WO2021241101A1 - Measurement device, control method for measurement device, and program - Google Patents

Measurement device, control method for measurement device, and program Download PDF

Info

Publication number
WO2021241101A1
WO2021241101A1 PCT/JP2021/016567 JP2021016567W WO2021241101A1 WO 2021241101 A1 WO2021241101 A1 WO 2021241101A1 JP 2021016567 W JP2021016567 W JP 2021016567W WO 2021241101 A1 WO2021241101 A1 WO 2021241101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
line beam
photodetector
measuring device
mode
Prior art date
Application number
PCT/JP2021/016567
Other languages
French (fr)
Japanese (ja)
Inventor
宏幸 高木
安寿 稲田
了一 高山
和也 久田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021241101A1 publication Critical patent/WO2021241101A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • This disclosure relates to a measuring device, a control method of the measuring device, and a program.
  • LiDAR Light Detection and Ringing
  • a typical example of a measuring device using LiDAR technology includes a light emitting device, a photodetector, and a processing circuit.
  • the light emitting device includes a light deflector that changes the direction of light.
  • the photodetector detects the reflected light from the object and outputs a signal according to the intensity of the reflected light.
  • the processing circuit acquires data on the distance of an object based on the signal output from the photodetector, for example, by TOF (Time Of Flight) technology.
  • Patent Documents 1 to 3 disclose examples of configurations capable of changing the direction of light.
  • the present disclosure provides a measuring device capable of efficiently acquiring measurement data of an object.
  • the measuring device is arranged on a light deflector, a light emitting element that emits light whose frequency changes with time, and the light path, and converts the light into reference light and irradiation light.
  • An optical scanner including a splitter and an optical detector to be separated, a processing circuit that controls the light emitting element, the optical deflector, and the optical detector, and processes a signal output from the optical detector.
  • the processing circuit causes the optical scanner to emit a line beam, and changes the emission direction of the line beam along a direction intersecting the direction in which the line beam extends, and causes the optical detector to emit the line beam.
  • the interference light between the reflected light generated by irradiating the object with the line beam and the reference light is detected, and the measurement data of the object is generated and output based on the signal.
  • the present disclosure may be implemented in recording media such as systems, devices, methods, integrated circuits, computer programs or computer readable recording discs, systems, devices, methods, integrated circuits, etc. It may be realized by any combination of a computer program and a recording medium.
  • the computer-readable recording medium may include a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory).
  • the device may consist of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be separately arranged in two or more separated devices.
  • "device" can mean not only one device, but also a system of multiple devices.
  • FIG. 1A is a diagram schematically showing a measuring device according to an exemplary embodiment of the present disclosure.
  • FIG. 1B is a diagram schematically showing a measuring device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a flowchart of the operation of FMCW processing executed by the processing circuit.
  • FIG. 3 is a perspective view schematically showing an example of a vehicle in which a measuring device is mounted on the front surface.
  • FIG. 4A is a diagram schematically showing a first example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road.
  • FIG. 4B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the first example shown in FIG.
  • FIG. 5A is a diagram schematically showing a second example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road.
  • FIG. 5B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the second example shown in FIG. 5A.
  • FIG. 6A is a diagram schematically showing a third example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road.
  • FIG. 6B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the third example shown in FIG. 6A.
  • FIG. 6A is a diagram schematically showing a second example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road.
  • FIG. 6B is a diagram schematically showing the relationship between the strength
  • FIG. 7A is a diagram schematically showing an example of emitting an irradiation flash light toward a target scene in front of a vehicle traveling on a road.
  • FIG. 7B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the example shown in FIG. 7A.
  • FIG. 8 is a flowchart showing a distance measuring operation of a plurality of objects and a vehicle control operation in the present embodiment.
  • FIG. 9 is a diagram schematically showing a measuring device according to the first modification.
  • FIG. 10 is a diagram schematically showing a measuring device according to the second modification.
  • Patent Document 1 discloses a configuration in which the direction of emitted light is changed by rotating a mirror by mechanically driving a MEMS (Mechanical System).
  • the mirror is called a MEMS mirror.
  • Patent Document 2 describes a waveguide provided with an optical waveguide layer in which light is waveguideed inside, a first distributed Bragg reflector formed on the upper surface and the lower surface of the optical waveguide layer, and a waveguide for incidenting light in the waveguide.
  • a light deflection element including a light incident port and a light emitting port formed on the surface of the waveguide for emitting light incident from the light incident port and waveguide in the waveguide is disclosed.
  • Patent Document 3 discloses an optical phased array having a plurality of nanophotonic antenna elements arranged two-dimensionally. Each antenna element is optically coupled to a variable optical delay line (ie, a phase shifter). In this optical phased array, a coherent optical beam is guided to each antenna element by a waveguide, and the phase of the optical beam is shifted by a phase shifter. This makes it possible to change the amplitude distribution of the far-field radiation pattern.
  • a variable optical delay line ie, a phase shifter
  • the light emitting device disclosed in Patent Documents 1 to 3 scans the target scene two-dimensionally with a light beam having a relatively small beam diameter.
  • the processing circuit causes the light emitting device to individually irradiate the plurality of objects with a light beam, and the photodetector to individually irradiate the light beam.
  • the generated reflected light is detected and a signal corresponding to the intensity of the reflected light is output.
  • the processing circuit acquires data on the distances of a plurality of objects by processing the signal by TOF technology.
  • the TOF technique it takes a lot of time to acquire data on the distances of the plurality of objects.
  • TOF technology it is important to achieve both a wide dynamic range and high resolution in terms of distance when acquiring data related to the distance of an object.
  • disturbances such as sunlight can be a problem in terms of light sensitivity.
  • the velocity of an object is calculated from the change in the distance to the object for each scan. Therefore, when applying LiDAR technology to autonomous driving, there may be a delay in detecting the speed of a fast moving object.
  • Non-Patent Document 1 discloses an example of FMCW-LiDAR technology.
  • the light emitting device is controlled so that the frequency of the light emitted from the light emitting device changes with time.
  • the light emitted from the light emitting device is separated into irradiation light and reference light.
  • the object light generated by irradiating the object with the irradiation light is incident on the photodetector.
  • the reference light enters the photodetector without passing through an object. Since the object light enters the photodetector later than the reference light, the object light and the reference light have different frequencies when they enter the photodetector.
  • the photodetector detects the interference light in which the object light and the reference light are superimposed and interfere with each other, and outputs a signal indicating the intensity of the interference light.
  • the signal is called a beat signal.
  • the frequency of the beat signal corresponds to the difference between the frequency of the object light and the frequency of the reference light. The difference depends on the distance to the object.
  • the object light reflected from a plurality of objects having different distances has a plurality of frequency components. Therefore, even when a beat signal is output from a photodetector including a single photodetector, it is possible to acquire data on the distances of a plurality of objects by separating a plurality of frequency components from the beat signal. ..
  • a line beam extending in one direction with a certain degree of spread and a high energy density to some extent is suitable for irradiating a plurality of objects at once.
  • the measurement data of the object can be efficiently acquired by processing the signal obtained by irradiating the object with the line beam.
  • the measuring device according to the present disclosure will be briefly described.
  • the measuring device is arranged on an optical path of the light, a light deflector, a light emitting element that emits light whose frequency changes with time, and separates the light into reference light and irradiation light.
  • An optical scanner including a splitter, an optical detector, and a processing circuit that controls the light emitting element, the optical deflector, and the optical detector to process a signal output from the optical detector. Be prepared.
  • the processing circuit causes the optical scanner to emit a line beam, and changes the emission direction of the line beam along a direction intersecting the direction in which the line beam extends, and causes the photodetector to emit the line beam with the line beam. Interference light between the reflected light generated by irradiating the object and the reference light is detected, and measurement data of the object is generated and output based on the signal.
  • This measuring device can efficiently acquire the measurement data of the object by detecting the interference light between the reflected light obtained by irradiating the object with the line beam and the reference light.
  • the measuring device according to the second item is the measuring device according to the first item, in which the photodetector is a single photodetector.
  • the rough position of an object can be known by a single photodetector.
  • the measuring device includes a plurality of photodetecting elements in which the photodetector is arranged in the direction in which the line beam extends in the measuring device according to the first item.
  • the measuring device is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction.
  • the first mode of changing along the second direction intersecting the directions and the direction in which the line beam extends are set to the second direction, and the emission direction of the line beam is changed along the first direction. It is possible to switch between the second mode and the second mode.
  • the direction in which the line beam extends and the direction in which the line beam is changed can be switched between each other.
  • the measuring device is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction.
  • the first mode in which the light beam is changed along the second direction intersecting the directions and the emission direction of the light beam whose spread in the first direction is smaller than that of the line beam are the first direction and the second direction. It is possible to switch between a second mode that changes along the direction.
  • this measuring device it is possible to switch between scanning with a line beam and scanning with an optical beam.
  • the measuring device is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction. It is possible to switch between a first mode that changes along a second direction that intersects the direction and a second mode that emits a flash light having a wider spread in the second direction than the line beam. be.
  • this measuring device it is possible to switch between scanning with a line beam and scanning with a flash light.
  • the processing circuit causes the optical scanner to execute the measurement operation in the first mode
  • the measuring device according to the seventh item is the first mode. Based on the measurement data acquired by the above, it is determined whether or not it is necessary to switch to the measurement operation by the second mode, and it is determined that it is necessary to switch to the measurement operation by the second mode. Then, the optical scanner is made to execute the measurement operation in the second mode.
  • this measuring device it is possible to perform scanning with another line beam or scanning with an optical beam as needed, based on the measurement data acquired by scanning with a line beam.
  • the measuring device according to the eighth item is acquired by the second mode in the measuring device according to the sixth item, in which the processing circuit causes the optical scanner to execute the measurement operation in the second mode. Based on the measured data, it is determined whether or not it is necessary to switch to the measurement operation according to the first mode, and in response to the determination that it is necessary to switch to the measurement operation according to the first mode, the above The optical scanner is made to execute the measurement operation in the first mode.
  • this measuring device it is possible to perform a scan with a line beam as needed based on the measurement data acquired by scanning with a flash light.
  • the measuring device according to the ninth item is the measuring device according to any one of the fourth to sixth items.
  • One of the measurement operations according to the second mode is selected, and the optical scanner is made to perform the measurement operation according to the selected mode.
  • this measuring device it is possible to execute a measurement operation in a mode selected as necessary based on signals from other sensors.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (lage scale integration). ) Can be performed by one or more electronic circuits.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called LSI or IC, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • Field Programmable Gate Array (FPGA) which is programmed after the LSI is manufactured, or reconfigurable logistic device, which can reconfigure the connection relationship inside the LSI or set up the circuit partition inside the LSI, can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • all or part of the function or operation of a circuit, unit, device, member or part can be executed by software processing.
  • the software is recorded on a non-temporary recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is run by a processor, the functions identified by the software It is executed by a processor and peripheral devices.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
  • light refers to electromagnetic waves including not only visible light (wavelength of about 400 nm to about 700 nm) but also ultraviolet rays (wavelength of about 10 nm to about 400 nm) and infrared rays (wavelength of about 700 nm to about 1 mm). means.
  • FIGS. 1A and 1B are diagrams schematically showing a measuring device 100 according to an exemplary embodiment of the present disclosure.
  • the measuring device 100 is a distance measuring device, and measures a distance to an object by irradiating the object with light and detecting reflected light.
  • the measuring device 100 can change the emission direction of light.
  • FIG. 1A shows a state in which the measuring device 100 emits light in a certain direction.
  • FIG. 1B shows a state in which the measuring device 100 emits light in another direction.
  • the coordinate system consisting of the X-axis, the Y-axis, and the Z-axis, which are orthogonal to each other shown in FIGS. 1A and 1B, is used.
  • the direction of the arrow on the X axis is referred to as "+ X direction”, and the opposite direction is referred to as "-X direction”.
  • These axes and orientations are used for convenience only and are not intended to limit the placement or orientation of the measuring device 100 in practice.
  • the measuring device 100 detects the reflected light generated by irradiating an object (not shown) with light.
  • the measuring device 100 acquires data on the distance and / or velocity of the object by processing the signal obtained by the detection of the reflected light.
  • the data is also referred to as "measurement data”.
  • the measuring device 100 according to the present embodiment includes a light emitting device 10, an optical system 20, a photodetector 30, and a processing circuit 40.
  • a configuration including a light emitting device 10, an optical system 20, and a photodetector 30 is referred to as an "optical scanner 50".
  • the optical scanner 50 emits light toward space and detects reflected light from an object.
  • the processing circuit is also referred to as "FMCW processing circuit”.
  • the "FMCW processing circuit” means an electronic circuit that performs FMCW processing described later.
  • the light emitting device 10, a beam splitter 22, first lens 24 1, and the mirror 26 are disposed in this order along the + Y direction.
  • the light emitting surface of the light emitting device 10 is parallel to the XZ plane.
  • the reflecting surface of the beam splitter 22 is perpendicular to the XY plane and is tilted 45 ° clockwise with respect to the Y axis when viewed from the + Z direction.
  • the optical axis of the first lens 24 1 is parallel to the Y axis.
  • the reflective surface of the mirror 26 is parallel to the XZ plane.
  • Photodetector 30, the second lens 24 2, and the beam splitter 22 are disposed in this order along the + X direction.
  • the photodetector surface of the photodetector 30 is parallel to the YZ plane.
  • the light emitting device 10 emits 10 L of light.
  • the light emitting device 10 may include a light emitting element such as a laser diode that emits a continuous wave laser beam having a single frequency.
  • a pulse wave laser beam having an optical frequency comb may be used.
  • An optical frequency comb is a comb-shaped frequency spectrum formed from a plurality of discrete evenly spaced lines.
  • the frequency of the light 10L emitted from the light emitting device 10 can be selected according to the application.
  • the frequency of the light 10L can be, for example, 120 THz (wavelength 2.5 ⁇ m) or more and 428 THz (wavelength 700 nm) or less.
  • the frequency of the light 10L may be a frequency in the visible region, that is, 428 THz (wavelength 700 nm) or more and 749 THz (wavelength 400 nm) or less.
  • the frequency of the light 10L may be 120 THz (wavelength 2.5 ⁇ m) or less.
  • the light emitting device 10 includes a light emitting element having a variable frequency.
  • the frequency of the light 10L may change depending on, for example, the current injected into the light emitting element included in the light emitting device 10 or the temperature of the light emitting element.
  • the light emitting device 10 is controlled by the processing circuit 40 so that the frequency of the light 10L changes with time.
  • the light emitting device 10 may be able to change the shape of the light 10L.
  • the light 10L can be, for example, a flash light that spreads over a wide area, a line beam having a beam shape extending in one direction, or a light beam having a relatively small beam diameter.
  • the term "light beam” is used to refer to a light beam having a relatively small beam diameter, and is used separately from a line beam and a flash light.
  • the light emitting device 10 includes a light emitting element that emits flash light, a light emitting element that emits a line beam, and a light emitting element that emits a light beam, and may emit light 10L from an appropriate light emitting element depending on the application.
  • the spread of the flash light is larger than the spread of the line beam, and the spread of the line beam is larger than the spread of the light beam.
  • the flash light has a larger spread than the line beam in the direction in which the line beam intersects in the extending direction.
  • the light beam has a smaller spread than the line beam in the direction in which the line beam extends.
  • the energy density of the light beam is higher than the energy density of the line beam, and the energy density of the line beam is higher than the energy density of the flash light.
  • the flash light which has a relatively large spread, is suitable for irradiating a plurality of objects at once.
  • a light beam with a relatively high energy density is suitable for irradiating a long-distance object.
  • the line beam has the advantages of both light beam and flash light.
  • the light emitting device 10 includes a light deflector that deflects the light 10L emitted from the light emitting element.
  • the optical deflector changes at least one of the components parallel to the X direction and the components parallel to the Z direction in the direction of the light 10L.
  • the optical deflector may change the direction of the light 10L by mechanical drive such as a MEMS mirror.
  • the optical deflector may change the direction of the light 10L by changing optical parameters such as the refractive index without using mechanical drive.
  • the optical deflector may include, for example, a first reflective layer, a second reflective layer having a higher reflectance than the first reflective layer, and an optical waveguide layer located between them. The light propagating in the optical waveguide layer is emitted to the outside through the first reflective layer.
  • the direction of the light emitted to the outside through the first reflective layer can be changed.
  • the direction of the light 10L emitted from the light emitting device 10 is different between the example shown in FIG. 1A and the example shown in FIG. 1B.
  • the directions of the light 10L are inclined clockwise and counterclockwise with respect to the Y axis in the XY plane when viewed from the + Z direction, respectively.
  • the beam splitter 22 included in the optical system 20 is located on the optical path of the light 10L.
  • the beam splitter 22 can be, for example, a cube-type beam splitter including two joined right-angle prisms. One right-angled prism has an optical thin film on its slope.
  • An example of a cube-type beam splitter is a polarization-independent beam splitter cube.
  • the beam splitter 22 may be, for example, a plate-type beam splitter having flat glass provided with an optical thin film on the surface.
  • the beam splitter 22 separates the light 10L emitted from the light emitting device 10 into the first light 10L 1 and the second light 10L 2.
  • the first light 10L 1 is a component of the light 10L that has passed through the beam splitter 22.
  • the second light 10L 2 is a component of the light 10L reflected by the beam splitter 22.
  • the directions of the first light 10L 1 and the second light 10L 2 change according to the direction of the light 10L emitted from the light emitting device 10.
  • the intensity ratio of the first light 10L 1 to the second light 10L 2 can be, for example, 50:50.
  • the ratio of the intensities of the first light 10L 1 and the second light 10L 2 may be changed according to the reflectance of the light at the object.
  • the size and position of the beam splitter 22 is designed to cover the entire angular range in which the direction of the light 10L changes.
  • the first lens 24 1 included in the optical system 20, the second lens 24 2, and the mirror 26 is located in the first optical path of the light 10L 1.
  • the first lens 24 1 and the second lens 24 2 for example, be a condenser lens.
  • the focus of the first lens 24 1 is present in two locations.
  • One focal point is in the light emitting surface of the light emitting device 10. This focal point is referred to as "first focal point F 1".
  • Other focal point coincides with the focal point of the second lens 24 and second beam splitter 22 side.
  • This focal point is referred to as "second focal point F 2".
  • the first focal point F 1 and the second focal point F 2 are mirror-symmetric with respect to the beam splitter 22.
  • the mirror 26 reflects the light propagating along the + Y direction toward the ⁇ Y direction.
  • the mirror 26 can be formed from, for example, a metal or a dielectric multilayer film.
  • Light 10L is emitted from the focus F 1 at the light emitting plane of the light emitting device 10.
  • First light 10L 1 that is separated from the light 10L by the beam splitter 22 is transmitted through the first lens 24 1 propagates along the + Y direction, is reflected by the mirror 26.
  • First light 10L 1 reflected by the mirror 26 propagates along the -Y direction, the first lens 24 1 again transmitted through and reflected by the beam splitter 22.
  • First light 10L 1 reflected by the beam splitter 22 passes through the second focal point F 2 passes through the second lens 24 2, and enters the optical detector 30 propagates along the -X direction.
  • the second light 10L 2 separated from the light 10L by the beam splitter 22 propagates toward the object.
  • Third light 10L 3 caused by the object at the second light 10L 2 is irradiated, and the second light 10L 2 propagates in the opposite direction, passes through the beam splitter 22.
  • the first light 10L 1 and the third light 10L 3 are superimposed and interfere with each other, and are incident on the photodetector 30 as the fourth light 10L 4.
  • the optical system 20 separates the light 10L into the first light 10L 1 and the second light 10L 2 , and photodetects the fourth light 10L 4 in which the first light 10L 1 and the third light 10L 3 interfere with each other.
  • the configuration is not limited to the configuration shown in FIGS. 1A and 1B as long as it can be incidentally incident on the vessel 30.
  • the optical system 20 may include an optical fiber.
  • Photodetector 30 detects the fourth light 10L 4, and outputs a signal corresponding to the intensity of the fourth light 10L 4. As shown in FIGS. 1A and 1B, the position where the fourth light 10L 4 is incident on the photodetector 30 changes depending on the direction of the light 10L.
  • the photodetector 30 includes one or more photodetectors.
  • the photodetector 30 may include, for example, an image sensor having a plurality of photodetectors arranged two-dimensionally.
  • the photodetector 30 may include a line sensor having a plurality of photodetectors arranged one-dimensionally, or may include a single photodetector.
  • the photodetector can be, for example, a Si avalanche photodetector.
  • Optical detector 30, may include an image sensor having a plurality of light detection elements arranged two-dimensionally, the second lens 24 2, maintaining the position in the Y and Z directions of the interference light 10L 4 incident As it is, the interference light 10L 4 is incident on the image sensor along the -X direction. While the optical detector 30, if it contains a line sensor having a plurality of light detection elements arranged along the Y direction, the second lens 24 2, maintaining the position in the Y-direction of the interference light 10L 4 incident, The interference light 10L 4 is focused on the line sensor in the XZ plane.
  • an optical detector 30 if it contains a line sensor having a plurality of light detection elements arranged along the Z direction, the second lens 24 2, the position in the Z direction of the interference light 10L 4 incident While still, the interference light 10L 4 is focused on the line sensor in the XY plane.
  • the second lens 24 2 may be composed of one lens, or may be composed of a plurality of lenses.
  • the optical detector 30 comprises a line sensor extending along the Y direction
  • the second lens 24 2 the optical path of the interference light 10L 4
  • a first cylindrical lens extending in the Z-direction, extending in the Y direction direction
  • It may include a second cylindrical lens.
  • the first cylindrical lens maintains the position of the interference light 10L 4 in the Y direction.
  • the second cylindrical lens focuses the interference light 10L 4 that has passed through the first cylindrical lens on the line sensor in the XZ plane.
  • the photodetector 30 includes a line sensor extending along the Z direction.
  • the light detector 30 comprises a single photodetector element
  • the second lens 24 2 is removed, the light detector 30 is arranged such that the second focal point F 2 is located to the light detection surface.
  • the interference light 10L 4 is incident on the second focal point F 2 regardless of the emission direction of the light 10L.
  • the third light 10L 3 is incident on the photodetector 30 later than the first light 10L 1 by the time required for the round trip between the measuring device 100 and the object. As a result, the frequency of the third light 10L 3 is different from the frequency of the first light 10L 1. Due to the different frequencies, beats occur in the fourth light 10L 4.
  • the above signal output from the photodetector 30 is a beat signal.
  • the first light is referred to as "reference light”
  • the second light is referred to as “irradiation light”
  • the third light is referred to as "object light”
  • the fourth light is referred to as “interference light”. It is called.
  • the processing circuit 40 controls the light emitting device 10 and the photodetector 30, and processes the signal output from the photodetector 30.
  • the control of the light emitting device 10 may be, for example, control of the frequency, shape, direction, and emission timing of the light emitted from the light emitting device 10, and the position of the light emitting device 10.
  • the control of the photodetector 30 may be, for example, control of the detection timing and the position of the photodetector 30.
  • FIG. 2 is a flowchart of the operation of the FMCW processing executed by the processing circuit 40.
  • the processing circuit 40 executes the operations of steps S101 to S103 below.
  • step S101 the processing circuit 40 causes the light emitting device 10 to emit the light 10L whose frequency f (t) changes with time.
  • the frequency f IER of the object light 10L 3 is f (t 0 )-[df.
  • the processing circuit 40 may adjust the position of the light emitting device 10 by, for example, an actuator. By this adjustment, it is possible to compensate for the deviation between the first focal point F 1 and the light emitting surface of the light emitting device 10.
  • step S102 the processing circuit 40 causes the photodetector 30 to output a beat signal by detecting the interference light 10L 4.
  • the processing circuit 40 may adjust the position of the photodetector 30 by, for example, an actuator.
  • the photodetector 30 includes a single photodetector as described above, it is possible to compensate for the deviation between the second focal point F 2 and the photodetector surface of the photodetector 30. As a result, the strength of the beat signal can be improved.
  • step S103 the processing circuit 40 processes the beat signal to generate and output data relating to the distance and / or velocity of the object.
  • the data may be displayed on a display or output as audio from a speaker, for example.
  • ⁇ t 2d / c.
  • the frequency difference ⁇ f is 4.17 kHz or more and 4.17 MHz.
  • This frequency difference ⁇ f can be accurately measured by, for example, a spectrum analyzer or an oscilloscope with a resolution on the order of several Hz to several tens of MHz. Therefore, according to the measuring device 100 according to the present embodiment, it is possible to achieve both a wide dynamic range and high resolution with respect to the distance in the acquisition of data regarding the distance of the object.
  • the frequency difference ⁇ f is shifted by the Doppler effect, so that data regarding the velocity of the object can be generated.
  • the processing circuit 40 in the present embodiment causes the optical scanner 50 to emit a line beam that scans the space. Specifically, the processing circuit 40 causes the light emitting device 10 to emit the line beam 10L, and the emission direction of the line beam 10L changes regularly or irregularly along the direction in which the line beam 10L extends. Let me. The optical deflector can change the emission direction of the line beam 10L in this way.
  • the optical deflector has a first mode in which the direction in which the line beam 10L extends is set to the first direction, and the emission direction of the line beam 10L is changed along the second direction intersecting the first direction. It is possible to switch between a second mode in which the direction in which the line beam 10L extends is set to the second direction and the emission direction of the line beam 10L is changed along the first direction.
  • the irradiation line beam 10L 2 separated from the line beam 10L by the beam splitter 22 is mainly Y. It extends in the direction and its exit direction changes along the Z direction.
  • the irradiation line beam 10L 2 extends in a direction different from the direction in which the line beam 10L extends.
  • the irradiation line beam 10L 2 separated from the line beam 10L by the beam splitter 22 extends in the Z direction.
  • the emission direction changes along the Y direction.
  • the irradiation line beam 10L 2 extends in the same direction as the line beam 10L extends.
  • the processing circuit 40 causes the photodetector 30 to detect the interference light 10L 4 between the plurality of object light beams 10L 3 and the reference light 10L 1 generated by irradiating the plurality of objects with the irradiation line beam 10L 2. To output a beat signal.
  • a beat signal can also be generated by the interference of a plurality of object light beams 10L 2 with each other, but this effect is small.
  • the energy density of the irradiation line beam 10L 2 decreases as the distance increases.
  • the reference light 10L 1 is incident on the photodetector 30 located near the light emitting device 10 while maintaining a high energy density.
  • the beat signal corresponds to the multiplication of the electric field components of two lights.
  • the beat signals between the plurality of object light beams 10L 3 are very small and can be ignored.
  • most of the signals output from the photodetector 30 are beat signals of the plurality of object light beams 10L 3 and the reference light 10L 1.
  • the processing circuit 40 can generate and output data on the distance and / or velocity of a plurality of objects at once from the beat signal.
  • the photodetector 30 for detecting the interference light 10L 4 does not need to include an image sensor and may include a line sensor extending in the same direction as the irradiation line beam 10L 2 or a single photodetector. In this case, since the number of photodetecting elements may be small, the time for generating data regarding the distance and / or speed of a plurality of objects can be significantly shortened as compared with an image sensor having a maximum frame rate of about 30 fps.
  • FIG. 3 is a perspective view schematically showing an example of a vehicle 200 in which a measuring device 100 is mounted on the front surface.
  • the traveling direction of the vehicle 200 is parallel to the X direction
  • the vehicle height direction is parallel to the Y direction
  • the direction crossing the road is parallel to the Z direction.
  • the vehicle height direction is a direction perpendicular to the road surface and a direction away from the road surface.
  • the measuring device 100 in the vehicle 200 emits the irradiation line beam 10L 2 extending in the vehicle height direction toward the target scene in front of the vehicle 200.
  • the emission direction of the irradiation line beam 10L 2 changes along the direction across the road, as represented by the double-headed arrow.
  • the mounting position of the measuring device 100 on the vehicle 200 is not limited to the front surface thereof, but may be the upper surface, the side surface, or the rear surface thereof. The mounting position is appropriately determined according to where the target scene is.
  • FIG. 4A is a diagram schematically showing a first example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of a vehicle 200 traveling on a road.
  • the target scene is surrounded by a thick solid rectangle.
  • a preceding vehicle is running on the road, and there are pedestrians on the sidewalk beside the road.
  • the plurality of objects in the target scene are pedestrians, three roadside trees, and a preceding vehicle in ascending order of distance.
  • the distances to pedestrians, leftmost, central, and rightmost roadside trees, as well as preceding vehicles, are d 1 to d 5 , respectively.
  • d 1 to d 5 are shown in FIG.
  • the road surface when looking ahead from the vehicle 200, the road surface gradually changes toward the vehicle height direction.
  • the road surface changes continuously, whereas an object such as a person or a car on the road surface changes discontinuously with respect to the road surface. Therefore, it is possible to detect the object by irradiating the object with the irradiation line beam 10L 2.
  • the emission direction of the irradiation line beam 10L 2 extending in the Y direction changes along the Z direction.
  • the dashed ellipse shown in FIG. 4A represents the irradiation spots of the first irradiation line beam 10L 2a and the fourth irradiation line beam 10L 2d extending in the Y direction emitted in four different directions.
  • the distances in the upper part, the middle part, and the lower part of the irradiation line beam 10L 2 in the irradiation spot do not change so much even if the emission direction changes along the Z direction. Therefore, when the target scene is scanned in the horizontal direction with the irradiation line beam 10L 2 extending in the vertical direction, there is an advantage that the resolution of the distance in the horizontal direction is high.
  • the irradiation spot of the first irradiation line beam 10L 2a includes the roadside tree at the left end.
  • the irradiation spot of the second irradiation line beam 10L 2b includes a central roadside tree.
  • the irradiation spot of the third irradiation line beam 10L 2c includes a pedestrian and a roadside tree on the right end.
  • the irradiation spot of the fourth irradiation line beam 10L 2d includes the preceding vehicle.
  • the first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d may be emitted toward the target scene in this order or vice versa.
  • the third irradiation line beam 10L 2c and the second irradiation line beam 10L may be emitted.
  • 2b , the fourth irradiation line beam 10L 2d , and the first irradiation line beam 10L 2a may be emitted in an irregular order.
  • the photodetector 30 including a single photodetector detects the interference light 10L 4 as described above.
  • FIG. 4B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the first example shown in FIG. 4A.
  • the four figures in FIG. 4B show the beat signals generated by the first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d.
  • the first irradiation line beam 10L 2a, the second irradiation line beam 10L 2b , and the fourth irradiation line beam 10L 2d produce a single peak at distance d 2 , distance d 3 , and distance d 5, respectively.
  • the third irradiation line beam 10L 2c causes two peaks of distance d 1 and distance d 4.
  • the measuring device 100 can measure the distances to the plurality of objects at once by irradiating the plurality of objects with one irradiation line beam 10L 2.
  • a single photodetection element can be used to roughly position a plurality of objects in a short time from the known emission angles of the first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d. You can find out at.
  • FIG. 5A is a diagram schematically showing a second example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of the vehicle 200 traveling on a road.
  • the second example differs from the first example in that the photodetector 30 including the line sensor extending in the Y direction detects the interference light 10L 4 as described above.
  • the interference light 10L 4 is incident on a plurality of photodetecting elements included in the line sensor.
  • the five dotted ellipses in each irradiation line beam shown in FIG. 5A represent the locations corresponding to the photodetection elements 40e from the photodetection elements 40a arranged in the Y direction included in the line sensor.
  • FIG. 5B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the second example shown in FIG. 5A.
  • FIG. 5B shows a beat signal output from each photodetector by the third irradiation line beam 10L 2c.
  • the light detecting element 40c from the light detecting element 40a outputs a beat signal of the distance d 4
  • the light-detecting element 40d and the light detecting element 40e outputs a beat signal of the distance d 1.
  • the photodetection element 40c can know the more accurate position of the roadside tree at the right end, and the photodetection element 40d and the photodetection element 40e can know the more accurate position of the pedestrian.
  • the line sensor can more accurately know the three-dimensional positions of a plurality of objects.
  • the measuring device 100 may include a photodetector 30 including both a single photodetector and a line sensor.
  • a photodetector 30 including both a single photodetector and a line sensor.
  • the processing circuit 40 causes a single photodetection element to detect the interference light 10L 4 when the rough position of a plurality of objects is known, and causes the line sensor to more accurately know the three-dimensional position of the plurality of objects. Interference light 10L 4 is detected.
  • a photodetector 30 that does not include a single photodetector and includes a line sensor can also detect the interference light 10L 4 depending on the application.
  • the processing circuit 40 knows the rough positions of a plurality of objects, the processing circuit 40 averages a plurality of beat signals output from each of the plurality of photodetectors included in the line sensor, and obtains the three-dimensional positions of the plurality of objects. To know exactly, the plurality of beat signals are used as they are.
  • FIG. 6A is a diagram schematically showing a third example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of the vehicle 200 traveling on a road.
  • the third example differs from the first example in that from the first irradiation line beam 10L 2a extending in the Y direction to the fourth irradiation line beam 10L 2d and the fifth irradiation line beam 10L 2e extending in the Z direction.
  • the eighth irradiation line beam 10L 2h is emitted toward the target scene.
  • the photodetector 30 including a single photodetector detects the interference light 10L 4 as described above.
  • the irradiation spot of the fifth irradiation line beam 10L 2e mainly includes the upper part of the roadside tree at the right end and the upper part of the preceding vehicle.
  • the irradiation spot of the sixth irradiation line beam 10L 2f mainly includes the upper part of the roadside tree on the left end, the upper part of the roadside tree in the center, the central part of the roadside tree on the right end, and the lower part of the preceding vehicle.
  • the irradiation spot of the 7th irradiation line beam 10L 2g mainly includes the central part of the leftmost roadside tree, the lower part of the central roadside tree, and the lower part of the rightmost roadside tree.
  • the irradiation spot of the eighth irradiation line beam 10L 2h mainly includes the lower part of the roadside tree at the left end and pedestrians.
  • FIG. 6B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the third example shown in FIG. 6A.
  • the four figures above FIG. 6B are the same as the four figures in FIG. 4B, and the four figures below FIG. 6B show the beat signals generated by the fifth irradiation line beam 10L 2e to the eighth irradiation line beam 10L 2h. Is shown.
  • the fifth illumination line beam 10L 2e 2 peaks in the distance d 4 and the distance d 5 appears.
  • the sixth irradiation line beam 10L 2f causes four peaks at a distance d 2 to a distance d 5.
  • the eighth irradiation line beam 10L 2h causes two peaks at a distance d 1 and a distance d 2.
  • the peak at the distance d 1 appears by the third irradiation line beam 10L 2c and the eighth irradiation line beam 10L 2h. Therefore, it can be seen that the pedestrian at the distance d 1 is at a position where the third irradiation line beam 10L 2c and the eighth irradiation line beam 10L 2h overlap.
  • the roadside tree at the left end of the distance d 2 has the first irradiation line beam 10L 2a , the sixth irradiation line beam 10L 2f, the seventh irradiation line beam 10L 2g , and the eighth irradiation line beam 10L 2h , respectively. It can be seen that they exist at overlapping positions.
  • Distance central trees of d 3 is found to be present and the second irradiation line beam 10L 2b, a position and each overlaps the sixth illumination line beam 10L 2f and seventh irradiation line beam 10L 2 g.
  • Right edge of the trees of the distance d 4 is a third irradiation line beam 10L 2c, fifth illumination line beam 10L 2e, the sixth illumination line beam 10L 2f, and the seventh radiation line beam 10L 2 g each and overlap the position of the It turns out that it exists.
  • the preceding vehicle having a distance d 5 exists at a position where the fourth irradiation line beam 10L 2d , the fifth irradiation line beam 10L 2e, and the sixth irradiation line beam 10L 2f overlap each other.
  • the target scene is scanned in the Z direction by the irradiation line beam extending in the Y direction, and by scanning in the Y direction by the irradiation line beam extending in the Z direction. , It is possible to know the three-dimensional position of an object more accurately.
  • the measuring device 100 from the known emission angles of the first irradiation line beam 10L 2a to the eighth irradiation line beam 10L 2h , the three-dimensional position of the object even if it is a single photodetector. Can be known more accurately.
  • FIG. 7A is a diagram schematically showing an example in which the irradiation flash light 10L 2 is emitted toward the target scene in front of the vehicle 200 traveling on the road.
  • the broken line ellipse shown in FIG. 7A represents the irradiation spot of the irradiation flash light 10L 2.
  • the photodetector 30 detects the interference light 10L 4 by a single photodetector as described above.
  • FIG. 7B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the example shown in FIG. 7A.
  • the irradiation flash light causes five peaks at a distance d 2 to a distance d 5.
  • the distances to a plurality of objects can be measured at one time by irradiating the plurality of objects with the flash light.
  • FIG. 8 is a flowchart showing a distance measuring operation of a plurality of objects and a control operation of the vehicle 200 in the present embodiment.
  • the processing circuit 40 in this embodiment executes the operations of steps S201 to S207 below.
  • the photodetector 30 includes a single photodetector.
  • the processing circuit 40 causes the light emitting device 10 to emit the irradiation flash light toward the target scene, and causes the photodetector 30 to emit a plurality of irradiation flash lights by a single photodetector.
  • the interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 is detected and a signal is output.
  • the processing circuit 40 generates and outputs data regarding the distances of a plurality of objects in the target scene based on the signal.
  • Step S202> The processing circuit 40 determines whether or not the object exists at a short distance of the vehicle 200 based on the result of the distance measurement of the object in step S201.
  • the short distance in this step can be, for example, in the range of 0.5 m or more and 20 m or less.
  • the processing circuit 40 executes the operation of step S203.
  • the processing circuit 40 executes the operation of step S204.
  • Step S203 The processing circuit 40 transmits a collision avoidance signal to the control circuit of the vehicle 200. Even if it is not known where the object is in the target scene, it is possible to prevent the vehicle 200 from colliding with the object by a collision avoidance action such as stopping.
  • the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Z direction with an irradiation line beam extending in the Y direction, and causes the photodetector 30 to scan the target scene with an irradiation line by a single photodetector.
  • the object light beam 10L 3 generated by the beam 10L 2 and the interference light 10L 4 of the reference light 10L 1 are detected and a signal is output.
  • the processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal.
  • Step S205> The processing circuit 40 determines whether or not the object exists at a short distance of the vehicle 200 based on the result of the distance measurement of the object in step S204.
  • the short distance in this step can be, for example, in the range of 20 m or more and 40 m or less.
  • the processing circuit 40 executes the operation of step S206.
  • the processing circuit 40 executes the operation of step S207.
  • the processing circuit 40 transmits a collision avoidance signal to the control circuit of the vehicle 200. If the rough position of the object in the target scene is known, it is possible to prevent the vehicle 200 from colliding with the object by a collision avoidance action such as moving away from the rough position to the left or right or stopping.
  • the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Y direction with the irradiation line beam 10L extending in the Z direction, and irradiates the photodetector 30 with a single photodetector.
  • the interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 generated by the line beam 10L is detected and a signal is output.
  • the processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal. From the results of distance measurement of the object in steps S204 and S207, the three-dimensional position of the object can be known more accurately.
  • the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Y direction and the Z direction with an irradiation light beam having a smaller spread than the irradiation line beam 10L, and causes the photodetector 30 to simply scan the target scene.
  • a single photodetector may detect the interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 generated by the irradiation light beam and output a signal.
  • the processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal. From the known emission angle of the irradiation light beam, the three-dimensional position of the object can be known more accurately.
  • Processing circuit 40 together with the emit irradiation line beam 10L 2 in the optical scanner 50, the emission direction of the illumination line beam 10L 2, is varied along a direction intersecting the direction in which the irradiation line beam 10L 2 extends.
  • the processing circuit 40 causes the photodetector 30 to detect the interference light 10L 4 between the object light 10L 3 and the reference light 10L 1 generated by irradiating the object with the irradiation line beam 10L 2 , from the photodetector 30. Based on the output signal, the measurement data of the object is generated and output.
  • the operation of the processing circuit 40 when no is selected in step S202 and step S205 is summarized as follows.
  • the processing circuit 40 causes the optical scanner 50 to execute the measurement operation in a certain mode, and determines whether or not it is necessary to switch to the measurement operation in another mode based on the measurement data acquired in the mode. After that, the processing circuit 40 causes the optical scanner 50 to execute the measurement operation in the other mode in response to the determination that it is necessary to switch to the measurement operation in the other mode.
  • one of the above modes may be, for example, scanning with irradiation flash light.
  • the other mode described above may be a scan along the second direction with an irradiation line beam extending in the first direction.
  • one of the above modes may be, for example, a scan along a second direction with an irradiation line beam extending in the first direction.
  • the other mode described above may be, for example, a scan along the first direction with an irradiation line beam extending in a second direction, or a scan along the first and second directions with an irradiation light beam.
  • step S203 the collision avoidance action of the vehicle 200 can be executed more accurately.
  • step S204 as shown in FIG. 5A, the irradiation line beam 10L 2 can more accurately know the three-dimensional position of the object. Therefore, in step S206, the collision avoidance action of the vehicle 200 can be executed more accurately, and the operation of step S207 can be omitted.
  • the measuring device 100 is capable of a plurality of types of measuring operations having different degrees of light spread and scanning directions. Further, by switching the degree of light spread and the scanning direction according to the situation, the measurement data of the object can be efficiently acquired.
  • the measuring device 100 since the measuring device 100 according to the present embodiment is capable of measuring operation using a line beam, it is possible to realize FMCW-LiDAR capable of roughly distinguishing the positions of a plurality of objects while speeding up the measuring operation. can.
  • the measuring device 100 quickly provides information to the subsequent system by executing the measuring operation using light having a relatively wide irradiation range and quickly finding an object satisfying a predetermined condition. be able to. Further, by switching the degree of light spread and the scanning direction to perform the next measurement operation, more detailed measurement data of the object can be obtained.
  • the processing circuit 40 executes the same measurement operation as the measurement operation using the irradiation line beam 10L by using the irradiation flash light 10L in step S201 before the measurement operation using the irradiation line beam 10L in step S204. Then, based on the result of the measurement operation, it is determined whether or not to execute the measurement operation in step S204. By the measurement operation using the irradiation flash light 10L, the collision avoidance action of the vehicle 200 can be quickly executed.
  • FIG. 9 is a diagram schematically showing the measuring device 300 according to the first modification.
  • the configuration of the optical scanner 50 is different from that of the measuring device 100 according to the present embodiment.
  • the measuring device 300 according to this modification includes a light emitting element 10 1 having a variable frequency, an optical deflector 10 2, and a beam splitter 22. Beam splitter 22, the light emitting element 10 1 is disposed on the optical path between the optical deflector 10 2.
  • the beam splitter 22 separates the light 10L from the light emitting element 10 1 into the reference light 10L 1 and the irradiation light 10L 2.
  • Object light 10L 3 reflected back by the object is deflected again by the light deflector 10 2.
  • the photodetector 30 detects the interference light L 4 between the reference light 10L 1 and the object light 10L 3 .
  • FIG. 10 is a diagram schematically showing the measuring device 400 according to the second modification.
  • the measuring device 400 according to this modification includes the measuring device 100 or the measuring device 300 described above, and another sensor 150.
  • the optical scanner 50 when switching the measurement operation mode of the measuring device, the optical scanner 50 is first made to execute the measurement operation in one mode, and the measurement operation in another mode is based on the measurement data acquired in the mode. It was determined whether or not it was necessary to switch to.
  • this modification when switching the measurement operation mode of the measuring device, it is determined whether or not the mode switching is necessary based on the signal acquired from the other sensor 150.
  • the processing circuit 40 of the measuring device 400 selects one of a plurality of prepared measurement operation modes based on signals from other sensors. Then, the optical scanner 50 is made to execute the measurement operation in the selected mode.
  • the other sensor 150 may be, for example, an object recognition system including an image sensor.
  • the measuring device 400 switches the measurement operation mode based on the recognition result of the object recognition system.
  • the recognition result may include information on at least one of the size, position, and type of the object.
  • the measuring device 100 in the present embodiment can be used, for example, in a distance measuring system for an object.
  • a distance measuring system can be mounted on a moving body such as an automobile, a UAV (Unmanned Aerial Vehicle, so-called drone), or an AGV (Automated Guided Vehicle), and can be used as one of collision avoidance techniques.
  • the distance measuring system using the measuring device 100 in the present embodiment the distance distribution of an object can be scanned and detected with a wide dynamic range and high resolution with respect to the distance.
  • the optical device according to the embodiment of the present disclosure can be used for the purpose of a distance measuring system mounted on a vehicle such as an automobile, a UAV, or an AGV.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This measurement device comprises: an optical scanner including an optical deflector, a light emission element that emits light of which the frequency changes over time, a splitter that is disposed on an optical path of the light and separates the light into reference light and irradiation light, and a photodetector; and a processing circuit that controls the light emission element, the light deflector, and the photodetector and processes a signal output from the photodetector, wherein the processing circuit allows the optical scanner to emit a line beam, changes an emission direction of the line beam along a direction intersecting a direction in which the line beam extends, allows the photodetector to detect interference light between the reference light and a reflected light generated in the photodetector by irradiating an object with the line beam, and generates and outputs measurement data of the object on the basis of the signal.

Description

計測装置、計測装置の制御方法、およびプログラムMeasuring device, measuring device control method, and program
 本開示は、計測装置、計測装置の制御方法、およびプログラムに関する。 This disclosure relates to a measuring device, a control method of the measuring device, and a program.
 従来、物体を光で照射し、当該物体からの反射光を検出することにより、当該物体の距離に関するデータを取得するLiDAR(Light Detection and Ranging)技術が存在する。LiDAR技術を用いた計測装置の典型例は、発光装置、光検出器、および処理回路を備える。発光装置は、光の方向を変化させる光偏向器を含む。光検出器は、物体からの反射光を検出することにより、反射光の強度に応じた信号を出力する。処理回路は、光検出器から出力された信号に基づいて、例えばTOF(Time Of Flight)技術によって物体の距離に関するデータを取得する。特許文献1から3は、光の方向を変化させることが可能な構成の例を開示している。 Conventionally, there is a LiDAR (Light Detection and Ringing) technology that acquires data related to the distance of an object by irradiating the object with light and detecting the reflected light from the object. A typical example of a measuring device using LiDAR technology includes a light emitting device, a photodetector, and a processing circuit. The light emitting device includes a light deflector that changes the direction of light. The photodetector detects the reflected light from the object and outputs a signal according to the intensity of the reflected light. The processing circuit acquires data on the distance of an object based on the signal output from the photodetector, for example, by TOF (Time Of Flight) technology. Patent Documents 1 to 3 disclose examples of configurations capable of changing the direction of light.
国際公開第2013/168266号International Publication No. 2013/1682866 特開2013-016591号公報Japanese Unexamined Patent Publication No. 2013-016591 国際公開第2014/110017号International Publication No. 2014/110017
 本開示は、物体の計測データを効率的に取得できる計測装置を提供する。 The present disclosure provides a measuring device capable of efficiently acquiring measurement data of an object.
 本開示の一態様に係る計測装置は、光偏向器と、周波数が時間的に変化する光を出射する発光素子と、前記光の光路上に配置され、前記光を、参照光および照射光に分離するスプリッタと、光検出器と、を含む光スキャナと、前記発光素子、前記光偏向器、および前記光検出器を制御し、前記光検出器から出力された信号を処理する処理回路と、を備え、前記処理回路は、前記光スキャナにラインビームを出射させると共に、前記ラインビームの出射方向を、前記ラインビームが延びる方向に交差する方向に沿って変化させ、前記光検出器に、前記ラインビームで物体が照射されることによって生じた反射光と前記参照光との干渉光を検出させ、前記信号に基づいて、前記物体の計測データを生成して出力する。 The measuring device according to one aspect of the present disclosure is arranged on a light deflector, a light emitting element that emits light whose frequency changes with time, and the light path, and converts the light into reference light and irradiation light. An optical scanner including a splitter and an optical detector to be separated, a processing circuit that controls the light emitting element, the optical deflector, and the optical detector, and processes a signal output from the optical detector. The processing circuit causes the optical scanner to emit a line beam, and changes the emission direction of the line beam along a direction intersecting the direction in which the line beam extends, and causes the optical detector to emit the line beam. The interference light between the reflected light generated by irradiating the object with the line beam and the reference light is detected, and the measurement data of the object is generated and output based on the signal.
 本開示の包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能な記録ディスク等の記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意の組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM(Compact Disc‐Read Only Memory)等の不揮発性の記録媒体を含み得る。装置は、1つ以上の装置で構成されてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書および特許請求の範囲では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。 Comprehensive or specific embodiments of the present disclosure may be implemented in recording media such as systems, devices, methods, integrated circuits, computer programs or computer readable recording discs, systems, devices, methods, integrated circuits, etc. It may be realized by any combination of a computer program and a recording medium. The computer-readable recording medium may include a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory). The device may consist of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be separately arranged in two or more separated devices. As used herein and in the claims, "device" can mean not only one device, but also a system of multiple devices.
 本開示の技術によれば、物体の計測データを効率的に取得できる計測装置を実現することができる。 According to the technology of the present disclosure, it is possible to realize a measuring device capable of efficiently acquiring measurement data of an object.
図1Aは、本開示の例示的な実施形態における計測装置を模式的に示す図である。FIG. 1A is a diagram schematically showing a measuring device according to an exemplary embodiment of the present disclosure. 図1Bは、本開示の例示的な実施形態における計測装置を模式的に示す図である。FIG. 1B is a diagram schematically showing a measuring device according to an exemplary embodiment of the present disclosure. 図2は、処理回路が実行するFMCW処理の動作のフローチャートである。FIG. 2 is a flowchart of the operation of FMCW processing executed by the processing circuit. 図3は、前面に計測装置が搭載された車両の例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an example of a vehicle in which a measuring device is mounted on the front surface. 図4Aは、道路を走行中の車両から見た前方の対象シーンに向けて複数の照射ラインビームを出射する第1の例を模式的に示す図である。FIG. 4A is a diagram schematically showing a first example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road. 図4Bは、図4Aに示す第1の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。FIG. 4B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the first example shown in FIG. 4A. 図5Aは、道路を走行中の車両から見た前方の対象シーンに向けて複数の照射ラインビームを出射する第2の例を模式的に示す図である。FIG. 5A is a diagram schematically showing a second example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road. 図5Bは、図5Aに示す第2の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。FIG. 5B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the second example shown in FIG. 5A. 図6Aは、道路を走行中の車両から見た前方の対象シーンに向けて複数の照射ラインビームを出射する第3の例を模式的に示す図である。FIG. 6A is a diagram schematically showing a third example of emitting a plurality of irradiation line beams toward a target scene in front of a vehicle traveling on a road. 図6Bは、図6Aに示す第3の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。FIG. 6B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the third example shown in FIG. 6A. 図7Aは、道路を走行中の車両から見た前方の対象シーンに向けて照射フラッシュ光を出射する例を模式的に示す図である。FIG. 7A is a diagram schematically showing an example of emitting an irradiation flash light toward a target scene in front of a vehicle traveling on a road. 図7Bは、図7Aに示す例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。FIG. 7B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the example shown in FIG. 7A. 図8は、本実施形態における複数の物体の測距動作および車両の制御動作を示すフローチャートである。FIG. 8 is a flowchart showing a distance measuring operation of a plurality of objects and a vehicle control operation in the present embodiment. 図9は、第1の変形例による計測装置を模式的に示す図である。FIG. 9 is a diagram schematically showing a measuring device according to the first modification. 図10は、第2の変形例による計測装置を模式的に示す図である。FIG. 10 is a diagram schematically showing a measuring device according to the second modification.
 以下で説明される実施形態は、いずれも包括的または具体的な例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、およびステップの順序は、一例であり、本開示の技術を限定する趣旨ではない。以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一または類似の構成要素には同一の符号が付されている。重複する説明は省略または簡略化されることがある。 The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, and the order of the steps shown in the following embodiments are examples, and are not intended to limit the technique of the present disclosure. Among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components. Each figure is a schematic diagram and is not necessarily exactly illustrated. Further, in each figure, substantially the same or similar components are designated by the same reference numerals. Duplicate descriptions may be omitted or simplified.
 本開示の具体的な実施形態を説明する前に、本開示の基礎となった知見を説明する。 Before explaining the specific embodiment of the present disclosure, the findings underlying the present disclosure will be explained.
 特許文献1は、MEMS(Microelectro Mechanical System)の機械駆動によってミラーを回転させることにより、出射光の方向を変化させる構成を開示している。当該ミラーは、MEMSミラーと呼ばれている。 Patent Document 1 discloses a configuration in which the direction of emitted light is changed by rotating a mirror by mechanically driving a MEMS (Mechanical System). The mirror is called a MEMS mirror.
 特許文献2は、内部を光が導波する光導波層、および光導波層の上面および下面に形成された第1分布ブラッグ反射鏡を備える導波路と、導波路内に光を入射させるための光入射口と、光入射口から入射して導波路内を導波する光を出射させるために導波路の表面に形成された光出射口とを備える光偏向素子を開示している。 Patent Document 2 describes a waveguide provided with an optical waveguide layer in which light is waveguideed inside, a first distributed Bragg reflector formed on the upper surface and the lower surface of the optical waveguide layer, and a waveguide for incidenting light in the waveguide. A light deflection element including a light incident port and a light emitting port formed on the surface of the waveguide for emitting light incident from the light incident port and waveguide in the waveguide is disclosed.
 特許文献3は、2次元的に配列された複数のナノフォトニックアンテナ素子を有する光フェーズドアレイを開示している。それぞれのアンテナ素子は可変光遅延線(すなわち、位相シフタ)に光学的に結合される。この光フェーズドアレイでは、コヒーレント光ビームが導波路によってそれぞれのアンテナ素子に誘導され、位相シフタによって光ビームの位相がシフトされる。これにより、遠視野放射パターンの振幅分布を変化させることができる。 Patent Document 3 discloses an optical phased array having a plurality of nanophotonic antenna elements arranged two-dimensionally. Each antenna element is optically coupled to a variable optical delay line (ie, a phase shifter). In this optical phased array, a coherent optical beam is guided to each antenna element by a waveguide, and the phase of the optical beam is shifted by a phase shifter. This makes it possible to change the amplitude distribution of the far-field radiation pattern.
 特許文献1から3に開示されている発光装置は、ビーム径が相対的に小さい光ビームで対象シーンを2次元的にスキャンする。対象シーン内に複数の物体が存在する場合、従来の計測装置において、処理回路は、発光装置に、複数の物体を光ビームで個別に照射させ、光検出器に、光ビームによる個別の照射によって生じる反射光を検出させて反射光の強度に応じた信号を出力させる。処理回路は、当該信号をTOF技術によって処理することにより、複数の物体の距離に関するデータを取得する。光ビームで複数の物体を個別に照射して得られた信号をTOF技術によって処理する場合、複数の物体の距離に関するデータを取得するには、多くの時間を要する。 The light emitting device disclosed in Patent Documents 1 to 3 scans the target scene two-dimensionally with a light beam having a relatively small beam diameter. When there are multiple objects in the target scene, in a conventional measuring device, the processing circuit causes the light emitting device to individually irradiate the plurality of objects with a light beam, and the photodetector to individually irradiate the light beam. The generated reflected light is detected and a signal corresponding to the intensity of the reflected light is output. The processing circuit acquires data on the distances of a plurality of objects by processing the signal by TOF technology. When the signal obtained by individually irradiating a plurality of objects with a light beam is processed by the TOF technique, it takes a lot of time to acquire data on the distances of the plurality of objects.
 TOF技術では、物体の距離に関するデータの取得において、距離に関して広いダイナミックレンジと高い分解能とを両立することが重要である。TOF技術では、太陽光などの外乱が、光感度の観点から問題になり得る。TOF技術では、物体の速度が、1スキャンごとの物体までの距離の変化から算出される。このため、LiDAR技術を自動運転に適用する場合、高速に移動する物体の速度を検出するのに遅れが生じ得る。 In TOF technology, it is important to achieve both a wide dynamic range and high resolution in terms of distance when acquiring data related to the distance of an object. In TOF technology, disturbances such as sunlight can be a problem in terms of light sensitivity. In TOF technology, the velocity of an object is calculated from the change in the distance to the object for each scan. Therefore, when applying LiDAR technology to autonomous driving, there may be a delay in detecting the speed of a fast moving object.
 近年、距離に関して広いダイナミックレンジと高い分解能を両立し、外乱の影響を受けにくく、高速に移動する物体の速度を検出できるFMCW(Frequency Modulated Continuos Wave)-LiDAR技術が開発されている。非特許文献1は、FMCW-LiDAR技術の例を開示している。FMCW-LiDAR技術では、発光装置から出射される光の周波数が時間的に変化するように発光装置が制御される。発光装置から出射された当該光は、照射光と参照光とに分離される。照射光で物体が照射されることによって生じた物体光は、光検出器に入射する。参照光は、物体を介さずに光検出器に入射する。物体光は参照光よりも遅れて光検出器に入射するので、物体光および参照光は、光検出器への入射時に異なる周波数を有する。光検出器は、物体光と参照光とが重畳されて干渉した干渉光を検出し、干渉光の強度を示す信号を出力する。当該信号はビート信号と呼ばれる。ビート信号の周波数は、物体光の周波数と、参照光の周波数との差分に相当する。当該差分は、物体までの距離に依存する。 In recent years, FMCW (Frequency Modified Continuos Wave) -LiDAR technology has been developed that achieves both a wide dynamic range and high resolution with respect to distance, is less susceptible to disturbance, and can detect the speed of an object moving at high speed. Non-Patent Document 1 discloses an example of FMCW-LiDAR technology. In the FMCW-LiDAR technology, the light emitting device is controlled so that the frequency of the light emitted from the light emitting device changes with time. The light emitted from the light emitting device is separated into irradiation light and reference light. The object light generated by irradiating the object with the irradiation light is incident on the photodetector. The reference light enters the photodetector without passing through an object. Since the object light enters the photodetector later than the reference light, the object light and the reference light have different frequencies when they enter the photodetector. The photodetector detects the interference light in which the object light and the reference light are superimposed and interfere with each other, and outputs a signal indicating the intensity of the interference light. The signal is called a beat signal. The frequency of the beat signal corresponds to the difference between the frequency of the object light and the frequency of the reference light. The difference depends on the distance to the object.
 FMCW-LiDAR技術において、距離が異なる複数の物体から反射された物体光は、複数の周波数成分を有する。したがって、単一の光検出素子を含む光検出器からビート信号が出力された場合でも、当該ビート信号から複数の周波数成分を分離することにより、複数の物体の距離に関するデータを取得することができる。広がりの程度がある程度大きく、かつ、エネルギー密度がある程度高い1方向に延びるラインビームであれば、複数の物体を一度に照射するのに適している。 In the FMCW-LiDAR technology, the object light reflected from a plurality of objects having different distances has a plurality of frequency components. Therefore, even when a beat signal is output from a photodetector including a single photodetector, it is possible to acquire data on the distances of a plurality of objects by separating a plurality of frequency components from the beat signal. .. A line beam extending in one direction with a certain degree of spread and a high energy density to some extent is suitable for irradiating a plurality of objects at once.
 本開示による計測装置では、ラインビームで物体を照射して得られた信号を処理することにより、物体の計測データを効率的に取得することができる。以下に、本開示による計測装置を簡単に説明する。 In the measuring device according to the present disclosure, the measurement data of the object can be efficiently acquired by processing the signal obtained by irradiating the object with the line beam. Hereinafter, the measuring device according to the present disclosure will be briefly described.
 第1の項目に係る計測装置は、光偏向器と、周波数が時間的に変化する光を出射する発光素子と、前記光の光路上に配置され、前記光を、参照光および照射光に分離するスプリッタと、光検出器と、を含む光スキャナと、前記発光素子、前記光偏向器、および前記光検出器を制御し、前記光検出器から出力された信号を処理する処理回路と、を備える。前記処理回路は、前記光スキャナにラインビームを出射させると共に、前記ラインビームの出射方向を、前記ラインビームが延びる方向に交差する方向に沿って変化させ、前記光検出器に、前記ラインビームで物体が照射されることによって生じた反射光と前記参照光との干渉光を検出させ、前記信号に基づいて、前記物体の計測データを生成して出力する。 The measuring device according to the first item is arranged on an optical path of the light, a light deflector, a light emitting element that emits light whose frequency changes with time, and separates the light into reference light and irradiation light. An optical scanner including a splitter, an optical detector, and a processing circuit that controls the light emitting element, the optical deflector, and the optical detector to process a signal output from the optical detector. Be prepared. The processing circuit causes the optical scanner to emit a line beam, and changes the emission direction of the line beam along a direction intersecting the direction in which the line beam extends, and causes the photodetector to emit the line beam with the line beam. Interference light between the reflected light generated by irradiating the object and the reference light is detected, and measurement data of the object is generated and output based on the signal.
 この計測装置では、ラインビームで物体を照射することによって得られる反射光と、参照光との干渉光を検出することにより、物体の計測データを効率的に取得することができる。 This measuring device can efficiently acquire the measurement data of the object by detecting the interference light between the reflected light obtained by irradiating the object with the line beam and the reference light.
 第2の項目に係る計測装置は、第1の項目に係る計測装置において、前記光検出器が、単一の光検出素子である。 The measuring device according to the second item is the measuring device according to the first item, in which the photodetector is a single photodetector.
 この計測装置では、単一の光検出器によって物体の大まかな位置を知ることができる。 With this measuring device, the rough position of an object can be known by a single photodetector.
 第3の項目に係る計測装置は、第1の項目に係る計測装置において、前記光検出器が、前記ラインビームが延びる方向に配列された複数の光検出素子を含む。 The measuring device according to the third item includes a plurality of photodetecting elements in which the photodetector is arranged in the direction in which the line beam extends in the measuring device according to the first item.
 この計測装置では、ラインビームが延びる方向における物体の位置を知ることができる。 With this measuring device, it is possible to know the position of the object in the direction in which the line beam extends.
 第4の項目に係る計測装置は、第1の項目に係る計測装置において、前記光スキャナが、前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、前記ラインビームが延びる方向を前記第2の方向にし、前記ラインビームの出射方向を、前記第1の方向に沿って変化させる第2のモードと、を切り替えることが可能である。 The measuring device according to the fourth item is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction. The first mode of changing along the second direction intersecting the directions and the direction in which the line beam extends are set to the second direction, and the emission direction of the line beam is changed along the first direction. It is possible to switch between the second mode and the second mode.
 この計測装置では、ラインビームでのスキャンにおいて、ラインビームの延びる方向とラインビームを変化させる方向とを相互に切り替えることができる。 With this measuring device, in scanning with a line beam, the direction in which the line beam extends and the direction in which the line beam is changed can be switched between each other.
 第5の項目に係る計測装置は、第1の項目に係る計測装置において、前記光スキャナが、前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、前記ラインビームよりも前記第1の方向の広がりが小さい光ビームの出射方向を、前記第1の方向および前記第2の方向に沿って変化させる第2のモードと、を切り替えることが可能である。 The measuring device according to the fifth item is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction. The first mode in which the light beam is changed along the second direction intersecting the directions and the emission direction of the light beam whose spread in the first direction is smaller than that of the line beam are the first direction and the second direction. It is possible to switch between a second mode that changes along the direction.
 この計測装置では、ラインビームでのスキャンと、光ビームでのスキャンとを切り替えることができる。 With this measuring device, it is possible to switch between scanning with a line beam and scanning with an optical beam.
 第6の項目に係る計測装置は、第1の項目に係る計測装置において、前記光スキャナが、前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、前記ラインビームよりも前記第2の方向の広がりが大きいフラッシュ光を出射させる第2のモードと、を切り替えることが可能である。 The measuring device according to the sixth item is the measuring device according to the first item, wherein the optical scanner sets the direction in which the line beam extends as the first direction, and sets the emission direction of the line beam as the first direction. It is possible to switch between a first mode that changes along a second direction that intersects the direction and a second mode that emits a flash light having a wider spread in the second direction than the line beam. be.
 この計測装置では、ラインビームでのスキャンと、フラッシュ光でのスキャンとを切り替えることができる。 With this measuring device, it is possible to switch between scanning with a line beam and scanning with a flash light.
 第7の項目に係る計測装置は、第4または第5の項目に係る計測装置において、前記処理回路が、前記光スキャナに、前記第1のモードによる計測動作を実行させ、前記第1のモードにより取得された計測データを基に、前記第2のモードによる計測動作への切り替えが必要か否かを判定し、前記第2のモードによる計測動作への切り替えが必要と判定されたことを受けて、前記光スキャナに、前記第2のモードによる計測動作を実行させる。 In the measuring device according to the fourth or fifth item, the processing circuit causes the optical scanner to execute the measurement operation in the first mode, and the measuring device according to the seventh item is the first mode. Based on the measurement data acquired by the above, it is determined whether or not it is necessary to switch to the measurement operation by the second mode, and it is determined that it is necessary to switch to the measurement operation by the second mode. Then, the optical scanner is made to execute the measurement operation in the second mode.
 この計測装置では、ラインビームでのスキャンによって取得された計測データに基づいて、必要に応じて、他のラインビームでのスキャンまたは光ビームでのスキャンを実行することができる。 With this measuring device, it is possible to perform scanning with another line beam or scanning with an optical beam as needed, based on the measurement data acquired by scanning with a line beam.
 第8の項目に係る計測装置は、第6の項目に係る計測装置において、前記処理回路が、前記光スキャナに、前記第2のモードによる計測動作を実行させ、前記第2のモードにより取得された計測データを基に、前記第1のモードによる計測動作への切り替えが必要か否かを判定し、前記第1のモードによる計測動作への切り替えが必要と判定されたことを受けて、前記光スキャナに、前記第1のモードによる計測動作を実行させる。 The measuring device according to the eighth item is acquired by the second mode in the measuring device according to the sixth item, in which the processing circuit causes the optical scanner to execute the measurement operation in the second mode. Based on the measured data, it is determined whether or not it is necessary to switch to the measurement operation according to the first mode, and in response to the determination that it is necessary to switch to the measurement operation according to the first mode, the above The optical scanner is made to execute the measurement operation in the first mode.
 この計測装置では、フラッシュ光でのスキャンによって取得された計測データに基づいて、必要に応じて、ラインビームでのスキャンを実行することができる。 With this measuring device, it is possible to perform a scan with a line beam as needed based on the measurement data acquired by scanning with a flash light.
 第9の項目に係る計測装置は、第4から第6の項目のいずれかに係る計測装置において、前記処理回路は、他のセンサからの信号に基づき、前記第1のモードによる計測動作と、前記第2のモードによる計測動作のうちの1つを選択し、前記光スキャナに、選択されたモードによる計測動作を実行させる。 The measuring device according to the ninth item is the measuring device according to any one of the fourth to sixth items. One of the measurement operations according to the second mode is selected, and the optical scanner is made to perform the measurement operation according to the selected mode.
 この計測装置では、他のセンサからの信号に基づいて、必要に応じて選択されたモードによる計測動作を実行することができる。 With this measuring device, it is possible to execute a measurement operation in a mode selected as necessary based on signals from other sensors.
 本開示において、回路、ユニット、装置、部材または部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (lage scale integration). ) Can be performed by one or more electronic circuits. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, it is called LSI or IC, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration). Field Programmable Gate Array (FPGA), which is programmed after the LSI is manufactured, or reconfigurable logistic device, which can reconfigure the connection relationship inside the LSI or set up the circuit partition inside the LSI, can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材または部の全部または一部の機能または動作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。 Furthermore, all or part of the function or operation of a circuit, unit, device, member or part can be executed by software processing. In this case, the software is recorded on a non-temporary recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is run by a processor, the functions identified by the software It is executed by a processor and peripheral devices. The system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
 本開示において、「光」とは、可視光(波長が約400nm~約700nm)だけでなく、紫外線(波長が約10nm~約400nm)および赤外線(波長が約700nm~約1mm)を含む電磁波を意味する。 In the present disclosure, "light" refers to electromagnetic waves including not only visible light (wavelength of about 400 nm to about 700 nm) but also ultraviolet rays (wavelength of about 10 nm to about 400 nm) and infrared rays (wavelength of about 700 nm to about 1 mm). means.
 以下、本開示のより具体的な実施形態を説明する。 Hereinafter, a more specific embodiment of the present disclosure will be described.
 (実施形態)
 まず、図1Aおよび図1Bを参照して、本開示の例示的な実施形態による計測装置を説明する。図1Aおよび図1Bは、本開示の例示的な実施形態による計測装置100を模式的に示す図である。計測装置100は、測距装置であり、光を物体に照射して反射光を検出することにより、物体までの距離を計測する。計測装置100は光の出射方向を変化させることができる。図1Aは、計測装置100が光をある方向に出射している状態を示している。図1Bは、計測装置100が光を他の方向に出射している状態を示している。
(Embodiment)
First, a measuring device according to an exemplary embodiment of the present disclosure will be described with reference to FIGS. 1A and 1B. 1A and 1B are diagrams schematically showing a measuring device 100 according to an exemplary embodiment of the present disclosure. The measuring device 100 is a distance measuring device, and measures a distance to an object by irradiating the object with light and detecting reflected light. The measuring device 100 can change the emission direction of light. FIG. 1A shows a state in which the measuring device 100 emits light in a certain direction. FIG. 1B shows a state in which the measuring device 100 emits light in another direction.
 以下の説明において、図1Aおよび図1Bに示す互いに直交するX軸、Y軸、およびZ軸からなる座標系を用いる。X軸の矢印の方向を「+X方向」と称し、その反対の方向を「-X方向」と称する。Y軸およびZ軸についても同様である。これらの軸および方向は、便宜上用いられるにすぎず、現実に使用される計測装置100の配置または姿勢を限定することを意図するわけではない。 In the following description, the coordinate system consisting of the X-axis, the Y-axis, and the Z-axis, which are orthogonal to each other shown in FIGS. 1A and 1B, is used. The direction of the arrow on the X axis is referred to as "+ X direction", and the opposite direction is referred to as "-X direction". The same applies to the Y-axis and the Z-axis. These axes and orientations are used for convenience only and are not intended to limit the placement or orientation of the measuring device 100 in practice.
 本実施形態による計測装置100は、不図示の物体を光で照射することによって生じた反射光を検出する。計測装置100は、反射光の検出によって得られた信号を処理することにより、物体の距離および/または速度に関するデータを取得する。当該データを、「計測データ」とも称する。本実施形態による計測装置100は、発光装置10と、光学系20と、光検出器30と、処理回路40とを備える。発光装置10と、光学系20と、光検出器30とを含む構成を、「光スキャナ50」と称する。光スキャナ50は、空間に向けて光を出射し、物体からの反射光を検出する。光学系20は、ビームスプリッタ22、第1レンズ24、第2レンズ24、およびミラー26を含む。本明細書では、処理回路を「FMCW処理回路」とも称する。本明細書において、「FMCW処理回路」とは、後述するFMCW処理を行う電子回路を意味する。 The measuring device 100 according to the present embodiment detects the reflected light generated by irradiating an object (not shown) with light. The measuring device 100 acquires data on the distance and / or velocity of the object by processing the signal obtained by the detection of the reflected light. The data is also referred to as "measurement data". The measuring device 100 according to the present embodiment includes a light emitting device 10, an optical system 20, a photodetector 30, and a processing circuit 40. A configuration including a light emitting device 10, an optical system 20, and a photodetector 30 is referred to as an "optical scanner 50". The optical scanner 50 emits light toward space and detects reflected light from an object. Optical system 20, a beam splitter 22, first lens 24 1, the second lens 24 2, and a mirror 26. In the present specification, the processing circuit is also referred to as "FMCW processing circuit". In the present specification, the "FMCW processing circuit" means an electronic circuit that performs FMCW processing described later.
 図1Aおよび図1Bに示す例において、発光装置10、ビームスプリッタ22、第1レンズ24、およびミラー26は、+Y方向に沿ってこの順に配置されている。発光装置10の光出射面は、XZ平面に平行である。ビームスプリッタ22の反射面は、XY平面に垂直であり、かつ+Z方向から見たときY軸に対して時計回りに45°傾いている。第1レンズ24の光軸は、Y軸に平行である。ミラー26の反射面は、XZ平面に平行である。光検出器30、第2レンズ24、およびビームスプリッタ22は、+X方向に沿ってこの順に配置されている。光検出器30の光検出面は、YZ平面に平行である。図1Aおよび図1Bに示す構成要素の傾きなどの配置関係は、用途に応じて適宜調整され得る。 In the example shown in FIGS. 1A and 1B, the light emitting device 10, a beam splitter 22, first lens 24 1, and the mirror 26 are disposed in this order along the + Y direction. The light emitting surface of the light emitting device 10 is parallel to the XZ plane. The reflecting surface of the beam splitter 22 is perpendicular to the XY plane and is tilted 45 ° clockwise with respect to the Y axis when viewed from the + Z direction. The optical axis of the first lens 24 1 is parallel to the Y axis. The reflective surface of the mirror 26 is parallel to the XZ plane. Photodetector 30, the second lens 24 2, and the beam splitter 22 are disposed in this order along the + X direction. The photodetector surface of the photodetector 30 is parallel to the YZ plane. The arrangement relationship such as the inclination of the components shown in FIGS. 1A and 1B can be appropriately adjusted according to the application.
 発光装置10は、光10Lを出射する。発光装置10は、例えば単一周波数の連続波レーザ光を出射するレーザダイオードなどの発光素子を含み得る。単一周波数の連続波レーザ光の代わりに、光周波数コムを有するパルス波レーザ光であってもよい。光周波数コムとは、複数の離散的な等間隔の線から形成された櫛状の周波数スペクトルである。 The light emitting device 10 emits 10 L of light. The light emitting device 10 may include a light emitting element such as a laser diode that emits a continuous wave laser beam having a single frequency. Instead of a single frequency continuous wave laser beam, a pulse wave laser beam having an optical frequency comb may be used. An optical frequency comb is a comb-shaped frequency spectrum formed from a plurality of discrete evenly spaced lines.
 発光装置10から出射される光10Lの周波数は、用途に応じて選択され得る。複数の物体の各々までの距離を赤外線によって計測する場合、光10Lの周波数は、例えば120THz(波長2.5μm)以上428THz(波長700nm)以下であり得る。光10Lの周波数は、可視域の周波数、すなわち、428THz(波長700nm)以上749THz(波長400nm)以下であってもよい。光10Lの周波数は、120THz(波長2.5μm)以下であってもよい。 The frequency of the light 10L emitted from the light emitting device 10 can be selected according to the application. When the distance to each of a plurality of objects is measured by infrared rays, the frequency of the light 10L can be, for example, 120 THz (wavelength 2.5 μm) or more and 428 THz (wavelength 700 nm) or less. The frequency of the light 10L may be a frequency in the visible region, that is, 428 THz (wavelength 700 nm) or more and 749 THz (wavelength 400 nm) or less. The frequency of the light 10L may be 120 THz (wavelength 2.5 μm) or less.
 発光装置10は、周波数可変の発光素子を含む。光10Lの周波数は、例えば、発光装置10に含まれる発光素子に注入する電流、または発光素子の温度に応じて変化し得る。本実施形態では、FMCW-LiDAR技術を用いるので、光10Lの周波数が時間的に変化するように、発光装置10が処理回路40によって制御される。 The light emitting device 10 includes a light emitting element having a variable frequency. The frequency of the light 10L may change depending on, for example, the current injected into the light emitting element included in the light emitting device 10 or the temperature of the light emitting element. In this embodiment, since the FMCW-LiDAR technology is used, the light emitting device 10 is controlled by the processing circuit 40 so that the frequency of the light 10L changes with time.
 発光装置10は、光10Lの形状を変化させることが可能であり得る。光10Lは、例えば、広範囲に拡がるフラッシュ光、1方向に延びたビーム形状を有するラインビーム、またはビーム径が相対的に小さい光ビームであり得る。本明細書では、「光ビーム」の用語を、ビーム径が相対的に小さい光ビームを表すものとして使用し、ラインビームおよびフラッシュ光とは区別して用いる。発光装置10は、フラッシュ光を出射する発光素子、ラインビームを出射する発光素子、および光ビームを出射する発光素子を含み、用途に応じて適切な発光素子から光10Lを出射させてもよい。 The light emitting device 10 may be able to change the shape of the light 10L. The light 10L can be, for example, a flash light that spreads over a wide area, a line beam having a beam shape extending in one direction, or a light beam having a relatively small beam diameter. In the present specification, the term "light beam" is used to refer to a light beam having a relatively small beam diameter, and is used separately from a line beam and a flash light. The light emitting device 10 includes a light emitting element that emits flash light, a light emitting element that emits a line beam, and a light emitting element that emits a light beam, and may emit light 10L from an appropriate light emitting element depending on the application.
 フラッシュ光の広がりは、ラインビームの広がりよりも大きく、ラインビームの広がりは、光ビームの広がりよりも大きい。フラッシュ光は、ラインビームが延びる方向に交差する方向において、ラインビームよりも大きい広がりを有する。光ビームは、ラインビームが延びる方向において、ラインビームよりも小さい広がりを有する。光ビームのエネルギー密度は、ラインビームのエネルギー密度よりも高く、ラインビームのエネルギー密度は、フラッシュ光のエネルギー密度よりも高い。広がりの程度が相対的に大きいフラッシュ光は、複数の物体を一度に照射するのに適している。エネルギー密度が相対的に高い光ビームは、遠距離の物体を照射するのに適している。ラインビームは、光ビームおよびフラッシュ光の両方の利点を有する。 The spread of the flash light is larger than the spread of the line beam, and the spread of the line beam is larger than the spread of the light beam. The flash light has a larger spread than the line beam in the direction in which the line beam intersects in the extending direction. The light beam has a smaller spread than the line beam in the direction in which the line beam extends. The energy density of the light beam is higher than the energy density of the line beam, and the energy density of the line beam is higher than the energy density of the flash light. The flash light, which has a relatively large spread, is suitable for irradiating a plurality of objects at once. A light beam with a relatively high energy density is suitable for irradiating a long-distance object. The line beam has the advantages of both light beam and flash light.
 発光装置10は、発光素子から出射された光10Lを偏向させる光偏向器を備える。光偏向器は、光10Lの方向のうち、X方向に平行な成分、およびZ方向に平行な成分の少なくとも一方を変化させる。光偏向器は、例えばMEMSミラーのような機械駆動によって光10Lの方向を変化させてもよい。あるいは、光偏向器は、屈折率のような光学パラメータの変化によって機械駆動を用いずに光10Lの方向を変化させてもよい。光偏向器は、例えば、第1反射層と、第1反射層よりも反射率が高い第2反射層と、それらの間に位置する光導波層とを備え得る。光導波層を伝搬する光は、第1反射層を介して外部に出射される。光導波層の屈折率を変化させることにより、第1反射層を介して外部に出射される光の方向を変化させることができる。図1Aに示す例と、図1Bに示す例とでは、発光装置10から出射される光10Lの方向が異なる。図1Aおよび図1Bに示す例では、光10Lの方向は、それぞれ、+Z方向から見たときXY平面内でY軸に対して時計回りおよび反時計回りに傾斜している。 The light emitting device 10 includes a light deflector that deflects the light 10L emitted from the light emitting element. The optical deflector changes at least one of the components parallel to the X direction and the components parallel to the Z direction in the direction of the light 10L. The optical deflector may change the direction of the light 10L by mechanical drive such as a MEMS mirror. Alternatively, the optical deflector may change the direction of the light 10L by changing optical parameters such as the refractive index without using mechanical drive. The optical deflector may include, for example, a first reflective layer, a second reflective layer having a higher reflectance than the first reflective layer, and an optical waveguide layer located between them. The light propagating in the optical waveguide layer is emitted to the outside through the first reflective layer. By changing the refractive index of the optical waveguide layer, the direction of the light emitted to the outside through the first reflective layer can be changed. The direction of the light 10L emitted from the light emitting device 10 is different between the example shown in FIG. 1A and the example shown in FIG. 1B. In the examples shown in FIGS. 1A and 1B, the directions of the light 10L are inclined clockwise and counterclockwise with respect to the Y axis in the XY plane when viewed from the + Z direction, respectively.
 光学系20に含まれるビームスプリッタ22は、光10Lの光路上に位置する。ビームスプリッタ22は、例えば、接合された2つの直角プリズムを含むキューブ型ビームスプリッタであり得る。一方の直角プリズムは、その斜面に光学薄膜を有する。キューブ型ビームスプリッタの例として、偏光無依存ビームスプリッタキューブが挙げられる。あるいは、ビームスプリッタ22は、例えば、表面に光学薄膜が設けられた平板ガラスを有するプレート型ビームスプリッタであり得る。 The beam splitter 22 included in the optical system 20 is located on the optical path of the light 10L. The beam splitter 22 can be, for example, a cube-type beam splitter including two joined right-angle prisms. One right-angled prism has an optical thin film on its slope. An example of a cube-type beam splitter is a polarization-independent beam splitter cube. Alternatively, the beam splitter 22 may be, for example, a plate-type beam splitter having flat glass provided with an optical thin film on the surface.
 ビームスプリッタ22は、発光装置10から出射された光10Lを第1の光10Lと第2の光10Lとに分離する。第1の光10Lは、光10Lのうち、ビームスプリッタ22を透過した成分である。第2の光10Lは、光10Lのうち、ビームスプリッタ22で反射された成分である。第1の光10Lおよび第2の光10Lの方向は、発光装置10から出射された光10Lの方向に応じて変化する。ビームスプリッタ22において、第1の光10Lと第2の光10Lとの強度の比率は、例えば50:50であり得る。第1の光10Lと第2の光10Lとの強度の比率は、物体での光の反射率に応じて変更してもよい。ビームスプリッタ22の大きさおよび位置は、光10Lの方向が変化する角度範囲をすべてカバーするように設計される。 The beam splitter 22 separates the light 10L emitted from the light emitting device 10 into the first light 10L 1 and the second light 10L 2. The first light 10L 1 is a component of the light 10L that has passed through the beam splitter 22. The second light 10L 2 is a component of the light 10L reflected by the beam splitter 22. The directions of the first light 10L 1 and the second light 10L 2 change according to the direction of the light 10L emitted from the light emitting device 10. In the beam splitter 22, the intensity ratio of the first light 10L 1 to the second light 10L 2 can be, for example, 50:50. The ratio of the intensities of the first light 10L 1 and the second light 10L 2 may be changed according to the reflectance of the light at the object. The size and position of the beam splitter 22 is designed to cover the entire angular range in which the direction of the light 10L changes.
 光学系20に含まれる第1レンズ24、第2レンズ24、およびミラー26は、第1の光10Lの光路上に位置する。第1レンズ24および第2レンズ24は、例えば、集光レンズであり得る。本実施形態では、第1レンズ24の焦点は2つの箇所に存在する。一方の焦点は発光装置10の光出射面内に存在する。この焦点を「第1焦点F」と称する。他方の焦点は第2レンズ24のビームスプリッタ22側の焦点に一致する。この焦点を「第2焦点F」と称する。第1焦点Fおよび第2焦点Fは、ビームスプリッタ22に対して鏡面対称である。ミラー26は、+Y方向に沿って伝搬する光を-Y方向に向けて反射する。ミラー26は、例えば金属、または誘電体多層膜から形成され得る。 The first lens 24 1 included in the optical system 20, the second lens 24 2, and the mirror 26 is located in the first optical path of the light 10L 1. The first lens 24 1 and the second lens 24 2, for example, be a condenser lens. In the present embodiment, the focus of the first lens 24 1 is present in two locations. One focal point is in the light emitting surface of the light emitting device 10. This focal point is referred to as "first focal point F 1". Other focal point coincides with the focal point of the second lens 24 and second beam splitter 22 side. This focal point is referred to as "second focal point F 2". The first focal point F 1 and the second focal point F 2 are mirror-symmetric with respect to the beam splitter 22. The mirror 26 reflects the light propagating along the + Y direction toward the −Y direction. The mirror 26 can be formed from, for example, a metal or a dielectric multilayer film.
 光10Lは、発光装置10の光出射面内における第1焦点Fから出射される。ビームスプリッタ22によって光10Lから分離された第1の光10Lは、第1レンズ24を透過して+Y方向に沿って伝搬し、ミラー26によって反射される。ミラー26によって反射された第1の光10Lは、-Y方向に沿って伝搬し、第1レンズ24を再び透過し、ビームスプリッタ22で反射される。ビームスプリッタ22で反射された第1の光10Lは、第2焦点Fを通って第2レンズ24を通過し、-X方向に沿って伝搬し光検出器30に入射する。ビームスプリッタ22によって光10Lから分離された第2の光10Lは、物体に向かって伝搬する。第2の光10Lで物体が照射されることによって生じた第3の光10Lは、第2の光10Lとは逆の方向に伝搬し、ビームスプリッタ22を通過する。ビームスプリッタ22を通過した第3の光10Lは、第2焦点Fを通って第2レンズ24を通過し、-X方向に沿って伝搬し光検出器30に入射する。第1の光10Lおよび第3の光10Lは重畳されて干渉し、第4の光10Lとして光検出器30に入射する。 Light 10L is emitted from the focus F 1 at the light emitting plane of the light emitting device 10. First light 10L 1 that is separated from the light 10L by the beam splitter 22 is transmitted through the first lens 24 1 propagates along the + Y direction, is reflected by the mirror 26. First light 10L 1 reflected by the mirror 26 propagates along the -Y direction, the first lens 24 1 again transmitted through and reflected by the beam splitter 22. First light 10L 1 reflected by the beam splitter 22, passes through the second focal point F 2 passes through the second lens 24 2, and enters the optical detector 30 propagates along the -X direction. The second light 10L 2 separated from the light 10L by the beam splitter 22 propagates toward the object. Third light 10L 3 caused by the object at the second light 10L 2 is irradiated, and the second light 10L 2 propagates in the opposite direction, passes through the beam splitter 22. Third light 10L 3 which has passed through the beam splitter 22, passes through the second focal point F 2 passes through the second lens 24 2, and enters the optical detector 30 propagates along the -X direction. The first light 10L 1 and the third light 10L 3 are superimposed and interfere with each other, and are incident on the photodetector 30 as the fourth light 10L 4.
 光学系20は、光10Lを第1の光10Lおよび第2の光10Lに分離し、第1の光10Lおよび第3の光10Lが干渉した第4の光10Lを光検出器30に入射させることが可能であれば、図1Aおよび図1Bに示す構成に限定されない。例えば、光学系20は、光ファイバを含み得る。 The optical system 20 separates the light 10L into the first light 10L 1 and the second light 10L 2 , and photodetects the fourth light 10L 4 in which the first light 10L 1 and the third light 10L 3 interfere with each other. The configuration is not limited to the configuration shown in FIGS. 1A and 1B as long as it can be incidentally incident on the vessel 30. For example, the optical system 20 may include an optical fiber.
 光検出器30は、第4の光10Lを検出し、第4の光10Lの強度に応じた信号を出力する。図1Aおよび図1Bに示すように、第4の光10Lが光検出器30に入射する位置は、光10Lの方向に応じて変化する。光検出器30は、1つ以上の光検出素子を含む。光検出器30は、例えば、2次元的に配列された複数の光検出素子を有するイメージセンサを含み得る。あるいは、光検出器30は、1次元的に配列された複数の光検出素子を有するラインセンサを含んでいてもよいし、単一の光検出素子を含んでいてもよい。光検出素子は、例えば、Siアバランシェフォトディテクタであり得る。 Photodetector 30 detects the fourth light 10L 4, and outputs a signal corresponding to the intensity of the fourth light 10L 4. As shown in FIGS. 1A and 1B, the position where the fourth light 10L 4 is incident on the photodetector 30 changes depending on the direction of the light 10L. The photodetector 30 includes one or more photodetectors. The photodetector 30 may include, for example, an image sensor having a plurality of photodetectors arranged two-dimensionally. Alternatively, the photodetector 30 may include a line sensor having a plurality of photodetectors arranged one-dimensionally, or may include a single photodetector. The photodetector can be, for example, a Si avalanche photodetector.
 光検出器30が、2次元的に配列された複数の光検出素子を有するイメージセンサを含む場合、第2レンズ24は、入射した干渉光10LのY方向およびZ方向における位置を維持したまま-X方向に沿って干渉光10Lをイメージセンサに入射させる。光検出器30が、Y方向に沿って配列された複数の光検出素子を有するラインセンサを含む場合、第2レンズ24は、入射した干渉光10LのY方向における位置を維持したまま、XZ平面において干渉光10Lを当該ラインセンサに集束させる。同様に、光検出器30が、Z方向に沿って配列された複数の光検出素子を有するラインセンサを含む場合、第2レンズ24は、入射した干渉光10LのZ方向における位置を維持したまま、XY平面において干渉光10Lを当該ラインセンサに集束させる。 Optical detector 30, may include an image sensor having a plurality of light detection elements arranged two-dimensionally, the second lens 24 2, maintaining the position in the Y and Z directions of the interference light 10L 4 incident As it is, the interference light 10L 4 is incident on the image sensor along the -X direction. While the optical detector 30, if it contains a line sensor having a plurality of light detection elements arranged along the Y direction, the second lens 24 2, maintaining the position in the Y-direction of the interference light 10L 4 incident, The interference light 10L 4 is focused on the line sensor in the XZ plane. Similarly, maintaining an optical detector 30, if it contains a line sensor having a plurality of light detection elements arranged along the Z direction, the second lens 24 2, the position in the Z direction of the interference light 10L 4 incident While still, the interference light 10L 4 is focused on the line sensor in the XY plane.
 第2レンズ24は、1つのレンズから構成されていてもよいし、複数のレンズから構成されていてもよい。例えば、光検出器30がY方向に沿って延びるラインセンサを含む場合、第2レンズ24は、干渉光10Lの光路上に、Z方向に延びる第1シリンドリカルレンズと、Y方方向に延びる第2シリンドリカルレンズとを含み得る。第1シリンドリカルレンズは、干渉光10LのY方向における位置を維持させる。第2シリンドリカルレンズは、第1シリンドリカルレンズを通過した干渉光10LをXZ平面においてラインセンサに集束させる。光検出器30がZ方向に沿って延びるラインセンサを含む場合についても同様である。 The second lens 24 2 may be composed of one lens, or may be composed of a plurality of lenses. For example, when the optical detector 30 comprises a line sensor extending along the Y direction, the second lens 24 2, the optical path of the interference light 10L 4, a first cylindrical lens extending in the Z-direction, extending in the Y direction direction It may include a second cylindrical lens. The first cylindrical lens maintains the position of the interference light 10L 4 in the Y direction. The second cylindrical lens focuses the interference light 10L 4 that has passed through the first cylindrical lens on the line sensor in the XZ plane. The same applies to the case where the photodetector 30 includes a line sensor extending along the Z direction.
 光検出器30が単一の光検出素子を含む場合、第2レンズ24を取り除き、光検出器30は、第2焦点Fがその光検出面内に位置するように配置される。干渉光10Lは、光10Lの出射方向によらず第2焦点Fに入射する。 If the light detector 30 comprises a single photodetector element, the second lens 24 2 is removed, the light detector 30 is arranged such that the second focal point F 2 is located to the light detection surface. The interference light 10L 4 is incident on the second focal point F 2 regardless of the emission direction of the light 10L.
 第3の光10Lは、計測装置100と物体との往復に要した時間だけ、第1の光10Lよりも遅れて光検出器30に入射する。その結果、第3の光10Lの周波数は、第1の光10Lの周波数とは異なる。異なる周波数に起因して、第4の光10Lにおいてビートが発生する。光検出器30から出力される上記の信号は、ビート信号である。本明細書では、第1の光を「参照光」と称し、第2の光を「照射光」と称し、第3の光を「物体光」と称し、第4の光を「干渉光」と称する。 The third light 10L 3 is incident on the photodetector 30 later than the first light 10L 1 by the time required for the round trip between the measuring device 100 and the object. As a result, the frequency of the third light 10L 3 is different from the frequency of the first light 10L 1. Due to the different frequencies, beats occur in the fourth light 10L 4. The above signal output from the photodetector 30 is a beat signal. In the present specification, the first light is referred to as "reference light", the second light is referred to as "irradiation light", the third light is referred to as "object light", and the fourth light is referred to as "interference light". It is called.
 処理回路40は、発光装置10および光検出器30を制御し、光検出器30から出力された信号を処理する。発光装置10の制御は、例えば、発光装置10から出射される光の周波数、形状、方向、および出射タイミング、ならびに発光装置10の位置の制御であり得る。光検出器30の制御は、例えば、検出タイミング、および光検出器30の位置の制御であり得る。 The processing circuit 40 controls the light emitting device 10 and the photodetector 30, and processes the signal output from the photodetector 30. The control of the light emitting device 10 may be, for example, control of the frequency, shape, direction, and emission timing of the light emitted from the light emitting device 10, and the position of the light emitting device 10. The control of the photodetector 30 may be, for example, control of the detection timing and the position of the photodetector 30.
 以下に、図2を参照して、処理回路40のFMCW処理の動作を説明する。図2は、処理回路40が実行するFMCW処理の動作のフローチャートである。処理回路40は、以下のステップS101からステップS103の動作を実行する。 The operation of the FMCW processing of the processing circuit 40 will be described below with reference to FIG. FIG. 2 is a flowchart of the operation of the FMCW processing executed by the processing circuit 40. The processing circuit 40 executes the operations of steps S101 to S103 below.
 <ステップS101>
 ステップS101において、処理回路40は、発光装置10に、周波数f(t)が時間的に変化する光10Lを出射させる。参照光10Lの光路長が十分に短いとすると、光検出器30によって検出されるタイミングt=tでの参照光10Lの周波数fは、当該タイミングでの光10Lの周波数f(t)に等しいと考えることができる。照射光10Lが物体に向けて出射され、物体で反射されて物体光10Lとして戻ってくるまで時間をΔtとすると、物体光10Lの周波数fоは、f(t)-[df(t)/dt]t=t0Δtによって表される。[df(t)/dt]t=t0は、時間t=tでの周波数f(t)の時間変化率を表す。処理回路40は、発光装置10の位置を例えばアクチュエータによって調整してもよい。この調整により、第1焦点Fと発光装置10の光出射面とのずれを補償することができる。
<Step S101>
In step S101, the processing circuit 40 causes the light emitting device 10 to emit the light 10L whose frequency f (t) changes with time. When the optical path length of the reference light 10L 1 is sufficiently short, the frequency f r of the reference light 10L 1 at the timing t = t 0 is detected by the light detector 30, the frequency f (t of light 10L in the timing It can be considered equal to 0). Assuming that the time until the irradiation light 10L 2 is emitted toward the object, reflected by the object, and returned as the object light 10L 3 is Δt, the frequency f о of the object light 10L 3 is f (t 0 )-[df. (T) / dt] It is represented by t = t0 Δt. [Df (t) / dt] t = t0 represents the time change rate of the frequency f (t) at the time t = t 0. The processing circuit 40 may adjust the position of the light emitting device 10 by, for example, an actuator. By this adjustment, it is possible to compensate for the deviation between the first focal point F 1 and the light emitting surface of the light emitting device 10.
 <ステップS102>
 ステップS102において、処理回路40は、光検出器30に、干渉光10Lを検出させることによってビート信号を出力させる。ビート信号の周波数は、参照光10Lの周波数fと、物体光10Lの周波数fоとの周波数差Δf=f-fо=[df(t)/dt]t=t0Δtによって表される。処理回路40は、光検出器30の位置を例えばアクチュエータによって調整してもよい。この調整により、光検出器30が前述したように単一の光検出素子を含む場合、第2焦点Fと光検出器30の光検出面とのずれを補償することができる。その結果、ビート信号の強度を向上させることができる。
<Step S102>
In step S102, the processing circuit 40 causes the photodetector 30 to output a beat signal by detecting the interference light 10L 4. The frequency of the beat signal is expressed by the frequency difference Δf = fr −f о = [df (t) / dt] t = t0 Δt between the frequency fr of the reference light 10L 1 and the frequency f о of the object light 10L 3. Will be done. The processing circuit 40 may adjust the position of the photodetector 30 by, for example, an actuator. By this adjustment, when the photodetector 30 includes a single photodetector as described above, it is possible to compensate for the deviation between the second focal point F 2 and the photodetector surface of the photodetector 30. As a result, the strength of the beat signal can be improved.
 <ステップS103>
 ステップS103において、処理回路40は、ビート信号を処理することにより、物体の距離および/または速度に関するデータを生成して出力する。当該データは、例えば、ディスプレイに表示されてもよいし、スピーカから音声として出力されてよい。計測装置100から物体までの距離をd、空気中での光速をcとすると、Δt=2d/cである。参照光10Lの周波数fと、物体光10Lの周波数fоとの周波数差Δf=(2d/c)[df(t)/dt]t=t0から、物体の距離dに関するデータを生成することができる。例えば[df(t)/dt]t=t0=125THz/s、距離dが5mm以上50m以下である場合、周波数差Δfは、4.17kHz以上4.17MHzである。この周波数差Δfは、例えば、スペクトルアナライザまたはオシロスコープにより、例えば数Hzオーダーから数十MHzオーダーの分解能で正確に計測することができる。したがって、本実施形態による計測装置100によれば、物体の距離に関するデータの取得において、距離に関して広いダイナミックレンジと高い分解能とを両立することができる。物体が動いている場合、ドップラー効果によって周波数差Δfがシフトすることにより、物体の速度に関するデータを生成することができる。
<Step S103>
In step S103, the processing circuit 40 processes the beat signal to generate and output data relating to the distance and / or velocity of the object. The data may be displayed on a display or output as audio from a speaker, for example. Assuming that the distance from the measuring device 100 to the object is d and the speed of light in the air is c, Δt = 2d / c. And the frequency f r of the reference light 10L 1, the frequency difference Δf = (2d / c) [ df (t) / dt] t = t0 and the frequency f o of the object beam 10L 3, generates the data relating to an object distance d can do. For example, when [df (t) / dt] t = t0 = 125 THz / s and the distance d is 5 mm or more and 50 m or less, the frequency difference Δf is 4.17 kHz or more and 4.17 MHz. This frequency difference Δf can be accurately measured by, for example, a spectrum analyzer or an oscilloscope with a resolution on the order of several Hz to several tens of MHz. Therefore, according to the measuring device 100 according to the present embodiment, it is possible to achieve both a wide dynamic range and high resolution with respect to the distance in the acquisition of data regarding the distance of the object. When the object is moving, the frequency difference Δf is shifted by the Doppler effect, so that data regarding the velocity of the object can be generated.
 (ラインビームによる複数の物体の測距)
 次に、FMCW-LiDAR技術を用いたラインビームによる複数の物体の測距を説明する。本実施形態における処理回路40は、光スキャナ50に、空間をスキャンするラインビームを出射させる。具体的には、処理回路40は、発光装置10に、ラインビーム10Lを出射させ、ラインビーム10Lの出射方向を、ラインビーム10Lが延びる方向に交差する方向に沿って規則的または不規則に変化させる。光偏向器は、ラインビーム10Lの出射方向をこのように変化させることが可能である。また、光偏向器は、ラインビーム10Lが延びる方向を第1の方向にし、ラインビーム10Lの出射方向を、第1の方向に交差する第2の方向に沿って変化させる第1のモードと、ラインビーム10Lが延びる方向を第2の方向にし、ラインビーム10Lの出射方向を、第1の方向に沿って変化させる第2のモードと、を切り替えることが可能である。
(Distance measurement of multiple objects with a line beam)
Next, distance measurement of a plurality of objects by a line beam using the FMCW-LiDAR technique will be described. The processing circuit 40 in the present embodiment causes the optical scanner 50 to emit a line beam that scans the space. Specifically, the processing circuit 40 causes the light emitting device 10 to emit the line beam 10L, and the emission direction of the line beam 10L changes regularly or irregularly along the direction in which the line beam 10L extends. Let me. The optical deflector can change the emission direction of the line beam 10L in this way. Further, the optical deflector has a first mode in which the direction in which the line beam 10L extends is set to the first direction, and the emission direction of the line beam 10L is changed along the second direction intersecting the first direction. It is possible to switch between a second mode in which the direction in which the line beam 10L extends is set to the second direction and the emission direction of the line beam 10L is changed along the first direction.
 発光装置10から出射されたラインビーム10LがX方向に延び、その出射方向がZ方向に沿って変化する場合、ラインビーム10Lからビームスプリッタ22によって分離された照射ラインビーム10Lは、主にY方向に延び、その出射方向はZ方向に沿って変化する。照射ラインビーム10Lは、ラインビーム10Lが延びる方向とは異なる方向に延びる。発光装置10から出射されたラインビーム10LがZ方向に延び、その出射方向がX方向に沿って変化する場合、ラインビーム10Lからビームスプリッタ22によって分離された照射ラインビーム10LはZ方向に延び、その出射方向はY方向に沿って変化する。照射ラインビーム10Lは、ラインビーム10Lが延びる方向と同じ方向に延びる。 When the line beam 10L emitted from the light emitting device 10 extends in the X direction and the emission direction changes along the Z direction, the irradiation line beam 10L 2 separated from the line beam 10L by the beam splitter 22 is mainly Y. It extends in the direction and its exit direction changes along the Z direction. The irradiation line beam 10L 2 extends in a direction different from the direction in which the line beam 10L extends. When the line beam 10L emitted from the light emitting device 10 extends in the Z direction and its emission direction changes along the X direction, the irradiation line beam 10L 2 separated from the line beam 10L by the beam splitter 22 extends in the Z direction. , The emission direction changes along the Y direction. The irradiation line beam 10L 2 extends in the same direction as the line beam 10L extends.
 処理回路40は、光検出器30に、照射ラインビーム10Lで複数の物体が照射されることによってそれぞれ生じた複数の物体光ビーム10Lと参照光10Lとの干渉光10Lを検出させてビート信号を出力させる。複数の物体光ビーム10L同士が干渉することによってもビート信号が発生し得るが、この影響は少ない。照射ラインビーム10Lのエネルギー密度は、距離が離れるにつれて減少する。一方、参照光10Lは、発光装置10の近くに位置する光検出器30に、高いエネルギー密度を維持したまま入射する。ビート信号は2つの光の電界成分の乗算に相当する。したがって、複数の物体光ビーム10L同士のビート信号は非常に小さくなり無視できる。結果として、光検出器30から出力される信号のほとんどは、複数の物体光ビーム10Lと参照光10Lとのビート信号である。 The processing circuit 40 causes the photodetector 30 to detect the interference light 10L 4 between the plurality of object light beams 10L 3 and the reference light 10L 1 generated by irradiating the plurality of objects with the irradiation line beam 10L 2. To output a beat signal. A beat signal can also be generated by the interference of a plurality of object light beams 10L 2 with each other, but this effect is small. The energy density of the irradiation line beam 10L 2 decreases as the distance increases. On the other hand, the reference light 10L 1 is incident on the photodetector 30 located near the light emitting device 10 while maintaining a high energy density. The beat signal corresponds to the multiplication of the electric field components of two lights. Therefore, the beat signals between the plurality of object light beams 10L 3 are very small and can be ignored. As a result, most of the signals output from the photodetector 30 are beat signals of the plurality of object light beams 10L 3 and the reference light 10L 1.
 処理回路40は、ビート信号から、複数の物体の距離および/または速度に関するデータを一度に生成して出力することができる。干渉光10Lを検出する光検出器30は、イメージセンサ含む必要はなく、照射ラインビーム10Lと同じ方向に延びるラインセンサ、または単一の光検出素子を含み得る。この場合、光検出素子の数が少なくてよいので、最大フレームレートが30fps程度のイメージセンサと比較して、複数の物体の距離および/または速度に関するデータを生成する時間を大幅に短縮できる。 The processing circuit 40 can generate and output data on the distance and / or velocity of a plurality of objects at once from the beat signal. The photodetector 30 for detecting the interference light 10L 4 does not need to include an image sensor and may include a line sensor extending in the same direction as the irradiation line beam 10L 2 or a single photodetector. In this case, since the number of photodetecting elements may be small, the time for generating data regarding the distance and / or speed of a plurality of objects can be significantly shortened as compared with an image sensor having a maximum frame rate of about 30 fps.
 (対象シーンのスキャン)
 次に、図3から図6Bを参照して、本実施形態における、ラインビームで対象シーンをスキャンする例を説明する。
(Scan of target scene)
Next, an example of scanning the target scene with the line beam in the present embodiment will be described with reference to FIGS. 3 to 6B.
 図3は、前面に計測装置100が搭載された車両200の例を模式的に示す斜視図である。図3に示す例では、車両200の進行方向がX方向に平行であり、車高方向がY方向に平行であり、道路を横切る方向がZ方向に平行である。車高方向は、路面に垂直な方向であり、かつ、路面から離れる方向である。図3に示す例において、車両200における計測装置100は、車高方向に延びる照射ラインビーム10Lを車両200の前方にある対象シーンに向けて出射する。照射ラインビーム10Lの出射方向は、両矢印によって表されるように、道路を横切る方向に沿って変化する。計測装置100の車両200への搭載位置は、その前面に限らず、その上面、側面、または後面でもよい。当該搭載位置は、対象シーンがどこにあるかに応じて適切に決定される。 FIG. 3 is a perspective view schematically showing an example of a vehicle 200 in which a measuring device 100 is mounted on the front surface. In the example shown in FIG. 3, the traveling direction of the vehicle 200 is parallel to the X direction, the vehicle height direction is parallel to the Y direction, and the direction crossing the road is parallel to the Z direction. The vehicle height direction is a direction perpendicular to the road surface and a direction away from the road surface. In the example shown in FIG. 3, the measuring device 100 in the vehicle 200 emits the irradiation line beam 10L 2 extending in the vehicle height direction toward the target scene in front of the vehicle 200. The emission direction of the irradiation line beam 10L 2 changes along the direction across the road, as represented by the double-headed arrow. The mounting position of the measuring device 100 on the vehicle 200 is not limited to the front surface thereof, but may be the upper surface, the side surface, or the rear surface thereof. The mounting position is appropriately determined according to where the target scene is.
 図4Aは、道路を走行中の車両200から見た前方の対象シーンに向けて複数の照射ラインビーム10Lを出射する第1の例を模式的に示す図である。対象シーンは、太い実線の長方形によって囲まれている。対象シーンにおいて、道路には先行車が走っており、道路脇の歩道には歩行者がいる。歩道には3本の街路樹がある。対象シーン内の複数の物体は、距離が近い順から、歩行者、3本の街路樹、および先行車である。歩行者、左端、中央、および右端の街路樹、ならびに先行車までの距離は、それぞれ、dからdである。図4Aに示すように、車両200から前方を見た場合、路面は、車高方向に向かうほど緩やかに変化する。路面は連続的に変化するのに対して、路面上の人または車などの物体は、路面に対して非連続的に変化する。したがって、照射ラインビーム10Lで物体を照射することにより、当該物体を検出することが可能である。 FIG. 4A is a diagram schematically showing a first example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of a vehicle 200 traveling on a road. The target scene is surrounded by a thick solid rectangle. In the target scene, a preceding vehicle is running on the road, and there are pedestrians on the sidewalk beside the road. There are three roadside trees on the sidewalk. The plurality of objects in the target scene are pedestrians, three roadside trees, and a preceding vehicle in ascending order of distance. The distances to pedestrians, leftmost, central, and rightmost roadside trees, as well as preceding vehicles, are d 1 to d 5 , respectively. As shown in FIG. 4A, when looking ahead from the vehicle 200, the road surface gradually changes toward the vehicle height direction. The road surface changes continuously, whereas an object such as a person or a car on the road surface changes discontinuously with respect to the road surface. Therefore, it is possible to detect the object by irradiating the object with the irradiation line beam 10L 2.
 図4Aに示す例では、Y方向に延びる照射ラインビーム10Lの出射方向がZ方向に沿って変化する。図4Aに示す破線の楕円は、4つの異なる方向に出射されたY方向に延びる第1照射ラインビーム10L2aから第4照射ラインビーム10L2dの照射スポットを表す。照射ラインビーム10Lの照射スポット内の上部、中部、および下部における距離は、その出射方向がZ方向に沿って変化してもそれほど大きく変化しない。したがって、鉛直方向に延びる照射ラインビーム10Lで対象シーンを水平方向にスキャンする場合、水平方向における距離の分解能が高いという利点がある。 In the example shown in FIG. 4A, the emission direction of the irradiation line beam 10L 2 extending in the Y direction changes along the Z direction. The dashed ellipse shown in FIG. 4A represents the irradiation spots of the first irradiation line beam 10L 2a and the fourth irradiation line beam 10L 2d extending in the Y direction emitted in four different directions. The distances in the upper part, the middle part, and the lower part of the irradiation line beam 10L 2 in the irradiation spot do not change so much even if the emission direction changes along the Z direction. Therefore, when the target scene is scanned in the horizontal direction with the irradiation line beam 10L 2 extending in the vertical direction, there is an advantage that the resolution of the distance in the horizontal direction is high.
 図4Aに示す例において、第1照射ラインビーム10L2aの照射スポットは、左端の街路樹を含む。第2照射ラインビーム10L2bの照射スポットは、中央の街路樹を含む。第3照射ラインビーム10L2cの照射スポットは、歩行者および右端の街路樹を含む。第4照射ラインビーム10L2dの照射スポットは、先行車を含む。第1照射ラインビーム10L2aから第4照射ラインビーム10L2dをこの順または反対の順に対象シーンに向けて出射してもよいし、例えば、第3照射ラインビーム10L2c、第2照射ラインビーム10L2b、第4照射ラインビーム10L2d、および第1照射ラインビーム10L2aのように不規則な順に出射してもよい。図4Aに示す例では、単一の光検出素子を含む光検出器30が、前述したように干渉光10Lを検出する。 In the example shown in FIG. 4A, the irradiation spot of the first irradiation line beam 10L 2a includes the roadside tree at the left end. The irradiation spot of the second irradiation line beam 10L 2b includes a central roadside tree. The irradiation spot of the third irradiation line beam 10L 2c includes a pedestrian and a roadside tree on the right end. The irradiation spot of the fourth irradiation line beam 10L 2d includes the preceding vehicle. The first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d may be emitted toward the target scene in this order or vice versa. For example, the third irradiation line beam 10L 2c and the second irradiation line beam 10L may be emitted. 2b , the fourth irradiation line beam 10L 2d , and the first irradiation line beam 10L 2a may be emitted in an irregular order. In the example shown in FIG. 4A, the photodetector 30 including a single photodetector detects the interference light 10L 4 as described above.
 図4Bは、図4Aに示す第1の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。図4Bの4つの図は、第1照射ラインビーム10L2aから第4照射ラインビーム10L2dによって生じるビート信号を示している。第1照射ラインビーム10L2a、第2照射ラインビーム10L2b、および第4照射ラインビーム10L2dにより、それぞれ、距離d、距離d、および距離dの単一のピークが現れる。これに対して、第3照射ラインビーム10L2cにより、距離dおよび距離dの2つのピークが現れる。本実施形態による計測装置100は、1つの照射ラインビーム10Lで複数の物体を照射することにより、当該複数の物体までの距離を一度に計測することができる。本実施形態による計測装置100によれば、第1照射ラインビーム10L2aから第4照射ラインビーム10L2dの既知の出射角から、単一の光検出素子によって複数の物体の大まかな位置を短時間で知ることができる。 FIG. 4B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the first example shown in FIG. 4A. The four figures in FIG. 4B show the beat signals generated by the first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d. The first irradiation line beam 10L 2a, the second irradiation line beam 10L 2b , and the fourth irradiation line beam 10L 2d produce a single peak at distance d 2 , distance d 3 , and distance d 5, respectively. On the other hand, the third irradiation line beam 10L 2c causes two peaks of distance d 1 and distance d 4. The measuring device 100 according to the present embodiment can measure the distances to the plurality of objects at once by irradiating the plurality of objects with one irradiation line beam 10L 2. According to the measuring device 100 according to the present embodiment, a single photodetection element can be used to roughly position a plurality of objects in a short time from the known emission angles of the first irradiation line beam 10L 2a to the fourth irradiation line beam 10L 2d. You can find out at.
 図5Aは、道路を走行中の車両200から見た前方の対象シーンに向けて複数の照射ラインビーム10Lを出射する第2の例を模式的に示す図である。第2の例が第1の例とは異なる点は、Y方向に延びるラインセンサを含む光検出器30が、前述したように干渉光10Lを検出することである。干渉光10Lは、当該ラインセンサに含まれる複数の光検出素子に入射する。図5Aに示す各照射ラインビーム内の5つの点線の楕円は、ラインセンサに含まれるY方向に配列された光検出素子40aから光検出素子40eに対応する箇所を表す。 FIG. 5A is a diagram schematically showing a second example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of the vehicle 200 traveling on a road. The second example differs from the first example in that the photodetector 30 including the line sensor extending in the Y direction detects the interference light 10L 4 as described above. The interference light 10L 4 is incident on a plurality of photodetecting elements included in the line sensor. The five dotted ellipses in each irradiation line beam shown in FIG. 5A represent the locations corresponding to the photodetection elements 40e from the photodetection elements 40a arranged in the Y direction included in the line sensor.
 図5Bは、図5Aに示す第2の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。図5Bは、第3照射ラインビーム10L2cによって各光検出素子から出力されるビート信号を示している。図5Bに示す例において、光検出素子40aから光検出素子40cは距離dのビート信号を出力し、光検出素子40dおよび光検出素子40eは距離dのビート信号を出力する。光検出素子40aから光検出素子40cによって右端の街路樹のより正確な位置を知ることができ、光検出素子40dおよび光検出素子40eによって歩行者のより正確な位置を知ることができる。本実施形態による計測装置100によれば、ラインセンサにより、複数の物体の3次元的な位置をより正確に知ることができる。 FIG. 5B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the second example shown in FIG. 5A. FIG. 5B shows a beat signal output from each photodetector by the third irradiation line beam 10L 2c. In the example shown in FIG. 5B, the light detecting element 40c from the light detecting element 40a outputs a beat signal of the distance d 4, the light-detecting element 40d and the light detecting element 40e outputs a beat signal of the distance d 1. From the photodetection element 40a, the photodetection element 40c can know the more accurate position of the roadside tree at the right end, and the photodetection element 40d and the photodetection element 40e can know the more accurate position of the pedestrian. According to the measuring device 100 according to the present embodiment, the line sensor can more accurately know the three-dimensional positions of a plurality of objects.
 本実施形態による計測装置100は、単一の光検出素子およびラインセンサの両方を含む光検出器30を備えていてもよい。この計測装置100では、干渉光10Lの光路を変化させることにより、用途に応じて単一の光検出素子とラインセンサとを相互に切り替えて干渉光10Lを検出することができる。処理回路40は、複数の物体のおおまかな位置を知る場合、単一の光検出素子に干渉光10Lを検出させ、複数の物体の3次元的な位置をより正確に知る場合、ラインセンサに干渉光10Lを検出させる。あるいは、単一の光検出素子を含まず、ラインセンサを含む光検出器30でも、用途に応じて干渉光10Lを検出することが可能である。処理回路40は、複数の物体のおおまかな位置を知る場合、ラインセンサに含まれる複数の光検出素子からそれぞれ出力された複数のビート信号を平均化し、複数の物体の3次元的な位置をより正確に知る場合、当該複数のビート信号をそのまま用いる。 The measuring device 100 according to the present embodiment may include a photodetector 30 including both a single photodetector and a line sensor. In the measuring apparatus 100, by changing the optical path of the interference light 10L 4, it is possible to detect the interference light 10L 4 is switched to each other and a line sensor a single light-detecting element according to the application. The processing circuit 40 causes a single photodetection element to detect the interference light 10L 4 when the rough position of a plurality of objects is known, and causes the line sensor to more accurately know the three-dimensional position of the plurality of objects. Interference light 10L 4 is detected. Alternatively, a photodetector 30 that does not include a single photodetector and includes a line sensor can also detect the interference light 10L 4 depending on the application. When the processing circuit 40 knows the rough positions of a plurality of objects, the processing circuit 40 averages a plurality of beat signals output from each of the plurality of photodetectors included in the line sensor, and obtains the three-dimensional positions of the plurality of objects. To know exactly, the plurality of beat signals are used as they are.
 図6Aは、道路を走行中の車両200から見た前方の対象シーンに向けて複数の照射ラインビーム10Lを出射する第3の例を模式的に示す図である。第3の例が第1の例とは異なる点は、Y方向に延びる第1照射ラインビーム10L2aから第4照射ラインビーム10L2dに加えて、Z方向に延びる第5照射ラインビーム10L2eから第8照射ラインビーム10L2hを対象シーンに向けて出射することである。水平方向に延びる照射ラインビーム10Lで対象シーンを鉛直方向にスキャンする場合、対象シーン内の下側では、近距離であることから、高い強度のビート信号が得られるという利点がある。第3の例では、第1の例と同様に、単一の光検出素子を含む光検出器30が、前述したように干渉光10Lを検出する。 FIG. 6A is a diagram schematically showing a third example of emitting a plurality of irradiation line beams 10L 2 toward a target scene in front of the vehicle 200 traveling on a road. The third example differs from the first example in that from the first irradiation line beam 10L 2a extending in the Y direction to the fourth irradiation line beam 10L 2d and the fifth irradiation line beam 10L 2e extending in the Z direction. The eighth irradiation line beam 10L 2h is emitted toward the target scene. When the target scene is scanned in the vertical direction with the irradiation line beam 10L 2 extending in the horizontal direction, there is an advantage that a high-intensity beat signal can be obtained because the lower side in the target scene is a short distance. In the third example, as in the first example, the photodetector 30 including a single photodetector detects the interference light 10L 4 as described above.
 第5照射ラインビーム10L2eの照射スポットは、右端の街路樹の上部および先行車の上部を主に含む。第6照射ラインビーム10L2fの照射スポットは、左端の街路樹の上部、中央の街路樹の上部、右端の街路樹の中央部、および先行車の下部を主に含む。第7照射ラインビーム10L2gの照射スポットは、左端の街路樹の中央部、中央の街路樹の下部、および右端の街路樹の下部を主に含む。第8照射ラインビーム10L2hの照射スポットは、左端の街路樹の下部および歩行者を主に含む。 The irradiation spot of the fifth irradiation line beam 10L 2e mainly includes the upper part of the roadside tree at the right end and the upper part of the preceding vehicle. The irradiation spot of the sixth irradiation line beam 10L 2f mainly includes the upper part of the roadside tree on the left end, the upper part of the roadside tree in the center, the central part of the roadside tree on the right end, and the lower part of the preceding vehicle. The irradiation spot of the 7th irradiation line beam 10L 2g mainly includes the central part of the leftmost roadside tree, the lower part of the central roadside tree, and the lower part of the rightmost roadside tree. The irradiation spot of the eighth irradiation line beam 10L 2h mainly includes the lower part of the roadside tree at the left end and pedestrians.
 図6Bは、図6Aに示す第3の例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。図6Bの上の4つの図は、図4Bの4つの図と同じであり、図6Bの下の4つの図は、第5照射ラインビーム10L2eから第8照射ラインビーム10L2hによって生じるビート信号を示している。第5照射ラインビーム10L2eにより距離dおよび距離dの2つのピークが現れる。第6照射ラインビーム10L2fにより距離dから距離dの4つのピークが現れる。第7照射ラインビーム10L2gにより距離dから距離dの3つのピークが現れる。第8照射ラインビーム10L2hにより距離dおよび距離dの2つのピークが現れる。 FIG. 6B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the third example shown in FIG. 6A. The four figures above FIG. 6B are the same as the four figures in FIG. 4B, and the four figures below FIG. 6B show the beat signals generated by the fifth irradiation line beam 10L 2e to the eighth irradiation line beam 10L 2h. Is shown. By the fifth illumination line beam 10L 2e, 2 peaks in the distance d 4 and the distance d 5 appears. The sixth irradiation line beam 10L 2f causes four peaks at a distance d 2 to a distance d 5. With the 7th irradiation line beam 10L 2g , three peaks of a distance d 2 to a distance d 4 appear. The eighth irradiation line beam 10L 2h causes two peaks at a distance d 1 and a distance d 2.
 距離dのピークは、第3照射ラインビーム10L2cおよび第8照射ラインビーム10L2hによって現れる。したがって、距離dの歩行者は、第3照射ラインビーム10L2cと第8照射ラインビーム10L2hとが重なる位置にいることがわかる。同様に、距離dの左端の街路樹は、第1照射ラインビーム10L2aと、第6照射ラインビーム10L2f、第7照射ラインビーム10L2g、および第8照射ラインビーム10L2hの各々とが重なる位置に存在することがわかる。距離dの中央の街路樹は、第2照射ラインビーム10L2bと、第6照射ラインビーム10L2fおよび第7照射ラインビーム10L2gの各々とが重なる位置に存在することがわかる。距離dの右端の街路樹は、第3照射ラインビーム10L2cと、第5照射ラインビーム10L2e、第6照射ラインビーム10L2f、および第7照射ラインビーム10L2gの各々とが重なる位置に存在することがわかる。距離dの先行車は、第4照射ラインビーム10L2dと、第5照射ラインビーム10L2eおよび第6照射ラインビーム10L2fの各々とが重なる位置に存在することがわかる。 The peak at the distance d 1 appears by the third irradiation line beam 10L 2c and the eighth irradiation line beam 10L 2h. Therefore, it can be seen that the pedestrian at the distance d 1 is at a position where the third irradiation line beam 10L 2c and the eighth irradiation line beam 10L 2h overlap. Similarly, the roadside tree at the left end of the distance d 2 has the first irradiation line beam 10L 2a , the sixth irradiation line beam 10L 2f, the seventh irradiation line beam 10L 2g , and the eighth irradiation line beam 10L 2h , respectively. It can be seen that they exist at overlapping positions. Distance central trees of d 3 is found to be present and the second irradiation line beam 10L 2b, a position and each overlaps the sixth illumination line beam 10L 2f and seventh irradiation line beam 10L 2 g. Right edge of the trees of the distance d 4 is a third irradiation line beam 10L 2c, fifth illumination line beam 10L 2e, the sixth illumination line beam 10L 2f, and the seventh radiation line beam 10L 2 g each and overlap the position of the It turns out that it exists. It can be seen that the preceding vehicle having a distance d 5 exists at a position where the fourth irradiation line beam 10L 2d , the fifth irradiation line beam 10L 2e, and the sixth irradiation line beam 10L 2f overlap each other.
 図4Aに示す第1の例では、物体が、照射ラインビーム10Lの照射スポット内のどの位置に存在するかまでは知ることができなかった。これに対して、図6Aに示す第3の例では、対象シーンを、Y方向に延びる照射ラインビームでZ方向にスキャンし、かつ、Z方向に延びる照射ラインビームでY方向にスキャンすることにより、物体の3次元的な位置をより正確に知ることができる。本実施形態による計測装置100によれば、第1照射ラインビーム10L2aから第8照射ラインビーム10L2hの既知の出射角から、単一の光検出素子であっても物体の3次元的な位置をより正確に知ることができる。 In the first example shown in FIG. 4A, it was not possible to know the position of the object in the irradiation spot of the irradiation line beam 10L 2. On the other hand, in the third example shown in FIG. 6A, the target scene is scanned in the Z direction by the irradiation line beam extending in the Y direction, and by scanning in the Y direction by the irradiation line beam extending in the Z direction. , It is possible to know the three-dimensional position of an object more accurately. According to the measuring device 100 according to the present embodiment, from the known emission angles of the first irradiation line beam 10L 2a to the eighth irradiation line beam 10L 2h , the three-dimensional position of the object even if it is a single photodetector. Can be known more accurately.
 次に、図7Aおよび図7Bを参照して、本実施形態における、フラッシュ光で対象シーンを照射する例を説明する。 Next, an example of irradiating the target scene with the flash light in the present embodiment will be described with reference to FIGS. 7A and 7B.
 図7Aは、道路を走行中の車両200から見た前方の対象シーンに向けて照射フラッシュ光10Lを出射する例を模式的に示す図である。図7Aに示す破線の楕円は、照射フラッシュ光10Lの照射スポットを表す。図7Aに示す例では、光検出器30は、単一の光検出素子により、前述したように干渉光10Lを検出する。 FIG. 7A is a diagram schematically showing an example in which the irradiation flash light 10L 2 is emitted toward the target scene in front of the vehicle 200 traveling on the road. The broken line ellipse shown in FIG. 7A represents the irradiation spot of the irradiation flash light 10L 2. In the example shown in FIG. 7A, the photodetector 30 detects the interference light 10L 4 by a single photodetector as described above.
 図7Bは、図7Aに示す例における、ビート信号の強度と、ビート信号の周波数から算出された距離との関係を模式的に示す図である。図7Bに示す例では、照射フラッシュ光により、距離dから距離dの5つのピークが現れる。本実施形態による計測装置100によれば、複数の物体をフラッシュ光で照射することにより、複数の物体までの距離を一度に計測することができる。 FIG. 7B is a diagram schematically showing the relationship between the strength of the beat signal and the distance calculated from the frequency of the beat signal in the example shown in FIG. 7A. In the example shown in FIG. 7B, the irradiation flash light causes five peaks at a distance d 2 to a distance d 5. According to the measuring device 100 according to the present embodiment, the distances to a plurality of objects can be measured at one time by irradiating the plurality of objects with the flash light.
 次に、図8を参照して、図6Aに示す照射ラインビーム10Lおよび図7Aに示す照射フラッシュ光10Lから得られた結果に基づいた、本実施形態における複数の物体の測距動作および車両200の制御動作の例を説明する。図8は、本実施形態における複数の物体の測距動作および車両200の制御動作を示すフローチャートである。本実施形態における処理回路40は、以下のステップS201からステップS207の動作を実行する。以下の説明において、光検出器30は、単一の光検出素子を含む。 Next, with reference to FIG. 8, the distance measuring operation and the distance measuring operation of a plurality of objects in the present embodiment based on the results obtained from the irradiation line beam 10L 2 shown in FIG. 6A and the irradiation flash light 10L 2 shown in FIG. 7A. An example of the control operation of the vehicle 200 will be described. FIG. 8 is a flowchart showing a distance measuring operation of a plurality of objects and a control operation of the vehicle 200 in the present embodiment. The processing circuit 40 in this embodiment executes the operations of steps S201 to S207 below. In the following description, the photodetector 30 includes a single photodetector.
 <ステップS201>
 処理回路40は、図7Aに示すように、発光装置10に、対象シーンに向けて照射フラッシュ光を出射させ、光検出器30に、単一の光検出素子により、照射フラッシュ光によって生じた複数の物体光ビーム10Lおよび参照光10Lの干渉光10Lを検出させて信号を出力させる。処理回路40は、図7Bに示すように、当該信号に基づいて、対象シーン内の複数の物体の距離に関するデータを生成して出力する。
<Step S201>
As shown in FIG. 7A, the processing circuit 40 causes the light emitting device 10 to emit the irradiation flash light toward the target scene, and causes the photodetector 30 to emit a plurality of irradiation flash lights by a single photodetector. The interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 is detected and a signal is output. As shown in FIG. 7B, the processing circuit 40 generates and outputs data regarding the distances of a plurality of objects in the target scene based on the signal.
 <ステップS202>
 処理回路40は、ステップS201における物体の測距の結果に基づいて、車両200の近距離に物体が存在するか否かを判定する。このステップにおける近距離は、例えば、0.5m以上20m以下の範囲であり得る。物体が近距離に存在する、すなわちyesの場合、処理回路40は、ステップS203の動作を実行する。物体が近距離に存在しない、すなわちnoの場合、処理回路40は、ステップS204の動作を実行する。
<Step S202>
The processing circuit 40 determines whether or not the object exists at a short distance of the vehicle 200 based on the result of the distance measurement of the object in step S201. The short distance in this step can be, for example, in the range of 0.5 m or more and 20 m or less. When the object exists at a short distance, that is, yes, the processing circuit 40 executes the operation of step S203. When the object does not exist at a short distance, that is, no, the processing circuit 40 executes the operation of step S204.
 <ステップS203>
 処理回路40は、車両200の制御回路に、衝突回避の信号を送信する。物体が対象シーンのどこに存在するかはわからなくても、停止などの衝突回避の行動により、車両200が物体に衝突することを防ぐことができる。
<Step S203>
The processing circuit 40 transmits a collision avoidance signal to the control circuit of the vehicle 200. Even if it is not known where the object is in the target scene, it is possible to prevent the vehicle 200 from colliding with the object by a collision avoidance action such as stopping.
 <ステップS204>
 処理回路40は、図6Aに示すように、発光装置10に、Y方向に延びる照射ラインビームで対象シーンをZ方向にスキャンさせ、光検出器30に、単一の光検出素子により、照射ラインビーム10Lによって生じた物体光ビーム10Lおよび参照光10Lの干渉光10Lを検出させて信号を出力させる。処理回路40は、図6Bの上の4つの図に示すように、当該信号に基づいて、対象シーン内の物体の距離に関するデータを生成して出力する。
<Step S204>
As shown in FIG. 6A, the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Z direction with an irradiation line beam extending in the Y direction, and causes the photodetector 30 to scan the target scene with an irradiation line by a single photodetector. The object light beam 10L 3 generated by the beam 10L 2 and the interference light 10L 4 of the reference light 10L 1 are detected and a signal is output. As shown in the four figures above FIG. 6B, the processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal.
 <ステップS205>
 処理回路40は、ステップS204における物体の測距の結果に基づいて、車両200の近距離に物体が存在するか否かを判定する。このステップにおける近距離は、例えば、20m以上40m以下の範囲であり得る。物体が近距離に存在する、すなわちyesの場合、処理回路40は、ステップS206の動作を実行する。物体が近距離に存在しない、すなわちnoの場合、処理回路40は、ステップS207の動作を実行する。
<Step S205>
The processing circuit 40 determines whether or not the object exists at a short distance of the vehicle 200 based on the result of the distance measurement of the object in step S204. The short distance in this step can be, for example, in the range of 20 m or more and 40 m or less. When the object exists at a short distance, that is, yes, the processing circuit 40 executes the operation of step S206. When the object does not exist at a short distance, that is, no, the processing circuit 40 executes the operation of step S207.
 <ステップS206>
 処理回路40は、車両200の制御回路に、衝突回避の信号を送信する。物体の対象シーン内での大まかな位置がわかれば、当該大まかな位置から左右に遠ざかるまたは停止するなどの衝突回避の行動により、車両200が物体に衝突することを防ぐことができる。
<Step S206>
The processing circuit 40 transmits a collision avoidance signal to the control circuit of the vehicle 200. If the rough position of the object in the target scene is known, it is possible to prevent the vehicle 200 from colliding with the object by a collision avoidance action such as moving away from the rough position to the left or right or stopping.
 <ステップS207>
 処理回路40は、図6Aに示すように、発光装置10に、Z方向に延びる照射ラインビーム10Lで対象シーンをY方向にスキャンさせ、光検出器30に、単一の光検出素子により、照射ラインビーム10Lによって生じた物体光ビーム10Lおよび参照光10Lの干渉光10Lを検出させて信号を出力させる。処理回路40は、図6Bの下の図に示すように、当該信号に基づいて、対象シーン内の物体の距離に関するデータを生成して出力する。ステップS204およびステップS207において物体を測距した結果により、物体の3次元的な位置をより正確に知ることができる。
<Step S207>
As shown in FIG. 6A, the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Y direction with the irradiation line beam 10L extending in the Z direction, and irradiates the photodetector 30 with a single photodetector. The interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 generated by the line beam 10L is detected and a signal is output. As shown in the lower figure of FIG. 6B, the processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal. From the results of distance measurement of the object in steps S204 and S207, the three-dimensional position of the object can be known more accurately.
 ステップS207の代わりに、処理回路40は、発光装置10に、照射ラインビーム10Lよりも広がりの程度が小さい照射光ビームで対象シーンをY方向およびZ方向にスキャンさせ、光検出器30に、単一の光検出素子により、照射光ビームによって生じた物体光ビーム10Lおよび参照光10Lの干渉光10Lを検出させて信号を出力させてもよい。処理回路40は、当該信号に基づいて、対象シーン内の物体の距離に関するデータを生成して出力する。照射光ビームの既知の出射角から、物体の3次元的な位置をより正確に知ることができる。 Instead of step S207, the processing circuit 40 causes the light emitting device 10 to scan the target scene in the Y direction and the Z direction with an irradiation light beam having a smaller spread than the irradiation line beam 10L, and causes the photodetector 30 to simply scan the target scene. A single photodetector may detect the interference light 10L 4 of the object light beam 10L 3 and the reference light 10L 1 generated by the irradiation light beam and output a signal. The processing circuit 40 generates and outputs data regarding the distance of an object in the target scene based on the signal. From the known emission angle of the irradiation light beam, the three-dimensional position of the object can be known more accurately.
 ステップS204およびステップS207における処理回路40の動作をまとめると以下のようになる。処理回路40は、光スキャナ50に照射ラインビーム10Lを出射させると共に、照射ラインビーム10Lの出射方向を、照射ラインビーム10Lが延びる方向に交差する方向に沿って変化させる。処理回路40は、光検出器30に、照射ラインビーム10Lで物体が照射されることによって生じた物体光10Lと参照光10Lとの干渉光10Lを検出させ、光検出器30から出力された信号に基づいて、物体の計測データを生成して出力する。 The operations of the processing circuit 40 in steps S204 and S207 are summarized as follows. Processing circuit 40, together with the emit irradiation line beam 10L 2 in the optical scanner 50, the emission direction of the illumination line beam 10L 2, is varied along a direction intersecting the direction in which the irradiation line beam 10L 2 extends. The processing circuit 40 causes the photodetector 30 to detect the interference light 10L 4 between the object light 10L 3 and the reference light 10L 1 generated by irradiating the object with the irradiation line beam 10L 2 , from the photodetector 30. Based on the output signal, the measurement data of the object is generated and output.
 ステップS202およびステップS205においてnoが選択された場合における処理回路40の動作をまとめると以下のようになる。処理回路40は、光スキャナ50に、あるモードによる計測動作を実行させ、当該モードによって取得された計測データを基に、他のモードによる計測動作への切り替えが必要か否かを判定する。その後、処理回路40は、当該他のモードによる計測動作への切り替えが必要と判定されたことを受けて、光スキャナ50に、当該他のモードによる計測動作を実行させる。 The operation of the processing circuit 40 when no is selected in step S202 and step S205 is summarized as follows. The processing circuit 40 causes the optical scanner 50 to execute the measurement operation in a certain mode, and determines whether or not it is necessary to switch to the measurement operation in another mode based on the measurement data acquired in the mode. After that, the processing circuit 40 causes the optical scanner 50 to execute the measurement operation in the other mode in response to the determination that it is necessary to switch to the measurement operation in the other mode.
 ステップS202の場合、上記のあるモードは、例えば、照射フラッシュ光でのスキャンであり得る。上記の他のモードは、第1の方向に延びる照射ラインビームでの第2の方向に沿ったスキャンであり得る。ステップS205の場合、上記のあるモードは、例えば、第1の方向に延びる照射ラインビームでの第2の方向に沿ったスキャンであり得る。上記の他のモードは、例えば、第2の方向に延びる照射ラインビームでの第1の方向に沿ったスキャン、または照射光ビームでの第1方向および第2方向に沿ったスキャンであり得る。光検出器30が、Y方向に延びるラインセンサを含む場合、ステップS201において、照射フラッシュ光10Lによって物体のY方向における位置を知ることができる。したがって、ステップS203において、車両200の衝突回避の行動をより正確に実行することができる。さらに、ステップS204において、図5Aに示すように、照射ラインビーム10Lによって物体の3次元的な位置をより正確に知ることができる。したがって、ステップS206において、車両200の衝突回避の行動をより正確に実行することができ、かつ、ステップS207の動作を省略することができる。 In the case of step S202, one of the above modes may be, for example, scanning with irradiation flash light. The other mode described above may be a scan along the second direction with an irradiation line beam extending in the first direction. In the case of step S205, one of the above modes may be, for example, a scan along a second direction with an irradiation line beam extending in the first direction. The other mode described above may be, for example, a scan along the first direction with an irradiation line beam extending in a second direction, or a scan along the first and second directions with an irradiation light beam. When the photodetector 30 includes a line sensor extending in the Y direction, the position of the object in the Y direction can be known by the irradiation flash light 10L 2 in step S201. Therefore, in step S203, the collision avoidance action of the vehicle 200 can be executed more accurately. Further, in step S204, as shown in FIG. 5A, the irradiation line beam 10L 2 can more accurately know the three-dimensional position of the object. Therefore, in step S206, the collision avoidance action of the vehicle 200 can be executed more accurately, and the operation of step S207 can be omitted.
 以上のように、本実施形態による計測装置100は、光の広がりの程度、およびスキャン方向の異なる複数種類の計測動作が可能である。また、状況に応じて光の広がりの程度、およびスキャン方向を切り替えることにより、物体の計測データを効率的に取得できる。 As described above, the measuring device 100 according to the present embodiment is capable of a plurality of types of measuring operations having different degrees of light spread and scanning directions. Further, by switching the degree of light spread and the scanning direction according to the situation, the measurement data of the object can be efficiently acquired.
 特に、本実施形態による計測装置100は、ラインビームを用いた計測動作が可能であるため、計測動作の高速化しつつ、複数物体の大まかな位置の区別が可能なFMCW-LiDARを実現することができる。 In particular, since the measuring device 100 according to the present embodiment is capable of measuring operation using a line beam, it is possible to realize FMCW-LiDAR capable of roughly distinguishing the positions of a plurality of objects while speeding up the measuring operation. can.
 また、本実施形態により計測装置100によれば、照射範囲の比較的広い光を用いて計測動作を実行し、所定条件を満たす物体をいち早く発見することにより、後段のシステムに素早く情報を提供することができる。さらに、光の広がりの程度、およびスキャン方向を切替えて次の計測動作を行うことにより、より詳細な物体の計測データを得ることができる。一例として、処理回路40は、ステップS204における照射ラインビーム10Lを用いた計測動作の前に、ステップS201における照射フラッシュ光10Lを用いて、照射ラインビーム10Lを用いた計測動作と同じ計測動作を実行し、その計測動作の結果に基づいて、ステップS204における計測動作を実行するか否かを決定する。照射フラッシュ光10Lを用いた計測動作により、車両200の衝突回避の行動を迅速に実行することができる。 Further, according to the present embodiment, the measuring device 100 quickly provides information to the subsequent system by executing the measuring operation using light having a relatively wide irradiation range and quickly finding an object satisfying a predetermined condition. be able to. Further, by switching the degree of light spread and the scanning direction to perform the next measurement operation, more detailed measurement data of the object can be obtained. As an example, the processing circuit 40 executes the same measurement operation as the measurement operation using the irradiation line beam 10L by using the irradiation flash light 10L in step S201 before the measurement operation using the irradiation line beam 10L in step S204. Then, based on the result of the measurement operation, it is determined whether or not to execute the measurement operation in step S204. By the measurement operation using the irradiation flash light 10L, the collision avoidance action of the vehicle 200 can be quickly executed.
 (第1の変形例)
 次に、図9を参照して、本実施形態による計測装置100の第1の変形例を説明する。図9は、第1の変形例による計測装置300を模式的に示す図である。本変形例による計測装置300では、本実施形態による計測装置100と比べて、光スキャナ50の構成が異なる。具体的には、本変形例による計測装置300は、周波数可変である発光素子10と、光偏向器10と、ビームスプリッタ22とを備える。ビームスプリッタ22は、発光素子10と、光偏向器10との間の光路に配置されている。
(First modification)
Next, with reference to FIG. 9, a first modification of the measuring device 100 according to the present embodiment will be described. FIG. 9 is a diagram schematically showing the measuring device 300 according to the first modification. In the measuring device 300 according to the present modification, the configuration of the optical scanner 50 is different from that of the measuring device 100 according to the present embodiment. Specifically, the measuring device 300 according to this modification includes a light emitting element 10 1 having a variable frequency, an optical deflector 10 2, and a beam splitter 22. Beam splitter 22, the light emitting element 10 1 is disposed on the optical path between the optical deflector 10 2.
 ビームスプリッタ22は、発光素子10からの光10Lを、参照光10Lと照射光10Lとに分離する。ビームスプリッタ22によって分離された照射光10Lは、例えばMEMSミラーを含む光偏向器10によって偏向され、空間に向けて出射される。物体で反射して戻った物体光10Lは、再び光偏向器10によって偏向される。光検出器30は、参照光10Lと物体光10Lとの干渉光Lを検出する。 The beam splitter 22 separates the light 10L from the light emitting element 10 1 into the reference light 10L 1 and the irradiation light 10L 2. Irradiation light 10L 2 separated by the beam splitter 22, for example, it is deflected by the optical deflector 10 2 including MEMS mirror, is emitted towards the space. Object light 10L 3 reflected back by the object is deflected again by the light deflector 10 2. The photodetector 30 detects the interference light L 4 between the reference light 10L 1 and the object light 10L 3 .
 (第2の変形例)
 次に、図10を参照して、本実施形態による計測装置100の第2の変形例を説明する。図10は、第2の変形例による計測装置400を模式的に示す図である。本変形例による計測装置400は、前述した計測装置100または計測装置300と、他のセンサ150とを備える。前述した実施形態においては、計測装置の計測動作モードを切り替える際、光スキャナ50に、先ずあるモードによる計測動作を実行させ、当該モードによって取得された計測データを基に、他のモードによる計測動作への切り替えが必要か否かを判定していた。本変形例では、計測装置の計測動作モードを切り替える際、他のセンサ150から取得した信号を基に、モードの切り替えが必要か否かを判定する。
(Second modification)
Next, with reference to FIG. 10, a second modification of the measuring device 100 according to the present embodiment will be described. FIG. 10 is a diagram schematically showing the measuring device 400 according to the second modification. The measuring device 400 according to this modification includes the measuring device 100 or the measuring device 300 described above, and another sensor 150. In the above-described embodiment, when switching the measurement operation mode of the measuring device, the optical scanner 50 is first made to execute the measurement operation in one mode, and the measurement operation in another mode is based on the measurement data acquired in the mode. It was determined whether or not it was necessary to switch to. In this modification, when switching the measurement operation mode of the measuring device, it is determined whether or not the mode switching is necessary based on the signal acquired from the other sensor 150.
 計測装置400の処理回路40は、他のセンサからの信号に基づき、用意された複数の計測動作モードのうちの何れかを選択する。そして、光スキャナ50に、選択されたモードによる計測動作を実行させる。 The processing circuit 40 of the measuring device 400 selects one of a plurality of prepared measurement operation modes based on signals from other sensors. Then, the optical scanner 50 is made to execute the measurement operation in the selected mode.
 他のセンサ150は、例えば、イメージセンサを含む物体認識システムであり得る。計測装置400は、物体認識システムの認識結果を基に、計測動作モードの切り替えを行う。認識結果は、物体のサイズ、位置、および種類のうちの少なくとも1つの情報を含んでもよい。 The other sensor 150 may be, for example, an object recognition system including an image sensor. The measuring device 400 switches the measurement operation mode based on the recognition result of the object recognition system. The recognition result may include information on at least one of the size, position, and type of the object.
 (応用例)
 本実施形態における計測装置100は、例えば、物体の測距システムに用いられ得る。そのような測距システムは、例えば自動車、UAV(Unmanned Aerial Vehicle、所謂ドローン)、またはAGV(Automated Guided Vehicle)などの移動体に搭載され、衝突回避技術の1つとして使用され得る。本実施形態における計測装置100を用いた測距システムでは、物体の距離分布を、距離に関して広いダイナミックレンジ、かつ高い分解能でスキャンおよび検出することができる。
(Application example)
The measuring device 100 in the present embodiment can be used, for example, in a distance measuring system for an object. Such a ranging system can be mounted on a moving body such as an automobile, a UAV (Unmanned Aerial Vehicle, so-called drone), or an AGV (Automated Guided Vehicle), and can be used as one of collision avoidance techniques. In the distance measuring system using the measuring device 100 in the present embodiment, the distance distribution of an object can be scanned and detected with a wide dynamic range and high resolution with respect to the distance.
 本開示の実施形態における光デバイスは、例えば、自動車、UAV、もしくはAGVなどの車両に搭載される測距システムの用途に利用できる。 The optical device according to the embodiment of the present disclosure can be used for the purpose of a distance measuring system mounted on a vehicle such as an automobile, a UAV, or an AGV.
  10    発光装置
  10L   光
  10L   第1の光、参照光
  10L   第2の光、照射光
  10L   第3の光、物体光
  10L   第4の光、干渉光
  20    光学系
  22    ビームスプリッタ
  24   第1レンズ
  24   第2レンズ
  26    ミラー
  30    光検出器
  40    処理回路
  50    光スキャナ
  100、300、400   計測装置
  200   車両
  150   他のセンサ
10 Light emitting device 10L light 10L 1 1st light, reference light 10L 2 2nd light, irradiation light 10L 3 3rd light, object light 10L 4 4th light, interference light 20 Optical system 22 Beam splitter 24 1 1st 1 lens 24 2 second lens 26 mirror 30 optical detector 40 processing circuit 50 optical scanner 100, 300, 400 measuring apparatus 200 vehicle 150 other sensors

Claims (11)

  1.   光偏向器と、
      周波数が時間的に変化する光を出射する発光素子と、
      前記光の光路上に配置され、前記光を、参照光および照射光に分離するスプリッタと、
      光検出器と、
     を含む光スキャナと、
     前記発光素子、前記光偏向器、および前記光検出器を制御し、前記光検出器から出力された信号を処理する処理回路と、
    を備え、
     前記処理回路は、
      前記光スキャナにラインビームを出射させると共に、前記ラインビームの出射方向を、前記ラインビームが延びる方向に交差する方向に沿って変化させ、
      前記光検出器に、前記ラインビームで物体が照射されることによって生じた反射光と前記参照光との干渉光を検出させ、
      前記信号に基づいて、前記物体の計測データを生成して出力する、
    計測装置。
    With a light deflector,
    A light emitting element that emits light whose frequency changes with time,
    A splitter arranged on the optical path of the light and separating the light into reference light and irradiation light.
    With a photodetector
    Including optical scanner,
    A processing circuit that controls the light emitting element, the light deflector, and the photodetector and processes a signal output from the photodetector.
    Equipped with
    The processing circuit is
    The optical scanner emits a line beam, and the emission direction of the line beam is changed along a direction intersecting the direction in which the line beam extends.
    The photodetector is made to detect the interference light between the reflected light and the reference light generated by irradiating the object with the line beam.
    Based on the signal, the measurement data of the object is generated and output.
    Measuring device.
  2.  前記光検出器は、単一の光検出素子である、
    請求項1に記載の計測装置。
    The photodetector is a single photodetector.
    The measuring device according to claim 1.
  3.  前記光検出器は、前記ラインビームが延びる方向に配列された複数の光検出素子を含む、
    請求項1に記載の計測装置。
    The photodetector comprises a plurality of photodetectors arranged in a direction in which the line beam extends.
    The measuring device according to claim 1.
  4.  前記光スキャナは、
     前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、
     前記ラインビームが延びる方向を前記第2の方向にし、前記ラインビームの出射方向を、前記第1の方向に沿って変化させる第2のモードと、
    を切り替えることが可能である、
    請求項1に記載の計測装置。
    The optical scanner is
    A first mode in which the direction in which the line beam extends is set to the first direction, and the emission direction of the line beam is changed along a second direction intersecting the first direction.
    A second mode in which the direction in which the line beam extends is set to the second direction and the emission direction of the line beam is changed along the first direction.
    It is possible to switch between
    The measuring device according to claim 1.
  5.  前記光スキャナは、
     前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、
     前記ラインビームよりも前記第1の方向の広がりが小さい光ビームの出射方向を、前記第1の方向および前記第2の方向に沿って変化させる第2のモードと、
    を切り替えることが可能である、
    請求項1に記載の計測装置。
    The optical scanner is
    A first mode in which the direction in which the line beam extends is set to the first direction, and the emission direction of the line beam is changed along a second direction intersecting the first direction.
    A second mode in which the emission direction of the light beam having a smaller spread in the first direction than the line beam is changed along the first direction and the second direction.
    It is possible to switch between
    The measuring device according to claim 1.
  6.  前記光スキャナは、
     前記ラインビームが延びる方向を第1の方向にし、前記ラインビームの出射方向を、前記第1の方向に交差する第2の方向に沿って変化させる第1のモードと、
     前記ラインビームよりも前記第2の方向の広がりが大きいフラッシュ光を出射させる第2のモードと、
    を切り替えることが可能である、
    請求項1に記載の計測装置。
    The optical scanner is
    A first mode in which the direction in which the line beam extends is set to the first direction, and the emission direction of the line beam is changed along a second direction intersecting the first direction.
    A second mode that emits a flash light having a wider spread in the second direction than the line beam,
    It is possible to switch between
    The measuring device according to claim 1.
  7.  前記処理回路は、
      前記光スキャナに、前記第1のモードによる計測動作を実行させ、
      前記第1のモードにより取得された計測データを基に、前記第2のモードによる計測動作への切り替えが必要か否かを判定し、
      前記第2のモードによる計測動作への切り替えが必要と判定されたことを受けて、前記光スキャナに、前記第2のモードによる計測動作を実行させる、
     請求項4または5に記載の計測装置。
    The processing circuit is
    The optical scanner is made to execute the measurement operation in the first mode.
    Based on the measurement data acquired in the first mode, it is determined whether or not it is necessary to switch to the measurement operation in the second mode.
    In response to the determination that it is necessary to switch to the measurement operation according to the second mode, the optical scanner is made to execute the measurement operation according to the second mode.
    The measuring device according to claim 4 or 5.
  8.  前記処理回路は、
      前記光スキャナに、前記第2のモードによる計測動作を実行させ、
      前記第2のモードにより取得された計測データを基に、前記第1のモードによる計測動作への切り替えが必要か否かを判定し、
      前記第1のモードによる計測動作への切り替えが必要と判定されたことを受けて、前記光スキャナに、前記第1のモードによる計測動作を実行させる、
     請求項6に記載の計測装置。
    The processing circuit is
    The optical scanner is made to execute the measurement operation in the second mode.
    Based on the measurement data acquired in the second mode, it is determined whether or not it is necessary to switch to the measurement operation in the first mode.
    In response to the determination that it is necessary to switch to the measurement operation according to the first mode, the optical scanner is made to execute the measurement operation according to the first mode.
    The measuring device according to claim 6.
  9.  前記処理回路は、
      他のセンサからの信号に基づき、前記第1のモードによる計測動作と、前記第2のモードによる計測動作のうちの1つを選択し、
      前記光スキャナに、選択されたモードによる計測動作を実行させる、
     請求項4から6のいずれかに記載の計測装置。
    The processing circuit is
    Based on the signals from the other sensors, one of the measurement operation in the first mode and the measurement operation in the second mode is selected.
    Let the optical scanner perform the measurement operation in the selected mode.
    The measuring device according to any one of claims 4 to 6.
  10.  計測装置を含むシステムにおけるコンピュータによって実行される方法であって、
     前記計測装置は、
      光偏向器と、
      周波数が時間的に変化する光を出射する発光素子と、
      前記光の光路上に配置され、前記光を、参照光および照射光に分離するスプリッタと、
      光検出器と、
     を含む光スキャナと、
     前記発光素子、前記光偏向器、および前記光検出器を制御し、前記光検出器から出力された信号を処理する処理回路と、
    を備え、
     前記方法は、
      前記光スキャナにラインビームを出射させると共に、前記ラインビームの出射方向を、前記ラインビームが延びる方向に交差する方向に沿って変化させることと、
      前記光検出器に、前記ラインビームで物体が照射されることによって生じた反射光と前記参照光との干渉光を検出させることと、
      前記信号に基づいて、前記物体の計測データを生成して出力することと、
    を含む方法。
    A method performed by a computer in a system that includes a measuring device,
    The measuring device is
    With a light deflector,
    A light emitting element that emits light whose frequency changes with time,
    A splitter arranged on the optical path of the light and separating the light into reference light and irradiation light.
    With a photodetector
    Including optical scanner,
    A processing circuit that controls the light emitting element, the light deflector, and the photodetector and processes a signal output from the photodetector.
    Equipped with
    The method is
    In addition to emitting a line beam to the optical scanner, the emission direction of the line beam is changed along a direction intersecting the direction in which the line beam extends.
    To have the photodetector detect the interference light between the reflected light and the reference light generated by irradiating the object with the line beam.
    To generate and output measurement data of the object based on the signal,
    How to include.
  11.  計測装置を含むシステムにおけるコンピュータによって実行されるコンピュータプログラムであって、
     前記計測装置は、
      光偏向器と、
      周波数が時間的に変化する光を出射する発光素子と、
      前記光の光路上に配置され、前記光を、参照光および照射光に分離するスプリッタと、
      光検出器と、
     を含む光スキャナと、
     前記発光素子、前記光偏向器、および前記光検出器を制御し、前記光検出器から出力された信号を処理する処理回路と、
    を備え、
     前記コンピュータプログラムは、前記コンピュータに、
      前記光スキャナにラインビームを出射させると共に、前記ラインビームの出射方向を、前記ラインビームが延びる方向に交差する方向に沿って変化させることと、
      前記光検出器に、前記ラインビームで物体が照射されることによって生じた反射光と前記参照光との干渉光を検出させることと、
      前記信号に基づいて、前記物体の計測データを生成して出力することと、
    を実行させるコンピュータプログラム。
    A computer program executed by a computer in a system that includes a measuring device.
    The measuring device is
    With a light deflector,
    A light emitting element that emits light whose frequency changes with time,
    A splitter arranged on the optical path of the light and separating the light into reference light and irradiation light.
    With a photodetector
    Including optical scanner,
    A processing circuit that controls the light emitting element, the light deflector, and the photodetector and processes a signal output from the photodetector.
    Equipped with
    The computer program is attached to the computer.
    In addition to emitting a line beam to the optical scanner, the emission direction of the line beam is changed along a direction intersecting the direction in which the line beam extends.
    To have the photodetector detect the interference light between the reflected light and the reference light generated by irradiating the object with the line beam.
    To generate and output measurement data of the object based on the signal,
    A computer program that runs.
PCT/JP2021/016567 2020-05-27 2021-04-26 Measurement device, control method for measurement device, and program WO2021241101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020092170A JP2023099238A (en) 2020-05-27 2020-05-27 Measurement device
JP2020-092170 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241101A1 true WO2021241101A1 (en) 2021-12-02

Family

ID=78744488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016567 WO2021241101A1 (en) 2020-05-27 2021-04-26 Measurement device, control method for measurement device, and program

Country Status (2)

Country Link
JP (1) JP2023099238A (en)
WO (1) WO2021241101A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206407A (en) * 1986-03-07 1987-09-10 Nec Corp 3-dimensional measuring device
JPH10325872A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Light radar device
JP2002071808A (en) * 2000-08-28 2002-03-12 Omron Corp Ranging device and preceding vehicle detecting system and preceding vehicle tracking system using this
JP2010091445A (en) * 2008-10-09 2010-04-22 Topcon Corp Laser survey system and distance measuring method
US20150293224A1 (en) * 2013-05-09 2015-10-15 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
JP2018200273A (en) * 2017-05-29 2018-12-20 株式会社デンソー Distance measurement sensor
WO2019167350A1 (en) * 2018-03-02 2019-09-06 パナソニックIpマネジメント株式会社 Object sensing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206407A (en) * 1986-03-07 1987-09-10 Nec Corp 3-dimensional measuring device
JPH10325872A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Light radar device
JP2002071808A (en) * 2000-08-28 2002-03-12 Omron Corp Ranging device and preceding vehicle detecting system and preceding vehicle tracking system using this
JP2010091445A (en) * 2008-10-09 2010-04-22 Topcon Corp Laser survey system and distance measuring method
US20150293224A1 (en) * 2013-05-09 2015-10-15 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
JP2018200273A (en) * 2017-05-29 2018-12-20 株式会社デンソー Distance measurement sensor
WO2019167350A1 (en) * 2018-03-02 2019-09-06 パナソニックIpマネジメント株式会社 Object sensing device

Also Published As

Publication number Publication date
JP2023099238A (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP6111617B2 (en) Laser radar equipment
US10816647B2 (en) Lidar system and method
KR102568116B1 (en) 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES
US7544945B2 (en) Vertical cavity surface emitting laser (VCSEL) array laser scanner
EP2708916B1 (en) Distance Measurement Apparatus
EP3161511B1 (en) Scanning lidar and method of producing the same
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
RU2442107C2 (en) Device for optical distance measurement
US20170176596A1 (en) Time-of-flight detector with single-axis scan
CN110691983A (en) LIDAR-based 3-D imaging with structured light and integrated illumination and detection
WO2017164989A1 (en) Integrated illumination and detection for lidar based 3-d imaging
KR20170049453A (en) Apparatus for measuring Light Detection and Ranging and Vehicle including thereof and control method thereof
EP4113162A1 (en) Laser detection system and vehicle
US20230161012A1 (en) Lidar systems and methods with beam steering and wide angle signal detection
CN114667464A (en) Planar optical device with passive elements for use as a conversion optical device
KR20170134944A (en) Method and apparatus for scanning particular region using optical module
JP2003090759A (en) Light detection apparatus and distance-measuring apparatus
WO2021241101A1 (en) Measurement device, control method for measurement device, and program
WO2017176410A1 (en) Time-of-flight detector with single-axis scan
KR102087081B1 (en) Light focusing system for detection distance enhancement of area sensor type lidar
WO2020076725A1 (en) Lidar with dynamically variable resolution in selected areas within a field of view
US20240004042A1 (en) Measuring device and non-transitory computer-readable medium
US20230073060A1 (en) Tunable laser emitter with 1d grating scanner for 2d scanning
CN111308442B (en) Laser radar
WO2022030555A1 (en) Electromagnetic wave detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP