WO2021240687A1 - Display device and display method - Google Patents

Display device and display method Download PDF

Info

Publication number
WO2021240687A1
WO2021240687A1 PCT/JP2020/020930 JP2020020930W WO2021240687A1 WO 2021240687 A1 WO2021240687 A1 WO 2021240687A1 JP 2020020930 W JP2020020930 W JP 2020020930W WO 2021240687 A1 WO2021240687 A1 WO 2021240687A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
projector
image
display
projectors
Prior art date
Application number
PCT/JP2020/020930
Other languages
French (fr)
Japanese (ja)
Inventor
隆 佐藤
誉宗 巻口
正典 横山
英明 高田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/020930 priority Critical patent/WO2021240687A1/en
Publication of WO2021240687A1 publication Critical patent/WO2021240687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type

Definitions

  • the present invention relates to a display device and a display method.
  • Patent Document 1 and Non-Patent Document 1 propose a display system capable of experiencing a 360-degree stereoscopic image without the need for 3D glasses.
  • Patent Document 1 includes a screen provided with a reflective Fresnel lens and a diffusion film, and a plurality of display devices arranged on a virtual circle above the screen. The images projected on the screen by the three adjacent display devices are reflected by the screen, and a spatially imaged iris surface is formed at the focal position of the reflected Fresnel lens. Adjacent spatially imaged iris planes, partially overlapped in the horizontal direction, allow the user to view a naked-eye 3D image due to the linear blending effect.
  • Non-Patent Document 1 a mirror provided with a holographic diffuser that limits the reflection direction is rotated at high speed, a parallax image is projected from an upper projector in a time-division manner in synchronization with the rotation, and the parallax image is displayed in each direction. do. This makes it possible to display a stereoscopic image as if there is an object in the center.
  • Patent Document 1 cannot produce a binocular parallax angle narrower than the projector spacing, so there is a limit to the depth that can be expressed.
  • the present invention has been made in view of the above, and an object thereof is to display a parallax image larger than the number of projectors.
  • the display device of one aspect of the present invention includes a reflective frenell lens and a diffusion film, and supports a screen that reflects a projected image to form a spatially imaged iris surface and the display surface of the screen upward.
  • Transducer control that periodically vibrates three or more projectors, a plurality of projectors that project an image onto the display surface of the screen, and the oscillator to periodically move the tilt of the screen in the rotational direction.
  • a unit and a projector control unit that supplies an image corresponding to the position of the spatially imaged iris surface formed by the projected image to the projector in a time-divided manner are provided.
  • the display method of one aspect of the present invention includes a reflective frenell lens and a diffusion film, and supports a screen that reflects a projected image to form a spatially imaged iris surface and the display surface of the screen upward. It is a display method of a display device including three or more oscillators and a plurality of projectors that project images onto the display surface of the screen, and the oscillator is periodically vibrated to tilt the screen. The image corresponding to the position of the spatially imaged iris surface formed by the projected image is supplied to the projector in a time division by periodically moving in the rotation direction.
  • FIG. 1 is a diagram for explaining an outline of the display system of the present embodiment.
  • FIG. 2 is a diagram showing an example of arrangement of oscillators.
  • FIG. 3 is a diagram showing an example in which the phases of the oscillators are shifted.
  • FIG. 4 is a diagram showing the periodic motion of the screen.
  • FIG. 5 is a diagram showing an example of the configuration of the oscillator.
  • FIG. 6 is a diagram for explaining the change in the position of the projection surface due to the periodic motion of the screen.
  • FIG. 7 is a side view of a projector and a screen as viewed from the side.
  • FIG. 8 is a top view of a projector and a screen as viewed from above.
  • FIG. 9 is a functional block diagram showing an example of the configuration of the control device.
  • FIG. 10 is a diagram for explaining an image supplied to the projector according to the tilt angle of the screen.
  • FIG. 11 is a flowchart showing the operation of the control device.
  • the display system of this embodiment is a system that projects an image from the projector 20 onto the screen 30 and displays a 3D image (stereoscopic image).
  • a 3D image is displayed by using an optical linear blending technique that utilizes a visual effect generated when adjacent spatially imaged iris planes overlap each other.
  • the plurality of projectors 20 are arranged in a circle above the screen 30 so as to surround the screen 30.
  • 60 projectors 20 are evenly arranged at intervals of 6 degrees on a virtual circle parallel to the ground with a position vertically separated from the center of the screen 30 as the center.
  • the number of projectors 20 is not limited to this.
  • Each of the projectors 20 projects an image of the subject taken from each of the entire circumferences of 360 degrees on the screen 30. The user 100 can see the image projected by the projector 20 arranged above the facing surface of the screen 30.
  • the screen 30 is a circular reflective screen provided with a reflective Fresnel lens and a diffusion film.
  • the screen 30 reflects the image output by the projector 20 and forms a spatially imaged iris surface at a position corresponding to the projection distance from the projector 20 to the screen 30 and the focal length of the screen 30.
  • the screen described in Patent Document 1 can be used.
  • the user 100 can see a clear image.
  • the center of the spatially imaged iris surface has the maximum brightness, and the brightness gradually decreases as the distance from the center in the horizontal direction increases.
  • the ratio of the brightness of the mixed images changes according to the viewpoint position, and the position where the object is perceived in the image changes according to the ratio of the brightness.
  • the images observed by the left and right eyes of the user 100 are images mixed at different luminance ratios, and each of the left and right eyes perceives an object in the image at a different position. As a result, the user 100 can see the 3D image.
  • the screen 30 is arranged on the vibrators 40A to 40D with the reflective surface facing upward.
  • four oscillators 40A to 40D are attached to the lower surface of the outer periphery of the screen 30.
  • FIG. 3 when each of the vibrators 40A to 40D is driven with a sinusoidal amplitude shifted by 90 degrees in phase, the entire screen 30 rotates while maintaining a predetermined tilt angle as shown in FIG. It is possible to give a periodic motion as if it were.
  • the tilt angle of the screen 30 can be arbitrarily set by adjusting the amplitudes of the vibrators 40A to 40D.
  • Non-Patent Document 1 requires that the reflector is rotated at high speed, and if the reflector is made large, the kinetic energy becomes large, which is dangerous.
  • the tilting direction of the screen 30 is changed without rotating the screen 30 itself, it is easy to increase the size of the screen 30.
  • the number of oscillators 40A to 40D is not limited to four, and if the number is three or more, the screen 30 can be periodically moved.
  • FIG. 5 shows an example of the configuration of the oscillator 40.
  • the iron core 41 is inserted in the electromagnetic coil 42, and the spring 43 is attached to one of the iron cores 41.
  • the vertical position of the iron core 41 is determined at a position that balances with the repulsive force of the spring 43 according to the strength of the electromagnetic field generated by the current flowing through the electromagnetic coil 42.
  • the oscillator 40 is not limited to this, and a solenoid or a low frequency speaker that combines an electromagnet and a permanent magnet can be used.
  • the control device 10 supplies images having different parallax in time division to the projector 20 in synchronization with the periodic motion of the screen 30.
  • Each of the images having different parallax is projected at a position corresponding to the tilt angle of the reflecting surface of the screen 30. That is, it is possible to output a plurality of images having different parallax by time division from one projector 20. As a result, more parallax images can be displayed than the number of projectors 20.
  • FIG. 7 shows a side view of a projector 20 and a screen 30 as viewed from the side
  • FIG. 8 shows a top view.
  • the eyes of the user 100 are located near the projection surface 50 on the left side of the screen 30.
  • the direction in which the screen 30 is viewed from the user 100 is defined as the X axis
  • the left-right direction of the user 100 is defined as the Y axis
  • the overhead direction of the user 100 is defined as the Z axis.
  • the normal vector N of the screen 30 can be expressed by the following equation using the maximum inclination a of the screen 30 and the angle b in the maximum inclination direction seen from the upper surface.
  • N (-sin (a) cos (b), -sin (a) sin (b), cos (a))
  • the angle b changes according to the periodic motion of the screen 30. In FIG. 8, it is assumed that the upper right direction (the direction of the broken line) is lifted on the screen 30.
  • the incident light L can be expressed by the following equation.
  • the specularly reflected light R by the screen 30 is given by the following equation.
  • the specular reflected light R forms an elliptical locus on the projection surface 50 due to the periodic motion of the screen 30.
  • the Y component of the specularly reflected light R can be expressed by the following equation.
  • this maximum value is 1 ⁇ 2 or more of the parallax angle due to the distance between the projectors 20, the images can be interpolated between the projectors 20 by the periodic motion of the screen 30.
  • the control device 10 shown in the figure includes an oscillator control unit 11, a projector control unit 12, and a synchronous coordination unit 13.
  • Each part included in the control device 10 may be configured by a computer provided with an arithmetic processing unit, a storage device, and the like, and the processing of each part may be executed by a program.
  • This program is stored in a storage device included in the control device 10, and can be recorded on a recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, or can be provided through a network.
  • the oscillator control unit 11 drives each of the oscillators 40 in a phase-shifted sine and cosine shape.
  • the screen 30 is controlled as if the entire screen is rotated at regular intervals by changing the tilting direction while maintaining the angle formed by the horizontal plane and the display surface.
  • the oscillator control unit 11 inputs the inclination of the screen 30, for example, the normal direction of the screen 30 to the synchronous coordination unit 13.
  • the synchronous cooperation unit 13 obtains the angle information that the image projected by the projector 20 reflects on the screen 30 from the tilt of the screen 30, and inputs the angle information to the projector control unit 12.
  • the synchronous coordination unit 13 inputs the angle information to the projector control unit 12 after correcting the delay related to the control. As a result, synchronization between the oscillator control unit 11 and the projector control unit 12 can be achieved.
  • the projector control unit 12 obtains the position where the image projected by the projector 20 is reflected on the screen 30 and is projected from the angle information of the screen 30, and synthesizes and displays the image seen from the obtained position. Let me.
  • the control device 10 When the screen 30 is parallel to the horizontal plane, the image projected by the projector 20 is reflected on the screen 30 and projected on the front viewpoint V1 as shown in FIG.
  • the control device 10 generates an image of the subject viewed from the viewpoint V1 and supplies it to the projector 20.
  • the positional relationship between the subject object arranged in the virtual space and the virtual camera is made to correspond to the positional relationship between the screen 30 and the viewpoint V1, and an image obtained by shooting the subject object with the virtual camera is generated.
  • the image supplied to the projector 20 is subjected to keystone correction and lens distortion correction so as to correct distortion due to the positional relationship between the projector 20 and the screen 30.
  • the image projected by the projector 20 is reflected on the screen 30 and projected on the viewpoint V2 according to the tilt direction of the screen 30.
  • the control device 10 generates an image of the subject viewed from the viewpoint V2 and supplies it to the projector 20.
  • a plurality of viewpoints V2 may be provided discretely at regular intervals.
  • the projection of the projector 20 may be suppressed to reduce the blurring due to the afterimage.
  • an image is projected at the timing when the projection center comes to the viewpoint V2, with the viewpoint V2 as the viewpoint at the timing when the Y component of the specular reflected light R described with reference to FIGS. 7 and 8 takes a maximum value. do.
  • step S11 the vibrator control unit 11 controls the vibrators 40A to 40D to periodically move the screen 30.
  • the control device 10 executes the following steps S12 to S14 for each of the projectors 20.
  • step S12 the synchronization cooperation unit 13 inputs the angle information that the image projected by the projector 20 is reflected on the screen 30 to the projector control unit 12.
  • step S13 the projector control unit 12 synthesizes an image that can be seen from the viewpoint at the position where the image projected by the projector 20 is reflected on the screen 30.
  • step S14 the projector control unit 12 supplies the image synthesized in step S13 to the projector 20, and projects the image from the projector 20.
  • steps S13 and S14 may be executed for the projector 20 whose projection center comes to the viewpoint V2 for projecting the image from the projector 20.
  • the display system of the present embodiment includes a screen 30 provided with a reflective Fresnel lens and a diffusion film, and reflects a projected image to form a spatially imaged iris surface, and the display surface of the screen 30 is moved upward. It has three or more transducers 40A to 40D that support toward the screen, a plurality of projectors 20 that project images onto the display surface of the screen 30, and a control device 10.
  • the control device 10 periodically vibrates the projectors 40A to 40D to periodically move the tilt of the screen 30 in the rotational direction, and hourly produces an image corresponding to the position of the spatially imaged iris surface formed by the projected image. It is supplied to the projector 20 in division. This makes it possible to display more parallax images than the number of projectors 20.
  • the optical axis of the reflective Frenel lens of the screen 30 (the vertical line passing through the center of the screen 30) and the position of the projector 20 are separated from each other to collect light.
  • the display system of the present embodiment tilts the screen 30 as shown in FIG. 7, so that the projector 20 can be brought closer to the optical axis by the amount of the tilt of the screen 30, and the light collection accuracy is reduced. Can be improved. Further, since the projector 20 can be brought closer to the optical axis, the problem that the image projected by the projector 20 is hidden by the facing user can be alleviated.
  • Control device 11 Oscillator control unit 12 . Projector control unit 13 ... Synchronous coordination unit 20 . Projector 30 ... Screen 40, 40A-40D ... Oscillator 41 ... Iron core 42 . Electromagnetic coil 43 ... Spring 50 ... Projection surface 100 ... A user

Abstract

A display system according to the present embodiment has: a screen 30 which is provided with a reflective Fresnel lens and a diffusion film, and forms a spatial imaging iris plane by reflecting projected video; three or more vibrators 40A-40D supporting a display surface of the screen 30 facing upward; a plurality of projectors 20 which project video onto the display surface of the screen 30; and a control device 10. The control device 10 causes the vibrators 40A-40D to vibrate periodically, causes inclination of the screen 30 to engage in periodic motion in a rotational direction, and supplies video corresponding to the position of the spatial imaging iris plane formed by the projected video to the projectors 20 in time division.

Description

表示装置及び表示方法Display device and display method
 本発明は、表示装置及び表示方法に関する。 The present invention relates to a display device and a display method.
 特許文献1および非特許文献1では、3Dメガネを必要とせずに、360度の立体映像を体験可能な表示システムが提案されている。 Patent Document 1 and Non-Patent Document 1 propose a display system capable of experiencing a 360-degree stereoscopic image without the need for 3D glasses.
 特許文献1は、反射フレネルレンズと拡散フィルムを備えたスクリーンと、スクリーンの上方の仮想円上に配置した複数の表示装置を備える。隣接する3つの表示装置がスクリーンに投影した映像はスクリーンで反射され、反射フレネルレンズの焦点位置に空間結像アイリス面が形成される。水平方向に一部が重ねられた隣接する空間結像アイリス面により、ユーザは、リニアブレンディング効果による裸眼3D映像を見ることができる。 Patent Document 1 includes a screen provided with a reflective Fresnel lens and a diffusion film, and a plurality of display devices arranged on a virtual circle above the screen. The images projected on the screen by the three adjacent display devices are reflected by the screen, and a spatially imaged iris surface is formed at the focal position of the reflected Fresnel lens. Adjacent spatially imaged iris planes, partially overlapped in the horizontal direction, allow the user to view a naked-eye 3D image due to the linear blending effect.
 非特許文献1は、反射方向を制限するホログラフィック拡散板を備えた鏡を高速回転させ、回転に同期して、上部のプロジェクタから時分割で視差画像を投影し、各方向に視差画像を表示する。これにより、あたかも中央に物体があるかのような立体映像を表示することができる。 In Non-Patent Document 1, a mirror provided with a holographic diffuser that limits the reflection direction is rotated at high speed, a parallax image is projected from an upper projector in a time-division manner in synchronization with the rotation, and the parallax image is displayed in each direction. do. This makes it possible to display a stereoscopic image as if there is an object in the center.
特開2019-191331号公報Japanese Unexamined Patent Publication No. 2019-191331
 特許文献1の技術では、プロジェクタ間隔より狭い両眼視差角を生むことができないため、表現できる奥行に限界があった。 The technology of Patent Document 1 cannot produce a binocular parallax angle narrower than the projector spacing, so there is a limit to the depth that can be expressed.
 本発明は、上記に鑑みてなされたものであり、プロジェクタの数より多い視差画像を表示することを目的とする。 The present invention has been made in view of the above, and an object thereof is to display a parallax image larger than the number of projectors.
 本発明の一態様の表示装置は、反射フレネルレンズと拡散フィルムを備え、投影された映像を反射して空間結像アイリス面を形成するスクリーンと、前記スクリーンの表示面を上方に向けて支持する3つ以上の振動子と、前記スクリーンの表示面に対して映像を投影する複数のプロジェクタと、前記振動子を周期的に振動させて、前記スクリーンの傾きを回転方向に周期運動させる振動子制御部と、投影する映像により形成される前記空間結像アイリス面の位置に応じた映像を時分割で前記プロジェクタに供給するプロジェクタ制御部を備える。 The display device of one aspect of the present invention includes a reflective frenell lens and a diffusion film, and supports a screen that reflects a projected image to form a spatially imaged iris surface and the display surface of the screen upward. Transducer control that periodically vibrates three or more projectors, a plurality of projectors that project an image onto the display surface of the screen, and the oscillator to periodically move the tilt of the screen in the rotational direction. A unit and a projector control unit that supplies an image corresponding to the position of the spatially imaged iris surface formed by the projected image to the projector in a time-divided manner are provided.
 本発明の一態様の表示方法は、反射フレネルレンズと拡散フィルムを備え、投影された映像を反射して空間結像アイリス面を形成するスクリーンと、前記スクリーンの表示面を上方に向けて支持する3つ以上の振動子と、前記スクリーンの表示面に対して映像を投影する複数のプロジェクタを備える表示装置の表示方法であって、前記振動子を周期的に振動させて、前記スクリーンの傾きを回転方向に周期運動させ、投影する映像により形成される前記空間結像アイリス面の位置に応じた映像を時分割で前記プロジェクタに供給する。 The display method of one aspect of the present invention includes a reflective frenell lens and a diffusion film, and supports a screen that reflects a projected image to form a spatially imaged iris surface and the display surface of the screen upward. It is a display method of a display device including three or more oscillators and a plurality of projectors that project images onto the display surface of the screen, and the oscillator is periodically vibrated to tilt the screen. The image corresponding to the position of the spatially imaged iris surface formed by the projected image is supplied to the projector in a time division by periodically moving in the rotation direction.
 本発明によれば、プロジェクタの数より多い視差画像を表示することができる。 According to the present invention, it is possible to display more parallax images than the number of projectors.
図1は、本実施形態の表示システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of the display system of the present embodiment. 図2は、振動子の配置の一例を示す図である。FIG. 2 is a diagram showing an example of arrangement of oscillators. 図3は、各振動子の位相をずらした例を示す図である。FIG. 3 is a diagram showing an example in which the phases of the oscillators are shifted. 図4は、スクリーンの周期運動を示す図である。FIG. 4 is a diagram showing the periodic motion of the screen. 図5は、振動子の構成の一例を示す図である。FIG. 5 is a diagram showing an example of the configuration of the oscillator. 図6は、スクリーンの周期運動による投影面の位置の変化を説明するための図である。FIG. 6 is a diagram for explaining the change in the position of the projection surface due to the periodic motion of the screen. 図7は、あるプロジェクタとスクリーンを横からみた側面図である。FIG. 7 is a side view of a projector and a screen as viewed from the side. 図8は、あるプロジェクタとスクリーンを上からみた上面図である。FIG. 8 is a top view of a projector and a screen as viewed from above. 図9は、制御装置の構成の一例を示す機能ブロック図である。FIG. 9 is a functional block diagram showing an example of the configuration of the control device. 図10は、スクリーンの傾き角度に応じてプロジェクタに供給する映像を説明するための図である。FIG. 10 is a diagram for explaining an image supplied to the projector according to the tilt angle of the screen. 図11は、制御装置の動作を示すフローチャートである。FIG. 11 is a flowchart showing the operation of the control device.
 図1を参照し、本実施形態の表示システムについて説明する。本実施形態の表示システムは、プロジェクタ20からスクリーン30に映像を投影し、3D映像(立体映像)を表示するシステムである。本実施形態では、隣接する空間結像アイリス面が互いに重なり合う際に生じる視覚的な効果を利用した光学リニアブレンディング技術を用いて3D映像を表示する。 The display system of this embodiment will be described with reference to FIG. The display system of the present embodiment is a system that projects an image from the projector 20 onto the screen 30 and displays a 3D image (stereoscopic image). In this embodiment, a 3D image is displayed by using an optical linear blending technique that utilizes a visual effect generated when adjacent spatially imaged iris planes overlap each other.
 複数のプロジェクタ20は、スクリーン30の上方に、スクリーン30を囲むように円形に並べて配置される。例えば、スクリーン30の中心から垂直方向に離れた位置を中心とし、地面に平行な仮想円上に、60台のプロジェクタ20を6度間隔で均等に配置する。プロジェクタ20の数はこれに限るものではない。プロジェクタ20のそれぞれは、被写体を360度の全周のそれぞれから撮影した映像をスクリーン30に投影する。ユーザ100は、スクリーン30を挟んだ対面の上方に配置されたプロジェクタ20の投影する映像を見ることができる。 The plurality of projectors 20 are arranged in a circle above the screen 30 so as to surround the screen 30. For example, 60 projectors 20 are evenly arranged at intervals of 6 degrees on a virtual circle parallel to the ground with a position vertically separated from the center of the screen 30 as the center. The number of projectors 20 is not limited to this. Each of the projectors 20 projects an image of the subject taken from each of the entire circumferences of 360 degrees on the screen 30. The user 100 can see the image projected by the projector 20 arranged above the facing surface of the screen 30.
 スクリーン30は、反射フレネルレンズと拡散フィルムを備えた円形の反射型スクリーンである。スクリーン30は、プロジェクタ20の出力した映像を反射し、プロジェクタ20からスクリーン30までの投影距離とスクリーン30の焦点距離に応じた位置に空間結像アイリス面を形成する。スクリーン30は、特許文献1に記載のスクリーンを用いることができる。 The screen 30 is a circular reflective screen provided with a reflective Fresnel lens and a diffusion film. The screen 30 reflects the image output by the projector 20 and forms a spatially imaged iris surface at a position corresponding to the projection distance from the projector 20 to the screen 30 and the focal length of the screen 30. As the screen 30, the screen described in Patent Document 1 can be used.
 空間結像アイリス面内にユーザ100の眼があるとユーザ100は明瞭な映像を見ることができる。空間結像アイリス面は、中心が最大輝度で、中心から水平方向に離れるに従って徐々に輝度が低下する。隣接する空間結像アイリス面の一部を重複させると、視点位置に応じて混合される映像の輝度の比率が変化し、輝度の比率に応じて映像内でオブジェクトを知覚する位置が変化する。ユーザ100の左右の眼のそれぞれで観察される映像は互いに異なる輝度の比率で混合された映像であり、左右の眼のそれぞれで映像内のオブジェクトを異なる位置で知覚する。その結果、ユーザ100は3D映像を見ることができる。 If the user 100's eyes are in the spatial imaging iris plane, the user 100 can see a clear image. The center of the spatially imaged iris surface has the maximum brightness, and the brightness gradually decreases as the distance from the center in the horizontal direction increases. When a part of the adjacent spatially imaged iris plane is overlapped, the ratio of the brightness of the mixed images changes according to the viewpoint position, and the position where the object is perceived in the image changes according to the ratio of the brightness. The images observed by the left and right eyes of the user 100 are images mixed at different luminance ratios, and each of the left and right eyes perceives an object in the image at a different position. As a result, the user 100 can see the 3D image.
 スクリーン30は、反射面を上方に向けて、振動子40A~40D上に配置される。例えば、図2に示すように、スクリーン30の外周の下面に4つの振動子40A~40Dを取り付ける。図3に示すように、それぞれの振動子40A~40Dを位相が90度ずれた正弦波状の振幅で駆動すると、図4に示すように、スクリーン30全体が所定の傾き角度を維持したまま回転しているかのような周期運動を与えることができる。スクリーン30の傾き角度は振動子40A~40Dの振幅を調整することで任意に設定できる。非特許文献1の技術は、反射板を高速に回転させる必要があり、反射板を大きくすると、運動エネルギーが大きくなり危険である。本実施形態では、スクリーン30そのものを回転させずに、スクリーン30の傾き方向を変化させるので、スクリーン30の大型化が容易である。なお、振動子40A~40Dの数は4つに限らず、3つ以上であれば、スクリーン30を周期運動させることができる。 The screen 30 is arranged on the vibrators 40A to 40D with the reflective surface facing upward. For example, as shown in FIG. 2, four oscillators 40A to 40D are attached to the lower surface of the outer periphery of the screen 30. As shown in FIG. 3, when each of the vibrators 40A to 40D is driven with a sinusoidal amplitude shifted by 90 degrees in phase, the entire screen 30 rotates while maintaining a predetermined tilt angle as shown in FIG. It is possible to give a periodic motion as if it were. The tilt angle of the screen 30 can be arbitrarily set by adjusting the amplitudes of the vibrators 40A to 40D. The technique of Non-Patent Document 1 requires that the reflector is rotated at high speed, and if the reflector is made large, the kinetic energy becomes large, which is dangerous. In the present embodiment, since the tilting direction of the screen 30 is changed without rotating the screen 30 itself, it is easy to increase the size of the screen 30. The number of oscillators 40A to 40D is not limited to four, and if the number is three or more, the screen 30 can be periodically moved.
 図5に振動子40の構成の一例を示す。同図に示す振動子40は、電磁コイル42の中に鉄心41を入れ、鉄心41の一方にバネ43を取り付けた。電磁コイル42に流れる電流により発生する電磁場の強さに応じて、バネ43の反発力と釣り合う位置に鉄心41の上下位置が定まる。振動子40はこれに限るものではなく、電磁石と永久磁石を組み合わせたソレノイドや低周波スピーカーを使うことができる。 FIG. 5 shows an example of the configuration of the oscillator 40. In the vibrator 40 shown in the figure, the iron core 41 is inserted in the electromagnetic coil 42, and the spring 43 is attached to one of the iron cores 41. The vertical position of the iron core 41 is determined at a position that balances with the repulsive force of the spring 43 according to the strength of the electromagnetic field generated by the current flowing through the electromagnetic coil 42. The oscillator 40 is not limited to this, and a solenoid or a low frequency speaker that combines an electromagnet and a permanent magnet can be used.
 制御装置10は、スクリーン30の周期運動に同期して、時分割で視差の異なる映像をプロジェクタ20に供給する。視差の異なる映像のそれぞれは、スクリーン30の反射面の傾き角度に応じた位置に投影される。つまり、1台のプロジェクタ20から時分割で複数の視差の異なる映像を出力できる。その結果、プロジェクタ20の数よりも多い視差映像を表示できる。 The control device 10 supplies images having different parallax in time division to the projector 20 in synchronization with the periodic motion of the screen 30. Each of the images having different parallax is projected at a position corresponding to the tilt angle of the reflecting surface of the screen 30. That is, it is possible to output a plurality of images having different parallax by time division from one projector 20. As a result, more parallax images can be displayed than the number of projectors 20.
 ここで、スクリーン30の周期運動による投影面の位置の変化について説明する。図6に示すように、スクリーン30の傾き角度が変化すると、プロジェクタ20から出射してスクリーン30に入射する入射光Lに対する鏡面反射光Rの投影面50が変化する。 Here, the change in the position of the projection surface due to the periodic motion of the screen 30 will be described. As shown in FIG. 6, when the tilt angle of the screen 30 changes, the projection surface 50 of the specularly reflected light R with respect to the incident light L emitted from the projector 20 and incident on the screen 30 changes.
 図7に、あるプロジェクタ20とスクリーン30を横から見た側面図を示し、図8に上面図を示す。ユーザ100の眼は、スクリーン30の左側の投影面50付近に存在する。ユーザ100からスクリーン30を見た方向をX軸、ユーザ100の左右方向をY軸、ユーザ100の頭上方向をZ軸とする。 FIG. 7 shows a side view of a projector 20 and a screen 30 as viewed from the side, and FIG. 8 shows a top view. The eyes of the user 100 are located near the projection surface 50 on the left side of the screen 30. The direction in which the screen 30 is viewed from the user 100 is defined as the X axis, the left-right direction of the user 100 is defined as the Y axis, and the overhead direction of the user 100 is defined as the Z axis.
 スクリーン30の法線ベクトルNは、スクリーン30の最大傾きaと、上面から見た最大傾き方向の角度bを用いて次式で表せる。 The normal vector N of the screen 30 can be expressed by the following equation using the maximum inclination a of the screen 30 and the angle b in the maximum inclination direction seen from the upper surface.
 N = (-sin(a)cos(b), -sin(a)sin(b), cos(a)) N = (-sin (a) cos (b), -sin (a) sin (b), cos (a))
 スクリーン30の周期運動に応じて角度bが変化する。なお、図8では、スクリーン30の図上で右上方向(破線の方向)が持ち上げられているものとする。 The angle b changes according to the periodic motion of the screen 30. In FIG. 8, it is assumed that the upper right direction (the direction of the broken line) is lifted on the screen 30.
 X軸上のプロジェクタ20の入射角をcとすると、入射光Lは次式で表せる。 Assuming that the incident angle of the projector 20 on the X axis is c, the incident light L can be expressed by the following equation.
 L = (-cos(c), 0, -sin(c)) L = (-cos (c), 0, -sin (c))
 このとき、スクリーン30による鏡面反射光Rは次式となる。 At this time, the specularly reflected light R by the screen 30 is given by the following equation.
 R = L - 2(L・N)N R = L-2 (L ・ N) N
 鏡面反射光Rは、スクリーン30の周期運動により投影面50に楕円状の軌跡を作る。鏡面反射光RのY成分は次式で表せる。 The specular reflected light R forms an elliptical locus on the projection surface 50 due to the periodic motion of the screen 30. The Y component of the specularly reflected light R can be expressed by the following equation.
 Ry = 2{sin(a)cos(b)cos(c) - cos(a)sin(c)}sin(a)sin(b) Ry = 2 {sin (a) cos (b) cos (c)-cos (a) sin (c)} sin (a) sin (b)
 sin(b)=-1または1、cos(b)=0のときに、鏡面反射光RのY成分は次式の極大値をとる。 When sin (b) = -1 or 1 and cos (b) = 0, the Y component of the specular reflected light R takes the maximum value of the following equation.
 Ry = ±2cos(a)sin(a)sin(c) Ry = ± 2cos (a) sin (a) sin (c)
 この極大値がプロジェクタ20間隔による視差角の1/2以上であれば、スクリーン30の周期運動によって、プロジェクタ20間の映像の補間ができる。 If this maximum value is ½ or more of the parallax angle due to the distance between the projectors 20, the images can be interpolated between the projectors 20 by the periodic motion of the screen 30.
 次に、図9を参照し、制御装置10の構成について説明する。同図に示す制御装置10は、振動子制御部11、プロジェクタ制御部12、および同期協調部13を備える。制御装置10が備える各部は、演算処理装置、記憶装置等を備えたコンピュータにより構成して、各部の処理がプログラムによって実行されるものとしてもよい。このプログラムは制御装置10が備える記憶装置に記憶されており、磁気ディスク、光ディスク、半導体メモリ等の記録媒体に記録することも、ネットワークを通して提供することも可能である。 Next, the configuration of the control device 10 will be described with reference to FIG. The control device 10 shown in the figure includes an oscillator control unit 11, a projector control unit 12, and a synchronous coordination unit 13. Each part included in the control device 10 may be configured by a computer provided with an arithmetic processing unit, a storage device, and the like, and the processing of each part may be executed by a program. This program is stored in a storage device included in the control device 10, and can be recorded on a recording medium such as a magnetic disk, an optical disk, or a semiconductor memory, or can be provided through a network.
 振動子制御部11は、振動子40のそれぞれを位相のずれた正弦波状に駆動する。これにより、スクリーン30は、水平面と表示面とがなす角度を維持したまま傾き方向を変えて、一定の周期で全体が回転しているかのように制御される。周期運動中、振動子制御部11は、スクリーン30の傾き、例えばスクリーン30の法線方向を同期協調部13に入力する。 The oscillator control unit 11 drives each of the oscillators 40 in a phase-shifted sine and cosine shape. As a result, the screen 30 is controlled as if the entire screen is rotated at regular intervals by changing the tilting direction while maintaining the angle formed by the horizontal plane and the display surface. During the periodic motion, the oscillator control unit 11 inputs the inclination of the screen 30, for example, the normal direction of the screen 30 to the synchronous coordination unit 13.
 同期協調部13は、プロジェクタ20のそれぞれについて、プロジェクタ20の投影する映像がスクリーン30に反射する角度情報をスクリーン30の傾きから求めて、角度情報をプロジェクタ制御部12に入力する。同期協調部13は、角度情報は制御にかかわる遅延を補正したうえでプロジェクタ制御部12に入力する。これにより、振動子制御部11とプロジェクタ制御部12との間の同期をとることができる。 For each of the projectors 20, the synchronous cooperation unit 13 obtains the angle information that the image projected by the projector 20 reflects on the screen 30 from the tilt of the screen 30, and inputs the angle information to the projector control unit 12. The synchronous coordination unit 13 inputs the angle information to the projector control unit 12 after correcting the delay related to the control. As a result, synchronization between the oscillator control unit 11 and the projector control unit 12 can be achieved.
 プロジェクタ制御部12は、プロジェクタ20のそれぞれについて、プロジェクタ20の投影する映像がスクリーン30に反射して投影される位置をスクリーン30の角度情報から求めて、求めた位置から見える映像を合成して表示させる。 For each of the projectors 20, the projector control unit 12 obtains the position where the image projected by the projector 20 is reflected on the screen 30 and is projected from the angle information of the screen 30, and synthesizes and displays the image seen from the obtained position. Let me.
 図10を参照し、スクリーン30の傾き角度に応じてプロジェクタ20に供給する映像について説明する。 With reference to FIG. 10, an image supplied to the projector 20 according to the tilt angle of the screen 30 will be described.
 スクリーン30が水平面に対して平行な場合、プロジェクタ20の投影する映像は、図10に示すように、スクリーン30に反射して正面の視点V1に投影される。この場合、制御装置10は、視点V1から被写体を見た映像を生成してプロジェクタ20に供給する。例えば、仮想空間内に配置した被写体オブジェクトと仮想カメラとの位置関係を、スクリーン30と視点V1との位置関係に対応させて、仮想カメラで被写体オブジェクトを撮影した映像を生成する。なお、プロジェクタ20に供給する映像は、プロジェクタ20とスクリーン30の位置関係による歪みを補正するように、台形補正とレンズ歪補正が行われる。 When the screen 30 is parallel to the horizontal plane, the image projected by the projector 20 is reflected on the screen 30 and projected on the front viewpoint V1 as shown in FIG. In this case, the control device 10 generates an image of the subject viewed from the viewpoint V1 and supplies it to the projector 20. For example, the positional relationship between the subject object arranged in the virtual space and the virtual camera is made to correspond to the positional relationship between the screen 30 and the viewpoint V1, and an image obtained by shooting the subject object with the virtual camera is generated. The image supplied to the projector 20 is subjected to keystone correction and lens distortion correction so as to correct distortion due to the positional relationship between the projector 20 and the screen 30.
 スクリーン30を周期運動させる場合、プロジェクタ20の投影する映像は、スクリーン30に反射し、スクリーン30の傾き方向に応じた視点V2に投影される。制御装置10は、視点V2から被写体を見た映像を生成してプロジェクタ20に供給する。 When the screen 30 is periodically moved, the image projected by the projector 20 is reflected on the screen 30 and projected on the viewpoint V2 according to the tilt direction of the screen 30. The control device 10 generates an image of the subject viewed from the viewpoint V2 and supplies it to the projector 20.
 スクリーン30の周期運動中には、一定間隔で離散的に複数の視点V2を設けてもよい。視点V2に投影中心がこないときには、プロジェクタ20の投影を抑制し、残像によるブレを軽減してもよい。例えば、あるプロジェクタ20について、図7および図8を用いて説明した鏡面反射光RのY成分が極大値をとるタイミングの視点を視点V2として、視点V2に投影中心が来たタイミングで映像を投影する。 During the periodic motion of the screen 30, a plurality of viewpoints V2 may be provided discretely at regular intervals. When the projection center does not come to the viewpoint V2, the projection of the projector 20 may be suppressed to reduce the blurring due to the afterimage. For example, for a certain projector 20, an image is projected at the timing when the projection center comes to the viewpoint V2, with the viewpoint V2 as the viewpoint at the timing when the Y component of the specular reflected light R described with reference to FIGS. 7 and 8 takes a maximum value. do.
 次に、図11を参照し、制御装置10の動作について説明する。 Next, the operation of the control device 10 will be described with reference to FIG.
 ステップS11にて、振動子制御部11は、振動子40A~40Dを制御し、スクリーン30を周期運動させる。 In step S11, the vibrator control unit 11 controls the vibrators 40A to 40D to periodically move the screen 30.
 制御装置10は、プロジェクタ20のそれぞれについて、以下のステップS12~S14の処理を実行する。 The control device 10 executes the following steps S12 to S14 for each of the projectors 20.
 ステップS12にて、同期協調部13は、プロジェクタ20の投影する映像がスクリーン30に反射する角度情報をプロジェクタ制御部12に入力する。 In step S12, the synchronization cooperation unit 13 inputs the angle information that the image projected by the projector 20 is reflected on the screen 30 to the projector control unit 12.
 ステップS13にて、プロジェクタ制御部12は、プロジェクタ20の投影する映像がスクリーン30に反射した位置の視点から見える映像を合成する。 In step S13, the projector control unit 12 synthesizes an image that can be seen from the viewpoint at the position where the image projected by the projector 20 is reflected on the screen 30.
 ステップS14にて、プロジェクタ制御部12は、ステップS13で合成した映像をプロジェクタ20に供給し、プロジェクタ20から映像を投影する。 In step S14, the projector control unit 12 supplies the image synthesized in step S13 to the projector 20, and projects the image from the projector 20.
 ステップS13,S14の処理は、プロジェクタ20からの映像を投影する視点V2に投影中心が来たプロジェクタ20について実行してもよい。 The processes of steps S13 and S14 may be executed for the projector 20 whose projection center comes to the viewpoint V2 for projecting the image from the projector 20.
 以上説明したように、本実施形態の表示システムは、反射フレネルレンズと拡散フィルムを備え、投影された映像を反射して空間結像アイリス面を形成するスクリーン30と、スクリーン30の表示面を上方に向けて支持する3つ以上の振動子40A~40Dと、スクリーン30の表示面に対して映像を投影する複数のプロジェクタ20と、制御装置10を有する。制御装置10は、振動子40A~40Dを周期的に振動させて、スクリーン30の傾きを回転方向に周期運動させ、投影する映像により形成される空間結像アイリス面の位置に応じた映像を時分割でプロジェクタ20に供給する。これにより、プロジェクタ20の数より多い視差画像を表示できる。 As described above, the display system of the present embodiment includes a screen 30 provided with a reflective Fresnel lens and a diffusion film, and reflects a projected image to form a spatially imaged iris surface, and the display surface of the screen 30 is moved upward. It has three or more transducers 40A to 40D that support toward the screen, a plurality of projectors 20 that project images onto the display surface of the screen 30, and a control device 10. The control device 10 periodically vibrates the projectors 40A to 40D to periodically move the tilt of the screen 30 in the rotational direction, and hourly produces an image corresponding to the position of the spatially imaged iris surface formed by the projected image. It is supplied to the projector 20 in division. This makes it possible to display more parallax images than the number of projectors 20.
 また、スクリーン30を水平に配置し、プロジェクタ20をユーザの後部上方に配置した場合、スクリーン30の反射フレネルレンズの光軸(スクリーン30の中心を通る垂線)とプロジェクタ20の位置が離れ、集光精度が低下するが、本実施形態の表示システムは、図7で示したように、スクリーン30を傾けるので、スクリーン30の傾きの分だけ、プロジェクタ20を光軸に近づけることができ、集光精度を向上できる。また、プロジェクタ20を光軸に近づけることができるので、プロジェクタ20の投影する映像が対面のユーザで隠される問題を軽減できる。 Further, when the screen 30 is arranged horizontally and the projector 20 is arranged above the rear part of the user, the optical axis of the reflective Frenel lens of the screen 30 (the vertical line passing through the center of the screen 30) and the position of the projector 20 are separated from each other to collect light. Although the accuracy is reduced, the display system of the present embodiment tilts the screen 30 as shown in FIG. 7, so that the projector 20 can be brought closer to the optical axis by the amount of the tilt of the screen 30, and the light collection accuracy is reduced. Can be improved. Further, since the projector 20 can be brought closer to the optical axis, the problem that the image projected by the projector 20 is hidden by the facing user can be alleviated.
 10…制御装置
 11…振動子制御部
 12…プロジェクタ制御部
 13…同期協調部
 20…プロジェクタ
 30…スクリーン
 40,40A~40D…振動子
 41…鉄心
 42…電磁コイル
 43…バネ
 50…投影面
 100…ユーザ
10 ... Control device 11 ... Oscillator control unit 12 ... Projector control unit 13 ... Synchronous coordination unit 20 ... Projector 30 ... Screen 40, 40A-40D ... Oscillator 41 ... Iron core 42 ... Electromagnetic coil 43 ... Spring 50 ... Projection surface 100 ... A user

Claims (4)

  1.  反射フレネルレンズと拡散フィルムを備え、投影された映像を反射して空間結像アイリス面を形成するスクリーンと、
     前記スクリーンの表示面を上方に向けて支持する3つ以上の振動子と、
     前記スクリーンの表示面に対して映像を投影する複数のプロジェクタと、
     前記振動子を周期的に振動させて、前記スクリーンの傾きを回転方向に周期運動させる振動子制御部と、
     投影する映像により形成される前記空間結像アイリス面の位置に応じた映像を時分割で前記プロジェクタに供給するプロジェクタ制御部を備える
     表示装置。
    A screen equipped with a reflective Fresnel lens and a diffusion film that reflects the projected image to form a spatially imaged iris surface.
    Three or more oscillators that support the display surface of the screen upward and
    A plurality of projectors that project images onto the display surface of the screen,
    A vibrator control unit that periodically vibrates the vibrator to cause the tilt of the screen to periodically move in the rotational direction.
    A display device including a projector control unit that supplies an image corresponding to the position of the spatially imaged iris surface formed by the projected image to the projector in a time-division manner.
  2.  請求項1に記載の表示装置であって、
     前記振動子制御部は、前記振動子を位相の異なる正弦波状に制御する
     表示装置。
    The display device according to claim 1.
    The vibrator control unit is a display device that controls the vibrator in a sinusoidal shape having different phases.
  3.  請求項1または2に記載の表示装置であって、
     前記プロジェクタ制御部は、前記スクリーンの傾きが所定の場合に、前記プロジェクタに映像を供給する
     表示装置。
    The display device according to claim 1 or 2.
    The projector control unit is a display device that supplies an image to the projector when the tilt of the screen is predetermined.
  4.  反射フレネルレンズと拡散フィルムを備え、投影された映像を反射して空間結像アイリス面を形成するスクリーンと、前記スクリーンの表示面を上方に向けて支持する3つ以上の振動子と、前記スクリーンの表示面に対して映像を投影する複数のプロジェクタを備える表示装置の表示方法であって、
     前記振動子を周期的に振動させて、前記スクリーンの傾きを回転方向に周期運動させ、
     投影する映像により形成される前記空間結像アイリス面の位置に応じた映像を時分割で前記プロジェクタに供給する
     表示方法。
    A screen provided with a reflective Fresnel lens and a diffusion film to reflect projected images to form a spatially imaged iris surface, three or more projectors that support the display surface of the screen upward, and the screen. It is a display method of a display device including a plurality of projectors that project an image on the display surface of the above.
    The vibrator is vibrated periodically to cause the tilt of the screen to periodically move in the rotation direction.
    A display method in which an image corresponding to the position of the spatially imaged iris surface formed by the projected image is supplied to the projector in a time-division manner.
PCT/JP2020/020930 2020-05-27 2020-05-27 Display device and display method WO2021240687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020930 WO2021240687A1 (en) 2020-05-27 2020-05-27 Display device and display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020930 WO2021240687A1 (en) 2020-05-27 2020-05-27 Display device and display method

Publications (1)

Publication Number Publication Date
WO2021240687A1 true WO2021240687A1 (en) 2021-12-02

Family

ID=78723110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020930 WO2021240687A1 (en) 2020-05-27 2020-05-27 Display device and display method

Country Status (1)

Country Link
WO (1) WO2021240687A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206794A (en) * 1989-09-19 1991-09-10 Texas Instr Inc <Ti> Real time three-dimensional display device
CN104298065A (en) * 2014-05-07 2015-01-21 浙江大学 360-degree three-dimensional display device and method based on splicing of multiple high-speed projectors
JP2015232633A (en) * 2014-06-10 2015-12-24 セイコーエプソン株式会社 Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206794A (en) * 1989-09-19 1991-09-10 Texas Instr Inc <Ti> Real time three-dimensional display device
CN104298065A (en) * 2014-05-07 2015-01-21 浙江大学 360-degree three-dimensional display device and method based on splicing of multiple high-speed projectors
JP2015232633A (en) * 2014-06-10 2015-12-24 セイコーエプソン株式会社 Display device

Similar Documents

Publication Publication Date Title
KR101524680B1 (en) Device for directional light field 3d display and method thereof
Jones et al. Rendering for an interactive 360 light field display
US7277226B2 (en) Radial multiview three-dimensional displays
US9036003B2 (en) Multi-pitching angle suspended 3D display device with 360-degree field of view
US20070109505A1 (en) Projection three-dimensional display apparatus
US20040252187A1 (en) Processes and apparatuses for efficient multiple program and 3D display
WO2009011946A1 (en) Rendering for an interactive 360 degree light field display
JP2007503020A (en) Wide-angle scanner for panoramic display
WO2019147564A1 (en) Multi-axis gimbal extended pixel resolution actuator
JP2004012644A (en) Display device and display method
JP3387487B2 (en) Immersive sensation generator
KR20140050129A (en) Apparatus and method for displaying multi-view image and super multi-view image
US10503120B2 (en) Three-dimensional display with augmented holograms
JP2000078616A (en) Stereoscopic image display device and stereoscopic image display system
JP6637658B2 (en) Hologram display device
WO2021240687A1 (en) Display device and display method
JP2007101929A (en) Projection type three-dimensional display device
KR101022474B1 (en) Stereoscopic image display apparatus
RU2526901C1 (en) Three-dimensional display and method of forming three-dimensional images
WO2021240688A1 (en) Display device and display method
RU2713994C1 (en) Device for representing moving images
JP6060417B2 (en) 3D display
KR102659822B1 (en) Transparent cylindrical 3D display system using holographic optical element
RU2713996C1 (en) Device for representing moving images
KR100924086B1 (en) Projection System for Three-dimensional Image Photographing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP