WO2021238997A1 - 一种光频梳的产生方法及装置 - Google Patents

一种光频梳的产生方法及装置 Download PDF

Info

Publication number
WO2021238997A1
WO2021238997A1 PCT/CN2021/096139 CN2021096139W WO2021238997A1 WO 2021238997 A1 WO2021238997 A1 WO 2021238997A1 CN 2021096139 W CN2021096139 W CN 2021096139W WO 2021238997 A1 WO2021238997 A1 WO 2021238997A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
nonlinear optical
pump light
brillouin
longitudinal mode
Prior art date
Application number
PCT/CN2021/096139
Other languages
English (en)
French (fr)
Inventor
谢臻达
黄书伟
贾琨鹏
汪小涵
赵刚
祝世宁
Original Assignee
南京大学
科罗拉多州立大学董事会法人团体
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学, 科罗拉多州立大学董事会法人团体 filed Critical 南京大学
Priority to JP2022517499A priority Critical patent/JP7373175B2/ja
Priority to GB2203513.3A priority patent/GB2602411B/en
Priority to DE112021000091.8T priority patent/DE112021000091T5/de
Publication of WO2021238997A1 publication Critical patent/WO2021238997A1/zh
Priority to US17/711,106 priority patent/US11822207B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10013Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the temperature of the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/17Function characteristic involving soliton waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present invention relates to the field of optical technology, in particular to a method and device for generating an optical frequency comb.
  • optical frequency comb is abbreviated as optical frequency comb, which is a broad-spectrum, high-coherent light source.
  • the optical frequency comb is represented in the frequency domain as a discrete, equally spaced comb-shaped spectrum.
  • the frequency interval is usually matched with the microwave band. Therefore, it can be connected with the more mature microwave frequency metrology, thereby measuring The accuracy is greatly improved.
  • optical frequency combs are Kerr optical frequency combs.
  • the pump laser generates a Kerr optical frequency comb through the Kerr nonlinear characteristics in the nonlinear optical resonant cavity.
  • the Kerr optical frequency comb has a variety of forms, among which the optical soliton state has the lowest noise and the smoothest spectrum, and has the highest application value.
  • the nonlinear optical resonant cavity has the characteristics of flexible size and large nonlinear coefficient, the frequency interval of the optical frequency comb generated by the nonlinear optical resonant cavity can cover a wide frequency range, which can make up for the traditional optical frequency comb generator. Defects in high repetition frequency applications.
  • the current optical frequency comb based on the nonlinear optical resonator has the above advantages, its noise level is directly affected by the quality of the pump source laser and cannot reach the quantum noise limit of the material.
  • the optical soliton optical frequency comb since this state works in the non-thermal stable state of the resonant cavity, it will also be disturbed by the thermal effect of the resonant cavity and cause the optical soliton state to be destroyed.
  • the present invention provides a method and device for generating an optical frequency comb to solve the current problems of high noise level and non-thermal steady state instability of the optical frequency comb generated based on a nonlinear optical resonant cavity.
  • the present invention provides a method for generating an optical frequency comb, including:
  • the Brillouin laser generates optical frequency combs including optical solitons through the Kerr nonlinear four-wave mixing process.
  • the nonlinear optical resonant cavity is adjusted so that the Brillouin gain corresponding to the pump light is consistent with the target longitudinal direction in the nonlinear optical resonant cavity.
  • the steps of mold coincidence include:
  • the cavity length of the nonlinear optical resonant cavity is adjusted to adjust the position of the target longitudinal mode so that the target longitudinal mode coincides with the Brillouin gain.
  • the nonlinear optical resonant cavity is adjusted so that the Brillouin gain corresponding to the pump light is consistent with the target longitudinal direction in the nonlinear optical resonant cavity.
  • the steps of mold coincidence also include:
  • the stress on the nonlinear optical resonant cavity is changed to adjust the position of the Brillouin gain so that the Brillouin gain coincides with the target longitudinal mode; wherein, the nonlinear optical resonant cavity can be twisted
  • the torsion angle can be up to 180°.
  • the nonlinear optical resonant cavity is adjusted so that the Brillouin gain corresponding to the pump light is consistent with the target longitudinal direction in the nonlinear optical resonant cavity.
  • the steps of mold coincidence also include:
  • the temperature of the nonlinear optical resonant cavity is changed to adjust the position of the Brillouin gain so that the Brillouin gain coincides with the target longitudinal mode; wherein the temperature adjustment range is -10°C ⁇ +90 °C.
  • adjusting the wavelength of the pump light can also make the Brillouin gain corresponding to the pump light correspond to the target in the nonlinear optical resonant cavity Longitudinal modes overlap; wherein the adjustment range of the pump light wavelength is 1540nm-1565nm.
  • the generated optical frequency comb has discrete spectra arranged at equal frequency intervals, generated under the thermal steady-state condition of the nonlinear optical resonator, and passed by the Brillouin laser Motivated by the Kerr effect.
  • the line width of a single comb tooth of the generated optical frequency comb is smaller than the line width of the pump light.
  • the noise of the generated optical frequency comb can reach the quantum noise limit corresponding to the nonlinear microcavity without active control.
  • the present invention also provides an optical frequency comb generating device, including:
  • the pumping source is used to emit continuous pumping light to the nonlinear optical resonator; and, the pumping source can change the wavelength of the pumping light in a controlled manner, so that the wavelength of the pumping light is consistent with that of the nonlinear optical cavity.
  • the thermal steady state of the resonant cavity is matched, so that the pump light energy oscillates in the thermal steady state of the nonlinear optical resonant cavity and is normally emitted from the nonlinear optical resonant cavity;
  • the nonlinear optical resonant cavity is used to align the received pump light at a certain longitudinal mode in the first set of longitudinal modes in the nonlinear optical resonant cavity; and the nonlinear optical resonant cavity can be changed in a controlled manner The position of the Brillouin gain corresponding to the pump light or changing the position of the target longitudinal mode in the second set of longitudinal modes in the nonlinear optical resonator so that the Brillouin gain coincides with the target longitudinal mode And, the nonlinear optical resonant cavity continuously generates Brillouin laser at the target longitudinal mode when the pump power of the pump light exceeds the threshold for generating Brillouin laser; wherein, Brillouin laser The laser generates an optical frequency comb through the Kerr nonlinear four-wave mixing process.
  • the nonlinear optical resonant cavity has both Brillouin nonlinearity and Kerr nonlinearity.
  • the nonlinear optical resonant cavity may be a traveling wave resonant cavity or a standing wave resonant cavity.
  • the longitudinal mode in the nonlinear optical resonant cavity may be introduced by different polarization modes of the nonlinear optical resonant cavity or transverse modes of different orders.
  • the present invention provides a method and device for generating an optical frequency comb.
  • the specific generating method is: receiving the pump light that matches the thermal steady state of the nonlinear optical resonator to make it work in the nonlinear optical cavity. Oscillation occurs in the resonant cavity, so that the Brillouin gain corresponding to the pump light coincides with the target longitudinal mode of the nonlinear optical resonator; when the pump power of the pump light exceeds the threshold for generating the Brillouin laser, the target longitudinal mode The Brillouin laser is continuously generated at the mode; the Brillouin laser generates an optical frequency comb through the Kerr nonlinear four-wave mixing process.
  • the technical scheme of the present invention uses a nonlinear optical resonant cavity with Brillouin gain to generate an optical frequency comb in its thermally stable region, which not only has good stability but also has low quantum noise and narrow linewidth characteristics .
  • FIG. 1 is a schematic structural diagram of an optical frequency comb generating device provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of light oscillation in a nonlinear optical resonant cavity provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another optical frequency comb generating device provided by an embodiment of the present invention.
  • Figure 4 (1) is a schematic diagram of the spectrum of an optical frequency comb generated by an optical fiber FP cavity provided by an embodiment of the present invention
  • FIG. 4(2) is a schematic diagram of the beat frequency signal of the optical frequency comb generated when a fiber FP cavity is used according to an embodiment of the present invention
  • FIG. 5(1) is a schematic diagram of the line width of a single comb tooth of an optical frequency comb generated by an optical fiber FP cavity provided by an embodiment of the present invention
  • Fig. 5(2) is a schematic diagram of phase noise of an optical frequency comb generated by an optical fiber FP cavity provided by an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for generating an optical frequency comb according to an embodiment of the present invention.
  • the Kerr optical frequency comb in the nonlinear optical resonant cavity is produced by using the Kerr nonlinear characteristics in the nonlinear optical resonant cavity.
  • Kerr optical frequency combs have a variety of forms. Among them, the optical soliton state has the lowest noise and the smoothest spectrum, the highest application value and the most versatile. Furthermore, because the nonlinear optical resonant cavity has the characteristics of flexible size and large nonlinear coefficient, the frequency interval of the optical frequency comb generated by the nonlinear optical resonant cavity can cover a wide frequency range, which can make up for the traditional optical frequency comb generator. Defects in high repetition frequency applications. At the same time, this optical frequency comb generation method is also conducive to the realization of integrated applications.
  • the nonlinear optical resonant cavity when a laser beam is injected into the nonlinear optical resonant cavity, the nonlinear optical resonant cavity will have two states: thermally stable state and non-thermally stable state.
  • the pump laser and the nonlinear optical resonator will have a fixed phase relationship, which is usually non-thermally stable.
  • the nonlinear optical resonant cavity has a fixed phase relationship. The high power density will produce a thermal effect, which will cause this fixed phase relationship to be disturbed and cannot be maintained stably, and it is difficult for the optical frequency comb to maintain its stable state.
  • the linewidth and noise characteristics of the optical frequency comb generated by the nonlinear optical resonator are directly limited by the characteristics of the pump laser.
  • the commonly used methods to maintain the stability of the optical frequency comb are also difficult to solve the problem of the pump laser's influence on the optical frequency. Limitations of comb characteristics.
  • the embodiments of the present invention provide a device and method for generating an optical frequency comb, which can generate an optical frequency comb in the thermal steady state of a nonlinear optical resonant cavity.
  • This optical frequency comb not only has good stability It also has lower quantum noise and smaller line width.
  • FIG. 1 is a schematic structural diagram of an optical frequency comb generating device provided by an embodiment of the present invention.
  • the optical frequency comb in the embodiment of the present invention mainly includes two parts: a pump source 100 and a nonlinear optical resonant cavity 200.
  • the pump source 100 is used to emit continuous pump light to the nonlinear optical resonator 200; and, the pump source 100 can be controlled by its own current or temperature adjustment to change the wavelength of the pump light, so that the pumping
  • the wavelength of the light matches the thermal steady state of the nonlinear optical resonator 200, so that the pump light energy oscillates in the thermal steady state of the nonlinear optical resonator and is normally emitted from the nonlinear optical resonant cavity 200.
  • the nonlinear optical resonant cavity 200 is used to align the received pump light with a longitudinal mode in the first set of longitudinal modes in the nonlinear optical resonant cavity 200; and, it can be controlled by its own cavity length, stress and temperature Change the position of the Brillouin gain corresponding to the pump light or change the position of the target longitudinal mode in the second set of longitudinal modes in the nonlinear optical resonator 200, so that the Brillouin gain coincides with the target longitudinal mode; and, When the pump power of the pump light exceeds the threshold for generating the Brillouin laser, the Brillouin laser is continuously generated at the target longitudinal mode; among them, the Brillouin laser generates the optical frequency through the Kerr nonlinear four-wave mixing process comb.
  • a resonant cavity is thermally stable for the pump light of a specific wavelength, that is, the pump light of a specific wavelength enters the resonant cavity without being affected by the thermal effect in the cavity or has little influence, and is normally emitted from the resonant cavity.
  • the thermal effect in the resonant cavity will affect the pump light to oscillate and propagate in the resonant cavity, and thus cannot be ideally emitted from the resonant cavity.
  • the wavelength of the pump light emitted by the pump source 100 in the embodiment of the present invention needs to be the same as the thermal stability of the nonlinear optical resonator 200. match.
  • the aforementioned specific wavelength may be a specific wavelength or a specific wavelength range.
  • FIG. 2 is a schematic diagram of light oscillation in a nonlinear optical resonant cavity provided by an embodiment of the present invention.
  • the pump light needs to be aligned with the thermally stable state of a longitudinal mode in one of the longitudinal modes, for example, aligned with a longitudinal mode in longitudinal mode 1, and the pump light in the nonlinear optical resonator 200 corresponds to
  • the Brillouin gain coincides with a longitudinal mode in another set of longitudinal modes, such as a longitudinal mode in longitudinal mode 2, and when the pump power exceeds the Brillouin threshold, it can be in a longitudinal mode 2
  • a continuous Brillouin laser is generated at each longitudinal mode.
  • the Brillouin laser can excite an optical frequency comb with discrete spectra arranged at equal frequency intervals in the nonlinear optical resonator 200 based on the Kerr nonlinear four-wave mixing mechanism. As shown in FIG. 2, a Brillouin laser can be generated in a longitudinal mode of the nonlinear optical resonator 200, and then an optical frequency comb can be generated in the longitudinal mode.
  • the nonlinear optical resonant cavity 200 there are several sets of longitudinal modes in the nonlinear optical resonant cavity 200. In actual use, a specific set of longitudinal modes can be selected to generate an optical frequency comb according to actual needs. In addition, the longitudinal mode in the nonlinear optical resonant cavity 200 may be introduced by different polarization modes of the nonlinear optical resonant cavity 200 or transverse modes of different orders.
  • the pump source 100 is a tunable continuous light laser.
  • the pump light it emits is a single wavelength light, and the Brillouin laser generated at the longitudinal mode of the nonlinear optical resonator 200 is also a single wavelength.
  • the resulting optical frequency comb contains laser light of multiple wavelengths.
  • the pump light works in the thermal steady state of the nonlinear optical resonant cavity, it can resist the disturbance caused by factors such as frequency jitter and environmental temperature change, so that the generated Brillouin
  • the laser can always maintain a fixed phase relationship with the nonlinear optical resonator, thereby realizing the generation of a self-stabilizing optical frequency comb.
  • the resulting optical frequency comb also has a line width several orders of magnitude lower than the pump light.
  • FIG. 3 is a schematic structural diagram of another optical frequency comb generating device provided by an embodiment of the present invention.
  • the filter 300, the half-wave plate 400 and the first beam coupler 500 are specifically shown in FIG. 3.
  • the isolator 300 is used to control the direction of the pump light, and the isolator 300 only allows the pump light to pass through in one direction, so as to prevent the light reflection from interfering with the normally emitted pump light.
  • the half-wave plate 400 is used to rotate the polarization plane of the pump light passing through the isolator 300 so that the pump light passing through the isolator 300 can be in phase with a longitudinal mode of the first set of longitudinal modes in the nonlinear optical resonator 200 match.
  • the first beam coupler 500 is used to couple the pump light passing through the half-wave plate 400 into the nonlinear optical resonant cavity 200.
  • a second beam coupler 600 is also provided at the output position of the nonlinear optical resonator 200 to receive the optical frequency comb generated by the nonlinear optical resonator 200 .
  • the pump light beam emitted by the pump source 100 passes through the isolator 300, rotates the half-wave plate 400 to control its polarization, and then passes the first beam coupler 500 to the beam Coupled to the nonlinear optical resonant cavity 200.
  • the Brillouin gain corresponding to the wavelength of the pump source 100 coincides with the target longitudinal mode in the second set of longitudinal modes of the nonlinear optical resonant cavity 200, and the target longitudinal mode can be sustained at the target longitudinal mode. Brillouin laser.
  • the Brillouin laser can excite an optical frequency comb with discrete spectra arranged at equal frequency intervals in the nonlinear optical resonator 200 based on the four-wave mixing mechanism. Finally, the output optical frequency comb is collected by the second beam coupler 600.
  • the pump light works in the thermal steady state of the nonlinear optical resonator, it can resist the disturbance caused by the frequency jitter and the environmental temperature change, so that the generated Brillouin laser It can always maintain a fixed phase relationship with the nonlinear optical resonant cavity, thereby realizing the generation of a self-stabilizing optical frequency comb.
  • the resulting optical frequency comb also has a line width several orders of magnitude lower than the pump light.
  • the position of its resonant peak is affected by its material, length and other factors. Different resonant cavities have different positions of the resonant peak, and the conditions for reaching thermal stability are also different, but for different resonant cavities As long as it can generate Brillouin gain, it can be used as a nonlinear optical resonant cavity 200 in the present invention.
  • the nonlinear optical resonant cavity 200 is made of nonlinear materials with Brillouin gain, and the structure of the optical resonant cavity includes but not limited to Fabry-Perot resonant cavity (Fabry-Perot). Perot cavity (FP cavity), linear cavity (linear cavity), ring cavity (Ring cavity), whispering gallery mode cavity (Whispering gallery mode cavity), etc.
  • the fiber FP cavity As an example, it is applied to the embodiment of the present invention to obtain an optical frequency comb with good stability and low quantum noise.
  • the specific content is as follows:
  • the fiber FP cavity used has a quality factor of 3.4 ⁇ 10 7 and the free spectral range (FSR, Free spectral range) is 945.4 MHz.
  • FSR Free spectral range
  • Fig. 4(1) is a schematic diagram of the spectrum of the optical frequency comb generated by using a fiber FP cavity provided by an embodiment of the present invention
  • Fig. 4(2) is the beat frequency of the optical frequency comb generated when using a fiber FP cavity provided by an embodiment of the present invention Signal diagram.
  • the optical frequency comb has a smooth spectrum, 30dB bandwidth exceeds 100nm, and has a beat frequency line width exceeding the resolution limit of the instrument, which proves the strong optical comb coherence. . It can be maintained for several hours in a free-running state, and has good passive stability, that is, when the optical fiber FP cavity is in a thermally stable state, the optical frequency comb is not easily affected.
  • Figure 5 (1) is a schematic diagram of the line width of a single comb tooth of an optical frequency comb generated by an optical fiber FP cavity provided by an embodiment of the present invention
  • Figure 5 (2) is an optical frequency generated by an optical fiber FP cavity provided by an embodiment of the present invention Schematic diagram of the phase noise of the comb. It can be seen from Figure 5(1) and Figure 5(2) that the single comb tooth of the optical frequency comb has a linewidth that is more than three orders of magnitude lower than that of the pump light, and the phase noise can be within the range of 10kHz or more. Reach the quantum noise limit -180dBc/Hz.
  • the fiber FP cavity can be preferably used as the nonlinear optical resonator 200 to generate an optical frequency comb in a thermally stable state, and the generated optical frequency comb has the following characteristics:
  • the optical frequency comb can achieve the repetition frequency of the microwave band, that is, the frequency interval between the comb teeth in the optical frequency comb is 1GHz-1THz, while the traditional mode-locked laser usually achieves a repetition frequency less than 1GHz, and the traditional gram
  • the Er microcavity optical frequency comb usually achieves a repetition frequency greater than 10 GHz. Therefore, the optical frequency comb provided by the embodiment of the present invention can fill the frequency gap of the traditional optical frequency comb;
  • the pump light works in the thermal stable state of the resonant cavity, so the generated optical frequency comb has good free-running passive stability and can be maintained for several hours, and it can well resist the laser frequency jitter, resonant cavity thermal drift and other bands.
  • the passive stability of the traditional Kerr optical frequency comb is poor, and it is easy to lose the soliton state once it is disturbed;
  • the Brillouin laser has the characteristic of narrowing the linewidth, that is, the Brillouin laser resonating in the resonator has a narrower linewidth than the pump light, and usually the linewidth narrowing effect can reach more than 1000 times.
  • the optical frequency comb produced by the Brillouin laser also has the same narrow linewidth characteristics, which greatly reduces the requirement for the pump light width.
  • the four-wave mixing mechanism makes the Kerr The line width of the optical frequency comb must be greater than or equal to the line width of the pump light.
  • the optical frequency comb produced in the embodiment of the present invention has a phase noise level of -180dBc/Hz that can reach the quantum noise limit, and has high application value in the fields of microwave photonics, while the quantum of the traditional Kerr optical frequency comb
  • the phase noise level of the noise limit is generally at the level of 150-160dBc/Hz.
  • a conventional FP cavity is also called a plane parallel cavity, which is composed of two parallel plane mirrors.
  • the most preferred embodiment of the present invention can use a fiber FP cavity to generate an optical frequency comb, but in some embodiments, Others, such as linear cavity, ring cavity, whispering gallery mode cavity, etc., through the above-mentioned optical frequency comb generation method, can also have the characteristics of more stable than the current Kerr optical frequency comb, and also have a narrower line width and lower
  • the quantum noise of will not be explained here one by one, the schematic diagrams of the pump light oscillating in these cavities are shown in Figure 2.
  • FIG. 6 is a flowchart of a method for generating an optical frequency comb according to an embodiment of the present invention. As shown in FIG. 6, the method is specifically implemented in a nonlinear optical resonator 200 and includes the following steps:
  • Step S101 receiving a pump light matching the thermal steady state of the nonlinear optical resonant cavity 200 to cause it to oscillate in the nonlinear optical resonant cavity 200.
  • a resonant cavity is thermally stable for the pump light of a specific wavelength, that is, the pump light of a specific wavelength enters the resonant cavity without being affected by the thermal effect in the cavity or has little influence, and is normally emitted from the resonant cavity.
  • the thermal effect in the resonant cavity will affect the scattering and propagation of the pump light in the resonant cavity, and thus cannot be ideally emitted from the resonant cavity.
  • the current, temperature or other parameters of the pump source 100 are adjusted to change the wavelength of the pump light emitted by it, so that The pump light can match the thermal steady state of the nonlinear optical resonator 200, so that the pump light can oscillate in the thermal steady state of the nonlinear optical resonator 200.
  • step S102 the nonlinear optical resonant cavity 200 is adjusted so that the Brillouin gain corresponding to the pump light coincides with the target longitudinal mode in the nonlinear optical resonant cavity 200.
  • Step S103 when the pump power of the pump light exceeds the threshold for generating the Brillouin laser, the Brillouin laser is continuously generated at the target longitudinal mode.
  • the Brillouin gain is related to the type of nonlinear optical resonator 200.
  • the Brillouin frequency shift in different nonlinear optical resonators 200 is different, and the position of the Brillouin gain in Figure 2 will change.
  • the Liouin gain coincides with a target longitudinal mode of the nonlinear optical resonator 200, or a target longitudinal mode overlaps with the Brillouin gain, and the pump power of the pump source 100 exceeds the threshold for generating Brillouin laser , A Brillouin laser will be generated at the longitudinal mode of the target.
  • the specific way to adjust the position of the Brillouin gain or the position of the target longitudinal mode is :
  • the cavity length of the nonlinear optical resonant cavity 200 is adjusted to adjust the position of the longitudinal mode so that the longitudinal mode coincides with the Brillouin gain; wherein the length change of the cavity length is usually on the order of micrometers.
  • the stress is adjusted to the nonlinear optical resonator 200 to adjust the position of the Brillouin gain so that the Brillouin gain coincides with the longitudinal mode.
  • the stress can be adjusted by twisting the cavity of the light FP cavity, where the maximum twist angle of the cavity of the light FP cavity can be up to 180°.
  • the temperature of the nonlinear optical resonator 200 is changed to adjust the position of the Brillouin gain so that the Brillouin gain coincides with the longitudinal mode.
  • the temperature adjustment range is approximately -10°C to +90°C.
  • the wavelength of the pump light is changed so that the Brillouin gain coincides with the longitudinal mode. If the pump source 100 is applied to the above-mentioned optical fiber FP cavity, the wavelength adjustment range of the pump source 100 is usually 1540 nm-1565 nm.
  • step S104 the Brillouin laser generates an optical frequency comb through the Kerr nonlinear four-wave mixing process.
  • the nonlinear optical resonant cavity 200 in the embodiment of the present application has both Brillouin nonlinearity and Kerr nonlinearity, and based on these properties, the nonlinear optical resonant cavity 200 itself has a Kerr nonlinear four-wave mixing mechanism.
  • Kerr nonlinear four-wave mixing is an intermodulation phenomenon in nonlinear optics, in which the interaction between two or three wavelengths produces two or one new wavelength. Therefore, a single-wavelength Brillouin laser passes through four After wave mixing, optical frequency combs with different wavelengths or frequencies are generated.
  • the aforementioned method of adjusting the position of the Brillouin gain or the position of the longitudinal mode is not limited to adjusting the cavity length or changing the stress on the resonant cavity or changing the temperature of the resonant cavity or changing the wavelength of the pump light.
  • the method of adjusting the position of the Brillouin gain or the position of the longitudinal mode is also applicable in the present invention.
  • non-linear optical resonant cavities 200 can also adopt the above-mentioned specific stress adjustment method, temperature adjustment range, and pump light wavelength adjustment range, etc. , Or on the basis of referring to these adjustment methods and adjustment ranges, adaptively adjust the length variation range of the cavity length, the torsion angle of the cavity, the temperature adjustment range and the adjustment range of the pump light wavelength based on its own characteristics and attributes. Wait.
  • an optical frequency comb is specifically provided in the embodiment of the present invention.
  • the optical frequency comb not only has an equal frequency spacing.
  • the arranged discrete spectrum is also generated in the thermal steady state of the nonlinear optical resonant cavity 200, which is used to represent a resonant cavity having both Kerr nonlinearity and Brillouin gain.
  • the linewidth of the optical frequency comb is several orders of magnitude smaller than the linewidth of the pump light, for example, three orders of magnitude, etc.; the phase noise level of the quantum noise limit of the optical frequency comb is ⁇ 180dBc/Hz; the repetition frequency of the optical frequency comb is about 1GHz.
  • the present invention provides a method and device for generating an optical frequency comb.
  • the specific generating method is: receiving the pump light that matches the thermal steady state of the nonlinear optical resonator to make it work in the nonlinear optical cavity. Oscillation occurs in the resonant cavity, so that the Brillouin gain corresponding to the pump light coincides with the target longitudinal mode of the nonlinear optical resonator; when the pump power of the pump light exceeds the threshold for generating the Brillouin laser, the target longitudinal mode The Brillouin laser is continuously generated at the mode; the Brillouin laser generates an optical frequency comb through the Kerr nonlinear four-wave mixing process.
  • the technical scheme of the present invention uses a nonlinear optical resonant cavity with Brillouin gain to produce an optical frequency comb in its thermally stable region, which not only has good stability, but also has low quantum noise and narrow linewidth characteristics. .

Abstract

本发明公开了一种光频梳的产生方法及装置,具体的产生方法为:接收与非线性光学谐振腔的热稳态相匹配的泵浦光使其在非线性光学谐振腔内产生振荡,使泵浦光对应的布里渊增益与非线性光学谐振腔的目标纵模重合;在泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在目标纵模处持续产生布里渊激光;布里渊激光通过克尔非线性四波混频过程产生光频梳。本发明的技术方案,利用具有布里渊增益的非线性光学谐振腔可以在其热稳态区域产生一种光频梳,该光频梳不仅稳定性好而且具有低量子噪声和窄线宽特性。

Description

一种光频梳的产生方法及装置
本申请要求在2020年5月27日提交中国专利局、申请号为202010462932.3、发明名称为“一种光频梳的产生方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学技术领域,尤其涉及一种光频梳的产生方法及装置。
背景技术
光学频率梳(Optical frequency comb,OFC)简称光频梳,是一种宽谱的高相干光源。光频梳在频域上表现为离散的、等间距频率排布的梳状光谱,其频率间隔通常与微波波段相匹配,因此它可以与更为成熟的微波频率计量学联系起来,从而将计量精度大幅度提高。
目前常见的光频梳多为克尔光频梳。泵浦激光在非线性光学谐振腔中,通过非线性光学谐振腔中的克尔非线性特性产生克尔光频梳。克尔光频梳具有多种形态,其中的光孤子态具有最低的噪声和最平滑的光谱,应用价值最高。再由于非线性光学谐振腔具有尺寸灵活、非线性系数大等特点,因此采用非线性光学谐振腔产生的光频梳频率间隔可以覆盖很宽的频率范围,能弥补传统的光频梳产生装置在高重频应用上的缺陷。
然而,目前的基于非线性光学谐振腔产生的光频梳虽然具有上述优点,但是其噪声水平由于直接受到泵浦源激光质量的影响,无法达到材料的量子噪声极限。特别是对于光孤子光频梳,由于该状态工作于谐振腔的非热稳态,因此还会受到谐振腔热效应的干扰而导致光孤子态被破坏。
发明内容
本发明提供了一种光频梳的产生方法及装置,以解决目前基于非线性光学谐振腔产生的光频梳噪声水平高、非热稳态不稳定的问题。
第一方面,本发明提供了一种光频梳的产生方法,包括:
接收与非线性光学谐振腔的热稳态相匹配的泵浦光使其在所述非线性光学谐振腔内产生振荡;
调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合;
在所述泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在所述目标纵模处持续产生布里渊激光;
布里渊激光通过克尔非线性四波混频过程产生包括光孤子在内的光频梳。
结合第一方面,在第一方面的一种可实现方式中,调整所述非线性光学谐振腔, 使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤包括:
调整所述非线性光学谐振腔的腔长,以调整所述目标纵模的位置,使得所述目标纵模与所述布里渊增益重合。
结合第一方面,在第一方面的一种可实现方式中,调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤还包括:
改变所述非线性光学谐振腔所受的应力,以调整所述布里渊增益的位置,使得所述布里渊增益与所述目标纵模重合;其中,可以通过扭转非线性光学谐振腔的腔体以调整应力,扭转角度最大可达180°。
结合第一方面,在第一方面的一种可实现方式中,调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤还包括:
改变所述非线性光学谐振腔的温度,以调整所述布里渊增益的位置,使得所述布里渊增益与所述目标纵模重合;其中,温度调节的范围为-10℃~+90℃。
结合第一方面,在第一方面的一种可实现方式中,调整所述泵浦光波长,也可以使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合;其中,所述泵浦光波长的调节范围为1540nm-1565nm。
结合第一方面,在第一方面的一种可实现方式中,产生的光频梳具有等频率间距排列的离散光谱,在非线性光学谐振腔的热稳态条件下产生,由布里渊激光通过克尔效应所激发。
结合第一方面,在第一方面的一种可实现方式中,产生的光频梳单根梳齿的线宽小于泵浦光的线宽。
结合第一方面,在第一方面的一种可实现方式中,产生的光频梳的噪声在无主动控制情况下可以达到非线性微腔对应的量子噪声极限。
第二方面,本发明还提供了一种光频梳的产生装置,包括:
泵浦源,用于向非线性光学谐振腔发射连续的泵浦光;以及,所述泵浦源可受控改变所述泵浦光的波长,使得所述泵浦光的波长与非线性光学谐振腔的热稳态相匹配,进而使所述泵浦光能在非线性光学谐振腔的热稳态中产生振荡并从所述非线性光学谐振腔中正常射出;
非线性光学谐振腔,用于将接收到的泵浦光对准所述非线性光学谐振腔中第一套纵模中的某个纵模;以及,所述非线性光学谐振腔可受控改变所述泵浦光对应的布里渊增益的位置或者改变所述非线性光学谐振腔中第二套纵模中目标纵模的位置,以使所述布里渊增益与所述目标纵模重合;并且,所述非线性光学谐振腔在所述泵浦光的泵浦功率超过产生布里渊激光阈值的情况下,在所述目标纵模处持续产生布里渊激光; 其中,布里渊激光通过克尔非线性四波混频过程产生光频梳。
结合第二方面,在第二方面的一种可实现方式中,所述非线性光学谐振腔同时具有布里渊非线性和克尔非线性。
结合第二方面,在第二方面的一种可实现方式中,所述非线性光学谐振腔可以是行波谐振腔或者驻波谐振腔。
结合第二方面,在第二方面的一种可实现方式中,所述非线性光学谐振腔中的纵模可以由非线性光学谐振腔的不同偏振模式或者不同阶次的横模引入。
由以上技术方案可知,本发明提供了一种光频梳的产生方法及装置,具体的产生方法为:接收与非线性光学谐振腔的热稳态相匹配的泵浦光使其在非线性光学谐振腔内产生振荡,使泵浦光对应的布里渊增益与非线性光学谐振腔的目标纵模重合;在泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在目标纵模处持续产生布里渊激光;布里渊激光通过克尔非线性四波混频过程产生光频梳。本发明的技术方案,利用具有布里渊增益的非线性光学谐振腔可以在其热稳态区域产生一种光频梳,该光频梳不仅稳定性好而且具有低量子噪声和窄线宽特性。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施案例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种光频梳的产生装置的结构示意图;
图2为本发明实施例提供的一种非线性光学谐振腔中光线振荡的示意图;
图3为本发明实施例提供的另一种光频梳的产生装置的结构示意图;
图4(1)为本发明实施例提供的采用光纤FP腔产生的光频梳的光谱示意图;
图4(2)为本发明实施例提供的采用光纤FP腔时产生的光频梳的拍频信号示意图;
图5(1)为本发明实施例提供的采用光纤FP腔产生的光频梳单根梳齿的线宽示意图;
图5(2)为本发明实施例提供的采用光纤FP腔产生的光频梳的相位噪声示意图;
图6为本发明实施例提供的光频梳的产生方法的流程图。
具体实施方式
非线性光学谐振腔中的克尔光学频率梳,是利用非线性光学谐振腔中的克尔非线性特性产生的。克尔光频梳具有多种形态,其中,光孤子态具有最低的噪声和最平滑的光谱,应用价值最高、用途最广。再由于非线性光学谐振腔具有尺寸灵活、非线性系数大等特点,因此采用非线性光学谐振腔产生的光频梳频率间隔可以覆盖很宽的频率范围,能弥补传统的光频梳产生装置在高重频应用上的缺陷。同时,这种光频梳的 生成方法也有利于实现集成化应用。
原理上讲,当一束激光注入到非线性光学谐振腔中,非线性光学谐振腔就会具有热稳态和非热稳态两种状态。在光孤子光频梳的产生过程中,泵浦激光与非线性光学谐振腔会具有固定的相位关系,该相位关系通常为非热稳态,而光频梳产生过程中非线性光学谐振腔内的高功率密度会产生热效应,这种热效应会导致这种固定的相位关系受到干扰而无法稳定维持,进而光频梳难以维持其稳定状态。
虽然目前也有一些维持光频梳稳定性的方法,但多是需要利用一系列复杂的泵浦调谐、反馈及控制机制等操作,从而人为地主动维持泵浦激光与谐振腔相位的相对稳定性。这些方法不仅操作复杂,还依赖于人为操作。
另外,非线性光学谐振腔产生的光频梳的线宽及噪声等特性,都会直接受到泵浦激光特性的限制,目前常用的维持光频梳稳定性的方法也难以解决泵浦激光对于光频梳特性的限制。
基于上述内容,本发明实施例中提供了一种光频梳的产生装置及方法,能够在非线性光学谐振腔的热稳态中产生光频梳,这种光频梳不仅具有良好的稳定性还具有较低的量子噪声和较小的线宽。
图1为本发明实施例提供的一种光频梳的产生装置的结构示意图。如图1所示,本发明实施例中的光频梳主要包括泵浦源100和非线性光学谐振腔200两部分。其中,泵浦源100,用于向非线性光学谐振腔200发射连续的泵浦光;以及,泵浦源100可受控于自身电流或者温度的调整而改变泵浦光的波长,使得泵浦光的波长与非线性光学谐振腔200的热稳态相匹配,进而使泵浦光能在非线性光学谐振腔的热稳态中产生振荡并从非线性光学谐振腔200中正常射出。
非线性光学谐振腔200,用于将接收到的泵浦光对准非线性光学谐振腔200中第一套纵模中的某个纵模;以及,可受控于自身腔长、应力和温度的调整而改变泵浦光对应的布里渊增益的位置或者改变非线性光学谐振腔200中第二套纵模中目标纵模的位置,以使布里渊增益与目标纵模重合;并且,在泵浦光的泵浦功率超过产生布里渊激光阈值的情况下,在目标纵模处持续产生布里渊激光;其中,布里渊激光通过克尔非线性四波混频过程产生光频梳。
通常,一个谐振腔针对于特定波长的泵浦光具有热稳态,即,特定波长的泵浦光进入谐振腔中会不受腔内热效应的影响或者影响很小,正常从谐振腔中射出。当不属于特定波长的泵浦光进入该谐振腔中,谐振腔中的热效应会影响这个泵浦光在谐振腔中振荡和传播,进而无法理想地从谐振腔中射出。因此,为了保证射入非线性光学谐振腔200中的泵浦光能够正常射出,本发明实施例中泵浦源100发出的泵浦光的波长需要与非线性光学谐振腔200的热稳态相匹配。前述所说的特定波长可以是一个特定的波长也可以是一个特定的波长范围。
图2为本发明实施例提供的一种非线性光学谐振腔中光线振荡的示意图,如图2所示,非线性光学谐振腔200中可存在多套纵模,为了在热稳态产生光频梳,需要将泵浦光对准其中一套纵模中的某个纵模的热稳态,例如对准纵模1中的某个纵模,将 非线性光学谐振腔200中泵浦光对应的布里渊增益与另外一套纵模中的某个纵模重合,例如纵模2中的某个纵模,并且在泵浦功率超过布里渊阈值时,可以在纵模2中的某个纵模处产生持续的布里渊激光。再由于非线性光学谐振腔200本身的特性,布里渊激光可以在非线性光学谐振腔200中基于克尔非线性四波混频机制激发出具有等频率间距排列的离散光谱的光频梳,如图2所示,在非线性光学谐振腔200的一个纵模上可以产生一个布里渊激光,进而在纵模上可以产生光频梳。
通常情况下,非线性光学谐振腔200中的纵模有若干套,在实际使用时,可以根据实际需要选择某一套特定的纵模产生光频梳。并且,非线性光学谐振腔200中的纵模可以由非线性光学谐振腔200的不同偏振模式或者不同阶次的横模引入。
泵浦源100是一种可调谐的连续光激光器,其发出的泵浦光是一种单一波长的光线,在非线性光学谐振腔200的纵模处产生的布里渊激光也是一种单一波长的激光,最后产生的光频梳包含多种波长的激光光线。
在本发明实施例中,光频梳产生后,由于泵浦光工作在非线性光学谐振腔的热稳态,可以抵抗频率抖动、环境温度改变等因素带来的扰动,使得产生的布里渊激光可以一直与非线性光学谐振腔保持固定的相位关系,从而实现了自稳定光频梳的产生。并且由于布里渊激光自身的线宽压窄特性,所产生的光频梳也同样具有低于泵浦光数个量级的线宽。
图3为本发明实施例提供的另一种光频梳的产生装置的结构示意图。在一些实施例中,为了能够更好地将泵浦源100发出的泵浦光收集到非线性光学谐振腔200中,还需要在泵浦源100与非线性光学谐振腔200之间依次设置隔离器300、半波片400和第一光束耦合器500,具体如图3所示。
其中,隔离器300,用于对所述泵浦光的方向进行控制,隔离器300只允许泵浦光单向通过,避免光线反射对正常发出的泵浦光进行干扰。
半波片400,用于旋转通过隔离器300的泵浦光偏振面,使通过隔离器300的泵浦光可以与非线性光学谐振腔200中的第一套纵模中的某个纵模相匹配。
第一光束耦合器500,用于将通过半波片400的泵浦光耦合到非线性光学谐振腔200中。
为了将非线性光学谐振腔200产生的光频梳收集使用,在非线性光学谐振腔200的输出位置还设有第二光束耦合器600,用于接收非线性光学谐振腔200产生的光频梳。
在一些实施例中的光频梳的产生装置中,泵浦源100发出的泵浦光光束经过隔离器300,旋转半波片400对其偏振进行控制,再通过第一光束耦合器500将光束耦合到非线性光学谐振腔200中。在非线性光学谐振腔200中,泵浦源100波长对应的布里渊增益与非线性光学谐振腔200的第二套纵模中的目标纵模重合,在该目标纵模处就可以产生持续的布里渊激光。再由于非线性光学谐振腔200本身的特性,布里渊激光可以在非线性光学谐振腔200中基于四波混频机制激发出具有等频率间距排列的离 散光谱的光频梳。最后,再将输出的光频梳使用第二光束耦合器600进行收集。
在一些实施例中,光频梳产生后,由于泵浦光工作在非线性光学谐振腔的热稳态,可以抵抗频率抖动、环境温度改变等因素带来的扰动,使得产生的布里渊激光可以一直与非线性光学谐振腔保持固定的相位关系,从而实现了自稳定光频梳的产生。并且由于布里渊激光自身的线宽压窄特性,所产生的光频梳也同样具有低于泵浦光数个量级的线宽。
在谐振腔中,其共振峰的位置受到其材料、长度等因素的影响,不同的谐振腔其共振峰的位置不同,进而其达到热稳态的条件也不同,但是对于不同的谐振腔来说,只要其能产生布里渊增益,就都可以应用于本发明中作为非线性光学谐振腔200使用。在实际应用中,这种非线性光学谐振腔200多由具有布里渊增益的非线性材料制备而来的,且光学谐振腔的结构包括但不限于法布里-珀罗谐振腔(Fabry-Perot cavity,FP cavity)、线性腔(linear cavity)、环形腔(Ring cavity)、回音壁模式腔(Whispering gallery mode cavity)等。
以光纤FP腔为例,将其应用到本发明实施例中,以可以获得稳定性好以及低量子噪声的光频梳,具体内容如下:
使用的光纤FP腔具有3.4×10 7的品质因子,自由光谱范围(FSR,Free spectral range)为945.4MHz。当耦合进光纤腔的泵浦光功率逐渐提高,在腔内可以产生布里渊激光,此时调节泵浦光的频率即可产生光频梳。
图4(1)为本发明实施例提供的采用光纤FP腔产生的光频梳的光谱示意图,图4(2)为本发明实施例提供的采用光纤FP腔时产生的光频梳的拍频信号示意图。从图4(1)和图4(2)中可以看出,光频梳具有平滑的光谱,30dB带宽超过100nm,具有超过仪器分辨率极限的拍频线宽,证明了强的光梳相干性。在自由运转的状态下可以维持数小时,具有很好的被动稳定性,即在光纤FP腔处于热稳态时,光频梳不易受到影响。
图5(1)为本发明实施例提供的采用光纤FP腔产生的光频梳单根梳齿的线宽示意图,图5(2)为本发明实施例提供的采用光纤FP腔产生的光频梳的相位噪声示意图。从图5(1)和图5(2)中可以看出,光频梳的单根梳齿具有比泵浦光低三个量级以上的线宽,并且相位噪声在10kHz以上的范围内可达量子噪声极限-180dBc/Hz。
从上述内容可以看出,本发明实施例中可以优选地利用光纤FP腔作为非线性光学谐振腔200使用,以在热稳态产生光频梳,并且产生的光频梳具有以下特点:
首先,光频梳可以实现微波波段的重复频率,即光频梳中梳齿之间的频率间隔为1GHz-1THz,而传统的锁模激光器实现的通常是小于1GHz的重复频率,并且传统的克尔微腔光频梳实现的通常是大于10GHz的重复频率,因此本发明实施例提供的光频梳能够填补传统光频梳的频率空白;
其次,泵浦光工作在谐振腔的热稳态,因此产生的光频梳具有良好的自由运转被动稳定性并可维持数小时,可以很好的抵抗由于激光器频率抖动、谐振腔热漂移等带 来的扰动,而传统的克尔光频梳的被动稳定性较差,一旦受到扰动很容易丢失孤子态;
再有,由于布里渊激光具有压窄线宽的特性,即在谐振腔中共振的布里渊激光具有比泵浦光更窄的线宽,通常线宽压窄效应可达1000倍以上,进而由布里渊激光产生的光频梳也具有同样的窄线宽特性,这样便大大降低了对泵浦光线宽的要求,而对于传统的克尔光频梳,四波混频机制使得克尔光频梳的线宽必然大于或等于泵浦光的线宽。
最后,本发明实施例中产生的光频梳具有可达量子噪声极限的相位噪声水平-180dBc/Hz,在微波光子学等领域具有较高的应用价值,而传统的克尔光频梳的量子噪声极限的相位噪声水平一般在150-160dBc/Hz的水平。
常规的FP腔也称平面平行腔,由两个平行平面反射镜组成,根据以上内容,可知本发明实施例中最优选的可采用光纤FP腔产生光频梳,但是在一些实施例中,采用其他例如线性腔、环形腔、回音壁模式腔等通过上述这种光频梳的产生方法,也可以具有比目前的克尔光频梳更稳定的特点,也具有更窄的线宽以及更低的量子噪声,在此不一一说明,泵浦光在这些腔内发生振荡的示意图均如图2所示。
图6为本发明实施例提供的光频梳的产生方法的流程图,如图6所示,该方法具体在非线性光学谐振腔200中实现,包括如下步骤:
步骤S101,接收与非线性光学谐振腔200的热稳态相匹配的泵浦光使其在非线性光学谐振腔200内产生振荡。
一个谐振腔针对于特定波长的泵浦光具有热稳态,即,特定波长的泵浦光进入谐振腔中会不受腔内热效应的影响或者影响很小,正常从谐振腔中射出。当不属于特定波长的泵浦光进入该谐振腔中,谐振腔中的热效应会影响这个泵浦光在谐振腔中的散射和传播,进而无法理想地从谐振腔中射出。因此,为了保证射入非线性光学谐振腔200中的泵浦光能够正常射出,本发明实施例中通过调节泵浦源100的电流、温度或其他参数,改变其发出泵浦光的波长,使得泵浦光能够与非线性光学谐振腔200的热稳态相匹配,进而也以使泵浦光能在非线性光学谐振腔200的热稳态中产生振荡。
步骤S102,调整所述非线性光学谐振腔200,使泵浦光对应的布里渊增益与所述非线性光学谐振腔200中的目标纵模重合。
步骤S103,在所述泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在所述目标纵模处持续产生布里渊激光。
通常,布里渊增益与非线性光学谐振腔200种类有关,不同非线性光学谐振腔200中的布里渊频移不同,进而布里渊增益在图2中的位置就会发生变化,当布里渊增益与非线性光学谐振腔200的一个目标纵模重合,或者一个目标纵模与布里渊增益具有重叠的部分,并且泵浦源100的泵浦功率超过产生布里渊激光的阈值时,就会在该目标纵模处产生一个布里渊激光。
为了将布里渊增益与目标纵模重合,需要对布里渊增益的位置或者目标纵模的位置进行调整,在非线性光学谐振腔200材料固定的情况下,目标纵模的位置与非线性 光学谐振腔200的腔长有关,以及,布里渊增益的频移与非线性光学谐振腔200的形状有关,因此,对布里渊增益的位置或者目标纵模的位置进行调整的具体方式为:
调整非线性光学谐振腔200的腔长,以调整纵模的位置,使得纵模与布里渊增益重合;其中,腔长的长度变化通常处于微米量级。
或者,对非线性光学谐振腔200调整应力,以调整布里渊增益的位置,使得布里渊增益与纵模重合。以上述光纤FP腔为例,可通过扭转光线FP腔的腔体以调整应力,其中,光线FP腔的腔体扭转角度最大可达180°。
或者,对非线性光学谐振腔200改变温度,以调整布里渊增益的位置,使得布里渊增益与纵模重合。以上述光纤FP腔为例,对其进行温度调节时,温度调节的范围大约是-10℃~+90℃。
再或者,通过调整泵浦源100而改变泵浦光的波长,使得布里渊增益与纵模重合。如泵浦源100应用于上述光纤FP腔中,对泵浦源100进行波长的调节范围通常是1540nm-1565nm。
步骤S104,布里渊激光通过克尔非线性四波混频过程产生光频梳。
本申请实施例中的非线性光学谐振腔200同时具有布里渊非线性和克尔非线性,并且基于这些性质,使得非线性光学谐振腔200自身带有克尔非线性四波混频机制,克尔非线性四波混频是非线性光学中的互调现象,其中两个或三个波长之间的相互作用产生两个或一个新的波长,因此,单一波长的布里渊激光经过了四波混频作用之后,就会产生具有不同波长或者频率的光频梳。
值得说明的是,上述所说的调整布里渊增益位置或者纵模位置的方式并不仅仅限于调整腔长或者对谐振腔改变应力或者对谐振腔改变温度或者对泵浦光改变波长,其他可以调整布里渊增益的位置或者纵模的位置的方式在本发明中同样适用。
并且,上述调整布里渊增益位置或者纵模位置的方式仅仅是以光纤FP腔为例进行说明。在实际应用中,可使用的非线性光学谐振腔200的种类还有多种,其他的非线性光学谐振腔200也可以采用上述具体的应力调整方式、温度调节范围和泵浦光波长调节范围等,或者在参考这些调整方式和调节范围的基础上,基于自身的特点、属性等适应性地调整腔长的长度变化范围、腔体的扭转角度、温度调节的范围以及泵浦光波长的调节范围等。
结合上述产生光频梳的装置和方法的实施例内容,可以获得一种稳定的光频梳,所以本发明实施例中还具体提供了一种光频梳,该光频梳不仅具有等频率间距排列的离散光谱,还是在非线性光学谐振腔200的热稳态中产生,所述非线性光学谐振腔200用于表示同时具有克尔非线性和布里渊增益的谐振腔。并且,最优的情况下,所述光频梳的线宽小于泵浦光的线宽数个量级,例如三个量级等;所述光频梳的量子噪声极限的相位噪声水平为-180dBc/Hz;所述光频梳的重复频率为1GHz左右。
由以上技术方案可知,本发明提供了一种光频梳的产生方法及装置,具体的产生方法为:接收与非线性光学谐振腔的热稳态相匹配的泵浦光使其在非线性光学谐振腔 内产生振荡,使泵浦光对应的布里渊增益与非线性光学谐振腔的目标纵模重合;在泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在目标纵模处持续产生布里渊激光;布里渊激光通过克尔非线性四波混频过程产生光频梳。本发明的技术方案,利用具有布里渊增益的非线性光学谐振腔可以在其热稳态区域产生一种光频梳,该光频梳不仅稳定性好而且具有低量子噪声和窄线宽特性。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种光频梳的产生方法,其特征在于,包括:
    接收与非线性光学谐振腔的热稳态相匹配的泵浦光使其在所述非线性光学谐振腔内产生振荡;
    调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合;
    在所述泵浦光的泵浦功率超过产生布里渊激光的阈值情况下,在所述目标纵模处持续产生布里渊激光;
    布里渊激光通过克尔非线性四波混频过程产生包括光孤子在内的光频梳。
  2. 根据权利要求1所述的产生方法,其特征在于,调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤包括:
    调整所述非线性光学谐振腔的腔长,以调整所述目标纵模的位置,使得所述目标纵模与所述布里渊增益重合。
  3. 根据权利要求1所述的产生方法,其特征在于,调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤还包括:
    改变所述非线性光学谐振腔所受的应力,以调整所述布里渊增益的位置,使得所述布里渊增益与所述目标纵模重合;其中,可以通过扭转非线性光学谐振腔的腔体以调整应力,扭转角度最大可达180°。
  4. 根据权利要求1所述的产生方法,其特征在于,调整所述非线性光学谐振腔,使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合的步骤还包括:
    改变所述非线性光学谐振腔的温度,以调整所述布里渊增益的位置,使得所述布里渊增益与所述目标纵模重合;其中,温度调节的范围为-10℃~+90℃。
  5. 根据权利要求1所述的产生方法,其特征在于,调整所述泵浦光波长,也可以使所述泵浦光对应的布里渊增益与所述非线性光学谐振腔中的目标纵模重合;其中,所述泵浦光波长的调节范围为1540nm-1565nm。
  6. 根据权利要求1所述的产生方法,其特征在于,产生的光频梳具有等频率间距排列的离散光谱,在非线性光学谐振腔的热稳态条件下产生,由布里渊激光通过克尔效应所激发。
  7. 根据权利要求1所述的产生方法,其特征在于,产生的光频梳单根梳齿的线宽小于泵浦光的线宽。
  8. 根据权利要求1所述的产生方法,其特征在于,产生的光频梳的噪声在无主动控制情况下可以达到非线性微腔对应的量子噪声极限。
  9. 一种光频梳的产生装置,其特征在于,包括:
    泵浦源,用于向非线性光学谐振腔发射连续的泵浦光;以及,所述泵浦源可受控改变所述泵浦光的波长,使得所述泵浦光的波长与非线性光学谐振腔的热稳态相匹配,进而使所述泵浦光能在非线性光学谐振腔的热稳态中产生振荡并从所述非线性光学谐振腔中正常射出;
    非线性光学谐振腔,用于将接收到的泵浦光对准所述非线性光学谐振腔中第一套纵模中的某个纵模;以及,所述非线性光学谐振腔可受控改变所述泵浦光对应的布里渊增益的位置或者改变所述非线性光学谐振腔中第二套纵模中目标纵模的位置,以使所述布里渊增益与所述目标纵模重合;并且,所述非线性光学谐振腔在所述泵浦光的泵浦功率超过产生布里渊激光阈值的情况下,在所述目标纵模处持续产生布里渊激光;其中,布里渊激光通过克尔非线性四波混频过程产生光频梳。
  10. 根据权利要求9所述的产生装置,其特征在于,所述非线性光学谐振腔同时具有布里渊非线性和克尔非线性。
  11. 根据权利要求9所述的产生装置,其特征在于,所述非线性光学谐振腔可以是行波谐振腔或者驻波谐振腔。
  12. 根据权利要求9所述的产生装置,其特征在于,所述非线性光学谐振腔中的纵模可以由非线性光学谐振腔的不同偏振模式或者不同阶次的横模引入。
PCT/CN2021/096139 2020-05-27 2021-05-26 一种光频梳的产生方法及装置 WO2021238997A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022517499A JP7373175B2 (ja) 2020-05-27 2021-05-26 光コムの発生方法及び装置
GB2203513.3A GB2602411B (en) 2020-05-27 2021-05-26 Method and apparatus for generating optical frequency comb
DE112021000091.8T DE112021000091T5 (de) 2020-05-27 2021-05-26 Verfahren und vorrichtung zum erzeugen eines optischen frequenzkamms
US17/711,106 US11822207B2 (en) 2020-05-27 2022-04-01 Method and apparatus for generating optical frequency comb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010462932 2020-05-27
CN202010462932.3 2020-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/711,106 Continuation-In-Part US11822207B2 (en) 2020-05-27 2022-04-01 Method and apparatus for generating optical frequency comb

Publications (1)

Publication Number Publication Date
WO2021238997A1 true WO2021238997A1 (zh) 2021-12-02

Family

ID=78728359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096139 WO2021238997A1 (zh) 2020-05-27 2021-05-26 一种光频梳的产生方法及装置

Country Status (6)

Country Link
US (1) US11822207B2 (zh)
JP (1) JP7373175B2 (zh)
CN (1) CN113745955B (zh)
DE (1) DE112021000091T5 (zh)
GB (1) GB2602411B (zh)
WO (1) WO2021238997A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602411B (en) * 2020-05-27 2023-12-20 Nanjing University Of Technology Method and apparatus for generating optical frequency comb

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770573A (zh) * 2005-09-08 2006-05-10 中国计量学院 光纤拉曼放大受激布里渊散射梳状光源
EP3048420A1 (en) * 2015-01-14 2016-07-27 Honeywell International Inc. Systems and methods for an optical frequency comb stimulated brillouin scattering gyroscope with rigid optical waveguide resonator
CN109739060A (zh) * 2019-03-11 2019-05-10 南京大学 一种光学频率梳产生系统
CN110806670A (zh) * 2019-11-26 2020-02-18 吉林大学 一种基于腔内泵浦方式产生时域腔孤子和孤子频率梳的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7272160B1 (en) * 2005-01-24 2007-09-18 Np Photonics, Inc Single-frequency Brillouin fiber ring laser with extremely narrow linewidth
EP2908168B1 (de) * 2014-02-14 2019-12-04 Deutsche Telekom AG Erzeugung von Frequenzkämmen und sinc-förmigen Nyquist-Pulsefolgen großer Bandbreite und abstimmbarer Repetitionsrate
CN104777697A (zh) * 2015-04-21 2015-07-15 电子科技大学 一种随机偏振反馈系统光频梳产生器
CN104977774A (zh) * 2015-07-09 2015-10-14 华中科技大学 一种用于实现硅基多波长光源的色散剪裁的微腔
CN107465108B (zh) * 2017-07-27 2020-07-24 吉林大学 基于双波长布里渊激光环形腔的光频率梳产生装置与方法
US11050214B2 (en) * 2018-05-02 2021-06-29 Massachusetts Institute Of Technology Narrow-linewidth microcavity brillouin laser with suppressed temperature fluctuations
CN109494559B (zh) * 2018-12-27 2020-12-04 上海交通大学 孤子光频梳产生装置及操作方法
US20220221583A1 (en) * 2020-04-13 2022-07-14 Imra America, Inc. Ultra-low phase noise millimeter-wave oscillator and methods to characterize same
GB2602411B (en) * 2020-05-27 2023-12-20 Nanjing University Of Technology Method and apparatus for generating optical frequency comb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770573A (zh) * 2005-09-08 2006-05-10 中国计量学院 光纤拉曼放大受激布里渊散射梳状光源
EP3048420A1 (en) * 2015-01-14 2016-07-27 Honeywell International Inc. Systems and methods for an optical frequency comb stimulated brillouin scattering gyroscope with rigid optical waveguide resonator
CN109739060A (zh) * 2019-03-11 2019-05-10 南京大学 一种光学频率梳产生系统
CN110806670A (zh) * 2019-11-26 2020-02-18 吉林大学 一种基于腔内泵浦方式产生时域腔孤子和孤子频率梳的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNPENG JIA, XIAOHAN WANG, XIN NI, HUAYING LIU, LIYUN HAO, JIAN GUO, JIAN NING, GANG ZHAO, XINJIE LV, ZHENDA XIE, SHINING ZHU: "Mid-infrared optical frequency comb generation from a chi-2 optical superlattice box resonator arXiv preprint", 1 April 2019 (2019-04-01), XP055872004, Retrieved from the Internet <URL:https://arxiv.org/abs/1904.00528> *

Also Published As

Publication number Publication date
JP2022552088A (ja) 2022-12-15
GB2602411B (en) 2023-12-20
CN113745955A (zh) 2021-12-03
US11822207B2 (en) 2023-11-21
CN113745955B (zh) 2023-01-24
GB2602411A (en) 2022-06-29
JP7373175B2 (ja) 2023-11-02
US20220221769A1 (en) 2022-07-14
GB202203513D0 (en) 2022-04-27
DE112021000091T5 (de) 2022-04-28

Similar Documents

Publication Publication Date Title
US11606064B2 (en) Fourier domain mode-locked optoelectronic oscillator
Li et al. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs
CN107124910A (zh) 稳定的微波频率源
CN113161863B (zh) 基于时域锁模光电振荡器的微波脉冲产生装置及方法
Smith A study of factors affecting the performance of continuously pumped doubly resonant optical parametric oscillator
CN111711062A (zh) 一种中红外光学频率梳产生的方法及装置
Bagayev et al. A femtosecond self-mode-locked Ti: sapphire laser with high stability of pulse-repetition frequency and its applications
Wo et al. Actively mode-locked optoelectronic oscillator for microwave pulse generation
WO2021238997A1 (zh) 一种光频梳的产生方法及装置
Ji et al. Design of partially etched GaP-OI microresonators for two-color Kerr soliton generation at NIR and MIR
JP3849019B2 (ja) 光パルスのタイミングジッター低減方法および装置
WO2004107033A1 (en) Frequency comb generator
US7605973B2 (en) Optical wavelength conversion light source
Li et al. Tunable High-Purity Microwave Frequency Combs Generation Based on Active Mode-Locking OEO
Ahtee et al. Single-frequency synthesis at telecommunication wavelengths
Lelièvre et al. In-situ dispersion measurement of a coupled optoelectronic oscillator
Yen et al. Tunable optical frequency comb generation based on a micro-ring assisted fiber laser with optical injection-locking
Meng et al. 515 nm pumped femtosecond optical parametric oscillator at 755 MHz based on BiB 3 O 6
CN220797412U (zh) 一种基于注入锁定的双光频梳源
Cui et al. Active mode-locking optoelectronic oscillator based on a high-Q microring resonator
Marandi et al. Coherence properties of a mid-infrared frequency comb produced by a degenerate optical parametric oscillator
Kong et al. The compound cavity optical parametric oscillator: theory and experiment
Qin et al. A 780 nm Dual-Frequency Faraday Laser
Dong et al. Self-sustained Optical Frequency Combs Generation with a Tunable Line Spacing Based on Coupled Optoelectronic Oscillators
He et al. High-repetition-rate optical pulses generation using a phase-modulator-based optoelectronic oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202203513

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210526

ENP Entry into the national phase

Ref document number: 2022517499

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21812375

Country of ref document: EP

Kind code of ref document: A1