WO2021240631A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2021240631A1
WO2021240631A1 PCT/JP2020/020698 JP2020020698W WO2021240631A1 WO 2021240631 A1 WO2021240631 A1 WO 2021240631A1 JP 2020020698 W JP2020020698 W JP 2020020698W WO 2021240631 A1 WO2021240631 A1 WO 2021240631A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
wall surface
cooling device
bubble
liquid
Prior art date
Application number
PCT/JP2020/020698
Other languages
French (fr)
Japanese (ja)
Inventor
博章 石川
雄基 坂田
基史 鈴木
今日子 名村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022527304A priority Critical patent/JP7118320B2/en
Priority to PCT/JP2020/020698 priority patent/WO2021240631A1/en
Publication of WO2021240631A1 publication Critical patent/WO2021240631A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00

Definitions

  • This disclosure relates to a cooling device.
  • Patent Document 1 discloses a heat radiating unit that cools a power conversion device.
  • the power conversion device includes a heat receiving plate and a plurality of semiconductor elements designated by the heat receiving plate.
  • the heat radiating unit includes a pipe provided on the heat receiving plate, a pump, and a heat exchanger.
  • the pump is connected to the pipe and circulates the coolant in the pipe.
  • the heat exchanger is connected to the piping and cools the coolant warmed by the heat receiving plate.
  • Patent Document 1 In the heat dissipation part of Patent Document 1, a pump is used to circulate the coolant in the pipe. Therefore, the size of the heat radiating portion of Patent Document 1 is large, and the power consumption of the heat radiating portion of Patent Document 1 is large. Further, since the pump includes a mechanically movable part, the reliability of the heat radiating part of Patent Document 1 is low.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a cooling device having a more compact size, higher reliability, and reduced power consumption.
  • the cooling device of the present disclosure includes a container, a heat radiating member, a first bubble generating unit, and a first heating unit.
  • the container is filled with liquid.
  • the container includes a mounting surface to which the heating element is attached directly or via a heat conductive member.
  • the heat dissipation member is attached to the container either directly or via a heat transfer member.
  • the first bubble generating portion is supported by the container and is in contact with the liquid.
  • the first heating unit heats the first bubble generation unit.
  • the first bubble generation unit generates the first bubble fixed to the first bubble generation unit in the liquid.
  • the first Marangoni convection is generated in the liquid around the first bubble.
  • the energy applied to the first heating unit to generate the first bubble and the first Marangoni convection is smaller than the energy required to drive the pump that circulates the coolant. Therefore, the power consumption of the cooling device can be reduced.
  • the size of the first heating section and the first bubble generating section required to generate the first bubble and the first Marangoni convection is smaller than the size of the pump. Therefore, the cooling device has a more compact size.
  • the first heating section and the first bubble generating section required to generate the first bubble and the first marangoni convection do not include the mechanically movable section. Therefore, the cooling device has higher reliability.
  • FIG. 1 It is a schematic sectional drawing of the cooling apparatus of Embodiment 1.
  • FIG. 1 It is a schematic partial enlarged sectional view in the region II shown in FIG. 1 of the cooling apparatus of Embodiment 1.
  • FIG. I s a diagram illustrating a change in the thermal resistance R 1 with respect to the distance L of the cooling apparatus of Example 1 of the first embodiment, a graph showing a simulation of a change result of the thermal resistance R 1 with respect to the distance L of the cooling device of the comparative example.
  • FIG. It is a schematic partial enlarged sectional view of the cooling device of the 2nd modification of Embodiment 1.
  • FIG. 1 It is schematic sectional drawing of the cooling apparatus of the 3rd modification of Embodiment 1.
  • FIG. 2 It is schematic sectional drawing of the cooling apparatus of the 4th modification of Embodiment 1.
  • FIG. It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 2.
  • FIG. It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 3.
  • FIG. It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 4.
  • FIG. It is a schematic partial enlarged sectional view of the cooling device of the modification of Embodiment 4.
  • FIG. It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 5.
  • FIG. It is a schematic partial enlarged sectional view of the cooling device of the modification of Embodiment 5.
  • FIG. It is a schematic partial enlarged sectional view of the cooling device of the modification of Embodiment 5.
  • FIG. It is a schematic partial enlarged sectional view of the cooling device
  • FIG. 3 is a schematic cross-sectional view of the cooling device of the sixth embodiment.
  • FIG. 3 is a schematic cross-sectional view of the cooling device according to the seventh embodiment.
  • FIG. 3 is a schematic cross-sectional view of the cooling device of the eighth embodiment. It is a schematic sectional drawing of the cooling apparatus of Embodiment 9.
  • FIG. The cooling device of Example 2 of Embodiment 9 is a diagram illustrating simulation results of the thermal resistance R 2 to the thickness t of the channel.
  • 9 is a schematic cross-sectional view of the cooling device of the first modification of the ninth embodiment. It is schematic sectional drawing of the cooling apparatus of the 2nd modification of Embodiment 9.
  • FIG. FIG. 3 is a schematic cross-sectional view of the cooling device of the tenth embodiment. It is the schematic sectional drawing of the cooling apparatus of the modification of Embodiment 10.
  • the cooling device 1 of the first embodiment will be described with reference to FIGS. 1 to 3.
  • the cooling device 1 cools the heating element 3.
  • the heating element 3 is, for example, an electronic device or an electronic element.
  • Electronic devices are, for example, power converters, power electronics devices for automobiles, high-speed communication devices for mobile phones or satellite communications, or laser oscillators.
  • the electronic element is, for example, a transistor such as an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the cooling device 1 mainly includes a container 10, a heat radiating member 18, a heating unit 20, and a bubble generating unit 23.
  • the container 10 is made of, for example, a high thermal conductive material having a thermal conductivity of 1.0 W / (m ⁇ K) or more.
  • the container 10 may be formed of a high thermal conductive material having a thermal conductivity of 5.0 W / (m ⁇ K) or more, and may be made of a high thermal conductive material having a thermal conductivity of 10.0 W / (m ⁇ K) or more. It may be formed or may be formed of a high thermal conductivity material having a thermal conductivity of 50.0 W / (m ⁇ K) or more, and may be formed of a high thermal conductivity having a thermal conductivity of 100.0 W / (m ⁇ K) or more. It may be formed of a material.
  • the container 10 is made of, for example, a metal such as copper, aluminum or stainless steel, or a resin.
  • the liquid 17 is sealed in the container 10.
  • the container 10 may be filled with the liquid 17.
  • the liquid 17 is a cooling liquid such as water, alcohol, ammonia, oil or a chlorofluorocarbon-based liquid.
  • the container 10 includes a first wall 11, a second wall 12 facing the first wall 11, and a third wall 13 connecting the first wall 11 and the second wall 12 to each other.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first wall 11, the second wall 12, and the third wall 13 define an internal cavity of the container 10.
  • the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 is, for example, less than 1000 ⁇ m.
  • the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 may be 800 ⁇ m or less, 500 ⁇ m or less, or 300 ⁇ m or less. ..
  • the bubble 25 formed in the bubble generating section 23 by heating the bubble generating section 23 is a minute bubble fixed to the bubble generating section 23 and is a liquid around the bubble generating section 25.
  • the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 can be reduced. Further, by reducing the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10, the thermal resistance between the heating element 3 and the liquid 17 and the liquid 17 can be obtained. The thermal resistance between the heat radiating member 18 and the heat radiating member 18 can be reduced.
  • the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 is, for example, 10 ⁇ m or more.
  • the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 may be, for example, 50 ⁇ m or more, or 100 ⁇ m or more. Therefore, it is possible to prevent the liquid 17 from leaking out of the container due to the walls (first wall 11, second wall 12, and third wall 13) constituting the container 10 being torn.
  • the container 10 includes a mounting surface 11c to which the heating element 3 is mounted.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the heating element 3 may be directly attached to the mounting surface 11c using, for example, an adhesive or a fixing member (not shown) such as a screw.
  • the heat radiating member 18 is attached to the container 10. In one example, the heat radiating member 18 is attached to the second outer wall surface 12a.
  • the heat radiating member 18 is, for example, a heat radiating fin or a heat sink.
  • a surface layer that promotes heat dissipation may be formed on the surface of the heat dissipation member 18.
  • the surface layer may be, for example, a coating film that promotes heat dissipation (for example, a black coating film), or may be a surface treatment layer such as an alumite treatment layer.
  • the heat radiating member 18 may be directly attached to the container 10 (for example, the second outer wall surface 12a) by using a fixing member (not shown) such as an adhesive or a screw.
  • the heating unit 20 is supported by the container 10.
  • the heating unit 20 is provided on the first outer wall surface 11a.
  • the heating unit 20 is, for example, a micro heater or a thin film heater.
  • the area of the heating unit 20 has an area of 1.0 mm 2 or less.
  • the area of the heating unit 20 may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less.
  • the area of the heating unit 20 is the area of the heating unit 20 in the plan view of the first outer wall surface 11a.
  • the area of the heating unit 20 is smaller than the area of the heating element 3, and the thickness of the heating unit 20 is smaller than the thickness of the heating element 3.
  • the area of the heating portion 20 is smaller than the area of the mounting surface 11c.
  • the amount of heat generated in the heating unit 20 can be ignored with respect to the amount of heat generated in the heating element 3.
  • the amount of heat generated by the heating unit 20 is, for example, less than one-twentieth of the amount of heat generated by the heating element 3.
  • the amount of heat generated by the heating unit 20 may be one-hundredth or less of the amount of heat generated by the heating element 3.
  • the amount of heat generated by the heating unit 20 is, for example, 50 mW or less.
  • the amount of heat generated by the heating unit 20 may be 30 mW or less.
  • the amount of heat generated by the heating element 3 is, for example, 1 W or more.
  • the amount of heat generated by the heating element 3 may be 100 W or more.
  • the bubble generation unit 23 is supported by the container 10.
  • the bubble generation unit 23 is provided on the first inner wall surface 11b.
  • the bubble generation unit 23 is in contact with the liquid 17.
  • the bubble generation unit 23 is, for example, a bubble generation film.
  • the bubble generation unit 23 is made of, for example, copper or aluminum.
  • the bubble generation unit 23 may be formed of a material different from that of the container 10, or may be formed of the same material as the container 10.
  • the area of the bubble generating section 23 (the area of the bubble fixing surface of the bubble generating section 23) has an area of 1.0 mm 2 or less.
  • the area of the bubble generating portion 23 may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less.
  • the area of the bubble generating portion 23 is the area of the bubble generating portion 23 in the plan view of the first inner wall surface 11b.
  • the area of the bubble generating section 23 (the bubble fixing surface of the bubble generating section 23) is smaller than the area of the heating element 3, and the thickness of the bubble generating section 23 is smaller than the thickness of the heating element 3.
  • the area of the bubble generating portion 23 is smaller than the area of the mounting surface 11c.
  • the bubble generation unit 23 is heated by the heating unit 20 to generate bubbles 25 in the liquid 17.
  • the bubble 25 is fixed to the bubble generation unit 23.
  • the bubble 25 is a minute bubble.
  • the diameter of the bubble 25 is, for example, 100 ⁇ m or less.
  • the diameter of the bubble 25 is, for example, 10 ⁇ m or more.
  • the Marangoni convection 26 is generated in the liquid 17 around the bubble 25.
  • the cooling action of the heating element 3 by the cooling device 1 of the present embodiment will be described.
  • seed bubbles (not shown) adhere to the surface of the bubble generating portion 23 in contact with the liquid 17.
  • the seed bubble is a bubble that is much smaller than the bubble 25.
  • Heat is generated in the heating unit 20. This heat is conducted to the bubble generating portion 23 through the container 10 (first wall 11).
  • the bubble generation unit 23 is heated by the heating unit 20.
  • the seed bubbles expand and the bubbles 25 adhering to the bubble generation unit 23 are generated in the liquid 17.
  • the temperature of the liquid 17 around the bubble 25 rises as it approaches the bubble generating section 23. As the distance from the bubble generator 23 increases, the temperature of the liquid 17 around the bubble 25 decreases. Generally, as the temperature of the liquid 17 rises, the surface tension of the liquid 17 decreases. As it approaches the bubble generator 23, the surface tension of the liquid 17 around the bubble 25 decreases. As the distance from the bubble generator 23 increases, the surface tension of the liquid 17 around the bubble 25 increases. Due to the distribution of the surface tension of the liquid 17 around the bubble 25, the marangoni convection 26 is generated in the liquid 17 around the bubble 25.
  • a flow 27 having a large flow velocity is generated in the liquid 17.
  • the speed of the flow 27 is, for example, 1.0 m / sec or more.
  • the flow 27 causes the liquid 17 to hit the second wall 12. Since the heat radiating member 18 is attached to the second wall 12, the liquid 17 that hits the second wall 12 is cooled by the second wall 12 and the heat radiating member 18.
  • the temperature rise of the liquid 17 distal to the bubble generating portion 23 is suppressed.
  • the temperature distribution of the liquid 17 around the bubbles 25 is maintained. In this way, the bubble 25 is fixed to the bubble generating section 23 without being separated from the bubble generating section 23.
  • the liquid 17 circulates in the container 10 at high speed by the flow 27.
  • a part of the liquid 17 that has been cooled by hitting the second wall 12 hits a portion of the container 10 in which the mounting surface 11c is formed (for example, the first wall 11 of the container 10).
  • the heat generated by the heating element 3 is transferred to the container 10 and the liquid 17.
  • the heat generated by the heating element 3 can be dissipated in a short time.
  • the liquid 17 that circulates in the container 10 at high speed functions as a heat spreader. Further, the temperature of the portion of the container 10 to which the heating element 3 is attached is higher than the temperature of the other portion of the container 10.
  • the flow 27 of the liquid 17 is disturbed in the portion of the container 10 to which the heating element 3 is attached, and is agitated in the container 10.
  • the heat transfer coefficient of the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 is large. In this way, the heat generated in the heating element 3 is cooled by the container 10 and the liquid 17.
  • the thermal resistance R 1 of the cooling device 1 of the first embodiment of the present embodiment is lower than the thermal resistance R 1 of the cooling device of the comparative example for any distance L.
  • the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has the ability to spread the heat generated by the heating element 3. This is because it is high and has a large heat transfer coefficient.
  • the container 10 is made of copper and the liquid 17 is water.
  • the cooling device of the comparative example has the same configuration as the cooling device 1 of the present embodiment, but the liquid 17 is replaced with a copper plate, and this copper plate is integrated with the container 10 and is heated. The unit 20 and the bubble generation unit 23 have been removed.
  • the thermal resistance R 1 is on the second outer wall surface 12a to which the heat dissipation member 18 is mounted and the intersection 11p between the first outer wall surface 11a including the mounting surface 11c and the center line 3p of the heating element 3 is mounted. Thermal resistance between any point 12q.
  • the distance L means the distance from the intersection 12p of the center line 3p of the heating element 3 and the second outer wall surface 12a to an arbitrary point 12q on the second outer wall surface 12a.
  • the center line 3p of the heating element 3 is a line that passes through the center of the heating element 3 in the plan view of the first outer wall surface 11a and is perpendicular to the first outer wall surface 11a.
  • the thermal resistance of the cooling device of the comparative example greatly increases.
  • the thermal resistance of the cooling device 1 of the first embodiment of the present embodiment hardly increases. The reason is that in the cooling device 1 of the present embodiment, the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has a high ability to spread the heat generated by the heating element 3 and is large. This is because it has a heat transfer coefficient.
  • the heating unit 20 is, for example, a light absorbing film such as a gold nano-thin film.
  • the gold nanothin film can be formed, for example, by a dynamic orthorhombic deposition method.
  • the heating unit 20 absorbs light (for example, laser light) emitted from a light source 21 such as a semiconductor laser, and heat is generated in the heating unit 20. This heat is conducted to the bubble generating portion 23 through the container 10 (first wall 11). In this way, the heating unit 20 heats the bubble generation unit 23.
  • the bubble fixing surface of the bubble generation unit 23 is flush with the inner wall surface of the container 10 (for example, the first inner wall surface 11b). There may be.
  • the heating element 3 may be attached to the mounting surface 11c of the container 10 via the heat conductive member 30 as in the cooling device 1d of the third modification of the present embodiment shown in FIG.
  • the heat conductive member 30 may be a heat pipe or a heat transfer plate such as a copper plate, an aluminum plate or a graphite plate, or may be a heat conductive adhesive such as heat conductive grease.
  • the heat transfer member 30e may be a heat pipe, a heat transfer plate such as a copper plate, an aluminum plate or a graphite plate, or a heat transfer adhesive such as a heat transfer grease.
  • the cooling devices 1, 1b, 1c, 1d, and 1e of the present embodiment include a container 10, a heat radiating member 18, a first bubble generating section (bubble generating section 23), and a first heating section (heating section 20).
  • the liquid 17 is sealed in the container 10.
  • the container 10 includes a mounting surface 11c to which the heating element 3 is mounted directly or via a heat conductive member 30.
  • the heat radiating member 18 is attached directly to the container 10 or via the heat transfer member 30e.
  • the first bubble generating portion is supported by the container 10 and is in contact with the liquid 17.
  • the first heating unit heats the first bubble generation unit.
  • the first bubble generation unit generates first bubbles (bubbles 25) fixed to the first bubble generation unit in the liquid 17.
  • the first Marangoni convection (Marangoni convection 26) is generated in the liquid 17 around the first bubble.
  • the energy applied to the first heating unit (heating unit 20) to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) is required to drive the pump that circulates the coolant. Energy is much smaller than the energy. Therefore, the power consumption of the cooling devices 1, 1b, 1c, 1d, 1e can be reduced.
  • the size of the first heating unit (heating unit 20) and the first bubble generation unit (bubble generation unit 23) required to generate the first bubble and the first marangoni convection is much smaller than the size of the pump. Therefore, the cooling devices 1, 1b, 1c, 1d, 1e have a more compact size.
  • the first heating section and the first bubble generating section required to generate the first bubble and the first marangoni convection do not include the mechanically movable section. Therefore, the cooling devices 1, 1b, 1c, 1d, 1e have higher reliability.
  • the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the first bubble generation unit (bubble generation unit 23) is provided on the first inner wall surface 11b.
  • the first heating unit (heating unit 20) is provided on the first outer wall surface 11a.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e.
  • the cooling devices 1, 1b, 1c, 1d, 1e have a more compact size and higher reliability, and the power consumption of the cooling devices 1, 1b, 1c, 1d, 1e can be reduced.
  • Embodiment 2 The cooling device 1f of the second embodiment will be described with reference to FIG.
  • the cooling device 1f of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • a recess 24 is formed on the bubble fixing surface of the bubble generating portion 23.
  • the recess 24 may be a V-groove.
  • the maximum size of the recess 24 is smaller than the diameter of the bubble 25.
  • the maximum size of the recess 24 is, for example, 50 ⁇ m or less.
  • the maximum size of the recess 24 may be 30 ⁇ m or less, or 20 ⁇ m or less.
  • the maximum size of the recess 24 is the size of the V-groove on the bubble fixing surface of the bubble generating portion 23.
  • the surface of the support member (first wall 11) of the container 10 that supports the bubble generation portion 23 is placed on the bubble fixing surface of the bubble generation portion 23 (for example, the first one).
  • a rough surface coarser than the inner wall surface 11b) may be formed.
  • the bubble generation unit 23 is a porous body, and the surface of the porous body is rougher than the surface (for example, the first inner wall surface 11b) of the support member (first wall 11) of the container 10 that supports the bubble generation unit 23. It may be a rough surface.
  • the effect of the cooling device 1f of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
  • the bubble fixing surface of the first bubble generating section (bubble generating section 23) has a rough surface or a recess 24 rougher than the surface of the support member of the container 10 that supports the first bubble generating section. It is formed.
  • the liquid 17 is injected into the container 10, seed bubbles (not shown) adhere to the bubble fixing surface of the first bubble generation section (bubble generation section 23) more reliably.
  • the first bubble generation section is heated by the first heating section (heating section 20), the seed bubbles expand and the first bubble (bubble 25) is more reliably generated in the first bubble generation section.
  • the first Marangoni convection (Marangoni convection 26) is more reliably generated in the liquid 17 around the first bubble. Due to the first Marangoni convection, the flow 27 of the liquid 17 is more reliably generated.
  • the cooling device 1f can more reliably cool the heating element 3.
  • Embodiment 3 The cooling device 1g of the third embodiment will be described with reference to FIG.
  • the cooling device 1g of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the bubble generating portion 23 overlaps the heating element 3 in the first plan view of the first outer wall surface 11a.
  • the heating unit 20 overlaps the heating element 3.
  • the bubble generating portion 23 is surrounded by the outer shape of the heating element 3.
  • the heating unit 20 is surrounded by the outer shape of the heating element 3.
  • the effect of the cooling device 1g of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
  • the first bubble generating section (bubble generating section 23) overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generation unit is heated by the heating element 3 in addition to the first heating unit (heating unit 20).
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling device 1g can be further reduced.
  • Embodiment 4 The cooling device 1h of the fourth embodiment will be described with reference to FIG.
  • the cooling device 1h of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the first wall 11 includes the first wall base member 11d and the high thermal conductive wall portion 11e.
  • the high thermal conductivity wall portion 11e has a higher thermal conductivity than the first wall base member 11d.
  • the high thermal conductive wall portion 11e is made of copper.
  • the high heat conduction wall portion 11e is provided between the bubble generation section 23 and the heating section 20.
  • the high thermal conduction wall portion 11e may come into contact with the bubble generation portion 23 and the heating portion 20.
  • the bubble generation unit 23 may be provided on the high heat conduction wall portion 11e.
  • the heating unit 20 may be provided on the high heat conduction wall portion 11e.
  • the first wall 11 further includes a low thermal conductivity wall portion 11f having a lower thermal conductivity than the first wall base member 11d.
  • the first wall base member 11d is made of aluminum
  • the high thermal conductive wall portion 11e is made of copper
  • the low thermal conductive portion is made of stainless steel, titanium or resin.
  • the low thermal conductive wall portion 11f is provided between the first wall base member 11d and the high thermal conductive wall portion 11e.
  • the bubble generation unit 23 may be separated from the low heat conduction wall portion 11f.
  • the heating unit 20 may be separated from the low heat conduction wall portion 11f.
  • the effects of the cooling devices 1h and 1i of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
  • the first wall 11 includes a first wall base member 11d and a high thermal conductivity wall portion 11e having a higher thermal conductivity than the first wall base member 11d.
  • the high heat conduction wall portion 11e is provided between the first bubble generation section (bubble generation section 23) and the first heating section (heating section 20). Therefore, the heat generated in the first heating section is transferred to the first bubble generation section through the high heat conduction wall portion 11e.
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling devices 1h and 1i can be further reduced.
  • the first wall 11 further includes a low thermal conductivity wall portion 11f having a thermal conductivity lower than that of the first wall base member 11d.
  • the low thermal conductive wall portion 11f is provided between the first wall base member 11d and the high thermal conductive wall portion 11e. Therefore, the low thermal conductive wall portion 11f reduces the amount of heat dissipated from the first heating portion (heating portion 20) to the first wall base member 11d.
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling device 1i can be further reduced.
  • Embodiment 5 The cooling device 1j of the fifth embodiment will be described with reference to FIG.
  • the cooling device 1j of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the heating unit 20 is provided on the first inner wall surface 11b.
  • the bubble generation unit 23 is provided on the heating unit 20.
  • the cooling device 1k of the modified example of the present embodiment will be described. Similar to the cooling device 1g of the third embodiment, in the cooling device 1k, the bubble generating unit 23 overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. In the first plan view of the first outer wall surface 11a, the heating unit 20 overlaps the heating element 3. Specifically, in the first plan view of the first outer wall surface 11a, the bubble generating portion 23 is surrounded by the outer shape of the heating element 3. In the first plan view of the first outer wall surface 11a, the heating unit 20 is surrounded by the outer shape of the heating element 3.
  • the effects of the cooling devices 1j and 1k of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
  • the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the first heating unit heating unit 20
  • the first bubble generation unit bubble generation unit 23
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the heat generated in the first heating unit is transferred to the first bubble generation unit (bubble generation unit 23) without passing through the first wall 11.
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling devices 1j and 1k can be further reduced.
  • the first bubble generating section (bubble generating section 23) overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generation unit is heated by the heating element 3 in addition to the first heating unit (heating unit 20).
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling device 1k can be further reduced.
  • Embodiment 6 The cooling device 1 m according to the sixth embodiment will be described with reference to FIG.
  • the cooling device 1m of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the container 10 further includes the heat conductive fins 13b.
  • the heat conductive fin 13b is formed of, for example, a high heat conductive material having a thermal conductivity of 1.0 W / (m ⁇ K) or more.
  • the heat conductive fin 13b may be formed of a high heat conductive material having a heat conductivity of 5.0 W / (m ⁇ K) or more, and has a high heat conductivity of 10.0 W / (m ⁇ K) or more.
  • the heat conductive fins 13b are made of a metal such as copper or aluminum.
  • the heat conductive fin 13b may be formed of the same material as the container 10, or may be formed of a material different from that of the container 10.
  • the heat conductive fin 13b may have the shape of a plate or the shape of a rod.
  • the heat conductive fin 13b is provided on the first inner wall surface 11b.
  • the heat conductive fin 13b is connected to the first wall 11 (first inner wall surface 11b).
  • the heat conductive fin 13b may be separated from the second wall 12 (second inner wall surface 12b).
  • the heat conductive fins 13b may overlap with the heating element 3.
  • the heat conductive fin 13b may be surrounded by the outer shape of the heating element 3.
  • the heating unit 20 is provided on the heat conductive fin 13b.
  • the bubble generation unit 23 is provided on the heating unit 20.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the effect of the cooling device 1m of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
  • the container 10 includes a first wall 11, a second wall 12 facing the first wall 11, and a heat conductive fin 13b.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the heat conductive fin 13b is provided on the first inner wall surface 11b.
  • the first heating unit (heating unit 20) is provided on the heat conductive fin 13b.
  • the first bubble generation unit (bubble generation unit 23) is provided on the first heating unit.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the cooling device 1 m has a more compact size and higher reliability, and the power consumption of the cooling device 1 m can be reduced.
  • the heat conductive fins 13b overlap the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generating section (bubble generating section 23) is heated by the heating element 3 in addition to the first heating section (heating section 20). The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1 m can be further reduced.
  • Embodiment 7 The cooling device 1n of the seventh embodiment will be described with reference to FIG.
  • the cooling device 1n of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the bubble generation unit 23 is provided on the second inner wall surface 12b.
  • the heating unit 20 is provided on the second outer wall surface 12a.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the cooling device 1n further includes a low heat conductive layer 28.
  • the low heat conductive layer 28 is provided between the heating unit 20 and the heat radiating member 18.
  • the low thermal conductivity layer 28 has a lower thermal conductivity than the second wall 12 and the heat dissipation member 18.
  • the low heat conductive layer 28 is, for example, an air layer or a heat insulating layer.
  • the low heat conductive layer 28 reduces the amount of heat dissipated from the heating unit 20 to the heat radiating member 18.
  • the heating portion 20 overlaps the heat radiating member 18.
  • the bubble generating portion 23 overlaps the heat radiating member 18.
  • the bubble generating portion 23 is surrounded by the outer shape of the heat radiating member 18.
  • the heating unit 20 is surrounded by the outer shape of the heat radiating member 18.
  • the effect of the cooling device 1n of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
  • the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the first bubble generation unit (bubble generation unit 23) is provided on the second inner wall surface 12b.
  • the first heating unit (heating unit 20) is provided on the second outer wall surface 12a.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the first bubble generating section (bubble generating section 23) is provided on the second inner wall surface 12b of the second wall 12 to which the heat radiating member 18 is attached directly or via the heat transfer member 30e (see FIG. 7). ing.
  • the liquid 17 proximal to the first bubble generator and around the first bubble (bubble 25) is further cooled by the second wall 12 and the heat dissipation member 18. Increased difference between the temperature of the liquid 17 proximal to the first bubble generator and around the first bubble and the temperature of the liquid 17 distal to the first bubble generator and around the first bubble do.
  • a stronger first Marangoni convection (Marangoni convection 26) is generated in the liquid 17.
  • the cooling device 1n has a higher cooling capacity and can further cool the heat generated by the heating element 3.
  • the cooling device 1n of the present embodiment is provided between the first heating unit (heating unit 20) and the heat radiating member 18, and has a lower thermal conductivity than the second wall 12 and the heat radiating member 18.
  • a conductive layer 28 is further provided. In the second plan view of the second outer wall surface 12a, the first heating portion overlaps the heat radiating member 18. In the low thermal conductive layer 28, the first bubble generating section (bubble generating section 23) is heated not only by the first heating section but also by the heating element 3.
  • the low heat conductive layer 28 reduces the amount of heat dissipated from the first heating unit (heating unit 20) to the heat radiating member 18.
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling device 1n can be further reduced.
  • Embodiment 8 The cooling device 1p of the eighth embodiment will be described with reference to FIG.
  • the cooling device 1p of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the heating unit 20 is provided on the second inner wall surface 12b.
  • the bubble generation unit 23 is provided on the heating unit 20.
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the second wall 12 includes the second wall base member 12d and the low heat conductive wall portion 12f.
  • the low thermal conductivity wall portion 12f has a lower thermal conductivity than the second wall base member 12d.
  • the second wall base member 12d is made of aluminum
  • the low heat conductive wall portion 12f is made of stainless steel, titanium or resin.
  • the low heat conductive wall portion 12f is provided between the heating portion 20 and the heat radiating member 18.
  • the low heat conductive wall portion 12f may come into contact with the heating portion 20 and the heat radiating member 18.
  • the heating unit 20 may be provided on the low heat conduction wall portion 12f. In the second plan view of the second outer wall surface 12a, the heating portion 20 overlaps the heat radiating member 18.
  • the effect of the cooling device 1p of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
  • the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11.
  • the first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b.
  • the second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b.
  • the first outer wall surface 11a includes a mounting surface 11c.
  • the first heating unit heating unit 20
  • the first bubble generation unit bubble generation unit 23
  • the heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
  • the cooling device 1p has a higher cooling capacity and can further cool the heat generated by the heating element 3.
  • the second wall 12 includes a second wall base member 12d and a low thermal conductivity wall portion 12f having a thermal conductivity lower than that of the second wall base member 12d.
  • the low heat conduction wall portion 12f is provided between the first heating portion (heating portion 20) and the heat radiating member 18.
  • the first heating portion overlaps the heat radiating member 18.
  • the low heat conduction wall portion 12f reduces the amount of heat dissipated from the first heating portion (heating portion 20) to the heat radiating member 18.
  • the energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced.
  • the power consumption of the cooling device 1p can be further reduced.
  • Embodiment 9 The cooling device 1q of the ninth embodiment will be described with reference to FIGS. 17 and 18.
  • the cooling device 1q of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the cooling device 1q further includes a temperature sensor 33 and a controller 35.
  • the temperature sensor 33 is attached to the heating element 3 and directly measures the first temperature of the heating element 3.
  • the temperature sensor 33 is, for example, a thermistor.
  • the temperature sensor 33 may be a radiation thermometer located away from the heating element 3.
  • the first temperature of the heating element 3 may be directly measured by using a radiation thermometer.
  • the temperature sensor 33 is electrically connected to the controller 35.
  • the temperature sensor 33 outputs a signal corresponding to the first temperature of the heating element 3 to the controller 35.
  • the controller 35 is, for example, a semiconductor processor.
  • the controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
  • the cooling device 1q includes a current source 34, and the heating unit 20 is a microheater.
  • the controller 35 is electrically connected to the current source 34.
  • the current source 34 is electrically connected to the heating unit 20.
  • the controller 35 controls the current supplied from the current source 34 to the heating unit 20 based on the output signal of the temperature sensor 33. In this way, the controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 supplies a current from the current source 34 to the heating unit 20.
  • the second temperature of the heating unit 20 rises, and the bubble generation unit 23 is heated. Bubbles 25 are generated in the bubble generation unit 23.
  • Marangoni convection 26 is generated in the liquid 17 around the bubbles 25.
  • the Marangoni convection 26 creates a flow 27 of the liquid 17.
  • the heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
  • the intensity of the output signal from the temperature sensor 33 becomes equal to or less than the threshold value.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the supply of current from the current source 34 to the heating unit 20.
  • the second temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases. Bubbles 25 disappear.
  • the Marangoni convection 26 disappears and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled. In this way, the cooling device 1q can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • R 2 is smaller than the thermal resistance R 2 per unit area when there are no bubbles 25 on the bubble generating portion 23. Therefore, the cooling capacity of the cooling device 1q can be adjusted by adjusting the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
  • the thermal resistance R 2 is per unit area of the cooling device 1q between the first inner wall surface 11b of the first wall 11 including the mounting surface 11c and the second inner wall surface 12b of the second wall 12 to which the heat radiating member 18 is mounted. Means the thermal resistance of.
  • the thermal resistance R 2 per unit area hardly increases even if the thickness t of the flow path increases.
  • the thermal resistance R 2 per unit area increases significantly. The reason is as follows.
  • the marangoni convection 26 is generated in the liquid 17 around the bubble 25. Due to the Marangoni convection 26, the liquid 17 circulates in the container 10 at high speed and is agitated in the container 10.
  • the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has a high ability to spread the heat generated by the heating element 3 and has a large heat transfer coefficient. Therefore, when the bubble 25 is on the bubble generating portion 23, the thermal resistance R 2 per unit area hardly increases even if the thickness t of the flow path increases.
  • the thickness t of the flow path is the distance between the first inner wall surface 11b and the second inner wall surface 12b. As shown in FIG. 18, the larger the thickness t of the flow path, the wider the cooling capacity of the cooling device 1q can be controlled.
  • the temperature sensor 33 may indirectly measure the first temperature of the heating element 3 as in the cooling device 1r of the first modification of the present embodiment shown in FIG.
  • the temperature sensor 33 is attached to the heat radiating member 18 and may measure the temperature of the heat radiating member 18. The higher the first temperature of the heating element 3, the higher the temperature of the heat radiating member 18. By measuring the temperature of the heat radiating member 18 by the temperature sensor 33, the temperature sensor 33 can indirectly measure the first temperature of the heating element 3.
  • the temperature sensor 33 is attached to the container 10 and may measure the temperature of the container 10. The higher the first temperature of the heating element 3, the higher the temperature of the container 10. By measuring the temperature of the container 10 by the temperature sensor 33, the temperature sensor 33 can indirectly measure the first temperature of the heating element 3.
  • the heating unit 20 is a semiconductor laser as in the cooling device 1b of the first modification of the first embodiment shown in FIG. It may be a light absorption film irradiated with light from such a light source 21.
  • the controller 35 is electrically connected to the light source 21.
  • the controller 35 controls the power of the light output from the light source 21 based on the output signal of the temperature sensor 33. In this way, the controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 increases the power of the light output from the light source 21.
  • the temperature of the heating unit 20 irradiated with the light from the light source 21 rises, and the bubble generation unit 23 is heated. Bubbles 25 are generated in the bubble generation unit 23.
  • Marangoni convection 26 is generated in the liquid 17 around the bubbles 25.
  • the Marangoni convection 26 creates a flow 27 of the liquid 17.
  • the heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the output of light from the light source 21.
  • the temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases. Bubbles 25 disappear.
  • the Marangoni convection 26 disappears and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled. In this way, the cooling device 1s can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • the effects of the cooling devices 1q, 1r, 1s of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
  • the temperature sensor 33 that directly or indirectly measures the first temperature of the heating element 3 and the first heating unit (heating) based on the output signal of the temperature sensor 33.
  • a controller 35 for adjusting the second temperature of the unit 20) is further provided. Therefore, the cooling devices 1q, 1r, 1s can appropriately cool the heating element 3 according to the amount of heat generated by the heating element 3 or the ambient temperature of the heating element 3.
  • the cooling devices 1q, 1r, 1s can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • Embodiment 10 The cooling device 1t of the tenth embodiment will be described with reference to FIG. 21.
  • the cooling device 1t of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
  • the cooling device 1t of the present embodiment further includes a heating unit 20t and a bubble generation unit 23t.
  • the heating unit 20t is configured in the same manner as the heating unit 20.
  • the heating unit 20t is supported by the container 10.
  • the heating unit 20t is provided on the second outer wall surface 12a.
  • the heating unit 20t is, for example, a micro heater or a thin film heater.
  • the heating unit 20t is electrically connected to the current source 34. By supplying a current from the current source 34 to the heating unit 20t, heat is generated in the heating unit 20t. This heat is conducted to the bubble generating portion 23t through the container 10 (first wall 11). In this way, the heating unit 20t heats the bubble generation unit 23t.
  • the area of the heating unit 20t has an area of 1.0 mm 2 or less.
  • the area of the heating portion 20t may be in 0.5 mm 2 or less, may also be 0.2 mm 2 or less, and may be 0.2 mm 2 or less.
  • the area of the heating portion 20t is the area of the heating portion 20t in the plan view of the first outer wall surface 11a.
  • the area of the heating unit 20t is smaller than the area of the heating element 3, and the thickness of the heating unit 20t is smaller than the thickness of the heating element 3.
  • the area of the heating portion 20t is smaller than the area of the mounting surface 11c.
  • the amount of heat generated by the heating unit 20t can be ignored with respect to the amount of heat generated by the heating element 3.
  • the amount of heat generated by the heating unit 20t is, for example, less than one-twentieth of the amount of heat generated by the heating element 3.
  • the amount of heat generated by the heating unit 20t may be one-hundredth or less of the amount of heat generated by the heating element 3.
  • the amount of heat generated by the heating unit 20t is, for example, 50 mW or less.
  • the amount of heat generated by the heating unit 20t may be 30 mW or less.
  • the amount of heat generated by the heating element 3 is, for example, 1 W or more.
  • the amount of heat generated by the heating element 3 may be 100 W or more.
  • the heating unit 20t is separated from the heating unit 20.
  • the distance between the heating unit 20 and the heating unit 20t is, for example, 10 mm or less.
  • the distance between the heating unit 20 and the heating unit 20t may be 5 mm or less, or may be 3 mm or less.
  • the bubble generation unit 23t is configured in the same manner as the bubble generation unit 23.
  • the bubble generation unit 23t is supported by the container 10.
  • the bubble generating portion 23t is provided on the first inner wall surface 11b.
  • the bubble generation unit 23t is in contact with the liquid 17.
  • the bubble generation unit 23t is, for example, a bubble generation film.
  • the bubble generating portion 23t is made of, for example, copper or aluminum.
  • the bubble generating portion 23t may be formed of a material different from that of the container 10, or may be formed of the same material as the container 10.
  • the area of the bubble generating portion 23t (the area of the bubble fixing surface of the bubble generating portion 23t) has an area of 1.0 mm 2 or less.
  • the area of the bubble generating portion 23t may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less.
  • the area of the bubble generating portion 23t is the area of the bubble generating portion 23t in the plan view of the first inner wall surface 11b.
  • the area of the bubble generating section 23t (the bubble fixing surface of the bubble generating section 23t) is smaller than the area of the heating element 3, and the thickness of the bubble generating section 23t is smaller than the thickness of the heating element 3.
  • the area of the bubble generating portion 23t is smaller than the area of the mounting surface 11c.
  • the bubble generation unit 23t is heated by the heating unit 20t to generate bubbles 25t in the liquid 17.
  • the bubble 25t is fixed to the bubble generation unit 23t.
  • the bubble 25t is a minute bubble.
  • the diameter of the bubble 25t is, for example, 100 ⁇ m or less.
  • the diameter of the bubble 25t is, for example, 10 ⁇ m or more.
  • Marangoni convection 26t is generated in the liquid 17 around the bubble 25t.
  • the bubble generation unit 23t is separated from the bubble generation unit 23.
  • the distance between the bubble generating section 23 and the bubble generating section 23t is, for example, 10 mm or less.
  • the distance between the bubble generating section 23 and the bubble generating section 23t may be 5 mm or less, or may be 3 mm or less. Therefore, the bubble generation unit 23 and the bubble generation unit 23t can cooperate to generate the flow 27 of the liquid 17 and agitate the liquid 17.
  • the cooling device 1t of the present embodiment further includes a temperature sensor 33 and a controller 35, similarly to the cooling device 1q of the ninth embodiment.
  • the temperature sensor 33 directly measures the first temperature of the heating element 3 in the same manner as the temperature sensor 33 of the ninth embodiment.
  • the temperature sensor 33 may indirectly measure the first temperature of the heating element 3 in the same manner as the temperature sensor 33 of the first modification of the ninth embodiment.
  • the current source 34 is electrically connected to the heating unit 20 and the heating unit 20t.
  • the controller 35 adjusts the second temperature of the heating unit 20 and the third temperature of the heating unit 20t based on the output signal of the temperature sensor 33.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 supplies a current from the current source 34 to the heating unit 20 and the heating unit 20t.
  • the second temperature of the heating unit 20 rises, and the bubble generation unit 23 is heated.
  • the third temperature of the heating unit 20t rises, and the bubble generation unit 23t is heated.
  • Bubbles 25 are generated in the bubble generation unit 23, and bubbles 25t are generated in the bubble generation unit 23t.
  • Marangoni convection 26 is generated in the liquid 17 around the bubbles 25.
  • Marangoni convection 26t is generated in the liquid 17 around the bubble 25t.
  • the Marangoni convection 26 and the Marangoni convection 26t give rise to the flow 27 of the liquid 17.
  • the heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
  • the intensity of the output signal from the temperature sensor 33 becomes equal to or less than the threshold value.
  • the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the supply of current from the current source 34 to the heating unit 20 and the heating unit 20t.
  • the second temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases.
  • the third temperature of the heating unit 20t decreases, and the temperature of the bubble generation unit 23t also decreases.
  • the bubble 25 and the bubble 25t disappear.
  • the Marangoni convection 26 and the Marangoni convection 26t disappear, and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled.
  • the cooling device 1t can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • the cooling device 1u of the modified example of the present embodiment will be described.
  • the second temperature of the heating unit 20 and the third temperature of the heating unit 20t can be adjusted independently of each other.
  • the cooling device 1u includes a current source 34t in addition to the current source 34.
  • the controller 35 is electrically connected to the current source 34 and the current source 34t.
  • the current source 34 is electrically connected to the heating unit 20.
  • the current source 34t is electrically connected to the heating unit 20t.
  • the controller 35 controls the current supplied from the current source 34 to the heating unit 20 and the current supplied from the current source 34t to the heating unit 20t based on the output signal of the temperature sensor 33. In this way, the controller 35 can adjust the second temperature of the heating unit 20 and the third temperature of the heating unit 20t independently of each other based on the output signal of the temperature sensor 33.
  • the generation of the bubble 25 and the generation of the bubble 25t can be controlled independently.
  • the Marangoni convection 26 and the Marangoni convection 26t can be controlled independently.
  • a variety of flows 27 can be created in the liquid 17. Depending on the type of heating element 3 or the ambient temperature of the heating element 3, the heating element 3 can be cooled more efficiently or more appropriately.
  • the controller 35 may alternately supply an electric current to the heating unit 20 and the heating unit 20t to alternately generate the bubbles 25 and the bubbles 25t. Since the Marangoni convection 26 and the Marangoni convection 26t are alternately generated, the liquid 17 is agitated more violently. The heat transfer capacity of the liquid 17 is increased. The heat generated by the heating element 3 is efficiently cooled by the container 10 (for example, the first wall 11 of the container 10) and the liquid 17.
  • the number of bubble generating units 23 and 23t is two, and the number of heating units 20 and 20t is two, but the number of bubble generating units 23 is two.
  • 23t may be three or more, and the heating portions 20, 20t may be three or more.
  • the effects of the cooling devices 1t and 1u of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
  • the cooling devices 1t and 1u of the present embodiment further include a second bubble generating section (bubble generating section 23t) and a second heating section (heating section 20t).
  • the second bubble generating portion is supported by the container 10 and is in contact with the liquid 17.
  • the second heating unit heats the second bubble generation unit.
  • the second bubble generation unit generates a second bubble (bubble 25t) fixed to the second bubble generation unit in the liquid 17.
  • a second Marangoni convection (Marangoni convection 26t) is generated in the liquid 17 around the second bubble. Therefore, the flow 27 of the liquid 17 can be made faster.
  • the liquid 17 can be agitated more violently.
  • the cooling devices 1t and 1u can cool the heating element 3 more efficiently.
  • the temperature sensor 33 that directly or indirectly measures the first temperature of the heating element 3 and the first heating unit (heating unit 20) based on the output signal of the temperature sensor 33.
  • the cooling devices 1t and 1u can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • the second temperature of the first heating unit (heating unit 20) and the third temperature of the second heating unit (heating unit 20t) can be adjusted independently of each other. Therefore, various flows 27 can be created in the liquid 17.
  • the cooling device 1u can cool the heating element 3 more efficiently or more appropriately depending on the type of the heating element 3 or the ambient temperature of the heating element 3.
  • the cooling device 1u can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
  • the first to tenth embodiments disclosed this time and their variations are exemplary in all respects and not restrictive. As long as there is no contradiction, at least two of the first to tenth embodiments disclosed this time and variations thereof may be combined.
  • the concave portion 24 or the rough surface is formed on the bubble fixing surface of the first bubble generating portion. May be good.

Abstract

A cooling device (1) is provided with a container (10), a heat dissipation member (18), a bubble generation unit (23), and a heating unit (20). A liquid (17) is sealed in the container (10). The container (10) includes a mounting surface (11c) on which a heating body (3) is mounted. The heat dissipation member (18) is mounted on the container (10). The bubble generation unit (23) is supported by the container (10) and is in contact with the liquid (17). The heating unit (20) heats the bubble generation unit (23). The bubble generation unit (23) generates, in the liquid (17), a bubble fixed to the bubble generation unit (23). Marangoni convection (26) is produced in the liquid (17) around the bubble (25).

Description

冷却装置Cooling system
 本開示は、冷却装置に関する。 This disclosure relates to a cooling device.
 特開2019-103269号公報(特許文献1)は、電力変換装置を冷却する放熱部を開示している。電力変換装置は、受熱板と、受熱板に指示されている複数の半導体素子とを含む。放熱部は、受熱板に設けられている配管と、ポンプと、熱交換器とを含む。ポンプは、配管に接続されており、配管内に冷却液を循環させる。熱交換器は、配管に接続されており、受熱板によって暖まった冷却液を冷やす。 Japanese Unexamined Patent Publication No. 2019-103269 (Patent Document 1) discloses a heat radiating unit that cools a power conversion device. The power conversion device includes a heat receiving plate and a plurality of semiconductor elements designated by the heat receiving plate. The heat radiating unit includes a pipe provided on the heat receiving plate, a pump, and a heat exchanger. The pump is connected to the pipe and circulates the coolant in the pipe. The heat exchanger is connected to the piping and cools the coolant warmed by the heat receiving plate.
特開2019-103269号公報Japanese Unexamined Patent Publication No. 2019-103269
 特許文献1の放熱部では、配管内に冷却液を循環させるために、ポンプが用いられている。そのため、特許文献1の放熱部のサイズは大きく、また、特許文献1の放熱部の消費電力は大きい。さらに、ポンプは、機械的可動部を含むため、特許文献1の放熱部の信頼性は低い。本開示は、上記の課題を鑑みてなされたものであり、その目的は、よりコンパクトなサイズとより高い信頼性とを有するとともに、消費電力が低減された冷却装置を提供することである。 In the heat dissipation part of Patent Document 1, a pump is used to circulate the coolant in the pipe. Therefore, the size of the heat radiating portion of Patent Document 1 is large, and the power consumption of the heat radiating portion of Patent Document 1 is large. Further, since the pump includes a mechanically movable part, the reliability of the heat radiating part of Patent Document 1 is low. The present disclosure has been made in view of the above problems, and an object thereof is to provide a cooling device having a more compact size, higher reliability, and reduced power consumption.
 本開示の冷却装置は、容器と、放熱部材と、第1気泡生成部と、第1加熱部とを備える。容器には、液体が封入されている。容器は、発熱体が直接または熱伝導部材を介して取り付けられる取り付け面を含む。放熱部材は、容器に直接または熱伝達部材を介して取り付けられている。第1気泡生成部は、容器に支持されており、かつ、液体に接触している。第1加熱部は、第1気泡生成部を加熱する。第1気泡生成部は、第1気泡生成部に固定されている第1気泡を液体中に生成する。第1気泡の周囲の液体に第1マランゴニ対流が生成される。 The cooling device of the present disclosure includes a container, a heat radiating member, a first bubble generating unit, and a first heating unit. The container is filled with liquid. The container includes a mounting surface to which the heating element is attached directly or via a heat conductive member. The heat dissipation member is attached to the container either directly or via a heat transfer member. The first bubble generating portion is supported by the container and is in contact with the liquid. The first heating unit heats the first bubble generation unit. The first bubble generation unit generates the first bubble fixed to the first bubble generation unit in the liquid. The first Marangoni convection is generated in the liquid around the first bubble.
 第1気泡と第1マランゴニ対流とを生成するために第1加熱部に印加するエネルギーは、冷却液を循環させるポンプを駆動するために必要なエネルギーより小さい。そのため、冷却装置の消費電力を低減させることができる。第1気泡と第1マランゴニ対流とを生成するために必要な第1加熱部及び第1気泡生成部のサイズは、ポンプのサイズより小さい。そのため、冷却装置は、よりコンパクトなサイズを有する。第1気泡と第1マランゴニ対流とを生成するために必要な第1加熱部及び第1気泡生成部は、機械的可動部を含まない。そのため、冷却装置は、より高い信頼性を有する。 The energy applied to the first heating unit to generate the first bubble and the first Marangoni convection is smaller than the energy required to drive the pump that circulates the coolant. Therefore, the power consumption of the cooling device can be reduced. The size of the first heating section and the first bubble generating section required to generate the first bubble and the first Marangoni convection is smaller than the size of the pump. Therefore, the cooling device has a more compact size. The first heating section and the first bubble generating section required to generate the first bubble and the first marangoni convection do not include the mechanically movable section. Therefore, the cooling device has higher reliability.
実施の形態1の冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling apparatus of Embodiment 1. FIG. 実施の形態1の冷却装置の、図1に示される領域IIにおける概略部分拡大断面図である。It is a schematic partial enlarged sectional view in the region II shown in FIG. 1 of the cooling apparatus of Embodiment 1. FIG. 実施の形態1の実施例1の冷却装置の距離Lに対する熱抵抗R1の変化と、比較例の冷却装置の距離Lに対する熱抵抗R1の変化のシミュレーション結果を表すグラフを示す図である。Is a diagram illustrating a change in the thermal resistance R 1 with respect to the distance L of the cooling apparatus of Example 1 of the first embodiment, a graph showing a simulation of a change result of the thermal resistance R 1 with respect to the distance L of the cooling device of the comparative example. 実施の形態1の第1変形例の冷却装置の概略断面図である。It is schematic sectional drawing of the cooling apparatus of the 1st modification of Embodiment 1. FIG. 実施の形態1の第2変形例の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling device of the 2nd modification of Embodiment 1. FIG. 実施の形態1の第3変形例の冷却装置の概略断面図である。It is schematic sectional drawing of the cooling apparatus of the 3rd modification of Embodiment 1. FIG. 実施の形態1の第4変形例の冷却装置の概略断面図である。It is schematic sectional drawing of the cooling apparatus of the 4th modification of Embodiment 1. FIG. 実施の形態2の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 2. FIG. 実施の形態3の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 3. FIG. 実施の形態4の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 4. FIG. 実施の形態4の変形例の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling device of the modification of Embodiment 4. FIG. 実施の形態5の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling apparatus of Embodiment 5. FIG. 実施の形態5の変形例の冷却装置の概略部分拡大断面図である。It is a schematic partial enlarged sectional view of the cooling device of the modification of Embodiment 5. 実施の形態6の冷却装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the cooling device of the sixth embodiment. 実施の形態7の冷却装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the cooling device according to the seventh embodiment. 実施の形態8の冷却装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the cooling device of the eighth embodiment. 実施の形態9の冷却装置の概略断面図である。It is a schematic sectional drawing of the cooling apparatus of Embodiment 9. FIG. 実施の形態9の実施例2の冷却装置の、流路の厚さtに対する熱抵抗R2のシミュレーション結果を示す図である。The cooling device of Example 2 of Embodiment 9 is a diagram illustrating simulation results of the thermal resistance R 2 to the thickness t of the channel. 実施の形態9の第1変形例の冷却装置の概略断面図である。9 is a schematic cross-sectional view of the cooling device of the first modification of the ninth embodiment. 実施の形態9の第2変形例の冷却装置の概略断面図である。It is schematic sectional drawing of the cooling apparatus of the 2nd modification of Embodiment 9. FIG. 実施の形態10の冷却装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the cooling device of the tenth embodiment. 実施の形態10の変形例の冷却装置の概略断面図である。It is the schematic sectional drawing of the cooling apparatus of the modification of Embodiment 10.
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described. The same reference number is assigned to the same configuration, and the description thereof will not be repeated.
 実施の形態1.
 図1から図3を参照して、実施の形態1の冷却装置1を説明する。冷却装置1は、発熱体3を冷却する。発熱体3は、例えば、電子機器または電子素子である。電子機器は、例えば、電力変換装置、自動車用のパワーエレクトロニクス機器、携帯電話もしくは衛星通信用の高速通信機器、または、レーザ発振器である。電子素子は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)のようなトランジスタである。
Embodiment 1.
The cooling device 1 of the first embodiment will be described with reference to FIGS. 1 to 3. The cooling device 1 cools the heating element 3. The heating element 3 is, for example, an electronic device or an electronic element. Electronic devices are, for example, power converters, power electronics devices for automobiles, high-speed communication devices for mobile phones or satellite communications, or laser oscillators. The electronic element is, for example, a transistor such as an insulated gate bipolar transistor (IGBT).
 冷却装置1は、容器10と、放熱部材18と、加熱部20と、気泡生成部23とを主に備える。 The cooling device 1 mainly includes a container 10, a heat radiating member 18, a heating unit 20, and a bubble generating unit 23.
 容器10は、例えば、1.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されている。容器10は、5.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、10.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、50.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、100.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよい。容器10は、例えば、銅、アルミニウムもしくはステンレスのような金属、または、樹脂で形成されている。 The container 10 is made of, for example, a high thermal conductive material having a thermal conductivity of 1.0 W / (m · K) or more. The container 10 may be formed of a high thermal conductive material having a thermal conductivity of 5.0 W / (m · K) or more, and may be made of a high thermal conductive material having a thermal conductivity of 10.0 W / (m · K) or more. It may be formed or may be formed of a high thermal conductivity material having a thermal conductivity of 50.0 W / (m · K) or more, and may be formed of a high thermal conductivity having a thermal conductivity of 100.0 W / (m · K) or more. It may be formed of a material. The container 10 is made of, for example, a metal such as copper, aluminum or stainless steel, or a resin.
 容器10には、液体17が封入されている。容器10内には、液体17が充填されてもよい。液体17は、水、アルコール、アンモニア、油またはフロン系液体のような冷却液である。 The liquid 17 is sealed in the container 10. The container 10 may be filled with the liquid 17. The liquid 17 is a cooling liquid such as water, alcohol, ammonia, oil or a chlorofluorocarbon-based liquid.
 容器10は、第1壁11と、第1壁11に対向する第2壁12と、第1壁11と第2壁12とを互いに接続する第3壁13とを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1壁11と第2壁12と第3壁13とは、容器10の内部空洞を規定する。 The container 10 includes a first wall 11, a second wall 12 facing the first wall 11, and a third wall 13 connecting the first wall 11 and the second wall 12 to each other. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first wall 11, the second wall 12, and the third wall 13 define an internal cavity of the container 10.
 容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さは、例えば、1000μm未満である。容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さは、800μm以下であってもよく、500μm以下であってもよく、300μm以下であってもよい。後述するように、気泡生成部23が加熱されることによって気泡生成部23に形成される気泡25は、気泡生成部23に固定されている微小な気泡であり、かつ、気泡25の周囲の液体17に第1マランゴニ対流を生成させる。気泡25が発生しても、容器10の内圧はほとんと上昇しない。そのため、容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さを小さくすることができる。また、容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さを小さくすることによって、発熱体3と液体17との間の熱抵抗と、液体17と放熱部材18との間の熱抵抗とが、低減され得る。 The thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 is, for example, less than 1000 μm. The thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 may be 800 μm or less, 500 μm or less, or 300 μm or less. .. As will be described later, the bubble 25 formed in the bubble generating section 23 by heating the bubble generating section 23 is a minute bubble fixed to the bubble generating section 23 and is a liquid around the bubble generating section 25. Let 17 generate the first Marangoni convection. Even if the bubbles 25 are generated, the internal pressure of the container 10 hardly rises. Therefore, the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 can be reduced. Further, by reducing the thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10, the thermal resistance between the heating element 3 and the liquid 17 and the liquid 17 can be obtained. The thermal resistance between the heat radiating member 18 and the heat radiating member 18 can be reduced.
 容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さは、例えば、10μm以上である。容器10を構成する壁(第1壁11、第2壁12、第3壁13)の厚さは、例えば、50μm以上であってもよく、100μm以上であってもよい。そのため、容器10を構成する壁(第1壁11、第2壁12、第3壁13)が破れて、液体17が容器から漏れ出すことを防止することができる。 The thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 is, for example, 10 μm or more. The thickness of the walls (first wall 11, second wall 12, third wall 13) constituting the container 10 may be, for example, 50 μm or more, or 100 μm or more. Therefore, it is possible to prevent the liquid 17 from leaking out of the container due to the walls (first wall 11, second wall 12, and third wall 13) constituting the container 10 being torn.
 容器10は、発熱体3が取り付けられる取り付け面11cを含む。一例では、第1外壁面11aは、取り付け面11cを含む。発熱体3は、例えば、接着剤またはねじなどの固定部材(図示せず)を用いて、取り付け面11cに直接取り付けられてもよい。 The container 10 includes a mounting surface 11c to which the heating element 3 is mounted. In one example, the first outer wall surface 11a includes a mounting surface 11c. The heating element 3 may be directly attached to the mounting surface 11c using, for example, an adhesive or a fixing member (not shown) such as a screw.
 放熱部材18は、容器10に取り付けられている。一例では、放熱部材18は、第2外壁面12aに取り付けられている。放熱部材18は、例えば、放熱フィンまたはヒートシンクである。放熱部材18の表面には、放熱を促進する表面層が形成されてもよい。表面層は、例えば、放熱を促進する塗装膜(例えば、黒色塗装膜)であってもよいし、アルマイト処理層のような表面処理層であってもよい。放熱部材18は、接着剤またはねじなどの固定部材(図示せず)を用いて、容器10(例えば、第2外壁面12a)に直接取り付けられてもよい。 The heat radiating member 18 is attached to the container 10. In one example, the heat radiating member 18 is attached to the second outer wall surface 12a. The heat radiating member 18 is, for example, a heat radiating fin or a heat sink. A surface layer that promotes heat dissipation may be formed on the surface of the heat dissipation member 18. The surface layer may be, for example, a coating film that promotes heat dissipation (for example, a black coating film), or may be a surface treatment layer such as an alumite treatment layer. The heat radiating member 18 may be directly attached to the container 10 (for example, the second outer wall surface 12a) by using a fixing member (not shown) such as an adhesive or a screw.
 加熱部20は、容器10に支持されている。一例では、加熱部20は、第1外壁面11a上に設けられている。加熱部20は、例えば、マイクロヒータまたは薄膜ヒータである。電流源(図示せず)から、加熱部20に電流を供給することによって、加熱部20において熱が発生する。この熱は、容器10(第1壁11)を通って、気泡生成部23に伝導する。こうして、加熱部20は、気泡生成部23を加熱する。 The heating unit 20 is supported by the container 10. In one example, the heating unit 20 is provided on the first outer wall surface 11a. The heating unit 20 is, for example, a micro heater or a thin film heater. By supplying an electric current to the heating unit 20 from a current source (not shown), heat is generated in the heating unit 20. This heat is conducted to the bubble generating portion 23 through the container 10 (first wall 11). In this way, the heating unit 20 heats the bubble generation unit 23.
 加熱部20の面積は、1.0mm2以下の面積を有している。加熱部20の面積は、0.5mm2以下であってもよく、0.2mm2以下であってもよく、0.1mm2以下であってもよい。本実施の形態では、加熱部20の面積は、第1外壁面11aの平面視における加熱部20の面積である。加熱部20の面積は発熱体3の面積より小さく、かつ、加熱部20の厚さは発熱体3の厚さより小さい。加熱部20の面積は、取り付け面11cの面積より小さい。 The area of the heating unit 20 has an area of 1.0 mm 2 or less. The area of the heating unit 20 may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less. In the present embodiment, the area of the heating unit 20 is the area of the heating unit 20 in the plan view of the first outer wall surface 11a. The area of the heating unit 20 is smaller than the area of the heating element 3, and the thickness of the heating unit 20 is smaller than the thickness of the heating element 3. The area of the heating portion 20 is smaller than the area of the mounting surface 11c.
 加熱部20で発生する熱の量は、発熱体3で発生する熱の量に対して無視し得る。加熱部20で発生する熱の量は、例えば、発熱体3で発生する熱の量の二十分の一以下である。加熱部20で発生する熱の量は、発熱体3で発生する熱の量の百分の一以下であってもよい。加熱部20で発生する熱の量は、例えば、50mW以下である。加熱部20で発生する熱の量は、30mW以下であってもよい。発熱体3で発生する熱の量は、例えば、1W以上である。発熱体3で発生する熱の量は、100W以上であってもよい。 The amount of heat generated in the heating unit 20 can be ignored with respect to the amount of heat generated in the heating element 3. The amount of heat generated by the heating unit 20 is, for example, less than one-twentieth of the amount of heat generated by the heating element 3. The amount of heat generated by the heating unit 20 may be one-hundredth or less of the amount of heat generated by the heating element 3. The amount of heat generated by the heating unit 20 is, for example, 50 mW or less. The amount of heat generated by the heating unit 20 may be 30 mW or less. The amount of heat generated by the heating element 3 is, for example, 1 W or more. The amount of heat generated by the heating element 3 may be 100 W or more.
 気泡生成部23は、容器10に支持されている。一例では、気泡生成部23は、第1内壁面11b上に設けられている。気泡生成部23は、液体17に接触している。気泡生成部23は、例えば、気泡生成膜である。気泡生成部23は、例えば、銅またはアルミニウムで形成されている。気泡生成部23は、容器10と異なる材料で形成されてもよいし、容器10と同じ材料で形成されてもよい。 The bubble generation unit 23 is supported by the container 10. In one example, the bubble generation unit 23 is provided on the first inner wall surface 11b. The bubble generation unit 23 is in contact with the liquid 17. The bubble generation unit 23 is, for example, a bubble generation film. The bubble generation unit 23 is made of, for example, copper or aluminum. The bubble generation unit 23 may be formed of a material different from that of the container 10, or may be formed of the same material as the container 10.
 気泡生成部23の面積(気泡生成部23の気泡固定面の面積)は、1.0mm2以下の面積を有している。気泡生成部23の面積は、0.5mm2以下であってもよく、0.2mm2以下であってもよく、0.1mm2以下であってもよい。本実施の形態では、気泡生成部23の面積は、第1内壁面11bの平面視における気泡生成部23の面積である。気泡生成部23の面積(気泡生成部23の気泡固定面)は発熱体3の面積より小さく、かつ、気泡生成部23の厚さは発熱体3の厚さより小さい。気泡生成部23の面積は、取り付け面11cの面積より小さい。 The area of the bubble generating section 23 (the area of the bubble fixing surface of the bubble generating section 23) has an area of 1.0 mm 2 or less. The area of the bubble generating portion 23 may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less. In the present embodiment, the area of the bubble generating portion 23 is the area of the bubble generating portion 23 in the plan view of the first inner wall surface 11b. The area of the bubble generating section 23 (the bubble fixing surface of the bubble generating section 23) is smaller than the area of the heating element 3, and the thickness of the bubble generating section 23 is smaller than the thickness of the heating element 3. The area of the bubble generating portion 23 is smaller than the area of the mounting surface 11c.
 気泡生成部23は、加熱部20によって加熱されて、気泡25を液体17中に生成する。気泡25は、気泡生成部23に固定されている。気泡25は、微小な気泡である。気泡25の直径は、例えば、100μm以下である。気泡25の直径は、例えば、10μm以上である。後に詳しく説明するように、気泡25の周囲の液体17に、マランゴニ対流26が生成される。 The bubble generation unit 23 is heated by the heating unit 20 to generate bubbles 25 in the liquid 17. The bubble 25 is fixed to the bubble generation unit 23. The bubble 25 is a minute bubble. The diameter of the bubble 25 is, for example, 100 μm or less. The diameter of the bubble 25 is, for example, 10 μm or more. As will be described in detail later, the Marangoni convection 26 is generated in the liquid 17 around the bubble 25.
 本実施の形態の冷却装置1による発熱体3の冷却作用を説明する。
 容器10内に液体17を注入する際に、液体17に接する気泡生成部23の表面に、種気泡(図示せず)が付着する。種気泡は、気泡25に比べて非常に小さい気泡である。加熱部20において熱が発生する。この熱は、容器10(第1壁11)を通って、気泡生成部23に伝導する。気泡生成部23は、加熱部20によって加熱される。気泡生成部23が加熱部20によって加熱されることによって、種気泡が膨張して、気泡生成部23に付着する気泡25が液体17中に生成される。
The cooling action of the heating element 3 by the cooling device 1 of the present embodiment will be described.
When the liquid 17 is injected into the container 10, seed bubbles (not shown) adhere to the surface of the bubble generating portion 23 in contact with the liquid 17. The seed bubble is a bubble that is much smaller than the bubble 25. Heat is generated in the heating unit 20. This heat is conducted to the bubble generating portion 23 through the container 10 (first wall 11). The bubble generation unit 23 is heated by the heating unit 20. When the bubble generation unit 23 is heated by the heating unit 20, the seed bubbles expand and the bubbles 25 adhering to the bubble generation unit 23 are generated in the liquid 17.
 気泡生成部23に近づくにつれて、気泡25の周りの液体17の温度は上昇する。気泡生成部23から離れるにつれて、気泡25の周りの液体17の温度は下降する。一般に、液体17の温度が上昇するにつれて、液体17の表面張力は低下する。気泡生成部23に近づくにつれて、気泡25の周りの液体17の表面張力は減少する。気泡生成部23から離れるにつれて、気泡25の周りの液体17の表面張力は増加する。気泡25の周りの液体17の表面張力の分布に起因して、気泡25の周囲の液体17に、マランゴニ対流26が生成される。 The temperature of the liquid 17 around the bubble 25 rises as it approaches the bubble generating section 23. As the distance from the bubble generator 23 increases, the temperature of the liquid 17 around the bubble 25 decreases. Generally, as the temperature of the liquid 17 rises, the surface tension of the liquid 17 decreases. As it approaches the bubble generator 23, the surface tension of the liquid 17 around the bubble 25 decreases. As the distance from the bubble generator 23 increases, the surface tension of the liquid 17 around the bubble 25 increases. Due to the distribution of the surface tension of the liquid 17 around the bubble 25, the marangoni convection 26 is generated in the liquid 17 around the bubble 25.
 マランゴニ対流26に起因して、液体17に、大きな流速を有する流れ27が発生する。流れ27の速さは、例えば、1.0m/秒以上である。流れ27によって、液体17は、第2壁12にぶつかる。第2壁12に放熱部材18が取り付けられているため、第2壁12にぶつかった液体17は、第2壁12及び放熱部材18によって冷却される。気泡25の周りの液体17のうち、気泡生成部23から遠位する液体17の温度上昇が抑制される。気泡25の周りの液体17の温度分布が維持される。こうして、気泡25は、気泡生成部23から離れることなく、気泡生成部23に固定される。 Due to the Marangoni convection 26, a flow 27 having a large flow velocity is generated in the liquid 17. The speed of the flow 27 is, for example, 1.0 m / sec or more. The flow 27 causes the liquid 17 to hit the second wall 12. Since the heat radiating member 18 is attached to the second wall 12, the liquid 17 that hits the second wall 12 is cooled by the second wall 12 and the heat radiating member 18. Of the liquid 17 around the bubble 25, the temperature rise of the liquid 17 distal to the bubble generating portion 23 is suppressed. The temperature distribution of the liquid 17 around the bubbles 25 is maintained. In this way, the bubble 25 is fixed to the bubble generating section 23 without being separated from the bubble generating section 23.
 流れ27によって、液体17は、容器10内を高速に循環している。第2壁12にぶつかって冷却された液体17の一部は、取り付け面11cが形成されている容器10の部分(例えば、容器10の第1壁11)にぶつかる。発熱体3で発生する熱は、容器10及び液体17に伝達される。液体17は、発熱体3で発生した熱は、短時間で広げることができる。容器10内を高速に循環する液体17は、ヒートスプレッダとして機能する。さらに、容器10のうち発熱体3が取り付けられている部分の温度は、容器10の他の部分の温度より高い。そのため、液体17の流れ27は、容器10のうち発熱体3が取り付けられている部分において乱れて、容器10内で攪拌される。容器10内を高速に循環しかつ容器10内で攪拌される液体17の熱伝達率は、大きい。こうして、発熱体3で発生した熱は、容器10及び液体17によって冷却される。 The liquid 17 circulates in the container 10 at high speed by the flow 27. A part of the liquid 17 that has been cooled by hitting the second wall 12 hits a portion of the container 10 in which the mounting surface 11c is formed (for example, the first wall 11 of the container 10). The heat generated by the heating element 3 is transferred to the container 10 and the liquid 17. In the liquid 17, the heat generated by the heating element 3 can be dissipated in a short time. The liquid 17 that circulates in the container 10 at high speed functions as a heat spreader. Further, the temperature of the portion of the container 10 to which the heating element 3 is attached is higher than the temperature of the other portion of the container 10. Therefore, the flow 27 of the liquid 17 is disturbed in the portion of the container 10 to which the heating element 3 is attached, and is agitated in the container 10. The heat transfer coefficient of the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 is large. In this way, the heat generated in the heating element 3 is cooled by the container 10 and the liquid 17.
 図3に示されるように、いかなる距離Lに対しても、本実施の形態の実施例1の冷却装置1の熱抵抗R1は、比較例の冷却装置の熱抵抗R1より低い。その理由は、既に記載したとおり、本実施の形態の冷却装置1では、容器10内を高速に循環しかつ容器10内で攪拌される液体17は、発熱体3で発生する熱を拡げる能力が高く、かつ、大きな熱伝達率を有するからである。本実施の形態の実施例1の冷却装置1では、容器10は銅で形成されており、液体17は水である。比較例の冷却装置は、本実施の形態の冷却装置1と同様の構成を備えているが、液体17が銅板に置き換えられており、この銅板は容器10と一体化されており、かつ、加熱部20及び気泡生成部23が取り除かれている。 As shown in FIG. 3, the thermal resistance R 1 of the cooling device 1 of the first embodiment of the present embodiment is lower than the thermal resistance R 1 of the cooling device of the comparative example for any distance L. The reason is that, as already described, in the cooling device 1 of the present embodiment, the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has the ability to spread the heat generated by the heating element 3. This is because it is high and has a large heat transfer coefficient. In the cooling device 1 of the first embodiment of the present embodiment, the container 10 is made of copper and the liquid 17 is water. The cooling device of the comparative example has the same configuration as the cooling device 1 of the present embodiment, but the liquid 17 is replaced with a copper plate, and this copper plate is integrated with the container 10 and is heated. The unit 20 and the bubble generation unit 23 have been removed.
 図1に示されるように、熱抵抗R1は、取り付け面11cを含む第1外壁面11aと発熱体3の中心線3pとの交点11pと放熱部材18が取り付けられる第2外壁面12a上の任意の地点12qとの間の熱抵抗である。距離Lは、発熱体3の中心線3pと第2外壁面12aとの交点12pから第2外壁面12a上の任意の地点12qまでの距離を意味する。発熱体3の中心線3pは、第1外壁面11aの平面視における発熱体3の中心を通り、かつ、第1外壁面11aに垂直な線である。 As shown in FIG. 1, the thermal resistance R 1 is on the second outer wall surface 12a to which the heat dissipation member 18 is mounted and the intersection 11p between the first outer wall surface 11a including the mounting surface 11c and the center line 3p of the heating element 3 is mounted. Thermal resistance between any point 12q. The distance L means the distance from the intersection 12p of the center line 3p of the heating element 3 and the second outer wall surface 12a to an arbitrary point 12q on the second outer wall surface 12a. The center line 3p of the heating element 3 is a line that passes through the center of the heating element 3 in the plan view of the first outer wall surface 11a and is perpendicular to the first outer wall surface 11a.
 さらに、距離Lが増加するにつれて、比較例の冷却装置の熱抵抗は大きく増加する。これに対し、距離Lが増加しても、本実施の形態の実施例1の冷却装置1の熱抵抗はほとんど増加しない。その理由は、本実施の形態の冷却装置1では、容器10内を高速に循環しかつ容器10内で攪拌される液体17は、発熱体3で発生する熱を拡げる能力が高く、かつ、大きな熱伝達率を有するからである。 Further, as the distance L increases, the thermal resistance of the cooling device of the comparative example greatly increases. On the other hand, even if the distance L increases, the thermal resistance of the cooling device 1 of the first embodiment of the present embodiment hardly increases. The reason is that in the cooling device 1 of the present embodiment, the liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has a high ability to spread the heat generated by the heating element 3 and is large. This is because it has a heat transfer coefficient.
 図4を参照して、本実施の形態の第1変形例の冷却装置1bを説明する。冷却装置1bでは、加熱部20は、例えば、金ナノ薄膜のような光吸収膜である。金ナノ薄膜は、例えば、動的斜方蒸着法によって形成され得る。加熱部20は、半導体レーザのような光源21から出射される光(例えば、レーザ光)を吸収して、加熱部20において熱が発生する。この熱は、容器10(第1壁11)を通って、気泡生成部23に伝導する。こうして、加熱部20は、気泡生成部23を加熱する。 With reference to FIG. 4, the cooling device 1b of the first modification of the present embodiment will be described. In the cooling device 1b, the heating unit 20 is, for example, a light absorbing film such as a gold nano-thin film. The gold nanothin film can be formed, for example, by a dynamic orthorhombic deposition method. The heating unit 20 absorbs light (for example, laser light) emitted from a light source 21 such as a semiconductor laser, and heat is generated in the heating unit 20. This heat is conducted to the bubble generating portion 23 through the container 10 (first wall 11). In this way, the heating unit 20 heats the bubble generation unit 23.
 図5に示される本実施の形態の第2変形例の冷却装置1cのように、気泡生成部23の気泡固定面は、容器10の内壁面(例えば、第1内壁面11b)に面一であってもよい。 As in the cooling device 1c of the second modification of the present embodiment shown in FIG. 5, the bubble fixing surface of the bubble generation unit 23 is flush with the inner wall surface of the container 10 (for example, the first inner wall surface 11b). There may be.
 図6に示される本実施の形態の第3変形例の冷却装置1dのように、発熱体3は、熱伝導部材30を介して、容器10の取り付け面11cに取り付けられてもよい。熱伝導部材30は、ヒートパイプ、または、銅板、アルミニウム板もしくはグラファイト板のような伝熱板であってもよいし、熱伝導グリースのような熱伝導接着剤であってもよい。 The heating element 3 may be attached to the mounting surface 11c of the container 10 via the heat conductive member 30 as in the cooling device 1d of the third modification of the present embodiment shown in FIG. The heat conductive member 30 may be a heat pipe or a heat transfer plate such as a copper plate, an aluminum plate or a graphite plate, or may be a heat conductive adhesive such as heat conductive grease.
 図7に示される本実施の形態の第4変形例の冷却装置1eのように、放熱部材18は、熱伝達部材30eを介して、容器10(例えば、第2外壁面12a)取り付けられてもよい。熱伝達部材30eは、ヒートパイプ、または、銅板、アルミニウム板もしくはグラファイト板のような伝熱板であってもよいし、熱伝導グリースのような熱伝導接着剤であってもよい。 Even if the heat radiating member 18 is attached to the container 10 (for example, the second outer wall surface 12a) via the heat transfer member 30e as in the cooling device 1e of the fourth modification of the present embodiment shown in FIG. good. The heat transfer member 30e may be a heat pipe, a heat transfer plate such as a copper plate, an aluminum plate or a graphite plate, or a heat transfer adhesive such as a heat transfer grease.
 本実施の形態の冷却装置1,1b,1c,1d,1eの効果を説明する。
 本実施の形態の冷却装置1,1b,1c,1d,1eは、容器10と、放熱部材18と、第1気泡生成部(気泡生成部23)と、第1加熱部(加熱部20)とを備える。容器10には、液体17が封入されている。容器10は、発熱体3が直接または熱伝導部材30を介して取り付けられる取り付け面11cを含む。放熱部材18は、容器10に直接または熱伝達部材30eを介して取り付けられている。第1気泡生成部は、容器10に支持されており、かつ、液体17に接触している。第1加熱部は、第1気泡生成部を加熱する。第1気泡生成部は、第1気泡生成部に固定されている第1気泡(気泡25)を液体17中に生成する。第1気泡の周囲の液体17に第1マランゴニ対流(マランゴニ対流26)が生成される。
The effects of the cooling devices 1, 1b, 1c, 1d, and 1e of the present embodiment will be described.
The cooling devices 1, 1b, 1c, 1d, 1e of the present embodiment include a container 10, a heat radiating member 18, a first bubble generating section (bubble generating section 23), and a first heating section (heating section 20). To prepare for. The liquid 17 is sealed in the container 10. The container 10 includes a mounting surface 11c to which the heating element 3 is mounted directly or via a heat conductive member 30. The heat radiating member 18 is attached directly to the container 10 or via the heat transfer member 30e. The first bubble generating portion is supported by the container 10 and is in contact with the liquid 17. The first heating unit heats the first bubble generation unit. The first bubble generation unit generates first bubbles (bubbles 25) fixed to the first bubble generation unit in the liquid 17. The first Marangoni convection (Marangoni convection 26) is generated in the liquid 17 around the first bubble.
 第1気泡(気泡25)と第1マランゴニ対流(マランゴニ対流26)とを生成するために第1加熱部(加熱部20)に印加するエネルギーは、冷却液を循環させるポンプを駆動するために必要なエネルギーより非常に小さい。そのため、冷却装置1,1b,1c,1d,1eの消費電力を低減させることができる。第1気泡と第1マランゴニ対流とを生成するために必要な第1加熱部(加熱部20)及び第1気泡生成部(気泡生成部23)のサイズは、ポンプのサイズより非常に小さい。そのため、冷却装置1,1b,1c,1d,1eは、よりコンパクトなサイズを有する。第1気泡と第1マランゴニ対流とを生成するために必要な第1加熱部及び第1気泡生成部は、機械的可動部を含まない。そのため、冷却装置1,1b,1c,1d,1eは、より高い信頼性を有する。 The energy applied to the first heating unit (heating unit 20) to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) is required to drive the pump that circulates the coolant. Energy is much smaller than the energy. Therefore, the power consumption of the cooling devices 1, 1b, 1c, 1d, 1e can be reduced. The size of the first heating unit (heating unit 20) and the first bubble generation unit (bubble generation unit 23) required to generate the first bubble and the first marangoni convection is much smaller than the size of the pump. Therefore, the cooling devices 1, 1b, 1c, 1d, 1e have a more compact size. The first heating section and the first bubble generating section required to generate the first bubble and the first marangoni convection do not include the mechanically movable section. Therefore, the cooling devices 1, 1b, 1c, 1d, 1e have higher reliability.
 本実施の形態の冷却装置1,1b,1c,1d,1eでは、容器10は、第1壁11と、第1壁11に対向する第2壁12とを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1外壁面11aは、取り付け面11cを含む。第1気泡生成部(気泡生成部23)は、第1内壁面11b上に設けられている。第1加熱部(加熱部20)は、第1外壁面11a上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30eを介して取り付けられている。 In the cooling devices 1, 1b, 1c, 1d, 1e of the present embodiment, the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first outer wall surface 11a includes a mounting surface 11c. The first bubble generation unit (bubble generation unit 23) is provided on the first inner wall surface 11b. The first heating unit (heating unit 20) is provided on the first outer wall surface 11a. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e.
 そのため、冷却装置1,1b,1c,1d,1eは、よりコンパクトなサイズとより高い信頼性とを有するとともに、冷却装置1,1b,1c,1d,1eの消費電力は低減され得る。 Therefore, the cooling devices 1, 1b, 1c, 1d, 1e have a more compact size and higher reliability, and the power consumption of the cooling devices 1, 1b, 1c, 1d, 1e can be reduced.
 実施の形態2.
 図8を参照して、実施の形態2の冷却装置1fを説明する。本実施の形態の冷却装置1fは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 2.
The cooling device 1f of the second embodiment will be described with reference to FIG. The cooling device 1f of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1fでは、気泡生成部23の気泡固定面に、凹部24が形成されている。凹部24は、V溝であってもよい。凹部24の最大サイズは、気泡25の直径よりも小さい。凹部24の最大サイズは、例えば、50μm以下である。凹部24の最大サイズは、30μm以下であってもよく、20μm以下であってもよい。凹部24がV溝である場合、凹部24の最大サイズは、気泡生成部23の気泡固定面におけるV溝のサイズである。 In the cooling device 1f, a recess 24 is formed on the bubble fixing surface of the bubble generating portion 23. The recess 24 may be a V-groove. The maximum size of the recess 24 is smaller than the diameter of the bubble 25. The maximum size of the recess 24 is, for example, 50 μm or less. The maximum size of the recess 24 may be 30 μm or less, or 20 μm or less. When the recess 24 is a V-groove, the maximum size of the recess 24 is the size of the V-groove on the bubble fixing surface of the bubble generating portion 23.
 本実施の形態の変形例では、凹部24に代えて、気泡生成部23の気泡固定面に、気泡生成部23を支持する容器10の支持部材(第1壁11)の表面(例えば、第1内壁面11b)より粗い粗面が形成されてもよい。気泡生成部23は多孔質体であり、この多孔質体の表面が、気泡生成部23を支持する容器10の支持部材(第1壁11)の表面(例えば、第1内壁面11b)より粗い粗面であってもよい。 In the modification of the present embodiment, instead of the recess 24, the surface of the support member (first wall 11) of the container 10 that supports the bubble generation portion 23 is placed on the bubble fixing surface of the bubble generation portion 23 (for example, the first one). A rough surface coarser than the inner wall surface 11b) may be formed. The bubble generation unit 23 is a porous body, and the surface of the porous body is rougher than the surface (for example, the first inner wall surface 11b) of the support member (first wall 11) of the container 10 that supports the bubble generation unit 23. It may be a rough surface.
 本実施の形態の冷却装置1fの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effect of the cooling device 1f of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1fでは、第1気泡生成部(気泡生成部23)の気泡固定面に、第1気泡生成部を支持する容器10の支持部材の表面より粗い粗面または凹部24が形成されている。 In the cooling device 1f of the present embodiment, the bubble fixing surface of the first bubble generating section (bubble generating section 23) has a rough surface or a recess 24 rougher than the surface of the support member of the container 10 that supports the first bubble generating section. It is formed.
 そのため、液体17を容器10内に注入する際に、第1気泡生成部(気泡生成部23)の気泡固定面に種気泡(図示せず)がより確実に付着する。第1気泡生成部が第1加熱部(加熱部20)によって加熱されることによって、種気泡が膨張して、より確実に第1気泡生成部に第1気泡(気泡25)が生成される。第1気泡の周囲の液体17に、第1マランゴニ対流(マランゴニ対流26)がより確実に生成される。第1マランゴニ対流に起因して、液体17の流れ27がより確実に生ずる。冷却装置1fは、より確実に発熱体3を冷却することができる。 Therefore, when the liquid 17 is injected into the container 10, seed bubbles (not shown) adhere to the bubble fixing surface of the first bubble generation section (bubble generation section 23) more reliably. When the first bubble generation section is heated by the first heating section (heating section 20), the seed bubbles expand and the first bubble (bubble 25) is more reliably generated in the first bubble generation section. The first Marangoni convection (Marangoni convection 26) is more reliably generated in the liquid 17 around the first bubble. Due to the first Marangoni convection, the flow 27 of the liquid 17 is more reliably generated. The cooling device 1f can more reliably cool the heating element 3.
 実施の形態3.
 図9を参照して、実施の形態3の冷却装置1gを説明する。本実施の形態の冷却装置1gは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 3.
The cooling device 1g of the third embodiment will be described with reference to FIG. The cooling device 1g of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1gでは、第1外壁面11aの第1平面視において、気泡生成部23は発熱体3に重なっている。第1外壁面11aの第1平面視において、加熱部20は発熱体3に重なっている。特定的には、第1外壁面11aの第1平面視において、気泡生成部23は、発熱体3の外形に囲まれている。第1外壁面11aの第1平面視において、加熱部20は、発熱体3の外形に囲まれている。 In the cooling device 1g, the bubble generating portion 23 overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. In the first plan view of the first outer wall surface 11a, the heating unit 20 overlaps the heating element 3. Specifically, in the first plan view of the first outer wall surface 11a, the bubble generating portion 23 is surrounded by the outer shape of the heating element 3. In the first plan view of the first outer wall surface 11a, the heating unit 20 is surrounded by the outer shape of the heating element 3.
 本実施の形態の冷却装置1gの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effect of the cooling device 1g of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1gでは、第1外壁面11aの第1平面視において、第1気泡生成部(気泡生成部23)は発熱体3に重なっている。そのため、第1気泡生成部は、第1加熱部(加熱部20)に加えて、発熱体3によっても加熱される。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1gの消費電力をさらに低減させることができる。 In the cooling device 1g of the present embodiment, the first bubble generating section (bubble generating section 23) overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generation unit is heated by the heating element 3 in addition to the first heating unit (heating unit 20). The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1g can be further reduced.
 実施の形態4.
 図10を参照して、実施の形態4の冷却装置1hを説明する。本実施の形態の冷却装置1hは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 4.
The cooling device 1h of the fourth embodiment will be described with reference to FIG. The cooling device 1h of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1hでは、第1壁11は、第1壁ベース部材11dと、高熱伝導壁部分11eとを含む。高熱伝導壁部分11eは、第1壁ベース部材11dより高い熱伝導率を有する。例えば、第1壁ベース部材11dがアルミニウムで形成されている場合、高熱伝導壁部分11eは銅で形成されている。高熱伝導壁部分11eは、気泡生成部23と加熱部20との間に設けられている。高熱伝導壁部分11eは、気泡生成部23と加熱部20とに接触してもよい。気泡生成部23は、高熱伝導壁部分11e上に設けられてもよい。加熱部20は、高熱伝導壁部分11e上に設けられてもよい。 In the cooling device 1h, the first wall 11 includes the first wall base member 11d and the high thermal conductive wall portion 11e. The high thermal conductivity wall portion 11e has a higher thermal conductivity than the first wall base member 11d. For example, when the first wall base member 11d is made of aluminum, the high thermal conductive wall portion 11e is made of copper. The high heat conduction wall portion 11e is provided between the bubble generation section 23 and the heating section 20. The high thermal conduction wall portion 11e may come into contact with the bubble generation portion 23 and the heating portion 20. The bubble generation unit 23 may be provided on the high heat conduction wall portion 11e. The heating unit 20 may be provided on the high heat conduction wall portion 11e.
 図11を参照して、本実施の形態の変形例の冷却装置1iを説明する。第1壁11は、第1壁ベース部材11dより低い熱伝導率を有する低熱伝導壁部分11fをさらに含む。例えば、第1壁ベース部材11dがアルミニウムで形成されている場合、高熱伝導壁部分11eは銅で形成されており、低熱伝導部分はステンレス、チタンまたは樹脂で形成されている。低熱伝導壁部分11fは、第1壁ベース部材11dと高熱伝導壁部分11eとの間に設けられている。気泡生成部23は、低熱伝導壁部分11fから離れていてもよい。加熱部20は、低熱伝導壁部分11fから離れていてもよい。 With reference to FIG. 11, the cooling device 1i of the modified example of the present embodiment will be described. The first wall 11 further includes a low thermal conductivity wall portion 11f having a lower thermal conductivity than the first wall base member 11d. For example, when the first wall base member 11d is made of aluminum, the high thermal conductive wall portion 11e is made of copper and the low thermal conductive portion is made of stainless steel, titanium or resin. The low thermal conductive wall portion 11f is provided between the first wall base member 11d and the high thermal conductive wall portion 11e. The bubble generation unit 23 may be separated from the low heat conduction wall portion 11f. The heating unit 20 may be separated from the low heat conduction wall portion 11f.
 本実施の形態の冷却装置1h,1iの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effects of the cooling devices 1h and 1i of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1h,1iでは、第1壁11は、第1壁ベース部材11dと、第1壁ベース部材11dより高い熱伝導率を有する高熱伝導壁部分11eとを含む。高熱伝導壁部分11eは、第1気泡生成部(気泡生成部23)と第1加熱部(加熱部20)との間に設けられている。そのため、第1加熱部で発生した熱は、高熱伝導壁部分11eを通して、第1気泡生成部に伝達される。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1h,1iの消費電力をさらに低減させることができる。 In the cooling devices 1h and 1i of the present embodiment, the first wall 11 includes a first wall base member 11d and a high thermal conductivity wall portion 11e having a higher thermal conductivity than the first wall base member 11d. The high heat conduction wall portion 11e is provided between the first bubble generation section (bubble generation section 23) and the first heating section (heating section 20). Therefore, the heat generated in the first heating section is transferred to the first bubble generation section through the high heat conduction wall portion 11e. The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling devices 1h and 1i can be further reduced.
 本実施の形態の冷却装置1iでは、第1壁11は、第1壁ベース部材11dより低い熱伝導率を有する低熱伝導壁部分11fをさらに含む。低熱伝導壁部分11fは、第1壁ベース部材11dと高熱伝導壁部分11eとの間に設けられている。そのため、低熱伝導壁部分11fは、第1加熱部(加熱部20)から第1壁ベース部材11dに散逸する熱の量を減少させる。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1iの消費電力をさらに低減させることができる。 In the cooling device 1i of the present embodiment, the first wall 11 further includes a low thermal conductivity wall portion 11f having a thermal conductivity lower than that of the first wall base member 11d. The low thermal conductive wall portion 11f is provided between the first wall base member 11d and the high thermal conductive wall portion 11e. Therefore, the low thermal conductive wall portion 11f reduces the amount of heat dissipated from the first heating portion (heating portion 20) to the first wall base member 11d. The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1i can be further reduced.
 実施の形態5.
 図12を参照して、実施の形態5の冷却装置1jを説明する。本実施の形態の冷却装置1jは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 5.
The cooling device 1j of the fifth embodiment will be described with reference to FIG. The cooling device 1j of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1jでは、加熱部20は、第1内壁面11b上に設けられている。気泡生成部23は、加熱部20上に設けられている。 In the cooling device 1j, the heating unit 20 is provided on the first inner wall surface 11b. The bubble generation unit 23 is provided on the heating unit 20.
 図13を参照して、本実施の形態の変形例の冷却装置1kを説明する。実施の形態3の冷却装置1gと同様に、冷却装置1kでは、第1外壁面11aの第1平面視において、気泡生成部23は発熱体3に重なっている。第1外壁面11aの第1平面視において、加熱部20は発熱体3に重なっている。特定的には、第1外壁面11aの第1平面視において、気泡生成部23は、発熱体3の外形に囲まれている。第1外壁面11aの第1平面視において、加熱部20は、発熱体3の外形に囲まれている。 With reference to FIG. 13, the cooling device 1k of the modified example of the present embodiment will be described. Similar to the cooling device 1g of the third embodiment, in the cooling device 1k, the bubble generating unit 23 overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. In the first plan view of the first outer wall surface 11a, the heating unit 20 overlaps the heating element 3. Specifically, in the first plan view of the first outer wall surface 11a, the bubble generating portion 23 is surrounded by the outer shape of the heating element 3. In the first plan view of the first outer wall surface 11a, the heating unit 20 is surrounded by the outer shape of the heating element 3.
 本実施の形態の冷却装置1j,1kの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effects of the cooling devices 1j and 1k of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1j,1kでは、容器10は、第1壁11と、第1壁11に対向する第2壁12とを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1外壁面11aは、取り付け面11cを含む。第1加熱部(加熱部20)は、第1内壁面11b上に設けられている。第1気泡生成部(気泡生成部23)は、第1加熱部上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling devices 1j and 1k of the present embodiment, the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first outer wall surface 11a includes a mounting surface 11c. The first heating unit (heating unit 20) is provided on the first inner wall surface 11b. The first bubble generation unit (bubble generation unit 23) is provided on the first heating unit. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 そのため、第1加熱部(加熱部20)で発生した熱は、第1壁11を介することなく、第1気泡生成部(気泡生成部23)に伝達される。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1j,1kの消費電力をさらに低減させることができる。 Therefore, the heat generated in the first heating unit (heating unit 20) is transferred to the first bubble generation unit (bubble generation unit 23) without passing through the first wall 11. The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling devices 1j and 1k can be further reduced.
 本実施の形態の冷却装置1kでは、第1外壁面11aの第1平面視において、第1気泡生成部(気泡生成部23)は発熱体3に重なっている。そのため、第1気泡生成部は、第1加熱部(加熱部20)に加えて、発熱体3によっても加熱される。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1kの消費電力をさらに低減させることができる。 In the cooling device 1k of the present embodiment, the first bubble generating section (bubble generating section 23) overlaps the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generation unit is heated by the heating element 3 in addition to the first heating unit (heating unit 20). The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1k can be further reduced.
 実施の形態6.
 図14を参照して、実施の形態6の冷却装置1mを説明する。本実施の形態の冷却装置1mは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 6.
The cooling device 1 m according to the sixth embodiment will be described with reference to FIG. The cooling device 1m of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 本実施の形態の冷却装置1mでは、容器10は、熱伝導フィン13bをさらに含む。熱伝導フィン13bは、例えば、1.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されている。熱伝導フィン13bは、5.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、10.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、50.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよく、100.0W/(m・K)以上の熱伝導率を有する高熱伝導材料で形成されてもよい。熱伝導フィン13bは、例えば、銅またはアルミニウムのような金属で形成されている。熱伝導フィン13bは、容器10と同じ材料で形成されてもよいし、容器10と異なる材料で形成されてもよい。 In the cooling device 1 m of the present embodiment, the container 10 further includes the heat conductive fins 13b. The heat conductive fin 13b is formed of, for example, a high heat conductive material having a thermal conductivity of 1.0 W / (m · K) or more. The heat conductive fin 13b may be formed of a high heat conductive material having a heat conductivity of 5.0 W / (m · K) or more, and has a high heat conductivity of 10.0 W / (m · K) or more. It may be formed of a material, may be formed of a high thermal conductive material having a thermal conductivity of 50.0 W / (m · K) or more, and may have a thermal conductivity of 100.0 W / (m · K) or more. It may be formed of a high thermal conductive material. The heat conductive fins 13b are made of a metal such as copper or aluminum. The heat conductive fin 13b may be formed of the same material as the container 10, or may be formed of a material different from that of the container 10.
 熱伝導フィン13bは、板の形状を有してもよいし、棒の形状を有してもよい。熱伝導フィン13bは、第1内壁面11bに設けられている。熱伝導フィン13bは、第1壁11(第1内壁面11b)に接続されている。熱伝導フィン13bは、第2壁12(第2内壁面12b)から離間されてもよい。第1外壁面11aの第1平面視において、熱伝導フィン13bは発熱体3に重なってもよい。第1外壁面11aの第1平面視において、熱伝導フィン13bは、発熱体3の外形に囲まれてもよい。 The heat conductive fin 13b may have the shape of a plate or the shape of a rod. The heat conductive fin 13b is provided on the first inner wall surface 11b. The heat conductive fin 13b is connected to the first wall 11 (first inner wall surface 11b). The heat conductive fin 13b may be separated from the second wall 12 (second inner wall surface 12b). In the first plan view of the first outer wall surface 11a, the heat conductive fins 13b may overlap with the heating element 3. In the first plan view of the first outer wall surface 11a, the heat conductive fin 13b may be surrounded by the outer shape of the heating element 3.
 加熱部20は、熱伝導フィン13b上に設けられている。気泡生成部23は、加熱部20上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 The heating unit 20 is provided on the heat conductive fin 13b. The bubble generation unit 23 is provided on the heating unit 20. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 本実施の形態の冷却装置1mの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effect of the cooling device 1m of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1mでは、容器10は、第1壁11と、第1壁11に対向する第2壁12と、熱伝導フィン13bとを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1外壁面11aは、取り付け面11cを含む。熱伝導フィン13bは、第1内壁面11bに設けられている。第1加熱部(加熱部20)は、熱伝導フィン13b上に設けられている。第1気泡生成部(気泡生成部23)は、第1加熱部上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling device 1 m of the present embodiment, the container 10 includes a first wall 11, a second wall 12 facing the first wall 11, and a heat conductive fin 13b. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first outer wall surface 11a includes a mounting surface 11c. The heat conductive fin 13b is provided on the first inner wall surface 11b. The first heating unit (heating unit 20) is provided on the heat conductive fin 13b. The first bubble generation unit (bubble generation unit 23) is provided on the first heating unit. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 そのため、冷却装置1mは、よりコンパクトなサイズとより高い信頼性とを有するとともに、冷却装置1mの消費電力は低減され得る。 Therefore, the cooling device 1 m has a more compact size and higher reliability, and the power consumption of the cooling device 1 m can be reduced.
 本実施の形態の冷却装置1mでは、第1外壁面11aの第1平面視において、熱伝導フィン13bは発熱体3に重なっている。そのため、第1気泡生成部(気泡生成部23)は、第1加熱部(加熱部20)に加えて、発熱体3によっても加熱される。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1mの消費電力をさらに低減させることができる。 In the cooling device 1 m of the present embodiment, the heat conductive fins 13b overlap the heating element 3 in the first plan view of the first outer wall surface 11a. Therefore, the first bubble generating section (bubble generating section 23) is heated by the heating element 3 in addition to the first heating section (heating section 20). The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1 m can be further reduced.
 実施の形態7.
 図15を参照して、実施の形態7の冷却装置1nを説明する。本実施の形態の冷却装置1nは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 7.
The cooling device 1n of the seventh embodiment will be described with reference to FIG. The cooling device 1n of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1nでは、気泡生成部23は、第2内壁面12b上に設けられている。加熱部20は、第2外壁面12a上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling device 1n, the bubble generation unit 23 is provided on the second inner wall surface 12b. The heating unit 20 is provided on the second outer wall surface 12a. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 冷却装置1nは、低熱伝導層28をさらに備える。低熱伝導層28は、加熱部20と放熱部材18との間に設けられている。低熱伝導層28は、第2壁12及び放熱部材18より低い熱伝導率を有する。低熱伝導層28は、例えば、空気層または断熱層である。低熱伝導層28は、加熱部20から放熱部材18に散逸する熱の量を減少させる。第2外壁面12aの第2平面視において、加熱部20は放熱部材18に重なっている。第2外壁面12aの第2平面視において、気泡生成部23は放熱部材18に重なっている。特定的には、第2外壁面12aの第2平面視において、気泡生成部23は、放熱部材18の外形に囲まれている。第2外壁面12aの第2平面視において、加熱部20は、放熱部材18の外形に囲まれている。 The cooling device 1n further includes a low heat conductive layer 28. The low heat conductive layer 28 is provided between the heating unit 20 and the heat radiating member 18. The low thermal conductivity layer 28 has a lower thermal conductivity than the second wall 12 and the heat dissipation member 18. The low heat conductive layer 28 is, for example, an air layer or a heat insulating layer. The low heat conductive layer 28 reduces the amount of heat dissipated from the heating unit 20 to the heat radiating member 18. In the second plan view of the second outer wall surface 12a, the heating portion 20 overlaps the heat radiating member 18. In the second plan view of the second outer wall surface 12a, the bubble generating portion 23 overlaps the heat radiating member 18. Specifically, in the second plan view of the second outer wall surface 12a, the bubble generating portion 23 is surrounded by the outer shape of the heat radiating member 18. In the second plan view of the second outer wall surface 12a, the heating unit 20 is surrounded by the outer shape of the heat radiating member 18.
 本実施の形態の冷却装置1nの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effect of the cooling device 1n of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1nでは、容器10は、第1壁11と、第1壁11に対向する第2壁12とを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1外壁面11aは、取り付け面11cを含む。第1気泡生成部(気泡生成部23)は、第2内壁面12b上に設けられている。第1加熱部(加熱部20)は、第2外壁面12a上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling device 1n of the present embodiment, the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first outer wall surface 11a includes a mounting surface 11c. The first bubble generation unit (bubble generation unit 23) is provided on the second inner wall surface 12b. The first heating unit (heating unit 20) is provided on the second outer wall surface 12a. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 第1気泡生成部(気泡生成部23)は、放熱部材18が直接または熱伝達部材30e(図7を参照)を介して取り付けられている第2壁12の第2内壁面12b上に設けられている。第1気泡生成部に近位しかつ第1気泡(気泡25)の周囲にある液体17は、第2壁12及び放熱部材18によって、より一層冷却される。第1気泡生成部に近位しかつ第1気泡の周囲にある液体17の温度と第1気泡生成部から遠位しかつ第1気泡の周囲にある液体17の温度との間の差が増加する。液体17に、より強い第1マランゴニ対流(マランゴニ対流26)が発生する。より強い第1マランゴニ対流に起因して、より高速な液体17の流れ27が発生する。液体17は、より激しく攪拌される。容器10内を高速に循環しかつ容器10内で攪拌される液体17は、発熱体3で発生する熱を拡げる能力が高く、かつ、大きな熱伝達率を有する。冷却装置1nは、より高い冷却能力を有し、発熱体3で発生した熱をより一層冷却することができる。 The first bubble generating section (bubble generating section 23) is provided on the second inner wall surface 12b of the second wall 12 to which the heat radiating member 18 is attached directly or via the heat transfer member 30e (see FIG. 7). ing. The liquid 17 proximal to the first bubble generator and around the first bubble (bubble 25) is further cooled by the second wall 12 and the heat dissipation member 18. Increased difference between the temperature of the liquid 17 proximal to the first bubble generator and around the first bubble and the temperature of the liquid 17 distal to the first bubble generator and around the first bubble do. A stronger first Marangoni convection (Marangoni convection 26) is generated in the liquid 17. Due to the stronger first Marangoni convection, a faster flow 27 of the liquid 17 is generated. The liquid 17 is agitated more vigorously. The liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has a high ability to spread the heat generated by the heating element 3 and has a large heat transfer coefficient. The cooling device 1n has a higher cooling capacity and can further cool the heat generated by the heating element 3.
 本実施の形態の冷却装置1nは、第1加熱部(加熱部20)と放熱部材18との間に設けられており、かつ、第2壁12及び放熱部材18より低い熱伝導率を有する低熱伝導層28をさらに備える。第2外壁面12aの第2平面視において、第1加熱部は放熱部材18に重なっている。低熱伝導層28は、第1気泡生成部(気泡生成部23)は、第1加熱部に加えて、発熱体3によっても加熱される。 The cooling device 1n of the present embodiment is provided between the first heating unit (heating unit 20) and the heat radiating member 18, and has a lower thermal conductivity than the second wall 12 and the heat radiating member 18. A conductive layer 28 is further provided. In the second plan view of the second outer wall surface 12a, the first heating portion overlaps the heat radiating member 18. In the low thermal conductive layer 28, the first bubble generating section (bubble generating section 23) is heated not only by the first heating section but also by the heating element 3.
 低熱伝導層28は、第1加熱部(加熱部20)から放熱部材18に散逸する熱の量を減少させる。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1nの消費電力をさらに低減させることができる。 The low heat conductive layer 28 reduces the amount of heat dissipated from the first heating unit (heating unit 20) to the heat radiating member 18. The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1n can be further reduced.
 実施の形態8.
 図16を参照して、実施の形態8の冷却装置1pを説明する。本実施の形態の冷却装置1pは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 8.
The cooling device 1p of the eighth embodiment will be described with reference to FIG. The cooling device 1p of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1pでは、加熱部20は、第2内壁面12b上に設けられている。気泡生成部23は、加熱部20上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling device 1p, the heating unit 20 is provided on the second inner wall surface 12b. The bubble generation unit 23 is provided on the heating unit 20. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 第2壁12は、第2壁ベース部材12dと、低熱伝導壁部分12fとを含む。低熱伝導壁部分12fは、第2壁ベース部材12dより低い熱伝導率を有する。例えば、第2壁ベース部材12dがアルミニウムで形成されている場合、低熱伝導壁部分12fはステンレス、チタンまたは樹脂で形成されている。低熱伝導壁部分12fは、加熱部20と放熱部材18との間に設けられている。低熱伝導壁部分12fは、加熱部20と放熱部材18とに接触してもよい。加熱部20は、低熱伝導壁部分12f上に設けられてもよい。第2外壁面12aの第2平面視において、加熱部20は放熱部材18に重なっている。 The second wall 12 includes the second wall base member 12d and the low heat conductive wall portion 12f. The low thermal conductivity wall portion 12f has a lower thermal conductivity than the second wall base member 12d. For example, when the second wall base member 12d is made of aluminum, the low heat conductive wall portion 12f is made of stainless steel, titanium or resin. The low heat conductive wall portion 12f is provided between the heating portion 20 and the heat radiating member 18. The low heat conductive wall portion 12f may come into contact with the heating portion 20 and the heat radiating member 18. The heating unit 20 may be provided on the low heat conduction wall portion 12f. In the second plan view of the second outer wall surface 12a, the heating portion 20 overlaps the heat radiating member 18.
 本実施の形態の冷却装置1pの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effect of the cooling device 1p of the present embodiment has the following effects in addition to the effect of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1pでは、容器10は、第1壁11と、第1壁11に対向する第2壁12とを含む。第1壁11は、液体17に接触する第1内壁面11bと、第1内壁面11bとは反対側の第1外壁面11aとを含む。第2壁12は、液体17に接触しかつ第1内壁面11bに対向する第2内壁面12bと、第2内壁面12bとは反対側の第2外壁面12aとを含む。第1外壁面11aは、取り付け面11cを含む。第1加熱部(加熱部20)は、第2内壁面12b上に設けられている。第1気泡生成部(気泡生成部23)は、第1加熱部上に設けられている。放熱部材18は、第2外壁面12aに直接または熱伝達部材30e(図7を参照)を介して取り付けられている。 In the cooling device 1p of the present embodiment, the container 10 includes a first wall 11 and a second wall 12 facing the first wall 11. The first wall 11 includes a first inner wall surface 11b that comes into contact with the liquid 17 and a first outer wall surface 11a that is opposite to the first inner wall surface 11b. The second wall 12 includes a second inner wall surface 12b that is in contact with the liquid 17 and faces the first inner wall surface 11b, and a second outer wall surface 12a that is opposite to the second inner wall surface 12b. The first outer wall surface 11a includes a mounting surface 11c. The first heating unit (heating unit 20) is provided on the second inner wall surface 12b. The first bubble generation unit (bubble generation unit 23) is provided on the first heating unit. The heat radiating member 18 is attached directly to the second outer wall surface 12a or via the heat transfer member 30e (see FIG. 7).
 そのため、実施の形態7の冷却装置1pと同様に、冷却装置1pは、より高い冷却能力を有し、発熱体3で発生した熱をより一層冷却することができる。 Therefore, like the cooling device 1p of the seventh embodiment, the cooling device 1p has a higher cooling capacity and can further cool the heat generated by the heating element 3.
 本実施の形態の冷却装置1pでは、第2壁12は、第2壁ベース部材12dと、第2壁ベース部材12dより低い熱伝導率を有する低熱伝導壁部分12fとを含む。低熱伝導壁部分12fは、第1加熱部(加熱部20)と放熱部材18との間に設けられている。第2外壁面12aの第2平面視において、第1加熱部は放熱部材18に重なっている。 In the cooling device 1p of the present embodiment, the second wall 12 includes a second wall base member 12d and a low thermal conductivity wall portion 12f having a thermal conductivity lower than that of the second wall base member 12d. The low heat conduction wall portion 12f is provided between the first heating portion (heating portion 20) and the heat radiating member 18. In the second plan view of the second outer wall surface 12a, the first heating portion overlaps the heat radiating member 18.
 低熱伝導壁部分12fは、第1加熱部(加熱部20)から放熱部材18に散逸する熱の量を減少させる。第1気泡(気泡25)及び第1マランゴニ対流(マランゴニ対流26)を生成するために第1加熱部に印加するエネルギーが低減され得る。冷却装置1pの消費電力をさらに低減させることができる。 The low heat conduction wall portion 12f reduces the amount of heat dissipated from the first heating portion (heating portion 20) to the heat radiating member 18. The energy applied to the first heating section to generate the first bubble (bubble 25) and the first marangoni convection (marangoni convection 26) can be reduced. The power consumption of the cooling device 1p can be further reduced.
 実施の形態9.
 図17及び図18を参照して、実施の形態9の冷却装置1qを説明する。本実施の形態の冷却装置1qは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 9.
The cooling device 1q of the ninth embodiment will be described with reference to FIGS. 17 and 18. The cooling device 1q of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 冷却装置1qは、温度センサ33と、コントローラ35とをさらに備える。
 温度センサ33は、発熱体3に取り付けられており、発熱体3の第1温度を直接測定する。温度センサ33は、例えば、サーミスタである。温度センサ33は、発熱体3から離れて配置されている放射温度計であってもよい。放射温度計を用いて、発熱体3の第1温度を直接測定してもよい。温度センサ33は、コントローラ35に電気的に接続されている。温度センサ33は、発熱体3の第1温度に応じた信号を、コントローラ35に出力する。
The cooling device 1q further includes a temperature sensor 33 and a controller 35.
The temperature sensor 33 is attached to the heating element 3 and directly measures the first temperature of the heating element 3. The temperature sensor 33 is, for example, a thermistor. The temperature sensor 33 may be a radiation thermometer located away from the heating element 3. The first temperature of the heating element 3 may be directly measured by using a radiation thermometer. The temperature sensor 33 is electrically connected to the controller 35. The temperature sensor 33 outputs a signal corresponding to the first temperature of the heating element 3 to the controller 35.
 コントローラ35は、例えば、半導体プロッサである。コントローラ35は、温度センサ33の出力信号に基づいて、加熱部20の第2温度を調整する。例えば、冷却装置1qは電流源34を備えており、加熱部20はマイクロヒータである。コントローラ35は、電流源34に、電気的に接続されている。電流源34は、加熱部20に電気的に接続されている。コントローラ35は、温度センサ33の出力信号に基づいて、電流源34から加熱部20に供給される電流を制御する。こうして、コントローラ35は、温度センサ33の出力信号に基づいて、加熱部20の第2温度を調整する。 The controller 35 is, for example, a semiconductor processor. The controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33. For example, the cooling device 1q includes a current source 34, and the heating unit 20 is a microheater. The controller 35 is electrically connected to the current source 34. The current source 34 is electrically connected to the heating unit 20. The controller 35 controls the current supplied from the current source 34 to the heating unit 20 based on the output signal of the temperature sensor 33. In this way, the controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
 具体的には、発熱体3の温度が発熱体3の適正動作温度範囲を超えて上昇すると、温度センサ33からの出力信号の強度は閾値より大きくなる。温度センサ33からの出力信号の強度は閾値より大きいとコントローラ35が判断すると、コントローラ35は、電流源34から加熱部20に電流を供給する。加熱部20の第2温度が上昇して、気泡生成部23が加熱される。気泡生成部23に、気泡25が生成される。気泡25の周囲の液体17にマランゴニ対流26が生成される。マランゴニ対流26は、液体17の流れ27を生じさせる。発熱体3で発生した熱は、容器10及び液体17を通して、放熱部材18に伝達される。こうして、発熱体3は冷却される。 Specifically, when the temperature of the heating element 3 rises beyond the appropriate operating temperature range of the heating element 3, the intensity of the output signal from the temperature sensor 33 becomes larger than the threshold value. When the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 supplies a current from the current source 34 to the heating unit 20. The second temperature of the heating unit 20 rises, and the bubble generation unit 23 is heated. Bubbles 25 are generated in the bubble generation unit 23. Marangoni convection 26 is generated in the liquid 17 around the bubbles 25. The Marangoni convection 26 creates a flow 27 of the liquid 17. The heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
 発熱体3の温度が発熱体3の適正動作温度範囲内になると、温度センサ33からの出力信号の強度は閾値以下になる。温度センサ33からの出力信号の強度は閾値以下であるとコントローラ35が判断すると、コントローラ35は、電流源34から加熱部20への電流の供給を停止する。加熱部20の第2温度が低下して、気泡生成部23の温度も低下する。気泡25が消滅する。マランゴニ対流26が消滅して、液体17の流れ27が減少する。そのため、発熱体3が過度に冷却されることが防止される。こうして、冷却装置1qは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 When the temperature of the heating element 3 is within the proper operating temperature range of the heating element 3, the intensity of the output signal from the temperature sensor 33 becomes equal to or less than the threshold value. When the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the supply of current from the current source 34 to the heating unit 20. The second temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases. Bubbles 25 disappear. The Marangoni convection 26 disappears and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled. In this way, the cooling device 1q can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 本実施の形態の実施例2の冷却装置1qの熱抵抗R2のシミュレーション結果(図18を参照)に示されるように、気泡生成部23上に気泡25があるときの単位面積当たりの熱抵抗R2は、気泡生成部23上に気泡25が無いときの単位面積当たりの熱抵抗R2より小さい。そのため、温度センサ33の出力信号に基づいて加熱部20の第2温度を調整することによって、冷却装置1qの冷却能力が調整され得る。熱抵抗R2は、取り付け面11cを含む第1壁11の第1内壁面11bと放熱部材18が取り付けられる第2壁12の第2内壁面12bとの間の、冷却装置1qの単位面積当たりの熱抵抗を意味する。 As shown in the simulation result (see FIG. 18) of the thermal resistance R 2 of the cooling device 1q of the cooling device 1q of the present embodiment, the thermal resistance per unit area when the bubble 25 is on the bubble generating portion 23. R 2 is smaller than the thermal resistance R 2 per unit area when there are no bubbles 25 on the bubble generating portion 23. Therefore, the cooling capacity of the cooling device 1q can be adjusted by adjusting the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33. The thermal resistance R 2 is per unit area of the cooling device 1q between the first inner wall surface 11b of the first wall 11 including the mounting surface 11c and the second inner wall surface 12b of the second wall 12 to which the heat radiating member 18 is mounted. Means the thermal resistance of.
 さらに、気泡生成部23上に気泡25があるとき、流路の厚さtが増加しても、単位面積当たりの熱抵抗R2はほとんど増加しない。これに対し、気泡生成部23上に気泡25が無いとき、流路の厚さtが増加すると、単位面積当たりの熱抵抗R2は大きく増加する。その理由は、以下のとおりである。 Further, when the bubble 25 is on the bubble generating portion 23, the thermal resistance R 2 per unit area hardly increases even if the thickness t of the flow path increases. On the other hand, when the bubble 25 is not on the bubble generating portion 23 and the thickness t of the flow path increases, the thermal resistance R 2 per unit area increases significantly. The reason is as follows.
 気泡生成部23上に気泡25があるとき、気泡25の周囲の液体17にマランゴニ対流26が生成される。マランゴニ対流26に起因して、液体17は、容器10内を高速に循環し、かつ、容器10内で攪拌される。容器10内を高速に循環しかつ容器10内で攪拌される液体17は、発熱体3で発生する熱を拡げる能力が高く、かつ、大きな熱伝達率を有する。そのため、気泡生成部23上に気泡25があるとき、流路の厚さtが増加しても、単位面積当たりの熱抵抗R2はほとんど増加しない。流路の厚さtは、第1内壁面11bと第2内壁面12bとの間の距離である。図18に示されるように、流路の厚さtが大きいほど、冷却装置1qの冷却能力はより広い範囲にわたって制御され得る。 When the bubble 25 is on the bubble generating portion 23, the marangoni convection 26 is generated in the liquid 17 around the bubble 25. Due to the Marangoni convection 26, the liquid 17 circulates in the container 10 at high speed and is agitated in the container 10. The liquid 17 that circulates in the container 10 at high speed and is agitated in the container 10 has a high ability to spread the heat generated by the heating element 3 and has a large heat transfer coefficient. Therefore, when the bubble 25 is on the bubble generating portion 23, the thermal resistance R 2 per unit area hardly increases even if the thickness t of the flow path increases. The thickness t of the flow path is the distance between the first inner wall surface 11b and the second inner wall surface 12b. As shown in FIG. 18, the larger the thickness t of the flow path, the wider the cooling capacity of the cooling device 1q can be controlled.
 図19に示される本実施の形態の第1変形例の冷却装置1rのように、温度センサ33は、発熱体3の第1温度を間接的に測定してもよい。一例では、図19に示されるように、温度センサ33は、放熱部材18に取り付けられており、放熱部材18の温度を測定してもよい。発熱体3の第1温度が高くなるほど、放熱部材18の温度は高くなる。温度センサ33が放熱部材18の温度を測定することによって、温度センサ33は、発熱体3の第1温度を間接的に測定することができる。別の例では、温度センサ33は、容器10に取り付けられており、容器10の温度を測定してもよい。発熱体3の第1温度が高くなるほど、容器10の温度は高くなる。温度センサ33が容器10の温度を測定することによって、温度センサ33は、発熱体3の第1温度を間接的に測定することができる。 The temperature sensor 33 may indirectly measure the first temperature of the heating element 3 as in the cooling device 1r of the first modification of the present embodiment shown in FIG. In one example, as shown in FIG. 19, the temperature sensor 33 is attached to the heat radiating member 18 and may measure the temperature of the heat radiating member 18. The higher the first temperature of the heating element 3, the higher the temperature of the heat radiating member 18. By measuring the temperature of the heat radiating member 18 by the temperature sensor 33, the temperature sensor 33 can indirectly measure the first temperature of the heating element 3. In another example, the temperature sensor 33 is attached to the container 10 and may measure the temperature of the container 10. The higher the first temperature of the heating element 3, the higher the temperature of the container 10. By measuring the temperature of the container 10 by the temperature sensor 33, the temperature sensor 33 can indirectly measure the first temperature of the heating element 3.
 図20に示される本実施の形態の第2変形例の冷却装置1sでは、図4に示される実施の形態1の第1変形例の冷却装置1bのように、加熱部20は、半導体レーザのような光源21からの光によって照射される光吸収膜であってもよい。コントローラ35は、光源21に、電気的に接続されている。コントローラ35は、温度センサ33の出力信号に基づいて、光源21から出力される光のパワーを制御する。こうして、コントローラ35は、温度センサ33の出力信号に基づいて、加熱部20の第2温度を調整する。 In the cooling device 1s of the second modification of the present embodiment shown in FIG. 20, the heating unit 20 is a semiconductor laser as in the cooling device 1b of the first modification of the first embodiment shown in FIG. It may be a light absorption film irradiated with light from such a light source 21. The controller 35 is electrically connected to the light source 21. The controller 35 controls the power of the light output from the light source 21 based on the output signal of the temperature sensor 33. In this way, the controller 35 adjusts the second temperature of the heating unit 20 based on the output signal of the temperature sensor 33.
 具体的には、温度センサ33からの出力信号の強度は閾値より大きいとコントローラ35が判断すると、コントローラ35は、光源21から出力される光のパワーを増加させる。光源21からの光が照射される加熱部20の温度が上昇して、気泡生成部23が加熱される。気泡生成部23に、気泡25が生成される。気泡25の周囲の液体17にマランゴニ対流26が生成される。マランゴニ対流26は、液体17の流れ27を生じさせる。発熱体3で発生した熱は、容器10及び液体17を通して、放熱部材18に伝達される。こうして、発熱体3は冷却される。 Specifically, when the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 increases the power of the light output from the light source 21. The temperature of the heating unit 20 irradiated with the light from the light source 21 rises, and the bubble generation unit 23 is heated. Bubbles 25 are generated in the bubble generation unit 23. Marangoni convection 26 is generated in the liquid 17 around the bubbles 25. The Marangoni convection 26 creates a flow 27 of the liquid 17. The heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
 温度センサ33からの出力信号の強度は閾値以下であるとコントローラ35が判断すると、コントローラ35は、光源21からの光の出力を停止する。加熱部20の温度が低下して、気泡生成部23の温度も低下する。気泡25が消滅する。マランゴニ対流26が消滅して、液体17の流れ27は減少する。そのため、発熱体3が過度に冷却されることが防止される。こうして、冷却装置1sは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 When the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the output of light from the light source 21. The temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases. Bubbles 25 disappear. The Marangoni convection 26 disappears and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled. In this way, the cooling device 1s can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 本実施の形態の冷却装置1q,1r,1sの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effects of the cooling devices 1q, 1r, 1s of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1q,1r,1sは、発熱体3の第1温度を直接的または間接的に測定する温度センサ33と、温度センサ33の出力信号に基づいて第1加熱部(加熱部20)の第2温度を調整するコントローラ35とをさらに備える。そのため、発熱体3の発熱量または発熱体3の周囲温度に応じて、冷却装置1q,1r,1sは発熱体3を適切に冷却することができる。冷却装置1q,1r,1sは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 In the cooling devices 1q, 1r, 1s of the present embodiment, the temperature sensor 33 that directly or indirectly measures the first temperature of the heating element 3 and the first heating unit (heating) based on the output signal of the temperature sensor 33. A controller 35 for adjusting the second temperature of the unit 20) is further provided. Therefore, the cooling devices 1q, 1r, 1s can appropriately cool the heating element 3 according to the amount of heat generated by the heating element 3 or the ambient temperature of the heating element 3. The cooling devices 1q, 1r, 1s can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 実施の形態10.
 図21を参照して、実施の形態10の冷却装置1tを説明する。本実施の形態の冷却装置1tは、実施の形態1の冷却装置1と同様の構成を備えるが、主に以下の点で、実施の形態1の冷却装置1と異なっている。
Embodiment 10.
The cooling device 1t of the tenth embodiment will be described with reference to FIG. 21. The cooling device 1t of the present embodiment has the same configuration as the cooling device 1 of the first embodiment, but is different from the cooling device 1 of the first embodiment mainly in the following points.
 本実施の形態の冷却装置1tは、加熱部20tと、気泡生成部23tとをさらに備える。 The cooling device 1t of the present embodiment further includes a heating unit 20t and a bubble generation unit 23t.
 加熱部20tは、加熱部20と同様に構成されている。例えば、加熱部20tは、容器10に支持されている。一例では、加熱部20tは、第2外壁面12a上に設けられている。加熱部20tは、例えば、マイクロヒータまたは薄膜ヒータである。加熱部20tは、電流源34に電気的に接続されている。電流源34から、加熱部20tに電流を供給することによって、加熱部20tにおいて熱が発生する。この熱は、容器10(第1壁11)を通って、気泡生成部23tに伝導する。こうして、加熱部20tは、気泡生成部23tを加熱する。 The heating unit 20t is configured in the same manner as the heating unit 20. For example, the heating unit 20t is supported by the container 10. In one example, the heating unit 20t is provided on the second outer wall surface 12a. The heating unit 20t is, for example, a micro heater or a thin film heater. The heating unit 20t is electrically connected to the current source 34. By supplying a current from the current source 34 to the heating unit 20t, heat is generated in the heating unit 20t. This heat is conducted to the bubble generating portion 23t through the container 10 (first wall 11). In this way, the heating unit 20t heats the bubble generation unit 23t.
 加熱部20tの面積は、1.0mm2以下の面積を有している。加熱部20tの面積は、0.5mm2以下であってもよく、0.2mm2以下であってもよく、0.2mm2以下であってもよい。本実施の形態では、加熱部20tの面積は、第1外壁面11aの平面視における加熱部20tの面積である。加熱部20tの面積は発熱体3の面積より小さく、かつ、加熱部20tの厚さは発熱体3の厚さより小さい。加熱部20tの面積は、取り付け面11cの面積より小さい。 The area of the heating unit 20t has an area of 1.0 mm 2 or less. The area of the heating portion 20t may be in 0.5 mm 2 or less, may also be 0.2 mm 2 or less, and may be 0.2 mm 2 or less. In the present embodiment, the area of the heating portion 20t is the area of the heating portion 20t in the plan view of the first outer wall surface 11a. The area of the heating unit 20t is smaller than the area of the heating element 3, and the thickness of the heating unit 20t is smaller than the thickness of the heating element 3. The area of the heating portion 20t is smaller than the area of the mounting surface 11c.
 加熱部20tで発生する熱の量は、発熱体3で発生する熱の量に対して無視し得る。加熱部20tで発生する熱の量は、例えば、発熱体3で発生する熱の量の二十分の一以下である。加熱部20tで発生する熱の量は、発熱体3で発生する熱の量の百分の一以下であってもよい。加熱部20tで発生する熱の量は、例えば、50mW以下である。加熱部20tで発生する熱の量は、30mW以下であってもよい。発熱体3で発生する熱の量は、例えば、1W以上である。発熱体3で発生する熱の量は、100W以上であってもよい。 The amount of heat generated by the heating unit 20t can be ignored with respect to the amount of heat generated by the heating element 3. The amount of heat generated by the heating unit 20t is, for example, less than one-twentieth of the amount of heat generated by the heating element 3. The amount of heat generated by the heating unit 20t may be one-hundredth or less of the amount of heat generated by the heating element 3. The amount of heat generated by the heating unit 20t is, for example, 50 mW or less. The amount of heat generated by the heating unit 20t may be 30 mW or less. The amount of heat generated by the heating element 3 is, for example, 1 W or more. The amount of heat generated by the heating element 3 may be 100 W or more.
 加熱部20tは、加熱部20から離間されている。加熱部20と加熱部20tとの間の間隔は、例えば、10mm以下である。加熱部20と加熱部20tとの間の間隔は、5mm以下であってもよく、3mm以下であってもよい。 The heating unit 20t is separated from the heating unit 20. The distance between the heating unit 20 and the heating unit 20t is, for example, 10 mm or less. The distance between the heating unit 20 and the heating unit 20t may be 5 mm or less, or may be 3 mm or less.
 気泡生成部23tは、気泡生成部23と同様に構成されている。例えば、気泡生成部23tは、容器10に支持されている。一例では、気泡生成部23tは、第1内壁面11b上に設けられている。気泡生成部23tは、液体17に接触している。気泡生成部23tは、例えば、気泡生成膜である。気泡生成部23tは、例えば、銅またはアルミニウムで形成されている。気泡生成部23tは、容器10と異なる材料で形成されてもよいし、容器10と同じ材料で形成されてもよい。 The bubble generation unit 23t is configured in the same manner as the bubble generation unit 23. For example, the bubble generation unit 23t is supported by the container 10. In one example, the bubble generating portion 23t is provided on the first inner wall surface 11b. The bubble generation unit 23t is in contact with the liquid 17. The bubble generation unit 23t is, for example, a bubble generation film. The bubble generating portion 23t is made of, for example, copper or aluminum. The bubble generating portion 23t may be formed of a material different from that of the container 10, or may be formed of the same material as the container 10.
 気泡生成部23tの面積(気泡生成部23tの気泡固定面の面積)は、1.0mm2以下の面積を有している。気泡生成部23tの面積は、0.5mm2以下であってもよく、0.2mm2以下であってもよく、0.1mm2以下であってもよい。本実施の形態では、気泡生成部23tの面積は、第1内壁面11bの平面視における気泡生成部23tの面積である。気泡生成部23tの面積(気泡生成部23tの気泡固定面)は発熱体3の面積より小さく、かつ、気泡生成部23tの厚さは発熱体3の厚さより小さい。気泡生成部23tの面積は、取り付け面11cの面積より小さい。 The area of the bubble generating portion 23t (the area of the bubble fixing surface of the bubble generating portion 23t) has an area of 1.0 mm 2 or less. The area of the bubble generating portion 23t may be 0.5 mm 2 or less, 0.2 mm 2 or less, or 0.1 mm 2 or less. In the present embodiment, the area of the bubble generating portion 23t is the area of the bubble generating portion 23t in the plan view of the first inner wall surface 11b. The area of the bubble generating section 23t (the bubble fixing surface of the bubble generating section 23t) is smaller than the area of the heating element 3, and the thickness of the bubble generating section 23t is smaller than the thickness of the heating element 3. The area of the bubble generating portion 23t is smaller than the area of the mounting surface 11c.
 気泡生成部23tは、加熱部20tによって加熱されて、気泡25tを液体17中に生成する。気泡25tは、気泡生成部23tに固定されている。気泡25tは、微小な気泡である。気泡25tの直径は、例えば、100μm以下である。気泡25tの直径は、例えば、10μm以上である。気泡25tの周囲の液体17に、マランゴニ対流26tが生成される。 The bubble generation unit 23t is heated by the heating unit 20t to generate bubbles 25t in the liquid 17. The bubble 25t is fixed to the bubble generation unit 23t. The bubble 25t is a minute bubble. The diameter of the bubble 25t is, for example, 100 μm or less. The diameter of the bubble 25t is, for example, 10 μm or more. Marangoni convection 26t is generated in the liquid 17 around the bubble 25t.
 気泡生成部23tは、気泡生成部23から離間されている。気泡生成部23と気泡生成部23tとの間の間隔は、例えば、10mm以下である。気泡生成部23と気泡生成部23tとの間の間隔は、5mm以下であってもよく、3mm以下であってもよい。そのため、気泡生成部23と気泡生成部23tとが協働して、液体17の流れ27を生成し、かつ、液体17を攪拌することができる。 The bubble generation unit 23t is separated from the bubble generation unit 23. The distance between the bubble generating section 23 and the bubble generating section 23t is, for example, 10 mm or less. The distance between the bubble generating section 23 and the bubble generating section 23t may be 5 mm or less, or may be 3 mm or less. Therefore, the bubble generation unit 23 and the bubble generation unit 23t can cooperate to generate the flow 27 of the liquid 17 and agitate the liquid 17.
 本実施の形態の冷却装置1tは、実施の形態9の冷却装置1qと同様に、温度センサ33と、コントローラ35とをさらに備える。 The cooling device 1t of the present embodiment further includes a temperature sensor 33 and a controller 35, similarly to the cooling device 1q of the ninth embodiment.
 温度センサ33は、実施の形態9の温度センサ33と同様に、発熱体3の第1温度を直接的に測定する。温度センサ33は、実施の形態9の第1変形例の温度センサ33と同様に、発熱体3の第1温度を間接的に測定してもよい。電流源34は、加熱部20と加熱部20tとに電気的に接続されている。コントローラ35は、温度センサ33の出力信号に基づいて、加熱部20の第2温度と加熱部20tの第3温度とを調整する。 The temperature sensor 33 directly measures the first temperature of the heating element 3 in the same manner as the temperature sensor 33 of the ninth embodiment. The temperature sensor 33 may indirectly measure the first temperature of the heating element 3 in the same manner as the temperature sensor 33 of the first modification of the ninth embodiment. The current source 34 is electrically connected to the heating unit 20 and the heating unit 20t. The controller 35 adjusts the second temperature of the heating unit 20 and the third temperature of the heating unit 20t based on the output signal of the temperature sensor 33.
 具体的には、発熱体3の温度が発熱体3の適正動作温度範囲を超えて上昇すると、温度センサ33からの出力信号の強度は閾値より大きくなる。温度センサ33からの出力信号の強度は閾値より大きいとコントローラ35が判断すると、コントローラ35は、電流源34から加熱部20と加熱部20tとに電流を供給する。加熱部20の第2温度が上昇して、気泡生成部23が加熱される。加熱部20tの第3温度が上昇して、気泡生成部23tが加熱される。気泡生成部23に気泡25が生成されるとともに、気泡生成部23tに気泡25tが生成される。気泡25の周囲の液体17にマランゴニ対流26が生成される。気泡25tの周囲の液体17にマランゴニ対流26tが生成される。マランゴニ対流26とマランゴニ対流26tとは、液体17の流れ27を生じさせる。発熱体3で発生した熱は、容器10及び液体17を通して、放熱部材18に伝達される。こうして、発熱体3は冷却される。 Specifically, when the temperature of the heating element 3 rises beyond the appropriate operating temperature range of the heating element 3, the intensity of the output signal from the temperature sensor 33 becomes larger than the threshold value. When the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is larger than the threshold value, the controller 35 supplies a current from the current source 34 to the heating unit 20 and the heating unit 20t. The second temperature of the heating unit 20 rises, and the bubble generation unit 23 is heated. The third temperature of the heating unit 20t rises, and the bubble generation unit 23t is heated. Bubbles 25 are generated in the bubble generation unit 23, and bubbles 25t are generated in the bubble generation unit 23t. Marangoni convection 26 is generated in the liquid 17 around the bubbles 25. Marangoni convection 26t is generated in the liquid 17 around the bubble 25t. The Marangoni convection 26 and the Marangoni convection 26t give rise to the flow 27 of the liquid 17. The heat generated by the heating element 3 is transferred to the heat radiating member 18 through the container 10 and the liquid 17. In this way, the heating element 3 is cooled.
 発熱体3の温度が発熱体3の適正動作温度範囲内になると、温度センサ33からの出力信号の強度は閾値以下になる。温度センサ33からの出力信号の強度は閾値以下であるとコントローラ35が判断すると、コントローラ35は、電流源34から加熱部20及び加熱部20tへの電流の供給を停止する。加熱部20の第2温度が低下して、気泡生成部23の温度も低下する。加熱部20tの第3温度が低下して、気泡生成部23tの温度も低下する。気泡25と気泡25tとは消滅する。マランゴニ対流26及びマランゴニ対流26tが消滅して、液体17の流れ27が減少する。そのため、発熱体3が過度に冷却されることが防止される。こうして、冷却装置1tは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 When the temperature of the heating element 3 is within the proper operating temperature range of the heating element 3, the intensity of the output signal from the temperature sensor 33 becomes equal to or less than the threshold value. When the controller 35 determines that the intensity of the output signal from the temperature sensor 33 is equal to or less than the threshold value, the controller 35 stops the supply of current from the current source 34 to the heating unit 20 and the heating unit 20t. The second temperature of the heating unit 20 decreases, and the temperature of the bubble generation unit 23 also decreases. The third temperature of the heating unit 20t decreases, and the temperature of the bubble generation unit 23t also decreases. The bubble 25 and the bubble 25t disappear. The Marangoni convection 26 and the Marangoni convection 26t disappear, and the flow 27 of the liquid 17 decreases. Therefore, it is prevented that the heating element 3 is excessively cooled. In this way, the cooling device 1t can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 図22を参照して、本実施の形態の変形例の冷却装置1uを説明する。冷却装置1uでは、加熱部20の第2温度と加熱部20tの第3温度とは互いに独立して調整され得る。 With reference to FIG. 22, the cooling device 1u of the modified example of the present embodiment will be described. In the cooling device 1u, the second temperature of the heating unit 20 and the third temperature of the heating unit 20t can be adjusted independently of each other.
 具体的には、冷却装置1uは、電流源34に加えて、電流源34tを備える。コントローラ35は、電流源34と電流源34tとに、電気的に接続されている。電流源34は、加熱部20に電気的に接続されている。電流源34tは、加熱部20tに電気的に接続されている。コントローラ35は、温度センサ33の出力信号に基づいて、電流源34から加熱部20に供給される電流と、電流源34tから加熱部20tに供給される電流とを制御する。こうして、コントローラ35は、温度センサ33の出力信号に基づいて、加熱部20の第2温度と加熱部20tの第3温度とは互いに独立して調整することができる。 Specifically, the cooling device 1u includes a current source 34t in addition to the current source 34. The controller 35 is electrically connected to the current source 34 and the current source 34t. The current source 34 is electrically connected to the heating unit 20. The current source 34t is electrically connected to the heating unit 20t. The controller 35 controls the current supplied from the current source 34 to the heating unit 20 and the current supplied from the current source 34t to the heating unit 20t based on the output signal of the temperature sensor 33. In this way, the controller 35 can adjust the second temperature of the heating unit 20 and the third temperature of the heating unit 20t independently of each other based on the output signal of the temperature sensor 33.
 そのため、気泡25の生成と気泡25tの生成とを独立して制御することができる。マランゴニ対流26とマランゴニ対流26tとを独立して制御することができる。液体17に多様な流れ27を作り出すことができる。発熱体3の種類または発熱体3の周囲温度に応じて、発熱体3をより効率的にまたはより適切に冷却することができる。 Therefore, the generation of the bubble 25 and the generation of the bubble 25t can be controlled independently. The Marangoni convection 26 and the Marangoni convection 26t can be controlled independently. A variety of flows 27 can be created in the liquid 17. Depending on the type of heating element 3 or the ambient temperature of the heating element 3, the heating element 3 can be cooled more efficiently or more appropriately.
 例えば、コントローラ35は、加熱部20と加熱部20tとに交互に電流を供給して、気泡25と気泡25tとが交互に生成されてもよい。マランゴニ対流26とマランゴニ対流26tとが交互に生成されるため、液体17は、より激しく攪拌される。液体17の熱伝達能力が増加する。発熱体3で発生した熱は、容器10(例えば、容器10の第1壁11)及び液体17によって効率的に冷却される。 For example, the controller 35 may alternately supply an electric current to the heating unit 20 and the heating unit 20t to alternately generate the bubbles 25 and the bubbles 25t. Since the Marangoni convection 26 and the Marangoni convection 26t are alternately generated, the liquid 17 is agitated more violently. The heat transfer capacity of the liquid 17 is increased. The heat generated by the heating element 3 is efficiently cooled by the container 10 (for example, the first wall 11 of the container 10) and the liquid 17.
 本実施の形態及びその変形例の冷却装置1t,1uでは、気泡生成部23,23tの数は二つであり、かつ、加熱部20,20tの数は二つであるが、気泡生成部23,23tの数は三つ以上であり、かつ、加熱部20,20tの数は三つ以上であってもよい。 In the cooling devices 1t and 1u of the present embodiment and its modifications, the number of bubble generating units 23 and 23t is two, and the number of heating units 20 and 20t is two, but the number of bubble generating units 23 is two. , 23t may be three or more, and the heating portions 20, 20t may be three or more.
 本実施の形態の冷却装置1t,1uの効果は、実施の形態1の冷却装置1の効果に加えて、以下の効果を奏する。 The effects of the cooling devices 1t and 1u of the present embodiment have the following effects in addition to the effects of the cooling device 1 of the first embodiment.
 本実施の形態の冷却装置1t,1uは、第2気泡生成部(気泡生成部23t)と、第2加熱部(加熱部20t)とをさらに備える。第2気泡生成部は、容器10に支持されており、かつ、液体17に接触している。第2加熱部は、第2気泡生成部を加熱する。第2気泡生成部は、第2気泡生成部に固定されている第2気泡(気泡25t)を液体17中に生成する。第2気泡の周囲の液体17に第2マランゴニ対流(マランゴニ対流26t)が生成される。そのため、液体17の流れ27をより速くし得る。液体17は、より激しく攪拌され得る。冷却装置1t,1uは、発熱体3をより効率的に冷却することができる。 The cooling devices 1t and 1u of the present embodiment further include a second bubble generating section (bubble generating section 23t) and a second heating section (heating section 20t). The second bubble generating portion is supported by the container 10 and is in contact with the liquid 17. The second heating unit heats the second bubble generation unit. The second bubble generation unit generates a second bubble (bubble 25t) fixed to the second bubble generation unit in the liquid 17. A second Marangoni convection (Marangoni convection 26t) is generated in the liquid 17 around the second bubble. Therefore, the flow 27 of the liquid 17 can be made faster. The liquid 17 can be agitated more violently. The cooling devices 1t and 1u can cool the heating element 3 more efficiently.
 本実施の形態の冷却装置1t,1uは、発熱体3の第1温度を直接的または間接的に測定する温度センサ33と、温度センサ33の出力信号に基づいて第1加熱部(加熱部20)の第2温度と第2加熱部(加熱部20t)の第3温度とを調整するコントローラ35とをさらに備える。そのため、発熱体3の種類または発熱体3の周囲温度に応じて、発熱体3をより効率的にまたはより適切に冷却することができる。冷却装置1t,1uは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 In the cooling devices 1t and 1u of the present embodiment, the temperature sensor 33 that directly or indirectly measures the first temperature of the heating element 3 and the first heating unit (heating unit 20) based on the output signal of the temperature sensor 33. ), And a controller 35 for adjusting the second temperature of the second heating unit (heating unit 20t). Therefore, the heating element 3 can be cooled more efficiently or more appropriately depending on the type of the heating element 3 or the ambient temperature of the heating element 3. The cooling devices 1t and 1u can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 本実施の形態の冷却装置1uでは、第1加熱部(加熱部20)の第2温度と第2加熱部(加熱部20t)の第3温度とは互いに独立して調整され得る。そのため、液体17に多様な流れ27を作り出すことができる。冷却装置1uは、発熱体3の種類または発熱体3の周囲温度に応じて、発熱体3をより効率的にまたはより適切に冷却することができる。冷却装置1uは、発熱体3の温度を発熱体3の適正動作温度範囲内に保つことができる。 In the cooling device 1u of the present embodiment, the second temperature of the first heating unit (heating unit 20) and the third temperature of the second heating unit (heating unit 20t) can be adjusted independently of each other. Therefore, various flows 27 can be created in the liquid 17. The cooling device 1u can cool the heating element 3 more efficiently or more appropriately depending on the type of the heating element 3 or the ambient temperature of the heating element 3. The cooling device 1u can keep the temperature of the heating element 3 within the proper operating temperature range of the heating element 3.
 今回開示された実施の形態1から実施の形態10及びそれらの変形例はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1から実施の形態10及びそれらの変形例の少なくとも2つを組み合わせてもよい。例えば、実施の形態1及び実施の形態3から実施の形態10及びこれらの変形例において、実施の形態2のように、第1気泡生成部の気泡固定面に凹部24または粗面が形成されてもよい。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be considered that the first to tenth embodiments disclosed this time and their variations are exemplary in all respects and not restrictive. As long as there is no contradiction, at least two of the first to tenth embodiments disclosed this time and variations thereof may be combined. For example, in the first embodiment and the third embodiment to the tenth embodiment and the modified examples thereof, as in the second embodiment, the concave portion 24 or the rough surface is formed on the bubble fixing surface of the first bubble generating portion. May be good. The scope of this disclosure is set forth by the claims rather than the description above and is intended to include all modifications within the meaning and scope of the claims.
 1,1b,1c,1d,1e,1f,1g,1h,1i,1j,1k,1m,1n,1p,1q,1r,1s,1t,1u 冷却装置、3 発熱体、3p 中心線、10 容器、11 第1壁、11a 第1外壁面、11b 第1内壁面、11c 取り付け面、11d 第1壁ベース部材、11e 高熱伝導壁部分、11f,12f 低熱伝導壁部分、11p,12p 交点、12 第2壁、12a 第2外壁面、12b 第2内壁面、12d 第2壁ベース部材、12q 地点、13 第3壁、13b 熱伝導フィン、17 液体、18 放熱部材、20,20t 加熱部、21 光源、23,23t 気泡生成部、24 凹部、25,25t 気泡、26,26t マランゴニ対流、27 流れ、28 低熱伝導層、30 熱伝導部材、30e 熱伝達部材、33 温度センサ、34,34t 電流源、35 コントローラ。 1,1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1m, 1n, 1p, 1q, 1r, 1s, 1t, 1u cooling device, 3 heating element, 3p center line, 10 container , 11 1st wall, 11a 1st outer wall surface, 11b 1st inner wall surface, 11c mounting surface, 11d 1st wall base member, 11e high heat conduction wall part, 11f, 12f low heat conduction wall part, 11p, 12p intersection, 12th 2 wall, 12a 2nd outer wall surface, 12b 2nd inner wall surface, 12d 2nd wall base member, 12q point, 13 3rd wall, 13b heat conductive fin, 17 liquid, 18 heat dissipation member, 20, 20t heating part, 21 light source , 23, 23t bubble generator, 24 recess, 25, 25t bubble, 26, 26t marangoni convection, 27 flow, 28 low heat conductive layer, 30 heat conductive member, 30e heat transfer member, 33 temperature sensor, 34, 34t current source, 35 controller.

Claims (17)

  1.  発熱体を冷却する冷却装置であって、前記冷却装置は、
     液体が封入されている容器と、
     前記容器に直接または熱伝達部材を介して取り付けられている放熱部材と、
     前記容器に支持されておりかつ前記液体に接触している第1気泡生成部と、
     前記第1気泡生成部を加熱する第1加熱部とを備え、
     前記容器は、前記発熱体が直接または熱伝導部材を介して取り付けられる取り付け面を含み、
     前記第1気泡生成部は、前記第1気泡生成部に固定されている第1気泡を前記液体中に生成し、
     前記第1気泡の周囲の前記液体に第1マランゴニ対流が生成される、冷却装置。
    A cooling device that cools a heating element, and the cooling device is
    A container containing a liquid and a container
    With a heat dissipation member attached directly to the container or via a heat transfer member,
    A first bubble generator that is supported by the container and is in contact with the liquid,
    A first heating unit for heating the first bubble generation unit is provided.
    The container comprises a mounting surface to which the heating element is attached, either directly or via a heat conductive member.
    The first bubble generation unit generates first bubbles fixed to the first bubble generation unit in the liquid.
    A cooling device in which a first Marangoni convection is generated in the liquid around the first bubble.
  2.  前記第1気泡生成部の気泡固定面に、前記第1気泡生成部を支持する前記容器の支持部材の表面より粗い粗面または凹部が形成されている、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein a rough surface or a recess that is coarser than the surface of the support member of the container that supports the first bubble generating portion is formed on the bubble fixing surface of the first bubble generating portion.
  3.  前記容器は、第1壁と、前記第1壁に対向する第2壁とを含み、
     前記第1壁は、前記液体に接触する第1内壁面と、前記第1内壁面とは反対側の第1外壁面とを含み、
     前記第2壁は、前記液体に接触しかつ前記第1内壁面に対向する第2内壁面と、前記第2内壁面とは反対側の第2外壁面とを含み、
     前記第1外壁面は、前記取り付け面を含み、
     前記第1気泡生成部は、前記第1内壁面上に設けられており、
     前記第1加熱部は、前記第1外壁面上に設けられており、
     前記放熱部材は、前記第2外壁面に直接または前記熱伝達部材を介して取り付けられている、請求項1または請求項2に記載の冷却装置。
    The container includes a first wall and a second wall facing the first wall.
    The first wall includes a first inner wall surface that comes into contact with the liquid and a first outer wall surface that is opposite to the first inner wall surface.
    The second wall includes a second inner wall surface that is in contact with the liquid and faces the first inner wall surface, and a second outer wall surface that is opposite to the second inner wall surface.
    The first outer wall surface includes the mounting surface.
    The first bubble generation unit is provided on the first inner wall surface.
    The first heating unit is provided on the first outer wall surface, and is provided on the first outer wall surface.
    The cooling device according to claim 1 or 2, wherein the heat radiating member is attached directly to the second outer wall surface or via the heat transfer member.
  4.  前記第1壁は、第1壁ベース部材と、前記第1壁ベース部材より高い熱伝導率を有する高熱伝導壁部分とを含み、
     前記高熱伝導壁部分は、前記第1気泡生成部と前記第1加熱部との間に設けられている、請求項3に記載の冷却装置。
    The first wall includes a first wall base member and a high thermal conductivity wall portion having a higher thermal conductivity than the first wall base member.
    The cooling device according to claim 3, wherein the high heat conduction wall portion is provided between the first bubble generation section and the first heating section.
  5.  前記第1壁は、前記第1壁ベース部材より低い熱伝導率を有する低熱伝導壁部分をさらに含み、
     前記低熱伝導壁部分は、前記第1壁ベース部材と前記高熱伝導壁部分との間に設けられている、請求項4に記載の冷却装置。
    The first wall further includes a low thermal conductivity wall portion having a lower thermal conductivity than the first wall base member.
    The cooling device according to claim 4, wherein the low thermal conductive wall portion is provided between the first wall base member and the high thermal conductive wall portion.
  6.  前記容器は、第1壁と、前記第1壁に対向する第2壁とを含み、
     前記第1壁は、前記液体に接触する第1内壁面と、前記第1内壁面とは反対側の第1外壁面とを含み、
     前記第2壁は、前記液体に接触しかつ前記第1内壁面に対向する第2内壁面と、前記第2内壁面とは反対側の第2外壁面とを含み、
     前記第1外壁面は、前記取り付け面を含み、
     前記第1加熱部は、前記第1内壁面上に設けられており、
     前記第1気泡生成部は、前記第1加熱部上に設けられており、
     前記放熱部材は、前記第2外壁面に直接または前記熱伝達部材を介して取り付けられている、請求項1または請求項2に記載の冷却装置。
    The container includes a first wall and a second wall facing the first wall.
    The first wall includes a first inner wall surface that comes into contact with the liquid and a first outer wall surface that is opposite to the first inner wall surface.
    The second wall includes a second inner wall surface that is in contact with the liquid and faces the first inner wall surface, and a second outer wall surface that is opposite to the second inner wall surface.
    The first outer wall surface includes the mounting surface.
    The first heating unit is provided on the first inner wall surface, and is provided on the first inner wall surface.
    The first bubble generation unit is provided on the first heating unit, and is provided on the first heating unit.
    The cooling device according to claim 1 or 2, wherein the heat radiating member is attached directly to the second outer wall surface or via the heat transfer member.
  7.  前記第1外壁面の第1平面視において、前記第1気泡生成部は前記発熱体に重なっている、請求項3から請求項6のいずれか一項に記載の冷却装置。 The cooling device according to any one of claims 3 to 6, wherein the first bubble generating unit overlaps the heating element in a first plan view of the first outer wall surface.
  8.  前記容器は、第1壁と、前記第1壁に対向する第2壁と、熱伝導フィンとを含み、
     前記第1壁は、前記液体に接触する第1内壁面と、前記第1内壁面とは反対側の第1外壁面とを含み、
     前記第2壁は、前記液体に接触しかつ前記第1内壁面に対向する第2内壁面と、前記第2内壁面とは反対側の第2外壁面とを含み、
     前記第1外壁面は、前記取り付け面を含み、
     前記熱伝導フィンは、前記第1内壁面に設けられており、
     前記第1加熱部は、前記熱伝導フィン上に設けられており、
     前記第1気泡生成部は、前記第1加熱部上に設けられており、
     前記放熱部材は、前記第2外壁面に直接または前記熱伝達部材を介して取り付けられている、請求項1または請求項2に記載の冷却装置。
    The container includes a first wall, a second wall facing the first wall, and heat conductive fins.
    The first wall includes a first inner wall surface that comes into contact with the liquid and a first outer wall surface that is opposite to the first inner wall surface.
    The second wall includes a second inner wall surface that is in contact with the liquid and faces the first inner wall surface, and a second outer wall surface that is opposite to the second inner wall surface.
    The first outer wall surface includes the mounting surface.
    The heat conductive fin is provided on the first inner wall surface, and the heat conductive fin is provided on the first inner wall surface.
    The first heating portion is provided on the heat conductive fin, and is provided on the heat conductive fin.
    The first bubble generation unit is provided on the first heating unit, and is provided on the first heating unit.
    The cooling device according to claim 1 or 2, wherein the heat radiating member is attached directly to the second outer wall surface or via the heat transfer member.
  9.  前記第1外壁面の第1平面視において、前記熱伝導フィンは前記発熱体に重なっている、請求項8に記載の冷却装置。 The cooling device according to claim 8, wherein the heat conductive fins overlap the heating element in a first plan view of the first outer wall surface.
  10.  前記容器は、第1壁と、前記第1壁に対向する第2壁とを含み、
     前記第1壁は、前記液体に接触する第1内壁面と、前記第1内壁面とは反対側の第1外壁面とを含み、
     前記第2壁は、前記液体に接触しかつ前記第1内壁面に対向する第2内壁面と、前記第2内壁面とは反対側の第2外壁面とを含み、
     前記第1外壁面は、前記取り付け面を含み、
     前記第1気泡生成部は、前記第2内壁面上に設けられており、
     前記第1加熱部は、前記第2外壁面上に設けられており、
     前記放熱部材は、前記第2外壁面に直接または前記熱伝達部材を介して取り付けられている、請求項1または請求項2に記載の冷却装置。
    The container includes a first wall and a second wall facing the first wall.
    The first wall includes a first inner wall surface that comes into contact with the liquid and a first outer wall surface that is opposite to the first inner wall surface.
    The second wall includes a second inner wall surface that is in contact with the liquid and faces the first inner wall surface, and a second outer wall surface that is opposite to the second inner wall surface.
    The first outer wall surface includes the mounting surface.
    The first bubble generation unit is provided on the second inner wall surface.
    The first heating unit is provided on the second outer wall surface, and is provided on the second outer wall surface.
    The cooling device according to claim 1 or 2, wherein the heat radiating member is attached directly to the second outer wall surface or via the heat transfer member.
  11.  前記第1加熱部と前記放熱部材との間に設けられており、かつ、前記第2壁及び前記放熱部材より低い熱伝導率を有する低熱伝導層をさらに備え、
     前記第2外壁面の第2平面視において、前記第1加熱部は前記放熱部材に重なっている、請求項10に記載の冷却装置。
    A low thermal conductive layer provided between the first heating portion and the heat radiating member and having a lower thermal conductivity than the second wall and the heat radiating member is further provided.
    The cooling device according to claim 10, wherein the first heating unit overlaps the heat radiating member in a second plan view of the second outer wall surface.
  12.  前記容器は、第1壁と、前記第1壁に対向する第2壁とを含み、
     前記第1壁は、前記液体に接触する第1内壁面と、前記第1内壁面とは反対側の第1外壁面とを含み、
     前記第2壁は、前記液体に接触しかつ前記第1内壁面に対向する第2内壁面と、前記第2内壁面とは反対側の第2外壁面とを含み、
     前記第1外壁面は、前記取り付け面を含み、
     前記第1加熱部は、前記第2内壁面上に設けられており、
     前記第1気泡生成部は、前記第1加熱部上に設けられており、
     前記放熱部材は、前記第2外壁面に直接または前記熱伝達部材を介して取り付けられている、請求項1または請求項2に記載の冷却装置。
    The container includes a first wall and a second wall facing the first wall.
    The first wall includes a first inner wall surface that comes into contact with the liquid and a first outer wall surface that is opposite to the first inner wall surface.
    The second wall includes a second inner wall surface that is in contact with the liquid and faces the first inner wall surface, and a second outer wall surface that is opposite to the second inner wall surface.
    The first outer wall surface includes the mounting surface.
    The first heating unit is provided on the second inner wall surface, and is provided on the second inner wall surface.
    The first bubble generation unit is provided on the first heating unit, and is provided on the first heating unit.
    The cooling device according to claim 1 or 2, wherein the heat radiating member is attached directly to the second outer wall surface or via the heat transfer member.
  13.  前記第2壁は、第2壁ベース部材と、前記第2壁ベース部材より低い熱伝導率を有する低熱伝導壁部分とを含み、
     前記低熱伝導壁部分は、前記第1加熱部と前記放熱部材との間に設けられており、
     前記第2外壁面の第2平面視において、前記第1加熱部は前記放熱部材に重なっている、請求項12に記載の冷却装置。
    The second wall includes a second wall base member and a low thermal conductivity wall portion having a lower thermal conductivity than the second wall base member.
    The low heat conduction wall portion is provided between the first heating portion and the heat dissipation member.
    The cooling device according to claim 12, wherein in the second plan view of the second outer wall surface, the first heating unit overlaps the heat radiating member.
  14.  前記発熱体の第1温度を直接的または間接的に測定する温度センサと、
     前記温度センサの出力信号に基づいて前記第1加熱部の第2温度を調整するコントローラとをさらに備える、請求項1から請求項13のいずれか一項に記載の冷却装置。
    A temperature sensor that directly or indirectly measures the first temperature of the heating element, and
    The cooling device according to any one of claims 1 to 13, further comprising a controller for adjusting the second temperature of the first heating unit based on the output signal of the temperature sensor.
  15.  前記容器に支持されておりかつ前記液体に接触している第2気泡生成部と、
     前記第2気泡生成部を加熱する第2加熱部とをさらに備え、
     前記第2気泡生成部は、前記第2気泡生成部に固定されている第2気泡を前記液体中に生成し、
     前記第2気泡の周囲の前記液体に第2マランゴニ対流が生成される、請求項1から請求項13のいずれか一項に記載の冷却装置。
    A second bubble generator that is supported by the container and is in contact with the liquid,
    Further provided with a second heating unit for heating the second bubble generation unit, the second heating unit is further provided.
    The second bubble generating section generates a second bubble fixed to the second bubble generating section in the liquid.
    The cooling device according to any one of claims 1 to 13, wherein a second marangoni convection is generated in the liquid around the second bubble.
  16.  前記発熱体の第1温度を直接的または間接的に測定する温度センサと、
     前記温度センサの出力信号に基づいて前記第1加熱部の第2温度と前記第2加熱部の第3温度とを調整するコントローラとをさらに備える、請求項15に記載の冷却装置。
    A temperature sensor that directly or indirectly measures the first temperature of the heating element, and
    The cooling device according to claim 15, further comprising a controller for adjusting the second temperature of the first heating unit and the third temperature of the second heating unit based on the output signal of the temperature sensor.
  17.  前記第1加熱部の前記第2温度と前記第2加熱部の前記第3温度とは互いに独立して調整され得る、請求項16に記載の冷却装置。 The cooling device according to claim 16, wherein the second temperature of the first heating unit and the third temperature of the second heating unit can be adjusted independently of each other.
PCT/JP2020/020698 2020-05-26 2020-05-26 Cooling device WO2021240631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527304A JP7118320B2 (en) 2020-05-26 2020-05-26 Cooling system
PCT/JP2020/020698 WO2021240631A1 (en) 2020-05-26 2020-05-26 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020698 WO2021240631A1 (en) 2020-05-26 2020-05-26 Cooling device

Publications (1)

Publication Number Publication Date
WO2021240631A1 true WO2021240631A1 (en) 2021-12-02

Family

ID=78723068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020698 WO2021240631A1 (en) 2020-05-26 2020-05-26 Cooling device

Country Status (2)

Country Link
JP (1) JP7118320B2 (en)
WO (1) WO2021240631A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258296A (en) * 1988-08-23 1990-02-27 Fujitsu Ltd Cooling device
JP2002533794A (en) * 1998-12-22 2002-10-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Temperature control device
JP2005277138A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Thermal diffusion device and cooling device of electronic part using the same
JP2008506526A (en) * 2004-07-19 2008-03-06 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Microfluidic circuit with working components
JP2008116381A (en) * 2006-11-07 2008-05-22 Tokyo Univ Of Agriculture & Technology Micropump
WO2015083256A1 (en) * 2013-12-04 2015-06-11 富士通株式会社 Cooling device employing mixed working fluid, and cooling device of electronic device
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102498A1 (en) 2006-03-06 2007-09-13 Tokyo University Of Science Educational Foundation Administrative Organization Method of ebullient cooling, ebullient cooling apparatus, flow channel structure and application product thereof
JP2017110568A (en) 2015-12-16 2017-06-22 国立大学法人横浜国立大学 Micro machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258296A (en) * 1988-08-23 1990-02-27 Fujitsu Ltd Cooling device
JP2002533794A (en) * 1998-12-22 2002-10-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Temperature control device
JP2005277138A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Thermal diffusion device and cooling device of electronic part using the same
JP2008506526A (en) * 2004-07-19 2008-03-06 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Microfluidic circuit with working components
JP2008116381A (en) * 2006-11-07 2008-05-22 Tokyo Univ Of Agriculture & Technology Micropump
WO2015083256A1 (en) * 2013-12-04 2015-06-11 富士通株式会社 Cooling device employing mixed working fluid, and cooling device of electronic device
WO2016151805A1 (en) * 2015-03-25 2016-09-29 三菱電機株式会社 Cooler, power conversion device, and cooling system

Also Published As

Publication number Publication date
JPWO2021240631A1 (en) 2021-12-02
JP7118320B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
EP1779052B1 (en) Heat transfer assembly
KR100786539B1 (en) Hand piece of controlling cooling temparature for cooling skin
CN2922219Y (en) Cooling temperature controlling device for solid laser device
KR20050081814A (en) Cooling system of electronic device and electronic device using the same
JP2005134396A (en) Device and method for thermoelectric cooling
KR20000068377A (en) Thermoelectric element and thermoelectric cooling or heating device provided with the same
TW200535596A (en) An apparatus and method for cooling electric device
JP2011054883A (en) Heat sink
JP2003324173A (en) Cooling device for semiconductor element
US20090030559A1 (en) System and method for cooling a heat-generating device
WO2021240631A1 (en) Cooling device
JP2000222072A (en) Cooling device
US10881034B2 (en) Passive nano-heat pipes for cooling and thermal management of electronics and power conversion devices
CN115663571B (en) Low-power-consumption heat dissipation cooling device and cooling method for laser
KR20080090136A (en) Skin care equipment
JPH06275752A (en) Cooling device for semiconductor device
KR20200064358A (en) Air cooling heat dissipation system for laser
US20070144199A1 (en) Method and apparatus of using an atomizer in a two-phase liquid vapor enclosure
JP2014116398A (en) Cooling apparatus
JP2009064810A (en) Heat exchanger, optical transmitting/receiving device, and optical circuit board
JP2006147924A (en) Temperature regulator
JP4325026B2 (en) Cooling device and electronic equipment
CN212111728U (en) A equipment that is used for derating test of module power
US6397944B1 (en) Heat dissipating apparatus and method for electronic components
Kwon et al. Additively manufactured impinging air jet cooler for high-power electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937571

Country of ref document: EP

Kind code of ref document: A1