WO2021240895A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2021240895A1
WO2021240895A1 PCT/JP2021/004260 JP2021004260W WO2021240895A1 WO 2021240895 A1 WO2021240895 A1 WO 2021240895A1 JP 2021004260 W JP2021004260 W JP 2021004260W WO 2021240895 A1 WO2021240895 A1 WO 2021240895A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated
estimation unit
soot
amount
remaining amount
Prior art date
Application number
PCT/JP2021/004260
Other languages
French (fr)
Japanese (ja)
Inventor
章広 小森
真也 佐藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022527504A priority Critical patent/JP7431960B2/en
Priority to CN202180031284.9A priority patent/CN115485464A/en
Publication of WO2021240895A1 publication Critical patent/WO2021240895A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine control device.
  • soot is generated as a particulate matter when the air-fuel mixture, which is a mixture of fuel and air, burns.
  • the internal combustion engine is provided with a gasoline particulate filter (Gasoline Particulate Filter: hereinafter referred to as "GPF"), which is a filter for collecting soot.
  • GPF gasoline particulate filter
  • the GPF is subjected to a regeneration operation of burning and removing (incinerating) the collected soot when a predetermined amount of soot is accumulated.
  • FIG. 13 is a time chart showing an operation example of the conventional GPF reproduction control.
  • the temperature of the GPF reaches the renewable temperature or higher
  • oxygen is supplied to the GPF by the fuel cut (F / C) executed when the accelerator of the vehicle is decelerated.
  • the GPF is regenerated by burning the soot.
  • the amount of soot deposited on the GPF before regeneration (soot accumulation amount), the amount of incinerated soot after the regeneration operation, and the estimation operation of the remaining soot remaining in the GPF. Is done.
  • FIG. 14 is a schematic diagram showing a first method in the conventional method for estimating the remaining amount of soot.
  • the soot accumulation amount estimation logic for estimating the soot accumulation amount the soot incineration amount estimation logic for estimating the soot incineration amount, and the soot remaining amount estimation logic for estimating the soot remaining amount are used. It is composed.
  • the soot accumulation amount estimation logic and the soot incineration amount estimation logic the soot accumulation amount and the soot incineration amount are estimated from logical operations using physical formulas and MAPs. Then, in the soot remaining amount estimation logic, the soot remaining amount is estimated by subtracting the estimated soot incineration amount from the estimated soot accumulation amount.
  • 15A to 15C are schematic views showing a second method in the conventional method for estimating the remaining amount of soot.
  • the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF is measured by using a differential pressure sensor.
  • the remaining soot is estimated from the calibration curve showing the relationship between the differential pressure ⁇ P shown in FIG. 15B and the remaining amount of soot.
  • FIG. 16 is a schematic diagram showing a third method in the conventional method for estimating the remaining amount of soot.
  • the third method shown in FIG. 16 corrects the estimated value by combining the first method and the second method described above.
  • the second method that is, the logic which is the first method using the remaining soot amount estimated by using the differential pressure ⁇ P of GPF as a reference value (true value). Calculate the difference from the remaining soot estimated by calculation. Then, the calculated difference is used to correct the soot accumulation amount estimation logic.
  • Patent Document 1 As a conventional technique for estimating the remaining amount of soot, for example, there is one described in Patent Document 1.
  • the first estimator based on the operating state of the internal combustion engine and the second estimator based on the differential pressure before and after the filter are calculated, and the deviation between the first estimator and the second estimator is calculated.
  • a technique for calculating and correcting the soot deposit amount using this deviation is described.
  • FIGS. 17A to 18B are explanatory diagrams showing an error that occurs in the estimated value of the remaining soot amount by the logical operation.
  • 17A and 17B show the error due to the soot deposit estimation logic
  • FIGS. 18A and 18B show the error due to the soot incineration amount estimation logic.
  • the error caused in the estimated value of the remaining amount of soot by the logical operation includes not only the error caused by the estimated value of the accumulated soot amount as shown in FIGS. 17A and 17B, but also as shown in FIGS. 18A and 18B.
  • the estimation unit that calculates the accurate estimated value will be corrected by the error caused by the estimation of the soot incineration amount, and an error will occur in the estimated soot accumulation amount at the next GPF regeneration operation. It was necessary to make corrections using the differential pressure sensor again.
  • An object of the present invention is to provide an internal combustion engine control device capable of correcting an error generated when estimating the remaining amount of particulate matter to an appropriate estimation unit in consideration of the above problems.
  • the internal combustion engine control device is provided with a control unit provided in the exhaust passage to control the regeneration operation of the filter that collects particulate matter in the exhaust gas.
  • the control unit includes a deposit amount estimation unit, an incinerator amount estimation unit, a remaining amount estimation unit, and an estimation error determination unit.
  • the deposit estimation unit estimates the deposit of particulate matter deposited on the filter.
  • the incinerator amount estimation unit estimates the incinerator amount of the particulate matter to be incinerated during the regeneration operation.
  • the remaining amount estimation unit estimates the remaining amount of particulate matter remaining in the filter based on the estimated accumulated amount estimated by the deposit amount estimation unit and the estimated incinerator amount estimated by the incinerator amount estimation unit.
  • the estimation error determination unit determines whether the error of the estimated remaining amount estimated by the remaining amount estimation unit is the error caused by the accumulated amount estimation unit or the incineration amount estimation unit, and determines whether the error is caused by the incineration amount estimation unit. Make corrections for it.
  • the internal combustion engine control device having the above configuration, it is possible to correct an error generated when estimating the remaining amount of particulate matter for an appropriate estimation unit.
  • FIGS. 15A to 15C are schematic views showing the second method.
  • It is a schematic diagram which shows the 3rd method in the conventional method of estimating the remaining amount of soot.
  • FIG. 17A shows a case where there is no error
  • FIG. 17B is an explanatory diagram showing an error caused by the soot accumulation amount estimation logic.
  • FIG. 18A shows a case where there is no error
  • FIG. 18B is an explanatory diagram showing an error caused by the soot incineration amount estimation logic.
  • FIGS. 1 to 12 The common members in each figure are designated by the same reference numerals.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of an internal combustion engine equipped with an internal combustion engine control device.
  • the internal combustion engine 2 shown in FIG. 1 is an in-cylinder injection type engine.
  • the internal combustion engine 2 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke.
  • the internal combustion engine 2 is, for example, a multi-cylinder engine including four cylinders (cylinders).
  • the number of cylinders of the internal combustion engine 2 is not limited to four, and may have six or eight or more cylinders.
  • the internal combustion engine 2 includes an air flow sensor 41 for measuring the intake air amount, a compressor 42 for supercharging the intake air, an intercooler 43 for cooling the supercharged intake air, and a throttle valve 44 for adjusting the gas to be sucked into the cylinder 45. And.
  • a throttle sensor 59 for detecting the opening degree of the throttle valve 44 is provided in the vicinity of the throttle valve 44.
  • the internal combustion engine 2 includes a spark plug 46 that supplies ignition energy to the cylinder 45 of each cylinder, a fuel injection device 49 that injects fuel into the cylinder 45 of each cylinder, and fuel and gas that have flowed into the cylinder 45. It includes a cylinder 50 that compresses the air-fuel mixture. Further, the internal combustion engine 2 includes an intake valve 47 for adjusting the air-fuel mixture flowing into the cylinder 45 and an exhaust valve 48 for exhausting the exhaust gas after combustion.
  • the internal combustion engine 2 includes a crank angle sensor 51 that detects a signal of a signal rotor attached to the crank shaft 60, and a water temperature sensor 52 that measures the temperature of cooling water. Further, the internal combustion engine 2 includes a turbine 53 that transmits the kinetic energy of the exhaust gas to the compressor 42 via a shaft, and a three-way catalyst 54 that purifies harmful substances in the exhaust gas. An A / F sensor 55 for detecting the oxygen concentration contained in the exhaust gas is attached in the vicinity of the three-way catalyst 54.
  • the internal combustion engine 2 includes a gasoline particulate filter (Gasoline Particulate Filter: hereinafter referred to as “GPF”) 56 provided downstream of the three-way catalyst 54.
  • GPF 56 gasoline particulate filter
  • the GPF 56 collects particulate matter, soot, contained in the exhaust gas.
  • the GPF 56 is formed of a porous body having fine pores on the wall surface. Then, the GPF 56 collects and deposits soot in the fine holes formed in the wall surface.
  • a GPF temperature sensor 57 is provided on the upstream side of the GPF 56, that is, between the three-way catalyst 54 and the GPF 56.
  • the GPF temperature sensor 57 measures the temperature of the GPF 56. If the temperature of the GPF 56 is equal to or higher than the renewable temperature, oxygen is supplied and soot is incinerated by fuel cutting (hereinafter referred to as F / C) to regenerate the GPF 56.
  • the GPF 56 is provided with a differential pressure sensor 58.
  • the differential pressure sensor 58 measures the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF 56.
  • the differential pressure sensor 58 and the GPF temperature sensor 57 are connected to the internal combustion engine control device 11 (see FIG. 2), and the measured differential pressure information and temperature information are output to the internal combustion engine control device 11.
  • FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 11.
  • the internal combustion engine control device 11 includes an input circuit 301, an input / output port 302, a RAM (RandomAccessMemory) 303, a ROM (ReadOnlyMemory) 304, and a CPU (Central ProcessingUnit) 305.
  • the internal combustion engine control device 11 includes an electronically controlled throttle valve drive circuit 306, a fuel injection device drive circuit 307, and an ignition output circuit 308.
  • each sensor such as the throttle sensor 59, the airflow sensor 41, the crank angle sensor 51, the water temperature sensor 52, the A / F sensor 55, the GPF temperature sensor 57, and the differential pressure sensor 58 is input to the input circuit 301.
  • the input circuit 301 performs signal processing such as noise removal on the input signal and sends it to the input / output port 302.
  • the value input to the input port of the input / output port 302 is stored in the RAM 303.
  • the ROM 304 stores a control program that describes the contents of various arithmetic processes executed by the CPU 305, a MAP, a data table, and the like used for each process.
  • the RAM 303 is provided with a storage area for storing the value input to the input port of the input / output port 302 and the value representing the operation amount of each actuator calculated according to the control program. Further, a value representing the operation amount of each actuator stored in the RAM 303 is sent to the output port of the input / output port 302.
  • the drive signal that realizes the target opening degree of the throttle valve 44 set in the output port of the input / output port 302 is sent to the motor that drives the throttle valve 44 via the electronically controlled throttle valve drive circuit 306.
  • the drive signal of the fuel injection device 49 is an ON / OFF signal that is ON when the valve is opened and OFF when the valve is closed.
  • the drive signal of the fuel injection device 49 set in the output port of the input / output port 302 is amplified to sufficient energy to drive the fuel injection device 49 by the fuel injection device drive circuit 307, and is supplied to the fuel injection device 49. Will be done.
  • the operation signal for the spark plug 46 is an ON / OFF signal that is turned ON when the primary coil in the ignition output circuit 308 is flowing and is turned OFF when the primary coil is not flowing.
  • the ignition timing of the spark plug 46 is a time when the operation signal for the spark plug 46 changes from ON to OFF.
  • the operation signal for the spark plug 46 set in the output port of the input / output port 302 is amplified by the ignition output circuit 308 to a sufficient energy required for ignition and supplied to the spark plug 46.
  • the CPU 305 is provided with a GPF control device 400 (see FIG. 3) showing an example of a filter control unit that controls reproduction of the GPF 56.
  • FIG. 3 is a block diagram showing the configuration of the GPF control device 400.
  • the GPF control device 400 includes an input unit 401, a soot accumulation amount estimation unit 402, a soot incineration amount estimation unit 403, a soot residual amount estimation unit 404, and a differential pressure type soot residual amount estimation unit 405. And an estimation error calculation unit 406 and a reproduction control unit 407. Further, the GPF control device 400 includes an estimation error determination unit 408.
  • the input unit 401 acquires the differential pressure information measured by the differential pressure sensor 58 and the temperature information measured by the GPF temperature sensor 57 from the RAM 303. Further, the detection flag of the GPF reproduction process is input from the CPU 305 to the input unit 401. The CPU 305 detects or predicts in advance the execution of the reproduction operation of the GPF 56 based on the map data and the navigation information, and inputs the detection flag to the input unit 401.
  • the soot accumulation amount estimation unit 402 which indicates the accumulation amount estimation unit, is composed of a MAP or a physical formula.
  • the soot accumulation amount estimation unit 402 inputs the GPF temperature, the water temperature, the F / C flag, the fuel injection amount, etc., which indicate the temperature of the GPF 56, from the input unit 401. Then, the soot accumulation amount estimation unit 402 calculates the estimated soot accumulation amount, which is the amount of soot deposited on the GPF 56, from the input GPF temperature, water temperature, F / C flag, fuel injection amount, and the like.
  • the soot accumulation amount estimation unit 402 outputs the calculated estimated soot accumulation amount to the soot remaining amount estimation unit 404.
  • the soot incinerator amount estimation unit 403 which indicates the incinerator amount estimation unit, is composed of a MAP or a physical formula. Similar to the soot accumulation amount estimation unit 402, the soot incineration amount estimation unit 403 inputs the GPF temperature and water temperature indicating the temperature of the GPF 56, the F / C flag, the fuel injection amount, and the like from the input unit 401. Then, the soot incineration amount estimation unit 403 calculates the estimated soot incineration amount, which is the amount of soot incinerated during the regeneration process, from the input GPF temperature, water temperature, F / C flag, fuel injection amount, and the like. The soot incinerator amount estimation unit 403 outputs the calculated estimated soot incinerator amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 indicating the remaining amount estimation unit uses the estimated soot accumulation amount calculated by the soot accumulation amount estimation unit 402 and the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403. Ask for. Then, the soot remaining amount estimation unit 404 outputs the calculated estimated soot remaining amount to the estimation error calculation unit 406.
  • the differential pressure type soot remaining amount estimation unit 405 indicating the differential pressure type remaining amount estimation unit acquires the differential pressure information from the input unit 401. Then, the differential pressure type soot residual amount estimation unit 405 calculates the differential pressure estimated soot residual amount Y, which is the amount of soot deposited on the GPF 56, based on the differential pressure information. The differential pressure type soot remaining amount estimation unit 405 outputs the produced differential pressure estimated soot remaining amount Y to the estimation error calculation unit 406.
  • the estimation error calculation unit 406 uses the differential pressure estimated soot residual quantity Y calculated by the differential pressure type soot residual quantity estimation unit 405 as a true value, and the difference D of the estimated soot residual quantity X calculated by the soot residual quantity estimation unit 404, that is, estimation. Calculate the error. Then, the estimation error calculation unit 406 outputs the calculated estimation error to the estimation error determination unit 408.
  • the estimation error determination unit 408 determines whether the estimation error acquired from the estimation error calculation unit 406 is an error due to the amount of soot accumulation or an error due to the amount of soot incineration.
  • the estimation error determination unit 408 outputs an estimation error to the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403 based on the determination result, and corrects the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403. Then, the corrected soot accumulation amount estimation unit 402 and the soot incineration amount estimation unit 403 correct the soot accumulation amount and the estimated soot incineration amount, and output the corrected value to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 corrects the estimated soot remaining amount based on the corrected value and outputs it to the reproduction control unit 407.
  • the reproduction control unit 407 is a reproduction command value related to the reproduction control based on the estimated remaining amount of soot (correction) calculated and corrected by the soot remaining amount estimation unit 404 and the GPF temperature input to the input unit 401. Is calculated.
  • the regeneration command value is information on fuel cut permission and ignition retard.
  • the reproduction command value calculated by the reproduction control unit 407 is changed into a signal for the spark plug 46 and a drive signal of the fuel injection device 49 by the ignition timing control unit and the fuel injection control unit in the CPU 305, and the input / output port. It is set to 302 (see FIG. 3). Then, the set drive signal is output from the input / output port 302 to the fuel injection device drive circuit 307 and the ignition output circuit 308.
  • FIG. 4 is a flowchart showing an operation example of calculating the estimated remaining amount of soot.
  • 5 and 6 are time charts showing the calculation operation of the estimated remaining soot amount,
  • FIG. 5 is a diagram showing immediately before the reproduction of the GPF 56, and
  • FIG. 6 is a diagram showing the immediately after the reproduction of the GPF 56.
  • the CPU 305 detects the implementation of the F / C based on the map data and the navigation information while the vehicle is running (step S11). Then, as shown in FIG. 5, the CPU 305 measures the time t1 of the executed F / C. Next, the CPU 305 determines whether or not the time t1 of the executed F / C is a certain time or more (step S12). That is, the CPU 305 determines whether or not the reproduction operation of the GPF 56 has been performed for a certain period of time or longer.
  • step S12 When it is determined in the process of step S12 that the time t1 of the F / C is less than a certain time (NO determination in step S12), the CPU 305 ends the process. On the other hand, when it is determined in the process of step S12 that the time t1 of the F / C is equal to or longer than a certain time (YES determination in step S12), the GPF control device 400 deposits on the GPF 56 as shown in FIG. It is judged that all the soot has been incinerated.
  • the soot accumulation amount estimation unit 402 considers that the soot accumulation amount of GPF56 is zero (step S13). That is, the soot accumulation amount estimation unit 402 calculates that the estimated soot accumulation amount is zero. As a result, the initial value of the soot accumulation amount is cleared to zero, that is, the reset process is performed. Further, in the process of step S13, the soot remaining amount estimation unit 404 also resets the estimated soot remaining amount to zero.
  • the soot accumulation amount estimation unit 402 calculates the estimated soot accumulation amount from the information such as the GPF temperature, the water temperature, and the fuel injection amount. Then, the soot accumulation amount estimation unit 402 outputs the calculated estimated soot accumulation amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 estimates that the estimated soot accumulation amount calculated by the soot accumulation amount estimation unit 402 is the soot remaining amount.
  • the CPU 305 predicts whether or not F / C will occur based on the map data and navigation information, that is, the execution of the reproduction operation of the GPF 56 (step S15). When it is determined that F / C does not occur in the process of step S15 (NO determination in step S15), the CPU 305 ends the process.
  • the CPU 305 determines that F / C will occur (YES determination in step S15)
  • the CPU 305 inputs the detection flag to the input unit 401.
  • the input unit 401 acquires the differential pressure information ⁇ P (see FIG. 5) of the GPF 56 at t3 immediately before the start of the F / C from the differential pressure sensor 58, and makes a difference to the differential pressure type soot remaining amount estimation unit 405.
  • the pressure information ⁇ P is input (step S16).
  • the differential pressure type soot remaining amount estimation unit 405 calculates the estimated soot remaining amount (differential pressure estimated soot remaining amount) Y by the differential pressure based on the differential pressure information ⁇ P acquired from the input unit 401.
  • the estimation error calculation unit 406 determines whether there is an error between the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation (step S17). In the process of step S17, the estimation error calculation unit 406 acquires the estimated soot remaining amount Y calculated by the differential pressure type soot remaining amount estimation unit 405 as the estimated soot remaining amount Y due to the differential pressure. Further, the estimation error calculation unit 406 calculates the soot accumulation amount estimation unit 402 as the estimated soot residual amount X by logical operation, and acquires the estimated soot residual amount X estimated by the soot residual amount estimation unit 404.
  • the estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and calculates the estimation error. Then, the estimation error calculation unit 406 determines, for example, whether or not there is an error based on whether or not the calculated estimation error exceeds the threshold value.
  • step S17 determines that there is no error in the process of step S17 (NO determination in step S17). the process proceeds to the process of step S19 described later.
  • the estimation error calculated in t3 immediately before the regeneration is the soot accumulation amount estimation unit 402. It can be regarded as an error caused by. Therefore, when the estimation error calculation unit 406 determines that there is an error in the processing of step S17 (YES determination in step S17), the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot deposited. It is determined that the error is caused by. Then, as shown in FIG. 5, the estimation error determination unit 408 corrects the soot accumulation amount estimation unit 402 (step S18).
  • the soot accumulation amount estimation unit 402 corrects the estimated soot accumulation amount. Then, the soot accumulation amount estimation unit 402 outputs the corrected estimated soot accumulation amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 estimates that the corrected estimated soot accumulation amount is the soot remaining amount. Further, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407.
  • the CPU 305 determines whether or not the reproduction operation of the GPF 56 is completed (step S19).
  • the CPU 305 determines, for example, that the reproduction operation of the GPF 56 is completed when the F / C execution flag is turned off.
  • the CPU 305 estimates the time required for the F / C when estimating the implementation of the F / C in the process of step S15. Then, the CPU 305 determines that the reproduction operation of the GPF 56 is completed when the F / C time reaches the pre-estimated F / C time.
  • the CPU 305 inputs the detection flag to the input unit 401.
  • the input unit 401 acquires t4 (see FIG. 6) immediately after the end of reproduction, that is, the differential pressure information ⁇ P (see FIG. 6) of the GPF 56 immediately after the end of F / C from the differential pressure sensor 58.
  • the differential pressure information ⁇ P is input to the differential pressure type soot remaining amount estimation unit 405 (step S20).
  • the differential pressure type soot remaining amount estimation unit 405 calculates the estimated soot remaining amount (differential pressure estimated soot remaining amount) Y by the differential pressure based on the differential pressure information ⁇ P acquired from the input unit 401.
  • the soot incineration amount estimation unit 403 calculates the estimated soot incineration amount from the information such as the GPF temperature, the water temperature, and the fuel injection amount. Then, the soot incinerator amount estimation unit 403 outputs the calculated estimated soot incinerator amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 calculates the estimated soot remaining amount by differentiating the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403 from the corrected soot accumulation amount.
  • the estimation error calculation unit 406 determines whether there is an error between the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation (step S21). In the process of step S21, the estimation error calculation unit 406 acquires the estimated soot remaining amount Y calculated by the differential pressure type soot remaining amount estimation unit 405 as the estimated soot remaining amount Y due to the differential pressure. Further, the estimation error calculation unit 406 calculates the soot accumulation amount estimation unit 402 as the estimated soot residual amount X by logical operation, and acquires the estimated soot residual amount X estimated by the soot residual amount estimation unit 404. The estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and calculates the estimation error.
  • step S21 determines that there is no error in the process of step S21 (NO determination in step S21).
  • the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot and incineration. It is determined that the error is caused by. Then, the estimation error determination unit 408 corrects the soot incinerator amount estimation unit 403 (step S22).
  • the soot incinerator amount estimation unit 403 corrects the estimated soot incinerator amount. Then, the soot incinerator amount estimation unit 403 outputs the corrected estimated soot incinerator amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 estimates that the value obtained by subtracting the corrected estimated soot incineration amount from the corrected estimated soot accumulation amount is the soot remaining amount. Then, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407. As a result, the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device 11 is completed.
  • the estimation error calculation unit 406 determines that the estimation error is equal to or higher than a certain value in the processes of steps S17 and S21 described above. This makes it possible to determine the failure of the differential pressure sensor 58.
  • the value used for the failure determination is a value larger than the threshold value used for the presence or absence of an error.
  • the internal combustion engine control device 11 of this example it is determined whether the estimation error is caused by the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403, respectively.
  • the error can be corrected for the appropriate estimator.
  • the estimated soot remaining amount (corrected) Z1 calculated by the soot remaining amount estimation unit 404 may be used as an initial value when the soot remaining amount is calculated next. That is, the next estimated soot remaining amount Z2 can be calculated by the estimated soot remaining amount (corrected) Z1 + the next estimated soot accumulation amount (corrected) W2-the next estimated soot incineration amount (corrected) W3.
  • the soot accumulation amount estimation unit 402 stores the differential pressure information Q when calculating the estimated soot residual amount (corrected) Z1, and the differential pressure from the actual differential pressure when correcting the next estimated soot accumulation amount W2. Subtract information Q. As a result, the differential pressure of only the next estimated soot accumulation amount W2 can be obtained, and the next estimated soot accumulation amount W2 can be appropriately corrected.
  • FIGS. 7 and 8 show the actual value and the estimated value of the soot accumulation amount
  • FIG. 7 shows a conventional example
  • FIG. 8 shows an example calculated by the internal combustion engine control device 11 of this example described above. Is shown.
  • the internal combustion engine control device 11 of this example by determining whether the estimation error is caused by the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403. , Each error is corrected for the appropriate estimation part. That is, the error caused by the soot incineration amount estimation unit 403 is corrected not for the soot accumulation amount estimation unit 402 but for the soot incineration amount estimation unit 403.
  • FIGS. 9 to 12 a second operation example in the internal combustion engine control device 11 having the above-described configuration will be described with reference to FIGS. 9 to 12.
  • the calculation operation of the estimated remaining amount of soot will be described.
  • 9 and 10 are flowcharts showing an example of calculation operation of the estimated remaining amount of soot.
  • 11 and 12 are time charts showing the calculation operation of the estimated remaining soot amount,
  • FIG. 11 is a diagram showing immediately before the reproduction of the GPF 56
  • FIG. 12 is a diagram showing a state in which the internal combustion engine 2 is stopped.
  • the difference from the first operation example according to the second operation example is that it is determined that the internal combustion engine 2 is stopped by idling stop or the like before the reproduction operation of the GPF 56 is completed.
  • the processing from step S31 to step S38 is the same as the processing from step S11 to step S18 in the first operation example, and thus the description thereof will be omitted.
  • step S41 determines whether or not the internal combustion engine 2 has stopped during the reproduction operation of the GPF 56 (step S41).
  • the CPU 305 determines that the internal combustion engine 2 has not stopped in the process of step S41 (NO determination in step S41)
  • the process proceeds to the process of step S42.
  • the processing from step S42 to step S45 is the same as the processing from step S19 to step S22 in the first operation example. Therefore, it is determined that the error generated during this period is an error caused by the soot incineration amount estimation unit 403, and the soot incineration amount estimation unit 403 is corrected.
  • step S41 when the CPU 305 determines that the internal combustion engine 2 has stopped in the process of step S41 (YES determination in step S41), the differential pressure type soot remaining amount estimation unit 405 immediately after the stop.
  • the differential pressure information ⁇ P (see FIG. 12) of the GPF 56 is recorded (step S46).
  • the soot remaining amount estimation unit 404 records the estimated soot remaining amount by the logical operation immediately after the stop (step S47). That is, the soot remaining amount estimation unit 404 records the value obtained by subtracting the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403 immediately after the stop from the corrected estimated soot accumulation amount as the estimated soot remaining amount.
  • step S48 when the internal combustion engine 2 is restarted (step S48), the estimation error calculation unit 406 has an error in the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation. It is determined whether or not there is (step S49).
  • the differential pressure type soot remaining amount estimation unit 405 calculates and estimates the estimated soot remaining amount Y by the differential pressure using the differential pressure information recorded at t5 immediately after the internal combustion engine 2 is stopped. Output to the error calculation unit 406. Further, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount recorded in t5 immediately after the internal combustion engine 2 is stopped as the estimated soot remaining amount X by logical operation to the estimation error calculation unit 406. Then, the estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and the estimation error calculation unit 406 calculates the estimation error.
  • step S49 the CPU 305 ends the processing.
  • step S50 the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot and incineration. It is determined that the error is caused by. Then, the estimation error determination unit 408 corrects the soot incinerator amount estimation unit 403 (step S50).
  • the soot incinerator amount estimation unit 403 corrects the estimated soot incinerator amount. Then, the soot incinerator amount estimation unit 403 outputs the corrected estimated soot incinerator amount to the soot remaining amount estimation unit 404.
  • the soot remaining amount estimation unit 404 estimates that the value obtained by subtracting the corrected estimated soot incineration amount from the corrected estimated soot accumulation amount is the soot remaining amount. Then, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407. As a result, the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device 11 is completed.
  • the error between the estimated remaining amount of soot due to the differential pressure and the estimated remaining amount of soot by the logical operation can be corrected for the appropriate estimation unit. Therefore, as shown in FIG. 8, an error due to the correction does not occur in the next reproduction operation, and the difference between the actual value and the estimated value of the soot accumulation amount can be reduced or eliminated, and the differential pressure sensor 58 can be compared with the conventional example. The number of corrections based on the differential pressure information can be reduced.
  • the fuel injection device 49 is arranged near the intake port in the intake pipe or near the throttle valve, and can be applied to an internal combustion engine that injects fuel into the intake pipe.
  • Input unit 402 ... Soot accumulation amount estimation unit (accumulation amount estimation unit), 403 ... Soot Incineration amount estimation unit (incineration amount estimation unit), 404 ... soot residual amount estimation unit (remaining amount estimation unit), 405 ... differential pressure type soot residual amount estimation unit (differential pressure type residual amount estimation unit), 406 ... estimation error calculation unit, 407 ... Playback control unit, 408 ... Estimated error judgment unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Provided is an internal combustion engine control device capable of correcting an error generated in estimating the remaining amount of particulate matter with respect to an appropriate estimation unit. The internal combustion engine control device comprises a control unit 400 that controls the regeneration operation of a filter. The control unit 400 comprises a deposit amount estimation unit 402, an incineration amount estimation unit 403, a remaining amount estimation unit 404, and an estimated error determination unit 408. The deposit amount estimation unit 402 estimates the amount of deposit. The incineration amount estimation unit 403 estimates the amount of incineration. The remaining amount estimation unit 404 estimates the remaining amount of particulate matter on the basis of the estimated amount of deposit and the estimated amount of incineration. Then, the estimated error determination unit 408 determines whether the error in the estimated remaining amount estimated by the remaining amount estimation unit 404 is an error due to the deposit amount estimation unit 402 or an error due to the incineration amount estimation unit 403, and performs correction with respect to the estimation unit determined.

Description

内燃機関制御装置Internal combustion engine controller
 本発明は、内燃機関制御装置に関するものである。 The present invention relates to an internal combustion engine control device.
 内燃機関では、燃料と空気が混合された混合気が燃焼する際に、粒子状物質として煤が生成される。この煤の排出量を低減させるために、内燃機関には、煤を捕集するフィルタであるガソリンパーティキュートフィルタ(Gasoline Particulate Filter:以下「GPF」という)が設けられている。GPFは、目詰まりを防止するために、所定量の煤が堆積した際には、捕集した煤を燃焼させて除去(焼却)する再生動作が行われる。 In an internal combustion engine, soot is generated as a particulate matter when the air-fuel mixture, which is a mixture of fuel and air, burns. In order to reduce the amount of soot emitted, the internal combustion engine is provided with a gasoline particulate filter (Gasoline Particulate Filter: hereinafter referred to as "GPF"), which is a filter for collecting soot. In order to prevent clogging, the GPF is subjected to a regeneration operation of burning and removing (incinerating) the collected soot when a predetermined amount of soot is accumulated.
 図13は、従来のGPFの再生制御の動作例を示すタイムチャートである。
 図13に示すように、GPFの温度が再生可能温度以上に達すると、車両のアクセルオフの減速時に実行される燃料カット(F/C)により、GPFに酸素が供給される。そして、煤が燃焼することにより、GPFが再生される。GPFの再生動作を行う際は、再生前におけるGPFに堆積した煤の量(煤堆積量)や、再生動作後には、焼却された煤の量及びGPFに残留している煤残量の推定動作が行われる。
FIG. 13 is a time chart showing an operation example of the conventional GPF reproduction control.
As shown in FIG. 13, when the temperature of the GPF reaches the renewable temperature or higher, oxygen is supplied to the GPF by the fuel cut (F / C) executed when the accelerator of the vehicle is decelerated. Then, the GPF is regenerated by burning the soot. When performing the GPF regeneration operation, the amount of soot deposited on the GPF before regeneration (soot accumulation amount), the amount of incinerated soot after the regeneration operation, and the estimation operation of the remaining soot remaining in the GPF. Is done.
 次に、図14から図16を参照して従来の煤残量の推定方法の概要について説明する。
 図14は、従来の煤残量の推定方法における第1の方式を示す概要図である。
 図14に示す第1の方式では、煤の堆積量を推定する煤堆積量推定ロジックと、煤の焼却量を推定する煤焼却量推定ロジックと、煤残量を推定する煤残量推定ロジックから構成される。煤堆積量推定ロジック及び煤焼却量推定ロジックでは、物理式やMAP等を用いた論理演算から煤堆積量や煤焼却量を推定する。そして、煤残量推定ロジックでは、推定煤堆積量から推定煤焼却量を減算することで、煤残量を推定している。
Next, an outline of a conventional method for estimating the remaining amount of soot will be described with reference to FIGS. 14 to 16.
FIG. 14 is a schematic diagram showing a first method in the conventional method for estimating the remaining amount of soot.
In the first method shown in FIG. 14, the soot accumulation amount estimation logic for estimating the soot accumulation amount, the soot incineration amount estimation logic for estimating the soot incineration amount, and the soot remaining amount estimation logic for estimating the soot remaining amount are used. It is composed. In the soot accumulation amount estimation logic and the soot incineration amount estimation logic, the soot accumulation amount and the soot incineration amount are estimated from logical operations using physical formulas and MAPs. Then, in the soot remaining amount estimation logic, the soot remaining amount is estimated by subtracting the estimated soot incineration amount from the estimated soot accumulation amount.
 図15Aから図15Cは、従来の煤残量の推定方法における第2の方式を示す概要図である。
 第2の方式では、図15Aに示すように、差圧センサを用いてGPFの上流側と下流側の圧力の差(差圧)を測定する。そして、図15Bに示す差圧ΔPと煤残量との関係を示す校正曲線から、図15Cに示すように、煤残量を推定している。
15A to 15C are schematic views showing a second method in the conventional method for estimating the remaining amount of soot.
In the second method, as shown in FIG. 15A, the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF is measured by using a differential pressure sensor. Then, as shown in FIG. 15C, the remaining soot is estimated from the calibration curve showing the relationship between the differential pressure ΔP shown in FIG. 15B and the remaining amount of soot.
 なお、図13に示すように、従来の煤残量の推定方法では、推定値と実値との誤差が発生する。そして、この誤差を解消させるために推定値の補正処理が行われている。
 図16は、従来の煤残量の推定方法における第3の方式を示す概要図である。図16に示す第3の方式は、上述した第1の方式と第2の方式を組み合わせて推定値を補正するものである。
As shown in FIG. 13, in the conventional method for estimating the remaining amount of soot, an error between the estimated value and the actual value occurs. Then, in order to eliminate this error, an estimated value correction process is performed.
FIG. 16 is a schematic diagram showing a third method in the conventional method for estimating the remaining amount of soot. The third method shown in FIG. 16 corrects the estimated value by combining the first method and the second method described above.
 図16に示すように、第3の方式では、第2の方式、すなわちGPFの差圧ΔPを用いて推定した煤残量をリファレンス値(真値)として用いて、第1の方式である論理演算により推定した煤残量との差分を算出する。そして、算出した差分を用いて煤堆積量推定ロジックに対して補正を実施する。 As shown in FIG. 16, in the third method, the second method, that is, the logic which is the first method using the remaining soot amount estimated by using the differential pressure ΔP of GPF as a reference value (true value). Calculate the difference from the remaining soot estimated by calculation. Then, the calculated difference is used to correct the soot accumulation amount estimation logic.
 このような煤残量の推定にかかる従来技術としては、例えば、特許文献1に記載されているようなものがある。特許文献1では、内燃機関の運転状態に基づいた第1推定量と、フィルタの前後の差圧に基づいた第2推定量と、を算出し、第1推定量と第2推定量の偏差を算出し、この偏差を用いて煤堆積量を補正する技術が記載されている。 As a conventional technique for estimating the remaining amount of soot, for example, there is one described in Patent Document 1. In Patent Document 1, the first estimator based on the operating state of the internal combustion engine and the second estimator based on the differential pressure before and after the filter are calculated, and the deviation between the first estimator and the second estimator is calculated. A technique for calculating and correcting the soot deposit amount using this deviation is described.
 図17Aから図18Bは、論理演算による煤残量の推定値に生じる誤差を示す説明図である。図17A及び図17Bは、煤堆積量推定ロジックに起因する誤差を示し、図18A及び図18Bは、煤焼却量推定ロジックに起因する誤差を示している。 FIGS. 17A to 18B are explanatory diagrams showing an error that occurs in the estimated value of the remaining soot amount by the logical operation. 17A and 17B show the error due to the soot deposit estimation logic, and FIGS. 18A and 18B show the error due to the soot incineration amount estimation logic.
 図17A及び図17Bに示す例では、煤堆積量推定ロジックに誤差が生じた場合、推定煤堆積量が過剰に演算されたことにより推定誤差が生じるため、再生後の推定煤残量に誤差が生じる。このとき、差圧により算出した推定煤残量を真値とし、論理演算により算出した推定煤残量との差分を算出する。そして、算出した差分により推定煤堆積量を推定する推定部(煤堆積量推定ロジック)が補正される。 In the examples shown in FIGS. 17A and 17B, when an error occurs in the soot accumulation amount estimation logic, an error occurs due to an excessive calculation of the estimated soot accumulation amount, so that an error occurs in the estimated soot remaining amount after regeneration. Occurs. At this time, the estimated remaining amount of soot calculated by the differential pressure is set as the true value, and the difference from the estimated remaining amount of soot calculated by the logical operation is calculated. Then, the estimation unit (soot accumulation amount estimation logic) for estimating the estimated soot accumulation amount is corrected by the calculated difference.
 これに対して、図18A及び図18Bに示す例では、煤焼却量推定ロジックに誤差が生じた場合、推定焼却量が過少に演算されたことにより推定誤差が生じるため、再生後の推定煤残量に誤差が生じる。このとき、差圧により算出した推定煤残量を真値とし、論理演算により算出した推定煤残量との差分を算出する。そして、従来技術では、算出した差分は煤焼却量に起因する誤差であるが、推定煤堆積量を算出する推定部(煤堆積量推定ロジック)を補正している。 On the other hand, in the examples shown in FIGS. 18A and 18B, when an error occurs in the soot incineration amount estimation logic, an estimation error occurs due to an undercalculation of the estimated incineration amount, so that the estimated soot residue after reproduction occurs. There will be an error in the amount. At this time, the estimated remaining amount of soot calculated by the differential pressure is set as the true value, and the difference from the estimated remaining amount of soot calculated by the logical operation is calculated. Then, in the prior art, the calculated difference is an error due to the soot incineration amount, but the estimation unit (soot accumulation amount estimation logic) for calculating the estimated soot accumulation amount is corrected.
特開2019-105181号公報Japanese Unexamined Patent Publication No. 2019-105181
 また、論理演算による煤残量の推定値に生じる誤差には、図17A及び図17Bに示すように、煤堆積量の推定値に起因する誤差だけでなく、図18A及び図18Bに示すように、煤焼却量の推定値に起因する誤差もある。しかしながら、特許文献1に記載された技術では、第1推定量と第2推定量との間に差分が生じた場合、その偏差を常に煤堆積量の推定部に対して補正を行っている。したがって、正確な推定値を演算している推定部に対して煤焼却量の推定に起因する誤差で補正を行うことになり、次回のGPFの再生動作時に推定煤堆積量に誤差が発生し、再び差圧センサによる補正を行う必要があった。 Further, the error caused in the estimated value of the remaining amount of soot by the logical operation includes not only the error caused by the estimated value of the accumulated soot amount as shown in FIGS. 17A and 17B, but also as shown in FIGS. 18A and 18B. , There is also an error due to the estimated value of soot incineration. However, in the technique described in Patent Document 1, when a difference occurs between the first estimated amount and the second estimated amount, the deviation is always corrected for the soot accumulation amount estimation unit. Therefore, the estimation unit that calculates the accurate estimated value will be corrected by the error caused by the estimation of the soot incineration amount, and an error will occur in the estimated soot accumulation amount at the next GPF regeneration operation. It was necessary to make corrections using the differential pressure sensor again.
 本目的は、上記の問題点を考慮し、粒子状物質の残量を推定する際に生じた誤差を適切な推定部に対して補正することができる内燃機関制御装置を提供することにある。 An object of the present invention is to provide an internal combustion engine control device capable of correcting an error generated when estimating the remaining amount of particulate matter to an appropriate estimation unit in consideration of the above problems.
 上記課題を解決し、目的を達成するため、内燃機関制御装置は、排気通路に設けられて排気中の粒子状物質を捕集するフィルタの再生動作を制御する制御部を備えている。制御部は、堆積量推定部と、焼却量推定部と、残量推定部と、推定誤差判定部と、を備えている。堆積量推定部は、フィルタに堆積する粒子状物質の堆積量を推定する。焼却量推定部は、再生動作時に焼却される粒子状物質の焼却量を推定する。残量推定部は、堆積量推定部が推定した推定堆積量及び焼却量推定部が推定した推定焼却量に基づいてフィルタに残留する粒子状物質の残量を推定する。そして、推定誤差判定部は、残量推定部が推定した推定残量の誤差が、堆積量推定部に起因する誤差か、焼却量推定部に起因する誤差かを判定し、判定した推定部に対して補正を行う。 In order to solve the above problems and achieve the purpose, the internal combustion engine control device is provided with a control unit provided in the exhaust passage to control the regeneration operation of the filter that collects particulate matter in the exhaust gas. The control unit includes a deposit amount estimation unit, an incinerator amount estimation unit, a remaining amount estimation unit, and an estimation error determination unit. The deposit estimation unit estimates the deposit of particulate matter deposited on the filter. The incinerator amount estimation unit estimates the incinerator amount of the particulate matter to be incinerated during the regeneration operation. The remaining amount estimation unit estimates the remaining amount of particulate matter remaining in the filter based on the estimated accumulated amount estimated by the deposit amount estimation unit and the estimated incinerator amount estimated by the incinerator amount estimation unit. Then, the estimation error determination unit determines whether the error of the estimated remaining amount estimated by the remaining amount estimation unit is the error caused by the accumulated amount estimation unit or the incineration amount estimation unit, and determines whether the error is caused by the incineration amount estimation unit. Make corrections for it.
 上記構成の内燃機関制御装置によれば、粒子状物質の残量を推定する際に生じた誤差を適切な推定部に対して補正することができる。 According to the internal combustion engine control device having the above configuration, it is possible to correct an error generated when estimating the remaining amount of particulate matter for an appropriate estimation unit.
実施の形態例にかかる内燃機関制御装置が搭載された内燃機関の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the internal combustion engine equipped with the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置のGPF制御装置を示すブロック図である。It is a block diagram which shows the GPF control apparatus of the internal combustion engine control apparatus which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第1の動作例を示すフローチャートである。It is a flowchart which shows the 1st operation example of the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第1の動作例を示すタイムチャートであり、GPFの再生直前を示す図である。It is a time chart which shows the 1st operation example of the calculation operation of the estimated soot remaining amount in the internal combustion engine control device which concerns on embodiment, and is the figure which shows just before the reproduction of GPF. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第1の動作例を示すタイムチャートであり、GPFの再生直後を示す図である。It is a time chart which shows the 1st operation example of the calculation operation of the estimated soot remaining amount in the internal combustion engine control device which concerns on embodiment, and is the figure which shows right after the reproduction of GPF. 従来例にかかる煤堆積量の実値と推定値を示す説明図である。It is explanatory drawing which shows the actual value and the estimated value of the soot accumulation amount with respect to the conventional example. 実施の形態例にかかる内燃機関制御装置における煤堆積量の実値と推定値を示す説明図である。It is explanatory drawing which shows the actual value and the estimated value of the soot accumulation amount in the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第2の動作例を示すフローチャートである。It is a flowchart which shows the 2nd operation example of the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第2の動作例を示すフローチャートである。It is a flowchart which shows the 2nd operation example of the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device which concerns on embodiment. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第2の動作例を示すタイムチャートであり、GPFの再生直前を示す図である。It is a time chart which shows the 2nd operation example of the calculation operation of the estimated soot remaining amount in the internal combustion engine control device which concerns on embodiment, and is the figure which shows just before the reproduction of GPF. 実施の形態例にかかる内燃機関制御装置における推定煤残量の算出動作の第2の動作例を示すタイムチャートであり、内燃機関が停止した状態を示す図である。It is a time chart which shows the 2nd operation example of the calculation operation of the estimated soot residual quantity in the internal combustion engine control device which concerns on embodiment, and is the figure which shows the state which the internal combustion engine stopped. 従来のGPFの再生制御の動作例を示すタイムチャートである。It is a time chart which shows the operation example of the reproduction control of the conventional GPF. 従来の煤残量の推定方法における第1の方式を示す概要図である。It is a schematic diagram which shows the 1st method in the conventional method of estimating the remaining amount of soot. 従来の煤残量の推定方法における第2の方式を示すもので、図15Aから図15Cは第2の方式を示す概要図である。A second method in the conventional method for estimating the remaining amount of soot is shown, and FIGS. 15A to 15C are schematic views showing the second method. 従来の煤残量の推定方法における第3の方式を示す概要図である。It is a schematic diagram which shows the 3rd method in the conventional method of estimating the remaining amount of soot. 論理演算による煤残量の推定値に生じる誤差を示すもので、図17Aは誤差がない場合を示し、図17Bは煤堆積量推定ロジックに起因する誤差を示す説明図である。FIG. 17A shows a case where there is no error, and FIG. 17B is an explanatory diagram showing an error caused by the soot accumulation amount estimation logic. 論理演算による煤残量の推定値に生じる誤差を示すもので、図18Aは誤差がない場合を示し、図18Bは煤焼却量推定ロジックに起因する誤差を示す説明図である。FIG. 18A shows a case where there is no error, and FIG. 18B is an explanatory diagram showing an error caused by the soot incineration amount estimation logic.
 以下、内燃機関制御装置の実施の形態例について、図1~図12を参照して説明する。
なお、各図において共通の部材には、同一の符号を付している。
Hereinafter, embodiments of the internal combustion engine control device will be described with reference to FIGS. 1 to 12.
The common members in each figure are designated by the same reference numerals.
1.実施の形態例1-1.内燃機関制御の構成例
 まず、実施の形態例(以下、「本例」という)にかかる内燃機関制御装置の構成例について、図1から図3を参照して説明する。
 図1は、内燃機関制御装置が搭載された内燃機関の構成例を示す概略構成図である。
1. 1. Embodiment 1-1. Configuration Example of Internal Combustion Engine Control First, a configuration example of the internal combustion engine control device according to the embodiment (hereinafter referred to as “this example”) will be described with reference to FIGS. 1 to 3.
FIG. 1 is a schematic configuration diagram showing a configuration example of an internal combustion engine equipped with an internal combustion engine control device.
 図1に示す内燃機関2は、筒内噴射型のエンジンである。内燃機関2は、吸入行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンである。さらに、内燃機関2は、例えば、4つの気筒(シリンダ)を備えた多気筒エンジンである。
なお、内燃機関2が有する気筒の数は、4つに限定されるものではなく、6つ又は8つ以上の気筒を有していてもよい。
The internal combustion engine 2 shown in FIG. 1 is an in-cylinder injection type engine. The internal combustion engine 2 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke. Further, the internal combustion engine 2 is, for example, a multi-cylinder engine including four cylinders (cylinders).
The number of cylinders of the internal combustion engine 2 is not limited to four, and may have six or eight or more cylinders.
 内燃機関2は、吸気量を測定するエアフローセンサ41と、吸気を過給するコンプレッサ42と、過給された吸気を冷却するインタークーラ43と、シリンダ45内に吸入するガスを調節するスロットルバルブ44とを備える。そして、スロットルバルブ44の近傍には、スロットルバルブ44の開度を検出するためのスロットルセンサ59が設けられている。 The internal combustion engine 2 includes an air flow sensor 41 for measuring the intake air amount, a compressor 42 for supercharging the intake air, an intercooler 43 for cooling the supercharged intake air, and a throttle valve 44 for adjusting the gas to be sucked into the cylinder 45. And. A throttle sensor 59 for detecting the opening degree of the throttle valve 44 is provided in the vicinity of the throttle valve 44.
 また、内燃機関2は、各気筒のシリンダ45に点火エネルギーを供給する点火プラグ46と、各気筒のシリンダ45の中に燃料を噴射する燃料噴射装置49と、シリンダ45に流入した燃料とガスの混合気を圧縮するピストン50とを備える。さらに、内燃機関2は、シリンダ45へ流入する混合気を調整する吸気バルブ47と、燃焼後の排気ガスを排出する排気バルブ48を備える。 Further, the internal combustion engine 2 includes a spark plug 46 that supplies ignition energy to the cylinder 45 of each cylinder, a fuel injection device 49 that injects fuel into the cylinder 45 of each cylinder, and fuel and gas that have flowed into the cylinder 45. It includes a cylinder 50 that compresses the air-fuel mixture. Further, the internal combustion engine 2 includes an intake valve 47 for adjusting the air-fuel mixture flowing into the cylinder 45 and an exhaust valve 48 for exhausting the exhaust gas after combustion.
 また、内燃機関2は、クランク軸60に取り付けられたシグナルロータの信号を検出するクランク角度センサ51と、冷却水の温度を測定する水温センサ52とを備える。さらに、内燃機関2は、排気ガスの運動エネルギーを、シャフトを介してコンプレッサ42に伝えるタービン53と、排気ガス中の有害物質を浄化する三元触媒54を備える。そして、三元触媒54の近傍には、排気ガス中に含まれる酸素濃度を検出するA/Fセンサ55が取り付けられている。 Further, the internal combustion engine 2 includes a crank angle sensor 51 that detects a signal of a signal rotor attached to the crank shaft 60, and a water temperature sensor 52 that measures the temperature of cooling water. Further, the internal combustion engine 2 includes a turbine 53 that transmits the kinetic energy of the exhaust gas to the compressor 42 via a shaft, and a three-way catalyst 54 that purifies harmful substances in the exhaust gas. An A / F sensor 55 for detecting the oxygen concentration contained in the exhaust gas is attached in the vicinity of the three-way catalyst 54.
 また、内燃機関2は、三元触媒54の下流に設けられたガソリンパーティキュートフィルタ(Gasoline Particulate Filter:以下「GPF」という)56を備える。GPF56は、排気ガス中に含まれる粒子状物質、いわゆる煤を捕集する。GPF56は、壁面に微細な孔を有する多孔質体により形成されている。そして、GPF56は、壁面に形成された微細な孔に煤を捕集し、堆積する。 Further, the internal combustion engine 2 includes a gasoline particulate filter (Gasoline Particulate Filter: hereinafter referred to as “GPF”) 56 provided downstream of the three-way catalyst 54. The GPF 56 collects particulate matter, soot, contained in the exhaust gas. The GPF 56 is formed of a porous body having fine pores on the wall surface. Then, the GPF 56 collects and deposits soot in the fine holes formed in the wall surface.
 また、GPF56よりも上流側、すなわち三元触媒54とGPF56との間には、GPF温度センサ57が設けられている。GPF温度センサ57は、GPF56の温度を測定する。GPF56は、温度が再生可能温度以上であれば、燃料カット(以下、F/Cという)により、酸素が供給され煤が焼却されることで、再生される。 Further, a GPF temperature sensor 57 is provided on the upstream side of the GPF 56, that is, between the three-way catalyst 54 and the GPF 56. The GPF temperature sensor 57 measures the temperature of the GPF 56. If the temperature of the GPF 56 is equal to or higher than the renewable temperature, oxygen is supplied and soot is incinerated by fuel cutting (hereinafter referred to as F / C) to regenerate the GPF 56.
 また、GPF56には、差圧センサ58が設けられている。差圧センサ58は、GPF56の上流側と下流側の圧力の差(差圧)を測定する。そして、差圧センサ58及びGPF温度センサ57は、内燃機関制御装置11(図2参照)に接続されており、測定した差圧情報及び温度情報を内燃機関制御装置11に出力する。 Further, the GPF 56 is provided with a differential pressure sensor 58. The differential pressure sensor 58 measures the pressure difference (differential pressure) between the upstream side and the downstream side of the GPF 56. The differential pressure sensor 58 and the GPF temperature sensor 57 are connected to the internal combustion engine control device 11 (see FIG. 2), and the measured differential pressure information and temperature information are output to the internal combustion engine control device 11.
[ECUの構成]
 次に、図2を参照して内燃機関2を制御する内燃機関制御装置11の構成について説明する。
 図2は、内燃機関制御装置11の構成を示すブロック図である。
[ECU configuration]
Next, the configuration of the internal combustion engine control device 11 that controls the internal combustion engine 2 will be described with reference to FIG.
FIG. 2 is a block diagram showing the configuration of the internal combustion engine control device 11.
 図2に示すように、内燃機関制御装置11は、入力回路301と、入出力ポート302と、RAM(Random Access Memory)303と、ROM(Read Only Memory)304と、CPU(Central Processing Unit)305を有する。また、内燃機関制御装置11は、電制スロットルバルブ駆動回路306と、燃料噴射装置駆動回路307と、点火出力回路308と、を有する。 As shown in FIG. 2, the internal combustion engine control device 11 includes an input circuit 301, an input / output port 302, a RAM (RandomAccessMemory) 303, a ROM (ReadOnlyMemory) 304, and a CPU (Central ProcessingUnit) 305. Has. Further, the internal combustion engine control device 11 includes an electronically controlled throttle valve drive circuit 306, a fuel injection device drive circuit 307, and an ignition output circuit 308.
 入力回路301には、スロットルセンサ59、エアフローセンサ41、クランク角度センサ51、水温センサ52、A/Fセンサ55、GPF温度センサ57、差圧センサ58等の各センサの出力が入力される。入力回路301は、入力された信号に対してノイズ除去等の信号処理を行って、入出力ポート302へ送る。入出力ポート302の入力ポートに入力された値はRAM303に格納される。 The output of each sensor such as the throttle sensor 59, the airflow sensor 41, the crank angle sensor 51, the water temperature sensor 52, the A / F sensor 55, the GPF temperature sensor 57, and the differential pressure sensor 58 is input to the input circuit 301. The input circuit 301 performs signal processing such as noise removal on the input signal and sends it to the input / output port 302. The value input to the input port of the input / output port 302 is stored in the RAM 303.
 ROM304には、CPU305により実行される各種演算処理の内容を記述した制御プログラムや、各処理に用いられるMAPやデータテーブル等が記憶されている。RAM303には、入出力ポート302の入力ポートに入力された値や、制御プログラムに従って演算された各アクチュエータの操作量を表す値を格納する格納領域が設けられている。
また、RAM303に格納された各アクチュエータの操作量を表す値は、入出力ポート302の出力ポートに送られる。
The ROM 304 stores a control program that describes the contents of various arithmetic processes executed by the CPU 305, a MAP, a data table, and the like used for each process. The RAM 303 is provided with a storage area for storing the value input to the input port of the input / output port 302 and the value representing the operation amount of each actuator calculated according to the control program.
Further, a value representing the operation amount of each actuator stored in the RAM 303 is sent to the output port of the input / output port 302.
 入出力ポート302の出力ポートにセットされたスロットルバルブ44の目標開度を実現する駆動信号は、電制スロットルバルブ駆動回路306を経て、スロットルバルブ44を駆動するモータに送られる。燃料噴射装置49の駆動信号は、開弁時ON、閉弁時OFFとなるON・OFF信号である。入出力ポート302の出力ポートにセットされた燃料噴射装置49の駆動信号は、燃料噴射装置駆動回路307で燃料噴射装置49を駆動するのに十分なエネルギーに増幅されて、燃料噴射装置49に供給される。 The drive signal that realizes the target opening degree of the throttle valve 44 set in the output port of the input / output port 302 is sent to the motor that drives the throttle valve 44 via the electronically controlled throttle valve drive circuit 306. The drive signal of the fuel injection device 49 is an ON / OFF signal that is ON when the valve is opened and OFF when the valve is closed. The drive signal of the fuel injection device 49 set in the output port of the input / output port 302 is amplified to sufficient energy to drive the fuel injection device 49 by the fuel injection device drive circuit 307, and is supplied to the fuel injection device 49. Will be done.
 点火プラグ46に対する作動信号は、点火出力回路308内の一次側コイルの通流時にONとなり、非通流時にOFFとなるON・OFF信号である。点火プラグ46の点火時期は、点火プラグ46に対する作動信号がONからOFFになる時点である。入出力ポート302の出力ポートにセットされた点火プラグ46に対する作動信号は、点火出力回路308で点火に必要な十分なエネルギーに増幅されて、点火プラグ46に供給される。 The operation signal for the spark plug 46 is an ON / OFF signal that is turned ON when the primary coil in the ignition output circuit 308 is flowing and is turned OFF when the primary coil is not flowing. The ignition timing of the spark plug 46 is a time when the operation signal for the spark plug 46 changes from ON to OFF. The operation signal for the spark plug 46 set in the output port of the input / output port 302 is amplified by the ignition output circuit 308 to a sufficient energy required for ignition and supplied to the spark plug 46.
 また、CPU305には、GPF56の再生制御を行うフィルタ制御部の一例を示すGPF制御装置400(図3参照)が設けられている。 Further, the CPU 305 is provided with a GPF control device 400 (see FIG. 3) showing an example of a filter control unit that controls reproduction of the GPF 56.
[GPF制御装置の構成]
 次に、図3を参照してGPF制御装置400の構成について説明する。
 図3は、GPF制御装置400の構成を示すブロック図である。
[Configuration of GPF control device]
Next, the configuration of the GPF control device 400 will be described with reference to FIG.
FIG. 3 is a block diagram showing the configuration of the GPF control device 400.
 図3に示すように、GPF制御装置400は、入力部401と、煤堆積量推定部402と、煤焼却量推定部403と、煤残量推定部404と、差圧式煤残量推定部405と、推定誤差演算部406と、再生制御部407とを備えている。さらに、GPF制御装置400は、推定誤差判定部408を備えている。 As shown in FIG. 3, the GPF control device 400 includes an input unit 401, a soot accumulation amount estimation unit 402, a soot incineration amount estimation unit 403, a soot residual amount estimation unit 404, and a differential pressure type soot residual amount estimation unit 405. And an estimation error calculation unit 406 and a reproduction control unit 407. Further, the GPF control device 400 includes an estimation error determination unit 408.
 入力部401は、RAM303から、差圧センサ58が測定した差圧情報やGPF温度センサ57が測定した温度情報を取得する。さらに、入力部401には、CPU305からGPF再生処理の検知フラグが入力される。CPU305は、地図データやナビゲーション情報に基づいてGPF56の再生動作の実施を事前に検知又は予測し、検知フラグを入力部401に入力する。 The input unit 401 acquires the differential pressure information measured by the differential pressure sensor 58 and the temperature information measured by the GPF temperature sensor 57 from the RAM 303. Further, the detection flag of the GPF reproduction process is input from the CPU 305 to the input unit 401. The CPU 305 detects or predicts in advance the execution of the reproduction operation of the GPF 56 based on the map data and the navigation information, and inputs the detection flag to the input unit 401.
 堆積量推定部を示す煤堆積量推定部402は、MAPや物理式で構成される。煤堆積量推定部402には、入力部401からGPF56の温度を示すGPF温度や水温、F/Cフラグ、燃料噴射量等が入力される。そして、煤堆積量推定部402は、入力されたGPF温度や水温、F/Cフラグや燃料噴射量等からGPF56に堆積された煤の量である推定煤堆積量を演算する。煤堆積量推定部402は、演算した推定煤堆積量を煤残量推定部404に出力する。 The soot accumulation amount estimation unit 402, which indicates the accumulation amount estimation unit, is composed of a MAP or a physical formula. The soot accumulation amount estimation unit 402 inputs the GPF temperature, the water temperature, the F / C flag, the fuel injection amount, etc., which indicate the temperature of the GPF 56, from the input unit 401. Then, the soot accumulation amount estimation unit 402 calculates the estimated soot accumulation amount, which is the amount of soot deposited on the GPF 56, from the input GPF temperature, water temperature, F / C flag, fuel injection amount, and the like. The soot accumulation amount estimation unit 402 outputs the calculated estimated soot accumulation amount to the soot remaining amount estimation unit 404.
 焼却量推定部を示す煤焼却量推定部403は、MAPや物理式で構成される。煤焼却量推定部403には、煤堆積量推定部402と同様に、入力部401からGPF56の温度を示すGPF温度や水温、F/Cフラグ、燃料噴射量等が入力される。そして、煤焼却量推定部403は、入力されたGPF温度や水温、F/Cフラグ、燃料噴射量等から再生処理時に焼却された煤の量である推定煤焼却量を演算する。煤焼却量推定部403は、演算した推定煤焼却量を煤残量推定部404に出力する。 The soot incinerator amount estimation unit 403, which indicates the incinerator amount estimation unit, is composed of a MAP or a physical formula. Similar to the soot accumulation amount estimation unit 402, the soot incineration amount estimation unit 403 inputs the GPF temperature and water temperature indicating the temperature of the GPF 56, the F / C flag, the fuel injection amount, and the like from the input unit 401. Then, the soot incineration amount estimation unit 403 calculates the estimated soot incineration amount, which is the amount of soot incinerated during the regeneration process, from the input GPF temperature, water temperature, F / C flag, fuel injection amount, and the like. The soot incinerator amount estimation unit 403 outputs the calculated estimated soot incinerator amount to the soot remaining amount estimation unit 404.
 残量推定部を示す煤残量推定部404は、煤堆積量推定部402で演算した推定煤堆積量と、煤焼却量推定部403で演算した推定煤焼却量を用いて、推定煤残量を求める。そして、煤残量推定部404は、算出した推定煤残量を推定誤差演算部406に出力する。
なお、推定煤残量Xは、下記式1により求められる。
[式1]
 推定煤残量X=推定煤堆積量-推定煤焼却量
The soot remaining amount estimation unit 404 indicating the remaining amount estimation unit uses the estimated soot accumulation amount calculated by the soot accumulation amount estimation unit 402 and the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403. Ask for. Then, the soot remaining amount estimation unit 404 outputs the calculated estimated soot remaining amount to the estimation error calculation unit 406.
The estimated soot remaining amount X is calculated by the following equation 1.
[Equation 1]
Estimated soot remaining amount X = estimated soot accumulation amount-estimated soot incineration amount
 差圧式残量推定部を示す差圧式煤残量推定部405は、入力部401から差圧情報を取得する。そして、差圧式煤残量推定部405は、差圧情報に基づいて、GPF56に堆積した煤の量である差圧推定煤残量Yを算出する。差圧式煤残量推定部405は、演出した差圧推定煤残量Yを推定誤差演算部406に出力する。 The differential pressure type soot remaining amount estimation unit 405 indicating the differential pressure type remaining amount estimation unit acquires the differential pressure information from the input unit 401. Then, the differential pressure type soot residual amount estimation unit 405 calculates the differential pressure estimated soot residual amount Y, which is the amount of soot deposited on the GPF 56, based on the differential pressure information. The differential pressure type soot remaining amount estimation unit 405 outputs the produced differential pressure estimated soot remaining amount Y to the estimation error calculation unit 406.
 推定誤差演算部406は、差圧式煤残量推定部405が算出した差圧推定煤残量Yを真値とし、煤残量推定部404が算出した推定煤残量Xの差分D、すなわち推定誤差を演算する。そして、推定誤差演算部406は、演算した推定誤差を推定誤差判定部408に出力する。 The estimation error calculation unit 406 uses the differential pressure estimated soot residual quantity Y calculated by the differential pressure type soot residual quantity estimation unit 405 as a true value, and the difference D of the estimated soot residual quantity X calculated by the soot residual quantity estimation unit 404, that is, estimation. Calculate the error. Then, the estimation error calculation unit 406 outputs the calculated estimation error to the estimation error determination unit 408.
 推定誤差判定部408は、推定誤差演算部406から取得した推定誤差が煤堆積量に起因する誤差か、煤焼却量に起因する誤差かを判定する。推定誤差判定部408は、判定結果に基づいて、推定誤差を煤堆積量推定部402又は煤焼却量推定部403に出力し、煤堆積量推定部402又は煤焼却量推定部403を補正する。そして、補正された煤堆積量推定部402及び煤焼却量推定部403は、定煤堆積量及び推定煤焼却量を補正し、補正した値を煤残量推定部404に出力する。 The estimation error determination unit 408 determines whether the estimation error acquired from the estimation error calculation unit 406 is an error due to the amount of soot accumulation or an error due to the amount of soot incineration. The estimation error determination unit 408 outputs an estimation error to the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403 based on the determination result, and corrects the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403. Then, the corrected soot accumulation amount estimation unit 402 and the soot incineration amount estimation unit 403 correct the soot accumulation amount and the estimated soot incineration amount, and output the corrected value to the soot remaining amount estimation unit 404.
 また、煤残量推定部404は、補正した値に基づいて、推定煤残量を補正し、再生制御部407に出力する。再生制御部407は、煤残量推定部404により演算され、かつ補正された推定煤残量(補正)と、入力部401に入力されたGPF温度等に基づいて、再生制御にかかる再生指令値を演算する。再生指令値は、燃料カット許可や点火リタードに関する情報である。 Further, the soot remaining amount estimation unit 404 corrects the estimated soot remaining amount based on the corrected value and outputs it to the reproduction control unit 407. The reproduction control unit 407 is a reproduction command value related to the reproduction control based on the estimated remaining amount of soot (correction) calculated and corrected by the soot remaining amount estimation unit 404 and the GPF temperature input to the input unit 401. Is calculated. The regeneration command value is information on fuel cut permission and ignition retard.
 再生制御部407により演算された再生指令値は、CPU305内の点火時期制御部と燃料噴射制御部にて、点火プラグ46用の信号と、燃料噴射装置49の駆動信号に変化され、入出力ポート302(図3参照)にセットされる。そして、セットされた駆動信号は、入出力ポート302から燃料噴射装置駆動回路307及び点火出力回路308に出力される。 The reproduction command value calculated by the reproduction control unit 407 is changed into a signal for the spark plug 46 and a drive signal of the fuel injection device 49 by the ignition timing control unit and the fuel injection control unit in the CPU 305, and the input / output port. It is set to 302 (see FIG. 3). Then, the set drive signal is output from the input / output port 302 to the fuel injection device drive circuit 307 and the ignition output circuit 308.
1-2.第1の動作例
 次に、上述した構成を有する内燃機関制御装置11における第1の動作例について図4から図6を参照して説明する。第1の動作例では、推定煤残量の算出動作を説明する。
 図4は、推定煤残量の算出動作例を示すフローチャートである。図5及び図6は、推定煤残量の算出動作を示すタイムチャートであり、図5はGPF56の再生直前を示す図、図6はGPF56の再生直後を示す図である。
1-2. First Operation Example Next, a first operation example in the internal combustion engine control device 11 having the above-described configuration will be described with reference to FIGS. 4 to 6. In the first operation example, the calculation operation of the estimated remaining amount of soot will be described.
FIG. 4 is a flowchart showing an operation example of calculating the estimated remaining amount of soot. 5 and 6 are time charts showing the calculation operation of the estimated remaining soot amount, FIG. 5 is a diagram showing immediately before the reproduction of the GPF 56, and FIG. 6 is a diagram showing the immediately after the reproduction of the GPF 56.
 図4に示すように、まず、CPU305は、車両の走行中に地図データやナビゲーション情報に基づいて、F/Cの実施を検知する(ステップS11)。そして、図5に示すように、CPU305は、実施されたF/Cの時間t1を計測する。次に、CPU305は、実施されたF/Cの時間t1が一定時間以上あるか否かを判断する(ステップS12)。すなわち、CPU305は、GPF56の再生動作が一定時間以上行われたか否かを判断する。 As shown in FIG. 4, first, the CPU 305 detects the implementation of the F / C based on the map data and the navigation information while the vehicle is running (step S11). Then, as shown in FIG. 5, the CPU 305 measures the time t1 of the executed F / C. Next, the CPU 305 determines whether or not the time t1 of the executed F / C is a certain time or more (step S12). That is, the CPU 305 determines whether or not the reproduction operation of the GPF 56 has been performed for a certain period of time or longer.
 ステップS12の処理において、F/Cの時間t1が一定時間未満であると判断した場合(ステップS12のNO判定)、CPU305は、処理を終了させる。これに対して、ステップS12の処理において、F/Cの時間t1が一定時間以上であると判断した場合(ステップS12のYES判定)、GPF制御装置400は、図5に示すようにGPF56に堆積した煤が全て焼却されたと判断する。 When it is determined in the process of step S12 that the time t1 of the F / C is less than a certain time (NO determination in step S12), the CPU 305 ends the process. On the other hand, when it is determined in the process of step S12 that the time t1 of the F / C is equal to or longer than a certain time (YES determination in step S12), the GPF control device 400 deposits on the GPF 56 as shown in FIG. It is judged that all the soot has been incinerated.
 そして、煤堆積量推定部402は、GPF56の煤堆積量がゼロであるとみなす(ステップS13)。すなわち、煤堆積量推定部402は、推定煤堆積量がゼロであると算出する。これにより、煤堆積量の初期値のゼロクリア、すなわちリセット処理が行われる。また、ステップS13の処理では、煤残量推定部404においても、推定煤残量をゼロにリセットする。 Then, the soot accumulation amount estimation unit 402 considers that the soot accumulation amount of GPF56 is zero (step S13). That is, the soot accumulation amount estimation unit 402 calculates that the estimated soot accumulation amount is zero. As a result, the initial value of the soot accumulation amount is cleared to zero, that is, the reset process is performed. Further, in the process of step S13, the soot remaining amount estimation unit 404 also resets the estimated soot remaining amount to zero.
 また、初期値のリセット処理が完了すると、煤堆積量推定部402は、GPF温度や水温や燃料噴射量等の情報から推定煤堆積量を演算する。そして、煤堆積量推定部402は、演算した推定煤堆積量を煤残量推定部404に出力する。次に、煤残量推定部404は、次に再生動作が生じるまでの期間t2(図5参照)、すなわち次にF/Cが実施されるまでの期間t2、GPF56の煤残量が煤堆積量であると推定する(煤残量=煤堆積量)(ステップS14)。煤残量推定部404は、煤堆積量推定部402が演算した推定煤堆積量を、煤残量であると推定する。 Further, when the reset process of the initial value is completed, the soot accumulation amount estimation unit 402 calculates the estimated soot accumulation amount from the information such as the GPF temperature, the water temperature, and the fuel injection amount. Then, the soot accumulation amount estimation unit 402 outputs the calculated estimated soot accumulation amount to the soot remaining amount estimation unit 404. Next, in the soot remaining amount estimation unit 404, the soot remaining amount of the GPF56 is accumulated in the period t2 (see FIG. 5) until the next regeneration operation occurs, that is, the period t2 until the next F / C is performed. It is estimated to be an amount (soot remaining amount = soot accumulation amount) (step S14). The soot remaining amount estimation unit 404 estimates that the estimated soot accumulation amount calculated by the soot accumulation amount estimation unit 402 is the soot remaining amount.
 次に、CPU305は、地図データやナビゲーション情報に基づいてF/Cが生じるか否か、すなわちGPF56の再生動作の実施を予測する(ステップS15)。ステップS15の処理において、F/Cが生じないと判断した場合(ステップS15のNO判定)、CPU305は、処理を終了させる。 Next, the CPU 305 predicts whether or not F / C will occur based on the map data and navigation information, that is, the execution of the reproduction operation of the GPF 56 (step S15). When it is determined that F / C does not occur in the process of step S15 (NO determination in step S15), the CPU 305 ends the process.
 これに対して、F/Cが生じるとCPU305が判断した場合(ステップS15のYES判定)、CPU305は、検知フラグを入力部401に入力する。検知フラグが入力されると、入力部401は、差圧センサ58からF/C開始直前t3のGPF56の差圧情報ΔP(図5参照)を取得し、差圧式煤残量推定部405に差圧情報ΔPを入力する(ステップS16)。そして、差圧式煤残量推定部405は、入力部401から取得した差圧情報ΔPに基づいて、差圧による推定煤残量(差圧推定煤残量)Yを算出する。 On the other hand, when the CPU 305 determines that F / C will occur (YES determination in step S15), the CPU 305 inputs the detection flag to the input unit 401. When the detection flag is input, the input unit 401 acquires the differential pressure information ΔP (see FIG. 5) of the GPF 56 at t3 immediately before the start of the F / C from the differential pressure sensor 58, and makes a difference to the differential pressure type soot remaining amount estimation unit 405. The pressure information ΔP is input (step S16). Then, the differential pressure type soot remaining amount estimation unit 405 calculates the estimated soot remaining amount (differential pressure estimated soot remaining amount) Y by the differential pressure based on the differential pressure information ΔP acquired from the input unit 401.
 次に、推定誤差演算部406は、差圧による推定煤残量Yと、論理演算による推定煤残量Xに誤差があるか判断する(ステップS17)。ステップS17の処理では、推定誤差演算部406は、差圧による推定煤残量Yとして、差圧式煤残量推定部405が算出した推定煤残量Yを取得する。さらに、推定誤差演算部406は、論理演算により推定煤残量Xとして、煤堆積量推定部402が算出し、煤残量推定部404が推定した推定煤残量Xを取得する。推定誤差演算部406は、推定煤残量Yと推定煤残量Xの差分を求め、推定誤差を演算する。そして、推定誤差演算部406は、例えば、演算した推定誤差が閾値を超えたか否かで誤差の有無を判断する。 Next, the estimation error calculation unit 406 determines whether there is an error between the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation (step S17). In the process of step S17, the estimation error calculation unit 406 acquires the estimated soot remaining amount Y calculated by the differential pressure type soot remaining amount estimation unit 405 as the estimated soot remaining amount Y due to the differential pressure. Further, the estimation error calculation unit 406 calculates the soot accumulation amount estimation unit 402 as the estimated soot residual amount X by logical operation, and acquires the estimated soot residual amount X estimated by the soot residual amount estimation unit 404. The estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and calculates the estimation error. Then, the estimation error calculation unit 406 determines, for example, whether or not there is an error based on whether or not the calculated estimation error exceeds the threshold value.
 ステップS17の処理において、誤差がないと推定誤差演算部406が判断した場合(ステップS17のNO判定)、後述するステップS19の処理に移行する。 When the estimation error calculation unit 406 determines that there is no error in the process of step S17 (NO determination in step S17), the process proceeds to the process of step S19 described later.
 ここで、前回のGPF56の再生動作から今回のGPF56の再生動作までの期間t2では、一度も煤の焼却が行われなかったため、再生直前t3に算出された推定誤差は、煤堆積量推定部402に起因する誤差とみなすことができる。そのため、ステップS17の処理において、誤差があると推定誤差演算部406が判断した場合(ステップS17のYES判定)、推定誤差判定部408は、推定誤差演算部406が演算した推定誤差は煤堆積量に起因する誤差であると判定する。そして、図5に示すように、推定誤差判定部408は、煤堆積量推定部402に対して補正を実施する(ステップS18)。 Here, since the soot was never incinerated in the period t2 from the previous GPF56 regeneration operation to the current GPF56 regeneration operation, the estimation error calculated in t3 immediately before the regeneration is the soot accumulation amount estimation unit 402. It can be regarded as an error caused by. Therefore, when the estimation error calculation unit 406 determines that there is an error in the processing of step S17 (YES determination in step S17), the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot deposited. It is determined that the error is caused by. Then, as shown in FIG. 5, the estimation error determination unit 408 corrects the soot accumulation amount estimation unit 402 (step S18).
 煤堆積量推定部402に対して補正を実施することで、煤堆積量推定部402は、推定煤堆積量を補正する。そして、煤堆積量推定部402は、補正した推定煤堆積量を煤残量推定部404に出力する。煤残量推定部404は、補正した推定煤堆積量を、煤残量であると推定する。また、煤残量推定部404は、推定煤残量(補正)を再生制御部407に出力する。 By performing correction to the soot accumulation amount estimation unit 402, the soot accumulation amount estimation unit 402 corrects the estimated soot accumulation amount. Then, the soot accumulation amount estimation unit 402 outputs the corrected estimated soot accumulation amount to the soot remaining amount estimation unit 404. The soot remaining amount estimation unit 404 estimates that the corrected estimated soot accumulation amount is the soot remaining amount. Further, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407.
 次に、CPU305は、GPF56の再生動作が終了したか否かを判断する(ステップS19)。CPU305は、例えば、F/Cの実行フラグがオフになった時をGPF56の再生動作が終了したと判断する。または、CPU305は、ステップS15の処理でF/Cの実施を推定する際に、F/Cにかかる時間を推定する。そして、CPU305は、F/Cの時間が、事前に推定したF/Cの時間に達した際に、GPF56の再生動作が終了したと判断する。 Next, the CPU 305 determines whether or not the reproduction operation of the GPF 56 is completed (step S19). The CPU 305 determines, for example, that the reproduction operation of the GPF 56 is completed when the F / C execution flag is turned off. Alternatively, the CPU 305 estimates the time required for the F / C when estimating the implementation of the F / C in the process of step S15. Then, the CPU 305 determines that the reproduction operation of the GPF 56 is completed when the F / C time reaches the pre-estimated F / C time.
 ステップS19の処理において、GPF56の再生動作が終了したと判断した場合(ステップS19のYES判定)、CPU305は、検知フラグを入力部401に入力する。
検知フラグが入力されると、入力部401は、差圧センサ58から再生終了直後t4(図6参照)、すなわちF/C終了直後のGPF56の差圧情報ΔP(図6参照)を取得し、差圧式煤残量推定部405に差圧情報ΔPを入力する(ステップS20)。そして、差圧式煤残量推定部405は、入力部401から取得した差圧情報ΔPに基づいて、差圧による推定煤残量(差圧推定煤残量)Yを算出する。
When it is determined in the process of step S19 that the reproduction operation of the GPF 56 is completed (YES determination in step S19), the CPU 305 inputs the detection flag to the input unit 401.
When the detection flag is input, the input unit 401 acquires t4 (see FIG. 6) immediately after the end of reproduction, that is, the differential pressure information ΔP (see FIG. 6) of the GPF 56 immediately after the end of F / C from the differential pressure sensor 58. The differential pressure information ΔP is input to the differential pressure type soot remaining amount estimation unit 405 (step S20). Then, the differential pressure type soot remaining amount estimation unit 405 calculates the estimated soot remaining amount (differential pressure estimated soot remaining amount) Y by the differential pressure based on the differential pressure information ΔP acquired from the input unit 401.
 また、GPF56の再生動作中、すなわちF/Cの実行中、煤焼却量推定部403は、GPF温度や水温や燃料噴射量等の情報から推定煤焼却量を演算する。そして、煤焼却量推定部403は、演算した推定煤焼却量を煤残量推定部404に出力する。煤残量推定部404は、補正済みの煤堆積量から煤焼却量推定部403が演算した推定煤焼却量を差分し、推定煤残量を算出する。 Further, during the regeneration operation of the GPF 56, that is, during the execution of the F / C, the soot incineration amount estimation unit 403 calculates the estimated soot incineration amount from the information such as the GPF temperature, the water temperature, and the fuel injection amount. Then, the soot incinerator amount estimation unit 403 outputs the calculated estimated soot incinerator amount to the soot remaining amount estimation unit 404. The soot remaining amount estimation unit 404 calculates the estimated soot remaining amount by differentiating the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403 from the corrected soot accumulation amount.
 次に、推定誤差演算部406は、差圧による推定煤残量Yと、論理演算による推定煤残量Xに誤差があるか判断する(ステップS21)。ステップS21の処理では、推定誤差演算部406は、差圧による推定煤残量Yとして、差圧式煤残量推定部405が算出した推定煤残量Yを取得する。さらに、推定誤差演算部406は、論理演算により推定煤残量Xとして、煤堆積量推定部402が算出し、煤残量推定部404が推定した推定煤残量Xを取得する。推定誤差演算部406は、推定煤残量Yと推定煤残量Xの差分を求め、推定誤差を演算する。 Next, the estimation error calculation unit 406 determines whether there is an error between the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation (step S21). In the process of step S21, the estimation error calculation unit 406 acquires the estimated soot remaining amount Y calculated by the differential pressure type soot remaining amount estimation unit 405 as the estimated soot remaining amount Y due to the differential pressure. Further, the estimation error calculation unit 406 calculates the soot accumulation amount estimation unit 402 as the estimated soot residual amount X by logical operation, and acquires the estimated soot residual amount X estimated by the soot residual amount estimation unit 404. The estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and calculates the estimation error.
 ステップS21の処理において、誤差がないと推定誤差演算部406が判断した場合(ステップS21のNO判定)、CPU305は、処理を終了させる。 When the estimation error calculation unit 406 determines that there is no error in the process of step S21 (NO determination in step S21), the CPU 305 ends the process.
 ここで、煤堆積量は既に補正済みであるため、再生終了直後t4に算出された推定誤差は、全て煤焼却量推定部403に起因する誤差とみなすことができる。そのため、ステップS21の処理において、誤差があると推定誤差演算部406が判断した場合(ステップS21のYES判定)、推定誤差判定部408は、推定誤差演算部406が演算した推定誤差は煤焼却量に起因する誤差であると判定する。そして、推定誤差判定部408は、煤焼却量推定部403に対して補正を実施する(ステップS22)。 Here, since the soot accumulation amount has already been corrected, all the estimation errors calculated at t4 immediately after the end of regeneration can be regarded as errors caused by the soot incinerator amount estimation unit 403. Therefore, when the estimation error calculation unit 406 determines that there is an error in the processing of step S21 (YES determination in step S21), the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot and incineration. It is determined that the error is caused by. Then, the estimation error determination unit 408 corrects the soot incinerator amount estimation unit 403 (step S22).
 煤焼却量推定部403に対して補正を実施することで、煤焼却量推定部403は、推定煤焼却量を補正する。そして、煤焼却量推定部403は、補正した推定煤焼却量を煤残量推定部404に出力する。煤残量推定部404は、補正済みの推定煤堆積量から補正した推定煤焼却量を引いた値を煤残量であると推定する。そして、煤残量推定部404は、推定煤残量(補正)を再生制御部407に出力する。これにより、内燃機関制御装置11における推定煤残量の算出動作が完了する。 By making a correction to the soot incinerator amount estimation unit 403, the soot incinerator amount estimation unit 403 corrects the estimated soot incinerator amount. Then, the soot incinerator amount estimation unit 403 outputs the corrected estimated soot incinerator amount to the soot remaining amount estimation unit 404. The soot remaining amount estimation unit 404 estimates that the value obtained by subtracting the corrected estimated soot incineration amount from the corrected estimated soot accumulation amount is the soot remaining amount. Then, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407. As a result, the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device 11 is completed.
 また、上述したステップS17及びステップS21の処理において、推定誤差が一定値以上であると推定誤差演算部406が判断した場合、推定誤差演算部406は、差圧センサ58の故障と判断する。これにより、差圧センサ58の故障判定を行うことができる。
なお、故障判断に用いる値は、誤差の有無に用いる閾値よりも大きい値である。
Further, when the estimation error calculation unit 406 determines that the estimation error is equal to or higher than a certain value in the processes of steps S17 and S21 described above, the estimation error calculation unit 406 determines that the differential pressure sensor 58 has failed. This makes it possible to determine the failure of the differential pressure sensor 58.
The value used for the failure determination is a value larger than the threshold value used for the presence or absence of an error.
 このように、本例の内燃機関制御装置11によれば、推定誤差が煤堆積量推定部402に起因する誤差か、煤焼却量推定部403に起因する誤差かを判定することで、それぞれの誤差を適切な推定部に対して補正することができる。 As described above, according to the internal combustion engine control device 11 of this example, it is determined whether the estimation error is caused by the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403, respectively. The error can be corrected for the appropriate estimator.
 また、ステップS22の処理の後に、煤残量推定部404が算出した推定煤残量(補正済み)Z1を次に煤残量を算出する際の初期値として用いてもよい。すなわち、次回の推定煤残量Z2は、推定煤残量(補正済み)Z1+次回の推定煤堆積量(補正後)W2-次回の推定煤焼却量(補正後)W3により算出することができる。なお、煤堆積量推定部402は、推定煤残量(補正済み)Z1を算出する際の差圧情報Qを記憶し、次回の推定煤堆積量W2を補正する際の実差圧から差圧情報Qを引く。これにより、次回の推定煤堆積量W2分のみの差圧を求めることができ、次回の推定煤堆積量W2を適切に補正することができる。 Further, after the process of step S22, the estimated soot remaining amount (corrected) Z1 calculated by the soot remaining amount estimation unit 404 may be used as an initial value when the soot remaining amount is calculated next. That is, the next estimated soot remaining amount Z2 can be calculated by the estimated soot remaining amount (corrected) Z1 + the next estimated soot accumulation amount (corrected) W2-the next estimated soot incineration amount (corrected) W3. The soot accumulation amount estimation unit 402 stores the differential pressure information Q when calculating the estimated soot residual amount (corrected) Z1, and the differential pressure from the actual differential pressure when correcting the next estimated soot accumulation amount W2. Subtract information Q. As a result, the differential pressure of only the next estimated soot accumulation amount W2 can be obtained, and the next estimated soot accumulation amount W2 can be appropriately corrected.
1-3.従来例との比較
 次に、図7及び図8を参照して従来例と本例の内燃機関制御装置11における煤堆積量の実値と推定値の比較例について説明する。
 図7及び図8は、煤堆積量の実値と推定値を示すもので、図7は、従来例を示しており、図8は、上述した本例の内燃機関制御装置11により算出した例を示す。
1-3. Comparison with the conventional example Next, a comparison example of the actual value and the estimated value of the soot accumulation amount in the internal combustion engine control device 11 of the conventional example and this example will be described with reference to FIGS. 7 and 8.
7 and 8 show the actual value and the estimated value of the soot accumulation amount, FIG. 7 shows a conventional example, and FIG. 8 shows an example calculated by the internal combustion engine control device 11 of this example described above. Is shown.
 図7に示す従来例は、図16に示す第3の方式のように、差圧による推定煤残量値と論理演算による推定煤残量値の誤差に基づいて、煤堆積量推定部にのみ補正を行ったものである。すなわち、煤焼却量推定部に起因する誤差であっても、煤堆積量推定部を補正している。そのため、図7に示すように、次回の再生動作時に、煤堆積量推定部において前回の補正による誤差が発生する。そして、煤堆積量の実値と推定値との差が大きくなる。その結果、従来例では、この差を解消させるために、差圧センサの差圧情報に基づいた補正の回数が増加していた。 In the conventional example shown in FIG. 7, as in the third method shown in FIG. 16, only in the soot accumulation amount estimation unit based on the error between the estimated soot residual value by the differential pressure and the estimated soot residual value by the logical operation. It has been corrected. That is, even if the error is caused by the soot incineration amount estimation unit, the soot accumulation amount estimation unit is corrected. Therefore, as shown in FIG. 7, an error due to the previous correction occurs in the soot accumulation amount estimation unit at the next regeneration operation. Then, the difference between the actual value and the estimated value of the soot accumulation amount becomes large. As a result, in the conventional example, in order to eliminate this difference, the number of corrections based on the differential pressure information of the differential pressure sensor has increased.
 これに対して本例の内燃機関制御装置11では、上述したように、推定誤差が煤堆積量推定部402に起因する誤差か、煤焼却量推定部403に起因する誤差かを判定することで、それぞれの誤差を適切な推定部に対して補正している。すなわち、煤焼却量推定部403に起因する誤差は、煤堆積量推定部402ではなく、煤焼却量推定部403に対して補正している。 On the other hand, in the internal combustion engine control device 11 of this example, as described above, by determining whether the estimation error is caused by the soot accumulation amount estimation unit 402 or the soot incineration amount estimation unit 403. , Each error is corrected for the appropriate estimation part. That is, the error caused by the soot incineration amount estimation unit 403 is corrected not for the soot accumulation amount estimation unit 402 but for the soot incineration amount estimation unit 403.
 そのため、図8に示すように、次回の再生動作に、補正による誤差が生じず、煤堆積量の実値と推定値との差を軽減又は無くすことができる。その結果、本例の内燃機関制御装置11では、従来例よりも差圧センサ58の差圧情報に基づいた補正の回数を減少させることができる。 Therefore, as shown in FIG. 8, an error due to the correction does not occur in the next reproduction operation, and the difference between the actual value and the estimated value of the soot accumulation amount can be reduced or eliminated. As a result, in the internal combustion engine control device 11 of this example, the number of corrections based on the differential pressure information of the differential pressure sensor 58 can be reduced as compared with the conventional example.
2.第2の動作例
 次に、次に、上述した構成を有する内燃機関制御装置11における第2の動作例について図9から図12を参照して説明する。第1の動作例では、推定煤残量の算出動作を説明する。
 図9及び図10は、推定煤残量の算出動作例を示すフローチャートである。図11及び図12は、推定煤残量の算出動作を示すタイムチャートであり、図11はGPF56の再生直前を示す図、図12は内燃機関2が停止した状態を示す図である。
2. 2. Second Operation Example Next, a second operation example in the internal combustion engine control device 11 having the above-described configuration will be described with reference to FIGS. 9 to 12. In the first operation example, the calculation operation of the estimated remaining amount of soot will be described.
9 and 10 are flowcharts showing an example of calculation operation of the estimated remaining amount of soot. 11 and 12 are time charts showing the calculation operation of the estimated remaining soot amount, FIG. 11 is a diagram showing immediately before the reproduction of the GPF 56, and FIG. 12 is a diagram showing a state in which the internal combustion engine 2 is stopped.
 この第2の動作例にかかる第1の動作例と異なる点は、GPF56の再生動作が終了する前に、アイドリングストップ等で内燃機関2が停止した状態を判別する点である。図9及び図11に示すように、ステップS31からステップS38までの処理は、第1の動作例におけるステップS11からステップS18までの処理と同様であるため、その説明は省略する。 The difference from the first operation example according to the second operation example is that it is determined that the internal combustion engine 2 is stopped by idling stop or the like before the reproduction operation of the GPF 56 is completed. As shown in FIGS. 9 and 11, the processing from step S31 to step S38 is the same as the processing from step S11 to step S18 in the first operation example, and thus the description thereof will be omitted.
 図10に示すように、ステップS38の処理が終了すると、CPU305は、GPF56の再生動作中に内燃機関2が停止したか否かを判断する(ステップS41)。ステップS41の処理において、内燃機関2が停止していないとCPU305が判断した場合(ステップS41のNO判定)、ステップS42の処理に移行する。なお、ステップS42からステップS45までの処理は、第1の動作例におけるステップS19からステップS22の処理と同様である。そのため、この間に生じた誤差は、煤焼却量推定部403に起因する誤差であると判断し、煤焼却量推定部403に対して補正を行う。 As shown in FIG. 10, when the process of step S38 is completed, the CPU 305 determines whether or not the internal combustion engine 2 has stopped during the reproduction operation of the GPF 56 (step S41). When the CPU 305 determines that the internal combustion engine 2 has not stopped in the process of step S41 (NO determination in step S41), the process proceeds to the process of step S42. The processing from step S42 to step S45 is the same as the processing from step S19 to step S22 in the first operation example. Therefore, it is determined that the error generated during this period is an error caused by the soot incineration amount estimation unit 403, and the soot incineration amount estimation unit 403 is corrected.
 これに対して、図10に示すように、ステップS41の処理において、内燃機関2が停止したとCPU305が判断した場合(ステップS41のYES判定)、差圧式煤残量推定部405は、停止直後のGPF56の差圧情報ΔP(図12参照)を記録する(ステップS46)。また、煤残量推定部404は、停止直後の論理演算による推定煤残量を記録する(ステップS47)。すなわち、煤残量推定部404は、補正した推定煤堆積量から停止直後に煤焼却量推定部403が算出した推定煤焼却量を引いた値を、推定煤残量として記録する。 On the other hand, as shown in FIG. 10, when the CPU 305 determines that the internal combustion engine 2 has stopped in the process of step S41 (YES determination in step S41), the differential pressure type soot remaining amount estimation unit 405 immediately after the stop. The differential pressure information ΔP (see FIG. 12) of the GPF 56 is recorded (step S46). Further, the soot remaining amount estimation unit 404 records the estimated soot remaining amount by the logical operation immediately after the stop (step S47). That is, the soot remaining amount estimation unit 404 records the value obtained by subtracting the estimated soot incineration amount calculated by the soot incineration amount estimation unit 403 immediately after the stop from the corrected estimated soot accumulation amount as the estimated soot remaining amount.
 次に、図12に示すように、内燃機関2が再始動(ステップS48)すると、推定誤差演算部406は、差圧による推定煤残量Yと、論理演算による推定煤残量Xに誤差があるか判断する(ステップS49)。 Next, as shown in FIG. 12, when the internal combustion engine 2 is restarted (step S48), the estimation error calculation unit 406 has an error in the estimated soot remaining amount Y by the differential pressure and the estimated soot remaining amount X by the logical operation. It is determined whether or not there is (step S49).
 ステップS49の処理において、ここで、差圧式煤残量推定部405は、内燃機関2の停止直後t5に記録していた差圧情報を用いて差圧による推定煤残量Yを算出し、推定誤差演算部406に出力する。また、煤残量推定部404は、内燃機関2の停止直後t5に記録していた推定煤残量を、論理演算による推定煤残量Xとして推定誤差演算部406に出力する。そして、推定誤差演算部406は、推定誤差演算部406は、推定煤残量Yと推定煤残量Xの差分を求め、推定誤差を演算する。 In the process of step S49, here, the differential pressure type soot remaining amount estimation unit 405 calculates and estimates the estimated soot remaining amount Y by the differential pressure using the differential pressure information recorded at t5 immediately after the internal combustion engine 2 is stopped. Output to the error calculation unit 406. Further, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount recorded in t5 immediately after the internal combustion engine 2 is stopped as the estimated soot remaining amount X by logical operation to the estimation error calculation unit 406. Then, the estimation error calculation unit 406 obtains the difference between the estimated soot remaining amount Y and the estimated soot remaining amount X, and the estimation error calculation unit 406 calculates the estimation error.
 ステップS49の処理において、誤差がないと推定誤差演算部406が判断した場合(ステップS49のNO判定)、CPU305は、処理を終了させる。 When the estimation error calculation unit 406 determines that there is no error in the processing of step S49 (NO determination in step S49), the CPU 305 ends the processing.
 ここで、煤堆積量は既に補正済みであるため、内燃機関2の停止直後t5に算出された推定誤差は、全て煤焼却量推定部403に起因する誤差とみなすことができる。そのため、ステップS49の処理において、誤差があると推定誤差演算部406が判断した場合(ステップS49のYES判定)、推定誤差判定部408は、推定誤差演算部406が演算した推定誤差は煤焼却量に起因する誤差であると判定する。そして、推定誤差判定部408は、煤焼却量推定部403に対して補正を実施する(ステップS50)。 Here, since the soot accumulation amount has already been corrected, all the estimation errors calculated at t5 immediately after the internal combustion engine 2 is stopped can be regarded as errors caused by the soot incineration amount estimation unit 403. Therefore, when the estimation error calculation unit 406 determines that there is an error in the processing of step S49 (YES determination in step S49), the estimation error determination unit 408 determines that the estimation error calculated by the estimation error calculation unit 406 is the amount of soot and incineration. It is determined that the error is caused by. Then, the estimation error determination unit 408 corrects the soot incinerator amount estimation unit 403 (step S50).
 煤焼却量推定部403に対して補正を実施することで、煤焼却量推定部403は、推定煤焼却量を補正する。そして、煤焼却量推定部403は、補正した推定煤焼却量を煤残量推定部404に出力する。煤残量推定部404は、補正済みの推定煤堆積量から補正した推定煤焼却量を引いた値を煤残量であると推定する。そして、煤残量推定部404は、推定煤残量(補正)を再生制御部407に出力する。これにより、内燃機関制御装置11における推定煤残量の算出動作が完了する。 By making a correction to the soot incinerator amount estimation unit 403, the soot incinerator amount estimation unit 403 corrects the estimated soot incinerator amount. Then, the soot incinerator amount estimation unit 403 outputs the corrected estimated soot incinerator amount to the soot remaining amount estimation unit 404. The soot remaining amount estimation unit 404 estimates that the value obtained by subtracting the corrected estimated soot incineration amount from the corrected estimated soot accumulation amount is the soot remaining amount. Then, the soot remaining amount estimation unit 404 outputs the estimated soot remaining amount (correction) to the reproduction control unit 407. As a result, the calculation operation of the estimated remaining amount of soot in the internal combustion engine control device 11 is completed.
 この第2の動作例においても、第1の動作例と同様に、差圧による推定煤残量と論理演算による推定煤残量との誤差を適切な推定部に対して補正することができる。そのため、図8に示すように、次回の再生動作に、補正による誤差が生じず、煤堆積量の実値と推定値との差を軽減又は無くすことができ、従来例よりも差圧センサ58の差圧情報に基づいた補正の回数を減少させることができる。 Also in this second operation example, as in the first operation example, the error between the estimated remaining amount of soot due to the differential pressure and the estimated remaining amount of soot by the logical operation can be corrected for the appropriate estimation unit. Therefore, as shown in FIG. 8, an error due to the correction does not occur in the next reproduction operation, and the difference between the actual value and the estimated value of the soot accumulation amount can be reduced or eliminated, and the differential pressure sensor 58 can be compared with the conventional example. The number of corrections based on the differential pressure information can be reduced.
 なお、本発明は、上述し、かつ図面に示した実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The present invention is not limited to the embodiment described above and shown in the drawings, and various modifications can be made without departing from the gist of the invention described in the claims.
 さらに、内燃機関として燃料をシリンダ45の燃焼室に直接噴射する筒内噴射型の内燃機関を適用した例を説明したが、これに限定されるものではない。例えば、吸気管における吸気ポートの近傍や、スロットルバルブの近傍に燃料噴射装置49を配置し、吸気管に燃料を噴射する内燃機関にも適用できるものである。 Further, an example of applying an in-cylinder injection type internal combustion engine that directly injects fuel into the combustion chamber of the cylinder 45 as an internal combustion engine has been described, but the present invention is not limited to this. For example, the fuel injection device 49 is arranged near the intake port in the intake pipe or near the throttle valve, and can be applied to an internal combustion engine that injects fuel into the intake pipe.
 1…車両、 2…内燃機関、 11…内燃機関制御装置、 45…シリンダ、 46…点火プラグ、 47…吸気バルブ、 48…排気バルブ、 49…燃料噴射装置、 50…ピストン、 54…三元触媒、 56…GPF(ガソリンパーティキュートフィルタ)、 57…GPF温度センサ、 58…差圧センサ、 301…入力回路、 302…入出力ポート、 303…RAM、 304…ROM、 305…CPU、 306…電制スロットルバルブ駆動回路、 307…燃料噴射装置駆動回路、 308…点火出力回路
 400…GPF制御装置(制御部)、 401…入力部、 402…煤堆積量推定部(堆積量推定部)、 403…煤焼却量推定部(焼却量推定部)、 404…煤残量推定部(残量推定部)、 405…差圧式煤残量推定部(差圧式残量推定部)、 406…推定誤差演算部、 407…再生制御部、 408…推定誤差判定部
1 ... Vehicle, 2 ... Internal combustion engine, 11 ... Internal combustion engine control device, 45 ... Cylinder, 46 ... Spark plug, 47 ... Intake valve, 48 ... Exhaust valve, 49 ... Fuel injection device, 50 ... Piston, 54 ... Three-way catalyst , 56 ... GPF (gasoline party cute filter), 57 ... GPF temperature sensor, 58 ... differential pressure sensor, 301 ... input circuit, 302 ... input / output port, 303 ... RAM, 304 ... ROM, 305 ... CPU, 306 ... electronic control Throttle valve drive circuit, 307 ... Fuel injection device drive circuit, 308 ... Ignition output circuit 400 ... GPF control device (control unit), 401 ... Input unit, 402 ... Soot accumulation amount estimation unit (accumulation amount estimation unit), 403 ... Soot Incineration amount estimation unit (incineration amount estimation unit), 404 ... soot residual amount estimation unit (remaining amount estimation unit), 405 ... differential pressure type soot residual amount estimation unit (differential pressure type residual amount estimation unit), 406 ... estimation error calculation unit, 407 ... Playback control unit, 408 ... Estimated error judgment unit

Claims (10)

  1.  排気通路に設けられて排気中の粒子状物質を捕集するフィルタの再生動作を制御する制御部を備え、
     前記制御部は、
     前記フィルタに堆積する前記粒子状物質の堆積量を推定する堆積量推定部と、
     再生動作時に焼却される前記粒子状物質の焼却量を推定する焼却量推定部と、
     前記堆積量推定部が推定した推定堆積量及び前記焼却量推定部が推定した推定焼却量に基づいて前記フィルタに残留する前記粒子状物質の残量を推定する残量推定部と、
     前記残量推定部が推定した推定残量の誤差が、前記堆積量推定部に起因する誤差か、前記焼却量推定部に起因する誤差かを判定し、判定した推定部に対して補正を行う推定誤差判定部と、
     を備えた内燃機関制御装置。
    It is equipped with a control unit that controls the regeneration operation of the filter that is installed in the exhaust passage and collects particulate matter in the exhaust.
    The control unit
    A deposit amount estimation unit that estimates the deposit amount of the particulate matter deposited on the filter, and a deposit amount estimation unit.
    An incinerator amount estimation unit that estimates the incinerator amount of the particulate matter that is incinerated during the regeneration operation,
    An remaining amount estimation unit that estimates the remaining amount of the particulate matter remaining in the filter based on the estimated accumulation amount estimated by the deposition amount estimation unit and the estimated incinerator amount estimated by the incinerator amount estimation unit.
    It is determined whether the error of the estimated remaining amount estimated by the remaining amount estimation unit is the error caused by the accumulated amount estimation unit or the error caused by the incineration amount estimation unit, and the determined estimation unit is corrected. Estimation error judgment unit and
    Internal combustion engine control device equipped with.
  2.  前記制御部は、
     前記フィルタの上流側と下流側の圧力の差である差圧に基づいて、前記フィルタに残留する前記粒子状物質を推定する差圧式残量推定部と、
     前記差圧式残量推定部が推定した差圧による推定残量から、前記残量推定部が推定した前記推定残量の前記誤差を演算する推定誤差演算部と、を備えた
     請求項1に記載の内燃機関制御装置。
    The control unit
    A differential pressure type residual amount estimation unit that estimates the particulate matter remaining in the filter based on the differential pressure which is the difference between the pressures on the upstream side and the downstream side of the filter.
    The first aspect of the present invention includes an estimation error calculation unit that calculates the error of the estimated remaining amount estimated by the remaining amount estimation unit from the estimated remaining amount due to the differential pressure estimated by the differential pressure type remaining amount estimation unit. Internal engine control device.
  3.  前記推定誤差判定部は、前記フィルタの再生動作が一定時間以上実施されてから次に前記フィルタの再生動作が実施されるまで、前記残量推定部が推定した前記推定残量の誤差が、前記堆積量推定部に起因する誤差であると判断する
     請求項2に記載の内燃機関制御装置。
    In the estimation error determination unit, the error of the estimated remaining amount estimated by the remaining amount estimation unit is the error from the time when the reproduction operation of the filter is performed for a certain period of time or more until the next reproduction operation of the filter is performed. The internal combustion engine control device according to claim 2, wherein it is determined that the error is caused by the deposit amount estimation unit.
  4.  前記堆積量推定部は、前記フィルタの再生動作が一定時間以上実施されたと判断されると、前記推定堆積量がゼロであると初期値をリセットし、
     前記残量推定部は、次に前記フィルタの再生動作が実施されるまで、前記推定残量を前記推定堆積量であると判断する
     請求項3に記載の内燃機関制御装置。
    When it is determined that the regeneration operation of the filter has been performed for a certain period of time or longer, the deposit amount estimation unit resets the initial value when the estimated deposit amount is zero.
    The internal combustion engine control device according to claim 3, wherein the remaining amount estimation unit determines that the estimated remaining amount is the estimated accumulated amount until the regeneration operation of the filter is performed next.
  5.  前記推定誤差判定部は、前記フィルタの再生動作が一定時間以上実施されてから次に前記フィルタの再生動作が実施された直後に、前記残量推定部が推定した前記推定残量の誤差が、前記焼却量推定部に起因する誤差であると判断する
     請求項4に記載の内燃機関制御装置。
    In the estimation error determination unit, the error of the estimated remaining amount estimated by the remaining amount estimation unit is immediately after the reproduction operation of the filter is executed for a certain period of time or more and then the reproduction operation of the filter is executed. The internal combustion engine control device according to claim 4, wherein it is determined that the error is caused by the incineration amount estimation unit.
  6.  前記堆積量推定部及び前記焼却量推定部は、MAP又は物理式から前記推定堆積量及び前記推定焼却量を演算する
     請求項1に記載の内燃機関制御装置。
    The internal combustion engine control device according to claim 1, wherein the deposit amount estimation unit and the incineration amount estimation unit calculate the estimated deposit amount and the estimated incineration amount from a MAP or a physical formula.
  7.  前記堆積量推定部を補正した後に、前記内燃機関が停止した際、前記差圧式残量推定部は、停止直後の前記フィルタの前記差圧を記録し、前記残量推定部は、停止直後に演算した前記推定残量を記録する
     請求項2に記載の内燃機関制御装置。
    When the internal combustion engine is stopped after correcting the accumulated amount estimation unit, the differential pressure type remaining amount estimation unit records the differential pressure of the filter immediately after the stop, and the residual amount estimation unit immediately after the stoppage. The internal combustion engine control device according to claim 2, which records the calculated estimated remaining amount.
  8.  前記内燃機関が再始動した際、前記差圧式残量推定部は、停止直後に記録した前記差圧に基づいて停止直後推定残量を推定し、
     前記推定誤差演算部は、前記停止直後推定残量から、停止直後に前記残量推定部が記録した前記推定残量の誤差を演算する
     請求項7に記載の内燃機関制御装置。
    When the internal combustion engine is restarted, the differential pressure type remaining amount estimation unit estimates the estimated remaining amount immediately after the stop based on the differential pressure recorded immediately after the stop.
    The internal combustion engine control device according to claim 7, wherein the estimation error calculation unit calculates an error of the estimated remaining amount recorded by the remaining amount estimation unit immediately after the stop from the estimated remaining amount immediately after the stop.
  9.  前記推定誤差演算部は、前記残量推定部が推定した前記推定残量の前記誤差が一定値以上であると判断した場合、前記フィルタの前記差圧を測定する差圧センサの故障と判断する
     請求項2に記載の内燃機関制御装置。
    When the estimation error calculation unit determines that the error of the estimated remaining amount estimated by the remaining amount estimation unit is equal to or more than a certain value, it determines that the differential pressure sensor for measuring the differential pressure of the filter has failed. The internal combustion engine control device according to claim 2.
  10.  前記残量推定部は、前記堆積量推定部及び前記焼却量推定部を補正した後の推定残量を、次に推定残量を推定する際の初期値に設定する
     請求項1に記載の内燃機関制御装置。
    The internal combustion according to claim 1, wherein the remaining amount estimation unit sets the estimated remaining amount after correcting the accumulated amount estimation unit and the incineration amount estimation unit to the initial value when the estimated remaining amount is estimated next. Engine control device.
PCT/JP2021/004260 2020-05-27 2021-02-05 Internal combustion engine control device WO2021240895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527504A JP7431960B2 (en) 2020-05-27 2021-02-05 Internal combustion engine control device
CN202180031284.9A CN115485464A (en) 2020-05-27 2021-02-05 Control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-092040 2020-05-27
JP2020092040 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021240895A1 true WO2021240895A1 (en) 2021-12-02

Family

ID=78744238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004260 WO2021240895A1 (en) 2020-05-27 2021-02-05 Internal combustion engine control device

Country Status (3)

Country Link
JP (1) JP7431960B2 (en)
CN (1) CN115485464A (en)
WO (1) WO2021240895A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197722A (en) * 2002-12-20 2004-07-15 Nissan Motor Co Ltd Reproducing apparatus of particulate filter and engine waste gas purifying facility
JP2006316734A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2007127056A (en) * 2005-11-04 2007-05-24 Denso Corp Exhaust emission control device of internal combustion engine
JP2009091915A (en) * 2007-10-04 2009-04-30 Hitachi Constr Mach Co Ltd Exhaust emission control system for diesel engine
KR20150114715A (en) * 2014-04-02 2015-10-13 현대중공업 주식회사 Engine exhaust gas purification system of construction equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864910B2 (en) * 2003-01-10 2007-01-10 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4525232B2 (en) * 2004-08-06 2010-08-18 日産自動車株式会社 Diesel engine exhaust aftertreatment system
JP4496126B2 (en) * 2005-05-13 2010-07-07 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2008121557A (en) * 2006-11-13 2008-05-29 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP4878342B2 (en) * 2007-12-10 2012-02-15 日立建機株式会社 Exhaust gas purification system for work vehicles
JP4930416B2 (en) * 2008-03-04 2012-05-16 日産自動車株式会社 Exhaust purification device
JP2016200109A (en) * 2015-04-14 2016-12-01 いすゞ自動車株式会社 Ash accumulation diagnosis system of fine particle collection device, internal combustion engine exhaust emission control system, ash accumulation diagnosing method of fine particle collection device and internal combustion engine exhaust emission control method
JP6764761B2 (en) * 2016-11-02 2020-10-07 日立オートモティブシステムズ株式会社 Internal combustion engine controller and method
JP2020051375A (en) * 2018-09-28 2020-04-02 いすゞ自動車株式会社 Estimation device, and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197722A (en) * 2002-12-20 2004-07-15 Nissan Motor Co Ltd Reproducing apparatus of particulate filter and engine waste gas purifying facility
JP2006316734A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2007127056A (en) * 2005-11-04 2007-05-24 Denso Corp Exhaust emission control device of internal combustion engine
JP2009091915A (en) * 2007-10-04 2009-04-30 Hitachi Constr Mach Co Ltd Exhaust emission control system for diesel engine
KR20150114715A (en) * 2014-04-02 2015-10-13 현대중공업 주식회사 Engine exhaust gas purification system of construction equipment

Also Published As

Publication number Publication date
JP7431960B2 (en) 2024-02-15
JPWO2021240895A1 (en) 2021-12-02
CN115485464A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
EP1353050B1 (en) Apparatus and method for regenerating a particulate filter in the exhaust system of an internal combustion engine
US20050120786A1 (en) Misfire detector for internal combustion engines
US11268465B2 (en) Internal combustion engine control method and control device
JP2000170521A (en) Capturing amount calculating method of particulate filter and regenerating method
JP2016136011A (en) Control device of internal combustion engine
JP2008038823A (en) Fresh air amount detecting error calculating device
JP3454351B2 (en) Regeneration processing control device for particulate filter
JP2021522442A (en) Detection of ash deposits in particle filters for internal combustion engines
WO2021240895A1 (en) Internal combustion engine control device
JP2007040269A (en) Back pressure control device of engine
JP5708593B2 (en) Catalyst deterioration diagnosis device
JP5553243B2 (en) Exhaust gas purification device for internal combustion engine
JP2007016722A (en) Exhaust emission control device of engine
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP4613895B2 (en) Control device for internal combustion engine
JP4462032B2 (en) Fuel injection control device for internal combustion engine
JP5366015B2 (en) Exhaust gas purification device for internal combustion engine
JP2006342788A (en) Output control device for internal combustion engine
JP2009030478A (en) Pm emission amount estimation system for internal combustion engine and exhaust emission control system for internal combustion engine
JP2006316734A (en) Exhaust emission control device for internal combustion engine
WO2023233605A1 (en) Method and device for detecting pressure difference of particulate filter
JP2013068210A (en) Engine control device
WO2022092004A1 (en) Exhaust gas purification system and regeneration method of exhaust gas purification device
JP7206625B2 (en) Control device for internal combustion engine
JP4818341B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812921

Country of ref document: EP

Kind code of ref document: A1