WO2021240977A1 - Polygon mirror, optical deflector, optical scanning device, image forming device, die, and method for manufacturing resin body - Google Patents

Polygon mirror, optical deflector, optical scanning device, image forming device, die, and method for manufacturing resin body Download PDF

Info

Publication number
WO2021240977A1
WO2021240977A1 PCT/JP2021/012952 JP2021012952W WO2021240977A1 WO 2021240977 A1 WO2021240977 A1 WO 2021240977A1 JP 2021012952 W JP2021012952 W JP 2021012952W WO 2021240977 A1 WO2021240977 A1 WO 2021240977A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
grooves
resin body
polygon mirror
plane
Prior art date
Application number
PCT/JP2021/012952
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 高田
孝敏 田中
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2021240977A1 publication Critical patent/WO2021240977A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material

Definitions

  • the present invention relates to a polygon mirror.
  • An optical scanning device used in an image forming apparatus such as a laser printer photomodulates a laser beam emitted from a light source in response to an image signal, and deflects and scans the photomodulated laser beam with an optical deflector having a polygon mirror. ..
  • the laser beam scanned by the optical deflector is imaged on a photosensitive drum, which is an example of an image carrier, by a scanning lens such as an f ⁇ lens.
  • a scanning lens such as an f ⁇ lens.
  • an electrostatic latent image is formed on the surface of the photosensitive drum.
  • the electrostatic latent image on the photosensitive drum is visualized into a toner image by a developing device, transferred to a sheet such as recording paper, and the toner on the sheet is heated and fixed to form an image on the sheet.
  • the polygon mirror used in this type of equipment is generally a metal such as aluminum machined into a predetermined shape by a precision processing machine such as a precision lathe.
  • Patent Document 1 proposes a polygon mirror substrate made of resin.
  • the resin polygon mirror can reduce the cost as compared with the metal polygon mirror, and can give a degree of freedom to the shape.
  • the resin body which is the resin substrate in the polygon mirror, is formed by injection molding using a mold. Specifically, the cavity in the mold is filled with the molten resin, the molten resin is cooled and solidified in the mold to form a resin body, and the resin body is separated from the mold.
  • the resin body is formed in the shape of a prism having side surfaces. A reflective film for reflecting light is provided on the side surface of the resin body. Therefore, high shape accuracy is required on the side surface.
  • the polygon mirror includes a prismatic resin body including a first bottom surface, a second bottom surface, and a plurality of side surfaces, and a reflective film provided on each of the plurality of side surfaces.
  • the first bottom surface has a first plane having a polygonal outer shape, and at least one first groove that is recessed with respect to the first plane and is along the first side surface of the plurality of side surfaces. The first groove is arranged so as not to intersect the diagonal line of the first plane.
  • the mold includes a first bottom surface forming surface, a second bottom surface forming surface, and a plurality of side surface forming surfaces, the first bottom surface forming surface, the second bottom surface forming surface, and the above. It is a mold that defines a prismatic cavity with a plurality of side surface forming surfaces, and the first bottom surface forming surface protrudes from the first plane forming surface having a polygonal outer shape and the first plane forming surface. It has at least one first protruding portion along the first side surface forming surface among the plurality of side surface forming surfaces, and the first protruding portion is arranged so as not to intersect the diagonal line of the first plane forming surface. Has been done.
  • FIG. 11A It is a perspective view of the cavity in the mold which concerns on 2nd Embodiment. It is a perspective view of the cavity in the mold which concerns on 2nd Embodiment. It is a perspective view of the cavity in the mold which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment. It is a graph which shows the simulation result which concerns on 2nd Embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an image forming apparatus 100 according to the first embodiment.
  • the image forming apparatus 100 is an electrophotographic type.
  • the image forming apparatus 100 of FIG. 1 is a printer, but is not limited to this, and may be a copying machine, a facsimile, a multifunction device, or the like.
  • the image forming apparatus 100 includes an image forming unit 110 that forms an image on the sheet P which is a recording material.
  • the image forming unit 110 includes an optical scanning device 101, a process cartridge 102, a transfer roller 107 which is an example of a transfer unit, and a fixing device 108.
  • the process cartridge 102 has a photosensitive drum 103, a charging unit 111, and a developing unit 112, which are examples of an image carrier.
  • the optical scanning device 101 emits a laser beam L based on the obtained image information and irradiates the photosensitive drum 103 of the process cartridge 102 with the laser beam L to scan the surface of the photosensitive drum 103. As a result, a latent image is formed on the photosensitive drum 103, and this latent image is visualized as a toner image by the toner as a developer by the process cartridge 102.
  • the sheet P loaded on the sheet loading plate 104 is fed while being separated one by one by the feeding roller 105, and is conveyed to the nip portion between the photosensitive drum 103 and the transfer roller 107 by the conveying roller 106.
  • the toner image formed on the photosensitive drum 103 is transferred by the transfer roller 107 onto the sheet P conveyed to the nip portion.
  • the sheet P to which the unfixed toner image is transferred is further conveyed to the fixing device 108 on the downstream side.
  • the fuser 108 has a heating body inside, and by heating and pressurizing the sheet P, the toner image is fixed to the sheet P as an image. After that, the sheet P is discharged to the outside of the machine by the discharge roller 109.
  • FIG. 2A is a perspective view schematically showing the optical scanning device 101 according to the first embodiment.
  • the optical scanning device 101 includes a housing 203, a light source 201 supported by the housing 203, a cylindrical lens 202, an f ⁇ lens 205, and a scanner motor 1 which is an example of an optical deflector.
  • An optical diaphragm 204 is formed on the housing 203.
  • the laser beam L emitted from the light source 201 is focused by the cylindrical lens 202 and is limited to a predetermined beam diameter by the optical diaphragm 204.
  • the laser beam L that has passed through the optical diaphragm 204 is deflected by the scanner motor 1, passes through the f ⁇ lens 205, and then is focused on the photosensitive drum 103 of FIG. 1 to form an electrostatic latent image.
  • the light source 201, the cylindrical lens 202, the scanner motor 1, etc. are housed in the housing 203.
  • the opening of the housing 203 is closed by an optical lid (not shown) made of resin or metal.
  • FIG. 2B is a cross-sectional view of the scanner motor 1 according to the first embodiment.
  • FIG. 2B schematically shows a cut surface of the scanner motor 1 obtained by cutting the scanner motor 1 at a surface including a center of rotation.
  • the scanner motor 1 is rotatably supported by a substrate 4 made of sheet metal, a bearing sleeve 5 fixed to the substrate 4, a rotor 7 having a rotor magnet 6, and a bearing sleeve 5, and a rotating shaft 8 integrated with the rotor 7.
  • the scanner motor 1 includes a pedestal 2 integrated with the rotor 7, a stator coil 9 fixed to the substrate 4, and a polygon mirror 3 fixed to the rotating shaft 8 via the pedestal 2.
  • the rotor 7 and the stator coil 9 constitute a motor 10 which is an example of a drive source for rotationally driving the polygon mirror 3.
  • the polygon mirror 3 deflects the laser beam L shown in FIG. 2A by rotating.
  • the polygon mirror 3 has a resin body 30 which is a substrate made of resin, and a reflective film 31 formed on each side surface of the resin body 30.
  • FIG. 3A and 3B are perspective views of the resin body 30 in the polygon mirror 3 according to the first embodiment.
  • 3A is a top perspective view of the resin body 30 in the polygon mirror 3
  • FIG. 3B is a bottom perspective view of the resin body 30 in the polygon mirror 3.
  • FIG. 4A is a cross-sectional view of the resin body 30 according to the first embodiment.
  • FIG. 4A illustrates a cross section of the resin body 30 along the line IV-IV of FIG. 3A.
  • FIG. 4B is an enlarged view of a main part of the resin body 30 shown in FIG. 4A.
  • the resin body 30 is a prismatic resin body, and in the first embodiment, it is a square columnar resin body. It is preferable to use a thermoplastic resin as the resin material of the resin body 30. Among the thermoplastic resins, cycloolefin polymers, cycloolefin copolymers, polycarbonates, or acrylics are preferably used.
  • the resin body 30 has a top surface 301 which is a first bottom surface, a bottom surface 302 which is a second bottom surface, and a plurality of side surfaces 351 to 354 in the first embodiment. Each side surface 351 to 354 is a flat surface. Reflective films 31 shown in FIGS. 2A and 2B are provided on each of the side surfaces 351 to 354. One of the plurality of side surfaces 351 to 354, for example, the side surface 351 is the first side surface. In this case, the side surfaces 352 to 354 are any of the second side surface, the third side surface, and the fourth side surface, respectively.
  • the top surface 301 has a plane 310 which is a first plane.
  • the plane 310 has a polygonal outer shape and has a plurality of sides.
  • the plane 310 has a quadrangular outer shape and has four sides S11 to S14.
  • the bottom surface 302 has a plane 320 which is a second plane.
  • the plane 320 has a polygonal outer shape and has a plurality of sides.
  • the plane 320 has a quadrangular outer shape and has four sides S21 to S24 like the plane 310. That is, the outer shape of the plane 310 and the outer shape of the plane 320 are congruent.
  • the plurality of sides S11 to S14 and S21 to S24 have the same length. Therefore, the outer shape of each of the planes 310 and 320 is a square.
  • the length direction of the sides S11 and S21 is defined as the direction X1.
  • the length direction of the sides S12 and S22 is defined as the direction X2.
  • the length direction of the sides S13 and S23 is defined as the direction X3.
  • the length direction of the sides S14 and S24 is defined as the direction X4.
  • the plane 310 and the plane 320 are parallel.
  • the direction perpendicular to the plane 310 is defined as the direction Z1. Therefore, the direction Z1 is also a direction perpendicular to the plane 320.
  • the side S11 and the side S21 are at the same position as the side surface 351.
  • the side S12 and the side S22 are at the same position as the side surface 352 when viewed in the direction Z1.
  • the side S13 and the side S23 are at the same position as the side surface 353.
  • the side S14 and the side S24 are at the same position as the side surface 354.
  • the virtual line C0 passing through the intersection of the two diagonal lines L11 and L12 and the intersection of the two diagonal lines L21 and L22 is the rotation center line of the resin body 30.
  • a columnar through hole 16 is formed at a position including the virtual line C0. That is, the center line of the through hole 16 is the virtual line C0.
  • the rotation shaft 8 shown in FIG. 2B is inserted into the through hole 16.
  • the top surface 301 has at least one first groove along each side S11 to S14 of the plane 310, which is recessed with respect to the plane 310.
  • At least one first groove along each side S11 to S14 is one first groove in this embodiment. That is, at least one first groove along the side S11 is one groove 311. Further, at least one first groove along the side S12 is one groove 312. Further, at least one first groove along the side S13 is one groove 313. Further, at least one first groove along the side S14 is one groove 314.
  • the groove 311 is arranged between the through hole 16, that is, the virtual line C0 and the side S11.
  • the groove 312 is arranged between the through hole 16, that is, the virtual line C0 and the side S12.
  • the groove 313 is arranged between the through hole 16, that is, the virtual line C0 and the side S13.
  • the groove 314 is arranged between the through hole 16, that is, the virtual line C0 and the side S14.
  • the bottom surface 302 has at least one second groove along each side S21 to S24 of the plane 320, which is recessed with respect to the plane 320.
  • At least one second groove along each side S21 to S24 is one second groove in this embodiment. That is, at least one second groove along the side S21 is one groove 321. Further, at least one second groove along the side S22 is one groove 322. Further, at least one second groove along the side S23 is one groove 323. Further, at least one second groove along the side S24 is one groove 324.
  • the groove 321 is arranged between the through hole 16, that is, the virtual line C0 and the side S21.
  • the groove 322 is arranged between the through hole 16, that is, the virtual line C0 and the side S22.
  • the groove 323 is arranged between the through hole 16, that is, the virtual line C0 and the side S23.
  • the groove 324 is arranged between the through hole 16, that is, the virtual line C0 and the side S24.
  • the groove 311 is arranged in the vicinity of the side S11.
  • the groove 312 is arranged in the vicinity of the side S12.
  • the groove 313 is arranged in the vicinity of the side S13.
  • the groove 314 is arranged in the vicinity of the side S14.
  • the groove 321 is arranged in the vicinity of the side S21.
  • the groove 322 is arranged in the vicinity of the side S22.
  • the groove 323 is arranged in the vicinity of the side S23.
  • the groove 324 is arranged in the vicinity of the side S24.
  • Each groove 311 to 314 is arranged at a position that does not intersect the diagonal lines L11 and L12.
  • the grooves 321 to 324 are arranged at positions that do not intersect the diagonal lines L21 and L22.
  • the top surface 301 has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the top surface 301 has a shape symmetrical with respect to the diagonal lines L11 and L12.
  • the bottom surface 302 has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the bottom surface 302 has a shape that is line-symmetrical with respect to the diagonal lines L21 and L22.
  • the top surface 301 and the bottom surface 302 have plane-symmetrical shapes with respect to the virtual surface orthogonal to the virtual line C0.
  • FIG. 5 is a schematic cross-sectional view of the mold 140 according to the first embodiment.
  • FIG. 5 illustrates the mold 140 in a molded state.
  • the mold 140 has a cavity 50 for forming the resin body 30.
  • the cavity 50 is defined in a state where the mold 140 is molded.
  • 6A and 6B are perspective views of the cavity 50 in the mold according to the first embodiment. 6A is a top perspective view of the cavity 50, and FIG. 6B is a bottom perspective view of the cavity 50.
  • the cavity 50 is a prismatic space, and in the first embodiment, it is a square columnar space.
  • the mold 140 has a top surface forming surface 501 which is a first bottom surface forming surface which transfers the top surface 301 of the resin body 30, and a bottom surface forming surface which is a second bottom surface forming surface which transfers the bottom surface 302 of the resin body 30. 502 and. Further, the mold 140 has a plurality of side surface forming surfaces 551 to 554, which transfer a plurality of side surfaces 351 to 354 of the resin body 30, in the first embodiment. Any one of the plurality of side surface forming surfaces 551 to 554, for example, the side surface forming surface 551 is the first side surface forming surface.
  • the side surface forming surfaces 552 to 554 are any of the second side surface forming surface, the third side surface forming surface, and the fourth side surface forming surface, respectively.
  • the cavity 50 is defined by these plurality of surfaces 501, 502, 551 to 554.
  • Each side surface forming surface 551 to 554 is a flat surface.
  • the mold 140 has a runner stencil plate 141, a fixed side stencil 142, and a movable side stencil 143.
  • the runner 580 is defined by the runner stripper plate 141 and the fixed side template 142.
  • the fixed-side template 142 includes the above-mentioned top surface forming surface 501, a plurality of gates 571 to 574 for injecting molten resin into the cavity 50, a mold hole 1421, and an angular pin 1422.
  • the mold hole 1421 is provided coaxially with the through hole 16 of the resin body 30. That is, the center line of the mold hole 1421 is the virtual line C0.
  • the number of gates in this embodiment is preferably four, which is the same as the number of side surface forming surfaces 551 to 554. As a result, in the injection process described later, the symmetry of the pressure distribution of the resin body 30 becomes high, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is improved.
  • the gates 571 to 574 and the side surface forming surfaces 551 to 554 have the same phase around the virtual line C0 which is the central axis of the mold hole 1421.
  • the symmetry of the pressure distribution of the resin body 30 is further improved, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is further improved.
  • the weld generated between the gates 571 and 574 can be guided to the end of the side surface 351 to 354 which is outside the scanning range of the laser beam L in FIG. 2A.
  • the movable side template 143 has a movable side core 1431, a slide core 144, and an ejector plate 145.
  • the movable side core 1431 includes the bottom surface forming surface 502 described above and the mold shaft 1432.
  • the slide core 144 includes the side surface forming surfaces 551 to 554, and is guided by the angular pin 1422 and slides in a direction orthogonal to the virtual line C0 as the movable side template 143 opens and closes.
  • the mold shaft 1432 is for forming the through hole 16 of the resin body 30.
  • the ejector plate 145 preferably has the same number of four ejector pins 1451 as the side surface forming surfaces 551 to 554. As a result, when the ejector pin 1451 is projected in the step of releasing the resin body 30 from the mold 140, the force can be evenly transmitted to the resin body 30, and the deformation of the resin body 30 due to the mold release is suppressed. be able to.
  • the top surface forming surface 501 has a plane forming surface 510 which is a first plane forming surface forming the plane 310.
  • the plane forming surface 510 has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane forming surface 510 has a quadrangular outer shape and has four sides S51 to S54.
  • the bottom surface forming surface 502 has a plane forming surface 520 which is a second plane forming surface forming the plane 320.
  • the plane forming surface 520 has a polygonal outer shape and has a plurality of sides.
  • the plane forming surface 520 has a quadrangular outer shape and has four sides S61 to S64, like the plane forming surface 510. That is, the outer shape of the plane forming surface 510 and the outer shape of the plane forming surface 520 are congruent.
  • the plurality of sides S51 to S54 and S61 to S64 have the same length. Therefore, the outer shapes of the plane forming surfaces 510 and 520 are square.
  • the length direction of the sides S51 and S61 is defined as the direction X51.
  • the length direction of the sides S52 and S62 is defined as the direction X52.
  • the length direction of the sides S53 and S63 is defined as the direction X53.
  • the length direction of the sides S54 and S64 is defined as the direction X54.
  • the plane forming surface 510 and the plane forming surface 520 are parallel to each other.
  • the direction perpendicular to the plane forming surface 510 is defined as the direction Z5. Therefore, the direction Z5 is also a direction perpendicular to the plane forming surface 520.
  • the sides S51 and S61 are at the same positions as the side surface forming surface 551.
  • the sides S52 and S62 are at the same positions as the side surface forming surface 552.
  • the sides S53 and S63 are at the same positions as the side surface forming surface 553.
  • the sides S54 and S64 are at the same positions as the side surface forming surface 554.
  • the top surface forming surface 501 has at least one first protruding portion along each side S51 to S54 of the plane forming surface 510, which protrudes from the plane forming surface 510.
  • At least one first protrusion along each side S51 to S54 is one first protrusion in the present embodiment. That is, at least one first protrusion along the side S51 is one protrusion 511. Further, at least one first protruding portion along the side S52 is one protruding portion 512. Further, at least one first protruding portion along the side S53 is one protruding portion 513. Further, at least one first protruding portion along the side S54 is one protruding portion 514.
  • Each of the projecting portions 511 to 514 is a projecting portion that forms the grooves 311 to 314 of the resin body 30.
  • the protrusion 511 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S51.
  • the protrusion 512 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S52.
  • the protrusion 513 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S53.
  • the protrusion 514 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S54.
  • the bottom surface forming surface 502 has at least one second protruding portion along each side S61 to S64 of the plane forming surface 520, which protrudes with respect to the plane forming surface 520.
  • At least one second protrusion along each side S61 to S64 is one second protrusion in the present embodiment. That is, at least one second protrusion along the side S61 is one protrusion 521. Further, at least one second protrusion along the side S62 is one protrusion 522. Further, at least one second protruding portion along the side S63 is one protruding portion 523. Further, at least one second protrusion along the side S64 is one protrusion 524.
  • Each protrusion 521 to 524 is a protrusion that forms each groove 321 to 324 of the resin body 30.
  • the protrusion 521 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S61.
  • the protrusion 522 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S62.
  • the protrusion 523 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S63.
  • the protrusion 524 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S64.
  • the protrusion 511 is arranged in the vicinity of the side S51.
  • the protrusion 512 is arranged in the vicinity of the side S52.
  • the protrusion 513 is arranged in the vicinity of the side S53.
  • the protrusion 514 is arranged in the vicinity of the side S54.
  • the protrusion 521 is arranged in the vicinity of the side S61.
  • the protrusion 522 is arranged in the vicinity of the side S62.
  • the protrusion 523 is arranged in the vicinity of the side S63.
  • the protrusion 524 is arranged in the vicinity of the side S64.
  • the protrusions 511 to 514 are arranged at positions that do not intersect the diagonal lines L51 and L52.
  • the protrusions 521 to 524 are arranged at positions that do not intersect the diagonal lines L61 and L62.
  • FIGS. 8A to 8C are explanatory views showing each step of the method for manufacturing the resin body 30 in the polygon mirror 3 according to the first embodiment.
  • the mold opening step shown in FIG. 7A the mold 140 is opened.
  • the mold clamping step shown in FIG. 7B the mold 140 is molded.
  • the mold shaft 1432 of the movable side mold plate 143 is fitted with the mold hole 1421 of the fixed side mold plate 142, so that the positions of the fixed side mold plate 142 and the movable side mold plate 143 are aligned.
  • the cavity 50 is defined in the mold 140.
  • the molten resin M1 is injected into the cavity 50 through the runner 580 and the gates 571 to 574 of FIG. 6A by an injection molding machine (not shown).
  • the molten resin M1 is cooled and solidified by setting the mold 140 to a predetermined temperature lower than the temperature of the molten resin M1 to form the resin body 30.
  • the mold 140 is, for example, a water-cooled type, and is cooled to a predetermined temperature by water.
  • the mold 140 is opened in the mold opening step shown in FIG. 8B.
  • the top surface forming surface 501 of the fixed side template 142 is separated from the top surface 301 of the resin body 30, and FIGS. 6A and 6A of the slide core 144 are separated from the side surfaces 351 to 354 shown in FIGS. 3A and 3B of the resin body 30.
  • the side surface forming surfaces 551 to 554 shown in 6B are separated from each other.
  • the runner 32 connected to the resin body 30 is separated from the resin body 30 by the runner stripper plate 141.
  • the ejector plate 145 is advanced toward the movable core 1431 to project the ejector pin 1451 from the movable core 1431, and the resin body 30 is formed from the bottom surface forming surface 502 of the movable core 1431. Separate the bottom surface 302. As a result, the resin body 30 is released from the mold 140.
  • the side surfaces 351 to 354 of the resin body 30 shown in FIGS. 3A and 3B serve as light reflecting surfaces of FIGS. 2A and 2B.
  • the reflective film 31 is formed. As a result, the polygon mirror 3 is manufactured.
  • a resin body of a comparative example having no grooves 311 to 314, 321 to 324 is manufactured by using a mold having no protrusions 511 to 514, 521 to 524.
  • the cooling step there is a difference in the solidification rate of the resin between the central portion and the end portion in the length direction on the side surface of the resin body. That is, the end portion in the length direction on the side surface solidifies relatively faster than the central portion. Therefore, the end portion in the length direction on the side surface has a higher resin density than the central portion, and when the resin body of the comparative example is released from the mold, the end portion on the side surface warps with respect to the central portion. In addition, the side surface of the resin body of the comparative example is deformed.
  • the resin body 30 is molded using a mold 140 having protrusions 511 to 514, 521 to 524 in order to make the resin densities on the side surfaces 351 to 354 of the resin body 30 uniform.
  • the grooves 311 to 314, 321 to 324 that do not intersect the diagonal lines L11, L12, L21, and L22 increase the surface area near the center of the directions X1 to X4 on the side surfaces 351 to 354. ..
  • the grooves 311 to 314 of the resin body 30 are grooves extending linearly in parallel with the sides S11 to S14 along which the grooves 311 to 314 are aligned.
  • the grooves 321 to 324 of the resin body 30 are grooves extending linearly in parallel with the sides S21 to S24 along which the grooves 321 to 324 are aligned. That is, each of the protrusions 511 to 514 of the mold 140 is a protrusion that extends linearly in parallel with each side S51 to S54 along which the protrusions 511 to 514 are aligned.
  • each of the protrusions 521 to 524 of the mold 140 is a protrusion that extends linearly in parallel with each side S61 to S64 along which the protrusions 521 to 524 are aligned.
  • the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
  • the groove 311 along the one side S11 and the groove 321 along the one side S21 overlap each other when the resin body 30 is viewed in the direction Z1. Further, when the resin body 30 is viewed in the direction Z1, the groove 312 along the one side S12 and the groove 322 along the one side S22 overlap each other. Further, when the resin body 30 is viewed in the direction Z1, the groove 313 along the side S13 and the groove 323 along the side S23 overlap each other. Further, when the resin body 30 is viewed in the direction Z1, the groove 314 along the side S14 and the groove 324 along the side S24 overlap each other.
  • the protruding portion 511 along the one side S51 and the protruding portion 521 along the one side S61 overlap each other.
  • the protruding portion 512 along the one side S52 and the protruding portion 522 along the one side S62 overlap each other.
  • the protruding portion 513 along the one side S53 and the protruding portion 523 along the one side S63 overlap each other.
  • the depths of the grooves 311 to 314 are the same, and the depth is D1. Further, the depths of the grooves 321 to 324 are the same, and the depth is D2. In the first embodiment, the depth D1 of the groove 311 and the depth D2 of the groove 321 are the same. Further, the depth D1 of the groove 312 and the depth D2 of the groove 322 are the same. Further, the depth D1 of the groove 313 and the depth D2 of the groove 323 are the same. Further, the depth D1 of the groove 314 and the depth D2 of the groove 324 are the same. The depths D1 and D2 are, for example, 0.4 mm. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
  • the length L of each side S11 to S14 and S21 to S24 of the resin body 30 is preferably 10 mm or more and 30 mm or less, for example, 14.1 mm, and the diameter of the circumscribed circle is preferably ⁇ 20 mm.
  • the thickness Z of the resin body 30 is preferably 0.5 mm or more and 10 mm or less, and is preferably 2 mm, for example.
  • gate marks 171 to 174 corresponding to the four gates 571 to 574 that are the resin injection ports.
  • the distance between the gate marks 171 to 174 and the through hole 16 is the same.
  • the relative positions of the side surfaces 351 to 354 and the gate marks 171 to 174 are the same.
  • Each side surface 351 to 354 and each gate mark 171 to 174 are rotationally symmetric with respect to the virtual line C0.
  • the side wall surfaces of the grooves 311 to 314 and the side wall surfaces of the grooves 321 to 324 are inclined at a predetermined angle ⁇ so as to have a draft with respect to the side surfaces 351 to 354. Since the configurations of the grooves 311 to 314 and 321 to 324 are substantially the same, the grooves 311, 321 will be specifically described.
  • the groove 311 is formed so as to extend linearly along the side S11 in parallel with the side S11.
  • the groove 311 has a pair of side wall surfaces 3111, 3112 along the side surface 351. It is preferable that the side wall surfaces 3111 and 3112 are inclined at a predetermined angle ⁇ with respect to the side surface 351 so as to have a draft.
  • the groove 321 is formed so as to extend linearly along the side S21 in parallel with the side S21.
  • the groove 321 has a pair of side wall surfaces 3211 and 3212 along the side surface 351. It is preferable that the side wall surfaces 3211 and 3212 are inclined at a predetermined angle ⁇ with respect to the side surface 351 so as to have a draft.
  • the fact that the groove 311 extends linearly along the side S11 in parallel with the side S11 means that at least the side wall surface 3111 of the pair of side wall surfaces 3111 and 3112 of the groove 311 is parallel to the side S11 along the side S11. It extends in a straight line.
  • the groove 321 extends linearly along the side S21 in parallel with the side S21
  • at least the side wall surface 3111 of the pair of side wall surfaces 3211 and 3212 of the groove 321 is parallel to the side S21. It extends linearly along the side S21.
  • the other grooves 312 to 314 and 322 to 324 are examples of the other grooves 312 to 314 and 322 to 324.
  • the predetermined angle ⁇ is preferably 5 degrees or more and 45 degrees or less in view of the cooling property of the resin body 30, the ease of mold release of the resin body 30, and the rigidity of the resin body 30.
  • the predetermined angle ⁇ is, for example, 30 degrees. If the predetermined angle ⁇ is smaller than 5 degrees, there is a concern that the resin body 30 to be released from the mold will be deformed in the mold release step. Further, when the predetermined angle is larger than 45 degrees, the deepest portion of the grooves 311, 321 is moved away from the side surface 351 and therefore the cooling effect of the side surface 351 is low.
  • T be the thickness of the resin body 30 between the grooves 311 and the grooves 321 that overlap in the direction Z1
  • W be the width of each of the grooves 311 and the grooves 321 that overlap in the direction Z1.
  • T the thickness of the resin body 30 between the grooves 312 and the grooves 322 that overlap in the direction Z1
  • the groove widths of the grooves 312 and 322 that overlap in the direction Z1 are W.
  • the thickness of the resin body 30 between the grooves 313 and the grooves 323 that overlap in the direction Z1 is T, and the groove widths of the grooves 313 and the grooves 323 that overlap in the direction Z1 are W.
  • the thickness of the resin body 30 between the grooves 314 and the grooves 324 that overlap in the direction Z1 is T
  • the groove widths of the grooves 314 and the grooves 324 that overlap in the direction Z1 are W.
  • the thickness T and the groove width W satisfy the relationship of 1 ⁇ W / T ⁇ 2.5.
  • the groove width W When the groove width W is narrow, that is, when W / T ⁇ 1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the groove width W is wide, that is, 2.5 ⁇ W / T, the rigidity of the resin body 30 is significantly reduced. Similarly, when the thickness T is thick, that is, when W / T ⁇ 1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the thickness T is thin, that is, 2.5 ⁇ W / T, the rigidity of the resin body 30 is significantly reduced.
  • the thickness T is 1.2 mm.
  • the relationship of / T ⁇ 2.5 is satisfied.
  • the distance between the groove 311 and the side S11, the distance between the groove 312 and the side S12, the distance between the groove 313 and the side S13, and the distance between the groove 314 and the side S14 are each set as D.
  • the distance between the groove 321 and the side S21, the distance between the groove 322 and the side S22, the distance between the groove 323 and the side S23, and the distance between the groove 324 and the side S24 are each set as D.
  • the thickness T and the interval D satisfy the relationship of 0.3 ⁇ D / T ⁇ 1.
  • the relationship of / T ⁇ 1 is satisfied.
  • FIGS. 9A to 9D are graphs showing simulation results according to the first embodiment.
  • FIG. 9A is a graph showing the relationship between the ratio W / T and the temperature difference of the side surface 351.
  • FIG. 9B is a graph showing the relationship between the ratio W / T and the deformation of the side surface 351 when the resin body 30 is rotated.
  • FIG. 9C is a graph showing the relationship between the ratio D / T and the temperature difference of the side surface 351.
  • FIG. 9D is a graph showing the relationship between the ratio D / T and the deformation of the side surface 351 when the resin body 30 is rotated.
  • the vertical axis in the graphs shown in FIGS. 9A and 9C indicates the temperature difference between the central portion and the end portion of the direction X1 on the side surface 351. It is shown as a ratio with the difference as 1.
  • the vertical axis in the graphs shown in FIGS. 9B and 9D indicates the amount of displacement of the end portion of the side surface 351 with respect to the central portion of the direction X1, and the amount of displacement of the end portion of the side surface of the resin body of the comparative example without a groove with respect to the central portion. It is shown by the ratio of 1.
  • FIG. 10A and 10B are perspective views of the resin body 30A in the polygon mirror according to the second embodiment.
  • 10A is a top perspective view of the resin body 30A in the polygon mirror according to the second embodiment
  • FIG. 10B is a bottom perspective view of the resin body 30A in the polygon mirror according to the second embodiment.
  • FIG. 11A is a cross-sectional view of the resin body 30A according to the second embodiment.
  • FIG. 11A illustrates a cross section of the resin body 30A along the XI-XI line of FIG. 11A.
  • 11B is an enlarged view of a main part of the resin body 30A shown in FIG. 11A.
  • the configuration of the resin body of the polygon mirror in the image forming apparatus is different from that of the first embodiment. That is, in the first embodiment, the case where the number of grooves along one side is one has been described, but in the second embodiment, the number of grooves along one side is a plurality.
  • the resin body 30A is a prismatic resin body, and in the second embodiment, it is a square columnar resin body. It is preferable to use a thermoplastic resin as the resin material of the resin body 30A. Among the thermoplastic resins, cycloolefin polymers, cycloolefin copolymers, polycarbonates, or acrylics are preferably used.
  • the resin body 30A has a top surface 301A which is a first bottom surface, a bottom surface 302A which is a second bottom surface, and a plurality of side surfaces 351 to 354 in the second embodiment as in the first embodiment. Each side surface 351 to 354 is a flat surface. Reflective films 31 shown in FIGS. 2A and 2B are provided on each of the side surfaces 351 to 354.
  • the top surface 301A has a plane 310A which is the first plane.
  • the plane 310A has a polygonal outer shape and has a plurality of sides.
  • the plane 310A has a quadrangular outer shape and has four sides S11 to S14 as in the first embodiment.
  • the bottom surface 302A has a plane 320A which is a second plane.
  • the plane 320A has a polygonal outer shape and has a plurality of sides.
  • the plane 320A has a quadrangular outer shape like the plane 310A, and has four sides S21 to S24 as in the first embodiment. That is, the outer shape of the plane 310A and the outer shape of the plane 320A are congruent.
  • the plurality of sides S11 to S14 and S21 to S24 have the same length. Therefore, the outer shape of each of the planes 310A and 320A is a square.
  • the length direction of the sides S11 and S21 is defined as the direction X1.
  • the length direction of the sides S12 and S22 is defined as the direction X2.
  • the length direction of the sides S13 and S23 is defined as the direction X3.
  • the length direction of the sides S14 and S24 is defined as the direction X4.
  • the plane 310A and the plane 320A are parallel to each other.
  • the direction perpendicular to the plane 310A is defined as the direction Z1. Therefore, the direction Z1 is also a direction perpendicular to the plane 320A.
  • the virtual line C0 passing through the intersection of the two diagonal lines L11 and L12 and the intersection of the two diagonal lines L21 and L22 is the rotation center line of the resin body 30A.
  • a columnar through hole 16 is formed at a position including the virtual line C0. That is, the center line of the through hole 16 is the virtual line C0.
  • the rotation shaft 8 shown in FIG. 2B is inserted into the through hole 16.
  • the top surface 301A has at least one first groove along each side S11 to S14 of the plane 310A, which is recessed with respect to the plane 310A.
  • At least one first groove along each side S11 to S14 is a plurality of first grooves, and in the second embodiment, three first grooves. That is, at least one first groove along the side S11 is three grooves 311 1 , 311 2 , 311 3 .
  • at least one first groove along the side S12 is three grooves 312 1 , 312 2 , 312 3 .
  • at least one first groove along the side S13 is three grooves 313 1 , 313 2 , 313 3 .
  • at least one first groove along the side S14 is three grooves 314 1 , 314 2 , 314 3 .
  • the three grooves 311 1 , 311 2 , 311 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S11.
  • the three grooves 312 1 , 312 2 , 312 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S12.
  • the three grooves 313 1 , 313 2 , 313 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S13.
  • the three grooves 314 1 , 314 2 , and 314 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S14.
  • the bottom surface 302A has at least one second groove along each side S21 to S24 of the plane 320A, which is recessed with respect to the plane 320A.
  • At least one second groove along each side S21 to S24 is a plurality of second grooves, and in the second embodiment, three second grooves. That is, at least one second groove along the side S21 is three grooves 321 1 , 321, 2 and 321 3 .
  • at least one second groove along the side S22 is three grooves 322 1 , 322 2 , 322 3 .
  • at least one second groove along the side S23 is three grooves 323 1 , 323 2 , 323 3 .
  • at least one second groove along the side S24 is three grooves 324 1 , 324 2 , 324 3 .
  • the three grooves 321 1 , 321, 2 and 321 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S21.
  • the three grooves 322 1 , 322 2 , and 322 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S22.
  • the three grooves 323 1 , 323 2 , 323 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S23.
  • the three grooves 324 1 , 324 2 , 324 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S24.
  • the groove 311 1 is arranged in the vicinity of the side S11.
  • the groove 312 1 is arranged in the vicinity of the side S12.
  • the groove 313 1 is arranged in the vicinity of the side S13.
  • the grooves 314 1 , 314 2 , and 314 3 the groove 314 1 is arranged in the vicinity of the side S14.
  • the groove 321 1 is arranged in the vicinity of the side S21.
  • the groove 322 1 is arranged in the vicinity of the side S22.
  • the groove 323 1 is arranged in the vicinity of the side S23.
  • the groove 324 1 is arranged in the vicinity of the side S24.
  • the grooves 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 are arranged at positions that do not intersect the diagonal lines L11 and L12.
  • the grooves 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 are arranged at positions that do not intersect the diagonal lines L21 and L22.
  • the top surface 301A has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the top surface 301A has a shape that is line-symmetrical with respect to the diagonal lines L11 and L12.
  • the bottom surface 302A has a shape that is rotationally symmetric with respect to the virtual line C0.
  • the bottom surface 302A has a shape that is line-symmetrical with respect to the diagonal lines L21 and L22.
  • the top surface 301A and the bottom surface 302A are plane-symmetrical with respect to the virtual surface orthogonal to the virtual line C0.
  • 12A and 12B are perspective views of the cavity 50A in the mold 140A according to the second embodiment.
  • 12A is a top perspective view of the cavity 50A
  • FIG. 12B is a bottom perspective view of the cavity 50A.
  • the mold 140A has a cavity 50A for forming the resin body 30A.
  • the cavity 50A is defined with the mold 140A clamped.
  • the cavity 50A is a prismatic space, and in the second embodiment, it is a square columnar space.
  • the mold 140A has a top surface forming surface 501A which is a first bottom surface forming surface which transfers the top surface 301A of the resin body 30A and a bottom surface forming surface which is a second bottom surface forming surface which transfers the bottom surface 302A of the resin body 30A. It has 502A and. Further, the mold 140A has a plurality of side surfaces 351 to 354 for transferring the plurality of side surfaces 351 to 354 of the resin body 30A, and four side surface forming surfaces 551 to 554 in the second embodiment.
  • the cavity 50A is defined by these plurality of surfaces 501A, 502A, 551 to 554. Each side surface forming surface 551 to 554 is a flat surface.
  • the mold 140A includes the above-mentioned top surface forming surface 501A and a plurality of gates 571 to 574 for injecting the molten resin into the cavity 50A.
  • the number of gates is preferably four, which is the same as the number of side surface forming surfaces 551 to 554.
  • the phases of the gates 571 to 574 and the side surface forming surfaces 551 to 554 are the same around the virtual line C0.
  • the symmetry of the pressure distribution of the resin body 30A is further increased, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is further improved.
  • the weld generated between the gates 571 and 574 can be guided to the end of the side surface 351 to 354 which is outside the scanning range of the laser beam L in FIG. 2A.
  • the top surface forming surface 501A has a plane forming surface 510A which is a first plane forming surface forming the plane 310A.
  • the plane forming surface 510A has a polygonal outer shape and has a plurality of sides.
  • the plane forming surface 510A has a quadrangular outer shape and has four sides S51 to S54.
  • the bottom surface forming surface 502A has a plane forming surface 520A which is a second plane forming surface forming the plane 320A.
  • the plane forming surface 520A has a polygonal outer shape and has a plurality of sides.
  • the plane forming surface 520A has a quadrangular outer shape and has four sides S61 to S64, like the plane forming surface 510A. That is, the outer shape of the plane forming surface 510A and the outer shape of the plane forming surface 520A are congruent.
  • the plurality of sides S51 to S54 and S61 to S64 have the same length. Therefore, the outer shapes of the plane forming surfaces 510A and 520A are square.
  • the length direction of the sides S51 and S61 is defined as the direction X51.
  • the length direction of the sides S52 and S62 is defined as the direction X52.
  • the length direction of the sides S53 and S63 is defined as the direction X53.
  • the length direction of the sides S54 and S64 is defined as the direction X54.
  • the plane forming surface 510A and the plane forming surface 520A are parallel to each other.
  • the direction perpendicular to the plane forming surface 510A is defined as the direction Z5. Therefore, the direction Z5 is also a direction perpendicular to the plane forming surface 520A.
  • the top surface forming surface 501A has at least one first protruding portion along each side S51 to S54 of the plane forming surface 510A, which protrudes from the plane forming surface 510A.
  • At least one first protrusion along each side S51 to S54 is a plurality of first protrusions, and in the second embodiment, three first protrusions. That is, at least one first protrusion along the side S51 is three protrusions 511 1 , 511 2 , 511 3 . Further, at least one first protrusion along the side S52 is one protrusion 512 1 , 512 2 , 512 3 .
  • At least one first protruding portion along the side S53 is one protruding portion 513 1 , 513 2 , 513 3 .
  • at least one first protruding portion along the side S54 is one protruding portion 514 1 , 514 2 , 514 3 .
  • Each protrusion 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 is each groove of the resin body 30A, 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313. It is a protrusion forming 3 , 314 1 to 314 3.
  • the protrusions 511 1 , 511 2 , 511 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S51.
  • the protrusions 512 1 , 512 2 , 512 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S52.
  • the protrusions 513 1 , 513 2 , 513 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S53.
  • the protrusions 514 1 , 514 2 , 514 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S54.
  • the bottom surface forming surface 502A has at least one second protruding portion along each side S61 to S64 of the plane forming surface 520A, which protrudes with respect to the plane forming surface 520A.
  • At least one second protrusion along each side S61 to S64 is a plurality of second protrusions, and in the second embodiment, three second protrusions. That is, at least one second protrusion along the side S61 is three protrusions 521 1 , 521 2 , 521 3 . Further, at least one second protrusion along the side S62 is three protrusions 522 1 , 522 2 , 522 3 .
  • At least one second protrusion along the side S63 is three protrusions 523 1 , 523 2 , 523 3 .
  • at least one second protrusion along the side S64 is three protrusions 524 1 , 524 2 , 524 3 .
  • Each protrusion 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 is each groove of the resin body 30A, 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323. 3, 324 1 to 324 3 a protrusion which forms a.
  • the protrusions 521 1 , 521 2 , 521 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S61.
  • the protrusions 522 1 , 522 2 , and 522 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S62.
  • the protrusions 523 1 , 523 2 , 523 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S63.
  • the protrusions 524 1 , 524 2 , 524 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S64.
  • the protruding portion 511 1 is arranged in the vicinity of the side S51.
  • the protrusions 512 1 , 512 2 , 512 3 are arranged in the vicinity of the side S52.
  • the protruding portion 513 1 , 513 2 , 513 3 is arranged in the vicinity of the side S53.
  • the protrusions 514 1 , 514 2 , 514 3 is arranged in the vicinity of the side S54.
  • the protruding portion 521 1 is arranged in the vicinity of the side S61.
  • the protrusion 522 1 is arranged in the vicinity of the side S62.
  • the protrusions 523 1 , 523 2 , 523 3 the protrusion 523 1 is arranged in the vicinity of the side S63.
  • the protrusions 524 1 , 524 2 , 524 3 the protrusion 524 1 is arranged in the vicinity of the side S64.
  • the protrusions 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 are arranged at positions that do not intersect the diagonal lines L51 and L52.
  • the protrusions 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 are arranged at positions that do not intersect the diagonal lines L61 and L62.
  • the method for manufacturing the polygon mirror of the second embodiment is the same as that of the first embodiment, it will be omitted.
  • the resin body 30A in order to make the resin density on the side surfaces 351 to 354 of the resin body 30A uniform, the resin body 30A is molded by using the mold 140A having the above-mentioned protrusion.
  • the groove that does not intersect the diagonal lines L11, L12, L21, and L22 increases the surface area near the central portion of the directions X1 to X4 on the side surfaces 351 to 354.
  • each groove 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 of the resin body 30A is a straight line parallel to each side S11 to S14 along which each groove runs. It is a groove extending in a shape.
  • each groove 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 of the resin body 30A extends linearly in parallel with each side S21 to S24 along which each groove runs. It is a groove.
  • the protrusions 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 of the mold 140A are linearly parallel to each side S51 to S54 along which each protrusion is aligned. It is an extending protrusion.
  • each of the protrusions 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 of the mold 140A is linear in parallel with each side S61 to S64 along which each protrusion is along. It is a protrusion extending to.
  • the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
  • the grooves 311 1 to 311 4 along the side S11 and the grooves 321 1 to 321 4 along the side S21 overlap each other.
  • the grooves 312 1 to 312 4 along the side S12 and the grooves 322 1 to 322 4 along the side S22 overlap each other.
  • the grooves 313 1 to 313 4 along the side S13 and the grooves 323 1 to 323 4 along the side S23 overlap each other.
  • the grooves 314 1 to 314 4 along the side S14 and the grooves 324 1 to 324 4 along the side S24 overlap each other. That is, when the molded mold 140A is viewed in the direction Z5, the protrusions 511 1 to 511 4 along the side S51 and the protrusions 521 1 to 521 4 along the side S61 overlap each other. Further, when the molded mold 140A is viewed in the direction Z5, the protrusions 512 1 to 512 4 along the side S52 and the protrusions 522 1 to 522 4 along the side S62 overlap each other.
  • the protruding portions 513 1 to 513 4 along the one side S53 and the protruding portions 523 1 to 523 4 along the one side S63 overlap each other.
  • the protruding portions 514 1 to 514 4 along the one side S54 and the protruding portions 524 1 to 524 4 along the one side S64 overlap each other.
  • the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
  • the resin body 30A since the resin body 30A has a plurality of grooves along each of the plurality of sides, it is possible to suppress a decrease in the rigidity of the resin body 30A due to the formation of the grooves. As a result, it is possible to suppress deformation of each side surface 351 to 354 when the polygon mirror is incorporated in the scanner motor 1 and driven to rotate.
  • the depths of the grooves 311 1 to 311 3 and 312 1 to 312 3 and 313 1 to 313 3 and 314 1 to 314 3 are the same, and the depth is D1. Further, the depths of the grooves 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 are the same, and the depth is D2. In the second embodiment, the depth D1 of the grooves 311 1 to 311 3 and the depth D2 of the grooves 321 1 to 321 3 are the same. Further, the depth D1 of the grooves 312 1 to 312 3 and the depth D2 of the grooves 322 1 to 322 3 are the same.
  • the depth D1 of the grooves 313 1 to 313 3 and the depth D2 of the grooves 323 1 to 323 3 are the same. Further, the depth D1 of the grooves 314 1 to 314 3 and the depth D2 of the grooves 324 1 to 324 3 are the same. The depths D1 and D2 are, for example, 0.4 mm. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
  • the length L of each side S11 to S14 and S21 to S24 of the resin body 30A is preferably 10 mm or more and 30 mm or less, for example, 14.1 mm, and the diameter of the circumscribed circle is preferably ⁇ 20 mm.
  • the thickness Z of the resin body 30A is preferably 0.5 mm or more and 10 mm or less, and is preferably 2 mm, for example.
  • gate marks 171 to 174 corresponding to the four gates 571 to 574 that are the resin injection ports.
  • the distance between the gate marks 171 to 174 and the through hole 16 is the same.
  • the relative positions of the side surfaces 351 to 354 and the gate marks 171 to 174 are the same.
  • Each side surface 351 to 354 and each gate mark 171 to 174 are rotationally symmetric with respect to the virtual line C0.
  • each groove 311 1 to 311 3 , ..., 314 1 to 314 3 and the side wall surfaces of each groove 321 1 to 321 3 , ..., 324 1 to 324 3 have a draft with respect to each side surface 351 to 354. It is preferable to incline at a predetermined angle ⁇ so as to be.
  • the groove 311 1 is formed so as to extend linearly along the side S11 in parallel with the side S11.
  • the groove 3111 1 has a pair of side wall surfaces 3111, 3112 along the side surface 351. It is preferable that the side wall surfaces 3111 and 3112 are inclined at a predetermined angle ⁇ with respect to the side surface 351 so as to have a draft.
  • the groove 321 1 is formed so as to extend linearly along the side S21 in parallel with the side S21.
  • the groove 321 1 has a pair of side wall surfaces 3211 and 3212 along the side surface 351. It is preferable that the side wall surfaces 3211 and 3212 are inclined at a predetermined angle ⁇ with respect to the side surface 351 so as to have a draft.
  • the extending linearly along the parallel sides S11 grooves 311 1 and the sides S11, a pair of side wall surfaces 3111,3112 of grooves 311 1, parallel at least the side wall surface 3111 and edge S11 sides S11 It extends linearly along.
  • the groove 321 1 and the fact that the groove 321 extends linearly along the side S21 in parallel with the side S21 means that at least the side wall surface 3111 of the pair of side wall surfaces 3211 and 3212 of the groove 321 1 is the side S21. It extends linearly along the side S21 in parallel with. The same applies to other grooves.
  • the predetermined angle ⁇ is preferably 5 degrees or more and 45 degrees or less in view of the cooling property of the resin body 30A, the ease of mold release of the resin body 30A, and the rigidity of the resin body 30A.
  • the predetermined angle ⁇ is, for example, 30 degrees. If the predetermined angle ⁇ is smaller than 5 degrees, there is a concern that the resin body 30A to be released from the mold will be deformed in the mold release step. Further, when the predetermined angle is larger than 45 degrees , the deepest portion of the grooves 311 1 and 321 1 is moved away from the side surface 351 so that the cooling effect of the side surface 351 is low.
  • T be the thickness of the resin body 30A between the grooves 311 1 to 311 3 , ..., 314 1 to 314 3 and the grooves 321 1 to 321 3 , ..., 324 1 to 324 3 , which overlap in the direction Z1.
  • the widths of the grooves 311 1 , 311 2 , and 311 3 are W 1 , W 2 , and W 3 , respectively.
  • W be the sum of the widths of the plurality of grooves 311 1 , 311 2 , and 311 3.
  • W W 1 + W 2 + W 3 .
  • the total W of the thickness T and the groove width satisfies the relationship of 1 ⁇ W / T ⁇ 2.5.
  • the thickness T is 1.2 mm.
  • the groove closest to the side S11 is the groove 3111 1 .
  • the groove closest to the side S12 is the groove 312 1 .
  • the groove closest to the side S13 is the groove 313 1 .
  • the groove closest to the side S14 is the groove 314 1 .
  • the groove closest to the side S21 is the groove 321 1 .
  • the groove closest to the side S22 is the groove 322 1 .
  • the groove closest to the side S23 is the groove 323 1 .
  • the groove closest to the side S24 is the groove 324 1 .
  • D be the distance between the groove 311 1 and the side S11, the distance between the groove 312 1 and the side S12, the distance between the groove 313 1 and the side S13, and the distance between the groove 314 1 and the side S14. Further, the distance between the groove 321 1 and the side S21, the distance between the groove 322 1 and the side S22, the distance between the groove 323 1 and the side S23, and the distance between the groove 324 1 and the side S24 are each set as D. In view of the shape accuracy of each side surface 351 to 354 and the rigidity of the resin body 30A, it is preferable that the thickness T and the interval D satisfy the relationship of 0.3 ⁇ D / T ⁇ 1.
  • the relationship of / T ⁇ 1 is satisfied.
  • FIGS. 13A to 13D are graphs showing simulation results according to the second embodiment.
  • FIG. 13A is a graph showing the relationship between the ratio W / T and the temperature difference of the side surface 351.
  • FIG. 13B is a graph showing the relationship between the ratio W / T and the deformation of the side surface 351 when the resin body 30A is rotated.
  • FIG. 13C is a graph showing the relationship between the ratio D / T and the temperature difference of the side surface 351.
  • FIG. 13D is a graph showing the relationship between the ratio D / T and the deformation of the side surface 351 when the resin body 30A is rotated.
  • the vertical axis in the graphs shown in FIGS. 13A and 13C indicates the temperature difference between the central portion and the end portion of the direction X1 on the side surface 351. It is shown as a ratio with the difference as 1.
  • the vertical axis in the graphs shown in FIGS. 13B and 13D indicates the amount of displacement of the end portion of the side surface 351 with respect to the central portion of the direction X1, and the amount of displacement of the end portion of the side surface of the resin body of the comparative example having no groove with respect to the central portion. It is shown by the ratio of 1.
  • the graph shown in FIG. 9B of the first embodiment and the graph shown in FIG. 13B of the second embodiment are compared, the graph shown in FIG. 13B has a ratio W / T more than the graph shown in FIG. 9B.
  • the change in the amount of displacement with respect to the change is small. That is, when the number of grooves along one side is one, it is possible to suppress the increase in the amount of deformation of the resin body during rotational drive due to the increase in the ratio W / T when there are a plurality of grooves. can.
  • the resin body of the polygon mirror is a quadrangular prism having four side surfaces
  • the resin body may be a prism having four or more side surfaces.
  • the resin body is preferably a quadrangular prism, a pentagonal prism, or a hexagonal prism.
  • the case where the outer shapes of the top surface and the bottom surface of the resin body are regular quadrangles, that is, the lengths of the respective sides are the same has been described, but the present invention is not limited to this.
  • the top and bottom surfaces may be polygons having a quadrangle or more, and the lengths of the sides may be different.
  • a regular polygon is preferable.
  • both the top surface and the bottom surface have grooves.
  • both the top surface and the bottom surface have grooves.
  • the groove along one side is parallel to the one side has been described, but the present invention is not limited to this.
  • the groove may not be linear over the entire surface, and only a part, for example, the central portion in the length direction may be linear. At that time, the end portion in the length direction of the groove may be curved.
  • the present invention is applicable to an image forming apparatus such as a printer, a copying machine, a facsimile, and a multifunction device having these functions.
  • the present invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to publicize the scope of the present invention, the following claims are attached.
  • 3 Polygon mirror, 30 ... Resin body, 31 ... Reflective film, 301 ... Top surface (first bottom surface), 302 ... Bottom surface (second bottom surface), 310 ... Plane (first plane), 311 ... Groove (first groove) ), 312 ... groove (first groove), 313 ... groove (first groove), 314 ... groove (first groove), 320 ... plane (second plane), 321 ... groove (second groove), 322 ... groove (Second groove) 323 ... Groove (second groove) 324 ... Groove (second groove), 351 to 354 ... Side surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

A polygon mirror comprising: a prismatic resin body (30) including a first bottom surface (301), a second bottom surface (302), and a plurality of side surfaces (351, 352, 353, 354); and reflecting films provided to each of the plurality of side surfaces (351, 352, 353, 354), the first bottom surface (301) having a first flat surface (310) having a polygonal external form, and at least one first groove (311) which is recessed with respect to the first flat surface (310) and which extends along the first side surface (351) from among the plurality of side surfaces (351, 352, 353, 354), and the first groove (311) being positioned so as not to intersect with diagonals (L11, L12) of the first flat surface (310).

Description

ポリゴンミラー、光偏向器、光走査装置、画像形成装置、金型、及び樹脂体の製造方法Method for manufacturing polygon mirror, light deflector, light scanning device, image forming device, mold, and resin body
 本発明は、ポリゴンミラーに関する。 The present invention relates to a polygon mirror.
 レーザプリンタ等の画像形成装置に用いられる光走査装置は、画像信号に応じて光源から出射したレーザ光を光変調し、光変調されたレーザ光を、ポリゴンミラーを有する光偏向器で偏向走査する。光偏向器で走査されたレーザ光は、fθレンズなどの走査レンズによって、像担持体の一例である感光ドラム上に結像される。これにより、感光ドラムの表面には、静電潜像が形成される。感光ドラム上の静電潜像を現像装置によってトナー像に顕像化し、これを記録紙等のシートに転写し、シート上のトナーを加熱し定着させることでシートに画像が形成される。 An optical scanning device used in an image forming apparatus such as a laser printer photomodulates a laser beam emitted from a light source in response to an image signal, and deflects and scans the photomodulated laser beam with an optical deflector having a polygon mirror. .. The laser beam scanned by the optical deflector is imaged on a photosensitive drum, which is an example of an image carrier, by a scanning lens such as an fθ lens. As a result, an electrostatic latent image is formed on the surface of the photosensitive drum. The electrostatic latent image on the photosensitive drum is visualized into a toner image by a developing device, transferred to a sheet such as recording paper, and the toner on the sheet is heated and fixed to form an image on the sheet.
 この種の装置に用いられるポリゴンミラーは、アルミニウム等の金属を精密旋盤等の精密加工機で所定の形状に機械加工したものが一般的である。 The polygon mirror used in this type of equipment is generally a metal such as aluminum machined into a predetermined shape by a precision processing machine such as a precision lathe.
 一方、特許文献1には、ポリゴンミラーの基体を樹脂で形成するもの提案されている。樹脂製のポリゴンミラーは、金属製のポリゴンミラーに対し、コストを低減することができ、また、形状に自由度を持たせることができる。 On the other hand, Patent Document 1 proposes a polygon mirror substrate made of resin. The resin polygon mirror can reduce the cost as compared with the metal polygon mirror, and can give a degree of freedom to the shape.
特開2019-191335号公報Japanese Unexamined Patent Publication No. 2019-191335
 ポリゴンミラーにおける樹脂製の基体である樹脂体は、金型を用いて射出成形により形成される。具体的には、金型内のキャビティに溶融樹脂を充填し、金型内で溶融樹脂を冷却固化させて樹脂体を形成し、樹脂体を金型から離型させる。樹脂体は、側面を有する角柱形状に形成される。樹脂体の側面には、光を反射させるための反射膜が設けられる。このため、側面には、高い形状精度が要求される。 The resin body, which is the resin substrate in the polygon mirror, is formed by injection molding using a mold. Specifically, the cavity in the mold is filled with the molten resin, the molten resin is cooled and solidified in the mold to form a resin body, and the resin body is separated from the mold. The resin body is formed in the shape of a prism having side surfaces. A reflective film for reflecting light is provided on the side surface of the resin body. Therefore, high shape accuracy is required on the side surface.
 本発明の第1の態様によれば、ポリゴンミラーは、第1底面、第2底面及び複数の側面を含む角柱状の樹脂体と、前記複数の側面の各々に設けられた反射膜と、を備え、前記第1底面は、外形が多角形の第1平面と、前記第1平面に対して凹み、前記複数の側面のうちの第1側面に沿った少なくとも1つの第1溝を有し、前記第1溝は、前記第1平面の対角線と交差しないように配置されている。 According to the first aspect of the present invention, the polygon mirror includes a prismatic resin body including a first bottom surface, a second bottom surface, and a plurality of side surfaces, and a reflective film provided on each of the plurality of side surfaces. The first bottom surface has a first plane having a polygonal outer shape, and at least one first groove that is recessed with respect to the first plane and is along the first side surface of the plurality of side surfaces. The first groove is arranged so as not to intersect the diagonal line of the first plane.
 本発明の第2の態様によれば、金型は、第1底面形成面、第2底面形成面及び複数の側面形成面を含み、前記第1底面形成面、前記第2底面形成面及び前記複数の側面形成面で角柱状のキャビティを画成する金型であって、前記第1底面形成面は、外形が多角形の第1平面形成面と、前記第1平面形成面に対して突出し、前記複数の側面形成面のうちの第1側面形成面に沿った少なくとも1つの第1突出部を有し、前記第1突出部は、前記第1平面形成面の対角線と交差しないように配置されている。 According to the second aspect of the present invention, the mold includes a first bottom surface forming surface, a second bottom surface forming surface, and a plurality of side surface forming surfaces, the first bottom surface forming surface, the second bottom surface forming surface, and the above. It is a mold that defines a prismatic cavity with a plurality of side surface forming surfaces, and the first bottom surface forming surface protrudes from the first plane forming surface having a polygonal outer shape and the first plane forming surface. It has at least one first protruding portion along the first side surface forming surface among the plurality of side surface forming surfaces, and the first protruding portion is arranged so as not to intersect the diagonal line of the first plane forming surface. Has been done.
 本発明によれば、樹脂体の側面の形状精度が高まる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。尚、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
According to the present invention, the shape accuracy of the side surface of the resin body is improved.
Other features and advantages of the invention will be apparent by the following description with reference to the accompanying drawings. In the attached drawings, the same or similar configurations are given the same reference numbers.
第1実施形態に係る画像形成装置を示す断面模式図である。It is sectional drawing which shows the image forming apparatus which concerns on 1st Embodiment. 第1実施形態に係る光走査装置を模式的に示す斜視図である。It is a perspective view which shows typically the optical scanning apparatus which concerns on 1st Embodiment. 第1実施形態に係るスキャナモータの断面図である。It is sectional drawing of the scanner motor which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の斜視図である。It is a perspective view of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の斜視図である。It is a perspective view of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係る樹脂体の断面図である。It is sectional drawing of the resin body which concerns on 1st Embodiment. 図4Aに示す樹脂体の要部の拡大図である。It is an enlarged view of the main part of the resin body shown in FIG. 4A. 第1実施形態に係る金型の断面模式図である。It is sectional drawing of the mold which concerns on 1st Embodiment. 第1実施形態に係る金型におけるキャビティの斜視図である。It is a perspective view of the cavity in the mold which concerns on 1st Embodiment. 第1実施形態に係る金型におけるキャビティの斜視図である。It is a perspective view of the cavity in the mold which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るポリゴンミラーにおける樹脂体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the resin body in the polygon mirror which concerns on 1st Embodiment. 第1実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 1st Embodiment. 第1実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 1st Embodiment. 第1実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 1st Embodiment. 第1実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 1st Embodiment. 第2実施形態に係るポリゴンミラーにおける樹脂体の斜視図である。It is a perspective view of the resin body in the polygon mirror which concerns on 2nd Embodiment. 第2実施形態に係るポリゴンミラーにおける樹脂体の斜視図である。It is a perspective view of the resin body in the polygon mirror which concerns on 2nd Embodiment. 第2実施形態に係る樹脂体の断面図である。It is sectional drawing of the resin body which concerns on 2nd Embodiment. 図11Aに示す樹脂体の要部の拡大図である。It is an enlarged view of the main part of the resin body shown in FIG. 11A. 第2実施形態に係る金型におけるキャビティの斜視図である。It is a perspective view of the cavity in the mold which concerns on 2nd Embodiment. 第2実施形態に係る金型におけるキャビティの斜視図である。It is a perspective view of the cavity in the mold which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 2nd Embodiment. 第2実施形態に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on 2nd Embodiment.
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。
 [第1実施形態]
 図1は、第1実施形態に係る画像形成装置100を示す断面模式図である。画像形成装置100は、電子写真式である。図1の画像形成装置100は、プリンタであるが、これに限定するものではなく、複写機、ファクシミリ、複合機等であってもよい。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic cross-sectional view showing an image forming apparatus 100 according to the first embodiment. The image forming apparatus 100 is an electrophotographic type. The image forming apparatus 100 of FIG. 1 is a printer, but is not limited to this, and may be a copying machine, a facsimile, a multifunction device, or the like.
 画像形成装置100は、記録材であるシートPに画像を形成する画像形成部110を備える。画像形成部110は、光走査装置101、プロセスカートリッジ102、転写部の一例である転写ローラ107、及び定着器108を有する。プロセスカートリッジ102は、像担持体の一例である感光ドラム103、帯電部111、及び現像部112を有する。 The image forming apparatus 100 includes an image forming unit 110 that forms an image on the sheet P which is a recording material. The image forming unit 110 includes an optical scanning device 101, a process cartridge 102, a transfer roller 107 which is an example of a transfer unit, and a fixing device 108. The process cartridge 102 has a photosensitive drum 103, a charging unit 111, and a developing unit 112, which are examples of an image carrier.
 光走査装置101は、得られた画像情報に基づいたレーザ光Lを出射し、プロセスカートリッジ102の感光ドラム103上に照射することで、感光ドラム103の表面をレーザ光Lで走査する。これにより、感光ドラム103上に潜像が形成され、この潜像がプロセスカートリッジ102によって現像剤としてのトナーによりトナー像として顕像化される。 The optical scanning device 101 emits a laser beam L based on the obtained image information and irradiates the photosensitive drum 103 of the process cartridge 102 with the laser beam L to scan the surface of the photosensitive drum 103. As a result, a latent image is formed on the photosensitive drum 103, and this latent image is visualized as a toner image by the toner as a developer by the process cartridge 102.
 一方、シート積載板104上に積載されたシートPは、給送ローラ105によって1枚ずつ分離されながら給送され、搬送ローラ106によって感光ドラム103と転写ローラ107とのニップ部に搬送される。ニップ部に搬送されたシートP上には、感光ドラム103上に形成されたトナー像が転写ローラ107によって転写される。 On the other hand, the sheet P loaded on the sheet loading plate 104 is fed while being separated one by one by the feeding roller 105, and is conveyed to the nip portion between the photosensitive drum 103 and the transfer roller 107 by the conveying roller 106. The toner image formed on the photosensitive drum 103 is transferred by the transfer roller 107 onto the sheet P conveyed to the nip portion.
 未定着のトナー像が転写されたシートPは、さらに下流側の定着器108に搬送される。定着器108は、内部に加熱体を有し、シートPを加熱及び加圧することにより、トナー像を画像としてシートPに定着させる。その後、シートPは、排出ローラ109によって機外に排出される。 The sheet P to which the unfixed toner image is transferred is further conveyed to the fixing device 108 on the downstream side. The fuser 108 has a heating body inside, and by heating and pressurizing the sheet P, the toner image is fixed to the sheet P as an image. After that, the sheet P is discharged to the outside of the machine by the discharge roller 109.
 図2Aは、第1実施形態に係る光走査装置101を模式的に示す斜視図である。光走査装置101は、筺体203と、筺体203に支持された、光源201、シリンドリカルレンズ202、fθレンズ205、及び光偏向器の一例であるスキャナモータ1と、を有する。筺体203には、光学絞り204が形成されている。光源201から出射されたレーザ光Lは、シリンドリカルレンズ202によって集光され、光学絞り204によって所定のビーム径に制限される。 FIG. 2A is a perspective view schematically showing the optical scanning device 101 according to the first embodiment. The optical scanning device 101 includes a housing 203, a light source 201 supported by the housing 203, a cylindrical lens 202, an fθ lens 205, and a scanner motor 1 which is an example of an optical deflector. An optical diaphragm 204 is formed on the housing 203. The laser beam L emitted from the light source 201 is focused by the cylindrical lens 202 and is limited to a predetermined beam diameter by the optical diaphragm 204.
 光学絞り204を通過したレーザ光Lは、スキャナモータ1によって偏向され、fθレンズ205を通過後、図1の感光ドラム103上に集光し静電潜像を形成する。 The laser beam L that has passed through the optical diaphragm 204 is deflected by the scanner motor 1, passes through the fθ lens 205, and then is focused on the photosensitive drum 103 of FIG. 1 to form an electrostatic latent image.
 なお、光源201やシリンドリカルレンズ202、スキャナモータ1等は筺体203に収容されている。筺体203の開口部は、樹脂や金属製の光学蓋(不図示)によって閉塞される。 The light source 201, the cylindrical lens 202, the scanner motor 1, etc. are housed in the housing 203. The opening of the housing 203 is closed by an optical lid (not shown) made of resin or metal.
 図2Bは、第1実施形態に係るスキャナモータ1の断面図である。図2Bには、スキャナモータ1を回転中心を含む面で切断したスキャナモータ1の切断面を模式的に図示している。スキャナモータ1は、板金で構成された基板4、基板4に固定された軸受スリーブ5、ロータマグネット6を有するロータ7、及び軸受スリーブ5に回転可能に支持され、ロータ7と一体の回転軸8を備える。また、スキャナモータ1は、ロータ7と一体の台座2、基板4に固定されたステータコイル9、及び台座2を介して回転軸8に固定されたポリゴンミラー3を備える。ロータ7及びステータコイル9で、ポリゴンミラー3を回転駆動する駆動源の一例であるモータ10が構成されている。ポリゴンミラー3は、回転することにより、図2Aに示すレーザ光Lを偏向するものである。ポリゴンミラー3は、樹脂で形成された基体である樹脂体30と、樹脂体30の各側面に形成された反射膜31と、を有する。 FIG. 2B is a cross-sectional view of the scanner motor 1 according to the first embodiment. FIG. 2B schematically shows a cut surface of the scanner motor 1 obtained by cutting the scanner motor 1 at a surface including a center of rotation. The scanner motor 1 is rotatably supported by a substrate 4 made of sheet metal, a bearing sleeve 5 fixed to the substrate 4, a rotor 7 having a rotor magnet 6, and a bearing sleeve 5, and a rotating shaft 8 integrated with the rotor 7. To prepare for. Further, the scanner motor 1 includes a pedestal 2 integrated with the rotor 7, a stator coil 9 fixed to the substrate 4, and a polygon mirror 3 fixed to the rotating shaft 8 via the pedestal 2. The rotor 7 and the stator coil 9 constitute a motor 10 which is an example of a drive source for rotationally driving the polygon mirror 3. The polygon mirror 3 deflects the laser beam L shown in FIG. 2A by rotating. The polygon mirror 3 has a resin body 30 which is a substrate made of resin, and a reflective film 31 formed on each side surface of the resin body 30.
 図3A及び図3Bは、第1実施形態に係るポリゴンミラー3における樹脂体30の斜視図である。図3Aは、ポリゴンミラー3における樹脂体30の上面斜視図、図3Bは、ポリゴンミラー3における樹脂体30の下面斜視図である。図4Aは、第1実施形態に係る樹脂体30の断面図である。図4Aには、図3AのIV-IV線に沿う樹脂体30の断面を図示している。図4Bは、図4Aに示す樹脂体30の要部の拡大図である。 3A and 3B are perspective views of the resin body 30 in the polygon mirror 3 according to the first embodiment. 3A is a top perspective view of the resin body 30 in the polygon mirror 3, and FIG. 3B is a bottom perspective view of the resin body 30 in the polygon mirror 3. FIG. 4A is a cross-sectional view of the resin body 30 according to the first embodiment. FIG. 4A illustrates a cross section of the resin body 30 along the line IV-IV of FIG. 3A. FIG. 4B is an enlarged view of a main part of the resin body 30 shown in FIG. 4A.
 樹脂体30は、角柱状、第1実施形態では四角柱状の樹脂体である。樹脂体30の樹脂材料には、熱可塑性樹脂を用いるのが好ましい。熱可塑性樹脂の中でも、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリカーボネート、あるいは、アクリルを用いるのが好ましい。樹脂体30は、第1底面である天面301と、第2底面である底面302と、複数、第1実施形態では4つの側面351~354と、を有する。各側面351~354は平面である。各側面351~354には、図2A及び図2Bに示す反射膜31が設けられている。複数の側面351~354のうちの1つ、例えば側面351が第1側面である。この場合、側面352~354は、それぞれ第2側面、第3側面及び第4側面のいずれかである。 The resin body 30 is a prismatic resin body, and in the first embodiment, it is a square columnar resin body. It is preferable to use a thermoplastic resin as the resin material of the resin body 30. Among the thermoplastic resins, cycloolefin polymers, cycloolefin copolymers, polycarbonates, or acrylics are preferably used. The resin body 30 has a top surface 301 which is a first bottom surface, a bottom surface 302 which is a second bottom surface, and a plurality of side surfaces 351 to 354 in the first embodiment. Each side surface 351 to 354 is a flat surface. Reflective films 31 shown in FIGS. 2A and 2B are provided on each of the side surfaces 351 to 354. One of the plurality of side surfaces 351 to 354, for example, the side surface 351 is the first side surface. In this case, the side surfaces 352 to 354 are any of the second side surface, the third side surface, and the fourth side surface, respectively.
 天面301は、第1平面である平面310を有する。平面310は、外形が多角形であり、複数の辺を有する。本実施形態では平面310は、外形が四角形であり、4つの辺S11~S14を有する。 The top surface 301 has a plane 310 which is a first plane. The plane 310 has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane 310 has a quadrangular outer shape and has four sides S11 to S14.
 底面302は、第2平面である平面320を有する。平面320は、外形が多角形であり、複数の辺を有する。本実施形態では平面320は、平面310と同様、外形が四角形であり、4つの辺S21~S24を有する。即ち、平面310の外形と平面320の外形とは合同である。 The bottom surface 302 has a plane 320 which is a second plane. The plane 320 has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane 320 has a quadrangular outer shape and has four sides S21 to S24 like the plane 310. That is, the outer shape of the plane 310 and the outer shape of the plane 320 are congruent.
 複数の辺S11~S14,S21~S24は、同一の長さである。よって、各平面310,320の外形は、正方形である。辺S11,S21の長さ方向を、方向X1とする。辺S12,S22の長さ方向を、方向X2とする。辺S13,S23の長さ方向を、方向X3とする。辺S14,S24の長さ方向を、方向X4とする。平面310と平面320とは平行である。平面310と垂直な方向を方向Z1とする。よって、方向Z1は、平面320と垂直な方向でもある。方向Z1に視て、辺S11及び辺S21は、側面351と同じ位置にある。方向Z1に視て、辺S12及び辺S22は、側面352と同じ位置にある。方向Z1に視て、辺S13及び辺S23は、側面353と同じ位置にある。方向Z1に視て、辺S14及び辺S24は、側面354と同じ位置にある。 The plurality of sides S11 to S14 and S21 to S24 have the same length. Therefore, the outer shape of each of the planes 310 and 320 is a square. The length direction of the sides S11 and S21 is defined as the direction X1. The length direction of the sides S12 and S22 is defined as the direction X2. The length direction of the sides S13 and S23 is defined as the direction X3. The length direction of the sides S14 and S24 is defined as the direction X4. The plane 310 and the plane 320 are parallel. The direction perpendicular to the plane 310 is defined as the direction Z1. Therefore, the direction Z1 is also a direction perpendicular to the plane 320. When viewed in the direction Z1, the side S11 and the side S21 are at the same position as the side surface 351. The side S12 and the side S22 are at the same position as the side surface 352 when viewed in the direction Z1. When viewed in the direction Z1, the side S13 and the side S23 are at the same position as the side surface 353. When viewed in the direction Z1, the side S14 and the side S24 are at the same position as the side surface 354.
 平面310は、四角形であるので、2つの対角線L11,L12がある。平面320は、四角形であるので、2つの対角線L21,L22がある。2つの対角線L11,L12の交点と、2つの対角線L21,L22の交点とを通過する仮想線C0が、樹脂体30の回転中心線である。仮想線C0を含む位置に、円柱状の貫通孔16が形成されている。つまり、貫通孔16の中心線が仮想線C0である。貫通孔16には、図2Bに示す回転軸8が挿入される。 Since the plane 310 is a quadrangle, there are two diagonal lines L11 and L12. Since the plane 320 is a quadrangle, there are two diagonal lines L21 and L22. The virtual line C0 passing through the intersection of the two diagonal lines L11 and L12 and the intersection of the two diagonal lines L21 and L22 is the rotation center line of the resin body 30. A columnar through hole 16 is formed at a position including the virtual line C0. That is, the center line of the through hole 16 is the virtual line C0. The rotation shaft 8 shown in FIG. 2B is inserted into the through hole 16.
 天面301は、平面310に対して凹む、平面310の各辺S11~S14に沿う少なくとも1つの第1溝を有する。各辺S11~S14に沿う少なくとも1つの第1溝は、本実施形態では1つの第1溝である。即ち、辺S11に沿う少なくとも1つの第1溝は、1つの溝311である。また、辺S12に沿う少なくとも1つの第1溝は、1つの溝312である。また、辺S13に沿う少なくとも1つの第1溝は、1つの溝313である。また、辺S14に沿う少なくとも1つの第1溝は、1つの溝314である。 The top surface 301 has at least one first groove along each side S11 to S14 of the plane 310, which is recessed with respect to the plane 310. At least one first groove along each side S11 to S14 is one first groove in this embodiment. That is, at least one first groove along the side S11 is one groove 311. Further, at least one first groove along the side S12 is one groove 312. Further, at least one first groove along the side S13 is one groove 313. Further, at least one first groove along the side S14 is one groove 314.
 溝311は、貫通孔16、即ち仮想線C0と、辺S11との間に配置されている。溝312は、貫通孔16、即ち仮想線C0と、辺S12との間に配置されている。溝313は、貫通孔16、即ち仮想線C0と、辺S13との間に配置されている。溝314は、貫通孔16、即ち仮想線C0と、辺S14との間に配置されている。 The groove 311 is arranged between the through hole 16, that is, the virtual line C0 and the side S11. The groove 312 is arranged between the through hole 16, that is, the virtual line C0 and the side S12. The groove 313 is arranged between the through hole 16, that is, the virtual line C0 and the side S13. The groove 314 is arranged between the through hole 16, that is, the virtual line C0 and the side S14.
 底面302は、平面320に対して凹む、平面320の各辺S21~S24に沿う少なくとも1つの第2溝を有する。各辺S21~S24に沿う少なくとも1つの第2溝は、本実施形態では1つの第2溝である。即ち、辺S21に沿う少なくとも1つの第2溝は、1つの溝321である。また、辺S22に沿う少なくとも1つの第2溝は、1つの溝322である。また、辺S23に沿う少なくとも1つの第2溝は、1つの溝323である。また、辺S24に沿う少なくとも1つの第2溝は、1つの溝324である。 The bottom surface 302 has at least one second groove along each side S21 to S24 of the plane 320, which is recessed with respect to the plane 320. At least one second groove along each side S21 to S24 is one second groove in this embodiment. That is, at least one second groove along the side S21 is one groove 321. Further, at least one second groove along the side S22 is one groove 322. Further, at least one second groove along the side S23 is one groove 323. Further, at least one second groove along the side S24 is one groove 324.
 溝321は、貫通孔16、即ち仮想線C0と、辺S21との間に配置されている。溝322は、貫通孔16、即ち仮想線C0と、辺S22との間に配置されている。溝323は、貫通孔16、即ち仮想線C0と、辺S23との間に配置されている。溝324は、貫通孔16、即ち仮想線C0と、辺S24との間に配置されている。 The groove 321 is arranged between the through hole 16, that is, the virtual line C0 and the side S21. The groove 322 is arranged between the through hole 16, that is, the virtual line C0 and the side S22. The groove 323 is arranged between the through hole 16, that is, the virtual line C0 and the side S23. The groove 324 is arranged between the through hole 16, that is, the virtual line C0 and the side S24.
 溝311は、辺S11の近傍に配置されている。溝312は、辺S12の近傍に配置されている。溝313は、辺S13の近傍に配置されている。溝314は、辺S14の近傍に配置されている。溝321は、辺S21の近傍に配置されている。溝322は、辺S22の近傍に配置されている。溝323は、辺S23の近傍に配置されている。溝324は、辺S24の近傍に配置されている。 The groove 311 is arranged in the vicinity of the side S11. The groove 312 is arranged in the vicinity of the side S12. The groove 313 is arranged in the vicinity of the side S13. The groove 314 is arranged in the vicinity of the side S14. The groove 321 is arranged in the vicinity of the side S21. The groove 322 is arranged in the vicinity of the side S22. The groove 323 is arranged in the vicinity of the side S23. The groove 324 is arranged in the vicinity of the side S24.
 各溝311~314は、対角線L11,L12と交差しない位置に配置されている。各溝321~324は、対角線L21,L22と交差しない位置に配置されている。天面301は、仮想線C0に関して回転対称な形状である。また、天面301は、対角線L11,L12に関して線対称な形状である。底面302は、仮想線C0に関して回転対称な形状である。また、底面302は、対角線L21,L22に関して線対称な形状である。天面301と底面302とは、仮想線C0に直交する仮想面に関して面対称な形状である。 Each groove 311 to 314 is arranged at a position that does not intersect the diagonal lines L11 and L12. The grooves 321 to 324 are arranged at positions that do not intersect the diagonal lines L21 and L22. The top surface 301 has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the top surface 301 has a shape symmetrical with respect to the diagonal lines L11 and L12. The bottom surface 302 has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the bottom surface 302 has a shape that is line-symmetrical with respect to the diagonal lines L21 and L22. The top surface 301 and the bottom surface 302 have plane-symmetrical shapes with respect to the virtual surface orthogonal to the virtual line C0.
 次に、樹脂体30を製造するのに用いる金型について説明する。図5は、第1実施形態に係る金型140の断面模式図である。図5には、型締めした状態の金型140を図示している。金型140は、樹脂体30を形成するためのキャビティ50を有する。金型140を型締めした状態で、キャビティ50が画成される。図6A及び図6Bは、第1実施形態に係る金型におけるキャビティ50の斜視図である。図6Aは、キャビティ50の上面斜視図、図6Bは、キャビティ50の下面斜視図である。 Next, the mold used for manufacturing the resin body 30 will be described. FIG. 5 is a schematic cross-sectional view of the mold 140 according to the first embodiment. FIG. 5 illustrates the mold 140 in a molded state. The mold 140 has a cavity 50 for forming the resin body 30. The cavity 50 is defined in a state where the mold 140 is molded. 6A and 6B are perspective views of the cavity 50 in the mold according to the first embodiment. 6A is a top perspective view of the cavity 50, and FIG. 6B is a bottom perspective view of the cavity 50.
 キャビティ50は、角柱状、第1実施形態では四角柱状の空間である。金型140は、樹脂体30の天面301を転写する、第1底面形成面である天面形成面501と、樹脂体30の底面302を転写する、第2底面形成面である底面形成面502と、を有する。また、金型140は、樹脂体30の複数の側面351~354を転写する、複数、第1実施形態では4つの側面形成面551~554を有する。複数の側面形成面551~554のうちいずれか1つ、例えば側面形成面551が第1側面形成面である。この場合、側面形成面552~554は、それぞれ第2側面形成面、第3側面形成面及び第4側面形成面のいずれかである。これら複数の面501,502,551~554でキャビティ50が画成される。各側面形成面551~554は平面である。 The cavity 50 is a prismatic space, and in the first embodiment, it is a square columnar space. The mold 140 has a top surface forming surface 501 which is a first bottom surface forming surface which transfers the top surface 301 of the resin body 30, and a bottom surface forming surface which is a second bottom surface forming surface which transfers the bottom surface 302 of the resin body 30. 502 and. Further, the mold 140 has a plurality of side surface forming surfaces 551 to 554, which transfer a plurality of side surfaces 351 to 354 of the resin body 30, in the first embodiment. Any one of the plurality of side surface forming surfaces 551 to 554, for example, the side surface forming surface 551 is the first side surface forming surface. In this case, the side surface forming surfaces 552 to 554 are any of the second side surface forming surface, the third side surface forming surface, and the fourth side surface forming surface, respectively. The cavity 50 is defined by these plurality of surfaces 501, 502, 551 to 554. Each side surface forming surface 551 to 554 is a flat surface.
 金型140は、ランナストリッパプレート141と、固定側型板142と、可動側型板143と、を有する。ランナストリッパプレート141と固定側型板142とでランナ580が画成される。 The mold 140 has a runner stencil plate 141, a fixed side stencil 142, and a movable side stencil 143. The runner 580 is defined by the runner stripper plate 141 and the fixed side template 142.
 固定側型板142は、上記した天面形成面501と、キャビティ50に溶融樹脂を注入するための複数のゲート571~574と、金型穴1421と、アンギュラピン1422と、を含む。金型穴1421は、樹脂体30の貫通孔16と同軸に設けられている。つまり、金型穴1421の中心線が仮想線C0である。本実施形態におけるゲートの数は、側面形成面551~554と同数の4つであるのが好ましい。これにより、後述する射出工程において、樹脂体30の圧力分布の対称性が高くなり、光の反射面となる側面351~354の形状精度が高まる。 The fixed-side template 142 includes the above-mentioned top surface forming surface 501, a plurality of gates 571 to 574 for injecting molten resin into the cavity 50, a mold hole 1421, and an angular pin 1422. The mold hole 1421 is provided coaxially with the through hole 16 of the resin body 30. That is, the center line of the mold hole 1421 is the virtual line C0. The number of gates in this embodiment is preferably four, which is the same as the number of side surface forming surfaces 551 to 554. As a result, in the injection process described later, the symmetry of the pressure distribution of the resin body 30 becomes high, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is improved.
 また、各ゲート571~574と各側面形成面551~554とは、金型穴1421の中心軸線である仮想線C0まわりの位相が一致しているのが好ましい。これにより、射出工程において、樹脂体30の圧力分布の対称性が更に高くなり、光の反射面となる側面351~354の形状精度が更に向上する。また、ゲート571~574間に発生するウェルドを、図2Aのレーザ光Lの走査範囲外である側面351~354の端部に誘導することができる。 Further, it is preferable that the gates 571 to 574 and the side surface forming surfaces 551 to 554 have the same phase around the virtual line C0 which is the central axis of the mold hole 1421. As a result, in the injection step, the symmetry of the pressure distribution of the resin body 30 is further improved, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is further improved. Further, the weld generated between the gates 571 and 574 can be guided to the end of the side surface 351 to 354 which is outside the scanning range of the laser beam L in FIG. 2A.
 可動側型板143は、可動側コア1431と、スライドコア144と、エジェクタプレート145と、を有する。可動側コア1431は、上記した底面形成面502と、金型軸1432を含む。スライドコア144は、側面形成面551~554を含み、可動側型板143の開閉移動に伴って、アンギュラピン1422に案内されて仮想線C0と直交する方向にスライドする。金型軸1432は、樹脂体30の貫通孔16を形成するためのものである。 The movable side template 143 has a movable side core 1431, a slide core 144, and an ejector plate 145. The movable side core 1431 includes the bottom surface forming surface 502 described above and the mold shaft 1432. The slide core 144 includes the side surface forming surfaces 551 to 554, and is guided by the angular pin 1422 and slides in a direction orthogonal to the virtual line C0 as the movable side template 143 opens and closes. The mold shaft 1432 is for forming the through hole 16 of the resin body 30.
 エジェクタプレート145は、側面形成面551~554と同数の4本のエジェクタピン1451を有していることが好ましい。これにより、金型140から樹脂体30を離型させる工程においてエジェクタピン1451を突出させた際に、力を樹脂体30に均等に伝えることができ、離型に伴う樹脂体30の変形を抑えることができる。 The ejector plate 145 preferably has the same number of four ejector pins 1451 as the side surface forming surfaces 551 to 554. As a result, when the ejector pin 1451 is projected in the step of releasing the resin body 30 from the mold 140, the force can be evenly transmitted to the resin body 30, and the deformation of the resin body 30 due to the mold release is suppressed. be able to.
 天面形成面501は、平面310を形成する第1平面形成面である平面形成面510を有する。平面形成面510は、外形が多角形であり、複数の辺を有する。本実施形態では平面形成面510は、外形が四角形であり、4つの辺S51~S54を有する。 The top surface forming surface 501 has a plane forming surface 510 which is a first plane forming surface forming the plane 310. The plane forming surface 510 has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane forming surface 510 has a quadrangular outer shape and has four sides S51 to S54.
 底面形成面502は、平面320を形成する第2平面形成面である平面形成面520を有する。平面形成面520は、外形が多角形であり、複数の辺を有する。本実施形態では平面形成面520は、平面形成面510と同様、外形が四角形であり、4つの辺S61~S64を有する。即ち、平面形成面510の外形と平面形成面520の外形とは合同である。 The bottom surface forming surface 502 has a plane forming surface 520 which is a second plane forming surface forming the plane 320. The plane forming surface 520 has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane forming surface 520 has a quadrangular outer shape and has four sides S61 to S64, like the plane forming surface 510. That is, the outer shape of the plane forming surface 510 and the outer shape of the plane forming surface 520 are congruent.
 複数の辺S51~S54,S61~S64は、同一の長さである。よって、各平面形成面510,520の外形は、正方形である。辺S51,S61の長さ方向を、方向X51とする。辺S52,S62の長さ方向を、方向X52とする。辺S53,S63の長さ方向を、方向X53とする。辺S54,S64の長さ方向を、方向X54とする。平面形成面510と平面形成面520とは平行である。平面形成面510と垂直な方向を方向Z5とする。よって、方向Z5は、平面形成面520と垂直な方向でもある。方向Z5に視て、辺S51及び辺S61は、側面形成面551と同じ位置にある。方向Z5に視て、辺S52及び辺S62は、側面形成面552と同じ位置にある。方向Z5に視て、辺S53及び辺S63は、側面形成面553と同じ位置にある。方向Z5に視て、辺S54及び辺S64は、側面形成面554と同じ位置にある。 The plurality of sides S51 to S54 and S61 to S64 have the same length. Therefore, the outer shapes of the plane forming surfaces 510 and 520 are square. The length direction of the sides S51 and S61 is defined as the direction X51. The length direction of the sides S52 and S62 is defined as the direction X52. The length direction of the sides S53 and S63 is defined as the direction X53. The length direction of the sides S54 and S64 is defined as the direction X54. The plane forming surface 510 and the plane forming surface 520 are parallel to each other. The direction perpendicular to the plane forming surface 510 is defined as the direction Z5. Therefore, the direction Z5 is also a direction perpendicular to the plane forming surface 520. When viewed in the direction Z5, the sides S51 and S61 are at the same positions as the side surface forming surface 551. When viewed in the direction Z5, the sides S52 and S62 are at the same positions as the side surface forming surface 552. When viewed in the direction Z5, the sides S53 and S63 are at the same positions as the side surface forming surface 553. When viewed in the direction Z5, the sides S54 and S64 are at the same positions as the side surface forming surface 554.
 平面形成面510は、四角形であるので、2つの対角線L51,L52がある。平面形成面520は、四角形であるので、2つの対角線L61,L62がある。 Since the plane forming surface 510 is a quadrangle, there are two diagonal lines L51 and L52. Since the plane forming surface 520 is a quadrangle, there are two diagonal lines L61 and L62.
 天面形成面501は、平面形成面510に対して突出する、平面形成面510の各辺S51~S54に沿う少なくとも1つの第1突出部を有する。各辺S51~S54に沿う少なくとも1つの第1突出部は、本実施形態では1つの第1突出部である。即ち、辺S51に沿う少なくとも1つの第1突出部は、1つの突出部511である。また、辺S52に沿う少なくとも1つの第1突出部は、1つの突出部512である。また、辺S53に沿う少なくとも1つの第1突出部は、1つの突出部513である。また、辺S54に沿う少なくとも1つの第1突出部は、1つの突出部514である。各突出部511~514は、樹脂体30の各溝311~314を形成する突出部である。 The top surface forming surface 501 has at least one first protruding portion along each side S51 to S54 of the plane forming surface 510, which protrudes from the plane forming surface 510. At least one first protrusion along each side S51 to S54 is one first protrusion in the present embodiment. That is, at least one first protrusion along the side S51 is one protrusion 511. Further, at least one first protruding portion along the side S52 is one protruding portion 512. Further, at least one first protruding portion along the side S53 is one protruding portion 513. Further, at least one first protruding portion along the side S54 is one protruding portion 514. Each of the projecting portions 511 to 514 is a projecting portion that forms the grooves 311 to 314 of the resin body 30.
 突出部511は、金型軸1432、即ち仮想線C0と、辺S51との間に配置されている。突出部512は、金型軸1432、即ち仮想線C0と、辺S52との間に配置されている。突出部513は、金型軸1432、即ち仮想線C0と、辺S53との間に配置されている。突出部514は、金型軸1432、即ち仮想線C0と、辺S54との間に配置されている。 The protrusion 511 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S51. The protrusion 512 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S52. The protrusion 513 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S53. The protrusion 514 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S54.
 底面形成面502は、平面形成面520に対して突出する、平面形成面520の各辺S61~S64に沿う少なくとも1つの第2突出部を有する。各辺S61~S64に沿う少なくとも1つの第2突出部は、本実施形態では1つの第2突出部である。即ち、辺S61に沿う少なくとも1つの第2突出部は、1つの突出部521である。また、辺S62に沿う少なくとも1つの第2突出部は、1つの突出部522である。また、辺S63に沿う少なくとも1つの第2突出部は、1つの突出部523である。また、辺S64に沿う少なくとも1つの第2突出部は、1つの突出部524である。各突出部521~524は、樹脂体30の各溝321~324を形成する突出部である。 The bottom surface forming surface 502 has at least one second protruding portion along each side S61 to S64 of the plane forming surface 520, which protrudes with respect to the plane forming surface 520. At least one second protrusion along each side S61 to S64 is one second protrusion in the present embodiment. That is, at least one second protrusion along the side S61 is one protrusion 521. Further, at least one second protrusion along the side S62 is one protrusion 522. Further, at least one second protruding portion along the side S63 is one protruding portion 523. Further, at least one second protrusion along the side S64 is one protrusion 524. Each protrusion 521 to 524 is a protrusion that forms each groove 321 to 324 of the resin body 30.
 突出部521は、金型軸1432、即ち仮想線C0と、辺S61との間に配置されている。突出部522は、金型軸1432、即ち仮想線C0と、辺S62との間に配置されている。突出部523は、金型軸1432、即ち仮想線C0と、辺S63との間に配置されている。突出部524は、金型軸1432、即ち仮想線C0と、辺S64との間に配置されている。 The protrusion 521 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S61. The protrusion 522 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S62. The protrusion 523 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S63. The protrusion 524 is arranged between the mold shaft 1432, that is, the virtual line C0 and the side S64.
 突出部511は、辺S51の近傍に配置されている。突出部512は、辺S52の近傍に配置されている。突出部513は、辺S53の近傍に配置されている。突出部514は、辺S54の近傍に配置されている。突出部521は、辺S61の近傍に配置されている。突出部522は、辺S62の近傍に配置されている。突出部523は、辺S63の近傍に配置されている。突出部524は、辺S64の近傍に配置されている。各突出部511~514は、対角線L51,L52と交差しない位置に配置されている。各突出部521~524は、対角線L61,L62と交差しない位置に配置されている。 The protrusion 511 is arranged in the vicinity of the side S51. The protrusion 512 is arranged in the vicinity of the side S52. The protrusion 513 is arranged in the vicinity of the side S53. The protrusion 514 is arranged in the vicinity of the side S54. The protrusion 521 is arranged in the vicinity of the side S61. The protrusion 522 is arranged in the vicinity of the side S62. The protrusion 523 is arranged in the vicinity of the side S63. The protrusion 524 is arranged in the vicinity of the side S64. The protrusions 511 to 514 are arranged at positions that do not intersect the diagonal lines L51 and L52. The protrusions 521 to 524 are arranged at positions that do not intersect the diagonal lines L61 and L62.
 次に、ポリゴンミラー3の製造方法について説明する。図7A~図7C及び図8A~図8Cは、第1実施形態に係るポリゴンミラー3における樹脂体30の製造方法の各工程を示す説明図である。図7Aに示す型開き工程において、金型140を型開きする。次に、図7Bに示す型締め工程において、金型140を型締めする。このとき、可動側型板143の金型軸1432が固定側型板142の金型穴1421と嵌合されることで、固定側型板142と可動側型板143との位置が合わせられ、金型140内にキャビティ50が画成される。 Next, the manufacturing method of the polygon mirror 3 will be described. 7A to 7C and FIGS. 8A to 8C are explanatory views showing each step of the method for manufacturing the resin body 30 in the polygon mirror 3 according to the first embodiment. In the mold opening step shown in FIG. 7A, the mold 140 is opened. Next, in the mold clamping step shown in FIG. 7B, the mold 140 is molded. At this time, the mold shaft 1432 of the movable side mold plate 143 is fitted with the mold hole 1421 of the fixed side mold plate 142, so that the positions of the fixed side mold plate 142 and the movable side mold plate 143 are aligned. The cavity 50 is defined in the mold 140.
 次に、図7Cに示す射出工程において、不図示の射出成型機により、ランナ580及び図6Aのゲート571~574を通じてキャビティ50に溶融樹脂M1を射出する。 Next, in the injection process shown in FIG. 7C, the molten resin M1 is injected into the cavity 50 through the runner 580 and the gates 571 to 574 of FIG. 6A by an injection molding machine (not shown).
 次に、図8Aに示す冷却工程において、金型140を、溶融樹脂M1の温度よりも低い所定温度に設定することで、溶融樹脂M1を冷却固化させ、樹脂体30を形成する。金型140は、例えば水冷式であり、水により所定温度に冷却される。 Next, in the cooling step shown in FIG. 8A, the molten resin M1 is cooled and solidified by setting the mold 140 to a predetermined temperature lower than the temperature of the molten resin M1 to form the resin body 30. The mold 140 is, for example, a water-cooled type, and is cooled to a predetermined temperature by water.
 樹脂体30を十分に冷却した後、図8Bに示す型開き工程において、金型140を開く。このとき、樹脂体30の天面301から固定側型板142の天面形成面501が離間し、樹脂体30の図3A及び図3Bに示す側面351~354からスライドコア144の図6A及び図6Bに示す側面形成面551~554が離間する。また、樹脂体30に接続されたランナ32が、ランナストリッパプレート141によって樹脂体30から分離される。 After the resin body 30 is sufficiently cooled, the mold 140 is opened in the mold opening step shown in FIG. 8B. At this time, the top surface forming surface 501 of the fixed side template 142 is separated from the top surface 301 of the resin body 30, and FIGS. 6A and 6A of the slide core 144 are separated from the side surfaces 351 to 354 shown in FIGS. 3A and 3B of the resin body 30. The side surface forming surfaces 551 to 554 shown in 6B are separated from each other. Further, the runner 32 connected to the resin body 30 is separated from the resin body 30 by the runner stripper plate 141.
 そして図8Cに示す離型工程において、エジェクタプレート145を可動側コア1431に向けて前進させてエジェクタピン1451を可動側コア1431から突出させ、可動側コア1431の底面形成面502から樹脂体30の底面302を離間させる。これにより、樹脂体30を金型140から離型させる。 Then, in the mold release step shown in FIG. 8C, the ejector plate 145 is advanced toward the movable core 1431 to project the ejector pin 1451 from the movable core 1431, and the resin body 30 is formed from the bottom surface forming surface 502 of the movable core 1431. Separate the bottom surface 302. As a result, the resin body 30 is released from the mold 140.
 その後、蒸着工程において、図3A及び図3Bに示す樹脂体30の側面351~354にアルミニウム等の金属を蒸着することで、側面351~354に、光の反射面となる図2A及び図2Bの反射膜31を形成する。これにより、ポリゴンミラー3が製造される。 After that, in the vapor deposition step, by vapor-depositing a metal such as aluminum on the side surfaces 351 to 354 of the resin body 30 shown in FIGS. 3A and 3B, the side surfaces 351 to 354 serve as light reflecting surfaces of FIGS. 2A and 2B. The reflective film 31 is formed. As a result, the polygon mirror 3 is manufactured.
 ここで、仮に突出部511~514,521~524が無い金型を用いて、溝311~314,321~324が無い比較例の樹脂体を製造する場合について説明する。冷却工程において、樹脂体の側面における長さ方向の中央部と端部とで樹脂の固化速度に差が生じる。つまり、側面における長さ方向の端部の方が中央部よりも相対的に早く固化する。このため、側面における長さ方向の端部が中央部よりも樹脂密度が高くなり、比較例の樹脂体を金型から離型させた場合、側面の端部が中央部に対して反り上がるように、比較例の樹脂体の側面に変形が生じる。 Here, a case will be described in which a resin body of a comparative example having no grooves 311 to 314, 321 to 324 is manufactured by using a mold having no protrusions 511 to 514, 521 to 524. In the cooling step, there is a difference in the solidification rate of the resin between the central portion and the end portion in the length direction on the side surface of the resin body. That is, the end portion in the length direction on the side surface solidifies relatively faster than the central portion. Therefore, the end portion in the length direction on the side surface has a higher resin density than the central portion, and when the resin body of the comparative example is released from the mold, the end portion on the side surface warps with respect to the central portion. In addition, the side surface of the resin body of the comparative example is deformed.
 そこで、第1実施形態では、樹脂体30の側面351~354における樹脂密度を均一にするために、突出部511~514,521~524を有する金型140を用いて樹脂体30を成形する。樹脂体30の天面301及び底面302において、対角線L11,L12,L21,L22と交差しない溝311~314,321~324により、側面351~354における方向X1~X4の中央部近傍の表面積が増える。これにより、側面351~354における方向X1~X4の中央部の冷却固化が促進され、側面351~354における方向X1~X4の端部と中央部との樹脂の固化速度の差が小さくなる。これにより、側面351~354における方向X1~X4の端部と中央部との樹脂の密度差を低減することができ、側面351~354の方向X1~X4の形状誤差を低減することができる。これにより、樹脂体30の側面351~354の形状精度が高まる。 Therefore, in the first embodiment, the resin body 30 is molded using a mold 140 having protrusions 511 to 514, 521 to 524 in order to make the resin densities on the side surfaces 351 to 354 of the resin body 30 uniform. On the top surface 301 and the bottom surface 302 of the resin body 30, the grooves 311 to 314, 321 to 324 that do not intersect the diagonal lines L11, L12, L21, and L22 increase the surface area near the center of the directions X1 to X4 on the side surfaces 351 to 354. .. As a result, cooling solidification of the central portion of the directions X1 to X4 on the side surfaces 351 to 354 is promoted, and the difference in the solidification rate of the resin between the end portions and the central portion of the directions X1 to X4 on the side surfaces 351 to 354 becomes small. Thereby, the density difference of the resin between the end portion and the central portion of the directions X1 to X4 on the side surfaces 351 to 354 can be reduced, and the shape error of the directions X1 to X4 on the side surfaces 351 to 354 can be reduced. As a result, the shape accuracy of the side surfaces 351 to 354 of the resin body 30 is improved.
 本実施形態では、樹脂体30の各溝311~314は、各溝311~314が沿う各辺S11~S14に平行に直線状に延びる溝である。同様に、樹脂体30の各溝321~324は、各溝321~324が沿う各辺S21~S24に平行に直線状に延びる溝である。即ち、金型140の各突出部511~514は、各突出部511~514が沿う各辺S51~S54に平行に直線状に延びる突出部である。同様に、金型140の各突出部521~524は、各突出部521~524が沿う各辺S61~S64に平行に直線状に延びる突出部である。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 In the present embodiment, the grooves 311 to 314 of the resin body 30 are grooves extending linearly in parallel with the sides S11 to S14 along which the grooves 311 to 314 are aligned. Similarly, the grooves 321 to 324 of the resin body 30 are grooves extending linearly in parallel with the sides S21 to S24 along which the grooves 321 to 324 are aligned. That is, each of the protrusions 511 to 514 of the mold 140 is a protrusion that extends linearly in parallel with each side S51 to S54 along which the protrusions 511 to 514 are aligned. Similarly, each of the protrusions 521 to 524 of the mold 140 is a protrusion that extends linearly in parallel with each side S61 to S64 along which the protrusions 521 to 524 are aligned. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 また、第1実施形態では、樹脂体30を方向Z1に視て、1辺S11に沿う溝311と1辺S21に沿う溝321とが重なり合う。また、樹脂体30を方向Z1に視て、1辺S12に沿う溝312と1辺S22に沿う溝322とが重なり合う。また、樹脂体30を方向Z1に視て、1辺S13に沿う溝313と1辺S23に沿う溝323とが重なり合う。また、樹脂体30を方向Z1に視て、1辺S14に沿う溝314と1辺S24に沿う溝324とが重なり合う。即ち、型締めされた金型140を方向Z5に視て、1辺S51に沿う突出部511と1辺S61に沿う突出部521とが重なり合う。また、型締めされた金型140を方向Z5に視て、1辺S52に沿う突出部512と1辺S62に沿う突出部522とが重なり合う。また、型締めされた金型140を方向Z5に視て、1辺S53に沿う突出部513と1辺S63に沿う突出部523とが重なり合う。また、型締めされた金型140を方向Z5に視て、1辺S54に沿う突出部514と1辺S64に沿う突出部524とが重なり合う。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 Further, in the first embodiment, the groove 311 along the one side S11 and the groove 321 along the one side S21 overlap each other when the resin body 30 is viewed in the direction Z1. Further, when the resin body 30 is viewed in the direction Z1, the groove 312 along the one side S12 and the groove 322 along the one side S22 overlap each other. Further, when the resin body 30 is viewed in the direction Z1, the groove 313 along the side S13 and the groove 323 along the side S23 overlap each other. Further, when the resin body 30 is viewed in the direction Z1, the groove 314 along the side S14 and the groove 324 along the side S24 overlap each other. That is, when the molded mold 140 is viewed in the direction Z5, the protruding portion 511 along the one side S51 and the protruding portion 521 along the one side S61 overlap each other. Further, when the molded mold 140 is viewed in the direction Z5, the protruding portion 512 along the one side S52 and the protruding portion 522 along the one side S62 overlap each other. Further, when the molded mold 140 is viewed in the direction Z5, the protruding portion 513 along the one side S53 and the protruding portion 523 along the one side S63 overlap each other. Further, when the molded mold 140 is viewed in the direction Z5, the protruding portion 514 along the one side S54 and the protruding portion 524 along the one side S64 overlap each other. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 また、第1実施形態では、各溝311~314の深さが同じであり、深さをD1とする。また、各溝321~324の深さが同じであり、深さをD2とする。第1実施形態では、溝311の深さD1と溝321の深さD2とが同じである。また、溝312の深さD1と溝322の深さD2とが同じである。また、溝313の深さD1と溝323の深さD2とが同じである。また、溝314の深さD1と溝324の深さD2とが同じである。深さD1,D2は、例えば0.4mmである。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 Further, in the first embodiment, the depths of the grooves 311 to 314 are the same, and the depth is D1. Further, the depths of the grooves 321 to 324 are the same, and the depth is D2. In the first embodiment, the depth D1 of the groove 311 and the depth D2 of the groove 321 are the same. Further, the depth D1 of the groove 312 and the depth D2 of the groove 322 are the same. Further, the depth D1 of the groove 313 and the depth D2 of the groove 323 are the same. Further, the depth D1 of the groove 314 and the depth D2 of the groove 324 are the same. The depths D1 and D2 are, for example, 0.4 mm. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 樹脂体30の各辺S11~S14,S21~S24の長さLは、10mm以上30mm以下であるのが好ましく、例えば14.1mm、外接円の直径にしてφ20mmが好ましい。また、樹脂体30の厚みZは、0.5mm以上10mm以下であるのが好ましく、例えば2mmが好ましい。 The length L of each side S11 to S14 and S21 to S24 of the resin body 30 is preferably 10 mm or more and 30 mm or less, for example, 14.1 mm, and the diameter of the circumscribed circle is preferably φ20 mm. The thickness Z of the resin body 30 is preferably 0.5 mm or more and 10 mm or less, and is preferably 2 mm, for example.
 また、貫通孔16と天面301側の各溝311~314の間には、樹脂の注入口である4つのゲート571~574に対応するゲート痕171~174がある。各ゲート痕171~174と貫通孔16との距離は同一である。また、各側面351~354と各ゲート痕171~174との相対位置は一致している。各側面351~354と各ゲート痕171~174とは、仮想線C0に対して回転対称である。 Further, between the through hole 16 and the grooves 311 to 314 on the top surface 301 side, there are gate marks 171 to 174 corresponding to the four gates 571 to 574 that are the resin injection ports. The distance between the gate marks 171 to 174 and the through hole 16 is the same. Further, the relative positions of the side surfaces 351 to 354 and the gate marks 171 to 174 are the same. Each side surface 351 to 354 and each gate mark 171 to 174 are rotationally symmetric with respect to the virtual line C0.
 各溝311~314の側壁面及び各溝321~324の側壁面は、各側面351~354を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。溝311~314,321~324の構成は、略同一であるため、溝311,321について具体的に説明する。 It is preferable that the side wall surfaces of the grooves 311 to 314 and the side wall surfaces of the grooves 321 to 324 are inclined at a predetermined angle θ so as to have a draft with respect to the side surfaces 351 to 354. Since the configurations of the grooves 311 to 314 and 321 to 324 are substantially the same, the grooves 311, 321 will be specifically described.
 溝311は、辺S11と平行に辺S11に沿って直線状に延びるように形成されている。溝311は、側面351に沿う一対の側壁面3111,3112を有する。各側壁面3111,3112が、側面351を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。また、溝321は、辺S21と平行に辺S21に沿って直線状に延びるように形成されている。溝321は、側面351に沿う一対の側壁面3211,3212を有する。各側壁面3211,3212が、側面351を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。 The groove 311 is formed so as to extend linearly along the side S11 in parallel with the side S11. The groove 311 has a pair of side wall surfaces 3111, 3112 along the side surface 351. It is preferable that the side wall surfaces 3111 and 3112 are inclined at a predetermined angle θ with respect to the side surface 351 so as to have a draft. Further, the groove 321 is formed so as to extend linearly along the side S21 in parallel with the side S21. The groove 321 has a pair of side wall surfaces 3211 and 3212 along the side surface 351. It is preferable that the side wall surfaces 3211 and 3212 are inclined at a predetermined angle θ with respect to the side surface 351 so as to have a draft.
 ここで、溝311が辺S11と平行に辺S11に沿って直線状に延びるとは、溝311の一対の側壁面3111,3112のうち、少なくとも側壁面3111が辺S11と平行に辺S11に沿って直線状に延びることである。溝321についても同様であり、溝321が辺S21と平行に辺S21に沿って直線状に延びるとは、溝321の一対の側壁面3211,3212のうち、少なくとも側壁面3111が辺S21と平行に辺S21に沿って直線状に延びることである。他の溝312~314,322~324についても同様である。 Here, the fact that the groove 311 extends linearly along the side S11 in parallel with the side S11 means that at least the side wall surface 3111 of the pair of side wall surfaces 3111 and 3112 of the groove 311 is parallel to the side S11 along the side S11. It extends in a straight line. The same applies to the groove 321. When the groove 321 extends linearly along the side S21 in parallel with the side S21, at least the side wall surface 3111 of the pair of side wall surfaces 3211 and 3212 of the groove 321 is parallel to the side S21. It extends linearly along the side S21. The same applies to the other grooves 312 to 314 and 322 to 324.
 所定角度θは、樹脂体30の冷却性、樹脂体30の離型の容易性、及び樹脂体30の剛性に鑑みて、5度以上45度以下であるのが好ましい。所定角度θは、例えば30度である。所定角度θが5度よりも小さいと、離型工程において、離型される樹脂体30の変形が懸念される。また、所定角度が45度よりも大きいと、溝311,321において最も深い部分が、側面351から遠ざかることになるので、側面351の冷却効果が低い。 The predetermined angle θ is preferably 5 degrees or more and 45 degrees or less in view of the cooling property of the resin body 30, the ease of mold release of the resin body 30, and the rigidity of the resin body 30. The predetermined angle θ is, for example, 30 degrees. If the predetermined angle θ is smaller than 5 degrees, there is a concern that the resin body 30 to be released from the mold will be deformed in the mold release step. Further, when the predetermined angle is larger than 45 degrees, the deepest portion of the grooves 311, 321 is moved away from the side surface 351 and therefore the cooling effect of the side surface 351 is low.
 方向Z1に視て重なり合う溝311と溝321との間の樹脂体30の厚みをT、方向Z1に視て重なり合う溝311及び溝321の各々の溝幅をWとする。同様に、方向Z1に視て重なり合う溝312と溝322との間の樹脂体30の厚みをT、方向Z1に視て重なり合う溝312及び溝322の各々の溝幅をWとする。同様に、方向Z1に視て重なり合う溝313と溝323との間の樹脂体30の厚みをT、方向Z1に視て重なり合う溝313及び溝323の各々の溝幅をWとする。同様に、方向Z1に視て重なり合う溝314と溝324との間の樹脂体30の厚みをT、方向Z1に視て重なり合う溝314及び溝324の各々の溝幅をWとする。各側面351~354の形状精度と、樹脂体30の剛性とに鑑みて、厚みTと溝幅Wとは、1≦W/T≦2.5の関係を満たすのが好ましい。 Let T be the thickness of the resin body 30 between the grooves 311 and the grooves 321 that overlap in the direction Z1, and W be the width of each of the grooves 311 and the grooves 321 that overlap in the direction Z1. Similarly, the thickness of the resin body 30 between the grooves 312 and the grooves 322 that overlap in the direction Z1 is T, and the groove widths of the grooves 312 and 322 that overlap in the direction Z1 are W. Similarly, the thickness of the resin body 30 between the grooves 313 and the grooves 323 that overlap in the direction Z1 is T, and the groove widths of the grooves 313 and the grooves 323 that overlap in the direction Z1 are W. Similarly, the thickness of the resin body 30 between the grooves 314 and the grooves 324 that overlap in the direction Z1 is T, and the groove widths of the grooves 314 and the grooves 324 that overlap in the direction Z1 are W. In view of the shape accuracy of each side surface 351 to 354 and the rigidity of the resin body 30, it is preferable that the thickness T and the groove width W satisfy the relationship of 1 ≦ W / T ≦ 2.5.
 溝幅Wが狭い、即ちW/T<1であると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、溝幅Wが広い、即ち2.5<W/Tであると、樹脂体30の剛性低下が顕著となる。同様に、厚みTが厚い、即ちW/T<1であると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、厚みTが薄い、即ち2.5<W/Tであると、樹脂体30の剛性低下が顕著となる。 When the groove width W is narrow, that is, when W / T <1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the groove width W is wide, that is, 2.5 <W / T, the rigidity of the resin body 30 is significantly reduced. Similarly, when the thickness T is thick, that is, when W / T <1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the thickness T is thin, that is, 2.5 <W / T, the rigidity of the resin body 30 is significantly reduced.
 厚みZが2.0mmであり、かつ溝311の深さD1及び溝321の深さD2が各々0.4mmであれば、厚みTは1.2mmである。厚みTを1.2mm、溝幅Wを1.8mmとしたとき、厚みTに対する溝幅Wの比W/Tは、1.5(=1.8/1.2)mmとなり、1≦W/T≦2.5の関係を満たす。 If the thickness Z is 2.0 mm and the depth D1 of the groove 311 and the depth D2 of the groove 321 are 0.4 mm each, the thickness T is 1.2 mm. When the thickness T is 1.2 mm and the groove width W is 1.8 mm, the ratio W / T of the groove width W to the thickness T is 1.5 (= 1.8 / 1.2) mm, and 1 ≦ W. The relationship of / T ≦ 2.5 is satisfied.
 また、溝311と辺S11との間隔、溝312と辺S12との間隔、溝313と辺S13との間隔、溝314と辺S14との間隔の各々をDとする。また、溝321と辺S21との間隔、溝322と辺S22との間隔、溝323と辺S23との間隔、溝324と辺S24との間隔の各々をDとする。各側面351~354の形状精度と、樹脂体30の剛性とに鑑みて、厚みTと間隔Dとは、0.3≦D/T≦1の関係を満たすのが好ましい。間隔Dが広い、即ち1<D/Tであると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、間隔Dが狭い、即ちD/T<0.3であると、樹脂体30の剛性低下が顕著となる。 Further, the distance between the groove 311 and the side S11, the distance between the groove 312 and the side S12, the distance between the groove 313 and the side S13, and the distance between the groove 314 and the side S14 are each set as D. Further, the distance between the groove 321 and the side S21, the distance between the groove 322 and the side S22, the distance between the groove 323 and the side S23, and the distance between the groove 324 and the side S24 are each set as D. In view of the shape accuracy of each side surface 351 to 354 and the rigidity of the resin body 30, it is preferable that the thickness T and the interval D satisfy the relationship of 0.3 ≦ D / T ≦ 1. When the interval D is wide, that is, 1 <D / T, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the interval D is narrow, that is, when D / T <0.3, the rigidity of the resin body 30 is significantly reduced.
 厚みTを1.2mm、間隔Dを0.5mmとしたとき、厚みTに対する間隔Dの比D/Tは、0.42(=0.5/1.2)mmとなり、0.3≦D/T≦1の関係を満たす。 When the thickness T is 1.2 mm and the interval D is 0.5 mm, the ratio D / T of the interval D to the thickness T is 0.42 (= 0.5 / 1.2) mm, and 0.3 ≦ D. The relationship of / T ≦ 1 is satisfied.
 図9A~図9Dは、第1実施形態に係るシミュレーション結果を示すグラフである。図9Aは、比W/Tと、側面351の温度差との関係を示すグラフである。図9Bは、比W/Tと、樹脂体30を回転させたときの側面351の変形との関係を示すグラフである。図9Cは、比D/Tと、側面351の温度差との関係を示すグラフである。図9Dは、比D/Tと、樹脂体30を回転させたときの側面351の変形との関係を示すグラフである。 FIGS. 9A to 9D are graphs showing simulation results according to the first embodiment. FIG. 9A is a graph showing the relationship between the ratio W / T and the temperature difference of the side surface 351. FIG. 9B is a graph showing the relationship between the ratio W / T and the deformation of the side surface 351 when the resin body 30 is rotated. FIG. 9C is a graph showing the relationship between the ratio D / T and the temperature difference of the side surface 351. FIG. 9D is a graph showing the relationship between the ratio D / T and the deformation of the side surface 351 when the resin body 30 is rotated.
 図9A及び図9Cに示すグラフにおける縦軸は、側面351における方向X1の中央部と端部との温度差を示し、溝がない比較例の樹脂体の側面における中央部と端部との温度差を1とした比で示している。 The vertical axis in the graphs shown in FIGS. 9A and 9C indicates the temperature difference between the central portion and the end portion of the direction X1 on the side surface 351. It is shown as a ratio with the difference as 1.
 図9B及び図9Dに示すグラフにおける縦軸は、側面351における方向X1の中央部に対する端部の変位量を示し、溝がない比較例の樹脂体の側面における中央部に対する端部の変位量を1とした比で示している。 The vertical axis in the graphs shown in FIGS. 9B and 9D indicates the amount of displacement of the end portion of the side surface 351 with respect to the central portion of the direction X1, and the amount of displacement of the end portion of the side surface of the resin body of the comparative example without a groove with respect to the central portion. It is shown by the ratio of 1.
 図9Aに示すグラフから、比W/Tが大きいほど、即ち厚みTに対して溝幅Wが広いほど、冷却工程における温度差が低減されることがわかる。一方、図9Bに示すグラフから、比W/Tが大きいほど、即ち溝幅Wが広いほど、樹脂体30を回転させた時の変位量が大きくなる。 From the graph shown in FIG. 9A, it can be seen that the larger the ratio W / T, that is, the wider the groove width W with respect to the thickness T, the smaller the temperature difference in the cooling step. On the other hand, from the graph shown in FIG. 9B, the larger the ratio W / T, that is, the wider the groove width W, the larger the displacement amount when the resin body 30 is rotated.
 以上のことから、側面351における温度差を低減し、側面351における変位量を低減するには、1≦W/T≦2.5を満たすのが好ましく、1.5≦W/T≦2を満たすのがより好ましい。 From the above, in order to reduce the temperature difference on the side surface 351 and reduce the displacement amount on the side surface 351 it is preferable to satisfy 1 ≦ W / T ≦ 2.5, and 1.5 ≦ W / T ≦ 2. It is more preferable to meet.
 図9Cに示すグラフから、比D/Tが小さいほど、即ち厚みTに対して間隔Dが狭いほど、冷却工程における温度差が低減されることがわかる。一方、図9Dに示すグラフから、比D/Tが小さいほど、即ち厚みTに対して間隔Dが狭いほど、変位量が大きくなる。 From the graph shown in FIG. 9C, it can be seen that the smaller the ratio D / T, that is, the narrower the interval D with respect to the thickness T, the smaller the temperature difference in the cooling step. On the other hand, from the graph shown in FIG. 9D, the smaller the ratio D / T, that is, the narrower the interval D with respect to the thickness T, the larger the displacement amount.
 以上のことから、側面351における温度差を低減し、側面351における変位量を低減するには、0.3≦D/T≦1を満たすのが好ましく、0.4≦D/T≦0.5を満たすのがより好ましい。 From the above, in order to reduce the temperature difference on the side surface 351 and reduce the displacement amount on the side surface 351 it is preferable to satisfy 0.3 ≦ D / T ≦ 1, and 0.4 ≦ D / T ≦ 0. It is more preferable to satisfy 5.
 [第2実施形態]
 第2実施形態に係るポリゴンミラーについて説明する。なお、第2実施形態において、第1実施形態と同様の構成については、説明を省略する。図10A及び図10Bは、第2実施形態に係るポリゴンミラーにおける樹脂体30Aの斜視図である。図10Aは、第2実施形態に係るポリゴンミラーにおける樹脂体30Aの上面斜視図、図10Bは、第2実施形態に係るポリゴンミラーにおける樹脂体30Aの下面斜視図である。図11Aは、第2実施形態に係る樹脂体30Aの断面図である。図11Aには、図11AのXI-XI線に沿う樹脂体30Aの断面を図示している。図11Bは、図11Aに示す樹脂体30Aの要部の拡大図である。第2実施形態では、画像形成装置におけるポリゴンミラーの樹脂体の構成が、第1実施形態と異なる。即ち、第1実施形態では、1辺に沿う溝の数が1つである場合について説明したが、第2実施形態では、1辺に沿う溝の数が複数である。
[Second Embodiment]
The polygon mirror according to the second embodiment will be described. In the second embodiment, the description of the same configuration as that of the first embodiment will be omitted. 10A and 10B are perspective views of the resin body 30A in the polygon mirror according to the second embodiment. 10A is a top perspective view of the resin body 30A in the polygon mirror according to the second embodiment, and FIG. 10B is a bottom perspective view of the resin body 30A in the polygon mirror according to the second embodiment. FIG. 11A is a cross-sectional view of the resin body 30A according to the second embodiment. FIG. 11A illustrates a cross section of the resin body 30A along the XI-XI line of FIG. 11A. FIG. 11B is an enlarged view of a main part of the resin body 30A shown in FIG. 11A. In the second embodiment, the configuration of the resin body of the polygon mirror in the image forming apparatus is different from that of the first embodiment. That is, in the first embodiment, the case where the number of grooves along one side is one has been described, but in the second embodiment, the number of grooves along one side is a plurality.
 樹脂体30Aは、角柱状、第2実施形態では四角柱状の樹脂体である。樹脂体30Aの樹脂材料には、熱可塑性樹脂を用いるのが好ましい。熱可塑性樹脂の中でも、シクロオレフィンポリマー、シクロオレフィンコポリマー、ポリカーボネート、あるいは、アクリルを用いるのが好ましい。樹脂体30Aは、第1底面である天面301Aと、第2底面である底面302Aと、第1実施形態と同様に、複数、第2実施形態では4つの側面351~354と、を有する。各側面351~354は平面である。各側面351~354には、図2A及び図2Bに示す反射膜31が設けられる。 The resin body 30A is a prismatic resin body, and in the second embodiment, it is a square columnar resin body. It is preferable to use a thermoplastic resin as the resin material of the resin body 30A. Among the thermoplastic resins, cycloolefin polymers, cycloolefin copolymers, polycarbonates, or acrylics are preferably used. The resin body 30A has a top surface 301A which is a first bottom surface, a bottom surface 302A which is a second bottom surface, and a plurality of side surfaces 351 to 354 in the second embodiment as in the first embodiment. Each side surface 351 to 354 is a flat surface. Reflective films 31 shown in FIGS. 2A and 2B are provided on each of the side surfaces 351 to 354.
 天面301Aは、第1平面である平面310Aを有する。平面310Aは、外形が多角形であり、複数の辺を有する。第2実施形態では平面310Aは、外形が四角形であり、第1実施形態と同様に、4つの辺S11~S14を有する。 The top surface 301A has a plane 310A which is the first plane. The plane 310A has a polygonal outer shape and has a plurality of sides. In the second embodiment, the plane 310A has a quadrangular outer shape and has four sides S11 to S14 as in the first embodiment.
 底面302Aは、第2平面である平面320Aを有する。平面320Aは、外形が多角形であり、複数の辺を有する。本実施形態では平面320Aは、平面310Aと同様、外形が四角形であり、第1実施形態と同様に、4つの辺S21~S24を有する。即ち、平面310Aの外形と平面320Aの外形とは合同である。 The bottom surface 302A has a plane 320A which is a second plane. The plane 320A has a polygonal outer shape and has a plurality of sides. In the present embodiment, the plane 320A has a quadrangular outer shape like the plane 310A, and has four sides S21 to S24 as in the first embodiment. That is, the outer shape of the plane 310A and the outer shape of the plane 320A are congruent.
 複数の辺S11~S14,S21~S24は、同一の長さである。よって、各平面310A,320Aの外形は、正方形である。辺S11,S21の長さ方向を、方向X1とする。辺S12,S22の長さ方向を、方向X2とする。辺S13,S23の長さ方向を、方向X3とする。辺S14,S24の長さ方向を、方向X4とする。平面310Aと平面320Aとは平行である。平面310Aと垂直な方向を方向Z1とする。よって、方向Z1は、平面320Aと垂直な方向でもある。 The plurality of sides S11 to S14 and S21 to S24 have the same length. Therefore, the outer shape of each of the planes 310A and 320A is a square. The length direction of the sides S11 and S21 is defined as the direction X1. The length direction of the sides S12 and S22 is defined as the direction X2. The length direction of the sides S13 and S23 is defined as the direction X3. The length direction of the sides S14 and S24 is defined as the direction X4. The plane 310A and the plane 320A are parallel to each other. The direction perpendicular to the plane 310A is defined as the direction Z1. Therefore, the direction Z1 is also a direction perpendicular to the plane 320A.
 平面310Aは、四角形であるので、第1実施形態と同様に、2つの対角線L11,L12がある。平面320Aは、四角形であるので、第1実施形態と同様に、2つの対角線L21,L22がある。2つの対角線L11,L12の交点と、2つの対角線L21,L22の交点とを通過する仮想線C0が、樹脂体30Aの回転中心線である。仮想線C0を含む位置に、円柱状の貫通孔16が形成されている。つまり、貫通孔16の中心線が仮想線C0である。貫通孔16には、図2Bに示す回転軸8が挿入される。 Since the plane 310A is a quadrangle, there are two diagonal lines L11 and L12 as in the first embodiment. Since the plane 320A is a quadrangle, there are two diagonal lines L21 and L22 as in the first embodiment. The virtual line C0 passing through the intersection of the two diagonal lines L11 and L12 and the intersection of the two diagonal lines L21 and L22 is the rotation center line of the resin body 30A. A columnar through hole 16 is formed at a position including the virtual line C0. That is, the center line of the through hole 16 is the virtual line C0. The rotation shaft 8 shown in FIG. 2B is inserted into the through hole 16.
 天面301Aは、平面310Aに対して凹む、平面310Aの各辺S11~S14に沿う少なくとも1つの第1溝を有する。各辺S11~S14に沿う少なくとも1つの第1溝は、複数、第2実施形態では3つの第1溝である。即ち、辺S11に沿う少なくとも1つの第1溝は、3つの溝311,311,311である。また、辺S12に沿う少なくとも1つの第1溝は、3つの溝312,312,312である。また、辺S13に沿う少なくとも1つの第1溝は、3つの溝313,313,313である。また、辺S14に沿う少なくとも1つの第1溝は、3つの溝314,314,314である。 The top surface 301A has at least one first groove along each side S11 to S14 of the plane 310A, which is recessed with respect to the plane 310A. At least one first groove along each side S11 to S14 is a plurality of first grooves, and in the second embodiment, three first grooves. That is, at least one first groove along the side S11 is three grooves 311 1 , 311 2 , 311 3 . Further, at least one first groove along the side S12 is three grooves 312 1 , 312 2 , 312 3 . Further, at least one first groove along the side S13 is three grooves 313 1 , 313 2 , 313 3 . Further, at least one first groove along the side S14 is three grooves 314 1 , 314 2 , 314 3 .
 3つの溝311,311,311は、貫通孔16、即ち仮想線C0と、辺S11との間に配置されている。3つの溝312,312,312は、貫通孔16、即ち仮想線C0と、辺S12との間に配置されている。3つの溝313,313,313は、貫通孔16、即ち仮想線C0と、辺S13との間に配置されている。3つの溝314,314,314は、貫通孔16、即ち仮想線C0と、辺S14との間に配置されている。 The three grooves 311 1 , 311 2 , 311 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S11. The three grooves 312 1 , 312 2 , 312 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S12. The three grooves 313 1 , 313 2 , 313 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S13. The three grooves 314 1 , 314 2 , and 314 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S14.
 底面302Aは、平面320Aに対して凹む、平面320Aの各辺S21~S24に沿う少なくとも1つの第2溝を有する。各辺S21~S24に沿う少なくとも1つの第2溝は、複数、第2実施形態では3つの第2溝である。即ち、辺S21に沿う少なくとも1つの第2溝は、3つの溝321,321,321である。また、辺S22に沿う少なくとも1つの第2溝は、3つの溝322,322,322である。また、辺S23に沿う少なくとも1つの第2溝は、3つの溝323,323,323である。また、辺S24に沿う少なくとも1つの第2溝は、3つの溝324,324,324である。 The bottom surface 302A has at least one second groove along each side S21 to S24 of the plane 320A, which is recessed with respect to the plane 320A. At least one second groove along each side S21 to S24 is a plurality of second grooves, and in the second embodiment, three second grooves. That is, at least one second groove along the side S21 is three grooves 321 1 , 321, 2 and 321 3 . Further, at least one second groove along the side S22 is three grooves 322 1 , 322 2 , 322 3 . Further, at least one second groove along the side S23 is three grooves 323 1 , 323 2 , 323 3 . Further, at least one second groove along the side S24 is three grooves 324 1 , 324 2 , 324 3 .
 3つの溝321,321,321は、貫通孔16、即ち仮想線C0と、辺S21との間に配置されている。3つの溝322,322,322は、貫通孔16、即ち仮想線C0と、辺S22との間に配置されている。3つの溝323,323,323は、貫通孔16、即ち仮想線C0と、辺S23との間に配置されている。3つの溝324,324,324は、貫通孔16、即ち仮想線C0と、辺S24との間に配置されている。 The three grooves 321 1 , 321, 2 and 321 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S21. The three grooves 322 1 , 322 2 , and 322 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S22. The three grooves 323 1 , 323 2 , 323 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S23. The three grooves 324 1 , 324 2 , 324 3 are arranged between the through hole 16, that is, the virtual line C0 and the side S24.
 溝311,311,311のうち溝311は、辺S11の近傍に配置されている。溝312,312,312のうち溝312は、辺S12の近傍に配置されている。溝313,313,313のうち溝313は、辺S13の近傍に配置されている。溝314,314,314のうち溝314は、辺S14の近傍に配置されている。溝321,321,321のうち溝321は、辺S21の近傍に配置されている。溝322,322,322のうち溝322は、辺S22の近傍に配置されている。溝323,323,323のうち溝323は、辺S23の近傍に配置されている。溝324,324,324のうち溝324は、辺S24の近傍に配置されている。 Of the grooves 311 1 , 311 2 , and 311 3 , the groove 311 1 is arranged in the vicinity of the side S11. Of the grooves 312 1 , 312 2 , 312 3 , the groove 312 1 is arranged in the vicinity of the side S12. Of the grooves 313 1 , 313 2 , 313 3 , the groove 313 1 is arranged in the vicinity of the side S13. Of the grooves 314 1 , 314 2 , and 314 3 , the groove 314 1 is arranged in the vicinity of the side S14. Of the grooves 321 1 , 321, 2 and 321 3 , the groove 321 1 is arranged in the vicinity of the side S21. Of the grooves 322 1 , 322 2 , and 322 3 , the groove 322 1 is arranged in the vicinity of the side S22. Of the grooves 323 1 , 323 2 , and 323 3 , the groove 323 1 is arranged in the vicinity of the side S23. Of the grooves 324 1 , 324 2 , and 324 3 , the groove 324 1 is arranged in the vicinity of the side S24.
 各溝311~311,312~312,313~313,314~314は、対角線L11,L12と交差しない位置に配置されている。各溝321~321,322~322,323~323,324~324は、対角線L21,L22と交差しない位置に配置されている。天面301Aは、仮想線C0に関して回転対称な形状である。また、天面301Aは、対角線L11,L12に関して線対称な形状である。底面302Aは、仮想線C0に関して回転対称な形状である。また、底面302Aは、対角線L21,L22に関して線対称な形状である。天面301Aと底面302Aとは、仮想線C0に直交する仮想面に関して面対称な形状である。 The grooves 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 are arranged at positions that do not intersect the diagonal lines L11 and L12. The grooves 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 are arranged at positions that do not intersect the diagonal lines L21 and L22. The top surface 301A has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the top surface 301A has a shape that is line-symmetrical with respect to the diagonal lines L11 and L12. The bottom surface 302A has a shape that is rotationally symmetric with respect to the virtual line C0. Further, the bottom surface 302A has a shape that is line-symmetrical with respect to the diagonal lines L21 and L22. The top surface 301A and the bottom surface 302A are plane-symmetrical with respect to the virtual surface orthogonal to the virtual line C0.
 次に、樹脂体30Aを製造するのに用いる金型について説明する。図12A及び図12Bは、第2実施形態に係る金型140Aにおけるキャビティ50Aの斜視図である。図12Aは、キャビティ50Aの上面斜視図、図12Bは、キャビティ50Aの下面斜視図である。金型140Aは、樹脂体30Aを形成するためのキャビティ50Aを有する。金型140Aを型締めした状態で、キャビティ50Aが画成される。 Next, the mold used for manufacturing the resin body 30A will be described. 12A and 12B are perspective views of the cavity 50A in the mold 140A according to the second embodiment. 12A is a top perspective view of the cavity 50A, and FIG. 12B is a bottom perspective view of the cavity 50A. The mold 140A has a cavity 50A for forming the resin body 30A. The cavity 50A is defined with the mold 140A clamped.
 キャビティ50Aは、角柱状、第2実施形態では四角柱状の空間である。金型140Aは、樹脂体30Aの天面301Aを転写する、第1底面形成面である天面形成面501Aと、樹脂体30Aの底面302Aを転写する、第2底面形成面である底面形成面502Aと、を有する。また、金型140Aは、樹脂体30Aの複数の側面351~354を転写する、複数、第2実施形態では4つの側面形成面551~554を有する。これら複数の面501A,502A,551~554でキャビティ50Aが画成される。各側面形成面551~554は平面である。 The cavity 50A is a prismatic space, and in the second embodiment, it is a square columnar space. The mold 140A has a top surface forming surface 501A which is a first bottom surface forming surface which transfers the top surface 301A of the resin body 30A and a bottom surface forming surface which is a second bottom surface forming surface which transfers the bottom surface 302A of the resin body 30A. It has 502A and. Further, the mold 140A has a plurality of side surfaces 351 to 354 for transferring the plurality of side surfaces 351 to 354 of the resin body 30A, and four side surface forming surfaces 551 to 554 in the second embodiment. The cavity 50A is defined by these plurality of surfaces 501A, 502A, 551 to 554. Each side surface forming surface 551 to 554 is a flat surface.
 金型140Aは、上記した天面形成面501Aと、キャビティ50Aに溶融樹脂を注入するための複数のゲート571~574と、を含む。ゲートの数は、側面形成面551~554と同数の4つであるのが好ましい。これにより、射出工程において、樹脂体30Aの圧力分布の対称性が高くなり、光の反射面となる側面351~354の形状精度が高まる。 The mold 140A includes the above-mentioned top surface forming surface 501A and a plurality of gates 571 to 574 for injecting the molten resin into the cavity 50A. The number of gates is preferably four, which is the same as the number of side surface forming surfaces 551 to 554. As a result, in the injection step, the symmetry of the pressure distribution of the resin body 30A becomes high, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is improved.
 また、各ゲート571~574と各側面形成面551~554とは、仮想線C0まわりの位相が一致しているのが好ましい。これにより、射出工程において、樹脂体30Aの圧力分布の対称性が更に高くなり、光の反射面となる側面351~354の形状精度が更に向上する。また、ゲート571~574間に発生するウェルドを、図2Aのレーザ光Lの走査範囲外である側面351~354の端部に誘導することができる。 Further, it is preferable that the phases of the gates 571 to 574 and the side surface forming surfaces 551 to 554 are the same around the virtual line C0. As a result, in the injection step, the symmetry of the pressure distribution of the resin body 30A is further increased, and the shape accuracy of the side surfaces 351 to 354 serving as the light reflecting surface is further improved. Further, the weld generated between the gates 571 and 574 can be guided to the end of the side surface 351 to 354 which is outside the scanning range of the laser beam L in FIG. 2A.
 天面形成面501Aは、平面310Aを形成する第1平面形成面である平面形成面510Aを有する。平面形成面510Aは、外形が多角形であり、複数の辺を有する。第2実施形態では平面形成面510Aは、外形が四角形であり、4つの辺S51~S54を有する。 The top surface forming surface 501A has a plane forming surface 510A which is a first plane forming surface forming the plane 310A. The plane forming surface 510A has a polygonal outer shape and has a plurality of sides. In the second embodiment, the plane forming surface 510A has a quadrangular outer shape and has four sides S51 to S54.
 底面形成面502Aは、平面320Aを形成する第2平面形成面である平面形成面520Aを有する。平面形成面520Aは、外形が多角形であり、複数の辺を有する。第2実施形態では平面形成面520Aは、平面形成面510Aと同様、外形が四角形であり、4つの辺S61~S64を有する。即ち、平面形成面510Aの外形と平面形成面520Aの外形とは合同である。 The bottom surface forming surface 502A has a plane forming surface 520A which is a second plane forming surface forming the plane 320A. The plane forming surface 520A has a polygonal outer shape and has a plurality of sides. In the second embodiment, the plane forming surface 520A has a quadrangular outer shape and has four sides S61 to S64, like the plane forming surface 510A. That is, the outer shape of the plane forming surface 510A and the outer shape of the plane forming surface 520A are congruent.
 複数の辺S51~S54,S61~S64は、同一の長さである。よって、各平面形成面510A,520Aの外形は、正方形である。辺S51,S61の長さ方向を、方向X51とする。辺S52,S62の長さ方向を、方向X52とする。辺S53,S63の長さ方向を、方向X53とする。辺S54,S64の長さ方向を、方向X54とする。平面形成面510Aと平面形成面520Aとは平行である。平面形成面510Aと垂直な方向を方向Z5とする。よって、方向Z5は、平面形成面520Aと垂直な方向でもある。 The plurality of sides S51 to S54 and S61 to S64 have the same length. Therefore, the outer shapes of the plane forming surfaces 510A and 520A are square. The length direction of the sides S51 and S61 is defined as the direction X51. The length direction of the sides S52 and S62 is defined as the direction X52. The length direction of the sides S53 and S63 is defined as the direction X53. The length direction of the sides S54 and S64 is defined as the direction X54. The plane forming surface 510A and the plane forming surface 520A are parallel to each other. The direction perpendicular to the plane forming surface 510A is defined as the direction Z5. Therefore, the direction Z5 is also a direction perpendicular to the plane forming surface 520A.
 平面形成面510Aは、四角形であるので、2つの対角線L51,L52がある。平面形成面520Aは、四角形であるので、2つの対角線L61,L62がある。 Since the plane forming surface 510A is a quadrangle, there are two diagonal lines L51 and L52. Since the plane forming surface 520A is a quadrangle, there are two diagonal lines L61 and L62.
 天面形成面501Aは、平面形成面510Aに対して突出する、平面形成面510Aの各辺S51~S54に沿う少なくとも1つの第1突出部を有する。各辺S51~S54に沿う少なくとも1つの第1突出部は、複数、第2実施形態では3つの第1突出部である。即ち、辺S51に沿う少なくとも1つの第1突出部は、3つの突出部511,511,511である。また、辺S52に沿う少なくとも1つの第1突出部は、1つの突出部512,512,512である。また、辺S53に沿う少なくとも1つの第1突出部は、1つの突出部513,513,513である。また、辺S54に沿う少なくとも1つの第1突出部は、1つの突出部514,514,514である。各突出部511~511,512~512,513~513,514~514は、樹脂体30Aの各溝311~311,312~312,313~313,314~314を形成する突出部である。 The top surface forming surface 501A has at least one first protruding portion along each side S51 to S54 of the plane forming surface 510A, which protrudes from the plane forming surface 510A. At least one first protrusion along each side S51 to S54 is a plurality of first protrusions, and in the second embodiment, three first protrusions. That is, at least one first protrusion along the side S51 is three protrusions 511 1 , 511 2 , 511 3 . Further, at least one first protrusion along the side S52 is one protrusion 512 1 , 512 2 , 512 3 . Further, at least one first protruding portion along the side S53 is one protruding portion 513 1 , 513 2 , 513 3 . Further, at least one first protruding portion along the side S54 is one protruding portion 514 1 , 514 2 , 514 3 . Each protrusion 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 is each groove of the resin body 30A, 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313. It is a protrusion forming 3 , 314 1 to 314 3.
 突出部511,511,511は、金型軸1432、即ち仮想線C0と、辺S51との間に配置されている。突出部512,512,512は、金型軸1432、即ち仮想線C0と、辺S52との間に配置されている。突出部513,513,513は、金型軸1432、即ち仮想線C0と、辺S53との間に配置されている。突出部514,514,514は、金型軸1432、即ち仮想線C0と、辺S54との間に配置されている。 The protrusions 511 1 , 511 2 , 511 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S51. The protrusions 512 1 , 512 2 , 512 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S52. The protrusions 513 1 , 513 2 , 513 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S53. The protrusions 514 1 , 514 2 , 514 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S54.
 底面形成面502Aは、平面形成面520Aに対して突出する、平面形成面520Aの各辺S61~S64に沿う少なくとも1つの第2突出部を有する。各辺S61~S64に沿う少なくとも1つの第2突出部は、複数、第2実施形態では3つの第2突出部である。即ち、辺S61に沿う少なくとも1つの第2突出部は、3つの突出部521,521,521である。また、辺S62に沿う少なくとも1つの第2突出部は、3つの突出部522,522,522である。また、辺S63に沿う少なくとも1つの第2突出部は、3つの突出部523,523,523である。また、辺S64に沿う少なくとも1つの第2突出部は、3つの突出部524,524,524である。各突出部521~521,522~522,523~523,524~524は、樹脂体30Aの各溝321~321,322~322,323~323,324~324を形成する突出部である。 The bottom surface forming surface 502A has at least one second protruding portion along each side S61 to S64 of the plane forming surface 520A, which protrudes with respect to the plane forming surface 520A. At least one second protrusion along each side S61 to S64 is a plurality of second protrusions, and in the second embodiment, three second protrusions. That is, at least one second protrusion along the side S61 is three protrusions 521 1 , 521 2 , 521 3 . Further, at least one second protrusion along the side S62 is three protrusions 522 1 , 522 2 , 522 3 . Further, at least one second protrusion along the side S63 is three protrusions 523 1 , 523 2 , 523 3 . Further, at least one second protrusion along the side S64 is three protrusions 524 1 , 524 2 , 524 3 . Each protrusion 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 is each groove of the resin body 30A, 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323. 3, 324 1 to 324 3 a protrusion which forms a.
 突出部521,521,521は、金型軸1432、即ち仮想線C0と、辺S61との間に配置されている。突出部522,522,522は、金型軸1432、即ち仮想線C0と、辺S62との間に配置されている。突出部523,523,523は、金型軸1432、即ち仮想線C0と、辺S63との間に配置されている。突出部524,524,524は、金型軸1432、即ち仮想線C0と、辺S64との間に配置されている。 The protrusions 521 1 , 521 2 , 521 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S61. The protrusions 522 1 , 522 2 , and 522 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S62. The protrusions 523 1 , 523 2 , 523 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S63. The protrusions 524 1 , 524 2 , 524 3 are arranged between the mold shaft 1432, that is, the virtual line C0 and the side S64.
 突出部511,511,511のうち突出部511は、辺S51の近傍に配置されている。突出部512,512,512のうち突出部512は、辺S52の近傍に配置されている。突出部513,513,513のうち突出部513は、辺S53の近傍に配置されている。突出部514,514,514のうち突出部514は、辺S54の近傍に配置されている。突出部521,521,521のうち突出部521は、辺S61の近傍に配置されている。突出部522,522,522のうち突出部522は、辺S62の近傍に配置されている。突出部523,523,523のうち突出部523は、辺S63の近傍に配置されている。突出部524,524,524のうち突出部524は、辺S64の近傍に配置されている。各突出部511~511,512~512,513~513,514~514は、対角線L51,L52と交差しない位置に配置されている。各突出部521~521,522~522,523~523,524~524は、対角線L61,L62と交差しない位置に配置されている。 Of the protruding portions 511 1 , 511 2 , and 511 3 , the protruding portion 511 1 is arranged in the vicinity of the side S51. Of the protrusions 512 1 , 512 2 , 512 3 , the protrusions 512 1 are arranged in the vicinity of the side S52. Of the protruding portions 513 1 , 513 2 , 513 3 , the protruding portion 513 1 is arranged in the vicinity of the side S53. Of the protrusions 514 1 , 514 2 , 514 3 , the protrusion 514 1 is arranged in the vicinity of the side S54. Of the protruding portions 521 1 , 521 2 , 521 3 , the protruding portion 521 1 is arranged in the vicinity of the side S61. Of the protrusions 522 1 , 522 2 , 522 3 , the protrusion 522 1 is arranged in the vicinity of the side S62. Of the protrusions 523 1 , 523 2 , 523 3 , the protrusion 523 1 is arranged in the vicinity of the side S63. Of the protrusions 524 1 , 524 2 , 524 3 , the protrusion 524 1 is arranged in the vicinity of the side S64. The protrusions 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 are arranged at positions that do not intersect the diagonal lines L51 and L52. The protrusions 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 are arranged at positions that do not intersect the diagonal lines L61 and L62.
 第2実施形態のポリゴンミラーの製造方法は、第1実施形態と同様であるため、省略する。第2実施形態では、樹脂体30Aの側面351~354における樹脂密度を均一にするために、上述の突出部を有する金型140Aを用いて樹脂体30Aを成形する。樹脂体30Aの天面301A及び底面302Aにおいて、対角線L11,L12,L21,L22と交差しない溝により、側面351~354における方向X1~X4の中央部近傍の表面積が増える。これにより、側面351~354における方向X1~X4の中央部の冷却固化が促進され、側面351~354における方向X1~X4の端部と中央部との樹脂の固化速度の差が小さくなる。これにより、側面351~354における方向X1~X4の端部と中央部との樹脂の密度差を低減することができ、側面351~354の方向X1~X4の形状誤差を低減することができる。これにより、樹脂体30Aの側面351~354の形状精度が高まる。 Since the method for manufacturing the polygon mirror of the second embodiment is the same as that of the first embodiment, it will be omitted. In the second embodiment, in order to make the resin density on the side surfaces 351 to 354 of the resin body 30A uniform, the resin body 30A is molded by using the mold 140A having the above-mentioned protrusion. On the top surface 301A and the bottom surface 302A of the resin body 30A, the groove that does not intersect the diagonal lines L11, L12, L21, and L22 increases the surface area near the central portion of the directions X1 to X4 on the side surfaces 351 to 354. As a result, cooling solidification of the central portion of the directions X1 to X4 on the side surfaces 351 to 354 is promoted, and the difference in the solidification rate of the resin between the end portions and the central portion of the directions X1 to X4 on the side surfaces 351 to 354 becomes small. Thereby, the density difference of the resin between the end portion and the central portion of the directions X1 to X4 on the side surfaces 351 to 354 can be reduced, and the shape error of the directions X1 to X4 on the side surfaces 351 to 354 can be reduced. As a result, the shape accuracy of the side surfaces 351 to 354 of the resin body 30A is improved.
 第2実施形態では、樹脂体30Aの各溝311~311,312~312,313~313,314~314は、各溝が沿う各辺S11~S14に平行に直線状に延びる溝である。同様に、樹脂体30Aの各溝321~321,322~322,323~323,324~324は、各溝が沿う各辺S21~S24に平行に直線状に延びる溝である。即ち、金型140Aの各突出部511~511,512~512,513~513,514~514は、各突出部が沿う各辺S51~S54に平行に直線状に延びる突出部である。同様に、金型140Aの各突出部521~521,522~522,523~523,524~524は、各突出部が沿う各辺S61~S64に平行に直線状に延びる突出部である。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 In the second embodiment, each groove 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 of the resin body 30A is a straight line parallel to each side S11 to S14 along which each groove runs. It is a groove extending in a shape. Similarly, each groove 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 of the resin body 30A extends linearly in parallel with each side S21 to S24 along which each groove runs. It is a groove. That is, the protrusions 511 1 to 511 3 , 512 1 to 512 3 , 513 1 to 513 3 , 514 1 to 514 3 of the mold 140A are linearly parallel to each side S51 to S54 along which each protrusion is aligned. It is an extending protrusion. Similarly, each of the protrusions 521 1 to 521 3 , 522 1 to 522 3 , 523 1 to 523 3 , 524 1 to 524 3 of the mold 140A is linear in parallel with each side S61 to S64 along which each protrusion is along. It is a protrusion extending to. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 第2実施形態では、樹脂体30Aを方向Z1に視て、1辺S11に沿う各溝311~311と1辺S21に沿う各溝321~321とが重なり合う。また、樹脂体30Aを方向Z1に視て、1辺S12に沿う各溝312~312と1辺S22に沿う各溝322~322とが重なり合う。また、樹脂体30Aを方向Z1に視て、1辺S13に沿う各溝313~313と1辺S23に沿う各溝323~323とが重なり合う。また、樹脂体30Aを方向Z1に視て、1辺S14に沿う各溝314~314と1辺S24に沿う各溝324~324とが重なり合う。即ち、型締めされた金型140Aを方向Z5に視て、1辺S51に沿う各突出部511~511と1辺S61に沿う各突出部521~521とが重なり合う。また、型締めされた金型140Aを方向Z5に視て、1辺S52に沿う各突出部512~512と1辺S62に沿う各突出部522~522とが重なり合う。また、型締めされた金型140Aを方向Z5に視て、1辺S53に沿う各突出部513~513と1辺S63に沿う各突出部523~523とが重なり合う。また、型締めされた金型140Aを方向Z5に視て、1辺S54に沿う各突出部514~514と1辺S64に沿う各突出部524~524とが重なり合う。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 In the second embodiment, when the resin body 30A is viewed in the direction Z1, the grooves 311 1 to 311 4 along the side S11 and the grooves 321 1 to 321 4 along the side S21 overlap each other. Further, when the resin body 30A is viewed in the direction Z1, the grooves 312 1 to 312 4 along the side S12 and the grooves 322 1 to 322 4 along the side S22 overlap each other. Further, when the resin body 30A is viewed in the direction Z1, the grooves 313 1 to 313 4 along the side S13 and the grooves 323 1 to 323 4 along the side S23 overlap each other. Further, when the resin body 30A is viewed in the direction Z1, the grooves 314 1 to 314 4 along the side S14 and the grooves 324 1 to 324 4 along the side S24 overlap each other. That is, when the molded mold 140A is viewed in the direction Z5, the protrusions 511 1 to 511 4 along the side S51 and the protrusions 521 1 to 521 4 along the side S61 overlap each other. Further, when the molded mold 140A is viewed in the direction Z5, the protrusions 512 1 to 512 4 along the side S52 and the protrusions 522 1 to 522 4 along the side S62 overlap each other. Further, when the molded mold 140A is viewed in the direction Z5, the protruding portions 513 1 to 513 4 along the one side S53 and the protruding portions 523 1 to 523 4 along the one side S63 overlap each other. Further, when the molded mold 140A is viewed in the direction Z5, the protruding portions 514 1 to 514 4 along the one side S54 and the protruding portions 524 1 to 524 4 along the one side S64 overlap each other. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 また、第2実施形態では、樹脂体30Aは、複数の辺の各々に沿う複数の溝を有するため、溝を形成することによる樹脂体30Aの剛性低下を抑制することができる。これにより、ポリゴンミラーをスキャナモータ1に組み込んで回転駆動させたときの各側面351~354の変形を抑制することができる。 Further, in the second embodiment, since the resin body 30A has a plurality of grooves along each of the plurality of sides, it is possible to suppress a decrease in the rigidity of the resin body 30A due to the formation of the grooves. As a result, it is possible to suppress deformation of each side surface 351 to 354 when the polygon mirror is incorporated in the scanner motor 1 and driven to rotate.
 また、第2実施形態では、各溝311~311,312~312,313~313,314~314の深さが同じであり、深さをD1とする。また、各溝321~321,322~322,323~323,324~324の深さが同じであり、深さをD2とする。第2実施形態では、溝311~311の深さD1と溝321~321の深さD2とが同じである。また、溝312~312の深さD1と溝322~322の深さD2とが同じである。また、溝313~313の深さD1と溝323~323の深さD2とが同じである。また、溝314~314の深さD1と溝324~324の深さD2とが同じである。深さD1,D2は、例えば0.4mmである。これにより、各側面351~354における各方向X1~X4の固化速度が均一となり、各側面351~354の形状精度が更に高まる。 Further, in the second embodiment, the depths of the grooves 311 1 to 311 3 and 312 1 to 312 3 and 313 1 to 313 3 and 314 1 to 314 3 are the same, and the depth is D1. Further, the depths of the grooves 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 are the same, and the depth is D2. In the second embodiment, the depth D1 of the grooves 311 1 to 311 3 and the depth D2 of the grooves 321 1 to 321 3 are the same. Further, the depth D1 of the grooves 312 1 to 312 3 and the depth D2 of the grooves 322 1 to 322 3 are the same. Further, the depth D1 of the grooves 313 1 to 313 3 and the depth D2 of the grooves 323 1 to 323 3 are the same. Further, the depth D1 of the grooves 314 1 to 314 3 and the depth D2 of the grooves 324 1 to 324 3 are the same. The depths D1 and D2 are, for example, 0.4 mm. As a result, the solidification speed of each direction X1 to X4 on each side surface 351 to 354 becomes uniform, and the shape accuracy of each side surface 351 to 354 is further improved.
 樹脂体30Aの各辺S11~S14,S21~S24の長さLは、10mm以上30mm以下であるのが好ましく、例えば14.1mm、外接円の直径にしてφ20mmが好ましい。また、樹脂体30Aの厚みZは、0.5mm以上10mm以下であるのが好ましく、例えば2mmが好ましい。 The length L of each side S11 to S14 and S21 to S24 of the resin body 30A is preferably 10 mm or more and 30 mm or less, for example, 14.1 mm, and the diameter of the circumscribed circle is preferably φ20 mm. The thickness Z of the resin body 30A is preferably 0.5 mm or more and 10 mm or less, and is preferably 2 mm, for example.
 また、貫通孔16と天面301A側の各溝311~314との間には、樹脂の注入口である4つのゲート571~574に対応するゲート痕171~174がある。各ゲート痕171~174と貫通孔16との距離は同一である。また、各側面351~354と各ゲート痕171~174との相対位置は一致している。各側面351~354と各ゲート痕171~174とは、仮想線C0に対して回転対称である。 Further, between the through hole 16 and the grooves 3111 3 to 314 3 on the top surface 301A side, there are gate marks 171 to 174 corresponding to the four gates 571 to 574 that are the resin injection ports. The distance between the gate marks 171 to 174 and the through hole 16 is the same. Further, the relative positions of the side surfaces 351 to 354 and the gate marks 171 to 174 are the same. Each side surface 351 to 354 and each gate mark 171 to 174 are rotationally symmetric with respect to the virtual line C0.
 各溝311~311,…,314~314の側壁面及び各溝321~321,…,324~324の側壁面は、各側面351~354を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。溝311~311,312~312,313~313,314~314,321~321,322~322,323~323,324~324の構成は、略同一であるため、溝311,321について具体的に説明する。 The side wall surfaces of each groove 311 1 to 311 3 , ..., 314 1 to 314 3 and the side wall surfaces of each groove 321 1 to 321 3 , ..., 324 1 to 324 3 have a draft with respect to each side surface 351 to 354. It is preferable to incline at a predetermined angle θ so as to be. Grooves 311 1 to 311 3 , 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 , 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 Since they are substantially the same, the grooves 311 1 and 321 1 will be specifically described.
 溝311は、辺S11と平行に辺S11に沿って直線状に延びるように形成されている。溝311は、側面351に沿う一対の側壁面3111,3112を有する。各側壁面3111,3112が、側面351を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。また、溝321は、辺S21と平行に辺S21に沿って直線状に延びるように形成されている。溝321は、側面351に沿う一対の側壁面3211,3212を有する。各側壁面3211,3212が、側面351を基準に、抜き勾配となるように所定角度θで傾斜しているのが好ましい。 The groove 311 1 is formed so as to extend linearly along the side S11 in parallel with the side S11. The groove 3111 1 has a pair of side wall surfaces 3111, 3112 along the side surface 351. It is preferable that the side wall surfaces 3111 and 3112 are inclined at a predetermined angle θ with respect to the side surface 351 so as to have a draft. Further, the groove 321 1 is formed so as to extend linearly along the side S21 in parallel with the side S21. The groove 321 1 has a pair of side wall surfaces 3211 and 3212 along the side surface 351. It is preferable that the side wall surfaces 3211 and 3212 are inclined at a predetermined angle θ with respect to the side surface 351 so as to have a draft.
 ここで、溝311が辺S11と平行に辺S11に沿って直線状に延びるとは、溝311の一対の側壁面3111,3112のうち、少なくとも側壁面3111が辺S11と平行に辺S11に沿って直線状に延びることである。溝321についても同様であり、溝321が辺S21と平行に辺S21に沿って直線状に延びるとは、溝321の一対の側壁面3211,3212のうち、少なくとも側壁面3111が辺S21と平行に辺S21に沿って直線状に延びることである。他の溝についても同様である。 Here, the extending linearly along the parallel sides S11 grooves 311 1 and the sides S11, a pair of side wall surfaces 3111,3112 of grooves 311 1, parallel at least the side wall surface 3111 and edge S11 sides S11 It extends linearly along. The same applies to the groove 321 1 , and the fact that the groove 321 extends linearly along the side S21 in parallel with the side S21 means that at least the side wall surface 3111 of the pair of side wall surfaces 3211 and 3212 of the groove 321 1 is the side S21. It extends linearly along the side S21 in parallel with. The same applies to other grooves.
 所定角度θは、樹脂体30Aの冷却性、樹脂体30Aの離型の容易性、及び樹脂体30Aの剛性に鑑みて、5度以上45度以下であるのが好ましい。所定角度θは、例えば30度である。所定角度θが5度よりも小さいと、離型工程において、離型される樹脂体30Aの変形が懸念される。また、所定角度が45度よりも大きいと、溝311,321において最も深い部分が、側面351から遠ざかることになるので、側面351の冷却効果が低い。 The predetermined angle θ is preferably 5 degrees or more and 45 degrees or less in view of the cooling property of the resin body 30A, the ease of mold release of the resin body 30A, and the rigidity of the resin body 30A. The predetermined angle θ is, for example, 30 degrees. If the predetermined angle θ is smaller than 5 degrees, there is a concern that the resin body 30A to be released from the mold will be deformed in the mold release step. Further, when the predetermined angle is larger than 45 degrees , the deepest portion of the grooves 311 1 and 321 1 is moved away from the side surface 351 so that the cooling effect of the side surface 351 is low.
 方向Z1に視て重なり合う溝311~311,…,314~314と溝321~321,…,324~324との間の樹脂体30Aの厚みをTとする。各溝311,311,311の幅を、各W,W,Wとする。複数の溝311,311,311の幅の合計をWとする。W=W+W+Wである。溝312~312,313~313,314~314,321~321,322~322,323~323,324~324についても同様である。各側面351~354の形状精度と、樹脂体30Aの剛性とに鑑みて、厚みTと溝幅の合計Wとは、1≦W/T≦2.5の関係を満たすのが好ましい。 Let T be the thickness of the resin body 30A between the grooves 311 1 to 311 3 , ..., 314 1 to 314 3 and the grooves 321 1 to 321 3 , ..., 324 1 to 324 3 , which overlap in the direction Z1. The widths of the grooves 311 1 , 311 2 , and 311 3 are W 1 , W 2 , and W 3 , respectively. Let W be the sum of the widths of the plurality of grooves 311 1 , 311 2 , and 311 3. W = W 1 + W 2 + W 3 . The same applies to the grooves 312 1 to 312 3 , 313 1 to 313 3 , 314 1 to 314 3 , 321 1 to 321 3 , 322 1 to 322 3 , 323 1 to 323 3 , 324 1 to 324 3 . In view of the shape accuracy of each side surface 351 to 354 and the rigidity of the resin body 30A, it is preferable that the total W of the thickness T and the groove width satisfies the relationship of 1 ≦ W / T ≦ 2.5.
 溝幅の合計Wが狭い、即ちW/T<1であると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、溝幅の合計Wが広い、即ち2.5<W/Tであると、樹脂体30Aの剛性低下が顕著となる。同様に、厚みTが厚い、即ちW/T<1であると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、厚みTが薄い、即ち2.5<W/Tであると、樹脂体30Aの剛性低下が顕著となる。 When the total W of the groove widths is narrow, that is, when W / T <1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the total W of the groove widths is wide, that is, 2.5 <W / T, the rigidity of the resin body 30A is significantly reduced. Similarly, when the thickness T is thick, that is, when W / T <1, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the thickness T is thin, that is, 2.5 <W / T, the rigidity of the resin body 30A is significantly reduced.
 厚みZが2.0mmであり、かつ深さD1及び深さD2が各々0.4mmであれば、厚みTは1.2mmである。厚みTを1.2mm、各溝幅W,W,Wを0.6mm、即ち溝幅の合計Wを1.8mmとしたとき、厚みTに対する溝幅の合計Wの比W/Tは、1.5(=1.8/1.2)mmとなり、1≦W/T≦2.5の関係を満たす。 If the thickness Z is 2.0 mm and the depths D1 and D2 are 0.4 mm each, the thickness T is 1.2 mm. When the thickness T is 1.2 mm, the groove widths W 1 , W 2 , and W 3 are 0.6 mm, that is, the total groove width W is 1.8 mm, the ratio of the total groove width W to the thickness T is W / T. Is 1.5 (= 1.8 / 1.2) mm, which satisfies the relationship of 1 ≦ W / T ≦ 2.5.
 溝311~311のうち辺S11に最も近い溝は、溝311である。溝312~312のうち辺S12に最も近い溝は、溝312である。溝313~313のうち辺S13に最も近い溝は、溝313である。溝314~314のうち辺S14に最も近い溝は、溝314である。溝321~321のうち辺S21に最も近い溝は、溝321である。溝322~322のうち辺S22に最も近い溝は、溝322である。溝323~323のうち辺S23に最も近い溝は、溝323である。溝324~324のうち辺S24に最も近い溝は、溝324である。 Of the grooves 311 1 to 3111 3 , the groove closest to the side S11 is the groove 3111 1 . Of the grooves 312 1 to 312 3 , the groove closest to the side S12 is the groove 312 1 . Of the grooves 313 1 to 313 3 , the groove closest to the side S13 is the groove 313 1 . Of the grooves 314 1 to 314 3 , the groove closest to the side S14 is the groove 314 1 . Of the grooves 321 1 to 321 3 , the groove closest to the side S21 is the groove 321 1 . Of the grooves 322 1 to 322 3 , the groove closest to the side S22 is the groove 322 1 . Of the grooves 323 1 to 323 3 , the groove closest to the side S23 is the groove 323 1 . Of the grooves 324 1 to 324 3 , the groove closest to the side S24 is the groove 324 1 .
 溝311と辺S11との間隔、溝312と辺S12との間隔、溝313と辺S13との間隔、溝314と辺S14との間隔の各々をDとする。また、溝321と辺S21との間隔、溝322と辺S22との間隔、溝323と辺S23との間隔、溝324と辺S24との間隔の各々をDとする。各側面351~354の形状精度と、樹脂体30Aの剛性とに鑑みて、厚みTと間隔Dとは、0.3≦D/T≦1の関係を満たすのが好ましい。間隔Dが広い、即ち1<D/Tであると、冷却工程において、各側面351~354の中央部における冷却効果が小さい。逆に、間隔Dが狭い、即ちD/T<0.3であると、樹脂体30Aの剛性低下が顕著となる。 Let D be the distance between the groove 311 1 and the side S11, the distance between the groove 312 1 and the side S12, the distance between the groove 313 1 and the side S13, and the distance between the groove 314 1 and the side S14. Further, the distance between the groove 321 1 and the side S21, the distance between the groove 322 1 and the side S22, the distance between the groove 323 1 and the side S23, and the distance between the groove 324 1 and the side S24 are each set as D. In view of the shape accuracy of each side surface 351 to 354 and the rigidity of the resin body 30A, it is preferable that the thickness T and the interval D satisfy the relationship of 0.3 ≦ D / T ≦ 1. When the interval D is wide, that is, 1 <D / T, the cooling effect at the central portion of each side surface 351 to 354 is small in the cooling step. On the contrary, when the interval D is narrow, that is, when D / T <0.3, the rigidity of the resin body 30A is significantly reduced.
 厚みTを1.2mm、間隔Dを0.5mmとしたとき、厚みTに対する間隔Dの比D/Tは、0.42(=0.5/1.2)mmとなり、0.3≦D/T≦1の関係を満たす。 When the thickness T is 1.2 mm and the interval D is 0.5 mm, the ratio D / T of the interval D to the thickness T is 0.42 (= 0.5 / 1.2) mm, and 0.3 ≦ D. The relationship of / T ≦ 1 is satisfied.
 図13A~図13Dは、第2実施形態に係るシミュレーション結果を示すグラフである。図13Aは、比W/Tと、側面351の温度差との関係を示すグラフである。図13Bは、比W/Tと、樹脂体30Aを回転させたときの側面351の変形との関係を示すグラフである。図13Cは、比D/Tと、側面351の温度差との関係を示すグラフである。図13Dは、比D/Tと、樹脂体30Aを回転させたときの側面351の変形との関係を示すグラフである。 FIGS. 13A to 13D are graphs showing simulation results according to the second embodiment. FIG. 13A is a graph showing the relationship between the ratio W / T and the temperature difference of the side surface 351. FIG. 13B is a graph showing the relationship between the ratio W / T and the deformation of the side surface 351 when the resin body 30A is rotated. FIG. 13C is a graph showing the relationship between the ratio D / T and the temperature difference of the side surface 351. FIG. 13D is a graph showing the relationship between the ratio D / T and the deformation of the side surface 351 when the resin body 30A is rotated.
 図13A及び図13Cに示すグラフにおける縦軸は、側面351における方向X1の中央部と端部との温度差を示し、溝がない比較例の樹脂体の側面における中央部と端部との温度差を1とした比で示している。 The vertical axis in the graphs shown in FIGS. 13A and 13C indicates the temperature difference between the central portion and the end portion of the direction X1 on the side surface 351. It is shown as a ratio with the difference as 1.
 図13B及び図13Dに示すグラフにおける縦軸は、側面351における方向X1の中央部に対する端部の変位量を示し、溝がない比較例の樹脂体の側面における中央部に対する端部の変位量を1とした比で示している。 The vertical axis in the graphs shown in FIGS. 13B and 13D indicates the amount of displacement of the end portion of the side surface 351 with respect to the central portion of the direction X1, and the amount of displacement of the end portion of the side surface of the resin body of the comparative example having no groove with respect to the central portion. It is shown by the ratio of 1.
 図13Aに示すグラフから、比W/Tが大きいほど、即ち厚みTに対して溝幅の合計Wが広いほど、冷却工程における温度差が低減されることがわかる。一方、図13Bに示すグラフから、比W/Tが大きいほど、即ち溝幅の合計Wが広いほど、樹脂体30Aを回転させた時の変位量が大きくなる。 From the graph shown in FIG. 13A, it can be seen that the larger the ratio W / T, that is, the wider the total W of the groove width with respect to the thickness T, the smaller the temperature difference in the cooling step. On the other hand, from the graph shown in FIG. 13B, the larger the ratio W / T, that is, the wider the total W of the groove widths, the larger the displacement amount when the resin body 30A is rotated.
 以上のことから、側面351における温度差を低減し、側面351における変位量を低減するには、1≦W/T≦2.5を満たすのが好ましく、1.5≦W/T≦2を満たすのがより好ましい。また、第1実施形態の図9Bに示すグラフと第2実施形態の図13Bに示すグラフとを比較すると、図13Bに示すグラフの方が、図9Bに示すグラフよりも、比W/Tの変化に対する変位量の変化が小さい。つまり、1つの辺に沿う溝の数が1本の場合よりも、複数本の場合の方が、比W/Tの増加に伴う回転駆動時の樹脂体の変形量の増加を抑制することができる。 From the above, in order to reduce the temperature difference on the side surface 351 and reduce the displacement amount on the side surface 351 it is preferable to satisfy 1 ≦ W / T ≦ 2.5, and 1.5 ≦ W / T ≦ 2. It is more preferable to meet. Further, when the graph shown in FIG. 9B of the first embodiment and the graph shown in FIG. 13B of the second embodiment are compared, the graph shown in FIG. 13B has a ratio W / T more than the graph shown in FIG. 9B. The change in the amount of displacement with respect to the change is small. That is, when the number of grooves along one side is one, it is possible to suppress the increase in the amount of deformation of the resin body during rotational drive due to the increase in the ratio W / T when there are a plurality of grooves. can.
 図13Cに示すグラフから、比D/Tが小さいほど、即ち厚みTに対して間隔Dが狭いほど、冷却工程における温度差が低減されることがわかる。一方、図13Dに示すグラフから、比D/Tが小さいほど、即ち厚みTに対して間隔Dが狭いほど、変位量が大きくなる。 From the graph shown in FIG. 13C, it can be seen that the smaller the ratio D / T, that is, the narrower the interval D with respect to the thickness T, the smaller the temperature difference in the cooling step. On the other hand, from the graph shown in FIG. 13D, the smaller the ratio D / T, that is, the narrower the interval D with respect to the thickness T, the larger the displacement amount.
 以上のことから、側面351における温度差を低減し、側面351における変位量を低減するには、0.3≦D/T≦1を満たすのが好ましく、0.4≦D/T≦0.5を満たすのがより好ましい。 From the above, in order to reduce the temperature difference on the side surface 351 and reduce the displacement amount on the side surface 351 it is preferable to satisfy 0.3 ≦ D / T ≦ 1, and 0.4 ≦ D / T ≦ 0. It is more preferable to satisfy 5.
 本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。また、実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、実施形態に記載されたものに限定されない。 The present invention is not limited to the embodiments described above, and many modifications can be made within the technical idea of the present invention. Moreover, the effects described in the embodiments are merely a list of the most suitable effects resulting from the present invention, and the effects according to the present invention are not limited to those described in the embodiments.
 上述の実施形態では、ポリゴンミラーの樹脂体が4つの側面を有する四角柱である場合について説明したが、これに限定するものではない。樹脂体は、4つ以上の側面を有する角柱であればよい。特に、樹脂体は、四角柱、五角柱、又は六角柱であるのが好ましい。 In the above-described embodiment, the case where the resin body of the polygon mirror is a quadrangular prism having four side surfaces has been described, but the present invention is not limited to this. The resin body may be a prism having four or more side surfaces. In particular, the resin body is preferably a quadrangular prism, a pentagonal prism, or a hexagonal prism.
 また、上述の実施形態では、樹脂体の天面及び底面の外形が正四角形、つまり各辺の長さが同一である場合について説明したが、これに限定するものではない。天面及び底面が四角形以上の多角形であればよく、各辺の長さが異なっていてもよい。ただし、画像形成装置においては、正多角形であるのが好ましい。 Further, in the above-described embodiment, the case where the outer shapes of the top surface and the bottom surface of the resin body are regular quadrangles, that is, the lengths of the respective sides are the same has been described, but the present invention is not limited to this. The top and bottom surfaces may be polygons having a quadrangle or more, and the lengths of the sides may be different. However, in the image forming apparatus, a regular polygon is preferable.
 また、上述の実施形態では、天面及び底面の両方が溝を有する場合について説明したが、天面及び底面のいずれか一方のみが、溝を有する場合であってもよい。ただし、上述の実施形態で説明したように、天面及び底面の両方が溝を有するのが好ましい。 Further, in the above-described embodiment, the case where both the top surface and the bottom surface have grooves has been described, but only one of the top surface and the bottom surface may have grooves. However, as described in the above embodiment, it is preferable that both the top surface and the bottom surface have grooves.
 また、上述の実施形態では、1辺に沿う溝が、当該1辺と平行である場合について説明したが、これに限定するものではない。また、溝は、全体に亘って直線状になっていなくてもよく、一部分、例えば長さ方向の中央部のみが直線状であってもよい。その際、溝の長さ方向の端部は、湾曲していてもよい。 Further, in the above-described embodiment, the case where the groove along one side is parallel to the one side has been described, but the present invention is not limited to this. Further, the groove may not be linear over the entire surface, and only a part, for example, the central portion in the length direction may be linear. At that time, the end portion in the length direction of the groove may be curved.
 また、上述の第2実施形態では、好適な例として各辺に沿う溝の数が3つの場合について説明したが、これに限定するものではなく、各辺に沿う溝の数は2つ以上であればよい。 Further, in the above-mentioned second embodiment, the case where the number of grooves along each side is three has been described as a suitable example, but the present invention is not limited to this, and the number of grooves along each side is two or more. All you need is.
 本発明は、例えばプリンタ、複写機、ファクシミリ及びこれらの機能を備えた複合機等の画像形成装置に適用可能である。
 本発明は、上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。したがって、本発明の範囲を公にするために、以下の請求項を添付する。
The present invention is applicable to an image forming apparatus such as a printer, a copying machine, a facsimile, and a multifunction device having these functions.
The present invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to publicize the scope of the present invention, the following claims are attached.
3…ポリゴンミラー、30…樹脂体、31…反射膜、301…天面(第1底面)、302…底面(第2底面)、310…平面(第1平面)、311…溝(第1溝)、312…溝(第1溝)、313…溝(第1溝)、314…溝(第1溝)、320…平面(第2平面)、321…溝(第2溝)、322…溝(第2溝)、323…溝(第2溝)、324…溝(第2溝)、351~354…側面 3 ... Polygon mirror, 30 ... Resin body, 31 ... Reflective film, 301 ... Top surface (first bottom surface), 302 ... Bottom surface (second bottom surface), 310 ... Plane (first plane), 311 ... Groove (first groove) ), 312 ... groove (first groove), 313 ... groove (first groove), 314 ... groove (first groove), 320 ... plane (second plane), 321 ... groove (second groove), 322 ... groove (Second groove) 323 ... Groove (second groove) 324 ... Groove (second groove), 351 to 354 ... Side surface

Claims (20)

  1.  第1底面、第2底面及び複数の側面を含む角柱状の樹脂体と、
     前記複数の側面の各々に設けられた反射膜と、を備え、
     前記第1底面は、外形が多角形の第1平面と、前記第1平面に対して凹み、前記複数の側面のうちの第1側面に沿った少なくとも1つの第1溝を有し、前記第1溝は、前記第1平面の対角線と交差しないように配置されている、ポリゴンミラー。
    A prismatic resin body including a first bottom surface, a second bottom surface, and a plurality of side surfaces,
    A reflective film provided on each of the plurality of side surfaces is provided.
    The first bottom surface has a first plane having a polygonal outer shape and at least one first groove that is recessed with respect to the first plane and is along the first side surface of the plurality of side surfaces. One groove is a polygon mirror arranged so as not to intersect the diagonal line of the first plane.
  2.  前記第2底面は、外形が多角形の第2平面と、前記第2平面に対して凹み、前記第1側面に沿った少なくとも1つの第2溝を有し、前記第2溝は、前記第2平面の対角線と交差しないように配置されている、
     請求項1に記載のポリゴンミラー。
    The second bottom surface has a second plane having a polygonal outer shape and at least one second groove recessed with respect to the second plane and along the first side surface, and the second groove is the second groove. Arranged so as not to intersect the diagonal lines of the two planes,
    The polygon mirror according to claim 1.
  3.  前記少なくとも1つの第1溝は、1つの第1溝であり、
     前記少なくとも1つの第2溝は、1つの第2溝である、
     請求項2に記載のポリゴンミラー。
    The at least one first groove is one first groove.
    The at least one second groove is one second groove.
    The polygon mirror according to claim 2.
  4.  前記第1溝及び前記第2溝の各々は、前記第1側面に平行に直線状に延びる溝である、
     請求項3に記載のポリゴンミラー。
    Each of the first groove and the second groove is a groove extending linearly in parallel with the first side surface.
    The polygon mirror according to claim 3.
  5.  前記第1平面に垂直な方向に視て、前記第1溝と前記第2溝とが重なり合う、
     請求項3又は4に記載のポリゴンミラー。
    The first groove and the second groove overlap each other when viewed in a direction perpendicular to the first plane.
    The polygon mirror according to claim 3 or 4.
  6.  前記第1溝の深さと前記第2溝の深さが同じである、
     請求項5に記載のポリゴンミラー。
    The depth of the first groove and the depth of the second groove are the same.
    The polygon mirror according to claim 5.
  7.  前記第1溝と前記第2溝との間の前記樹脂体の厚みをT、前記第1溝及び前記第2溝の各々の溝幅をWとしたとき、
     1≦W/T≦2.5
     を満たす、
     請求項5又は6に記載のポリゴンミラー。
    When the thickness of the resin body between the first groove and the second groove is T, and the groove widths of the first groove and the second groove are W.
    1 ≦ W / T ≦ 2.5
    Meet, meet
    The polygon mirror according to claim 5 or 6.
  8.  前記第1溝と前記第2溝との間の前記樹脂体の厚みをT、前記第1溝と前記第1側面との間隔、及び前記第2溝と前記第1側面との間隔の各々をDとしたとき、
     0.3≦D/T≦1
     を満たす、
     請求項5乃至7のいずれか1項に記載のポリゴンミラー。
    The thickness of the resin body between the first groove and the second groove is T, the distance between the first groove and the first side surface, and the distance between the second groove and the first side surface are each set. When it is D,
    0.3 ≤ D / T ≤ 1
    Meet, meet
    The polygon mirror according to any one of claims 5 to 7.
  9.  前記少なくとも1つの第1溝は、前記第1側面と直交する方向に並んで配置された複数の第1溝であり、
     前記少なくとも1つの第2溝は、前記第1側面と直交する方向に並んで配置された複数の第2溝である、
     請求項2に記載のポリゴンミラー。
    The at least one first groove is a plurality of first grooves arranged side by side in a direction orthogonal to the first side surface.
    The at least one second groove is a plurality of second grooves arranged side by side in a direction orthogonal to the first side surface.
    The polygon mirror according to claim 2.
  10.  前記複数の第1溝の各々は、前記第1側面に平行に直線状に延びる溝であり、
     前記複数の第2溝の各々は、前記第1側面に平行に直線状に延びる溝である、
     請求項9に記載のポリゴンミラー。
    Each of the plurality of first grooves is a groove extending linearly in parallel with the first side surface.
    Each of the plurality of second grooves is a groove extending linearly in parallel with the first side surface.
    The polygon mirror according to claim 9.
  11.  前記第1平面に垂直な方向に視て、前記複数の第1溝と前記複数の第2溝とがそれぞれ重なり合う、
     請求項9又は10に記載のポリゴンミラー。
    When viewed in a direction perpendicular to the first plane, the plurality of first grooves and the plurality of second grooves overlap each other.
    The polygon mirror according to claim 9 or 10.
  12.  前記複数の第1溝の各々の深さと前記複数の第2溝の各々の深さが同じである、
     請求項11に記載のポリゴンミラー。
    The depth of each of the plurality of first grooves is the same as the depth of each of the plurality of second grooves.
    The polygon mirror according to claim 11.
  13.  前記複数の第1溝と前記複数の第2溝との間の前記樹脂体の厚みをT、前記複数の第1溝の幅の合計、及び前記複数の第2溝の幅の合計の各々をWとしたとき、
     1≦W/T≦2.5
     を満たす、
     請求項11又は12に記載のポリゴンミラー。
    The thickness of the resin body between the plurality of first grooves and the plurality of second grooves is T, the total width of the plurality of first grooves, and the total width of the plurality of second grooves. When it is W
    1 ≦ W / T ≦ 2.5
    Meet, meet
    The polygon mirror according to claim 11 or 12.
  14.  前記複数の第1溝と前記複数の第2溝との間の前記樹脂体の厚みをT、前記第1側面と、前記複数の第1溝のうち前記第1側面に最も近い第1溝との間隔、及び前記第1側面と、前記複数の第2溝のうち前記第1側面に最も近い第2溝との間隔の各々をDとしたとき、
     0.3≦D/T≦1
     を満たす、
     請求項11乃至13のいずれか1項に記載のポリゴンミラー。
    The thickness of the resin body between the plurality of first grooves and the plurality of second grooves is T, the first side surface, and the first groove of the plurality of first grooves closest to the first side surface. And when each of the distance between the first side surface and the second groove closest to the first side surface among the plurality of second grooves is set to D.
    0.3 ≤ D / T ≤ 1
    Meet, meet
    The polygon mirror according to any one of claims 11 to 13.
  15.  請求項1乃至14のいずれか1項に記載のポリゴンミラーと、
     前記ポリゴンミラーを回転駆動する駆動源と、を備える、光偏向器。
    The polygon mirror according to any one of claims 1 to 14,
    An optical deflector comprising a drive source for rotationally driving the polygon mirror.
  16.  光源と、
     前記光源から出射された光を偏向する請求項15に記載の光偏向器と、を備える、光走査装置。
    Light source and
    An optical scanning device comprising the optical deflector according to claim 15, which deflects light emitted from the light source.
  17.  シートに画像を形成する画像形成部を備え、
     前記画像形成部が、
     像担持体と、
     前記像担持体の表面を光で走査する請求項16に記載の光走査装置と、を有する、画像形成装置。
    The sheet is equipped with an image forming unit that forms an image.
    The image forming part
    With the image carrier,
    The image forming apparatus according to claim 16, further comprising the optical scanning apparatus according to claim 16, wherein the surface of the image carrier is scanned with light.
  18.  第1底面形成面、第2底面形成面及び複数の側面形成面を含み、前記第1底面形成面、前記第2底面形成面及び前記複数の側面形成面で角柱状のキャビティを画成する金型であって、
     前記第1底面形成面は、外形が多角形の第1平面形成面と、前記第1平面形成面に対して突出し、前記複数の側面形成面のうちの第1側面形成面に沿った少なくとも1つの第1突出部を有し、前記第1突出部は、前記第1平面形成面の対角線と交差しないように配置されている、金型。
    A gold that includes a first bottom surface forming surface, a second bottom surface forming surface, and a plurality of side surface forming surfaces, and defines a prismatic cavity with the first bottom surface forming surface, the second bottom surface forming surface, and the plurality of side surface forming surfaces. It ’s a mold,
    The first bottom surface forming surface protrudes from the first plane forming surface having a polygonal outer shape and the first plane forming surface, and at least one along the first side surface forming surface among the plurality of side surface forming surfaces. A mold having one first protrusion, the first protrusion being arranged so as not to intersect the diagonal of the first plane forming surface.
  19.  前記第2底面形成面は、外形が多角形の第2平面形成面と、前記第2平面形成面に対して突出し、前記第1側面形成面に沿った少なくとも1つの第2突出部を有し、前記第1突出部は、前記第2平面形成面の対角線と交差しないように配置されている、
     請求項18に記載の金型。
    The second bottom surface forming surface has a second plane forming surface having a polygonal outer shape, and at least one second protruding portion that protrudes from the second plane forming surface and is along the first side surface forming surface. , The first protrusion is arranged so as not to intersect the diagonal line of the second plane forming surface.
    The mold according to claim 18.
  20.  ポリゴンミラーに用いる樹脂体を製造する製造方法であって、
     請求項18又は19に記載の金型の前記キャビティに溶融樹脂を射出する工程と、
     前記金型に射出された前記溶融樹脂を、前記金型の内部で冷却して固化させることで、前記樹脂体を形成する工程と、
     前記金型から前記樹脂体を離型させる工程と、を備える、樹脂体の製造方法。
    It is a manufacturing method for manufacturing a resin body used for a polygon mirror.
    The step of injecting the molten resin into the cavity of the mold according to claim 18 or 19.
    A step of forming the resin body by cooling and solidifying the molten resin injected into the mold inside the mold.
    A method for producing a resin body, comprising a step of releasing the resin body from the mold.
PCT/JP2021/012952 2020-05-29 2021-03-26 Polygon mirror, optical deflector, optical scanning device, image forming device, die, and method for manufacturing resin body WO2021240977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093799 2020-05-29
JP2020093799A JP2021187037A (en) 2020-05-29 2020-05-29 Polygon mirror, optical deflector, optical scanner, image formation device, mold, and method for manufacturing resin body

Publications (1)

Publication Number Publication Date
WO2021240977A1 true WO2021240977A1 (en) 2021-12-02

Family

ID=78723271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012952 WO2021240977A1 (en) 2020-05-29 2021-03-26 Polygon mirror, optical deflector, optical scanning device, image forming device, die, and method for manufacturing resin body

Country Status (2)

Country Link
JP (1) JP2021187037A (en)
WO (1) WO2021240977A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729004A (en) * 1980-07-30 1982-02-16 Ricoh Co Ltd Rotary polyhedral mirror
JPH03181913A (en) * 1989-12-11 1991-08-07 Fujitsu Ltd Production of rotary polygonal mirror
JPH03293108A (en) * 1990-04-12 1991-12-24 Toshiba Corp Polygonal mirror, mold for polygonal mirror and production of polygonal mirror
JPH0429212A (en) * 1990-05-25 1992-01-31 Toshiba Corp Polygon mirror, polygon mirror forming mold, and production of polygon mirror
DE4437690A1 (en) * 1993-10-26 1995-05-04 Fraunhofer Ges Forschung Polygonal mirror, device and method for its production
KR20050088653A (en) * 2004-03-02 2005-09-07 한국과학기술원 Composite polygon mirror

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729004A (en) * 1980-07-30 1982-02-16 Ricoh Co Ltd Rotary polyhedral mirror
JPH03181913A (en) * 1989-12-11 1991-08-07 Fujitsu Ltd Production of rotary polygonal mirror
JPH03293108A (en) * 1990-04-12 1991-12-24 Toshiba Corp Polygonal mirror, mold for polygonal mirror and production of polygonal mirror
JPH0429212A (en) * 1990-05-25 1992-01-31 Toshiba Corp Polygon mirror, polygon mirror forming mold, and production of polygon mirror
DE4437690A1 (en) * 1993-10-26 1995-05-04 Fraunhofer Ges Forschung Polygonal mirror, device and method for its production
KR20050088653A (en) * 2004-03-02 2005-09-07 한국과학기술원 Composite polygon mirror

Also Published As

Publication number Publication date
JP2021187037A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US20080239060A1 (en) Image forming apparatus and laser scanning unit and polygon mirror thereof
US20190322022A1 (en) Polygonal mirror, deflector, optical scanning apparatus, image forming apparatus, and manufacturing method of the polygonal mirror
US20030090563A1 (en) Optical scanning device and image forming apparatus
US6700596B2 (en) Scanning optical element with light-beam passage
WO2021240977A1 (en) Polygon mirror, optical deflector, optical scanning device, image forming device, die, and method for manufacturing resin body
US11366310B2 (en) Polygonal mirror, deflector, optical scanning apparatus and image forming apparatus
US5361170A (en) Polygonal mirror
JP7313898B2 (en) polygon mirror, image forming device, optical polarizer and optical scanning device
JP2024014181A (en) Polygon mirror, light deflector, optical scanner, and image forming apparatus
JP7129203B2 (en) Polygon mirrors, deflectors, optical scanning devices, and image forming devices
US11835714B2 (en) Polygon mirror, optical deflector, optical scanning device, and image forming apparatus
JP2023128333A (en) Polygon mirror, light deflector, optical scanner, and image forming apparatus
JP2002189185A (en) Optical scanner and image forming device using the same
JP3862951B2 (en) Molding method of housing
US20240103265A1 (en) Rotatable polygon mirror, optical deflector, optical scanning device and image forming apparatus
JP3015126B2 (en) Rotating polygon mirror for image forming apparatus and method of manufacturing the same
US20220197019A1 (en) Optical scanning apparatus
US20240019691A1 (en) Light scanning apparatus and image forming apparatus
JP4560363B2 (en) Mold for molding, molding member molding method, and injection molding apparatus
JP2005202039A (en) Scanning optical apparatus
JPH1184106A (en) Lens
JPH08234131A (en) Rotary polygon mirror
JP2010115921A (en) Injection mold of aspheric surface plastic lens, and method of manufacturing aspheric surface plastic lens
JPH06317758A (en) Optical scanning device and manufacturing method therefor
JPH06265805A (en) Deflection scanning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813840

Country of ref document: EP

Kind code of ref document: A1