800 1.67300 38.1
32 48.75165 7.616
33 * -58.06622 1.800 1.69680 55.5
34 -196.84782 9.495
35 0.00000 1.600 1.51680 64.1
36 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
2 8.63700e-01 -4.94390e-07 -2.25643e-10 -7.45212e-13 7.07578e-17
25 1.00000e + 00 -8.53553e-06 1.43475e-08 -1.72696e-11 1.07404e-14
26 1.00000e + 00 -1.11143e-05 6.17280e-09 -6.48775e-12 3.59508e-15
A12
-7.05540e-19
Surface κ A4 A6 A8 A10
33 1.00000e + 00 -2.42337e-06 3.58561e-09 -9.77205e-12 -1.08954e-16

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 18 79.30
F1 20 23 -638.37
F2 24 27 51.55
R 28 34 -104.22

(Variable interval data)
Close to infinity
d0 ∞ 312.47
Magnification --- 0.1000
f 35.25-
d19 18.347 13.608
d23 2.000 3.137
d27 1.700 5.302
d36 0.405 0.405
 図11、及び図12はそれぞれ、第4実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 11 and 12 are aberration diagrams of the optical system according to the fourth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第5実施例)
 図13は、第5実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(Fifth Example)
FIG. 13 is a cross-sectional view of the optical system according to the fifth embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凸面を向けたメニスカスレンズ形状の負レンズL11、物体側に凸面を向けたメニスカスレンズ形状の負レンズL12、物体側に凸面を向けたメニスカスレンズ形状の正レンズL13、両凹負レンズL14、両凸正レンズL15、両凸正レンズL16、両凸正レンズL17、物体側に凸面を向けたメニスカスレンズ形状の正レンズL18、物体側に凹面を向けたメニスカスレンズ形状の正レンズL19及び物体側に凹面を向けたメニスカスレンズ形状の負レンズL110とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は両凹負レンズL21、両凸正レンズL22で構成され、F2群は物体側に凹面を向けたメニスカスレンズ形状の正レンズL31、両凸正レンズL32で構成され、R群は両凸正レンズL41と両凹負レンズL42との接合負レンズ、両凸正レンズL43と物体側に凹面を向けたメニスカス形状の負レンズL44とを接合した接合正レンズ、物体側に凹面を向けたメニスカス形状の負レンズL45で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
In the front group A, in order from the object side, a meniscus lens-shaped negative lens L11 having a convex surface facing the object side, a meniscus lens-shaped negative lens L12 having a convex surface facing the object side, and a meniscus lens shape having a convex surface facing the object side. Positive lens L13, biconcave negative lens L14, biconvex positive lens L15, biconvex positive lens L16, biconvex positive lens L17, meniscus lens-shaped positive lens L18 with the convex surface facing the object side, concave surface facing the object side. It is composed of a bonded negative lens in which a positive lens L19 having a meniscus lens shape and a negative lens L110 having a meniscus lens shape having a concave surface facing the object side are joined.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a biconcave negative lens L21 and a biconvex positive lens L22, and the F2 group is composed of a meniscus lens-shaped positive lens L31 and a biconvex positive lens L32 with the concave surface facing the object side. A junction negative lens of a biconvex positive lens L41 and a biconcave negative lens L42, a junction positive lens of a biconvex positive lens L43 and a meniscus-shaped negative lens L44 with a concave surface facing the object side, and a concave surface facing the object side. It is composed of a negative lens L45 having a meniscus shape.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL12の像側面(曲率半径r1)と負レンズL14の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群とF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図13には光学系、及び光学系の像面Iが図示されている。
 以下の表5に、第5実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 13 shows an optical system and an image plane I of the optical system.
Table 5 below shows the values of each specification in the fifth embodiment.
(表5)第5実施例
(基本諸元)
f               28.50
FNo              1.24
ω              37.9
Y               21.60
TL             159.999
BF              11.500
BF(空気換算長)  10.955
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1      65.78093    2.000    1.69350         53.2    
 2*     27.00000    9.514   
 3      67.76189    1.800    1.64000         60.2     
 4*     30.14132    3.460                                r1
 5      48.58319    6.886    1.95375         32.3     
 6      77.93204   14.630    
 7     -46.97277    4.500    1.64000         60.2        r2    
 8     131.32283    0.200   
 9      73.03981    5.770    1.59349         67.0     
10    -764.03804    0.200    
11     186.54312    5.669    1.59349         67.0     
12    -103.74187    0.200   
13     305.69367    6.649    1.59349         67.0     
14     -72.25597    0.200 
15      58.71790    6.277    1.59349         67.0     
16     492.46988    5.239   
17     -98.51249    8.806    1.49782         82.6     
18     -30.18896    2.000    1.61266         44.5    
19     -74.16167    1.000    
20(絞り)∞       (可変)  
21     -41.26732    1.700    1.73800         32.3  
22     106.03276    0.200 
23      48.10480    6.600    1.59319         67.9     
24    -114.20927   (可変)
25    -111.30737    2.540    1.61800         63.3     
26*    -68.67812    0.200 
27*     54.38044    7.460    1.76450         49.1     
28     -71.60470   (可変)
29     188.53706    4.267    1.59319         67.9     
30     -88.72672    1.800    1.49632         65.3     
31      26.75005    4.410  
32      83.87176   11.560    1.59319         67.9     
33     -21.21314    1.800    1.73800         32.3     
34     -59.57903    2.294   
35*    -30.40171    1.800    1.51680         63.9     
36    -214.62417    8.910   
37       0.00000    1.600    1.51680         64.1     
38       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10
 2  9.23900e-01 -4.69891e-07 -4.17120e-10  1.11934e-12  0.00000e+00
 4  1.21690e+00 -3.22251e-06 -8.85798e-10 -1.97209e-11  3.09127e-14
                     A12      
                -3.63100e-17
面     κ            A4           A6           A8          A10
26  1.00000e+00  3.89724e-06  8.93172e-10 -2.68215e-12  0.00000e+00
27  1.00000e+00 -3.97515e-06 -1.96473e-09 -1.42330e-13 -1.18545e-15
35  1.00000e+00  1.06340e-05 -7.88050e-09  3.97129e-11 -7.99650e-14
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
     A           1      19     53.78
     F1        21      24   -147.49
     F2        25      28     36.15
     R          29      36    -60.41
                    
(可変間隔データ)
            無限遠        至近
d0           ∞         250.62
倍率         -           -0.1000
f          28.50           -   
d20        13.170        10.648
d24         2.000         2.530
d28         1.700         3.693
d38         0.990         0.990
 
(Table 5) Fifth Example (Basic Specifications)
f 28.50
FNo 1.24
ω 37.9
Y 21.60
TL 159.999
BF 11.500
BF (air equivalent length) 10.955

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 65.78093 2.000 1.69350 53.2
2 * 27.00000 9.514
3 67.76189 1.800 1.64000 60.2
4 * 30.14132 3.460 r1
5 48.58319 6.886 1.95375 32.3
6 77.93204 14.630
7 -46.97277 4.500 1.64000 60.2 r2
8 131.32283 0.200
9 73.03981 5.770 1.59349 67.0
10 -764.03804 0.200
11 186.54312 5.669 1.59349 67.0
12 -103.74187 0.200
13 305.69367 6.649 1.59349 67.0
14 -72.25597 0.200
15 58.71790 6.277 1.59349 67.0
16 492.46988 5.239
17 -98.51249 8.806 1.49782 82.6
18 -30.18896 2.000 1.61266 44.5
19 -74.16167 1.000
20 (aperture) ∞ (variable)
21 -41.26732 1.700 1.73800 32.3
22 106.03276 0.200
23 48.10480 6.600 1.59319 67.9
24-114.20927 (variable)
25 -111.30737 2.540 1.61800 63.3
26 * -68.67812 0.200
27 * 54.38044 7.460 1.76450 49.1
28 -71.60470 (variable)
29 188.53706 4.267 1.59319 67.9
30 -88.72672 1.800 1.49632 65.3
31 26.75005 4.410
32 83.87176 11.560 1.59319 67.9
33 -21.21314 1.800 1.73800 32.3
34 -59.57903 2.294
35 * -30.40171 1.800 1.51680 63.9
36 -214.62417 8.910
37 0.00000 1.600 1.51680 64.1
38 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
2 9.23900e-01 -4.69891e-07 -4.17120e-10 1.11934e-12 0.00000e + 00
4 1.21690e + 00 -3.22251e-06 -8.85798e-10 -1.97209e-11 3.09127e-14
A12
-3.63100e-17
Surface κ A4 A6 A8 A10
26 1.00000e + 00 3.89724e-06 8.93172e-10 -2.68215e-12 0.00000e + 00
27 1.00000e + 00 -3.97515e-06 -1.96473e-09 -1.42330e-13 -1.18545e-15
35 1.00000e + 00 1.06340e-05 -7.88050e-09 3.97129e-11 -7.99650e-14

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 19 53.78
F1 21 24 -147.49
F2 25 28 36.15
R 29 36 -60.41

(Variable interval data)
Close to infinity
d0 ∞ 250.62
Magnification --- 0.1000
f 28.50-
d20 13.170 10.648
d24 2.000 2.530
d28 1.700 3.693
d38 0.990 0.990
 図14、及び図15はそれぞれ、第5実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 14 and 15 are aberration diagrams of the optical system according to the fifth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第6実施例)
 図16は、第6実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(6th Example)
FIG. 16 is a cross-sectional view of the optical system according to the sixth embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凹面を向けたメニスカスレンズ形状の正レンズL11、両凹負レンズL12、物体側に凹面を向けたメニスカスレンズ形状の正レンズL13、両凸正レンズL14、物体側に凹面を向けたメニスカスレンズ形状の正レンズL15、物体側に凸面を向けたメニスカスレンズ形状の正レンズL16、両凸正レンズL17及び両凹負レンズL18とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、物体側に凸面を向けたメニスカスレンズ形状の正レンズL22で構成され、F2群は両凸正レンズL31、物体側に凸面を向けたメニスカスレンズ形状の正レンズL32で構成され、R群は物体側に凹面を向けたメニスカスレンズ形状の正レンズL41と両凹負レンズL42とを接合した接合負レンズ、両凸正レンズL43、両凹負レンズL44で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
In the front group A, in order from the object side, a meniscus lens-shaped positive lens L11 with a concave surface facing the object side, a biconcave negative lens L12, a meniscus lens-shaped positive lens L13 with a concave surface facing the object side, and a biconvex positive lens. L14, a positive lens L15 having a meniscus lens shape with a concave surface facing the object side, a positive lens L16 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L17, and a bonded negative lens L18 joined together. It is composed of.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side. It is composed of a positive lens L32 having a meniscus lens shape with a convex surface, and the R group is a junction negative lens and a biconvex positive lens in which a positive lens L41 with a meniscus lens shape with a concave surface facing the object side and a biconcave negative lens L42 are joined. It is composed of L43 and both concave and negative lenses L44.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL12の像側面(曲率半径r1)と負レンズL13の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L13 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群及びF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図16には光学系、及び光学系の像面Iが図示されている。
 以下の表6に、第6実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 16 shows an optical system and an image plane I of the optical system.
Table 6 below shows the values of each specification in the sixth embodiment.
(表6)第6実施例
(基本諸元)
f               51.60
FNo              1.45
ω              23.3
Y               21.60
TL             131.000
BF              13.300
BF(空気換算長)  12.755
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1    -586.32842    2.233    1.94594         18.0     
 2    -221.27208    3.240   
 3     -63.73911    2.400    1.64000         60.2                    
 4      70.98553   11.146                                r1
 5     -41.12359    5.395    1.61266         44.5        r2
 6     -42.99781    0.100  
 7      75.79513    8.408    1.59349         67.0     
 8    -136.07944    0.200  
 9    -643.66310    4.487    1.59349         67.0     
10    -104.67250    0.200   
11      40.44605    5.624    1.59349         67.0     
12      70.92793    0.100   
13      56.02814    7.018    1.49782         82.6     
14    -488.58889    2.100    1.73800         32.3  
15      50.90651    5.843   
16(絞り)∞       (可変)  
17     -39.72234    1.700    1.72047         34.7   
18    -184.92774    0.848   
19      42.53567    6.300    1.49782         82.6     
20   12882.71200   (可変)
21      56.76493    7.298    1.59349         67.0     
22    -108.34629    6.120   
23*     96.31448    2.307    1.74389         49.5     
24    2613.31880   (可変)
25    -867.21714    2.257    1.92286         20.9     
26    -182.38116    1.800    1.49693         65.0     
27      36.00000    2.538   
28      77.38378    4.268    1.84850         43.8     
29    -256.69283    3.362  
30*    -46.44164    1.800    1.88202         37.2      
31     215.48087   10.710 
32       0.00000    1.600    1.51680         64.1     
33       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10
23 -4.62518e+01 -2.54555e-06 -1.93441e-08  6.72994e-12  0.00000e+00
30  4.67220e+00  6.88347e-06  1.14794e-08  8.86183e-12  2.57043e-14
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
    A            1      15     92.67
    F1         17      20   -463.40
    F2         21      24     45.35
    R           25      31    -46.36
 
(可変間隔データ)
            無限遠        至近
d0           ∞         481.34
倍率         -           -0.1000
 f         51.60           -   
d16        14.841         9.189
d20         2.000         4.035
d24         1.768         5.385
d33         0.990         0.990
 
(Table 6) Example 6 (basic specifications)
f 51.60
FNo 1.45
ω 23.3
Y 21.60
TL 131.000
BF 13.300
BF (air equivalent length) 12.755

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 -586.32842 2.233 1.94594 18.0
2 -221.27208 3.240
3 -63.73911 2.400 1.64000 60.2
4 70.98553 11.146 r1
5 -41.12359 5.395 1.61266 44.5 r2
6 -42.99781 0.100
7 75.79513 8.408 1.59349 67.0
8-136.07944 0.200
9 -643.66310 4.487 1.59349 67.0
10 -104.67250 0.200
11 40.44605 5.624 1.59349 67.0
12 70.92793 0.100
13 56.02814 7.018 1.49782 82.6
14 -488.58889 2.100 1.73800 32.3
15 50.90651 5.843
16 (Aperture) ∞ (Variable)
17 -39.72234 1.700 1.72047 34.7
18 -184.92774 0.848
19 42.53567 6.300 1.49782 82.6
20 12882.71200 (variable)
21 56.76493 7.298 1.59349 67.0
22 -108.34629 6.120
23 * 96.31448 2.307 1.74389 49.5
24 2613.31880 (variable)
25 -867.21714 2.257 1.92286 20.9
26 -182.38116 1.800 1.49693 65.0
27 36.00000 2.538
28 77.38378 4.268 1.84850 43.8
29 -256.69283 3.362
30 * -46.44164 1.800 1.88202 37.2
31 215.48087 10.710
32 0.00000 1.600 1.51680 64.1
33 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
23 -4.62518e + 01 -2.54555e-06 -1.93441e-08 6.72994e-12 0.00000e + 00
30 4.67220e + 00 6.88347e-06 1.14794e-08 8.86183e-12 2.57043e-14

(Focal length of lens group)
Lens group Start surface End surface Group focal length A 1 15 92.67
F1 17 20 -463.40
F2 21 24 45.35
R 25 31 -46.36

(Variable interval data)
Close to infinity
d0 ∞ 481.34
Magnification --- 0.1000
f 51.60-
d16 14.841 9.189
d20 2.000 4.035
d24 1.768 5.385
d33 0.990 0.990
 図17、及び図18はそれぞれ、第6実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 17 and 18 are aberration diagrams of the optical system according to the sixth embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
(第7実施例)
 図19は、第7実施例に係る光学系の断面図である。
 本実施例に係る光学系は、物体側から順に、正の屈折力を有する前群Aと、正の屈折力を有する後群Bとから構成されている。
(7th Example)
FIG. 19 is a cross-sectional view of the optical system according to the seventh embodiment.
The optical system according to this embodiment is composed of a front group A having a positive refractive power and a rear group B having a positive refractive power in order from the object side.
 前群Aは、物体側から順に、物体側に凹面を向けたメニスカスレンズ形状の正レンズL11、両凹負レンズL12と物体側に凸面を向けたメニスカスレンズ形状の正レンズL13とを接合した接合負レンズ、物体側に凹面を向けたメニスカスレンズ形状の負レンズL14、物体側に凹面を向けたメニスカスレンズ形状の正レンズL15、両凸正レンズL16、物体側に凸面を向けたメニスカスレンズ形状の正レンズL17、物体側に凸面を向けたメニスカスレンズ形状の正レンズL18、両凸正レンズL19及び両凹負レンズL110とを接合した接合負レンズで構成されている。
 また、後群BはF1群、F2群及びR群で構成されている。ここでF1群は物体側に凹面を向けたメニスカスレンズ形状の負レンズL21、物体側に凸面を向けたメニスカスレンズ形状の正レンズL22で構成され、F2群は物体側に凹面を向けたメニスカスレンズ形状の正レンズL31、物体側に凸面を向けた平凸正レンズL32で構成され、R群は両凸正レンズL41と両凹負レンズL42との接合負レンズ、物体側に凸面を向けたメニスカスレンズ形状の正レンズL43、両凹負レンズL44で構成されている。
 また、開口絞りSは、前群Aと後群Bの間に配置されている。
 なお、後群Bと像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
The front group A is a junction in which a positive lens L11 having a meniscus lens shape with a concave surface facing the object side, a biconcave negative lens L12, and a positive lens L13 having a meniscus lens shape with a convex surface facing the object side are joined in this order from the object side. Negative lens, negative lens L14 with a meniscus lens shape with a concave surface facing the object side, positive lens L15 with a meniscus lens shape with a concave surface facing the object side, biconvex positive lens L16, meniscus lens shape with a convex surface facing the object side It is composed of a positive lens L17, a positive lens L18 having a meniscus lens shape with a convex surface facing the object side, a biconvex positive lens L19, and a junction negative lens L110 in which a biconcave negative lens L110 is joined.
The rear group B is composed of an F1, F2 group, and an R group. Here, the F1 group is composed of a negative lens L21 having a meniscus lens shape with a concave surface facing the object side and a positive lens L22 having a meniscus lens shape with a convex surface facing the object side, and the F2 group is a meniscus lens with a concave surface facing the object side. It is composed of a positive lens L31 with a shape and a plano-convex positive lens L32 with a convex surface facing the object side. It is composed of a positive lens L43 having a lens shape and a biconcave negative lens L44.
Further, the aperture stop S is arranged between the front group A and the rear group B.
A filter group FL composed of a low-pass filter or the like is arranged between the rear group B and the image plane I. An image pickup device (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
 この光学系では、負レンズL12の像側面(曲率半径r1)と負レンズL14の物体側面(曲率半径r2)が向かい合って構成されている。 In this optical system, the image side surface of the negative lens L12 (curvature radius r1) and the object side surface of the negative lens L14 (curvature radius r2) are configured to face each other.
 この光学系において、無限遠から至近物点への合焦は、F1群とF2群を光軸に沿って物体側に移動させることにより行うように構成されている。 In this optical system, focusing from infinity to a close object point is configured by moving the F1 group and the F2 group toward the object side along the optical axis.
 この光学系によって、像面I上に像が結像されて撮影が行われる。図19には光学系、及び光学系の像面Iが図示されている。
 以下の表7に、第7実施例における各諸元の値を示す。
An image is formed on the image plane I by this optical system and an image is taken. FIG. 19 shows an optical system and an image plane I of the optical system.
Table 7 below shows the values of each specification in the seventh embodiment.
(表7)第7実施例
(基本諸元)
f               82.02
FNo              1.24
ω              14.5
Y               21.60
TL             160.006
BF              13.701
BF(空気換算長)  13.156
 
(面データ)
面番号    r         d         nd          νd    式(7)(8)(15)
 0(物面) ∞      (可変)
 1    -500.00000    4.141    1.48749         70.3     
 2    -166.66667    0.256    
 3    -163.81862    1.800    1.55298         55.1  
 4      96.33720    6.033    1.66382         27.4        r1
 5     294.61628   10.782                        
 6     -75.93264    2.817    1.55298         55.1        r2 
 7    -188.73960    0.200    
 8   -3574.99840    6.456    1.48749         70.3     
 9    -134.49391    0.100 
10      78.03293   12.533    1.59349         67.0     
11   -1459.12130    0.200 
12      95.48816    7.486    1.59349         67.0     
13     404.44858    0.200  
14      46.79755    7.911    1.59349         67.0     
15      80.84962    0.100  
16      67.21392   11.041    1.49782         82.6     
17    -301.98614    2.100    1.73800         32.3   
18      31.29759   10.093   
19(絞り)∞       (可変)  
20     -38.43782    1.700    1.72047         34.7  
21     -79.55106    0.200  
22      43.92412    6.300    1.59319         67.9     
23     182.13428   (可変)
24     -68.26751    3.852    1.59349         67.0     
25*    -41.08941    0.200  
26*     86.68157    4.441    1.74389         49.5     
27       0.00000   (可変)
28     194.89958    5.109    1.90265         35.7     
29    -105.41890    1.800    1.55298         55.1  
30      36.00000    0.754    
31      42.38265    5.253    1.77250         49.6     
32     190.18266    3.340    
33*   -121.88623    1.800    1.64000         60.2     
34      59.06896   11.105  
35       0.00000    1.600    1.51680         64.1     
36       0.00000     BF
像面    ∞
 
(非球面データ)
面     κ            A4           A6           A8          A10      
25  2.25800e-01 -2.63453e-07  7.00870e-10  0.00000e+00  0.00000e+00
26  1.24355e+01 -4.91263e-06 -3.20212e-09  1.07263e-12 -1.15021e-14
33  3.30744e+01  1.56233e-06  8.02732e-09 -3.37791e-11  5.78485e-14
 
(レンズ群焦点距離)
  レンズ群    始面  終面 群焦点距離
    A            1      18    150.69
    F1         20      23   1007.16
    F2         24      27     67.54
    R           28      34   -125.50
 
(可変間隔データ)
            無限遠        至近
d0           ∞         753.14
倍率         -           -0.1000
df         82.02           -   
d19        17.945         8.586
d23         7.663         7.383
d27         1.698        11.338
d36         0.996         1.000
 
(Table 7) Example 7 (basic specifications)
f 82.02
FNo 1.24
ω 14.5
Y 21.60
TL 160.006
BF 13.701
BF (air equivalent length) 13.156

(Surface data)
Surface number r d nd νd Equation (7) (8) (15)
0 (paraboloid) ∞ (variable)
1 -500.00000 4.141 1.48749 70.3
2 -166.66667 0.256
3 -163.81862 1.800 1.55298 55.1
4 96.33720 6.033 1.66382 27.4 r1
5 294.61628 10.782
6 -75.93264 2.817 1.55298 55.1 r2
7 -188.73960 0.200
8-3574.99840 6.456 1.48749 70.3
9 -134.49391 0.100
10 78.03293 12.533 1.59349 67.0
11 -1459.12130 0.200
12 95.48816 7.486 1.59349 67.0
13 404.44858 0.200
14 46.79755 7.911 1.59349 67.0
15 80.84962 0.100
16 67.21392 11.041 1.49782 82.6
17 -301.98614 2.100 1.73800 32.3
18 31.29759 10.093
19 (Aperture) ∞ (Variable)
20 -38.43782 1.700 1.72047 34.7
21 -79.55106 0.200
22 43.92412 6.300 1.59319 67.9
23 182.13428 (Variable)
24 -68.26751 3.852 1.59349 67.0
25 * -41.08941 0.200
26 * 86.68157 4.441 1.74389 49.5
27 0.00000 (variable)
28 194.89958 5.109 1.90265 35.7
29 -105.41890 1.800 1.55298 55.1
30 36.00000 0.754
31 42.38265 5.253 1.77250 49.6
32 190.18266 3.340
33 * -121.88623 1.800 1.64000 60.2
34 59.06896 11.105
35 0.00000 1.600 1.51680 64.1
36 0.00000 BF
Image plane ∞

(Aspherical data)
Surface κ A4 A6 A8 A10
25 2.25800e-01 -2.63453e-07 7.00870e-10 0.00000e + 00 0.00000e + 00
26 1.24355e + 01 -4.91263e-06 -3.20212e-09 1.07263e-12 -1.15021e-14
33 3.30744e + 01 1.56233e-06 8.02732e-09 -3.37791e-11 5.78485e-14

(Focal length of lens group)
Lens group Start surface End surface Focal length A 1 18 150.69
F1 20 23 1007.16
F2 24 27 67.54
R 28 34 -125.50

(Variable interval data)
Close to infinity
d0 ∞ 753.14
Magnification --- 0.1000
df 82.02-
d19 17.945 8.586
d23 7.663 7.383
d27 1.698 11.338
d36 0.996 1.000
 図20、及び図21はそれぞれ、第7実施例に係る光学系の無限遠合焦時、及び近距離合焦時の諸収差図であり、諸収差が良好に補正され優れた結像性能を有していることがわかる。 20 and 21 are aberration diagrams of the optical system according to the seventh embodiment at infinity focusing and short-distance focusing, respectively, and various aberrations are satisfactorily corrected to provide excellent imaging performance. You can see that it has.
 上記各実施例によれば、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径な光学系を実現することができる。 According to each of the above embodiments, various aberrations can be satisfactorily corrected from the in-focus state of an infinite object to the in-focus state of a short-range object, and a large-diameter optical system suitable for both autofocus and manual focus. Can be realized.
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(17)に対応する値を、全実施例(第1~第7実施例)についてまとめて示す。
条件式
(1)  0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100
(2)  1.500<f/Bf<10.000
(3)   0.600<fA/(2×f)<1.500
(4)  0.500<(fFR×FNo)/f<2.900
(5)  0.500<βF/βB<2.000
(6)  0.600<θgFLn+0.0021×νdLn<0.660
(7)  0.500<-r1/r2<2.000
(8)  0.500<(r1-r2)/f<5.000
(9) -0.500<fF2/fF1<0.500
(10) -0.300<βF2/βF1<1.200
(11)  0.750<(|1/fAF|+|1/fAR|)×fA<7.000
(12) -0.060<-NdL-0.011×νdL+2.12<0.034
(13) 24.7<νdL<58.0
(14)  0.400<fA/fB<2.500
(15) -0.500<(r1+r2)/(r1-r2)<0.500
(16) -0.500<fF2/fF1<0.500
(17) -0.300<βF2/βF1<1.200
Next, the table of [Conditional expression correspondence value] is shown below. In this table, the values corresponding to each conditional expression (1) to (17) are collectively shown for all the examples (1st to 7th examples).
Conditional expression
(1) 0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo < 2.100
(2) 1.500 <f / Bf <10.000
(3) 0.600 <fA / (2 × f) <1.500
(4) 0.500 <(fFR x FNo 2 ) /f<2.900
(5) 0.500 <βF / βB <2.000
(6) 0.600 <θgFLn + 0.0021 × νdLn <0.660
(7) 0.500 <-r1 / r2 <2.000
(8) 0.500 <(r1-r2) /f<5.000
(9) -0.500 <fF2 / fF1 <0.500
(10) -0.300 <βF2 / βF1 <1.200
(11) 0.750 <(| 1 / fAF | + | 1 / fAR |) x fA <7.000
(12) -0.060 <-NdL-0.011 x νdL + 2.12 <0.034
(13) 24.7 <νdL <58.0
(14) 0.400 <fA / fB <2.500
(15) -0.500 <(r1 + r2) / (r1-r2) <0.500
(16) -0.500 <fF2 / fF1 <0.500
(17) -0.300 <βF2 / βF1 <1.200
[条件式対応値]
条件式 第1実施例   第2実施例    第3実施例    第4実施例   第5実施例
(1)     1.187        1.085        1.084        1.360        1.604
(2)     4.143        4.045        4.604        3.218        2.602
(3)     1.117        0.931        0.984        1.125        0.944
(4)     1.798        1.679        1.759        2.319        2.236
(5)     0.998        0.935        0.944        0.928        0.759
(6)     0.658(17)    0.657(5)     0.655(15)    0.655(17)    0.657(18)
        0.657(20)    0.658(17)    0.658(18)    0.658(20)    0.657(21)
        0.657(31)    0.655(20)    0.655(31)    0.655(31)    0.657(33)
                     0.655(33)
(7)     1.046        1.534        0.943        1.022        0.642
(8)     1.755        1.895        1.396        1.992        2.706
(9)    -0.082       -0.162       -0.136       -0.081       -0.245
(10)    0.327        0.292        0.312        0.287        0.082
(11)    4.595        2.943        3.904        5.181        4.317
(12)   -0.039(5)     0.018(5)     0.027(15)   -0.039(4)     0.018(18)
        0.027(17)    0.027(17)    0.027(18)   -0.039(6)     0.027(21)
        0.018(20)    0.027(20)   -0.027(27)    0.027(17)
        0.018(31)                              0.027(20)
(13)   55.1(5)      44.5(5)      38.1(15)     55.1(4)      44.5(18)
       32.3(17)     32.3(17)     32.3(18)     55.1(6)      32.3(21)
       34.7(20)     38.1(20)     28.7(27)     38.1(17)
       44.5(31)                               32.3(20)
(14)    1.570        1.112        1.024        1.061        0.621
(15)    0.023        0.211       -0.029        0.011       -0.218
(16)   -0.082       -0.162       -0.136       -0.081       -0.245
(17)    0.327        0.292        0.312        0.287        0.082
 
条件式 第6実施例   第7実施例
(1)     1.076        1.227
(2)     4.046        6.233
(3)     0.898        0.919
(4)     1.934        1.188
(5)     0.758        0.970
(6)     0.657(5)     0.658(17)
        0.658(14)    0.657(20)
        0.657(17)
        0.655(30)
(7)     1.726        1.269
(8)     2.173        2.101
(9)    -0.098        0.067
(10)    0.273        0.598
(11)    1.090        0.958
(12)    0.018(5)     0.027(3)
        0.027(14)    0.027(6)
        0.018(17)    0.027(17)
                     0.018(20)
                    -0.039(29)
(13)    44.5(5)     55.1(3)
        32.3(14)    55.1(6)
        34.7(17)    32.3(17)
                    34.7(20)
                    55.1(29)
(14)    0.636        1.659
(15)    0.266        0.118
(16)   -0.098        0.067
(17)    0.273        0.598
 但し、上記(6)、(12)及び(13)において数値後の( )内はその数値に対応する面の番号である。
[Conditional expression correspondence value]
Conditional expression 1st Example 2nd Example 3rd Example 4th Example 5th Example
(1) 1.187 1.085 1.084 1.360 1.604
(2) 4.143 4.045 4.604 3.218 2.602
(3) 1.117 0.931 0.984 1.125 0.944
(4) 1.798 1.679 1.759 2.319 2.236
(5) 0.998 0.935 0.944 0.928 0.759
(6) 0.658 (17) 0.657 (5) 0.655 (15) 0.655 (17) 0.657 (18)
0.657 (20) 0.658 (17) 0.658 (18) 0.658 (20) 0.657 (21)
0.657 (31) 0.655 (20) 0.655 (31) 0.655 (31) 0.657 (33)
0.655 (33)
(7) 1.046 1.534 0.943 1.022 0.642
(8) 1.755 1.895 1.396 1.992 2.706
(9) -0.082 -0.162 -0.136 -0.081 -0.245
(10) 0.327 0.292 0.312 0.287 0.082
(11) 4.595 2.943 3.904 5.181 4.317
(12) -0.039 (5) 0.018 (5) 0.027 (15) -0.039 (4) 0.018 (18)
0.027 (17) 0.027 (17) 0.027 (18) -0.039 (6) 0.027 (21)
0.018 (20) 0.027 (20) -0.027 (27) 0.027 (17)
0.018 (31) 0.027 (20)
(13) 55.1 (5) 44.5 (5) 38.1 (15) 55.1 (4) 44.5 (18)
32.3 (17) 32.3 (17) 32.3 (18) 55.1 (6) 32.3 (21)
34.7 (20) 38.1 (20) 28.7 (27) 38.1 (17)
44.5 (31) 32.3 (20)
(14) 1.570 1.112 1.024 1.061 0.621
(15) 0.023 0.211 -0.029 0.011 -0.218
(16) -0.082 -0.162 -0.136 -0.081 -0.245
(17) 0.327 0.292 0.312 0.287 0.082

Conditional expression 6th embodiment 7th embodiment
(1) 1.076 1.227
(2) 4.046 6.233
(3) 0.898 0.919
(4) 1.934 1.188
(5) 0.758 0.970
(6) 0.657 (5) 0.658 (17)
0.658 (14) 0.657 (20)
0.657 (17)
0.655 (30)
(7) 1.726 1.269
(8) 2.173 2.101
(9) -0.098 0.067
(10) 0.273 0.598
(11) 1.090 0.958
(12) 0.018 (5) 0.027 (3)
0.027 (14) 0.027 (6)
0.018 (17) 0.027 (17)
0.018 (20)
-0.039 (29)
(13) 44.5 (5) 55.1 (3)
32.3 (14) 55.1 (6)
34.7 (17) 32.3 (17)
34.7 (20)
55.1 (29)
(14) 0.636 1.659
(15) 0.266 0.118
(16) -0.098 0.067
(17) 0.273 0.598
However, in the above (6), (12) and (13), the numbers in parentheses after the numerical values are the numbers of the surfaces corresponding to the numerical values.
  OL   光学装置
  A    前群
  B    後群
  S     開口絞り
  I     像面
  FL  フィルタ群
 F   合焦群(F1、F2)
 R   後群内の固定群
 

 
 
OL optics A Front group B Rear group S Aperture aperture I Image plane FL Filter group F Focusing group (F1, F2)
Fixed group in the posterior group


Claims (20)

  1.  物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなり、以下の条件式を満足する光学系。
    0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100
    1.500 < f/Bf < 10.000
     ただし、
     h(max) :マージナル光線が前群で最も高くなる高さ、
     h(1)  :第一面でのマージナル光線高さ、
     h(s)    :絞り面でのマージナル光線高さ、
     FNo   :無限撮影時の開放F値、
     f   :無限撮影時の全系の焦点距離、
     Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
    An optical system consisting of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, and satisfying the following conditional expression.
    0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo < 2.100
    1.500 <f / Bf <10.000
    However,
    h (max): The height at which the marginal ray is the highest in the front group,
    h (1): Marginal ray height on the front surface,
    h (s): Marginal ray height at the aperture surface,
    FNo: Open F value during infinite shooting,
    f: Focal length of the whole system at the time of infinite shooting,
    Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
  2.  以下の条件式を満足する請求項1に記載の光学系。
    0.600 < fA/(2×f) < 1.500
     ただし、
     fA  :無限撮影時の前群の焦点距離。
    The optical system according to claim 1, which satisfies the following conditional expression.
    0.600 <fA / (2 × f) <1.500
    However,
    fA: Focal length of the front group during infinite shooting.
  3.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する少なくとも一つの合焦群と、以下の条件式を満足する請求項1または2に記載の光学系。
    0.500 < (fF×FNo)/f < 2.900
     ただし、
     fF :無限撮影時の前記合焦群全体の合成焦点距離。
    The optical system according to claim 1 or 2, wherein the front group is fixed at the time of focusing, the rear group is at least one focusing group moving on an optical axis, and the following conditional expression is satisfied.
    0.500 <(fF × FNo 2 ) / f <2.900
    However,
    fF: The combined focal length of the entire in-focus group during infinite shooting.
  4.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する少なくとも一つの合焦群と、以下の条件式を満足する請求項1~3の何れか1項に記載の光学系。
    0.500 < βF/βB < 2.000
     ただし、
     βF:無限撮影時の前記合焦群の倍率、
     βB:無限撮影時の後群の倍率。
    The optical system according to any one of claims 1 to 3, wherein the front group is fixed at the time of focusing, the rear group is at least one focusing group moving on the optical axis, and the following conditional expression is satisfied. ..
    0.500 <βF / βB <2,000
    However,
    βF: Magnification of the in-focus group during infinite shooting,
    βB: Magnification of the rear group during infinite shooting.
  5.  以下の条件式を満たす負レンズを少なくとも1枚有する請求項1~4の何れか1項に記載の光学系。
    0.600<θgFLn+0.0021×νdLn<0.660
     ただし、
     νdLn  : 前記負レンズのd線に対するアッベ数、
     θgFLn: 前記負レンズのg線とF線とによる部分分散比。
    The optical system according to any one of claims 1 to 4, which has at least one negative lens satisfying the following conditional expression.
    0.600 <θgFLn + 0.0021 × νdLn <0.660
    However,
    νdLn: Abbe number for the d line of the negative lens,
    θgFLn: Partial dispersion ratio of the g-line and F-line of the negative lens.
  6.  前記前群は連続して3枚以上の正レンズが並んだ構成を含む請求項1~5の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 5, wherein the front group includes a configuration in which three or more positive lenses are arranged in succession.
  7.  前記前群の物体側から順に、最物体側レンズから4枚目のレンズまでの間に負レンズが2枚以上あり、それらの向かい合った凹面の内、物体側にある負レンズの像側面の曲率半径をr1、像側にある負レンズの物体側面の曲率半径をr2とすると、以下の条件式を満足する請求項1~6の何れか1項に記載の光学系。
    0.500 < -r1/r2 < 2.000
    There are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and the curvature of the image side of the negative lens on the object side among the concave surfaces facing each other. The optical system according to any one of claims 1 to 6, wherein the radius is r1 and the radius of curvature of the side surface of the object of the negative lens on the image side is r2, which satisfies the following conditional expression.
    0.500 <-r1 / r2 <2,000
  8.  以下の条件式を満足する請求項7に記載の光学系。
    0.500 < (r1-r2)/f < 5.000
    The optical system according to claim 7, which satisfies the following conditional expression.
    0.500 <(r1-r2) /f <5.000
  9.  合焦に際して前記前群は固定、前記後群は光軸上を移動する複数の群を持つ請求項1~8の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 8, wherein the front group is fixed at the time of focusing, and the rear group has a plurality of groups moving on the optical axis.
  10.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式を満足する請求項1~9の何れか1項に記載の光学系。
    -0.500 < fF2/fF1 < 0.500  
     ただし、
     fF2:前記F2群の焦点距離、
     fF1:前記F1群の焦点距離。
    The front group is fixed at the time of focusing, and the rear group includes F1 group and F2 group which are two focusing groups moving on the optical axis, and any one of claims 1 to 9 satisfying the following conditional expression. The optical system according to item 1.
    -0.500 <fF2 / fF1 <0.500
    However,
    fF2: Focal length of the F2 group,
    fF1: Focal length of the F1 group.
  11.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群と、以下の条件式を満足する請求項1~10の何れか1項に記載の光学系。
    -0.300 < βF2/βF1 < 1.200
     ただし、
     βF2:前記F2群の横倍率、
     βF1:前記F1群の横倍率。
    Upon focusing, the front group is fixed, and the rear group is two focusing groups that move on the optical axis, the F1 group and the F2 group, and any one of claims 1 to 10 that satisfies the following conditional expression. The optical system described in the section.
    -0.300 <βF2 / βF1 <1.200
    However,
    βF2: Horizontal magnification of the F2 group,
    βF1: Horizontal magnification of the F1 group.
  12.  前記後群には少なくとも1面が非球面であるレンズを備える請求項1~11の何れか1項に記載の光学系。 The optical system according to any one of claims 1 to 11, wherein the rear group includes a lens having at least one aspherical surface.
  13.  物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなり、前記前群の内、最も物体側に配置されたレンズから物体側へ凹面を向けた最も物体側に配置されたレンズまでのレンズ群をAF群、前記AF群より像側に配置されたレンズ群をAR群とし、以下の条件式を満足する光学系。
    0.750 < (|1/fAF|+|1/fAR|)×fA < 7.000
     ただし、
     fAF:AF群の無限撮影時の焦点距離、
     fAR:AR群の無限撮影時の焦点距離、
     fA :無限撮影時の前群の焦点距離。
    From the object side, it consists of a front group with a positive refractive power, an aperture, and a rear group with a positive refractive power as a whole. An optical system that satisfies the following conditional expression, with the lens group up to the lens placed closest to the object side as the AF group and the lens group placed on the image side of the AF group as the AR group.
    0.750 <(| 1 / fAF | + | 1 / fAR |) x fA <7,000
    However,
    fAF: Focal length of AF group during infinite shooting,
    fAR: Focal length during infinite shooting of AR group,
    fA: Focal length of the front group during infinite shooting.
  14.  以下の条件式を満たす負レンズを少なくとも1枚有する請求項13に記載の光学系。
    -0.060 < -NdL-0.011×νdL+2.12 < 0.034
    24.7 < νdL < 58.0
     ただし、
     νdL : 前記負レンズのd線に対するアッベ数、
      NdL : 前記負レンズのg線とF線とによる部分分散比。
    The optical system according to claim 13, further comprising at least one negative lens satisfying the following conditional expression.
    -0.060 <-NdL-0.011 x νdL + 2.12 <0.034
    24.7 <νdL <58.0
    However,
    νdL: Abbe number for the d line of the negative lens,
    NdL: Partial dispersion ratio of the g-line and F-line of the negative lens.
  15.  以下の条件式を満たす請求項13または14に記載の光学系。
    0.400 < fA/fB < 2.500
     ただし、
     fB:無限撮影時の後群の焦点距離。
    The optical system according to claim 13 or 14, which satisfies the following conditional expression.
    0.400 <fA / fB <2.5500
    However,
    fB: Focal length of the rear group during infinite shooting.
  16.  前記前群の物体側から順に、最物体側レンズから4枚目のレンズまでの間に負レンズが2枚以上あり、それらの向かい合った凹面の内、物体側にある負レンズの像側面の曲率半径をr1、像側にある負レンズの物体側面の曲率半径をr2とすると、以下の条件式を満足する請求項13~15の何れか1項に記載の光学系。
    -0.500<(r1+r2)/(r1-r2)<0.500
    There are two or more negative lenses between the lens on the most object side and the fourth lens in order from the object side of the front group, and the curvature of the image side of the negative lens on the object side among the concave surfaces facing each other. The optical system according to any one of claims 13 to 15, where the radius is r1 and the radius of curvature of the side surface of the object of the negative lens on the image side is r2, which satisfies the following conditional expression.
    -0.500 <(r1 + r2) / (r1-r2) <0.500
  17.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群と、合焦に際して固定の後続群とを含み、以下の条件式を満足する請求項13~16の何れか1項に記載の光学系。
    -0.500 < fF2/fF1 < 0.500  
     ただし、
     fF2:前記F2群の焦点距離、
     fF1:前記F1群の焦点距離。
    The front group is fixed at the time of focusing, the rear group includes the F1 group and the F2 group which are two focusing groups moving on the optical axis, and the subsequent group which is fixed at the time of focusing, and the following conditional expression is used. The optical system according to any one of claims 13 to 16, which is satisfied.
    -0.500 <fF2 / fF1 <0.500
    However,
    fF2: Focal length of the F2 group,
    fF1: Focal length of the F1 group.
  18.  合焦に際して前記前群は固定、前記後群は、光軸上を移動する二つの合焦群であるF1群及びF2群を含み、以下の条件式を満足する請求項13~17の何れか1項に記載の光学系。
    -0.300 < βF2/βF1 < 1.200
     ただし、
     βF2:前記F2群の横倍率、
     βF1:前記F1群の横倍率。
    The front group is fixed at the time of focusing, and the rear group includes two focusing groups, F1 group and F2 group, which move on the optical axis, and any of claims 13 to 17 satisfying the following conditional expression. The optical system according to item 1.
    -0.300 <βF2 / βF1 <1.200
    However,
    βF2: Horizontal magnification of the F2 group,
    βF1: Horizontal magnification of the F1 group.
  19.  請求項1~18のいずれか一項に記載の光学系を有した光学機器。 An optical device having the optical system according to any one of claims 1 to 18.
  20.  物体側から順に、正の屈折力を持つ前群と、絞りと、全体として正の屈折力を持つ後群からなるように構成し、以下の条件式を満足するように構成する光学系の製造方法。
    0.600<((h(max)-h(1))/h(1)+(h(max)-h(s))/h(s))×FNo<2.100
    1.500 < f/Bf < 10.000
     ただし、
     h(max) :マージナル光線が前群で最も高くなる高さ、
     h(1)  :第一面でのマージナル光線高さ、
     h(s)    :絞り面でのマージナル光線高さ、
     FNo   :無限撮影時の開放F値、
     f   :無限撮影時の全系の焦点距離、
     Bf   :無限撮影時における光軸上でのレンズ最終面から近軸像面までの空気換算長。
     
    Manufacture of an optical system composed of a front group having a positive refractive power, a diaphragm, and a rear group having a positive refractive power as a whole in order from the object side, so as to satisfy the following conditional expression. Method.
    0.600 <((h (max) -h (1)) / h (1) + (h (max) -h (s)) / h (s)) × FNo < 2.100
    1.500 <f / Bf <10.000
    However,
    h (max): The height at which the marginal ray is the highest in the front group,
    h (1): Marginal ray height on the front surface,
    h (s): Marginal ray height at the aperture surface,
    FNo: Open F value during infinite shooting,
    f: Focal length of the whole system at the time of infinite shooting,
    Bf: Air equivalent length from the final surface of the lens on the optical axis to the paraxial image plane during infinite shooting.
PCT/JP2021/018064 2020-05-28 2021-05-12 Optical system, optical device, and method for manufacturing optical system WO2021241230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022526866A JP7398060B2 (en) 2020-05-28 2021-05-12 Optical system and optical equipment
JP2023191930A JP2023184737A (en) 2020-05-28 2023-11-10 Optical system and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-092836 2020-05-28
JP2020092836 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241230A1 true WO2021241230A1 (en) 2021-12-02

Family

ID=78723390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018064 WO2021241230A1 (en) 2020-05-28 2021-05-12 Optical system, optical device, and method for manufacturing optical system

Country Status (2)

Country Link
JP (2) JP7398060B2 (en)
WO (1) WO2021241230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176512A1 (en) * 2022-03-17 2023-09-21 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2024057640A1 (en) * 2022-09-14 2024-03-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180275372A1 (en) * 2017-03-24 2018-09-27 Genius Electronic Optical Co., Ltd. Optical imaging lens
JP2019045631A (en) * 2017-08-31 2019-03-22 キヤノン株式会社 Optical system and optical device having the same
CN110297309A (en) * 2019-06-25 2019-10-01 玉晶光电(厦门)有限公司 Optical imaging lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147124A (en) * 1986-12-11 1988-06-20 Canon Inc Photographic lens utilizing floating
WO2020158902A1 (en) 2019-01-31 2020-08-06 富士フイルム株式会社 Imaging lens and imaging device
JP7203811B2 (en) 2020-01-29 2023-01-13 富士フイルム株式会社 Imaging lens and imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180275372A1 (en) * 2017-03-24 2018-09-27 Genius Electronic Optical Co., Ltd. Optical imaging lens
JP2019045631A (en) * 2017-08-31 2019-03-22 キヤノン株式会社 Optical system and optical device having the same
CN110297309A (en) * 2019-06-25 2019-10-01 玉晶光电(厦门)有限公司 Optical imaging lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176512A1 (en) * 2022-03-17 2023-09-21 株式会社ニコン Optical system, optical apparatus, and method for manufacturing optical system
WO2024057640A1 (en) * 2022-09-14 2024-03-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system

Also Published As

Publication number Publication date
JP7398060B2 (en) 2023-12-14
JP2023184737A (en) 2023-12-28
JPWO2021241230A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP2620796B1 (en) Optical system and imaging apparatus
US7961409B2 (en) Zoom lens system, optical apparatus, and method for zooming
CN108490592B (en) Zoom optical system
US10095012B2 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
CN107430261B (en) Variable magnification optical system and optical apparatus
US11668899B2 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
US20120218646A1 (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
US20080297901A1 (en) Zoom lens system, optical apparatus, and method for forming an image
JP2023184737A (en) Optical system and optical device
US7920341B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
WO2013111222A1 (en) Zoom lens, optical apparatus, and zoom lens manufacturing method
JP7217858B2 (en) optical system, optical equipment
CN107407795B (en) Variable magnification optical system and optical apparatus
JP2023171585A (en) Zoom optical system, optical device, and method of manufacturing zoom optical system
JP6784952B2 (en) Optical system and optical equipment
JP7414107B2 (en) Optical system and optical equipment
CN112136068B (en) Optical system and optical apparatus
JP6816370B2 (en) Optical system and optical equipment
JP5445040B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP6897733B2 (en) Variable magnification optical system, optical device
JP5305177B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
WO2024203170A1 (en) Optical system, optical device, and method for manufacturing optical system
WO2020136744A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5267956B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812226

Country of ref document: EP

Kind code of ref document: A1