WO2021240591A1 - Method for producing nitride semiconductor photocatalyst thin film - Google Patents

Method for producing nitride semiconductor photocatalyst thin film Download PDF

Info

Publication number
WO2021240591A1
WO2021240591A1 PCT/JP2020/020511 JP2020020511W WO2021240591A1 WO 2021240591 A1 WO2021240591 A1 WO 2021240591A1 JP 2020020511 W JP2020020511 W JP 2020020511W WO 2021240591 A1 WO2021240591 A1 WO 2021240591A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
gallium nitride
nitride semiconductor
nitride layer
producing
Prior art date
Application number
PCT/JP2020/020511
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 渦巻
紗弓 里
陽子 小野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022527273A priority Critical patent/JP7406167B2/en
Priority to PCT/JP2020/020511 priority patent/WO2021240591A1/en
Publication of WO2021240591A1 publication Critical patent/WO2021240591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Definitions

  • the present invention relates to a method for manufacturing a nitride semiconductor photocatalytic thin film.
  • the water decomposition reaction using a photocatalyst consists of a water oxidation reaction and a proton reduction reaction.
  • n-type photocatalyst material When the n-type photocatalyst material is irradiated with light, electrons and holes are generated and separated in the photocatalyst. Holes move to the surface of the photocatalytic material and contribute to the reduction reaction of protons. On the other hand, electrons move to the reduction electrode and contribute to the reduction reaction of protons. Ideally, such a redox reaction proceeds and a water splitting reaction occurs.
  • a conventional water decomposition device has an oxide tank and a reduction tank connected via a proton exchange membrane, and puts an aqueous solution and an oxidation electrode in the oxide tank, and puts an aqueous solution and a reduction electrode in the reduction tank.
  • the oxide electrode and the reduction electrode are electrically connected by a conducting wire.
  • the oxide electrode is, for example, a nitride semiconductor, titanium oxide, or amorphous silicon.
  • the reducing electrode is a metal or a metal compound, for example nickel, iron, gold, platinum, silver, copper, indium, titanium.
  • a water decomposition reaction is caused by irradiating the light source with light having a wavelength that can be absorbed by the material constituting the oxide electrode.
  • the wavelength that can be absorbed is 365 nm or less.
  • the light source is, for example, a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-solar light source, or sunlight, and these may be combined.
  • the water decomposition device as described above has many components and the reaction system is complicated, it is desired to realize a simpler reaction system and downsize the reaction system.
  • the photocatalyst thin film in the aqueous solution is irradiated with light from a light source to cause a water splitting reaction.
  • the photocatalytic thin film like the oxide electrode, is a nitride semiconductor, titanium oxide, or amorphous silicon.
  • a metal co-catalyst that promotes the decomposition reaction of water is supported on the surface of the photocatalyst thin film.
  • the reaction system of the device that produces hydrogen and oxygen by a single photocatalytic thin film is simple, and it is expected that the cost and size of the system will be reduced.
  • the oxide electrode and the photocatalyst thin film are semiconductor thin films, and for example, a gallium nitride thin film grown on a sapphire substrate is used.
  • a gallium nitride thin film grown on a sapphire substrate is used.
  • the gallium nitride thin film holes generated and separated under light irradiation are consumed in the etching reaction of gallium nitride itself at the same time as the oxidation reaction of water. Therefore, there is a problem that the light electrode deteriorates and the light energy conversion efficiency decreases with the light irradiation time.
  • an auxiliary catalyst for oxygen generation nickel oxide
  • the valence band of the gallium nitride semiconductor needs to be at a lower level than the valence band of nickel oxide.
  • the level of the valence band increases as the band gap narrows.
  • the valence band of nickel oxide produced by the conventional method is located at a lower level than the valence band of the visible responsive semiconductor photocatalyst thin film, and a barrier is created in which holes cannot move. Therefore, even if the light absorption rate is improved, there is a problem that holes cannot move due to the generated barrier and the hole does not function as a co-catalyst protective layer.
  • the present invention has been made in view of the above, and an object thereof is to improve efficiency and life in a single nitride semiconductor photocatalytic thin film having a high light absorption rate.
  • the method for producing a nitride semiconductor photocatalyst thin film is a method for producing a nitride semiconductor photocatalyst thin film that exerts a catalytic function by light irradiation and causes an oxidation-reduction reaction, and is an insulating or conductive substrate.
  • the first step of forming an n-type gallium nitride layer on the surface the second step of forming an indium gallium nitride layer on the surface of the n-type gallium nitride layer, and a metal layer on a part of the surface of the indium gallium nitride layer.
  • the third step of forming the indium gallium nitride the fourth step of heat-treating to form an ohmic bond at the interface between the indium gallium nitride layer and the metal layer, and p-type metal oxidation on a part of the surface of the indium gallium nitride layer. It has a fifth step of forming an object and a sixth step of heat-treating the p-type metal oxide.
  • efficiency and life can be improved in a single nitride semiconductor photocatalytic thin film having a high light absorption rate.
  • FIG. 1 is a cross-sectional view showing the configuration of a nitride semiconductor photocatalyst thin film produced by the method for producing a nitride semiconductor photocatalyst thin film of the present embodiment.
  • FIG. 2 is a diagram for explaining a metal layer dispersed and arranged on the surface of a nitride semiconductor photocatalyst thin film and a p-type metal oxide.
  • FIG. 3 is a flowchart showing a method for manufacturing the nitride semiconductor photocatalyst thin film of the present embodiment.
  • FIG. 4 is a diagram showing an outline of an apparatus for performing a redox reaction test.
  • FIG. 1 is a cross-sectional view showing the configuration of a nitride semiconductor photocatalyst thin film produced by the method for producing a nitride semiconductor photocatalyst thin film of the present embodiment.
  • the nitride semiconductor photocatalytic thin film of FIG. 1 is a nitride semiconductor photocatalytic thin film that exerts a catalytic function by irradiation with light in an aqueous solution to cause a redox reaction.
  • the nitride semiconductor photocatalyst thin film 1 shown in FIG. 1 is an insulating or conductive substrate 11, the surface of an n-type gallium nitride (n-GaN) layer 12 and an n-type gallium nitride layer 12 arranged on the surface of the substrate 11.
  • the indium gallium nitride (InGaN) layer 13 arranged above, the metal layer 14 forming an ohmic bond on a part of the surface of the indium gallium nitride layer 13, and the part of the surface of the indium gallium nitride layer 13 are dispersed and arranged.
  • a p-type metal oxide 15 is provided.
  • the holes generated in the indium gallium nitride layer 13 by light irradiation move to the p-type metal oxide 15. become able to.
  • the metal layer 14 and the p-type metal oxide 15 are dispersed and arranged on the indium gallium nitride layer 13. Specifically, as shown in FIG. 2, the metal layer 14 has a disk shape with a diameter of 10 ⁇ m and is dispersedly arranged at intervals of 210 ⁇ m.
  • the p-type metal oxide 15 has a disk shape with a diameter of 10 ⁇ m, and is dispersed and arranged with a space of 100 ⁇ m from the metal layer 14.
  • the n-type gallium nitride layer 12 is formed on the insulating or conductive substrate 11.
  • the n-type gallium nitride layer 12 may be formed by using a metalorganic vapor phase growth method (MOCVD).
  • step S2 the indium gallium nitride layer 13 is formed on the n-type gallium nitride layer 12.
  • the indium gallium nitride layer 13 may be formed by using MOCVD.
  • the metal layer 14 is formed on a part of the surface of the indium gallium nitride layer 13.
  • the metal layer 14 may be formed by a vapor deposition method or a sputtering method using a material having a co-catalytic function with respect to the indium gallium nitride layer 13.
  • step S4 the nitride semiconductor on which the metal layer 14 is formed is heat-treated in order to form an ohmic contact at the interface between the indium gallium nitride layer 13 and the metal layer 14.
  • the p-type metal oxide 15 is formed on a part of the surface of the indium gallium nitride layer 13.
  • the p-type metal oxide 15 may be formed by a vapor deposition method or a sputtering method using p—NiO.
  • step S6 the nitride semiconductor on which the p-type metal oxide 15 is formed is heat-treated.
  • the temperature of the heat treatment is preferably 200 ° C. or higher and 800 ° C. or lower.
  • Examples 1 to 5 are examples of a method for manufacturing a nitride semiconductor photocatalyst thin film in which the heat treatment temperature in step S6 is changed.
  • Examples 6 to 10 and Examples 11 to 15 are examples of a method for producing a nitride semiconductor photocatalytic thin film in Examples 1 to 5 in which the composition ratio of lithium is changed.
  • Example 16 is an example of a method for producing a nitride semiconductor photocatalyst thin film in which the composition ratio of lithium is changed in Example 1.
  • Examples 17 and 18 are examples of a method for producing a nitride semiconductor photocatalytic thin film in which the method for forming the p-type metal oxide 15 in step S5 of Examples 1 and 3 is changed.
  • Examples 19 and 20 are examples of a method for producing a nitride semiconductor photocatalytic thin film in which impurities are changed when producing p—NiO in Example 1.
  • step S5 of Examples 1 and 3 comparative examples 1 and 2 using NiO instead of p-NiO will also be described.
  • step S1 a silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch sapphire substrate by MOCVD to form an n-type gallium nitride layer 12.
  • a sapphire substrate was used as the substrate 11.
  • Ammonia gas and trimethylgallium were used as growth raw materials.
  • Silane gas was used as the n-type impurity source.
  • Hydrogen was used as the carrier gas sent into the growth furnace.
  • the film thickness of the n-type gallium nitride layer 12 was set to 2 ⁇ m, which is sufficient to absorb light.
  • the carrier density was 3 ⁇ 10 18 cm -3 .
  • step S2 indium gallium nitride (InGaN) having an indium composition ratio of 5% was grown on the n-type gallium nitride layer 12 by MOCVD to form the indium gallium nitride layer 13.
  • Ammonia gas, trimethylgallium, and trimethylindium were used as growth raw materials.
  • Hydrogen was used as the carrier gas sent into the growth furnace.
  • the film thickness of the indium gallium nitride layer 13 was set to 100 nm, which is sufficient to absorb light.
  • step S3 a disk-shaped metal layer 14 having a diameter of 10 ⁇ m was vacuum-deposited on the surface of the indium gallium nitride layer 13 at intervals of 210 ⁇ m.
  • Ti was laminated with a thickness of 25 nm, Al at 50 nm, Ti at 25 nm, and Pt at 100 nm in order from the semiconductor side.
  • step S4 the semiconductor thin film on which the metal layer 14 was formed was heat-treated at 800 ° C. for 30 seconds in a nitrogen atmosphere. By heat treatment, a pseudo ohmic contact was formed at the interface between the indium gallium nitride layer 13 and the metal layer 14.
  • step S5 a disk-shaped p-NiO having a diameter of 10 ⁇ m is vacuum-deposited at a film thickness of 2 nm on the surface of the indium gallium nitride layer 13 at intervals of 100 ⁇ m from the metal layer 14, and the metal layers 14 are deposited at intervals of 100 ⁇ m.
  • the p-type metal oxide 15 was formed so that the p-type metal oxide 15 and the p-type metal oxide 15 were alternately arranged.
  • the weights of the NiO powder and the lithium oxide powder are determined so that the composition ratio of Li becomes a desired value, and the NiO powder and the lithium oxide powder are mixed and electrically charged. It was produced by heat treatment in a furnace.
  • the weights of the NiO powder and the lithium oxide powder were determined so that the Li composition ratio was 1% (Ni composition ratio was 99%).
  • the volume resistivity of the obtained p-NiO powder was about 4 orders of magnitude lower than the volume resistivity of the NiO powder, and it was found that the NiO powder was p-shaped and the conductivity was improved.
  • step S6 the semiconductor thin film obtained in step S5 was heat-treated on a hot plate at 200 ° C. for 1 hour in an air atmosphere.
  • heat treatment may be performed in an electric furnace.
  • Example 1 the nitride semiconductor photocatalyst thin film of Example 1 was obtained.
  • Example 2 In the method for producing a nitride semiconductor photocatalytic thin film of Example 2, the heat treatment temperature was set to 500 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
  • Example 3 In the method for producing a nitride semiconductor photocatalytic thin film of Example 3, the heat treatment temperature was set to 800 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
  • Example 4 In the method for producing a nitride semiconductor photocatalytic thin film of Example 4, the heat treatment temperature was set to 100 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
  • Example 5 In the method for producing a nitride semiconductor photocatalytic thin film of Example 5, the heat treatment temperature was set to 900 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
  • Example 6 In the method for producing a nitride semiconductor photocatalytic thin film of Example 6, when the p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
  • Example 7 In the method for producing a nitride semiconductor photocatalytic thin film of Example 7, when the p—NiO used in step S5 of Example 2 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 2.
  • Example 8 In the method for producing a nitride semiconductor photocatalytic thin film of Example 8, when the p—NiO used in step S5 of Example 3 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 3.
  • Example 9 In the method for producing a nitride semiconductor photocatalytic thin film of Example 9, when the p—NiO used in step S5 of Example 4 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 4.
  • Example 10 In the method for producing a nitride semiconductor photocatalytic thin film of Example 10, when the p—NiO used in step S5 of Example 5 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 5.
  • Example 11 In the method for producing a nitride semiconductor photocatalytic thin film of Example 11, when p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
  • Example 12 In the method for producing a nitride semiconductor photocatalytic thin film of Example 12, when the p—NiO used in step S5 of Example 2 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 2.
  • Example 13 In the method for producing a nitride semiconductor photocatalytic thin film of Example 13, when the p—NiO used in step S5 of Example 3 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 3.
  • Example 14 In the method for producing a nitride semiconductor photocatalytic thin film of Example 14, when the p—NiO used in step S5 of Example 4 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 4.
  • Example 15 In the method for producing a nitride semiconductor photocatalyst thin film of Example 15, when the p—NiO used in step S5 of Example 5 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 5.
  • Example 16 In the method for producing a nitride semiconductor photocatalytic thin film of Example 16, when the p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 50% (the ratio of Li to Ni is 5: 5). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
  • Example 17 In the method for producing a nitride semiconductor photocatalytic thin film of Example 17, a target (sintered body) was prepared from p—NiO powder in step S5 of Example 1, and a p-type metal oxide 15 was formed by a sputtering method. In other respects, it is the same as in Example 1.
  • Example 18 In the method for producing a nitride semiconductor photocatalytic thin film of Example 18, a target (sintered body) was prepared from p—NiO powder in step S5 of Example 3, and a p-type metal oxide 15 was formed by a sputtering method. In other respects, it is the same as in Example 3.
  • Example 19 In the method for producing a nitride semiconductor photocatalytic thin film of Example 19, p—NiO prepared by using silver (Ag) as an impurity was vapor-deposited in step S5 of Example 1. In other respects, it is the same as in Example 1.
  • Example 20 In the method for producing a nitride semiconductor photocatalytic thin film of Example 20, p—NiO prepared by using potassium (K) as an impurity was vapor-deposited in step S5 of Example 1. In other respects, it is the same as in Example 1.
  • a reaction cell with a quartz window having an internal capacity of 150 ml was used as the photocatalyst tank 110, and the stirrer 120 and the aqueous solution 130 were placed in the photocatalyst tank 110.
  • As the aqueous solution 130 125 ml of a 1 mol / l potassium hydroxide aqueous solution was used.
  • the semiconductor photocatalytic thin films of Examples 1 to 20 and Comparative Examples 1 and 2 were immersed in the aqueous solution 130 so that the surface of the indium gallium nitride layer 13 forming the metal layer 14 and the p-type metal oxide 15 faces the light source 140. Fixed.
  • Nitrogen gas was bubbled at 200 ml / min for 30 minutes to complete defoaming and replacement with air, and then sealed with silicon Teflon septum.
  • the pressure in the photocatalyst tank 110 was set to atmospheric pressure (1 atm).
  • the light source 140 As the light source 140 , a 300 W high-voltage xenon lamp (wavelength 400 nm or more cut, illuminance 5 mW / cm 2 ) was used. The light from the light source 140 was uniformly applied to the semiconductor photocatalyst thin film from the outside of the quartz window of the photocatalyst tank 110.
  • the light irradiation area of the sample was 1 cm 2, and the aqueous solution 130 was stirred at the center position of the bottom of the photocatalyst tank 110 at a rotation speed of 250 rpm using a stirrer 120 and a stirrer.
  • the gas in the photocatalyst tank 110 was collected from the septum portion with a syringe, and the reaction product was analyzed with a gas chromatograph mass spectrometer. As a result, it was confirmed that hydrogen and oxygen were generated.
  • Table 1 shows the amounts of oxygen and hydrogen gas produced 1 hour and 10 hours after the light irradiation in Examples 1 to 20 and Comparative Examples 1 and 2.
  • the amount of each gas produced is standardized by the surface area of the semiconductor photocatalyst thin film.
  • Example 16 in which the composition ratio of lithium was 50%, it was found that a single phase of NiO could not be obtained, lithium oxide remained as an impurity, and p-NiO could not be obtained.
  • the amount of hydrogen / oxygen produced 10 hours after the light irradiation of Examples 1, 2, 3, 6, 7, 8, 11, 12, 13, 17, and 18 having a heat treatment temperature of 200 ° C. to 800 ° C. is the other implementation. It was found to be 20 times higher than the amount produced after 10 hours in the example.
  • the heat treatment conditions for forming the p-type metal oxide 15 that can be expected to extend the service life are a temperature of 200 ° C. or higher and 800 ° C. or lower.
  • the amount of oxygen and hydrogen produced 1 hour and 10 hours after the light irradiation of Examples 17 and 18 and Examples 1 and 3 was about the same, and even if the p-type metal oxide 15 was formed by the sputtering method, it was vapor-deposited. It was found that the same effect as that for forming the p-type metal oxide 15 can be obtained by the method.
  • Comparative Target Examples 1 and 2 the amount of hydrogen and oxygen produced was low both 1 hour and 10 hours after the light irradiation. This is considered to be due to the fact that holes cannot move through the barrier at the InGaN interface in the case of NiO.
  • the heat treatment conditions for forming the p-type metal oxide 15 in step S6 are set to 200 ° C. or higher and 800 ° C. or lower, and the composition of Li for producing the p—NiO powder used for forming the p-type metal oxide 15 in step S5.
  • the ratio is set to 40% or less with respect to Ni, it was possible to improve the efficiency of the water splitting reaction (light energy conversion efficiency) and extend the service life.
  • the formation of the p-type metal oxide 15 is not limited to the vapor deposition method, but the sputtering method is also effective, and it is also effective to use Ag or K as an impurity when producing p—NiO, not limited to Li. all right.
  • the method for manufacturing the nitride semiconductor photocatalyst thin film of the present embodiment includes a step of forming the n-type gallium nitride layer 12 on the insulating or conductive substrate 11 and a step of forming the n-type gallium nitride layer 12 on the n-type gallium nitride layer 12.
  • It has a step of heat-treating, a step of forming a p-type metal oxide 15 on a part of the surface of the indium gallium nitride layer 13, and a step of heat-treating a semiconductor thin film on which the p-type metal oxide 15 is formed.
  • a p-type metal oxide 15 exhibiting characteristics as a p-type semiconductor is formed on the indium gallium nitride layer 13 as an auxiliary catalyst for an oxidation reaction, and a metal layer 14 is provided on the same surface of the indium gallium nitride layer 13 as an auxiliary catalyst for a reduction reaction.
  • the target product is hydrogen
  • the metal on the surface of the metal layer 14 which is the auxiliary catalyst for the reduction reaction is, for example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co.
  • the aqueous solution 130 used in the redox reaction test may be an aqueous solution in which an electrolyte for ion transfer such as potassium hydroxide aqueous solution or hydrochloric acid is dissolved, in addition to sodium hydroxide.
  • an electrolyte for ion transfer such as potassium hydroxide aqueous solution or hydrochloric acid is dissolved, in addition to sodium hydroxide.
  • GaN is preferably an alkaline aqueous solution.
  • Nitride semiconductor photocatalyst thin film 11 Nitride semiconductor photocatalyst thin film 11 .
  • Substrate 12 n-type gallium nitride layer 13 .
  • Indium gallium nitride layer 14 ...
  • Metal layer 15 P-type metal oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

A method for producing a nitride semiconductor photocatalyst thin film 1 that causes an oxidation-reduction reaction by exerting a catalytic function upon irradiation of light, wherein: an n-type gallium nitride layer 12 is formed on the surface of an insulating or conductive substrate 11; an indium gallium nitride layer 13 is formed in the surface of the n-type gallium nitride layer 12; a metal layer 14 is formed in a part of the surface of the indium gallium nitride layer 13; a heat treatment is carried out so as to form an ohmic junction at the interface between the indium gallium nitride layer 13 and the metal layer 14; a p-type metal oxide 15 is formed in a part of the surface of the indium gallium nitride layer 13; and the p-type metal oxide 15 is subjected to a heat treatment.

Description

窒化物半導体光触媒薄膜の製造方法Method for manufacturing nitride semiconductor photocatalytic thin film
 本発明は、窒化物半導体光触媒薄膜の製造方法に関する。 The present invention relates to a method for manufacturing a nitride semiconductor photocatalytic thin film.
 光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなる。 The water decomposition reaction using a photocatalyst consists of a water oxidation reaction and a proton reduction reaction.
 酸化反応:2H2O+4h+→O2+4H+
 還元反応:4H++4e-→2H2
Oxidation reaction: 2H 2 O + 4h + → O 2 + 4H +
Reduction reaction: 4H + + 4e - → 2H 2
 n型の光触媒材料に光を照射した場合、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、プロトンの還元反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。 When the n-type photocatalyst material is irradiated with light, electrons and holes are generated and separated in the photocatalyst. Holes move to the surface of the photocatalytic material and contribute to the reduction reaction of protons. On the other hand, electrons move to the reduction electrode and contribute to the reduction reaction of protons. Ideally, such a redox reaction proceeds and a water splitting reaction occurs.
 従来の水の分解装置は、プロトン交換膜を介して繋がっている酸化槽と還元槽を有し、酸化槽に水溶液と酸化電極を入れ、還元槽に水溶液と還元電極を入れる。酸化電極と還元電極とは導線で電気的に接続される。酸化電極は、例えば、窒化物半導体、酸化チタン、またはアモルファスシリコンである。還元電極は、金属または金属化合物であり、例えば、ニッケル、鉄、金、白金、銀、銅、インジウム、チタンである。光源から酸化電極を構成する材料が吸収可能な波長の光を照射して水分解反応を生じさせる。例えば、酸化電極が窒化ガリウムで構成される場合、吸収可能な波長は365nm以下の波長である。光源は、例えば、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、または太陽光であり、これらを組み合わせてもよい。 A conventional water decomposition device has an oxide tank and a reduction tank connected via a proton exchange membrane, and puts an aqueous solution and an oxidation electrode in the oxide tank, and puts an aqueous solution and a reduction electrode in the reduction tank. The oxide electrode and the reduction electrode are electrically connected by a conducting wire. The oxide electrode is, for example, a nitride semiconductor, titanium oxide, or amorphous silicon. The reducing electrode is a metal or a metal compound, for example nickel, iron, gold, platinum, silver, copper, indium, titanium. A water decomposition reaction is caused by irradiating the light source with light having a wavelength that can be absorbed by the material constituting the oxide electrode. For example, when the oxide electrode is made of gallium nitride, the wavelength that can be absorbed is 365 nm or less. The light source is, for example, a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-solar light source, or sunlight, and these may be combined.
 上記のような水の分解装置は構成要素が多く、反応系が複雑なことから、より簡易な反応系の実現および反応系の小型化が望まれている。例えば、光触媒槽内に光触媒薄膜と水溶液を入れた構成の装置を用い、水溶液中の光触媒薄膜に光源から光を照射して水分解反応を生じさせる。光触媒薄膜は、酸化電極と同様に、窒化物半導体、酸化チタン、またはアモルファスシリコンである。光触媒薄膜の表面には、水の分解反応を促進する金属助触媒が担持されている。単一の光触媒薄膜により水素および酸素を生成する装置の反応系は簡易であり、系の低コスト化および小型化が期待されている。 Since the water decomposition device as described above has many components and the reaction system is complicated, it is desired to realize a simpler reaction system and downsize the reaction system. For example, using a device having a photocatalyst thin film and an aqueous solution in a photocatalyst tank, the photocatalyst thin film in the aqueous solution is irradiated with light from a light source to cause a water splitting reaction. The photocatalytic thin film, like the oxide electrode, is a nitride semiconductor, titanium oxide, or amorphous silicon. A metal co-catalyst that promotes the decomposition reaction of water is supported on the surface of the photocatalyst thin film. The reaction system of the device that produces hydrogen and oxygen by a single photocatalytic thin film is simple, and it is expected that the cost and size of the system will be reduced.
 しかしながら、シンプルな構成の装置においても、光触媒薄膜の光エネルギー変換効率が光照射時間と共に低下する問題があった。 However, even in a device having a simple structure, there is a problem that the light energy conversion efficiency of the photocatalyst thin film decreases with the light irradiation time.
 酸化電極および光触媒薄膜は半導体薄膜であり、例えば、サファイア基板上に成長した窒化ガリウム薄膜が用いられる。窒化ガリウム薄膜は、光照射下にて生成・分離した正孔が水の酸化反応と同時に、窒化ガリウム自身のエッチング反応に消費される。そのため、光電極が劣化し、光エネルギー変換効率が光照射時間と共に低下する問題がある。このような劣化の抑制を目的として、酸素発生用の助触媒(酸化ニッケル)を保護層として形成し、寿命向上した例が報告されている。 The oxide electrode and the photocatalyst thin film are semiconductor thin films, and for example, a gallium nitride thin film grown on a sapphire substrate is used. In the gallium nitride thin film, holes generated and separated under light irradiation are consumed in the etching reaction of gallium nitride itself at the same time as the oxidation reaction of water. Therefore, there is a problem that the light electrode deteriorates and the light energy conversion efficiency decreases with the light irradiation time. For the purpose of suppressing such deterioration, an example has been reported in which an auxiliary catalyst for oxygen generation (nickel oxide) is formed as a protective layer to improve the life.
 窒化ガリウム薄膜で生じた正孔は窒化ガリウム薄膜中から酸化ニッケルへ移動し、酸化ニッケル表面で水の酸化反応が進行する。正孔がスムーズに移動するためには、窒化ガリウム半導体の価電子帯が酸化ニッケルの価電子帯よりも低い準位にある必要がある。しかしながら、例えば、窒化インジウムガリウムのように光吸収率向上に期待できる可視応答化半導体光触媒薄膜の場合、バンドギャップが狭くなるに従い、価電子帯の準位が高くなる。従来の手法で作製された酸化ニッケルの価電子帯は、可視応答化半導体光触媒薄膜の価電子帯よりも低い準位に位置してしまい、正孔が移動できない障壁が生成される。そのため、光吸収率を向上しても、生成する障壁により正孔が移動できず、助触媒保護層としての機能を果たさないという問題があった。 Holes generated in the gallium nitride thin film move from the gallium nitride thin film to nickel oxide, and the oxidation reaction of water proceeds on the surface of the nickel oxide. In order for holes to move smoothly, the valence band of the gallium nitride semiconductor needs to be at a lower level than the valence band of nickel oxide. However, in the case of a visible responsive semiconductor photocatalytic thin film that can be expected to improve the light absorption rate, for example, indium gallium nitride, the level of the valence band increases as the band gap narrows. The valence band of nickel oxide produced by the conventional method is located at a lower level than the valence band of the visible responsive semiconductor photocatalyst thin film, and a barrier is created in which holes cannot move. Therefore, even if the light absorption rate is improved, there is a problem that holes cannot move due to the generated barrier and the hole does not function as a co-catalyst protective layer.
 本発明は、上記に鑑みてなされたものであり、光吸収率が高い単一の窒化物半導体光触媒薄膜において効率および寿命を向上することを目的とする。 The present invention has been made in view of the above, and an object thereof is to improve efficiency and life in a single nitride semiconductor photocatalytic thin film having a high light absorption rate.
 本発明の一態様の窒化物半導体光触媒薄膜の製造方法は、光照射により触媒機能を発揮して酸化還元反応を生じる窒化物半導体光触媒薄膜の製造方法であって、絶縁性または導電性の基板の表面上にn型窒化ガリウム層を形成する第1工程と、前記n型窒化ガリウム層の表面に窒化インジウムガリウム層を形成する第2工程と、前記窒化インジウムガリウム層の表面の一部に金属層を形成する第3工程と、前記窒化インジウムガリウム層と前記金属層との界面でオーミック接合を形成するために熱処理する第4工程と、前記窒化インジウムガリウム層の表面の一部にp型金属酸化物を形成する第5工程と、前記p型金属酸化物を熱処理する第6工程を有する。 The method for producing a nitride semiconductor photocatalyst thin film according to one aspect of the present invention is a method for producing a nitride semiconductor photocatalyst thin film that exerts a catalytic function by light irradiation and causes an oxidation-reduction reaction, and is an insulating or conductive substrate. The first step of forming an n-type gallium nitride layer on the surface, the second step of forming an indium gallium nitride layer on the surface of the n-type gallium nitride layer, and a metal layer on a part of the surface of the indium gallium nitride layer. The third step of forming the indium gallium nitride, the fourth step of heat-treating to form an ohmic bond at the interface between the indium gallium nitride layer and the metal layer, and p-type metal oxidation on a part of the surface of the indium gallium nitride layer. It has a fifth step of forming an object and a sixth step of heat-treating the p-type metal oxide.
 本発明によれば、光吸収率が高い単一の窒化物半導体光触媒薄膜において効率および寿命を向上できる。 According to the present invention, efficiency and life can be improved in a single nitride semiconductor photocatalytic thin film having a high light absorption rate.
図1は、本実施形態の窒化物半導体光触媒薄膜の製造方法により作製される窒化物半導体光触媒薄膜の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a nitride semiconductor photocatalyst thin film produced by the method for producing a nitride semiconductor photocatalyst thin film of the present embodiment. 図2は、窒化物半導体光触媒薄膜の表面に分散配置された金属層とp型金属酸化物を説明するための図である。FIG. 2 is a diagram for explaining a metal layer dispersed and arranged on the surface of a nitride semiconductor photocatalyst thin film and a p-type metal oxide. 図3は、本実施形態の窒化物半導体光触媒薄膜の製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method for manufacturing the nitride semiconductor photocatalyst thin film of the present embodiment. 図4は、酸化還元反応試験を行う装置の概要を示す図である。FIG. 4 is a diagram showing an outline of an apparatus for performing a redox reaction test.
 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下で説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and modifications may be made without departing from the spirit of the present invention.
 [窒化物半導体光触媒薄膜の構成]
 図1は、本実施形態の窒化物半導体光触媒薄膜の製造方法により作製される窒化物半導体光触媒薄膜の構成を示す断面図である。図1の窒化物半導体光触媒薄膜は、水溶液中での光照射により触媒機能を発揮して酸化還元反応を生じる窒化物半導体光触媒薄膜である。
[Construction of nitride semiconductor photocatalyst thin film]
FIG. 1 is a cross-sectional view showing the configuration of a nitride semiconductor photocatalyst thin film produced by the method for producing a nitride semiconductor photocatalyst thin film of the present embodiment. The nitride semiconductor photocatalytic thin film of FIG. 1 is a nitride semiconductor photocatalytic thin film that exerts a catalytic function by irradiation with light in an aqueous solution to cause a redox reaction.
 図1に示す窒化物半導体光触媒薄膜1は、絶縁性または導電性の基板11、基板11の表面上に配置されたn型窒化ガリウム(n-GaN)層12、n型窒化ガリウム層12の表面上に配置された窒化インジウムガリウム(InGaN)層13、窒化インジウムガリウム層13の表面の一部にオーミック接合を形成する金属層14、および窒化インジウムガリウム層13の表面の一部に分散配置されたp型金属酸化物15を備える。窒化インジウムガリウム層13上にp型金属酸化物15を形成した窒化物半導体光触媒薄膜1を製造することで、光照射によって窒化インジウムガリウム層13中で生じる正孔がp型金属酸化物15へ移動できるようになる。 The nitride semiconductor photocatalyst thin film 1 shown in FIG. 1 is an insulating or conductive substrate 11, the surface of an n-type gallium nitride (n-GaN) layer 12 and an n-type gallium nitride layer 12 arranged on the surface of the substrate 11. The indium gallium nitride (InGaN) layer 13 arranged above, the metal layer 14 forming an ohmic bond on a part of the surface of the indium gallium nitride layer 13, and the part of the surface of the indium gallium nitride layer 13 are dispersed and arranged. A p-type metal oxide 15 is provided. By manufacturing the nitride semiconductor photocatalyst thin film 1 in which the p-type metal oxide 15 is formed on the indium gallium nitride layer 13, the holes generated in the indium gallium nitride layer 13 by light irradiation move to the p-type metal oxide 15. become able to.
 金属層14とp型金属酸化物15は、窒化インジウムガリウム層13上に分散配置される。具体的には、図2に示すように、金属層14は、直径10μmの円盤形状であり、210μm間隔で分散配置される。p型金属酸化物15は、直径10μmの円盤形状であり、金属層14との間に100μmの間隔を持たせて分散配置される。 The metal layer 14 and the p-type metal oxide 15 are dispersed and arranged on the indium gallium nitride layer 13. Specifically, as shown in FIG. 2, the metal layer 14 has a disk shape with a diameter of 10 μm and is dispersedly arranged at intervals of 210 μm. The p-type metal oxide 15 has a disk shape with a diameter of 10 μm, and is dispersed and arranged with a space of 100 μm from the metal layer 14.
 [窒化物半導体光触媒薄膜の製造方法]
 図3を参照し、本実施形態の窒化物半導体光触媒薄膜の製造方法について説明する。
[Manufacturing method of nitride semiconductor photocatalytic thin film]
A method for manufacturing the nitride semiconductor photocatalyst thin film of the present embodiment will be described with reference to FIG.
 ステップS1にて、絶縁性または導電性の基板11上にn型窒化ガリウム層12を形成する。n型窒化ガリウム層12は、有機金属気相成長法(MOCVD)を用いて形成してよい。 In step S1, the n-type gallium nitride layer 12 is formed on the insulating or conductive substrate 11. The n-type gallium nitride layer 12 may be formed by using a metalorganic vapor phase growth method (MOCVD).
 ステップS2にて、n型窒化ガリウム層12上に窒化インジウムガリウム層13を形成する。窒化インジウムガリウム層13は、MOCVDを用いて形成してよい。 In step S2, the indium gallium nitride layer 13 is formed on the n-type gallium nitride layer 12. The indium gallium nitride layer 13 may be formed by using MOCVD.
 ステップS3にて、窒化インジウムガリウム層13の表面の一部に金属層14を形成する。金属層14は、窒化インジウムガリウム層13に対して助触媒機能を有する材料を用い、蒸着法またはスパッタリング法により形成してよい。 In step S3, the metal layer 14 is formed on a part of the surface of the indium gallium nitride layer 13. The metal layer 14 may be formed by a vapor deposition method or a sputtering method using a material having a co-catalytic function with respect to the indium gallium nitride layer 13.
 ステップS4にて、窒化インジウムガリウム層13と金属層14との界面でオーミック接合を形成するために、金属層14を形成した窒化物半導体を熱処理する。 In step S4, the nitride semiconductor on which the metal layer 14 is formed is heat-treated in order to form an ohmic contact at the interface between the indium gallium nitride layer 13 and the metal layer 14.
 ステップS5にて、窒化インジウムガリウム層13の表面の一部にp型金属酸化物15を形成する。p型金属酸化物15は、p-NiOを用い、蒸着法またはスパッタリング法により形成してよい。 In step S5, the p-type metal oxide 15 is formed on a part of the surface of the indium gallium nitride layer 13. The p-type metal oxide 15 may be formed by a vapor deposition method or a sputtering method using p—NiO.
 ステップS6にて、p型金属酸化物15を形成した窒化物半導体を熱処理する。熱処理の温度は200℃以上800℃以下が好ましい。 In step S6, the nitride semiconductor on which the p-type metal oxide 15 is formed is heat-treated. The temperature of the heat treatment is preferably 200 ° C. or higher and 800 ° C. or lower.
 [窒化物半導体光触媒薄膜の実施例]
 次に、ステップS6の熱処理温度、ステップS5で使用するp-NiOの組成比を変えて作製した実施例1~20について説明する。
[Examples of Nitride Semiconductor Photocatalytic Thin Film]
Next, Examples 1 to 20 produced by changing the heat treatment temperature in step S6 and the composition ratio of p—NiO used in step S5 will be described.
 実施例1~5は、ステップS6の熱処理温度を変えた窒化物半導体光触媒薄膜の製造方法の実施例である。実施例6~10および実施例11~15は、実施例1~5においてリチウムの組成比を変えた窒化物半導体光触媒薄膜の製造方法の実施例である。実施例16は、実施例1においてリチウムの組成比を変えた窒化物半導体光触媒薄膜の製造方法の実施例である。実施例17,18は、実施例1,3のステップS5のp型金属酸化物15の形成方法を変えた窒化物半導体光触媒薄膜の製造方法の実施例である。実施例19,20は、実施例1においてp-NiOを作製する際の不純物を変えた窒化物半導体光触媒薄膜の製造方法の実施例である。 Examples 1 to 5 are examples of a method for manufacturing a nitride semiconductor photocatalyst thin film in which the heat treatment temperature in step S6 is changed. Examples 6 to 10 and Examples 11 to 15 are examples of a method for producing a nitride semiconductor photocatalytic thin film in Examples 1 to 5 in which the composition ratio of lithium is changed. Example 16 is an example of a method for producing a nitride semiconductor photocatalyst thin film in which the composition ratio of lithium is changed in Example 1. Examples 17 and 18 are examples of a method for producing a nitride semiconductor photocatalytic thin film in which the method for forming the p-type metal oxide 15 in step S5 of Examples 1 and 3 is changed. Examples 19 and 20 are examples of a method for producing a nitride semiconductor photocatalytic thin film in which impurities are changed when producing p—NiO in Example 1.
 また、実施例1,3のステップS5において、p-NiOではなく、NiOを用いた比較対象例1,2についても説明する。 Further, in step S5 of Examples 1 and 3, comparative examples 1 and 2 using NiO instead of p-NiO will also be described.
 <実施例1>
 ステップS1にて、2インチのサファイア基板上に、シリコンをドープしたn-GaN半導体薄膜をMOCVDによりエピタキシャル成長させてn型窒化ガリウム層12を形成した。基板11としてサファイア基板を用いた。成長原料には、アンモニアガス、トリメチルガリウムを用いた。n型不純物源にはシランガスを用いた。成長炉内に送るキャリアガスには水素を用いた。n型窒化ガリウム層12の膜厚は、光を吸収するに十分足る2μmとした。キャリア密度は3×1018cm-3であった。
<Example 1>
In step S1, a silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch sapphire substrate by MOCVD to form an n-type gallium nitride layer 12. A sapphire substrate was used as the substrate 11. Ammonia gas and trimethylgallium were used as growth raw materials. Silane gas was used as the n-type impurity source. Hydrogen was used as the carrier gas sent into the growth furnace. The film thickness of the n-type gallium nitride layer 12 was set to 2 μm, which is sufficient to absorb light. The carrier density was 3 × 10 18 cm -3 .
 ステップS2にて、n型窒化ガリウム層12上に、インジウムの組成比を5%とした窒化インジウムガリウム(InGaN)をMOCVDにより成長させて窒化インジウムガリウム層13を形成した。成長原料には、アンモニアガス、トリメチルガリウム、トリメチルインジウムを用いた。成長炉内に送るキャリアガスには水素を用いた。窒化インジウムガリウム層13の膜厚は、光を十分に吸収するに足る100nmとした。 In step S2, indium gallium nitride (InGaN) having an indium composition ratio of 5% was grown on the n-type gallium nitride layer 12 by MOCVD to form the indium gallium nitride layer 13. Ammonia gas, trimethylgallium, and trimethylindium were used as growth raw materials. Hydrogen was used as the carrier gas sent into the growth furnace. The film thickness of the indium gallium nitride layer 13 was set to 100 nm, which is sufficient to absorb light.
 ステップS3にて、窒化インジウムガリウム層13の表面に、直径10μmの円盤形状の金属層14を210μm間隔で真空蒸着した。ここでは、半導体側から順に、Tiを25nm、Alを50nm、Tiを25nm、Ptを100nmの厚さで積層した。 In step S3, a disk-shaped metal layer 14 having a diameter of 10 μm was vacuum-deposited on the surface of the indium gallium nitride layer 13 at intervals of 210 μm. Here, Ti was laminated with a thickness of 25 nm, Al at 50 nm, Ti at 25 nm, and Pt at 100 nm in order from the semiconductor side.
 ステップS4にて、金属層14を形成した半導体薄膜を窒素雰囲気下で、800℃で30秒間熱処理を行った。熱処理により、窒化インジウムガリウム層13と金属層14の界面において疑似的なオーミック接合を形成した。 In step S4, the semiconductor thin film on which the metal layer 14 was formed was heat-treated at 800 ° C. for 30 seconds in a nitrogen atmosphere. By heat treatment, a pseudo ohmic contact was formed at the interface between the indium gallium nitride layer 13 and the metal layer 14.
 ステップS5にて、窒化インジウムガリウム層13の表面に、金属層14と100μmの間隔を持たせて、直径10μmの円盤形状のp-NiOを膜厚2nmで真空蒸着し、100μm間隔で金属層14とp型金属酸化物15とが交互に並ぶようにp型金属酸化物15を形成した。 In step S5, a disk-shaped p-NiO having a diameter of 10 μm is vacuum-deposited at a film thickness of 2 nm on the surface of the indium gallium nitride layer 13 at intervals of 100 μm from the metal layer 14, and the metal layers 14 are deposited at intervals of 100 μm. The p-type metal oxide 15 was formed so that the p-type metal oxide 15 and the p-type metal oxide 15 were alternately arranged.
 p型金属酸化物15の形成に使用したp-NiOは、Liの組成比が所望の値となるようにNiO粉末と酸化リチウム粉末の重量を定め、NiO粉末と酸化リチウム粉末を混合し、電気炉内で熱処理して作製した。実施例1では、Liの組成比が1%(Niの組成比は99%)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。得られたp-NiO粉末の体積抵抗率は、NiO粉末の体積抵抗率に比べて、およそ4桁低く、NiO粉末はp型化し導電率が向上していることが分かった。 For p-NiO used for forming the p-type metal oxide 15, the weights of the NiO powder and the lithium oxide powder are determined so that the composition ratio of Li becomes a desired value, and the NiO powder and the lithium oxide powder are mixed and electrically charged. It was produced by heat treatment in a furnace. In Example 1, the weights of the NiO powder and the lithium oxide powder were determined so that the Li composition ratio was 1% (Ni composition ratio was 99%). The volume resistivity of the obtained p-NiO powder was about 4 orders of magnitude lower than the volume resistivity of the NiO powder, and it was found that the NiO powder was p-shaped and the conductivity was improved.
 ステップS6にて、ステップS5で得られた半導体薄膜をホットプレート上で、空気雰囲気中、200℃、1時間熱処理した。なお、ステップS6は、電気炉で熱処理してもよい。 In step S6, the semiconductor thin film obtained in step S5 was heat-treated on a hot plate at 200 ° C. for 1 hour in an air atmosphere. In step S6, heat treatment may be performed in an electric furnace.
 以上の工程により、実施例1の窒化物半導体光触媒薄膜を得た。 Through the above steps, the nitride semiconductor photocatalyst thin film of Example 1 was obtained.
 <実施例2>
 実施例2の窒化物半導体光触媒薄膜の製造方法では、ステップS6の熱処理において、熱処理温度を500℃とした。その他の点においては実施例1と同様である。
<Example 2>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 2, the heat treatment temperature was set to 500 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
 <実施例3>
 実施例3の窒化物半導体光触媒薄膜の製造方法では、ステップS6の熱処理において、熱処理温度を800℃とした。その他の点においては実施例1と同様である。
<Example 3>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 3, the heat treatment temperature was set to 800 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
 <実施例4>
 実施例4の窒化物半導体光触媒薄膜の製造方法では、ステップS6の熱処理において、熱処理温度を100℃とした。その他の点においては実施例1と同様である。
<Example 4>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 4, the heat treatment temperature was set to 100 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
 <実施例5>
 実施例5の窒化物半導体光触媒薄膜の製造方法では、ステップS6の熱処理において、熱処理温度を900℃とした。その他の点においては実施例1と同様である。
<Example 5>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 5, the heat treatment temperature was set to 900 ° C. in the heat treatment in step S6. In other respects, it is the same as in Example 1.
 <実施例6>
 実施例6の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5で使用するp-NiOを作製する際、Liの組成比が10%(LiとNiの比が1:9)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例1と同様である。
<Example 6>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 6, when the p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
 <実施例7>
 実施例7の窒化物半導体光触媒薄膜の製造方法では、実施例2のステップS5で使用するp-NiOを作製する際、Liの組成比が10%(LiとNiの比が1:9)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例2と同様である。
<Example 7>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 7, when the p—NiO used in step S5 of Example 2 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 2.
 <実施例8>
 実施例8の窒化物半導体光触媒薄膜の製造方法では、実施例3のステップS5で使用するp-NiOを作製する際、Liの組成比が10%(LiとNiの比が1:9)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例3と同様である。
<Example 8>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 8, when the p—NiO used in step S5 of Example 3 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 3.
 <実施例9>
 実施例9の窒化物半導体光触媒薄膜の製造方法では、実施例4のステップS5で使用するp-NiOを作製する際、Liの組成比が10%(LiとNiの比が1:9)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例4と同様である。
<Example 9>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 9, when the p—NiO used in step S5 of Example 4 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 4.
 <実施例10>
 実施例10の窒化物半導体光触媒薄膜の製造方法では、実施例5のステップS5で使用するp-NiOを作製する際、Liの組成比が10%(LiとNiの比が1:9)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例5と同様である。
<Example 10>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 10, when the p—NiO used in step S5 of Example 5 is produced, the composition ratio of Li is 10% (the ratio of Li to Ni is 1: 9). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 5.
 <実施例11>
 実施例11の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5で使用するp-NiOを作製する際、Liの組成比が40%(LiとNiの比が4:6)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例1と同様である。
<Example 11>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 11, when p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
 <実施例12>
 実施例12の窒化物半導体光触媒薄膜の製造方法では、実施例2のステップS5で使用するp-NiOを作製する際、Liの組成比が40%(LiとNiの比が4:6)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例2と同様である。
<Example 12>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 12, when the p—NiO used in step S5 of Example 2 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 2.
 <実施例13>
 実施例13の窒化物半導体光触媒薄膜の製造方法では、実施例3のステップS5で使用するp-NiOを作製する際、Liの組成比が40%(LiとNiの比が4:6)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例3と同様である。
<Example 13>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 13, when the p—NiO used in step S5 of Example 3 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 3.
 <実施例14>
 実施例14の窒化物半導体光触媒薄膜の製造方法では、実施例4のステップS5で使用するp-NiOを作製する際、Liの組成比が40%(LiとNiの比が4:6)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例4と同様である。
<Example 14>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 14, when the p—NiO used in step S5 of Example 4 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 4.
 <実施例15>
 実施例15の窒化物半導体光触媒薄膜の製造方法では、実施例5のステップS5で使用するp-NiOを作製する際、Liの組成比が40%(LiとNiの比が4:6)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例5と同様である。
<Example 15>
In the method for producing a nitride semiconductor photocatalyst thin film of Example 15, when the p—NiO used in step S5 of Example 5 is produced, the composition ratio of Li is 40% (the ratio of Li to Ni is 4: 6). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 5.
 <実施例16>
 実施例16の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5で使用するp-NiOを作製する際、Liの組成比が50%(LiとNiの比が5:5)となるようにNiO粉末と酸化リチウム粉末の重量を定めた。その他の点においては実施例1と同様である。
<Example 16>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 16, when the p—NiO used in step S5 of Example 1 is produced, the composition ratio of Li is 50% (the ratio of Li to Ni is 5: 5). The weights of the NiO powder and the lithium oxide powder were determined so as to be. In other respects, it is the same as in Example 1.
 <実施例17>
 実施例17の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5において、p-NiO粉末からターゲット(焼結体)を作製し、スパッタリング法によってp型金属酸化物15を形成した。その他の点においては実施例1と同様である。
<Example 17>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 17, a target (sintered body) was prepared from p—NiO powder in step S5 of Example 1, and a p-type metal oxide 15 was formed by a sputtering method. In other respects, it is the same as in Example 1.
 <実施例18>
 実施例18の窒化物半導体光触媒薄膜の製造方法では、実施例3のステップS5において、p-NiO粉末からターゲット(焼結体)を作製し、スパッタリング法によってp型金属酸化物15を形成した。その他の点においては実施例3と同様である。
<Example 18>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 18, a target (sintered body) was prepared from p—NiO powder in step S5 of Example 3, and a p-type metal oxide 15 was formed by a sputtering method. In other respects, it is the same as in Example 3.
 <実施例19>
 実施例19の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5において、不純物に銀(Ag)を用いて作製したp-NiOを蒸着した。その他の点においては実施例1と同様である。
<Example 19>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 19, p—NiO prepared by using silver (Ag) as an impurity was vapor-deposited in step S5 of Example 1. In other respects, it is the same as in Example 1.
 <実施例20>
 実施例20の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5において、不純物にカリウム(K)を用いて作製したp-NiOを蒸着した。その他の点においては実施例1と同様である。
<Example 20>
In the method for producing a nitride semiconductor photocatalytic thin film of Example 20, p—NiO prepared by using potassium (K) as an impurity was vapor-deposited in step S5 of Example 1. In other respects, it is the same as in Example 1.
 <比較対象例1>
 比較対象例1の窒化物半導体光触媒薄膜の製造方法では、実施例1のステップS5において、p-NiOではなく、NiOを蒸着した。その他の点においては実施例1と同様である。
<Comparison target example 1>
In the method for producing a nitride semiconductor photocatalyst thin film of Comparative Example 1, NiO was vapor-deposited instead of p—NiO in step S5 of Example 1. In other respects, it is the same as in Example 1.
 <比較対象例2>
 比較対象例1の窒化物半導体光触媒薄膜の製造方法では、実施例3のステップS5において、p-NiOではなく、NiOを蒸着した。その他の点においては実施例3と同様である。
<Comparison target example 2>
In the method for producing a nitride semiconductor photocatalyst thin film of Comparative Example 1, NiO was vapor-deposited instead of p—NiO in step S5 of Example 3. In other respects, it is the same as in Example 3.
 [酸化還元反応試験]
 実施例1~20と比較対象例1~2について図4の装置を用いて酸化還元反応試験を行った。
[Redox reaction test]
Redox reaction tests were performed on Examples 1 to 20 and Comparative Examples 1 and 2 using the apparatus shown in FIG.
 内容量150mlの石英窓付き反応セルを光触媒槽110として用い、光触媒槽110内に撹拌子120と水溶液130を入れた。水溶液130には、1mol/lの水酸化カリウム水溶液125mlを用いた。 A reaction cell with a quartz window having an internal capacity of 150 ml was used as the photocatalyst tank 110, and the stirrer 120 and the aqueous solution 130 were placed in the photocatalyst tank 110. As the aqueous solution 130, 125 ml of a 1 mol / l potassium hydroxide aqueous solution was used.
 実施例1~20および比較対象例1~2の半導体光触媒薄膜を水溶液130中に浸し、金属層14とp型金属酸化物15を形成した窒化インジウムガリウム層13の面が光源140を向くように固定した。 The semiconductor photocatalytic thin films of Examples 1 to 20 and Comparative Examples 1 and 2 were immersed in the aqueous solution 130 so that the surface of the indium gallium nitride layer 13 forming the metal layer 14 and the p-type metal oxide 15 faces the light source 140. Fixed.
 窒素ガスを200ml/minで30分間バブリングして脱泡および空気との置換を終えた後、シリコンテフロンセプタムで密閉した。光触媒槽110内の圧力は大気圧(1気圧)とした。 Nitrogen gas was bubbled at 200 ml / min for 30 minutes to complete defoaming and replacement with air, and then sealed with silicon Teflon septum. The pressure in the photocatalyst tank 110 was set to atmospheric pressure (1 atm).
 光源140には、300Wの高圧キセノンランプ(波長400nm以上をカット、照度5mW/cm2)を用いた。光源140の光を、光触媒槽110の石英窓の外側から、半導体光触媒薄膜に均一に照射した。 As the light source 140, a 300 W high-voltage xenon lamp (wavelength 400 nm or more cut, illuminance 5 mW / cm 2 ) was used. The light from the light source 140 was uniformly applied to the semiconductor photocatalyst thin film from the outside of the quartz window of the photocatalyst tank 110.
 サンプルの光照射面積を1cm2とし、撹拌子120とスターラーを用い、光触媒槽110の底の中心位置で250rpmの回転速度で水溶液130を撹拌した。 The light irradiation area of the sample was 1 cm 2, and the aqueous solution 130 was stirred at the center position of the bottom of the photocatalyst tank 110 at a rotation speed of 250 rpm using a stirrer 120 and a stirrer.
 光照射後任意の時間に、光触媒槽110のガスをセプタム部分からシリンジで採取し、ガスクロマトグラフ質量分析計にて反応生成物を分析した。その結果、水素と酸素が生成していることを確認した。 At an arbitrary time after light irradiation, the gas in the photocatalyst tank 110 was collected from the septum portion with a syringe, and the reaction product was analyzed with a gas chromatograph mass spectrometer. As a result, it was confirmed that hydrogen and oxygen were generated.
 [試験結果]
 実施例1~20および比較対象例1~2における、光照射から1時間後および10時間後の酸素・水素ガスの生成量を表1に示す。各ガスの生成量は、半導体光触媒薄膜の表面積で規格化して示した。
[Test results]
Table 1 shows the amounts of oxygen and hydrogen gas produced 1 hour and 10 hours after the light irradiation in Examples 1 to 20 and Comparative Examples 1 and 2. The amount of each gas produced is standardized by the surface area of the semiconductor photocatalyst thin film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~15,17,18の光照射から1時間後の水素・酸素生成量に大きな差異は見られなかった。なお、リチウムの組成比を50%とした実施例16では、NiOの単相は得られず、不純物として酸化リチウムが残存し、p-NiOが得られないことがわかった。 No significant difference was observed in the amount of hydrogen / oxygen produced 1 hour after the light irradiation of Examples 1 to 15, 17, and 18. In Example 16 in which the composition ratio of lithium was 50%, it was found that a single phase of NiO could not be obtained, lithium oxide remained as an impurity, and p-NiO could not be obtained.
 熱処理温度が200℃から800℃の実施例1,2,3,6,7,8,11,12,13,17,18の光照射から10時間後の水素・酸素生成量は、その他の実施例の10時間後の生成量に比べて20倍であることがわかった。 The amount of hydrogen / oxygen produced 10 hours after the light irradiation of Examples 1, 2, 3, 6, 7, 8, 11, 12, 13, 17, and 18 having a heat treatment temperature of 200 ° C. to 800 ° C. is the other implementation. It was found to be 20 times higher than the amount produced after 10 hours in the example.
 熱処理温度を100℃とした実施例4,9,14では、10時間後の水素・酸素生成量は、1時間後の水素・酸素生成量から大きく低下した。熱処理温度が100℃の場合では、p-NiOとInGaN界面の接合が弱く、光触媒薄膜との界面に空隙が生成されたことで、空隙を起点とした電極性能劣化が進行し、10時間後にはおおよそ触媒として失活したためと考えられる。 In Examples 4, 9 and 14 in which the heat treatment temperature was 100 ° C., the amount of hydrogen / oxygen produced after 10 hours was significantly lower than the amount of hydrogen / oxygen produced after 1 hour. When the heat treatment temperature is 100 ° C., the bond between the p—NiO and the InGaN interface is weak, and voids are generated at the interface with the photocatalyst thin film, so that the electrode performance deteriorates starting from the voids, and after 10 hours, It is thought that it was deactivated as a catalyst.
 熱処理温度を900℃とした実施例5,10,15では、10時間後の水素・酸素生成量は、1時間後の水素・酸素生成量から大きく低下した。熱処理温度が900℃の場合では、窒化インジウムガリウム層13の結晶性が悪くなり、光照射とともに進行するエッチング反応により、生成した電子-正孔が再結合する確率が高まったことで、光照射から10時間後には反応に必要な電荷を取り出せなくなったためと考えられる。 In Examples 5, 10 and 15 at a heat treatment temperature of 900 ° C., the amount of hydrogen / oxygen produced after 10 hours was significantly lower than the amount of hydrogen / oxygen produced after 1 hour. When the heat treatment temperature is 900 ° C., the crystallinity of the indium gallium nitride layer 13 deteriorates, and the probability of recombination of generated electrons-holes increases due to the etching reaction that proceeds with light irradiation. It is considered that the charge required for the reaction could not be taken out after 10 hours.
 これらの結果より、長寿命化に期待できるp型金属酸化物15形成の熱処理条件は、温度が200℃以上800℃以下ということを抽出した。 From these results, it was extracted that the heat treatment conditions for forming the p-type metal oxide 15 that can be expected to extend the service life are a temperature of 200 ° C. or higher and 800 ° C. or lower.
 実施例17,18と実施例1,3の光照射から1時間後および10時間後の酸素・水素生成量は同じ程度であり、スパッタリング法によりp型金属酸化物15を形成しても、蒸着法によりp型金属酸化物15を形成したものと同様の効果が得られることがわかった。 The amount of oxygen and hydrogen produced 1 hour and 10 hours after the light irradiation of Examples 17 and 18 and Examples 1 and 3 was about the same, and even if the p-type metal oxide 15 was formed by the sputtering method, it was vapor-deposited. It was found that the same effect as that for forming the p-type metal oxide 15 can be obtained by the method.
 実施例19,20では、不純物としてAgおよびKを用いて作製したp-NiOでも同様の効果が得られることがわかった。 In Examples 19 and 20, it was found that the same effect can be obtained with p-NiO prepared using Ag and K as impurities.
 比較対象例1,2では、光照射から1時間後および10時間後のいずれにおいても水素・酸素の生成量が低かった。これは、NiOの場合、InGaN界面の障壁を正孔が移動できないことが影響していると考えられる。 In Comparative Target Examples 1 and 2, the amount of hydrogen and oxygen produced was low both 1 hour and 10 hours after the light irradiation. This is considered to be due to the fact that holes cannot move through the barrier at the InGaN interface in the case of NiO.
 以上から、ステップS6のp型金属酸化物15形成の熱処理条件を200℃以上800℃以下とし、ステップS5においてp型金属酸化物15の形成に用いるp-NiO粉末を作製するためのLiの組成比をNiに対して40%以下とすることで、水分解反応(光エネルギー変換効率)の高効率化および長寿命化を図ることができた。また、p型金属酸化物15の形成は蒸着法に限らずスパッタリング法も有効であり、p-NiOを作製する際にLiに限らずAgまたはKを不純物として使用することも有効であることがわかった。 From the above, the heat treatment conditions for forming the p-type metal oxide 15 in step S6 are set to 200 ° C. or higher and 800 ° C. or lower, and the composition of Li for producing the p—NiO powder used for forming the p-type metal oxide 15 in step S5. By setting the ratio to 40% or less with respect to Ni, it was possible to improve the efficiency of the water splitting reaction (light energy conversion efficiency) and extend the service life. Further, the formation of the p-type metal oxide 15 is not limited to the vapor deposition method, but the sputtering method is also effective, and it is also effective to use Ag or K as an impurity when producing p—NiO, not limited to Li. all right.
 以上説明したように、本実施形態の窒化物半導体光触媒薄膜の製造方法は、絶縁性または導電性の基板11上にn型窒化ガリウム層12を形成する工程と、n型窒化ガリウム層12上に窒化インジウムガリウム層13を形成する工程と、窒化インジウムガリウム層13の表面の一部に金属層14を形成する工程と、窒化インジウムガリウム層13と金属層14との界面でオーミック接合を形成するための熱処理する工程と、窒化インジウムガリウム層13の表面の一部にp型金属酸化物15を形成する工程と、p型金属酸化物15を形成した半導体薄膜を熱処理する工程を有する。窒化インジウムガリウム層13上にp型の半導体としての特性を示すp型金属酸化物15を酸化反応用助触媒として形成し、窒化インジウムガリウム層13の同一表面上に金属層14を還元反応用助触媒として形成することで、光吸収率が高い単一の窒化物半導体光触媒薄膜1において効率および寿命を向上できる。 As described above, the method for manufacturing the nitride semiconductor photocatalyst thin film of the present embodiment includes a step of forming the n-type gallium nitride layer 12 on the insulating or conductive substrate 11 and a step of forming the n-type gallium nitride layer 12 on the n-type gallium nitride layer 12. To form an ohmic junction at the interface between the indium gallium nitride layer 13 and the metal layer 14, the step of forming the metal layer 14 on a part of the surface of the indium gallium nitride layer 13, and the step of forming the metal layer 14 on a part of the surface of the indium gallium nitride layer 13. It has a step of heat-treating, a step of forming a p-type metal oxide 15 on a part of the surface of the indium gallium nitride layer 13, and a step of heat-treating a semiconductor thin film on which the p-type metal oxide 15 is formed. A p-type metal oxide 15 exhibiting characteristics as a p-type semiconductor is formed on the indium gallium nitride layer 13 as an auxiliary catalyst for an oxidation reaction, and a metal layer 14 is provided on the same surface of the indium gallium nitride layer 13 as an auxiliary catalyst for a reduction reaction. By forming it as a catalyst, the efficiency and life of a single nitride semiconductor photocatalyst thin film 1 having a high light absorption rate can be improved.
 なお、本実施形態では目的生成物を水素としたが、還元反応用助触媒である金属層14の再表面の金属を例えば、Ni,Fe,Au,Pt,Ag,Cu,In,Ti,Co,Ruに変えたり、セル内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成、窒素の還元反応によるアンモニアの生成も可能である。 In this embodiment, the target product is hydrogen, but the metal on the surface of the metal layer 14 which is the auxiliary catalyst for the reduction reaction is, for example, Ni, Fe, Au, Pt, Ag, Cu, In, Ti, Co. By changing to Ru or changing the atmosphere in the cell, it is possible to generate a carbon compound by a carbon dioxide reduction reaction and to produce ammonia by a nitrogen reduction reaction.
 酸化還元反応試験に用いる水溶液130は、水酸化ナトリウム以外に、水酸化カリウム水溶液、塩酸のようなイオン移動させる電解質を溶解させた水溶液でも構わない。特に、GaNはアルカリ性水溶液が好ましい。 The aqueous solution 130 used in the redox reaction test may be an aqueous solution in which an electrolyte for ion transfer such as potassium hydroxide aqueous solution or hydrochloric acid is dissolved, in addition to sodium hydroxide. In particular, GaN is preferably an alkaline aqueous solution.
 1…窒化物半導体光触媒薄膜
 11…基板
 12…n型窒化ガリウム層
 13…窒化インジウムガリウム層
 14…金属層
 15…p型金属酸化物
1 ... Nitride semiconductor photocatalyst thin film 11 ... Substrate 12 ... n-type gallium nitride layer 13 ... Indium gallium nitride layer 14 ... Metal layer 15 ... P-type metal oxide

Claims (4)

  1.  光照射により触媒機能を発揮して酸化還元反応を生じる窒化物半導体光触媒薄膜の製造方法であって、
     絶縁性または導電性の基板の表面上にn型窒化ガリウム層を形成する第1工程と、
     前記n型窒化ガリウム層の表面に窒化インジウムガリウム層を形成する第2工程と、
     前記窒化インジウムガリウム層の表面の一部に金属層を形成する第3工程と、
     前記窒化インジウムガリウム層と前記金属層との界面でオーミック接合を形成するために熱処理する第4工程と、
     前記窒化インジウムガリウム層の表面の一部にp型金属酸化物を形成する第5工程と、
     前記p型金属酸化物を熱処理する第6工程を有する
     窒化物半導体光触媒薄膜の製造方法。
    It is a method for manufacturing a nitride semiconductor photocatalytic thin film that exerts a catalytic function by light irradiation and causes a redox reaction.
    The first step of forming an n-type gallium nitride layer on the surface of an insulating or conductive substrate, and
    The second step of forming the indium gallium nitride layer on the surface of the n-type gallium nitride layer, and
    A third step of forming a metal layer on a part of the surface of the indium gallium nitride layer,
    The fourth step of heat-treating to form an ohmic contact at the interface between the indium gallium nitride layer and the metal layer,
    The fifth step of forming a p-type metal oxide on a part of the surface of the indium gallium nitride layer, and
    A method for producing a nitride semiconductor photocatalytic thin film, which comprises a sixth step of heat-treating the p-type metal oxide.
  2.  請求項1に記載の窒化物半導体光触媒薄膜の製造方法であって、
     前記第1工程および前記第2工程では、有機金属気相成長法を用いる
     窒化物半導体光触媒薄膜の製造方法。
    The method for manufacturing a nitride semiconductor photocatalytic thin film according to claim 1.
    In the first step and the second step, a method for producing a nitride semiconductor photocatalytic thin film using an organic metal vapor phase growth method.
  3.  請求項1または2に記載の窒化物半導体光触媒薄膜の製造方法であって、
     前記第3工程および前記第5工程では、蒸着法またはスパッタリング法を用いる
     窒化物半導体光触媒薄膜の製造方法。
    The method for producing a nitride semiconductor photocatalytic thin film according to claim 1 or 2.
    In the third step and the fifth step, a method for manufacturing a nitride semiconductor photocatalytic thin film using a thin film deposition method or a sputtering method.
  4.  請求項1ないし3のいずれかに記載の窒化物半導体光触媒薄膜の製造方法であって、
     前記第6工程では、200℃以上800℃以下の温度で熱処理する
     窒化物半導体光触媒薄膜の製造方法。
    The method for producing a nitride semiconductor photocatalytic thin film according to any one of claims 1 to 3.
    In the sixth step, a method for producing a nitride semiconductor photocatalytic thin film, which is heat-treated at a temperature of 200 ° C. or higher and 800 ° C. or lower.
PCT/JP2020/020511 2020-05-25 2020-05-25 Method for producing nitride semiconductor photocatalyst thin film WO2021240591A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527273A JP7406167B2 (en) 2020-05-25 2020-05-25 Method for manufacturing nitride semiconductor photocatalytic thin film
PCT/JP2020/020511 WO2021240591A1 (en) 2020-05-25 2020-05-25 Method for producing nitride semiconductor photocatalyst thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020511 WO2021240591A1 (en) 2020-05-25 2020-05-25 Method for producing nitride semiconductor photocatalyst thin film

Publications (1)

Publication Number Publication Date
WO2021240591A1 true WO2021240591A1 (en) 2021-12-02

Family

ID=78723182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020511 WO2021240591A1 (en) 2020-05-25 2020-05-25 Method for producing nitride semiconductor photocatalyst thin film

Country Status (2)

Country Link
JP (1) JP7406167B2 (en)
WO (1) WO2021240591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147190A (en) * 2014-02-07 2015-08-20 学校法人東京理科大学 Photocatalyst semiconductor element, photocatalytic oxidation-reduction reactor, and method for performing photoelectrochemical reaction
JP2016043304A (en) * 2014-08-21 2016-04-04 日本電信電話株式会社 Photocatalyst device
JP2017121597A (en) * 2016-01-05 2017-07-13 日本電信電話株式会社 Semiconductor photocatalyst
JP2017121598A (en) * 2016-01-05 2017-07-13 日本電信電話株式会社 Semiconductor photocatalyst
JP2019099884A (en) * 2017-12-06 2019-06-24 日本電信電話株式会社 Semiconductor photoelectrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147190A (en) * 2014-02-07 2015-08-20 学校法人東京理科大学 Photocatalyst semiconductor element, photocatalytic oxidation-reduction reactor, and method for performing photoelectrochemical reaction
JP2016043304A (en) * 2014-08-21 2016-04-04 日本電信電話株式会社 Photocatalyst device
JP2017121597A (en) * 2016-01-05 2017-07-13 日本電信電話株式会社 Semiconductor photocatalyst
JP2017121598A (en) * 2016-01-05 2017-07-13 日本電信電話株式会社 Semiconductor photocatalyst
JP2019099884A (en) * 2017-12-06 2019-06-24 日本電信電話株式会社 Semiconductor photoelectrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAYASHI, T. ET AL.: "High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water", JPN. J. APPL. PHYS., vol. 51, 9 October 2012 (2012-10-09), pages 112601 - 1 -112601-3, XP055877205, DOI: 10.1143/JJAP.51.112601 *
KUMAKURA, KAZUHIDE ET AL.: "Stability of NiO/InGaN/n-GaN photoanodes during solar water splitting", PROCEEDINGS OF THE 80TH JSAP SPRING MEETING, vol. 80, 4 September 2019 (2019-09-04) *

Also Published As

Publication number Publication date
JP7406167B2 (en) 2023-12-27
JPWO2021240591A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5885662B2 (en) Photocatalytic material and photocatalytic device
US9551077B2 (en) Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
JP5236124B1 (en) How to reduce carbon dioxide
JP5641489B2 (en) How to produce alcohol
WO2020116151A1 (en) Method for producing nitride semiconductor photoelectrode
JP6715172B2 (en) Method for manufacturing semiconductor photoelectrode
WO2020116153A1 (en) Semiconductor optical electrode
JP2017210666A (en) Reduction method of carbon dioxide and reduction apparatus of carbon dioxide
JP5742597B2 (en) How to generate hydrogen
WO2015001729A1 (en) Method for reducing carbon dioxide
JP2014227563A (en) Photochemical electrode for reducing carbon dioxide, apparatus for reducing carbon dioxide, and method for reducing carbon dioxide
JP2018090862A (en) Semiconductor photoelectrode
WO2021240591A1 (en) Method for producing nitride semiconductor photocatalyst thin film
US20230407498A1 (en) Water splitting device protection
JP6898566B2 (en) Semiconductor optical electrode
JP7343810B2 (en) Method for manufacturing nitride semiconductor photoelectrode
JP2019205970A (en) Semiconductor photoelectrode
WO2021240590A1 (en) Nitride semiconductor photocatalyst thin film and method for manufacturing nitride semiconductor photocatalyst thin film
JP2016098419A (en) Hydrogen generation method, hydrogen generating apparatus and anode electrode for hydrogen generation
WO2022123644A1 (en) Semiconductor photoelectrode and method for producing semiconductor photoelectrode
WO2024116358A1 (en) Semiconductor photoelectrode
WO2023089654A1 (en) Production method for semiconductor photoelectrode
JP7485991B2 (en) Semiconductor photoelectrode and method for producing the same
WO2023089656A1 (en) Method for producing semiconductor photoelectrode
WO2023089655A1 (en) Semiconductor photoelectrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938237

Country of ref document: EP

Kind code of ref document: A1