WO2021238758A1 - 显示装置及近眼显示设备 - Google Patents

显示装置及近眼显示设备 Download PDF

Info

Publication number
WO2021238758A1
WO2021238758A1 PCT/CN2021/094821 CN2021094821W WO2021238758A1 WO 2021238758 A1 WO2021238758 A1 WO 2021238758A1 CN 2021094821 W CN2021094821 W CN 2021094821W WO 2021238758 A1 WO2021238758 A1 WO 2021238758A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
coupler
light
input coupler
field
Prior art date
Application number
PCT/CN2021/094821
Other languages
English (en)
French (fr)
Inventor
刘娟
邢志浩
吕振律
Original Assignee
华为技术有限公司
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 北京理工大学 filed Critical 华为技术有限公司
Publication of WO2021238758A1 publication Critical patent/WO2021238758A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • This application relates to the field of near-eye display technology, and more specifically, to a display device and a near-eye display device.
  • the augmented reality (AR) near-eye display system is a wearable display system that allows the human eye to see the real world scene while also seeing the virtual scene generated by the computer through a certain optical system. Its purpose is to integrate computer-generated virtual objects into real scenes, to realize seamless integration of real and virtual scenes, and to realize enhancement of real scenes.
  • AR near-eye display system the design of virtual and real superimposed lenses is an important research topic.
  • the virtual and real superimposed lens is used to superimpose and couple the light of the real scene and the light of the digital image generated by the computer into the wearer's eyes.
  • the existing virtual-real superposition lens design methods include coaxial side-view prism method, array type semi-transparent film waveguide method, free-form surface method, geometric waveguide method, holographic grating waveguide method and so on.
  • the holographic grating waveguide method abandons the complex optical system, can effectively reduce the size and quality of the system, and has the advantages of "lightness, smallness, and speed", so it has become a research hotspot.
  • the traditional virtual-real superposition lens based on the holographic grating waveguide technology can be composed of an input coupler, a pupil expander, an output coupler and the optical waveguide substrate itself that functions as an optical waveguide on the surface of the optical waveguide substrate.
  • the input coupler couples external light into the lens, expands it through the pupil expander, and exports the lens to the wearer's eye by the output coupler.
  • the traditional virtual and real superimposed lens based on the holographic grating waveguide technology has a limited field of view, which affects the wearer's visual experience.
  • This application provides a display device and a near-eye display device, which are used to solve the problem that the existing virtual-real superimposed lens based on the holographic grating waveguide technology has a limited field of view and affects the wearer's visual experience.
  • the present application provides a display device that includes a virtual and real superimposed lens and an image engine, and the virtual and real superimposed lens includes an input coupler, a pupil expander, an output coupler, and an optical waveguide substrate.
  • the input coupler, the pupil expander, and the output coupler are located on the surface of the optical waveguide substrate.
  • the input coupler, the pupil expander, and the output coupler each include a plurality of partitions.
  • One section of the input coupler, one section of the pupil expander, and one section of the output coupler are combined with the optical waveguide substrate to form an optical transmission channel, and one section of the input coupler is used to connect the image engine
  • a sub-field of light in the total field of view of light is coupled into the optical waveguide substrate, and the above-mentioned sub-field of light is transmitted through a section of the pupil expander and a section of the output coupler and then coupled out of the virtual and real superimposed lens
  • the field of view angles of the multiple sub-fields of the input coupler are continuous, and the sum of the field angles of the light rays of the sub-fields coupled into the multiple sub-fields of the input coupler is not less than the field of view of the total field of view.
  • the input coupler, pupil expander, and output coupler respectively include multiple partitions with the same number.
  • the input coupler, Each partition of the pupil expander and the output coupler only diffracts the incident light within the allowable incidence angle range with high efficiency.
  • the partition of the input coupler can be The field of view is continuous, and the sum of the field of view angles of the sub-field of light coupled in each partition is not less than the field of view of the total field of view light from the image engine, so that the total field of view light from the image engine can be
  • the virtual and real superimposed lenses are completely coupled into the wearer's eyes, so that the field of view of the virtual and real superimposed lenses is significantly improved, thereby significantly improving the wearer's viewing range and greatly improving the wearer's visual experience.
  • there is no need to select an optical waveguide substrate material with a higher refractive index so it does not increase the manufacturing cost of the virtual-real superimposed lens.
  • the number of partitions of the aforementioned input coupler is the same as the number of partitions of the aforementioned pupil expander and the number of partitions of the aforementioned output coupler, respectively
  • the multiple partitions of the input coupler are seamlessly adjacent in space, and the total area after the multiple partitions of the input coupler are spliced covers the output pupil of the image engine.
  • the image light projected from the collimating lens can be coupled to the greatest extent. Into the virtual and real superimposed lens, improve the transmission efficiency of image light.
  • the allowable incidence angle ranges of the multiple partitions of the input coupler do not overlap each other, the diffraction exit angle ranges of the multiple partitions of the input coupler do not overlap each other, and the pupil
  • the allowable incidence angle ranges of the multiple partitions of the expander do not overlap each other, the diffraction exit angle ranges of the multiple partitions of the pupil expander do not overlap each other, and the allowable incidence angle ranges of the multiple partitions of the output coupler
  • the input coupler, pupil expander and output coupler of the above-mentioned virtual and real superimposed lens adopt certain specific spatial layouts, corresponding to a specific sub-field of light, it is guided by the corresponding partition of the input coupler.
  • the light may first enter other partitions of the pupil expander before reaching the corresponding partition of the pupil expander.
  • the light corresponds to the specific sub-field of view light
  • the incident angle falls within the allowable incident angle range of other partitions, it will enter the transmission channel of other sub-fields of view, resulting in aliasing and crosstalk between the sub-fields.
  • the aliasing and crosstalk between the sub-fields of view can be avoided, and it is ensured that the image seen by the wearer's eyes does not appear abnormal.
  • one section of the pupil expander is used to perform pupil expansion in the first direction of the one sub-field of view light
  • one section of the output coupler is used to perform the one sub-field of light.
  • the pupil expands in the second direction of the field of view.
  • the first direction is a horizontal direction
  • the second direction is a vertical direction
  • the first direction is a vertical direction
  • the second direction is a horizontal direction.
  • the pupil expander and the output coupler are more flexible for the pupil expansion direction of the light.
  • the multiple partitions of the input coupler are located on the same side surface of the optical waveguide substrate.
  • the multiple partitions of the pupil expander are located on the same side surface of the optical waveguide substrate.
  • the multiple sub-regions of the output coupler are located on the same side surface of the optical waveguide substrate.
  • the multiple partitions of the input coupler, the pupil expander and the output coupler are respectively arranged on the same side surface of the optical waveguide substrate, so that the structure of the virtual and real superimposed lens is more concise and the complexity of the preparation process is reduced.
  • the input coupler and the output coupler are located on the side of the optical waveguide substrate facing the image engine on the surface.
  • the input coupler and the output coupler are transmission gratings, respectively.
  • the input coupler and the output coupler are located on the optical waveguide substrate and facing away from the image engine. On the surface of the side.
  • the input coupler and the output coupler are reflection gratings, respectively.
  • the input coupler is located on the surface of the optical waveguide substrate facing the image engine, and the The output coupler is located on the surface of the optical waveguide substrate on the side facing the eyes of the wearer.
  • the input coupler and the output coupler are transmission gratings, respectively.
  • the input coupler is located on the surface of the optical waveguide substrate facing away from the image engine
  • the output coupler is located on the surface of the optical waveguide substrate on the side facing away from the eyes of the wearer.
  • the input coupler and the output coupler are reflection gratings, respectively.
  • the pupil expander is a reflective grating.
  • the image engine includes: an image source and a collimating lens; the image source is used to display an image, the collimating lens is used to receive the light of the image from the image source, and The light of the image is collimated, and the collimated light is guided to the input coupler.
  • an embodiment of the present application provides a near-eye display device, which includes the display device described in the first aspect.
  • the near-eye display device includes a head-mounted near-eye display device or a glasses-type near-eye display device.
  • the near-eye display device includes an AR near-eye display device, a VR near-eye display device, or an MR near-eye display device.
  • Figure 1 is an example of the structure of a traditional virtual and real superimposed lens
  • FIG. 2 is an exemplary structure diagram of a display device provided by an embodiment of the application.
  • Fig. 3 is an exemplary structure diagram of the virtual and real superimposed lenses in the display device
  • Figure 4 is a schematic diagram of the light path of the total field of view light from the image engine transmitted to the wearer's eyes through the virtual and real superimposed lenses;
  • Fig. 5 is a schematic diagram of the three divisions of the input coupler dividing the total field of view light into three sub-fields of light;
  • Fig. 6 is another exemplary structure diagram of a virtual and real superimposed lens
  • FIG. 7 is a schematic diagram of the sub-field light coupled into each zone of the input coupler transmitted through the above four optical transmission channels.
  • the virtual and real superimposed lenses involved in the embodiments of this application are virtual and real superimposed lenses based on holographic grating waveguide technology.
  • the embodiments of this application are simply referred to as virtual and real superimposed lenses below.
  • Figure 1 is an example of the structure of a traditional virtual and real superimposed lens.
  • the traditional virtual and real superimposed lens consists of an input coupler, a pupil expander, an output coupler on the surface of the lens base, and an optical waveguide.
  • the lens base itself constitutes.
  • the virtual and real superimposed lens guides and controls the transmission path of the digital image generated by the computer outside the lens in the lens, and couples it into the wearer's eyes.
  • the light emitted or reflected by the scene in the external real physical world it can directly penetrate the lens and enter the wearer's eyes, so that the visual superposition of the virtual digital image and the real scene can be completed in the wearer's eyes.
  • the input coupler couples the field of view light of the digital image incident from the outside of the virtual and real superimposed lens into the lens and guides it to the pupil expander.
  • the pupil expander performs the horizontal direction light of the input field of view.
  • the pupil expands and directs light to the output coupler at the same time; the output coupler performs pupil expansion in the vertical direction of the input field of view, and at the same time directs the light out of the lens to enter the wearer's eyes.
  • the light is transmitted in the optical waveguide, that is, the upper and lower surfaces of the lens are transmitted by total reflection, so as to keep the incident into the lens to the greatest extent
  • the light energy of the image source increases the brightness of the image that enters the human eye.
  • the viewing angle of the above-mentioned traditional virtual and real superimposed lens is limited, which limits the viewing range of the wearer, and thus Affect the wearer's visual experience. Even if a material with a higher refractive index is used to manufacture the virtual-real superimposed lens, the cost of the virtual-real superimposed lens is expensive, and the effect of improving the field of view of the virtual-real superimposed lens is not obvious.
  • the embodiment of the present application performs a multi-space partition design on each device of the virtual and real superimposed lens, so that the field of view of the virtual and real superimposed lens is significantly improved.
  • the improvement allows the wearer's viewing range to be significantly improved, which greatly enhances the wearer's visual experience.
  • FIG. 2 is an exemplary structure diagram of a display device provided by an embodiment of the application
  • (a), (b) and (c) in FIG. 3 are respectively an exemplary structure diagram of a virtual and real superimposed lens in the display device.
  • (a) in FIG. 3 is a front view
  • (b) in FIG. 3 is a side view
  • (c) in FIG. 3 is a top view.
  • the display device may include a virtual and real superimposed lens and an image engine.
  • the image engine and the wearer’s eyes can be located on the same side of the virtual and real superimposed lens, or on different sides of the virtual and real superimposed lens.
  • Figures 2 and 3 above show that the image engine and the wearer’s eyes are on the same side of the virtual and real superimposed lens. Condition.
  • the image engine may include an image source and a collimating lens.
  • the image source is used to display the image produced by the computer.
  • the image source may be a micro display suitable for AR/virtual reality (VR)/mixed reality (MR) devices.
  • the image source may be a variety of microdisplays based on organic light-emitting diode (OLED), liquid crystal on silicon (LCOS), and digital light processing (DLP) technology. These microdisplays can provide higher image resolution in a smaller size (for example, less than 1 inch).
  • the collimating lens receives the divergent image light from the image source, collimates the image light, and projects the collimated light to the input coupler of the virtual and real superimposed lens through the output pupil of the collimating lens.
  • collimation refers to converting the spherical light emitted by each pixel on the image source into parallel light directed in various directions.
  • the light of the image refers to the light emitted when the image source displays the image, and the light of the image may also be referred to as the light corresponding to the image, or the light corresponding to the image.
  • the virtual and real superposition lens is used to copy the image projected by the collimating lens from its input pupil to the output pupil.
  • the input pupil is an aperture located on the input coupler, the aperture coincides with the output pupil of the collimating lens in spatial position, that is, the image light emitted by the image source is collimated by the collimating lens and then passes through the virtual and real superimposed lens.
  • the input pupil is coupled into the virtual and real superimposed lens.
  • the output pupil is an aperture on the output coupler through which the light of the image leaves the output coupler of the lens.
  • the input pupil may also be called the entrance pupil, and the output pupil may also be called the exit pupil.
  • the virtual and real superposition lens includes an input coupler, a pupil expander, an output coupler and an optical waveguide substrate.
  • the input coupler, pupil expander and output coupler are all located on the surface of the optical waveguide substrate.
  • the input coupler, the pupil expander and the output coupler respectively include a plurality of partitions.
  • the number of partitions of the input coupler and the number of partitions of the pupil coupler and the number of partitions of the output coupler are respectively the same.
  • the embodiment of the present application does not limit the number of the above-mentioned partitions, and the number of partitions may be 2, 3, 4, or 5, for example. Taking the number of partitions as an example, it indicates that the number of partitions of the input coupler, the number of partitions of the pupil expander, and the number of partitions of the output coupler are 3 respectively.
  • One section of the input coupler, one section of the pupil coupler, and one section of the output coupler are combined with the optical waveguide substrate to form an optical transmission channel.
  • the number of partitions is 3, 3 light transmission channels can be formed in the virtual and real superimposed lens.
  • Figure 3 (a), (b), and (c) illustrate an example of a structure with three partitions.
  • the input coupling The output coupler includes three partitions, 101, 102, and 103
  • the pupil expander includes three partitions, 201, 202, and 203
  • the output coupler includes three partitions, 301, 302, and 303, respectively.
  • 101, 201, and 301 combined with the optical waveguide substrate form the first optical transmission channel
  • 102, 202, and 302 combined with the optical waveguide substrate form the second optical transmission channel
  • 103, 203, and 303 combined with the optical waveguide substrate form the third optical transmission channel. Transmission channel.
  • a partition of the input coupler is used to couple a sub-field of light from the total field of view light from the image engine, and the sub-field of light passes through a partition of the pupil expander and the output coupling After a partition of the device is transmitted, a virtual and real superimposed lens is coupled out.
  • the partition 101 of the input coupler in the first optical transmission channel is used to couple a sub-field of light from the total field of view light from the image engine, and couple the sub-field of light into the optical waveguide, And lead to the pupil expander section 201.
  • the pupil expander section 201 performs horizontal pupil expansion on the sub-field of view light, and then the output coupler section 301 performs vertical pupil expansion, and the sub-view The field light is coupled into the wearer's eyes.
  • the partition 102 of the input coupler in the second optical transmission channel is used to couple a sub-field of light from the total field of view light from the image engine, couple the sub-field of light into the optical waveguide, and guide the pupil expander Partition 202, the partition 202 of the pupil expander performs horizontal pupil expansion on the light of the sub-field, and then the partition 302 of the output coupler performs vertical pupil expansion, and couples the light of the sub-field into the wearer’s eyes .
  • the partition 103 of the input coupler in the third optical transmission channel is used to couple a sub-field of light from the total field of view of the image engine, couple the sub-field of light into the optical waveguide, and guide it to the pupil expander Partition 203, the partition 203 of the pupil expander performs horizontal pupil expansion on the light of the sub-field, and then the partition 303 of the output coupler performs vertical pupil expansion, and couples the light of the sub-field into the wearer’s eyes .
  • FIG. 4 are schematic diagrams of the light path of the total field of view light from the image engine transmitted to the wearer's eyes through the virtual and real superimposed lenses, where (a) in Figure 4 is a front view , Figure 4 (b) is a side view, Figure 4 (c) is a top view. It is worth noting that the schematic diagrams of light paths in (a), (b) and (c) in FIG. 4 are schematic diagrams of light paths arranged in regions in the structures (a), (b) and (c) in FIG. 3.
  • the propagation paths of the parallel ray bundles corresponding to the center points of the three sub-fields of light respectively represent the three sub-fields of light coupling into the input coupling
  • the total field of view light projected by the image engine is incident on the three sub-fields of the input coupler.
  • the total field of view light is divided into three sub-fields of light by the three sub-fields of the input coupler.
  • the field light propagates in the virtual and real superimposed lenses along the first light transmission channel, the second light transmission channel, and the third light transmission channel, and respectively couples out the virtual and real superimposed lenses from the output coupler, and enters the wearer's eyes.
  • the field of view angles of each sub-field of the input coupler are continuous, and the sum of the field angles of the sub-field rays coupled by each section of the input coupler is not less than the total field of view rays from the image engine The field of view angle, so that the virtual and real superimposed lens can completely couple the total field of view light from the image engine into the wearer’s eyes.
  • the sum of the field angles of the sub-field rays coupled into the sections of the input coupler is equal to the field angle of the total field of view rays from the image engine.
  • the field of view angle of the partition 101 of the input coupler may be the initial 0° to ⁇ °
  • the field of view angle of the partition 102 It may be the middle ⁇ ° to 2 ⁇ °
  • the field angle of the partition 103 may be the last 2 ⁇ ° to 3 ⁇ °.
  • the field of view angles of the three sub-fields are continuous, and the sum of the field angles of the sub-field rays coupled into the three sub-fields is the total field angle of the total field of view rays.
  • the division of the field of view of the above-mentioned partitions is only an example.
  • the division of the field of view may also be divided in other ways, for example, the field of view is divided in a non-equal division manner.
  • the field angles of each sub-field of the input coupler can be made continuous and the sum of the field angles of the sub-field light coupled into each sub-field is the total field of view.
  • the angle of view of the field light may be selected.
  • the input coupler may be diffractive optical elements (DOE), the input coupler may be selective to the incident angle of the incident light, and specific preparation parameters are selected for each partition, so that the input coupler Each sub-area only diffracts the incident light in a specific incident angle range with high efficiency, and the output light ability is concentrated in a specific angle range.
  • DOE diffractive optical elements
  • the above-mentioned specific incident angle range may be referred to as the allowable incident angle range, and the specific angle range of the emitted light diffracted by the allowable incident angle range is referred to as the diffracted emission angle range.
  • the field of view angle of the partition 101 of the input coupler can be set to 0. ° to ⁇ °
  • the field angle of the partition 102 may be the middle ⁇ ° to 2 ⁇ °
  • the field angle of the partition 103 may be the last 2 ⁇ ° to 3 ⁇ °.
  • the field of view angles of the three sub-fields are continuous, and the sum of the field angles of the sub-field rays coupled into the three sub-fields is the total field angle of the total field of view rays.
  • FIG. 1 is a schematic diagram of the three divisions of the input coupler dividing the total field of view light into three sub-fields of light.
  • the pixel point 1, the pixel point 2 and the pixel point 3 are respectively located on the left of the image source .
  • the middle and right pixels, the scattered light emitted by the three pixels is collimated into parallel light beams directed to the right front, right front and left front respectively through the collimating lens, which are represented as beam 1, respectively in Figure 5 Beam 2 and Beam 3.
  • partition 2 although the light from pixel 1, pixel 2 and pixel 3 can all illuminate to partition 2, or in other words, the total field of view light of the image source can all illuminate to partition 2, but only the light beam
  • the incident angle of 2 (the light from the pixel located in the middle of the image source) falls within the allowable incident angle range selected by partition 2, so that it can be diffracted to the predetermined direction by the device in partition 2, while the light beam 1 (from the The incident angle range of the light from the pixel on the left of the image source) and beam 3 (light from the light from the pixel on the right of the image source) falls outside the range of allowable incident angle of partition 2.
  • partition 2 selects the light from the central pixel of the image source from the total field of view light incident on itself, that is, the light from the central sub-field of view is diffracted in a predetermined direction .
  • partition 1 selects the right subfield from the total field of view light incident on itself for diffraction
  • partition 3 selects the left subfield of view from the total field of view light incident on itself for diffraction.
  • the total field of view light incident outside the virtual and real superimposed lens is divided into 3 sub-fields by the three sub-fields of the input coupler, and respectively propagates to the 3 sub-fields of the pupil expander along the respective predetermined diffraction directions and propagation paths.
  • the pupil coupler and the output coupler can also be DOE respectively, and the pupil coupler and the output coupler can have selectivity for the incident angle of the incident light, by selecting each zone separately
  • the specific preparation parameters enable the pupil coupler and output coupler sections to only diffract the incident light within a specific incident angle range with high efficiency.
  • each partition of the input coupler can be the same as the field angle of the input coupler in the traditional virtual and real superposition lens shown in Fig. 1. Assuming that the input coupler includes three partitions, the field angle of each partition If it is 30°, the virtual-real superimposed lens in the present application can achieve a display effect of a 90° field of view. Compared with the traditional virtual-real superimposed lens, the field of view can be expanded by three times.
  • the input coupler, pupil expander, and output coupler of the virtual and real superimposed lens respectively include a plurality of the same number of partitions.
  • the input coupler can be made .
  • the pupil expander and the output coupler sections respectively only diffract the incident light within the allowable incident angle range with high efficiency.
  • each section of the input coupler can be made
  • the field of view angle is continuous, and the sum of the field angles of each sub-field of view light coupled in each partition is not less than the field of view angle of the total field of view light from the image engine, so that the total field of view light from the image engine can be
  • the virtual-real superimposed lens is completely coupled out and enters the wearer's eyes, so that the field of view of the virtual-real superimposed lens is significantly improved, thereby significantly improving the wearer's viewing range and greatly improving the wearer's visual experience.
  • there is no need to select an optical waveguide substrate material with a higher refractive index so it does not increase the manufacturing cost of the virtual-real superimposed lens.
  • the partitions of the input coupler can be seamlessly adjacent in space, and the total area after the partitions are spliced completely covers the output pupil of the image engine.
  • the output pupil of the aforementioned image engine may refer to the output pupil of the collimating lens in the aforementioned image engine.
  • the partitions of the input coupler are set to be seamlessly adjacent in space, and the total area after the partitions is spliced completely covers the output pupil of the image engine, so that the image light projected from the collimating lens can be coupled in to the greatest extent Into the virtual and real superimposed lens, improve the transmission efficiency of image light.
  • the light corresponding to a specific sub-field of view will be input-coupled During the propagation process of the corresponding partition of the pupil expander to the corresponding partition of the pupil expander, the light may first enter other partitions of the pupil expander before reaching the corresponding partition of the pupil expander. At this time, if it corresponds to the specific If the incident angle of the light of the sub-field falls within the allowable incident angle range of other sub-fields, it will enter the transmission channels of other sub-fields, thereby causing aliasing and crosstalk between the sub-fields.
  • the light propagation process is as shown in (a), (b), and (c) in FIG. 4 above. It can be seen from FIG. 4 that the light rays corresponding to the sub-field of view coupled into the partition 101 of the input coupler are diffracted and then directed to the corresponding partition 201 of the pupil expander, and first enter the partition 202 and the pupil expander. 203. If the incident angle of the light of the sub-field of view coupled in 101 falls within the allowable incident angle range of the partition 202 or/and 203, it will cause the light of the sub-field of view coupled in the partition 101 to mix with the light of other sub-fields. Stacked crosstalk.
  • the light corresponding to the sub-field of view coupled into the input coupler section 102 is propagating from the input coupler section 102 to the pupil expander section 202 through the pupil expander section 203, if the light is in the pupil
  • the allowable incident angle range of the extender 203 will cause crosstalk to the sub-field of view light coupled by the input coupler partition 103.
  • the allowable incidence angle ranges of the input coupler sections do not overlap each other, and the diffraction exit angle ranges of the input coupler sections do not overlap each other, and the light
  • the allowable incidence angle ranges of each partition of the pupil expander do not overlap, and the diffraction exit angle ranges of each partition of the pupil expander do not overlap.
  • the allowable incidence angle ranges of each subarea of the output coupler do not overlap each other, and the diffraction exit angle ranges of each subarea of the output coupler do not overlap each other.
  • the allowable incidence angle range and the diffraction exit angle range of each partition can be customized by selecting the preparation parameters of the diffractive optical device in each partition, so that the allowable incidence angle range of each partition of the input coupler does not overlap.
  • the diffracted exit angle ranges of each partition of the input coupler do not overlap each other, and the allowable incidence angle ranges of each partition of the pupil expander do not overlap each other, and the diffracted exit angle ranges of each partition of the pupil expander do not overlap each other. overlapping.
  • the allowable incidence angle ranges of the partitions of the input coupler do not overlap, and the input coupler’s partitions
  • the diffracted exit angle ranges do not overlap in pairs, and the allowable incident angle ranges of each partition of the pupil expander do not overlap, and the diffracted exit angle ranges of each partition of the pupil expander do not overlap.
  • the following information may be included:
  • the following describes the light propagation process under another partition space layout and describes the partition incidence angle range of the input coupler and the pupil expander.
  • Fig. 6 is another exemplary structure diagram of a virtual and real superimposed lens, which is different from the structure illustrated in Fig. 3.
  • the input coupler, pupil expander, and output coupler each include four partitions And, the four partitions of the pupil dilator are separated in spatial layout, and are specifically distributed on the left and right sides of the input coupler.
  • the input coupler includes partition 101, partition 102, partition 103, and partition 104.
  • the pupil expander includes partition 201, partition 202, partition 203, and partition 204. Partition 201 and partition 202 are distributed on the left side of the input coupler.
  • the partition 203 and the partition 204 are distributed on the right side of the input coupler.
  • the output coupler includes partition 301, partition 302, partition 303, and partition 304.
  • optical transmission channels can be formed.
  • 101, 201, and 301 combined with the optical waveguide substrate form the first optical transmission channel
  • 102, 202, and 302 combined with the optical waveguide substrate form the second optical transmission channel
  • 103, 203, and 303 combined with the optical waveguide substrate form the third optical transmission channel.
  • the transmission channels 104, 204 and 304 are combined with the optical waveguide substrate to form the fourth optical transmission channel.
  • Figure 7 is a schematic diagram of the sub-field of view light coupled in each partition of the input coupler transmitted through the above four optical transmission channels.
  • the total field of view light from the image engine is divided by the four partitions of the input coupler
  • the partition 101 of the input coupler couples into a sub-field of light, diffracts to the left into the optical waveguide substrate, and expands the pupil in the horizontal direction through the partition 201 of the pupil expander, and finally couples out by the partition 301 of the output coupler. Into the wearer's eyes.
  • the partition 102 of the input coupler couples into a sub-field of light, diffracts to the left into the optical waveguide substrate, and expands the pupil in the horizontal direction through the partition 202 of the pupil expander, and finally couples out by the partition 302 of the output coupler.
  • the partition 103 of the input coupler couples into a sub-field of light, diffracts to the right into the optical waveguide substrate, and expands the pupil in the horizontal direction through the partition 203 of the pupil expander, and finally couples out by the partition 303 of the output coupler.
  • the partition 102 of the input coupler couples into a sub-field of light, diffracts to the left into the optical waveguide substrate, and expands the pupil in the horizontal direction through the partition 202 of the pupil expander, and finally couples out by the partition 302 of the output coupler.
  • the partition 103 of the input coupler couples into a sub-field of light, diffracts to the right into the optical waveguide substrate, and expands the pupil in the horizontal direction through the
  • the partition 104 of the input coupler couples into a sub-field of light, diffracts to the right into the optical waveguide substrate, and expands the pupil in the horizontal direction through the partition 204 of the pupil expander, and finally couples out by the partition 304 of the output coupler. Into the wearer's eyes.
  • the spatial layout of the device illustrated in Figure 7 also has the aforementioned problem of sub-field light aliasing and crosstalk.
  • the sub-field light coupled into the partition 101 of the input coupler propagates to the left to the first partition of the pupil expander. In the process of 201, it will first pass through the second zone 202 of the pupil expander.
  • the sub-field of view light coupled into the zone 104 of the input coupler passes through the light while propagating to the zone 204 of the pupil expander on the right side.
  • the pupil expander 203 may cause crosstalk to the light rays coupled in the partition 103.
  • the above method can be used accordingly, so that the allowable incidence angle ranges of the input coupler sections do not overlap, and the diffraction exit angle ranges of the input coupler sections do not overlap.
  • the allowable incidence angle ranges of the partitions do not overlap each other, and the diffraction exit angle ranges of each partition of the pupil expander do not overlap each other. It can include the following information:
  • the diffraction exit angle range of the partition 101 of the input coupler falls within the allowable incident angle range of the partition 201 of the pupil expander.
  • the diffraction exit angle range of the partition 102 of the input coupler falls within the allowable incident angle range of the partition 202 of the pupil expander.
  • the diffraction exit angle range of the partition 101 of the input coupler falls outside the allowable incident angle range of the partition 202 of the pupil expander.
  • the diffraction exit angle range of the partition 103 of the input coupler falls within the allowable incident angle range of the partition 203 of the pupil expander.
  • the diffraction exit angle range of the partition 104 of the input coupler falls within the allowable incident angle range of the partition 204 of the pupil expander.
  • the diffraction exit angle range of the partition 104 of the input coupler falls outside the allowable incidence angle range of the partition 203 of the pupil expander.
  • a section of the input coupler is used to couple in one sub-field of light from the total field of view light from the image engine, and the one sub-field of light passes through the pupil
  • a subarea of the expander and a subarea of the output coupler are transmitted to couple out the virtual and real superimposed mirrors.
  • an optional way for the pupil expander and the output coupler to transmit light includes: a partition of the pupil expander is used to perform pupil expansion in the first direction of a sub-field of view light, and the light is directed to the output coupler to correspond to Partition, a corresponding partition of the output coupler is used to perform pupil expansion in the second direction of a sub-field of view light and guide the light to the eyes of the wearer.
  • first direction and the second direction may be a horizontal direction or a vertical direction, respectively.
  • first direction is a horizontal direction
  • second direction is a vertical direction.
  • first direction is the vertical direction
  • second direction is the horizontal direction.
  • the pupil expander and the output coupler in this application are more flexible for the pupil expansion direction of the light.
  • the partitions of the input coupler may be located on the same side surface of the optical waveguide substrate, and the partitions of the pupil expander may also be located on the same side surface of the optical waveguide substrate.
  • the partitions can also be located on the same side surface of the optical waveguide substrate.
  • the partitions of the input coupler can be located on the surface of the optical waveguide substrate facing the image engine, and the pupil
  • Each partition of the expander may be located on the surface of the optical waveguide substrate facing the image engine
  • each partition of the output coupler may be located on the surface of the optical waveguide substrate facing the image engine.
  • the input coupler and the output coupler may be transmission gratings
  • the pupil expander may be reflection gratings.
  • the partitions of the input coupler, pupil expander, and output coupler are respectively arranged on the same side surface of the optical waveguide substrate, so that the structure of the virtual and real superimposed lens is more concise and the manufacturing process complexity is reduced.
  • the image engine and the wearer's eyes can be located on the same side of the virtual and real superimposed lens, or on different sides of the virtual and real superimposed lens.
  • the input coupler, pupil expander and output coupler can be arranged at different positions of the optical waveguide substrate, which will be described in detail below.
  • the pupil expander can be flexibly set regardless of whether the image engine and the wearer's eyes are on the same side or different sides of the virtual and real superimposed lens. Specifically, when the image engine and the wearer’s eyes are located on the same side of the virtual-real superposition lens, the pupil expander can be located on the side of the optical waveguide substrate facing the image engine or away from the image engine. When the lens is on different sides, the pupil expander can be located on the surface of the light guide substrate facing the image engine or facing away from the image engine. Also, the pupil expander may be a reflective grating.
  • the input coupler and the output coupler can be located on the surface of the optical waveguide substrate facing the image engine, and the input coupler and output The couplers are all transmission gratings.
  • the input coupler and the output coupler can both be located on the surface of the optical waveguide substrate on the side facing away from the image engine, and both the input coupler and the output coupler are reflective gratings.
  • the input coupler can be located on the surface of the optical waveguide substrate facing the image engine, and the output coupler is located on the optical waveguide substrate facing the wearer’s eyes. On the surface of the side. And, the input coupler and output coupler are transmission gratings respectively. In another way, the input coupler may be located on the surface of the optical waveguide substrate facing away from the image engine, and the output coupler may be located on the surface of the optical waveguide substrate facing away from the wearer's eyes. And, the input coupler and output coupler are reflection gratings respectively.
  • the input coupler, pupil expander, and output coupler can be micro-nano structure devices, periodic or non-periodic structures, and can be surface gratings, volume gratings, micro-nano photonic devices, or micro-nano photonic devices. Nanoelectronic devices, etc.
  • the input coupler, pupil expander, and output coupler are located on the surface of the optical waveguide substrate, so they can be DOE.
  • the input coupler, pupil expander and output coupler may be diffraction gratings respectively.
  • a diffraction grating is an optical component containing a periodic structure that can separate incident light and change its direction due to the phenomenon of optical diffraction.
  • the input coupler, pupil expander, and output coupler may be volume holographic gratings (VHG) or surface relief gratings (SRG), respectively.
  • VHG volume holographic gratings
  • SRG surface relief gratings
  • the incident angle of the incident light can be selected, that is, only the incident light within a specific incident angle range will be efficiently diffracted, and the output light energy will be diffracted Concentrated in a specific angle range, and for incident light falling outside the specific angle range, it will transparently pass through the grating.
  • grating preparation materials for example, films made of various silver salt materials, dichromate gelatin, photopolymers or holographic polymer dispersed liquid crystals, etc.
  • film thickness material Parameters such as light angle, reference light angle, prepared light wavelength, exposure intensity, etc.
  • VHG and SRG both can be realized as reflection grating or transmission grating.
  • the reflective grating means that the incident light and the diffracted light are on the same side of the lens
  • the transmission grating means that the incident light and the diffracted light are on both sides of the lens.
  • the input coupler, pupil expander, and output coupler can be selected as transmissive grating or reflective grating. The specific selection method will not be omitted here. Go ahead and repeat.
  • the optical waveguide substrate in the foregoing embodiment may be made of glass or optical plastic with good transparency, for example.
  • the optical waveguide substrate has two flat surfaces with good parallelism.
  • the thickness of the substrate should be at least ten times the wavelength of the light propagating in it.
  • the thickness of the substrate refers to the distance between two flat surfaces.
  • the thickness of the optical waveguide substrate of the virtual-real superimposed lens is between 0.6 mm and 3 mm.
  • the refractive index of the optical waveguide base material may be 1.5 to 2.0, for example. The higher the refractive index, the greater the achievable field of view.
  • the embodiments of the present application additionally provide a near-eye display device including the virtual-real superimposed lens described in the foregoing embodiment.
  • the near-eye display device may be an AR near-eye display device, a VR near-eye display device, or an MR near-eye display device. It is worth noting that if it is used as a near-eye display device for VR, it is possible to cover the virtual-real superimposed lens with non-transparent materials, such as using cloth to cover the virtual-real superimposed lens, so as to prevent the real world light from entering the virtual-real superimposed lens.
  • the above-mentioned near-eye display device may be, for example, a head-mounted near-eye display device or a glasses-type near-eye display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种显示装置及近眼显示设备,显示装置包括:虚实叠加镜片以及图像引擎,虚实叠加镜片包括:输入耦合器(101,102,103)、光瞳扩展器(201,202,203)、输入耦合器(301,302,303)以及光波导基底;输入耦合器(101,102,103)、光瞳扩展器(201,202,203)和输入耦合器(301,302,303)位于光波导基底表面。输入耦合器(101,102,103)、光瞳扩展器(201,202,203)和输入耦合器(301,302,303)分别包括多个分区,且分区数量分别相同。输入耦合器(101,102,103)的一个分区、光瞳扩展器(201,202,203)的一个分区和输入耦合器(301,302,303)的一个分区与光波导基底组合为一个光传输通道,输入耦合器(101,102,103)的多个分区的视场角连续,输入耦合器(101,102,103)的多个分区所耦入的各子视场光线的视场角之和不小于总视场的视场角。显示装置使得虚实叠加镜片的视场角得到显著提升。

Description

显示装置及近眼显示设备
本申请要求于2020年5月25日递交中国专利局、申请号为202010450655.4、发明名称为“显示装置及近眼显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及近眼显示技术领域,更为具体地,涉及一种显示装置及近眼显示设备。
背景技术
增强现实(augmented reality,AR)近眼显示系统,是通过一定的光学系统,使人眼能看到外界真实场景的同时,也能看到计算机产生的虚拟场景的可穿戴式显示系统。其目的在于将计算机生成的虚拟物体集成到真实的场景中,实现真实与虚拟场景的无缝融合,进而实现对真实场景的增强。在AR近眼显示系统的设计中,虚实叠加镜片的设计是重要的研究课题。虚实叠加镜片用于将真实场景的光线以及计算机产生的数字图像的光线叠加耦入佩戴者眼睛。目前已有的虚实叠加镜片设计方法包括共轴侧视棱镜方法、阵列式半透膜波导方法、自由曲面方法、几何波导方法、全息光栅波导方法等。其中,全息光栅波导方法舍弃了复杂光学系统,可以有效缩小系统尺寸和质量,具有“轻、小、快”的优点,因此成为研究的热点。
传统的基于全息光栅波导技术的虚实叠加镜片可以由位于光波导基底表面一输入耦合器、一光瞳扩展器、一输出耦合器以及起到光波导作用的光波导基底本身组成。由输入耦合器将外部光线偶入镜片,经由光瞳扩展器进行扩展,并由输出耦合器导出镜片进入佩戴者眼睛。
但是,传统的基于全息光栅波导技术的虚实叠加镜片的视场角有限,影响佩戴者的视觉体验。
发明内容
本申请提供了一种显示装置及近眼显示设备,用于解决现有的基于全息光栅波导技术的虚实叠加镜片的视场角有限,影响佩戴者的视觉体验的问题。
第一方面,本申请提供了一种显示装置,该显示装置包括:虚实叠加镜片以及图像引擎,该虚实叠加镜片包括:输入耦合器、光瞳扩展器、输出耦合器以及光波导基底。
上述输入耦合器、上述光瞳扩展器和上述输出耦合器位于上述光波导基底表面。
上述输入耦合器、上述光瞳扩展器和上述输出耦合器分别包括多个分区。
上述输入耦合器的一个分区、上述光瞳扩展器的一个分区和上述输出耦合器的一个分区与上述光波导基底组合为一个光传输通道,上述输入耦合器的一个分区用于将来自上述图像引擎的总视场光线中的一个子视场光线耦入上述光波导基底,上述一个子视场光线经 由上述光瞳扩展器的一个分区以及上述输出耦合器的一个分区传输后耦出上述虚实叠加镜片,上述输入耦合器的多个分区的视场角连续,上述输入耦合器的多个分区所耦入的各子视场光线的视场角之和不小于上述总视场的视场角。
在上述的虚实叠加镜片中,输入耦合器、光瞳扩展器以及输出耦合器分别包括多个数量相同的分区,只要在虚实叠加镜片制备过程中选择合适的制备参数,即可以使得输入耦合器、光瞳扩展器以及输出耦合器的各分区分别仅对允许入射角范围内的入射光进行高效率的衍射,基于对各分区的允许入射角范围的合理选择,可以使得输入耦合器的各分区的视场角连续,并且各分区所耦入的各子视场光线的视场角之和不小于来自图像引擎的总视场光线的视场角,进而使得来自图像引擎的总视场光线可以被完整地耦出虚实叠加镜片进入佩戴者眼睛,从而使得虚实叠加镜片的视场角得到显著提升,进而使得佩戴者的观看范围得到显著提升,极大提升佩戴者的视觉体验。同时,无需选择折射率更高的光波导基底材料,因此,不会增加虚实叠加镜片的制造成本。
在一种可能的设计中,上述输入耦合器的分区数量与上述光瞳扩展器的分区数量以及上述输出耦合器的分区数量分别相同
在一种可能的设计中,所述输入耦合器的多个分区在空间上无缝邻接,并且,所述输入耦合器的多个分区拼接后的总区域覆盖所述图像引擎的输出光瞳。
通过将输入耦合器的各分区设置为在空间上无缝邻接,并且各分区拼接后的总区域完全覆盖图像引擎的输出光瞳,能够使得从准直镜头投射出的图像光最大程度的被耦入到虚实叠加镜片内,提高图像光的传输效率。
在一种可能的设计中,所述输入耦合器的多个分区的允许入射角范围两两不重叠,所述输入耦合器的多个分区的衍射出射角范围两两不重叠,所述光瞳扩展器的多个分区的允许入射角范围两两不重叠,所述光瞳扩展器的多个分区的衍射出射角范围两两不重叠,所述输出耦合器的多个分区的允许入射角范围两两不重叠,所述输出耦合器的多个分区的衍射出射角范围两两不重叠。
当上述虚实叠加镜片的输入耦合器、光瞳扩展器和输出耦合器的各分区采用某些特定的空间布局时,对应于某一个特定的子视场光线,在被输入耦合器的对应分区导向光瞳扩展器的对应分区的传播过程中,光线在到达光瞳扩展器的对应分区之前,可能会首先入射到光瞳扩展器的其它分区,此时,如果对应于该特定子视场光线的入射角度落入其它分区的允许入射角范围内,则会进入其它子视场的传输通道,从而导致子视场间的混叠串扰。而通过上述的设置,能够避免子视场之间的混叠串扰,保证佩戴者眼睛所看到的图像不出现异常。
在一种可能的设计中,所述光瞳扩展器的一个分区用于执行所述一个子视场光线的第一方向光瞳扩展,所述输出耦合器的一个分区用于执行所述一个子视场光线的第二方向光瞳扩展。其中,所述第一方向为水平方向,所述第二方向为垂直方向;或者,所述第一方向为垂直方向,所述第二方向为水平方向。
通过上述的设置,使得光瞳扩展器和输出耦合器对于光线的光瞳扩展方向更为灵活。
在一种可能的设计中,所述输入耦合器的多个分区位于所述光波导基底的同侧表面上。
在一种可能的设计中,所述光瞳扩展器的多个分区位于所述光波导基底的同侧表面上。
在一种可能的设计中,所述输出耦合器的多个分区位于所述光波导基底的同侧表面上。
将输入耦合器、光瞳扩展器以及输出耦合器的多个分区分别设置在光波导基底的同侧表面上,使得虚实叠加镜片的结构更加简洁,降低制备过程复杂度。
在一种可能的设计中,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片同侧时,所述输入耦合器与所述输出耦合器位于所述光波导基底朝向所述图像引擎一侧的表面上。
在一种可能的设计中,所述输入耦合器和所述输出耦合器分别为透射光栅。
在一种可能的设计中,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片同侧时,所述输入耦合器与所述输出耦合器位于所述光波导基底背向所述图像引擎一侧的表面上。
在一种可能的设计中,所述输入耦合器和所述输出耦合器分别为反射光栅。
在一种可能的设计中,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片不同侧时,所述输入耦合器位于所述光波导基底朝向所述图像引擎一侧的表面上,所述输出耦合器位于所述光波导基底朝向佩戴者眼睛一侧的表面上。
在一种可能的设计中,所述输入耦合器和所述输出耦合器分别为透射光栅。
在一种可能的设计中,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片的不同侧时,所述输入耦合器位于所述光波导基底背向所述图像引擎一侧的表面上,所述输出耦合器位于所述光波导基底背向佩戴者眼睛一侧的表面上。
在一种可能的设计中,所述输入耦合器和所述输出耦合器分别为反射光栅。
在一种可能的设计中,所述光瞳扩展器为反射光栅。
在一种可能的设计中,所述图像引擎包括:像源以及准直镜头;所述像源用于显示图像,所述准直镜头用于从所述像源接收所述图像的光线,对所述图像的光线进行准直,并将准直后的光线导向所述输入耦合器。
第二方面,本申请实施例提供一种近眼显示设备,该近眼显示设备包括上述第一方面所述的显示装置。
在一种可能的设计中,所述近眼显示设备包括头戴式近眼显示设备或眼镜式近眼显示设备。
在一种可能的设计中,所述近眼显示设备包括AR近眼显示设备、VR近眼显示设备或MR近眼显示设备。
附图说明
图1为传统的虚实叠加镜片的结构示例图;
图2为本申请实施例提供的显示装置的示例性结构图;
图3为显示装置中虚实叠加镜片的一种示例性结构图;
图4为来自图像引擎的总视场光线经虚实叠加镜片传输至佩戴者眼睛的光路示意图;
图5为输入耦合器的三个分区将总视场光线分割为三个子视场光线的示意图;
图6为虚实叠加镜片的另一种示例性结构图;
图7为输入耦合器的各分区耦入的子视场光线经由上述四个光传输通道传输的示意图。
具体实施方式
本申请实施例所涉及的虚实叠加镜片为基于全息光栅波导技术的虚实叠加镜片,为便于描述,本申请实施例以下均简称为虚实叠加镜片。
图1为传统的虚实叠加镜片的结构示例图,如图1所示,传统的虚实叠加镜片由位于镜片基底表面的输入耦合器、光瞳扩展器、输出耦合器,以及起到光波导作用的镜片基底本身构成。虚实叠加镜片对镜片外的由计算机产生的数字图像的光线在镜片内的传输路径进行导向和控制,并耦入佩戴者眼睛。而对于外部真实物理世界中的景物发出或反射的光线,可以直接穿透镜片进入佩戴者眼睛,从而可在佩戴者眼睛内完成虚拟数字图像和真实景物的视觉叠加。
在图1所示例的结构中,输入耦合器将虚实叠加镜片外部射入的数字图像的视场光线耦入镜片内,并导向光瞳扩展器,光瞳扩展器执行输入视场的水平方向光瞳扩展,同时将光线导向输出耦合器;输出耦合器执行输入视场的垂直方向光瞳扩展,同时将光线导出镜片,进入佩戴者眼睛。在镜片上未被输入耦合器、输出耦合器和光瞳扩展器覆盖的区域,光线在光波导内,即镜片的上、下表面间以全反射的方式传输,从而最大程度的保留射入镜片内的像源光能量,提高进入人眼的图像亮度。
由于镜片基底材料折射率以及输入耦合器、输出耦合器、光瞳扩展器的角带宽的限制,导致上述的传统的虚实叠加镜片的视场角受限,使得佩戴者的观看范围受限,进而影响佩戴者的视觉体验。即使使用折射率更高的材料制造虚实叠加镜片,在使得虚实叠加镜片成本昂贵的同时对于虚实叠加镜片的视场角的提升效果并不明显。
考虑到传统虚实叠加镜片由于视场角受限而影响佩戴者的视觉体验的问题,本申请实施例通过对虚实叠加镜片的各器件进行多空间分区设计,使得虚实叠加镜片的视场角得到显著提升,进而使得佩戴者的观看范围得到显著提升,极大提升佩戴者的视觉体验。
图2为本申请实施例提供的显示装置的示例性结构图,图3中的(a)、(b)和(c)分别为显示装置中虚实叠加镜片的一种示例性结构图。其中,图3中的(a)为正视图,图3中的(b)为侧视图,图3中的(c)为俯视图。如图2所示,显示装置可以包括虚实叠加镜片和图像引擎。图像引擎与佩戴者眼睛可以位于虚实叠加镜片的同侧,也可以位于虚实叠加镜片的不同侧,上述图2、图3所示出的为图像引擎与佩戴者眼睛位于虚实叠加镜片的同侧的情况。
可选的,如图2所示例的,图像引擎可以包括像源和准直镜头。其中,像源用于显示由计算机产生的图像。像源可以是适用于AR/虚拟现实(virtual reality,VR)/混合现实(mixed reality,MR)设备的微显示器。示例性的,像源可以为各种基于有机发光二极管(organic light-emitting diode,OLED)、硅基液晶(liquid crystal on silicon,LCOS)、数字光处理(digital light processing,DLP)技术的微显示器,这些微显示器能够以较小的尺寸(例如小于1英寸)提供较高的图像分辨率。准直镜头从像源接收发散的图像的光线,对图像的光线进行准直,并将准直后的光线经由准直镜头的输出光瞳投射到虚实叠加镜片的输入耦合器。其中,准直是指将像源上各像素点发出的球面光转换为射向各方向的平行光。
应理解,本申请实施例中,图像的光线是指像源显示该图像时发出的光线,图像的光线也可以称为图像对应的光线,或者,图像对应的光。
虚实叠加镜片用于将准直镜头投射的图像从自己的输入光瞳复制到输出光瞳。其中,输入光瞳是位于输入耦合器上的一孔径,该孔径与准直镜头的输出光瞳在空间位 置上重合,即像源发出的图像光线被准直镜头准直后通过虚实叠加镜片的输入光瞳耦入虚实叠加镜片内。输出光瞳是位于输出耦合器上的一孔径,图像的光线通过该孔径离开镜片的输出耦合器。输入光瞳也可以称为入射光瞳,输出光瞳也可以称为出射光瞳。
虚实叠加镜片包括输入耦合器、光瞳扩展器、输出耦合器以及光波导基底。其中,输入耦合器、光瞳扩展器和输出耦合器均位于光波导基底表面。输入耦合器、光瞳扩展器和输出耦合器分别包括多个分区,可选的,输入耦合器的分区数量与光瞳耦合器的分区数量以及输出耦合器的分区数量分别相同。
本申请实施例对于上述分区的数量不作限制,分区的数量例如可以为2个、3个、4个或5个。以分区数量为3个为例,表明输入耦合器的分区数量、光瞳扩展器的分区数量以及输出耦合器的分区数量分别为3个。
输入耦合器的一个分区、光瞳耦合器的一个分区和输出耦合器的一个分区与光波导基底组合为一个光传输通道。例如,当分区数量为3个时,可以在虚实叠加镜片内形成3个光传输通道。
图3中的(a)、(b)和(c)所示例的为分区数量为3个的结构示例,如图3中的(a)、(b)和(c)所示例的,输入耦合器包括三个分区,分别为101、102和103,光瞳扩展器包括三个分区,分别为201、202和203,输出耦合器包括三个分区,分别为301、302和303。其中,101、201和301与光波导基底组合为第一光传输通道,102、202和302与光波导基底组合为第二光传输通道,103、203和303与光波导基底组合为第三光传输通道。
针对每个光传输通道,输入耦合器的一个分区用于耦入来自图像引擎的总视场光线中的一个子视场光线,该一个子视场光线经由光瞳扩展器的一个分区以及输出耦合器的一个分区传输后耦出虚实叠加镜片。以上述图3为例,第一光传输通道中输入耦合器的分区101用于耦入来自图像引擎的总视场光线中的一个子视场光线,将该子视场光线耦入光波导,并导向光瞳扩展器的分区201,光瞳扩展器的分区201对子视场光线进行水平方向的光瞳扩展,再由输出耦合器的分区301进行垂直方向的光瞳扩展,并将子视场光线耦入佩戴者眼睛。第二光传输通道中输入耦合器的分区102用于耦入来自图像引擎的总视场光线中的一个子视场光线,将该子视场光线耦入光波导,并导向光瞳扩展器的分区202,光瞳扩展器的分区202对子视场光线进行水平方向的光瞳扩展,再由输出耦合器的分区302进行垂直方向的光瞳扩展,并将子视场光线耦入佩戴者眼睛。第三光传输通道中输入耦合器的分区103用于耦入来自图像引擎的总视场光线中的一个子视场光线,将该子视场光线耦入光波导,并导向光瞳扩展器的分区203,光瞳扩展器的分区203对子视场光线进行水平方向的光瞳扩展,再由输出耦合器的分区303进行垂直方向的光瞳扩展,并将子视场光线耦入佩戴者眼睛。
图4中的(a)、(b)和(c)分别为来自图像引擎的总视场光线经虚实叠加镜片传输至佩戴者眼睛的光路示意图,其中,图4中的(a)为正视图,图4中的(b)为侧视图,图4中的(c)为俯视图。值得说明的是,图4中的(a)、(b)和(c)的光路示意图是基于图3中的(a)、(b)和(c)的结构中分区排布的光路示意。为便于描述,在图4中的(a)、(b)和(c)中以分别对应于三个子视场光线中心点的平 行光线束的传播路径来表示三个子视场光线耦入输入耦合器、分别在三个光传输通道内传播以及耦入佩戴者眼睛的过程。如图4所示,图像引擎投射出的总视场光线,入射到输入耦合器的三个分区上,总视场光线被输入耦合器的三个分区分割为三个子视场光线,三个子视场光线分别沿第一光传输通道、第二光传输通道和第三光传输通道在虚实叠加镜片内传播,并分别从输出耦合器耦出虚实叠加镜片,进入佩戴者眼睛。
对于上述的虚实叠加镜片,输入耦合器的各分区的视场角连续,输入耦合器的各分区所耦入的各子视场光线的视场角之和不小于来自图像引擎的总视场光线的视场角,从而使得虚实叠加镜片可以将来自图像引擎的总视场光线完整地耦入佩戴者眼睛。
一种可选方式中,输入耦合器的各分区所耦入的各子视场光线的视场角之和等于来自图像引擎的总视场光线的视场角。
示例性的,假设上述的总视场光线的总视场角为0到3θ°,则输入耦合器的分区101的视场角可以为起始的0°至θ°,分区102的视场角可以为中间的θ°至2θ°,分区103的视场角可以为最后的2θ°至3θ°。三个分区的视场角连续,并且三个分区所耦入的子视场光线的视场角之和为总视场光线的总视场角。
值得说的是,上述各分区的视场角划分仅是一种示例,具体实施过程中,视场角的划分还可以使用其他方式,例如,以非平均划分方式进行视场角划分。
可选的,可以通过在输入耦合器制备过程中对制备参数的选择,使得输入耦合器各分区的视场角连续并且各分区耦入的各子视场光线的视场角之和为总视场光线的视场角。示例性的,输入耦合器可以为衍射光学器件(diffractive optical elements,DOE),输入耦合器可以对入射光的入射角度具有选择性,通过对每个分区分别选择特定的制备参数,使得输入耦合器的各分区仅对特定入射角度范围内的入射光进行高效率的衍射,并且出射光能力集中在特定角度范围内。对于落入特定入射角范围之外的入射光则会在虚实叠加镜片内以直线传播,并在接触到虚实叠加镜片的上下表面时以全反射方式传播。上述的特定入射角度范围可以称作允许入射角范围,将经允许入射角范围衍射的出射光的特定角度范围称作衍射出射角范围。
以上述的总视场光线的总视场角为3θ°为例,通过在输入耦合器制备过程中对制备参数的选择,可以使得输入耦合器的分区101的视场角可以为起始的0°至θ°,分区102的视场角可以为中间的θ°至2θ°,分区103的视场角可以为最后的2θ°至3θ°。三个分区的视场角连续,并且三个分区所耦入的子视场光线的视场角之和为总视场光线的总视场角。
以上述的输入耦合器包括三个分区101、102和103为例,图像引擎的视场光线入射至输入耦合器时,输入耦合器的三个分区101、102和103分别耦入总视场光线中的一个子视场光线,可以看作是输入耦合器的三个分区将总视场光线分割为三个子视场光线。图5为输入耦合器的三个分区将总视场光线分割为三个子视场光线的示意图,如图5所示,像素点1、像素点2和像素点3分别表示位于像源的左部、中部和右部的像素,该三个像素点发出的散射光经由准直镜头,被准直成分别射向右前方、正前方和左前方的平行光束,图5中分别表示为光束1、光束2和光束3。以分区2为例,虽然源自像素点1、像素点2和像素点3的光线均可以照射到分区2,或者说,像源的总视场光线均可以照射到分区2,但是仅有光束2(源自位于像源中部的像素点的光线) 的入射角度落在分区2所选定的允许入射角范围内,从而可以被分区2的器件衍射到预定方向,而光束1(源自位于像源左部的像素点的光线)和光束3(源自位于像源右部的像素点的光线)的入射角范围落在分区2的允许入射角范围之外,因此,可以认为分区2的器件对于光束1和光束3并不存在,或者说,分区2从入射到自身的总视场光线中,选择出源自像源中部像素发出的光线,即中部子视场光线向预定方向进行衍射。相应的,分区1从入射到自身的总视场光线中选择出右部子视场进行衍射,分区3从入射到自身的总视场光线中选择出左部子视场进行衍射。从而使得虚实叠加镜片外入射的总视场光线被输入耦合器的三个分区分割为3个子视场,并沿各自预定的衍射方向和传播路径分别传播到光瞳扩展器的3个分区。
与上述的输入耦合器相对应的,光瞳耦合器和输出耦合器也可以分别为DOE,光瞳耦合器和输出耦合器可以对入射光的入射角度具有选择性,通过对每个分区分别选择特定的制备参数,使得光瞳耦合器和输出耦合器的各分区仅对特定入射角度范围内的入射光进行高效率的衍射。
作为一种示例,输入耦合器的每个分区可以与图1所示的传统的虚实叠加镜片中输入耦合器的视场角相同,假设输入耦合器包括三个分区,每个分区的视场角为30°,则本申请中虚实叠加镜片可以实现90°视场角的显示效果,相比于传统的虚实叠加镜片,实现了视场角的三倍的扩展。
本实施例中,虚实叠加镜片的输入耦合器、光瞳扩展器以及输出耦合器分别包括多个数量相同的分区,只要在虚实叠加镜片制备过程中选择合适的制备参数,即可以使得输入耦合器、光瞳扩展器以及输出耦合器的各分区分别仅对允许入射角范围内的入射光进行高效率的衍射,基于对各分区的允许入射角范围的合理选择,可以使得输入耦合器的各分区的视场角连续,并且各分区所耦入的各子视场光线的视场角之和不小于来自图像引擎的总视场光线的视场角,进而使得来自图像引擎的总视场光线可以被完整地耦出虚实叠加镜片进入佩戴者眼睛,从而使得虚实叠加镜片的视场角得到显著提升,进而使得佩戴者的观看范围得到显著提升,极大提升佩戴者的视觉体验。同时,无需选择折射率更高的光波导基底材料,因此,不会增加虚实叠加镜片的制造成本。
作为一种可选的实施方式,本申请中,输入耦合器的各分区在空间上可以无缝邻接,并且,各分区拼接后的总区域完全覆盖图像引擎的输出光瞳。
其中,上述图像引擎的输出光瞳可以指前述的图像引擎中准直镜头的输出光瞳。
将输入耦合器的各分区设置为在空间上无缝邻接,并且各分区拼接后的总区域完全覆盖图像引擎的输出光瞳,能够使得从准直镜头投射出的图像光最大程度的被耦入到虚实叠加镜片内,提高图像光的传输效率。
具体实施过程中,当上述虚实叠加镜片的输入耦合器、光瞳扩展器和输出耦合器的各分区采用某些特定的空间布局时,对应于某一个特定的子视场光线,在被输入耦合器的对应分区导向光瞳扩展器的对应分区的传播过程中,光线在到达光瞳扩展器的对应分区之前,可能会首先入射到光瞳扩展器的其它分区,此时,如果对应于该特定子视场光线的入射角度落入其它分区的允许入射角范围内,则会进入其它子视场的传输通道,从而导致子视场间的混叠串扰。例如,上述图3中的(a)、(b)以及(c) 所示例的各分区空间布局,其光线传播过程如上述图4中的(a)、(b)以及(c)所示。由图4可知,对应于输入耦合器分区101所耦入的子视场光线经衍射出射后,在导向光瞳扩展器的对应分区201的过程中,首先入射到光瞳扩展器的分区202和203,如果101所耦入的子视场光线的入射角度落在分区202或/和203的允许入射角范围内,则会造成分区101耦入的子视场光线对其他子视场光线的混叠串扰。相应的,对应于输入耦合器分区102所耦入的子视场光线在从输入耦合器分区102向光瞳扩展器分区202传播过程中,经由光瞳扩展器分区203,如果该光线在光瞳扩展器203的允许入射角范围,则会对由输入耦合器分区103耦入的子视场光线造成串扰。
为了避免上述的问题,作为一种可选的实施方式,输入耦合器的各分区的允许入射角范围两两不重叠,输入耦合器的各分区的衍射出射角范围两两不重叠,并且,光瞳扩展器的各分区的允许入射角范围两两不重叠,光瞳扩展器的各分区的衍射出射角范围两两不重叠。同时,输出耦合器的各分区的允许入射角范围两两不重叠,输出耦合器的各分区的衍射出射角范围两两不重叠。
可选的,可以通过对各分区衍射光学器件的制备参数的选择,定制各分区的允许入射角范围和衍射出射角范围,以使得输入耦合器的各分区的允许入射角范围两两不重叠,输入耦合器的各分区的衍射出射角范围两两不重叠,并且,光瞳扩展器的各分区的允许入射角范围两两不重叠,光瞳扩展器的各分区的衍射出射角范围两两不重叠。
以上述图3中的(a)、(b)以及(c)所示例的各分区空间布局为例,输入耦合器的各分区的允许入射角范围两两不重叠,输入耦合器的各分区的衍射出射角范围两两不重叠,并且,光瞳扩展器的各分区的允许入射角范围两两不重叠,光瞳扩展器的各分区的衍射出射角范围两两不重叠具体可以包括如下信息:
1、输入耦合器的分区101的衍射出射光线传播至光瞳扩展器的分区201时,落入分区201的允许入射角范围内。
2、输入耦合器的分区102的衍射出射光线传播至光瞳扩展器的分区202时,落入分区202的允许入射角范围内。
3、输入耦合器的分区103的衍射出射光线传播至光瞳扩展器的分区203时,落入分区203的允许入射角范围内。
4、输入耦合器的分区101的衍射出射光线传播至光瞳扩展器的分区202和分区203时,落入分区202和分区203的允许入射角范围之外。
5、输入耦合器的分区102的衍射出射光线传播至光瞳扩展器的个分区203时,落入分区203的允许入射角范围之外。
以下说明另一种分区空间布局下的光线传播过程以及描述输入耦合器与光瞳扩展器的分区入射角范围。
图6为虚实叠加镜片的另一种示例性结构图,区别于图3所示例的结构,在图6所示例的结构中,输入耦合器、光瞳扩展器以及输出耦合器均包括四个分区,并且,光瞳扩张器的四个分区在空间布局上位分离布局,具体分布在输入耦合器的左右两侧。具体的,输入耦合器包括分区101、分区102、分区103和分区104,光瞳扩展器包括分区201、分区202、分区203和分区204,分区201和分区202分布在输入耦合器的左侧,分区203和分区204分布在输入耦合器的右侧。输出耦合器包括分区301、分 区302、分区303和分区304。
基于上述图6的结构,可以形成四个光传输通道。其中,101、201和301与光波导基底组合为第一光传输通道,102、202和302与光波导基底组合为第二光传输通道,103、203和303与光波导基底组合为第三光传输通道,104、204和304与光波导基底组合为第四光传输通道。
图7为输入耦合器的各分区耦入的子视场光线经由上述四个光传输通道传输的示意图,如图7所示,来自图像引擎的总视场光线被输入耦合器的四个分区分割为四个子视场光线。输入耦合器的分区101耦入一子视场光线,向左侧衍射进入光波导基底,并通过光瞳扩展器的分区201进行水平方向的光瞳扩展,最后由输出耦合器的分区301耦合输出进入佩戴者眼睛。输入耦合器的分区102耦入一子视场光线,向左侧衍射进入光波导基底,并通过光瞳扩展器的分区202进行水平方向的光瞳扩展,最后由输出耦合器的分区302耦合输出进入佩戴者眼睛。输入耦合器的分区103耦入一子视场光线,向右侧衍射进入光波导基底,并通过光瞳扩展器的分区203进行水平方向的光瞳扩展,最后由输出耦合器的分区303耦合输出进入佩戴者眼睛。输入耦合器的分区104耦入一子视场光线,向右侧衍射进入光波导基底,并通过光瞳扩展器的分区204进行水平方向的光瞳扩展,最后由输出耦合器的分区304耦合输出进入佩戴者眼睛。
上述图7所示例的器件空间布局也存在前述的子视场光线混叠串扰的问题,输入耦合器的分区101耦入的子视场光线向左侧传播至光瞳扩展器的第一个分区201的过程中,会首先经过光瞳扩展器的第二个分区202,另外,输入耦合器的分区104耦入的子视场光线向右侧向光瞳扩展器的分区204传播过程中经过光瞳扩展器203,可能对分区103耦入的光线的光线产生串扰。因此,可以相应使用上述的方法,使得输入耦合器的各分区的允许入射角范围两两不重叠,输入耦合器的各分区的衍射出射角范围两两不重叠,并且,光瞳扩展器的各分区的允许入射角范围两两不重叠,光瞳扩展器的各分区的衍射出射角范围两两不重叠。具体可以包括如下信息:
1、输入耦合器的分区101的衍射出射角范围落入光瞳扩展器的分区201的允许入射角范围内。
2、输入耦合器的分区102的衍射出射角范围落入光瞳扩展器的分区202的允许入射角范围内。
3、输入耦合器的分区101的衍射出射角范围落在光瞳扩展器的分区202的允许入射角范围之外。
4、输入耦合器的分区103的衍射出射角范围落入光瞳扩展器的分区203的允许入射角范围内。
5、输入耦合器的分区104的衍射出射角范围落入光瞳扩展器的分区204的允许入射角范围内。
6、输入耦合器的分区104的衍射出射角范围落在光瞳扩展器的分区203的允许入射角范围之外。
如前述实施例中所述,针对每个光传输通道,输入耦合器的一个分区用于耦入来自图像引擎的总视场光线中的一个子视场光线,该一个子视场光线经由光瞳扩展器的一个分区以及输出耦合器的一个分区传输后耦出虚实叠加镜片。其中,光瞳扩展器和 输出耦合器传输光线的一种可选方式包括:光瞳扩展器的一个分区用于执行一个子视场光线的第一方向光瞳扩展,将光线导向输出耦合器对应分区,输出耦合器的对应的一个分区用于执行一个子视场光线的第二方向光瞳扩展,并将光线导向佩戴者眼睛。
其中,上述第一方向和第二方向可以分别为水平方向或垂直方向。具体的,当第一方向为水平方向时,第二方向为垂直方向。当第一方向为垂直方向时,第二方向为水平方向。
相比于图1所示的传统虚实叠加镜片,本申请中光瞳扩展器和输出耦合器对于光线的光瞳扩展方向更为灵活。
作为一种可选的实施方式,输入耦合器的各分区可以位于光波导基底的同侧表面上,光瞳扩展器的各分区也可以位于光波导基底的同侧表面上,输出耦合器的各分区也可以位于光波导基底的同侧表面上。
例如上述图3(a)所示例的,当图像引擎和佩戴者眼睛位于虚实叠加镜片的同侧时,输入耦合器的各分区可以均位于光波导基底朝向图像引擎一侧的表面上,光瞳扩展器的各分区可以均位于光波导基底朝向图像引擎一侧的表面上,输出耦合器的各分区可以均位于光波导基底朝向图像引擎一侧的表面上。并且,输入耦合器和输出耦合器可以为透射光栅,光瞳扩展器可以为反射光栅。
本实施例中,将输入耦合器、光瞳扩展器以及输出耦合器的各分区分别设置在光波导基底的同侧表面上,使得虚实叠加镜片的结构更加简洁,降低制备过程复杂度。
如前文所述,图像引擎与佩戴者眼睛可以位于虚实叠加镜片的同侧,也可以位于虚实叠加镜片的不同侧。相应的,输入耦合器、光瞳扩展器和输出耦合器可以设置在光波导基底的不同位置,以下具体进行说明。
对于光瞳扩展器来说,无论图像引擎与佩戴者眼睛位于虚实叠加镜片的同侧或者不同侧,光瞳扩展器均可以进行灵活设置。具体的,当图像引擎与佩戴者眼睛位于虚实叠加镜片的同侧时,光瞳扩展器可以位于光波导基底朝向图像引擎或者背向图像引擎的一侧,当图像引擎与佩戴者眼睛位于虚实叠加镜片的不同侧时,光瞳扩展器可以位于光波导基底朝向图像引擎或者背向图像引擎的一侧表面。并且,光瞳扩展器可以为反射光栅。
对于输入耦合器和输出耦合器可以进行如下的设置。
当图像引擎与佩戴者眼睛位于虚实叠加镜片的同侧时,一种方式中,输入耦合器和输出耦合器可以均位于光波导基底朝向图像引擎一侧的表面上,并且,输入耦合器和输出耦合器均为透射光栅。另一种方式中,输入输入耦合器和输出耦合器可以均位于光波导基底背向图像引擎一侧的表面上,并且,输入耦合器和输出耦合器均为反射光栅。
当图像引擎与佩戴者眼睛位于虚实叠加镜片的不同侧时,一种方式中,输入耦合器可以位于光波导基底朝向图像引擎一侧的表面上,输出耦合器位于光波导基底朝向佩戴者眼睛一侧的表面上。并且,输入耦合器和输出耦合器分别为透射光栅。另一种方式中,输入耦合器可以位于光波导基底背向图像引擎一侧的表面上,输出耦合器位于光波导基底背向佩戴者眼睛一侧的表面上。并且,输入耦合器和输出耦合器分别为反射光栅。
在上述各实施例中,输入耦合器、光瞳扩展器、输出耦合器可以为微纳结构器件,可以为周期性或非周期性结构,可以为表面光栅、体积光栅、微纳光子器件或者微纳电子器件等。可选的,输入耦合器、光瞳扩展器以及输出耦合器位于光波导基底表面,因此可以为DOE。可选的,输入耦合器、光瞳扩展器以及输出耦合器可以分别为衍射光栅。衍射光栅是包含周期性结构的光学组件,该周期性结构由于光学衍射现象可以使入射光分离并且改变方向,分离和角度变化取决于衍射光栅的特性。示例性的,输入耦合器、光瞳扩展器以及输出耦合器可以分别为体全息光栅(volume holographic grating,VHG)或表面起伏光栅(surface relief gratings,SRG)。对于该两种衍射光栅,通过选择合适的制备参数进行制备,可对入射光的入射角度具有选择性,即只会对特定入射角度范围内的入射光进行高效率的衍射,且衍射出射光能量集中在特定角度范围内,而对于落在特定入射角度范围外的入射光,则会透明穿过光栅。
对于VHG,可以通过制备时选择特定的光栅制备材料(例如由各种银盐材料、重铬酸盐明胶、光致聚合物或全息聚合物分散液晶等制成的薄膜)、膜层厚度、物光角度、参考光角度、制备光波长、曝光强度等参数,实现对光栅的允许入射角范围和衍射出射角范围的设置。
对于SRG,可以通过对基带材料的选择,以及采用光刻工艺对基底材料加工时对线间距、槽深度、槽轮廓、槽填充率和槽倾斜角等参数进行控制,实现对光栅的允许入射角范围和衍射出射角范围的设置。
对于上述的VHG和SRG,均可以实现为反射光栅或透射光栅。其中,反射光栅是指入射光线和衍射光线位于镜片的同一侧,透射光栅是指入射光线和衍射光线位于镜片的两侧。如前述实施例所述的,根据图像引擎与佩戴者眼睛是否位于镜片的同一侧,可以选择输入耦合器、光瞳扩展器以及输出耦合器为透射光栅或反射光栅,具体选择方式此处不再进行赘述。
另外,可选的,上述实施例中的光波导基底,例如可以由具备良好透明度的玻璃或光学塑料制成。光波导基底具有两个具备良好平行度的平坦表面。基底的厚度应为在其中传播的光的波长的至少十倍。其中,基底的厚度是指两个平坦表面之间的距离。例如,如果基底用于传播波长为620纳米的红光,则基底的厚度至少为6200纳米。作为一种示例,虚实叠加镜片的光波导基底的厚度在0.6毫米至3毫米之间。另外,光波导基底材料的折射率例如可以为1.5~2.0。折射率越高,可实现的视场角越大。
本申请实施例另外还提供一种包括上述实施例所述的虚实叠加镜片的近眼显示设备,该近眼显示设备可以是AR近眼显示设备、VR近眼显示设备或MR近眼显示设备等。值得说明的是,如果作为VR近眼显示设备时,可以通过在虚实叠加镜片上覆盖非透光的材料,例如使用布料蒙住虚实叠加镜片,以避免真实世界的光线进入虚实叠加镜片。
另外,从具体形态上来说,上述近眼显示设备例如可以为头戴式近眼显示设备或者眼镜式近眼显示设备。

Claims (20)

  1. 一种显示装置,包括:虚实叠加镜片以及图像引擎,所述虚实叠加镜片包括:输入耦合器、光瞳扩展器、输出耦合器以及光波导基底,其特征在于,
    所述输入耦合器、所述光瞳扩展器和所述输出耦合器位于所述光波导基底表面;
    所述输入耦合器、所述光瞳扩展器和所述输出耦合器分别包括多个分区;
    所述输入耦合器的一个分区、所述光瞳扩展器的一个分区和所述输出耦合器的一个分区与所述光波导基底组合为一个光传输通道,所述输入耦合器的一个分区用于将来自所述图像引擎的总视场光线中的一个子视场光线耦入所述光波导基底,所述一个子视场光线经由所述光瞳扩展器的一个分区以及所述输出耦合器的一个分区传输后耦出所述虚实叠加镜片,所述输入耦合器的所述多个分区的视场角连续,所述输入耦合器的所述多个分区所耦入的各子视场光线的视场角之和不小于所述总视场的视场角。
  2. 根据权利要求1所述的显示装置,其特征在于,所述输入耦合器的所述多个分区在空间上无缝邻接,并且,所述输入耦合器的所述多个分区拼接后的总区域覆盖所述图像引擎的输出光瞳。
  3. 根据权利要求1或2所述的显示装置,其特征在于,所述输入耦合器的所述多个分区的允许入射角范围两两不重叠,所述输入耦合器的所述多个分区的衍射出射角范围两两不重叠,所述光瞳扩展器的所述多个分区的允许入射角范围两两不重叠,所述光瞳扩展器的所述多个分区的衍射出射角范围两两不重叠,所述输出耦合器的所述多个分区的允许入射角范围两两不重叠,所述输出耦合器的所述多个分区的衍射出射角范围两两不重叠。
  4. 根据权利要求1-3任一项所述的显示装置,其特征在于,所述光瞳扩展器的一个分区用于执行所述一个子视场光线的第一方向光瞳扩展,所述输出耦合器的一个分区用于执行所述一个子视场光线的第二方向光瞳扩展;
    所述第一方向为水平方向,所述第二方向为垂直方向;或者,
    所述第一方向为垂直方向,所述第二方向为水平方向。
  5. 根据权利要求1-4任一项所述的显示装置,其特征在于,所述输入耦合器的所述多个分区位于所述光波导基底的同侧表面上。
  6. 根据权利要求1-5任一项所述的显示装置,其特征在于,所述光瞳扩展器的所述多个分区位于所述光波导基底的同侧表面上。
  7. 根据权利要求1-6任一项所述的显示装置,其特征在于,所述输出耦合器的所述多个分区位于所述光波导基底的同侧表面上。
  8. 根据权利要求1-7任一项所述的显示装置,其特征在于,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片同侧时,所述输入耦合器与所述输出耦合器位于所述光波导基底朝向所述图像引擎一侧的表面上。
  9. 根据权利要求8所述的显示装置,其特征在于,所述输入耦合器和所述输出耦合器分别为透射光栅。
  10. 根据权利要求1-7任一项所述的显示装置,其特征在于,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片同侧时,所述输入耦合器与所述输出耦合器位于所述光波导基底背向所述图像引擎一侧的表面上。
  11. 根据权利要求10所述的显示装置,其特征在于,所述输入耦合器和所述输出耦合器分别为反射光栅。
  12. 根据权利要求1-7任一项所述的显示装置,其特征在于,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片不同侧时,所述输入耦合器位于所述光波导基底朝向所述图像引擎一侧的表面上,所述输出耦合器位于所述光波导基底朝向佩戴者眼睛一侧的表面上。
  13. 根据权利要求12所述的显示装置,其特征在于,所述输入耦合器和所述输出耦合器分别为透射光栅。
  14. 根据权利要求1-7任一项所述的显示装置,其特征在于,所述图像引擎与佩戴者眼睛位于所述虚实叠加镜片的不同侧时,所述输入耦合器位于所述光波导基底背向所述图像引擎一侧的表面上,所述输出耦合器位于所述光波导基底背向佩戴者眼睛一侧的表面上。
  15. 根据权利要求14所述的显示装置,其特征在于,所述输入耦合器和所述输出耦合器分别为反射光栅。
  16. 根据权利要求1-15任一项所述的显示装置,其特征在于,所述光瞳扩展器为反射光栅。
  17. 根据权利要求1-16任一项所述的显示装置,其特征在于,所述图像引擎包括:像源以及准直镜头;
    所述像源用于显示图像,所述准直镜头用于从所述像源接收所述图像的光线,对所述图像的光线进行准直,并将准直后的光线导向所述输入耦合器。
  18. 一种近眼显示设备,其特征在于,包括如权利要求1-17任一项所述的显示装置。
  19. 根据权利要求18所述的近眼显示设备,其特征在于,所述近眼显示设备包括头戴式近眼显示设备或眼镜式近眼显示设备。
  20. 根据权利要求18或19所述的近眼显示设备,其特征在于,所述近眼显示设备包括增强显示AR近眼显示设备、虚拟现实VR近眼显示设备或混合现实MR近眼显示设备。
PCT/CN2021/094821 2020-05-25 2021-05-20 显示装置及近眼显示设备 WO2021238758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010450655.4 2020-05-25
CN202010450655.4A CN113721363A (zh) 2020-05-25 2020-05-25 显示装置及近眼显示设备

Publications (1)

Publication Number Publication Date
WO2021238758A1 true WO2021238758A1 (zh) 2021-12-02

Family

ID=78671800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094821 WO2021238758A1 (zh) 2020-05-25 2021-05-20 显示装置及近眼显示设备

Country Status (2)

Country Link
CN (1) CN113721363A (zh)
WO (1) WO2021238758A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660701A (zh) * 2022-03-31 2022-06-24 深圳市光舟半导体技术有限公司 单层波导及显示装置
WO2023215339A1 (en) * 2022-05-06 2023-11-09 Google Llc Waveguide input coupler multiplexing to reduce exit pupil expansion ray footprint
WO2023220221A1 (en) * 2022-05-13 2023-11-16 Google Llc Multi-directional reflective incoupler and split exit pupil expander to reduce lens size

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639072B2 (en) * 2011-10-19 2014-01-28 Milan Momcilo Popovich Compact wearable display
CN205787362U (zh) * 2016-02-26 2016-12-07 中国航空工业集团公司洛阳电光设备研究所 光波导元件、二维扩展光波导器件、平视显示装置及照明装置
CN107797287A (zh) * 2017-11-28 2018-03-13 苏州苏大维格光电科技股份有限公司 光波导镜片及显示装置
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN108803023A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示模组、显示方法及头戴式显示设备
CN108873350A (zh) * 2018-07-24 2018-11-23 上海鲲游光电科技有限公司 一种波导显示装置
CN110109255A (zh) * 2019-06-17 2019-08-09 杭州光粒科技有限公司 基于光波导的扩大ar视场角及减小光机尺度的结构
CN111142263A (zh) * 2020-02-21 2020-05-12 北京枭龙科技有限公司 一种光栅波导元件及近眼显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639072B2 (en) * 2011-10-19 2014-01-28 Milan Momcilo Popovich Compact wearable display
CN205787362U (zh) * 2016-02-26 2016-12-07 中国航空工业集团公司洛阳电光设备研究所 光波导元件、二维扩展光波导器件、平视显示装置及照明装置
CN107797287A (zh) * 2017-11-28 2018-03-13 苏州苏大维格光电科技股份有限公司 光波导镜片及显示装置
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN108803023A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示模组、显示方法及头戴式显示设备
CN108873350A (zh) * 2018-07-24 2018-11-23 上海鲲游光电科技有限公司 一种波导显示装置
CN110109255A (zh) * 2019-06-17 2019-08-09 杭州光粒科技有限公司 基于光波导的扩大ar视场角及减小光机尺度的结构
CN111142263A (zh) * 2020-02-21 2020-05-12 北京枭龙科技有限公司 一种光栅波导元件及近眼显示设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660701A (zh) * 2022-03-31 2022-06-24 深圳市光舟半导体技术有限公司 单层波导及显示装置
WO2023215339A1 (en) * 2022-05-06 2023-11-09 Google Llc Waveguide input coupler multiplexing to reduce exit pupil expansion ray footprint
WO2023220221A1 (en) * 2022-05-13 2023-11-16 Google Llc Multi-directional reflective incoupler and split exit pupil expander to reduce lens size

Also Published As

Publication number Publication date
CN113721363A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2021238758A1 (zh) 显示装置及近眼显示设备
JP7397924B2 (ja) 分割瞳のための空間光変調器照明を伴うディスプレイシステム
US11586043B2 (en) Virtual and augmented reality systems and methods
CN109073882B (zh) 具有出射光瞳扩展器的基于波导的显示器
JP6867999B2 (ja) 反射型転換アレイを有する結像光ガイド
CN109073909B (zh) 具有反射转向阵列的成像光导
WO2019179136A1 (zh) 显示装置及显示方法
CN110431471A (zh) 用于具有宽视野的波导投影仪的方法和系统
JP2021535414A (ja) 表示装置および表示システム
US11941881B2 (en) Method and system for pupil separation in a diffractive eyepiece waveguide display
US20230176382A1 (en) Waveguide display with cross-polarized eye pupil expanders
CN111766704A (zh) 一种光学器件、显示设备及其输出光和显示图像的方法
JP2024503684A (ja) 複合インカップリング回折光学素子を有する画像光ガイド
WO2023220133A1 (en) Dual index waveguide stack
WO2023192650A1 (en) Multiple wavelength range imaging light guide system
CN213544957U (zh) 一种光学器件及其显示设备
CN114839765A (zh) 一种大视场角的光学扩瞳装置、显示装置及方法
TW202219591A (zh) 眼鏡裝置的光導、眼鏡裝置、和光導的操作和製造方法
US12099194B2 (en) Virtual and augmented reality systems and methods
WO2023011199A1 (zh) 一种显示设备模组、显示设备以及图像显示方法
US20240264355A1 (en) Optical waveguide arrangement with improved capacity
WO2022268954A1 (en) Exit pupil expander leaks cancellation
CN116981973A (zh) 具有多波长入耦合衍射光学器件的图像光导

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812048

Country of ref document: EP

Kind code of ref document: A1