WO2021238694A1 - 确定传输业务流的带宽的方法、设备和系统 - Google Patents

确定传输业务流的带宽的方法、设备和系统 Download PDF

Info

Publication number
WO2021238694A1
WO2021238694A1 PCT/CN2021/094056 CN2021094056W WO2021238694A1 WO 2021238694 A1 WO2021238694 A1 WO 2021238694A1 CN 2021094056 W CN2021094056 W CN 2021094056W WO 2021238694 A1 WO2021238694 A1 WO 2021238694A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
service flow
service
delay
flow
Prior art date
Application number
PCT/CN2021/094056
Other languages
English (en)
French (fr)
Inventor
张嘉怡
王童童
阿金·萨米
费德勒·马库斯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21813367.6A priority Critical patent/EP4149155A4/en
Publication of WO2021238694A1 publication Critical patent/WO2021238694A1/zh
Priority to US18/058,605 priority patent/US20230096280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/022Capturing of monitoring data by sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA

Definitions

  • This application relates to the field of communications, and in particular to a method, device and system for determining the bandwidth of a transmission service stream.
  • Bandwidth is used to describe the amount of traffic transmitted per unit time in the network.
  • the network uses bandwidth to determine the demand for network resources by network services. For example, in a statistically multiplexed network, network bandwidth is often deployed based on bandwidth.
  • 5G fifth-generation
  • URLLC Ultra-Reliable Low-Latency Communication
  • QoS Quality of Service
  • the embodiment of the present application proposes a method, device, and system for determining the bandwidth of a transmission service stream, which can improve the reliability of service stream transmission, so that the service stream transmission meets service requirements.
  • an embodiment of the present application provides a method for determining the bandwidth of a transmission service stream, and the method is executed by a first device.
  • the first device obtains a first traffic sampling set of the service flow, and the first traffic sampling set includes one or more traffic sampling information.
  • the first device obtains the service level parameter corresponding to the service flow and the reliability probability of meeting the service level parameter.
  • the first device determines the first bandwidth for transmitting the service flow based on the first traffic sampling set, the service level parameter, and the reliability probability.
  • the first device determines the bandwidth for transmitting the service flow through the first traffic sampling set, the service level parameter, and the reliability probability, which can not only improve the reliability of the service flow transmission, but also make the service flow transmission more reliable. It may meet the requirements of the business for service level parameters and corresponding reliability probabilities.
  • the first device obtains the first traffic sampling set by receiving a first traffic sampling set from a second device on the service flow transmission path.
  • An implementation manner for the first device to obtain the first traffic sampling set is provided, that is, the first traffic sampling set of the service flow is obtained from the device on the service flow transmission path.
  • the first device may also send a notification message to the second device, the notification message carrying the first bandwidth, and the notification message is used to instruct the second device according to the
  • the first bandwidth sets a bandwidth for transmitting the service flow. While improving the reliability of service stream transmission, it can also realize the reasonable allocation and deployment of bandwidth resources.
  • the first device obtains the first flow sampling set by obtaining the first flow sampling set collected by the local device.
  • the first device sets the bandwidth of the local device for transmitting the service flow according to the first bandwidth. For example, the first device uses the first bandwidth to transmit the service flow.
  • An implementation manner for the first device to obtain the first traffic sampling set is provided, that is, the local device collects the service flow to obtain the first traffic sampling set. This kind of implementation is common in the existence of software functional units and distributed deployment on equipment on the service flow transmission path.
  • each traffic sampling information in the one or more traffic sampling information includes a total length of packets belonging to the service flow obtained within a set period.
  • the first device acquiring the service level parameter corresponding to the service flow and the reliability probability of satisfying the service level parameter includes any one of the following situations:
  • the first device acquires the first delay threshold and the single device meets the requirements for transmitting the service flow
  • the delay is less than or equal to the first reliability probability of the first cache threshold.
  • the first device When the service level parameter is the first cache threshold of a single device on the path of the service flow, the first device obtains the first cache threshold and the second cache of the single device that is greater than or equal to the first cache threshold. Probability of reliability.
  • the first device acquires the first delay threshold and the single device meets that the delay for transmitting the service flow is less than or equal to the first threshold
  • the first reliability probability of and the second reliability probability that the first cache threshold of the single device and the cache of the single device are greater than or equal to the first cache threshold.
  • the first delay threshold is the maximum delay for the single device to transmit the service flow
  • the first buffer threshold is the minimum value of the buffer of the single device.
  • the first device when the first device obtains the service level parameter, it also obtains the reliability probability that satisfies the service level parameter.
  • the first device calculates different bandwidths based on different service level parameters and reliability probabilities.
  • the implementation manner in which the first device determines the first bandwidth based on the first traffic sampling set, the service level parameter, and the reliability probability includes the following steps:
  • the first device first obtains N pieces of flow sampling information based on the first flow sampling set, and the N pieces of flow sampling information include A i , A i+1 ...A j , where 1 ⁇ i ⁇ j ⁇ N, i, j is an integer, the A i is the total length of packets belonging to the service flow in the i-th traffic sampling information, and the A i+1 is the number of packets belonging to the service flow in the i+1-th traffic sampling information The total length of the packet, where A j is the total length of the packets belonging to the service flow in the j-th traffic sampling information.
  • the first device obtains the instantaneous bandwidth of the service flow according to the one or more accumulated packet lengths and the service level parameter.
  • the first device obtains the first bandwidth according to the instantaneous bandwidth and the reliability probability.
  • the service level parameter includes the first delay threshold
  • the reliability probability includes the first reliability probability
  • the first traffic sampling set further includes obtaining the
  • a calculation method for obtaining the first bandwidth is provided to improve the reliability of service stream transmission and realize the low-latency transmission requirements of the service.
  • the first traffic sampling set further includes obtaining the each
  • a calculation method for obtaining the first bandwidth is provided to improve the reliability of service stream transmission and meet the service transmission requirements.
  • the first device first obtains the second delay threshold for end-to-end transmission of the service flow and the delay for end-to-end transmission of the service flow that is less than or equal to the second delay threshold.
  • the third reliability probability The first device determines the first delay threshold for a single device to transmit the service flow according to the number of devices on the transmission path of the service flow and the second delay.
  • the first device determines a first reliability probability that a single device is less than or equal to the first threshold according to the number of devices on the transmission path of the service flow and the third reliability probability.
  • the first device determines the first delay threshold according to the number of devices on the transmission path of the service flow and the second delay, which is specifically obtained by the following formula:
  • the D' is the first delay threshold
  • the H is the number of devices on the transmission path of the service flow
  • the D is the second delay threshold
  • the D f is The fixed delay on the service flow transmission path, where the fixed delay includes the link delay on the service flow transmission path, the processing delay of the device, the outbound interface delay of the device, and the initial delay of the device. at least one.
  • the first device determines the first reliability probability according to the number of devices on the transmission path of the service flow and the third reliability probability, which is specifically obtained by the following formula:
  • the H is the number of devices on the transmission path of the service flow
  • the p is the third reliability probability
  • the P' is the first reliability probability
  • the first device may also continue to send the instantaneous bandwidth of the service flow to the third device, where the instantaneous bandwidth is used by the third device to determine the second bandwidth according to the instantaneous bandwidth.
  • the first device sends the intermediate process value for calculating the first bandwidth to the device, so that the device on the service path can use the intermediate process value to calculate and update the bandwidth value, so as to realize the rapid update of the bandwidth resource.
  • the first device may also determine the third bandwidth for transmitting the service flow based on the second traffic sampling set of the service flow, the service level parameter, and the reliability probability. In response to the first device determining that the third bandwidth is greater than or equal to the bandwidth threshold, the first device determines to use the third bandwidth to transmit the service flow.
  • the first device sets the bandwidth threshold and adjusts the configured bandwidth when the updated bandwidth value is greater than or equal to the bandwidth threshold, increasing the network bandwidth configuration stability.
  • the implementation manner in which the first device determines to use the third bandwidth to transmit the service flow includes: responding to the first 3.
  • the bandwidth is greater than or equal to the bandwidth threshold and the duration is greater than or equal to the time threshold, and the first device determines to use the third bandwidth to transmit the service flow.
  • the first device sets the bandwidth threshold and time threshold, and updates the bandwidth value when the bandwidth value is greater than or equal to the bandwidth threshold and the duration is greater than or equal to the time threshold In the case of adjusting the configuration bandwidth, further increase the stability of the network bandwidth configuration.
  • a method for determining the bandwidth of a transmission service flow is provided, the method is executed by a second device, and the second device is a device on a transmission path of the service flow.
  • the second device sends a first traffic sampling set of the service flow to the first device, where the first traffic sampling set includes one or more traffic sampling information, and the first traffic sampling set is used by the first device to determine the first traffic sampling set. bandwidth.
  • the second device receives an announcement message from the first device, where the announcement message includes the first bandwidth; the second device sets the bandwidth for transmitting the service flow according to the first bandwidth.
  • the second device sends the service level parameter of the service flow and the reliability probability of satisfying the service level parameter to the first device, and the service level parameter and the reliability probability are used for The first device determines the first bandwidth.
  • each traffic sampling information in the one or more traffic sampling information includes a total length of packets belonging to the service flow obtained within a set period.
  • the first traffic sampling set includes a time stamp for acquiring each traffic sampling information in the one or more traffic sampling information.
  • the second device sending the service level parameter of the service flow and the reliability probability of meeting the service level parameter to the first device includes the following situations:
  • the first delay threshold is the maximum delay for the single device to transmit the service flow
  • the first cache threshold is the minimum value of the cache of the single device.
  • the second device sends to the first device the first delay threshold for a single device on the path to transmit the service flow and the single delay threshold for transmitting the service flow.
  • the device satisfies the first reliability probability of transmitting the service flow that is less than or equal to the first threshold.
  • the second device sends to the first device the first cache threshold of the single device and the second reliability probability that the cache of the single device is greater than or equal to the first cache threshold.
  • the second device sends to the first device the first delay threshold for a single device on the path to transmit the service flow to transmit the service flow, and the single device meets the requirement that the transmission of the service flow is less than or equal to the first delay threshold.
  • the first reliability probability of the first threshold, the first cache threshold of the single device and the second reliability probability of the single device's cache are greater than or equal to the first cache threshold.
  • the second device sends to the first device the second delay threshold for end-to-end transmission of the service flow and the end-to-end transmission of the service flow to the first device
  • the delay of is less than or equal to the third reliability probability of the second delay threshold, and the second delay threshold is the maximum delay for end-to-end transmission of the service flow.
  • the second device may also determine the second bandwidth according to a second traffic sampling set of the service flow, the service level parameter, and the reliability probability. The second device determines the bandwidth for transmitting the service flow according to the first bandwidth and the second bandwidth.
  • the service level parameter includes the first delay threshold
  • the reliability probability includes the first reliability probability
  • the second traffic sampling set further includes acquiring the
  • the second traffic sampling set further includes acquiring the one
  • the second device determines the second bandwidth to obtain the third bandwidth according to the third sampling information of the service flow, the service level parameter, and the reliability probability. In response to the third bandwidth being greater than or equal to the bandwidth threshold, the second device uses the third bandwidth to transmit the service flow.
  • the second device in response to the third bandwidth being greater than or equal to the bandwidth threshold, uses the third bandwidth to transmit the service flow.
  • the implementation manner includes: the second device responds to the third bandwidth.
  • the bandwidth is greater than or equal to the bandwidth threshold and the duration is greater than or equal to the time threshold, and the third bandwidth is used to transmit the bandwidth of the service flow.
  • the implementation manner in which the second device sets the bandwidth for transmitting the service flow according to the first bandwidth includes: the second device sets the value of the committed information rate CIR of the port that transmits the service flow Is the value of the first bandwidth, and the service flow is sent according to the CIR.
  • another implementation manner in which the second device sets the bandwidth for transmitting the service flow according to the first bandwidth includes: the second device sets the bandwidth of the service flow according to the port bandwidth for transmitting the service flow and the bandwidth.
  • the first bandwidth sets a scheduling weight value for transmitting the service flow, and sends the service flow according to the scheduling weight value.
  • the first port of the second device uses the first bandwidth to transmit the bandwidth of the service flow, and the first port The port belongs to the network slice.
  • a first device configured to execute the first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the network device includes a unit for executing the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • a second device which is used to execute the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the network device includes a unit for executing the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • a first device in a fifth aspect, includes a processor, a communication interface, and a memory.
  • the communication interface is used to receive or send messages.
  • the memory may be used to store program code, and the processor is used to call the program code in the memory to execute the first aspect or any one of the possible implementation manners of the first aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a second device in a sixth aspect, includes a processor, a communication interface, and a memory.
  • the communication interface is used to receive or send messages.
  • the memory may be used to store program code, and the processor is used to call the program code in the memory to execute the method in the foregoing second aspect or any one of the possible implementations of the second aspect. For details, please refer to the detailed description in the method example. Repeat it again.
  • a system for determining the bandwidth of a transmission service stream includes a first device for executing the method in the first aspect or any one of the possible implementations of the first aspect, and a second device for executing the second method. Aspect or the second device of the method in any one of the possible implementation manners of the second aspect.
  • the first device is used to obtain a first traffic sampling set of a service flow, a service level parameter corresponding to the service flow, and a reliability probability that satisfies the service level parameter, and according to the first traffic sampling set, the The service level parameter of the service flow and the reliability probability determine the first flow bandwidth for transmitting the service flow, and send the first bandwidth to the second device, and the first flow sampling set includes one or more flow sampling information.
  • the second device is configured to send the first traffic sample set to the first device, receive the first bandwidth, and set the bandwidth for transmitting the service flow according to the first bandwidth.
  • a computer-readable medium including instructions, which when executed on a computer, cause the computer to execute the method in the first aspect or any one of the possible implementations of the first aspect, or Perform the second aspect or any one of the possible implementation methods of the second aspect.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect or any one of the possible implementations of the first aspect, or execute the second Aspect or any one of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a system architecture for determining the bandwidth of a transmission service flow according to an embodiment of this application;
  • FIG. 2 is a schematic diagram of an application scenario for determining the bandwidth of a transmission service stream according to an embodiment of the application;
  • FIG. 3 is a schematic flowchart of a method for determining the bandwidth of a transmission service flow according to an embodiment of the application
  • FIG. 4 is a schematic diagram of sampling information of a service flow provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of sampling information of another service flow provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a method for determining the bandwidth of a transmission service flow according to an embodiment of the application
  • FIG. 7 is a schematic flowchart of a method for determining the bandwidth of a transmission service flow according to an embodiment of the application
  • FIG. 8 is a schematic diagram of a message format provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a first device provided in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a second device provided in an embodiment of this application.
  • FIG. 11 is a schematic diagram of the hardware structure of a first device according to an embodiment of this application.
  • FIG. 12 is a schematic diagram of the hardware structure of a second device according to an embodiment of this application.
  • FIG. 13 provides a system for determining the bandwidth of a transmission service flow according to an embodiment of this application.
  • bandwidth is often used to describe the amount of traffic per unit of time.
  • the size of the bandwidth is related to the characteristic statistical period of the service flow. For example, the average bandwidth is used to describe the amount of stable data in a long period of time, and the statistical period is long.
  • the peak bandwidth is used to describe the maximum value of the instantaneous data volume, and the statistical period is short.
  • the statistical process can select the time unit of milliseconds or microseconds to perform statistics on the business flow according to the characteristics of the business flow.
  • the classification of bandwidth also includes effective bandwidth and bandwidth that meets delay requirements. The former is used to describe the size of random traffic, and the latter is used to describe the traffic size of the transmission service stream to meet the low-latency requirements.
  • the embodiments of the present application propose a method, device, and system for determining the bandwidth of a transmission service flow, which can meet the different requirements of different service flows for the probability of meeting the requirements of service level parameters in the transmission process, and improve the service flow to a certain extent.
  • Transmission reliability The method determines the bandwidth for transmitting the service flow based on the traffic sampling information of the service flow and the service level agreement (SLA) parameters corresponding to the service flow and the reliability probability of satisfying the service level parameters.
  • SLA service level agreement
  • SLA is an agreement between network service providers and customers to ensure that the measurable network service performance reaches a defined quality.
  • the content of the network service performance agreed in the SLA agreement can be defined according to business requirements.
  • the customer selects the service level parameter according to the business type and the reliability probability of satisfying the service level parameter to provide services for the business.
  • the SLA index includes service level parameters and the reliability probability of transmitting service flows that meet the service level parameters.
  • the SLA indicator includes the delay threshold for transmitting the service flow and the reliability probability that the delay for transmitting the service flow is less than or equal to the delay threshold.
  • the SLA indicators associated with multiple types of services defined in 5G services include low latency requirements.
  • the delay threshold of the transmission service flow may be the delay threshold of a single device on the transmission service flow path to transmit the service flow, or the delay threshold of the end-to-end transmission service flow, and the delay threshold may include the time delay threshold. Delay jitter threshold.
  • the SLA indicator when the service level parameter is the cache threshold of the device, the SLA indicator includes the cache threshold of the device that transmits the service flow and the reliability probability that the cache of the device that transmits the service flow is greater than or equal to the cache threshold .
  • the SLA indicators include the delay threshold of transmitting the service flow, the buffer threshold of the device transmitting the service flow, and the delay of transmitting the service flow. The reliability probability that is less than or equal to the delay threshold and the reliability probability that the buffer of the device that transmits the service flow is greater than or equal to the buffer threshold.
  • the method for determining the bandwidth of the transmission service stream proposed in the embodiment of the present application can be applied to URLLC scenarios in 5G, and these scenarios require the network to reasonably coordinate available bandwidth resources, and allocate and reserve bandwidth resources.
  • Such as industrial manufacturing automation scenes, power automation scenes, car networking scenes, etc., these scenes have strict requirements on the reliability and probability of transmission.
  • the solutions of the embodiments of the present application can be used to provide high-reliability and bounded delay guarantees for smart grid differential protection services, and can also provide high-reliability and bounded delay guarantees for control services in the campus network. Delayed forwarding service. It can also be used in smart factories, based on wired Ethernet or wireless networks, to provide high-reliability bounded delay guarantees for sensor collection of business traffic, industrial control traffic, and video surveillance traffic.
  • the network 100 shown in FIG. 1 includes a control device 101 and network devices 102-104.
  • the sending end device 105 is a source end device that sends a service flow
  • the receiving end device 106 is a destination end device of the service flow.
  • the devices 102-104 are forwarding devices on the service flow transmission path, and are used to forward the service flow from the sending end device 105 to the receiving end device 106 in the network 100.
  • the device 103 is connected to the device 102 and the device 104 respectively.
  • the control device 101 is respectively connected with the devices 102-104 to realize the management and resource deployment of the devices 102-104.
  • FIG. 1 only provides an exemplary system architecture diagram for the embodiment of the present application, and should not restrict the network architecture of this solution.
  • the network 100 in FIG. 1 may also include in addition to the devices 102-104 Of the other multiple forwarding devices.
  • control device can be an independent physical device, as shown in Figure 1, that is physically independent of the network devices 102-104; the control device can also be a functional unit integrated in the network devices 102-104 On any device; the control device can also be split into several sub-function units and deployed on the network devices 102-104 in a distributed manner. As long as the control device has logically corresponding management and control functions, the embodiment of the present application does not limit the existence form of the control device.
  • the devices 102-104 in FIG. 1 can be in the form of hardware or a combination of software and hardware, and are independent devices, such as switches, routers, and other devices with forwarding functions that are used to receive and send service flows in the network 100.
  • FIG. 2 provides a schematic diagram of an application scenario for determining the bandwidth of a transmission service stream according to an embodiment of the application, and this scenario is a schematic diagram of a power automation system scenario.
  • Differential protection of power equipment is an important self-protection method for power networks. For example, the electrical quantities at both ends of the transmission line are compared to determine the scope of the fault, and the fault is accurately isolated to avoid the expansion of the impact of the power outage. Therefore, the power automation scenario needs to have low latency and high reliability requirements for the bandwidth of the transmission service stream to ensure that the power equipment A and the power equipment B in Figure 2 realize the differential protection of the power equipment.
  • Figure 3 provides a schematic flow diagram of a method for determining the bandwidth of a transmission service stream according to an embodiment of the application.
  • steps 301 and 302. it can be implemented in step Step 302 is performed after step 301, or step 301 can be performed after step 302 is performed.
  • Step 301 The first device obtains the service level parameter of the corresponding service flow and the reliability probability that satisfies the service level parameter.
  • the first device may be the control device 101 in FIG. 1 or the control device in FIG. 2, and the second device may be the network device in FIG. 1 or FIG. 2.
  • the first device can either obtain the service level parameters of the corresponding service flow and the reliability probability of meeting the service level parameters from the local device, or obtain the corresponding service from the second device (for example, the network device 102) on the service flow transmission path The service level parameters of the flow and the reliability probability of satisfying the service level parameters.
  • the SLA parameter includes a delay threshold, or the SLA parameter includes a cache threshold of the device, or the SLA parameter includes a combination of the delay threshold and the cache threshold of the device.
  • the content of the SLA of the business flow of the working manufacturing plant scenario includes the delay threshold.
  • the reliability probability that the transmission of the service flow is less than or equal to the delay threshold is also obtained.
  • the SLA parameter of the corresponding service flow is the cache threshold of the network device, the reliability probability that the cache of the device that transmits the service flow is greater than or equal to the cache threshold can also be obtained.
  • the delay threshold, cache threshold, and reliability probability in the embodiments of the present application are respectively introduced below:
  • the delay threshold indicates the maximum delay allowed for the transmission of the service flow, which can be divided into the delay threshold of the end-to-end transmission of the service flow, and the delay threshold of the transmission of the service flow by a single device on the path of the service flow.
  • the delay threshold may also be a delay jitter threshold.
  • the delay threshold for end-to-end transmission of a service stream refers to the maximum delay allowed in the process of the service stream being transmitted from the sending end device to the destination end device. Further, when the sending end device and the destination end device are respectively edge devices of the network, the delay threshold represents the maximum delay of the service flow transmission within the network clock.
  • the delay threshold in the bearer network is 20 milliseconds.
  • the delay threshold for a single device to transmit a service flow refers to the maximum delay of a single device on a path for transmitting the service flow.
  • the delay threshold of a service flow transmitted by a single device is the maximum delay of the service flow from the ingress port of the device to the egress port of the device.
  • the delay jitter threshold refers to the maximum value of the delay inconsistency between each data packet in the service flow.
  • the delay jitter threshold may be obtained by using a detection message, and may be the delay jitter threshold of a single device.
  • the delay jitter threshold is an important parameter.
  • the delay jitter threshold needs to be limited in services such as IP telephony, video conferencing, and virtual desktops.
  • the delay threshold for end-to-end transmission of the service flow is correlated with the delay threshold for the transmission of the service flow by a single device.
  • the first device obtains the delay threshold of the service flow transmitted by a single device according to the end-to-end delay threshold of the transmission service flow and the number of devices on the transmission service flow path.
  • the buffer threshold represents the smallest buffer that can be occupied by the service flow on the device, and the buffer threshold may be a queue buffer supported by the device, which can be understood as a queue buffer configured by the device for the service flow.
  • the device on the path of transmitting the service flow determines the buffer threshold that can be occupied by the service flow according to the service flow, and reports the buffer threshold to the first device.
  • the first device pre-assigns a cache threshold value to the service flow on the device and saves the cache threshold value of each device according to the collected buffering capabilities of each device on the transmission path.
  • the reliability probability indicates the probability of meeting the SLA parameters in the process of transmitting the service flow. For example, when the SLA parameter of the corresponding service flow is the delay threshold, the corresponding reliability probability is the reliability probability that the delay of transmitting the service flow is less than or equal to the delay threshold. When the SLA parameter of the corresponding service flow is the cache threshold of the network device, the corresponding reliability probability is the reliability probability that the cache of the device that transmits the service flow is greater than or equal to the cache threshold. In one implementation, the reliability probability p is a parameter less than or equal to 1.
  • the reliability probability of the equipment on the network is obtained according to the end-to-end reliability probability of the service transmission service flow.
  • the first device acquires the first delay threshold and the total delay.
  • the single device satisfies the first reliability probability that the delay of transmitting the service flow is less than or equal to the first buffer threshold.
  • the service level parameter is the first cache threshold of a single device on the path of the service flow
  • the first device obtains the first cache threshold and the second cache of the single device that is greater than or equal to the first cache threshold. Probability of reliability.
  • the first device acquires the first delay threshold and the single device meets that the delay for transmitting the service flow is less than or equal to the first threshold
  • the first reliability probability of and the second reliability probability that the first cache threshold of the single device and the cache of the single device are greater than or equal to the first cache threshold.
  • the service level parameters that need to be met during the transmission of service flow from power equipment A to power equipment B or the transmission of service flow from power equipment B to power equipment A are
  • the maximum transmission delay from power equipment A to power equipment B is 20 ms
  • the reliability probability is 0.99999.
  • the reliability probability that the minimum buffer of the equipment on the service flow transmission path is required to be 1 megabyte is 0.999.
  • the first device obtains the SLA indicators corresponding to the service flow from other devices through the User Network Interface (UNI) or the Centralized User Configuration (CUC). In another possible design, the first device obtains the SLA indicator corresponding to the service flow from the correspondence between the service flow and the SLA stored in the first device. In another possible design, the first device obtains the SLA indicator corresponding to the service flow from the sender device of the service flow.
  • UNI User Network Interface
  • CRC Centralized User Configuration
  • Step 302 The first device obtains the first traffic set of the service flow.
  • the first device may be the control device 101, and the first device may obtain the first set of traffic sampled by the second device from the second device (for example, the network device 102) on the service stream transmission path.
  • the second device collects the transmitted service flow, and sends the first set of collected flows to the first device. If the first device is a device on a path for transmitting a service flow, and a device with a control unit is deployed, the first device may locally obtain the first set of flows sampled by the first device.
  • the first traffic set includes one or more traffic sampling information, and each traffic sampling information in the one or more traffic sampling information includes the total length of the packets belonging to the service flow obtained within a set period, so
  • the first flow sampling set may further include a time stamp for acquiring each flow sampling information in the one or more flow sampling information.
  • the flow set of service flow A includes one or more flow sampling information.
  • Each traffic sampling information includes the accumulated message length Ak of the service flow A obtained in the sampling period ⁇ T k .
  • Total packet accumulated length A k represents a sampling length packets belonging to traffic flows A k
  • a timestamp is obtained T k, can be understood as arriving from accumulated between the time-stamp T k-1 to the current time T k Packet length Ak .
  • FIG 4 is a schematic diagram of traffic sampling information of a service flow provided by an embodiment of this application.
  • FIG 5 another schematic diagram of traffic sampling information of a service flow is provided for this embodiment of the application.
  • a statistical period is set according to business requirements, for example Set the period to 0.1 second, accumulate the packet length in the set week in Figure 4 to obtain the cumulative packet length in the set period corresponding to the timestamp, so that the traffic sampling information of the service flow is obtained More flexible.
  • the number of times of sampling the service stream, the sampling time, and the sampling interval are related to factors such as the storage size supported by the device, the number of times of sampling the service stream is set according to the relevant configuration.
  • the double-precision format is used to store the time stamp and the amount of data ⁇ T k ,A k ⁇ , and the storage space occupied by the sampling data of N points is 8Byte*2*N.
  • Step 303 The first device determines a first bandwidth for transmitting the service flow based on the first traffic sampling set, the service level parameter, and the reliability probability of transmitting the service flow meeting the service level parameter.
  • Scenario 1 The first device obtains the delay threshold D'of a single device that transmits the service stream and the reliability probability P'that satisfies the delay threshold D'.
  • the first device obtains a first flow sampling set, and the first flow sampling set includes N pieces of flow sampling information.
  • the flow sampling information includes A i , A i+1 ...A j , and corresponding acquiring traffic information in the sample timestamp T k, wherein, 1 ⁇ i ⁇ j ⁇ N, i, j are integers, a i is the i th sampled flow information packets belonging to the traffic flow on the total length , The A i+1 is the total length of the packets belonging to the service flow in the i+1 th traffic sampling information, and the A j is the total length of the packets belonging to the service flow in the j th flow sampling information The total length.
  • the first device obtains the first bandwidth based on the instantaneous bandwidth and the reliability probability P'.
  • the delay threshold for a single device to transmit a service flow may be the queue delay of the service flowing into the queue, or the sum of the queue delay and the scheduling delay.
  • the value of the corresponding element of /2 ⁇ P' is the value of the transmission first bandwidth
  • the value corresponding to the M is the value of the first bandwidth.
  • the first device obtains a second traffic sampling set of the service flow, and the second traffic sampling set includes one or more traffic sampling information ⁇ T N+1 ,A N+1 ⁇ .
  • the first device obtains the update bandwidth from the first traffic sampling set and the second traffic sampling set according to the above formula and algorithm.
  • the first device only obtains the updated bandwidth according to the above-mentioned formula and algorithm according to the second traffic sampling set.
  • Scenario 2 The first device obtains the end-to-end delay threshold D of the transmission service flow and the reliability probability P that meets the delay threshold D.
  • the first device receives and acquires the end-to-end delay threshold D before acquiring the delay threshold D′ for a single device on the path for transmitting the service flow to transmit the service flow. It should be understood that the first device needs to calculate the delay threshold D′ according to the delay threshold D, which is specifically determined by the first device according to the number of devices on the transmission path of the service flow and the end-to-end delay threshold D The delay threshold D′.
  • the D f includes at least one of the link delay on the service flow transmission path, the processing delay of the device, the interface delay of the device, and the initial delay of the device.
  • D f includes the link delay and the device's initial delay.
  • the processing delay of either includes link delay, device processing delay, and device interface delay, or it includes link delay, device processing delay, device interface delay, and device initial delay.
  • the optical fiber delay can be obtained by the first device in the service planning stage, or obtained through telemetry technology.
  • the device processing delay is a device index parameter, which the first device can obtain through device reporting, or be stored as a static parameter in the database of the first device.
  • the fixed delay D f also includes the initial delay T ⁇ of the scheduler.
  • the initial delay T ⁇ refers to the queue delay faced by the service flows due to the competition and dequeue of multiple service flows appearing in the scheduler.
  • the initial delay is defined as the maximum delay of initial waiting for a service flow while it is waiting to be scheduled by the scheduler.
  • the end-to-end delay threshold D 2ms for the service flow in the bearer network from device A to device E.
  • the optical fiber delay on the service stream transmission path is 1.1ms
  • the processing delay of a single device is 25 ⁇ s
  • the first device obtains the reliability probability P that satisfies the end-to-end transmission service flow delay threshold D before obtaining the reliability probability P'that satisfies the delay threshold D′, the first device then obtains the reliability probability P that satisfies the end-to-end transmission service flow
  • the first bandwidth is obtained by referring to the method in scenario 1.
  • Scenario 3 The first device obtains the cache threshold B of a single device that transmits the service stream and the reliability probability P'that satisfies the cache threshold B.
  • the set of traffic samples obtained by the first device includes A i , A i+1 ...A j and a timestamp T k corresponding to the obtained traffic sampling information, where 1 ⁇ i ⁇ j ⁇ N, i, j are integers, the Ai is the total length of packets belonging to the service flow in the i-th traffic sampling information, and the Ai+1 is the total length of the packets belonging to the i+1-th traffic sampling information.
  • the total length of the packets of the service flow, and the A j is the total length of the packets belonging to the service flow in the j-th traffic sampling information.
  • the text length S ij A i .
  • Scenario 4 The first device obtains the delay jitter threshold D jitter and the reliability probability P'of the transmission service stream.
  • the upper bound D jitter of the delay jitter of a single device is given, it is taken as the delay threshold D′ of the single device, and the first bandwidth is obtained according to the method shown in scenario 1.
  • the method for calculating bandwidth in the above four scenarios can be run on Programmable Traffic Management (PTM) or on the first device.
  • PTM Programmable Traffic Management
  • the first device deploys resources for devices that transmit service flows in the network according to the obtained first bandwidth, provides SLA differentiated services for the services, and improves the reliability of the transmission service flows.
  • the second device on the service flow transmission path collects the service flow again, obtains the second flow sampling set, and transmits the service flow according to the second flow sampling set, the service level parameters, and the service level parameters that meet the service level parameters.
  • the reliability probability determines the second bandwidth, and configures the bandwidth of the transmission service flow according to the second bandwidth.
  • the method for the second device to determine the second bandwidth can be implemented with reference to the methods introduced in the above four scenarios.
  • the control device is an independent device, as shown in Figures 1 and 2, independent of other devices in the network.
  • the control device realizes the management and resource deployment of the device through communication with the device that transmits the service flow.
  • a method for determining the bandwidth of the transmission service flow is provided.
  • Figure 6 includes multiple service flows, respectively Are the first service stream, the second service stream and the third service stream.
  • the first service stream and the second service stream are delay-sensitive services.
  • the transmission process requires low delay and high reliability.
  • the third service stream is Non-delay sensitive services.
  • the method for determining the transmission bandwidth of the first service flow or the second service flow includes the following steps:
  • Step 1 The control device obtains the transmission path information of the service flow.
  • the control device obtains the service flow transmission path through Multiprotocol Label Switching (MPLS) or traffic engineering (traffic engineering, TE) technology, and determines the equipment for transmitting the service flow on the transmission path.
  • MPLS Multiprotocol Label Switching
  • TE traffic engineering
  • the control device determines the device on the path of the transmission service flow, it can obtain network state information and device capability information based on the network configuration protocol (NETCONF) or the Representational State Transfer Configuration Protocol (RESTCONF), For example, obtaining the port rate, the maximum available bandwidth of the link, the maximum remaining bandwidth of the link, the weight of the link, the maximum transmission unit (MTU) of the link, the scheduling method and parameters of the device , The processing delay of the device, the caching capacity of the device and other information.
  • the control device obtains the network status information and device capability information through NETCONF/YANG or RESTCONF/YANG. It should be understood that the control device can deploy network resources according to the foregoing network state information and device capability information.
  • Step 2 The control device obtains the service level of the service flow and the corresponding reliability probability.
  • the SLA index includes the service level parameter corresponding to the service flow and the reliability probability of satisfying the service level parameter.
  • the control device can obtain the service level parameters of the service flow and the reliability probability of meeting the service level parameters locally.
  • the control device obtains the service level parameter corresponding to the service flow and the reliability probability of satisfying the service level parameter through the correspondence between the service type to which the service flow belongs and the content of the SLA saved by the control device.
  • Table 1 the control device saves the correspondence between service flows and SLA indicators.
  • the first service flow is a VR service flow
  • the second service flow is a high-definition video service flow
  • the third service flow is a web browsing service flow.
  • the control device can also receive the SLA indicators of the service flow sent by other devices. For example, the control device determines the path for transmitting the service flow and one or more devices on the transmission path according to the obtained network topology information. The control device obtains the SLA indicator of the service flow from the device on the transmission path. For example, the network device 102 in FIG. 1 sends the SLA indicator of the service flow to the control device.
  • the business type of the business flow SLA indicator First business flow
  • the threshold of a single network device is 0.1ms, and the reliability probability is 0.9
  • Second business flow The end-to-end delay threshold is 1s, and the reliability probability is 0.6
  • Third business flow None non-delay sensitive services
  • the network device can pass the SLA indicator through the multiple registration protocol (multiple registration protocol, MRP) message through the user network interface (UNI).
  • MRP multiple registration protocol
  • LRP Local link registration protocol
  • NETCONF Network Configuration Protocol
  • MIB management information base
  • the MaxLatency field carries the delay threshold
  • the newly added field Latency_ConfidenceLevel carries the reliability probability. If the Latency_ConfidenceLevel field has a value of 999900, it means that the user accepts that the network guarantee transmission delay is less than or equal to the delay threshold carried by MaxLatency in the case of 99.99%.
  • the network device may register the service flow SLA indicator carried in the UserToNetwork Requirements TLV into its own MPR data unit (MRP Data Unit, MRPDU), and send a declaration (declaration) to the control device.
  • MRP Data Unit MRP Data Unit
  • the network device may also register the service flow SLA indicator carried in the UserToNetworkRequirements TLV in the database of the LRP, and send a declaration to the control device.
  • the device on the transmission path can also use the centralized user configuration (Centralized User Configuration, CUC) device to set the service level parameters of the service flow And the reliability probability that satisfies the service level parameter is sent to the control device.
  • CUC Centralized User Configuration
  • control device may receive SLA indicators of one or more different service flows.
  • Different service flows can be distinguished according to whether the service flows have the same quality of service (QoS) parameters, for example, according to whether the service flows have the same delay, jitter, or throughput. Service flows with the same Qos parameters belong to the same service flow.
  • QoS quality of service
  • Step 3 The control device receives the traffic sample collection sent by the device on the service flow transmission path.
  • the control device obtains the service level parameters of multiple different service flows and the reliability probability that satisfies the service level parameters, the control device needs to sample the multiple different service flows respectively to obtain multiple traffic sampling sets. For example, as shown in Table 1, the network device samples the VR and HD video conferences to obtain the first traffic sampling set and the second traffic sampling set, respectively, and the network device combines the first traffic sampling set and the second traffic sampling set Sent to control equipment. For the specific sampling method and the content of the traffic sampling set, refer to the related description of step 302 in FIG. 3.
  • Step 4 The control device determines the bandwidth of the device to transmit the service flow based on the traffic sampling set and the SLA indicator.
  • the SLA indicator of the service flow includes the delay threshold and reliability probability of a single device that transmits the service flow, refer to the method of scenario 1 in step 303 to obtain the bandwidth of the service flow.
  • the SLA indicator of the service flow includes the end-to-end delay threshold and reliability probability of the transmission service flow, refer to the method of scenario 2 in step 303 to obtain the bandwidth of the service flow.
  • the SLA indicator of the service flow includes the buffer threshold and reliability probability of a single device that transmits the service flow, refer to the method of scenario 3 in step 303 to obtain the bandwidth of the service flow.
  • the SLA indicators of the service flow include the delay jitter threshold and reliability probability of a single device that transmits the service flow, refer to the method of scenario 4 in step 303 to obtain the bandwidth of the service flow.
  • Step 5 Control the device to configure the device bandwidth.
  • the control device uses the bandwidth obtained in step 4 to configure the resources of the device.
  • the control device delivers bandwidth to the device through the committed information rate (CIR) of the scheduler instance (scheduler instance) of NETCONF/YANG or RESTCONF/YANG.
  • CIR committed information rate
  • the device uses Hierarchical Scheduler, set the service flow with SLA requirement to high priority, for example, expedited forwarding EF (expedited forwarding, EF) priority, and configure the CIR value to be obtained from the control device The bandwidth value.
  • the device transmits the service flow according to the scheduling weight r.
  • the bandwidth corresponding to the service is obtained according to the above-mentioned steps.
  • the device configures the parameters of the device scheduler according to the bandwidth corresponding to the service, and sets the bandwidth for the corresponding service.
  • network slicing is an important feature of 5G (5th generation) networks.
  • Network slicing is an on-demand networking method.
  • network slicing is different from physical networks and is a virtual end-to-end network topology.
  • Logical isolation can be achieved between different network slices to adapt to different strategies, especially for differentiated network guarantees for business-oriented services.
  • the control device or the management device of the target slice sets the calculated bandwidth value as the preset bandwidth of the target network slice to transmit the service stream according to the mapping relationship between the target network slice and the service flow.
  • the mapping relationship between the service flow and the network slice is established according to the service type, and the bandwidth obtained from the control device is set as the bandwidth of the network slice to transmit the service flow of the service.
  • the bandwidth value of the interface of the device in the slice for transmitting the service flow is configured as the bandwidth value obtained from the control device.
  • the device uses the bandwidth obtained from the control device as the initial bandwidth, and the initial algorithm for calculating the bandwidth runs on the control device, and calculates the bandwidth vector ⁇ of the initial bandwidth.
  • the control device calculates the bandwidth in the above four scenarios.
  • the obtained instantaneous bandwidth is sorted in ascending or descending order and delivered to the devices on the service flow path.
  • the device samples the new service flow to obtain new sampling information, and runs the algorithm described in step 303 in FIG. 3 on the local PTM (Programmable Traffic Management) of the device based on the bandwidth vector ⁇ and the new sampling information to obtain the bandwidth update value.
  • the updated bandwidth value obtained by the device can be used as a reference for the bandwidth configuration of the device.
  • This method is suitable for fast-changing traffic, or the characteristics of the traffic may change after passing through the device, and the initial stage of monitoring or algorithm operation by the hop-by-hop device is required, or the reliability probability is relatively high.
  • fast update algorithm in order to maintain real-time monitoring of the traffic form, to obtain the SLA bandwidth resources adapted to the traffic characteristics.
  • the device will use the bandwidth obtained from the control device as the initial bandwidth, and update the initial bandwidth according to the new sampling information of the service stream to obtain the bandwidth update value.
  • the update calculation method refer to Figure 3 The algorithm described in step 303.
  • the device determines the bandwidth for transmitting the service stream according to the average value of the initial bandwidth and the bandwidth update value.
  • the device sets the bandwidth threshold BW th or the time threshold T th , and based on the bandwidth update value being greater than or equal to the bandwidth threshold, the device adjusts the bandwidth of the transmission service stream according to the bandwidth update value.
  • the device adjusts the bandwidth of the transmission service stream according to the updated bandwidth value .
  • the determined bandwidth BW may also be amplified by a certain factor to configure the bandwidth of the device to transmit the service stream, so that the configured bandwidth is safe and reliable, for example, the device bandwidth is configured according to BW*1.2.
  • the control device periodically detects whether the deployed bandwidth can meet the SLA indicator requirements of the service flow.
  • the telemetry technology can be used to detect the transmission delay of a part of the service flow packets on a given path, and the control device compares whether the transmission delay measured by the remote measurement is less than or equal to the delay threshold specified by the service SLA. If the comparison result is "No", it is determined that the deployment bandwidth is not safe.
  • Another method is that the control device runs a network calculation (network calculation, NC) tool to calculate the theoretical upper bound of the delay under the preset bandwidth, and the controller compares whether the theoretical upper bound of the NC is less than the delay threshold specified by the given SLA. If the comparison result is "Yes", the deployed bandwidth meets the SLA requirements.
  • NC network calculation
  • the control device determines the bandwidth required to transmit the service flow based on the sampling information of the service flow, the service level parameters, and the reliability probability value that meets the service level parameters, and guides the delay-sensitive services with reliability probability requirements. Bandwidth allocation improves the high reliability of delay-sensitive service stream transmission.
  • control device is a functional unit integrated on the device on the service stream transmission path.
  • control unit is integrated on any of the devices 102-104, or the control unit is split Distributed deployment of several sub-functional units on the devices 102-104 to realize device management and resource deployment includes the following steps:
  • Step 11 The device obtains the service level parameter of the service flow and the corresponding reliability probability.
  • the control unit when the control unit is integrated on a device in the service flow transmission path, it can be understood that the device can obtain the service level parameters carrying the service flow through the User Network Interface (UNI) and satisfy the requirements.
  • Messages with the reliability probability of service level parameters for example, the messages carrying the service level parameters of the service flow and the reliability probability meeting the service level parameters are through multiple registration protocol (multiple registration protocol, MRP) messages, local links Registration protocol (link-local registration protocol, LRP) messages, network configuration protocol (Network Configuration Protocol, NETCONF) messages, RESTCONF messages, or management information base (MIB) messages, etc.
  • control unit is distributedly deployed on the equipment in the service flow transmission path, and the equipment obtains the SLA content corresponding to the service flow from the local equipment.
  • NETCONF can use Secure Shell (SSH), Transport Layer Security (TLS), or Transmission Control Protocol (Transmission Control Protocol, TCP) to carry the service level parameters of the service flow of the SLA and satisfy the service The reliability probability of the grade parameter.
  • SSH Secure Shell
  • TLS Transport Layer Security
  • TCP Transmission Control Protocol
  • Step 12 The device samples the service flow to obtain a flow sampling set.
  • the device needs to separately collect the service flows of the multiple different services to obtain multiple traffic sampling sets.
  • the device collects VR and high-definition video conferences respectively, and obtains a traffic sample set of VR service streams and a traffic sample set of high-definition video conferences.
  • the sampling method can refer to the method shown in step 302 in FIG. 3.
  • Step 13 The device obtains bandwidth based on sampling information, service level parameters, and corresponding reliability probabilities.
  • the content of the SLA of the service flow includes the delay threshold and reliability probability of a single device that transmits the service flow, refer to the above scenario 1 method to obtain the bandwidth of the service flow.
  • the bandwidth of the service flow can be obtained by referring to the method in the second scenario above.
  • the content of the SLA of the service flow includes the buffer threshold and reliability probability of a single device that transmits the service flow, refer to the method in the above scenario 3 to obtain the bandwidth of the service flow.
  • the content of the SLA of the service flow includes the buffer threshold and reliability probability of a single device that transmits the service flow, refer to the method in the above scenario 3 to obtain the bandwidth of the service flow.
  • the content of the SLA of the service flow includes the delay jitter threshold and reliability probability of the transmission service flow, refer to the method in the above scenario 4 to obtain the bandwidth of the service flow.
  • Step 14 The device configures bandwidth for the service flow.
  • the device configures the bandwidth for the service flow according to the bandwidth obtained in step 13.
  • For the configuration method refer to the description of step 5 in FIG. 6.
  • FIG. 9 is a schematic structural diagram of a first device 900 according to an embodiment of the application.
  • the first device 900 shown in FIG. 9 can execute the corresponding steps performed by the first device or the control device in the method of the above-mentioned embodiment.
  • the first device 900 can execute the method steps executed by the first device in steps 301-303 in FIG. 3 , The method steps performed by the control device in steps 1 to 5 in Fig. 6, and the method steps performed by the device in steps 11-14 in Fig. 7.
  • the first device 900 includes an acquiring unit 901 and a processing unit 902.
  • the obtaining unit 901 is configured to obtain a first set of traffic samples of a service flow and a service level parameter corresponding to the service flow and a reliability probability that satisfies the service level parameter.
  • the first set of traffic samples includes one or more traffic samples. information.
  • the processing unit 902 is configured to determine the first bandwidth for transmitting the service flow according to the first traffic sampling set, the service level parameter, and the reliability probability.
  • the acquiring unit 901 is specifically configured to receive the first set of traffic samples from a second device, and the second device is a device on the service flow transmission path.
  • the first device may further include a first sending unit, and the first sending unit is configured to send a notification message to the second device, the notification message carrying the first bandwidth, and the notification message The text is used to instruct the second device to set the bandwidth for transmitting the service flow according to the first bandwidth.
  • the acquiring unit 901 is specifically configured to acquire the first traffic sample set collected by the first device.
  • the processing unit 902 is further configured to set a bandwidth for the first device to transmit the service flow according to the first bandwidth.
  • each flow sampling information in the one or more flow sampling information includes the total length of the packets belonging to the service flow obtained within a set period.
  • the acquiring unit 901 is specifically configured to: acquire the first delay threshold for a single device on the path for transmitting the service flow to transmit the service flow and the time when the single device meets the requirement for transmitting the service flow. A first reliability probability that the delay is less than or equal to the first threshold, where the first delay threshold is the maximum delay for the single device to transmit the service flow; and/or
  • the processing unit 902 is specifically configured to obtain N pieces of flow sampling information based on the first flow sampling set, and the N pieces of flow sampling information include A i , A i+1 ...A j , where: 1 ⁇ i ⁇ j ⁇ N, i, j are integers, the A i is the total length of the packets belonging to the service flow in the i-th traffic sampling information, and the A i+1 is the i+1-th The total length of the packets belonging to the service flow in the traffic sampling information, and the A j is the total length of the packets belonging to the service flow in the jth traffic sampling information.
  • the processing unit 902 is specifically configured to obtain the instantaneous bandwidth of the service flow according to the one or more accumulated packet lengths and the service level parameter.
  • the processing unit 902 is specifically configured to obtain the first bandwidth according to the instantaneous bandwidth and the reliability probability.
  • the first set of traffic samples further includes obtaining each of the traffic samples
  • the acquiring unit 901 acquires the first delay threshold for a single device to transmit the service flow on the path for transmitting the service flow, and the single device meets the requirement that the transmission of the service flow is less than or equal to the first delay threshold. Before the first reliability probability of a threshold, it is also used to obtain the second delay threshold for end-to-end transmission of the service flow and the delay for end-to-end transmission of the service flow less than or equal to the second delay threshold The third reliability probability.
  • the processing unit 902 is further configured to determine the first delay threshold according to the number of devices on the transmission path of the service flow and the second delay.
  • the processing unit 902 is further configured to determine the first reliability probability according to the number of devices on the transmission path of the service flow and the third reliability probability.
  • the processing unit 902 is specifically configured to determine the first delay threshold according to the following formula
  • the D' is the first delay threshold
  • the H is the number of devices on the transmission path of the service flow
  • the D is the second delay threshold
  • the D f is The fixed delay on the service flow transmission path, where the fixed delay includes the link delay on the service flow transmission path, the processing delay of the device, the outbound interface delay of the device, and the initial delay of the device. at least one.
  • the processing unit 902 specifically configured to determine the first reliability probability according to the following formula includes:
  • the P' is the first reliability probability
  • the H is the number of devices on the transmission path of the service flow
  • the p is the third reliability probability
  • the first device further includes a second sending unit, and the second sending unit is configured to send the instantaneous bandwidth of the service flow to the third device, and the instantaneous bandwidth is used by the third device according to the The instantaneous bandwidth determines the second bandwidth value.
  • FIG. 10 is a schematic structural diagram of a second device 1000 according to an embodiment of the application.
  • the second device 1000 shown in FIG. 10 can execute the corresponding steps performed by the second device in the method of the foregoing embodiment.
  • the first device 900 can execute the steps performed by the second device described in the embodiment in steps 301-303 in FIG. Method steps.
  • the second device is deployed in a communication network, which also includes a control device.
  • the second device 1000 includes a sending unit 1001, a receiving unit 1002, and a processing unit 1003.
  • the sending unit 1001 is configured to send a first traffic sampling set of a service flow, the first traffic sampling set includes one or more traffic sampling information, and the first traffic sampling set is used by the first device to determine the first traffic sampling set. bandwidth.
  • the receiving unit 1002 is configured to receive a notification message from the first device, where the notification message includes the first bandwidth.
  • the processing unit 1003 is configured to set a bandwidth for transmitting the service stream according to the first bandwidth.
  • the sending unit 1001 is further configured to send the service level parameters of the service flow and the reliability probability of satisfying the service level parameters to the first device, the service level parameters and the reliability The probability is used for the first device to determine the first bandwidth.
  • each flow sampling information in the one or more flow sampling information includes the total length of the packets belonging to the service flow obtained within a set period.
  • the sending unit 1001 is specifically configured to send to the first device the first delay threshold for a single device on the path for transmitting the service flow to transmit the service flow and the single device meets the transmission time delay threshold.
  • the first cache threshold is the minimum value of the cache of the single device.
  • the sending unit 1001 is specifically configured to send the second delay threshold for end-to-end transmission of the service flow to the first device and the end-to-end transmission delay of the service flow is less than or equal to all.
  • the third reliability probability of the second delay threshold is less than or equal to all.
  • the processing unit 1003 is specifically configured to set the value of the committed information rate CIR of the port that transmits the service flow to the value of the first bandwidth, and send the service flow according to the CIR.
  • the processing unit 1003 is specifically configured to set a scheduling weight value for transmitting the service flow according to the port bandwidth for transmitting the service flow and the first bandwidth, and send the scheduling weight value according to the scheduling weight value. business flow.
  • FIG. 11 is a schematic diagram of the hardware structure of the first device 1100 according to an embodiment of the application.
  • the first device 1100 shown in FIG. 11 can execute the corresponding steps performed by the first device or the control device in the method of the foregoing embodiment.
  • the first device 1100 includes a processor 1101, an interface 1102, and a bus 1103.
  • the above-mentioned processor 1101 and the interface 1102 are connected by a bus 1103.
  • the interface 1103 includes a transmitter and a receiver, and is used to send and receive packets between the device 1100 and the second device in the foregoing embodiment or with other network devices on the service flow transmission path.
  • the interface 1103 is used to support steps 301 and 302 in FIG. 3, steps 1-3 and 5 in FIG. 6, and steps 11-12 and 14 in FIG.
  • the processor 1101 is configured to execute the processing performed by the first device in the foregoing embodiment, and/or other processes used in the technology described herein.
  • the processor 1101 is configured to determine the first bandwidth for transmitting the service flow based on the first traffic sampling set, the service level parameter, and the reliability probability of transmitting the service flow meeting the service level parameter.
  • the processor 1101 is configured to support step 203 in FIG. 2, step 4 in FIG. 6, and step 13 in FIG. 7.
  • the first device 1100 may further include a memory.
  • the memory can be used to store programs, codes, or instructions. When the processor or hardware device executes these programs, codes, or instructions, the processing procedure involving the first device in the method embodiment can be completed.
  • the memory may include a read-only memory (Read-only Memory, ROM) and a random access memory (Random Access Memory, RAM).
  • the ROM includes a Basic Input/Output System (BIOS) or an embedded system
  • the RAM includes an application program and an action system.
  • the application program and the action system run in the RAM, thereby completing the processing process involving the first device or the control device in the method embodiment. It can be understood that FIG. 11 only shows a simplified design of the first device 1100. In practical applications, the first device may include any number of interfaces, processors or memories.
  • processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processing (DSP), and application specific integrated circuits. ASIC), field-programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor. It is worth noting that the processor can be a processor that supports an advanced RISC machine (advanced RISC machines, ARM) architecture.
  • the foregoing memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • the memory may also include non-volatile random access memory.
  • the memory can also store device type information.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache. By way of exemplary but not limiting illustration, many forms of RAM are available.
  • static random access memory static random access memory
  • dynamic random access memory dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access Memory double data date SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM
  • FIG. 12 is a schematic diagram of the hardware structure of the second device 1200 according to an embodiment of the application. It can be understood that the second device is a device on a service stream transmission path. The second device 1200 shown in FIG. 12 can execute the corresponding steps performed by the second device in the method of the foregoing embodiment. As shown in FIG. 12, the second device 1200 includes a processor 1201, an interface 1202, and a bus 1203. The aforementioned processor 1201 and interface 1202 are connected through a bus 1203.
  • the interface 1201 includes a transmitter and a receiver, and is used to send and receive packets between the second device and the first device in the foregoing embodiment or with the control device in the foregoing embodiment.
  • the interface 1202 is used to send a first traffic sampling set of a service flow.
  • the first traffic sampling set includes one or more traffic sampling information.
  • the first traffic sampling set is used by the first device to determine the first traffic sampling set. Bandwidth; and for receiving a notification message from the first device, the notification message including the first bandwidth.
  • the processor 1201 is configured to execute the processing performed by the second device in the foregoing embodiment, and/or other processes used in the technology described herein.
  • the processor 1201 is configured to perform setting of a bandwidth for transmitting the service flow according to the first bandwidth.
  • the second device 1200 may further include a memory.
  • the memory can be used to store programs, codes or instructions. When the processor or hardware device executes these programs, codes, or instructions, the processing procedure involving the first device in the method embodiment can be completed.
  • the memory 1202 may include ROM and RAM.
  • the ROM includes a Basic Input/Output System (BIOS) or an embedded system;
  • the RAM includes an application program and an action system.
  • the first device may include any number of interfaces, processors or memories.
  • the foregoing processor may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the general-purpose processor may be a microprocessor or any conventional processor. It is worth noting that the processor may be a processor supporting the ARM architecture.
  • the foregoing memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • the memory may also include non-volatile random access memory.
  • the memory can also store device type information.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, PROM, EPROM, EEPROM or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available. For example, static random access memory SRAM, DRAM, SDRAM, DDR SDRAM, ESDRAM, SLDRAM and DR RAM.
  • FIG. 13 is a schematic structural diagram of a system for determining the bandwidth of a transmission service stream according to an embodiment of the application.
  • the system 1300 is used to implement the method for determining the bandwidth of a transmission service stream in the foregoing method embodiment.
  • the system includes a first device 1301 and a second device 1302.
  • the first device can be used to execute the method steps of the first device or the control device or the device in FIG. 3, FIG. 6 and FIG. 7, and have corresponding functions.
  • the second device is used to execute the steps performed by the second device described in the embodiment in steps 301-303, and has corresponding functions.
  • the first device 1301 is configured to obtain a first traffic sampling set of a service flow, a service level parameter corresponding to the service flow, and a reliability probability that satisfies the service level parameter, and according to the first traffic
  • the sampling set, the service level parameter of the service flow, and the reliability probability determine the first traffic bandwidth for transmitting the service flow, and send the first bandwidth to the second device.
  • the first traffic sampling set includes one or more Traffic sampling information.
  • the second device 1302 is configured to send the first set of traffic samples to the first device, receive a first bandwidth, and set a bandwidth for transmitting the service flow according to the first bandwidth.
  • the embodiment of the present application also provides a computer-readable storage medium, including at least one instruction, program, or code.
  • the instruction, program, or code When the instruction, program, or code is loaded and run on a computer, the computer executes any of the above-mentioned deterministic transmissions.
  • the bandwidth method steps of the service flow. For example, the corresponding method steps in the method embodiment executed by the first device, the second device, the control device, or the device in the embodiment of FIG. 3, FIG. 6 or FIG. 7 may be executed.
  • the embodiment of the present application provides a computer program product, including at least one instruction, program, or code.
  • the instruction, program, or code is loaded and run on a computer, the computer can execute the implementation in FIG. 3, FIG. 6 or FIG. 7
  • the first device, the second device, the control device, or the corresponding method steps in the method embodiment executed by the device can execute the implementation in FIG. 3, FIG. 6 or FIG. 7
  • the first device, the second device, the control device, or the corresponding method steps in the method embodiment executed by the device can execute the implementation in FIG. 3, FIG. 6 or FIG. 7
  • the first device, the second device, the control device, or the corresponding method steps in the method embodiment executed by the device can execute the implementation in FIG. 3, FIG. 6 or FIG. 7
  • the first device, the second device, the control device, or the corresponding method steps in the method embodiment executed by the device can execute the implementation in FIG. 3, FIG. 6 or FIG. 7
  • any of the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate.
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Abstract

本申请提供确定传输业务流的带宽的方法、设备和系统,其中,该方法包括第一设备获取业务流的第一流量采样集合,第一流量采样集合包括一个或多个流量采样信息。第一设备获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率。第一设备基于所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的带宽。通过该方法能够提高业务流传输的可靠性。

Description

确定传输业务流的带宽的方法、设备和系统
本申请要求于2020年5月25日提交的申请号为202010449643.X、发明名称为“一种获取带宽的方法、设备和系统”的中国专利申请和于2020年8月29日提交的申请号为202010890854.7、发明名称为“确定传输业务流的带宽的方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及确定传输业务流的带宽的方法、设备和系统。
背景技术
带宽(bandwidth)用于描述网络中单位时间内传输的流量大小。通常网络使用带宽确定网络业务对网络资源的需求情况。例如,在统计复用的网络中,常基于带宽来部署网络带宽。然而,第五代(fifth-generation,5G)技术的超高可靠性超低时延通信(Ultra-Reliable Low-Latency Communication,URLLC)多业务对服务质量(Quality of Service,QoS)有严格的要求。如何为业务提供满足业务需求的服务质量,在满足业务质量需求下进行带宽资源分配,对目前的网络是需要解决的技术问题。
发明内容
本申请实施例提出确定传输业务流的带宽的方法、设备和系统,能够提高业务流传输的可靠性,使得业务流传输满足业务需求。
第一方面,本申请实施例提供一种确定传输业务流的带宽的方法,所述方法由第一设备执行。
第一设备获取业务流的第一流量采样集合,第一流量采样集合包括一个或多个流量采样信息。第一设备获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率。第一设备基于所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第一带宽。
第一设备通过所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的带宽,不仅可以提高业务流传输的可靠性,还可以使得业务流的传输更可能满足业务对服务等级参数和对应可靠性概率的要求。
在一种可能的实现方式中,所述第一设备通过接收来自所述业务流传输路径上的第二设备的第一流量采样集合获取所述第一流量采样集合。提供了第一设备获取第一流量采样集合的实现方式,即从业务流传输路径上的设备获取业务流的第一流量采样集合。
在一种可能的实现方式中,第一设备还可以向第二设备发送通告报文,所述通告报文携带所述第一带宽,所述通告报文用于指示所述第二设备根据所述第一带宽设置传输所述业务流的带宽。在提高业务流传输可靠性的同时,还可以实现对带宽资源的合理分配和部署。
在一种可能的实现方式中,第一设备通过获取本地设备采集的第一流量采样集合获取所述第一流量采样集合。第一设备根据第一带宽设置本地设备输所述业务流的带宽,例如第一设备使用第一带宽传输所述业务流。提供了第一设备获取第一流量采样集合的实现方式,即本地设备对业务流的采集获得第一流量采样集合。这种实现方式常见于以软件功能单元存在,分布式部署在业务流传输路径上的设备上。
在一种可能的实现方式中,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。例如,流量采样信息包括所述业务流A的报文的总长度为A k,其中k=1,…N,N为采样次数。
在一种可能的实现方式中,所述第一流量采样集合还包括获得所述每个流量采样信息的时间戳,例如,时间戳为T k,其中k=1,…N,N为采样次数,T 1为通过采集获得流量采样信息A 1的时间戳。
在一种可能的实现方式中,第一设备获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率包括以下任意一种情况:
当服务等级参数为传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值时,第一设备获取所述第一时延阈值以及所述单个设备满足传输所述业务流的时延小于或等于所述第一缓存阈值的第一可靠性概率。
当服务等级参数为所述业务流的路径上单个设备的第一缓存阈值时,第一设备获取所述第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。
当服务等级参数包括第一时延阈值和第一缓存阈值时,第一设备获取所述第一时延阈值和所述单个设备满足传输所述业务流的时延小于或等于所述第一阈值的第一可靠性概率,以及所述单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。第一时延阈值为所述单个设备传输所述业务流的最大时延,所述第一缓存阈值为所述单个设备的缓存的最小值。
上述方法中,第一设备在获取服务等级参数时,还获得满足所述服务等级参数的可靠性概率。第一设备基于不同的服务等级参数和可靠性概率计算获得不同的带宽。
在一种可能的实现方式中,第一设备基于所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定第一带宽的实现方式包括以下步骤:
第一设备首先基于所述第一流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度。
第一设备根据S ij=A i+A i+1+…+A j获得一个或多个所述业务流中的累计的报文长度。第一设备根据所述一个或多个累计的报文长度和所述服务等级参数获得所述业务流的瞬时带宽。
第一设备根据所述瞬时带宽和所述可靠性概率获得第一带宽。
在一种可能的实现方式中,进一步,在服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第一流量采样集合还包括获得所述每个流量采样信息的时间戳时,第一设备根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为与相邻两次流量采样信息对应的时间戳之差或设定周期,所述BW′为所述瞬时带宽。第一设备基于获得的所述瞬时带宽,将所述瞬时带宽的值按升序排列,并确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,其中,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
在第一设备获取时延阈值和满足时延阈值的可靠性概率的情况下,提供获取第一 带宽的计算方式,以提高业务流传输可靠性,实现业务低时延传输需求。
在一种可能的实现方式中,在所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第一流量采样集合还包括获得所述每个流量采样信息的时间戳时,第一设备根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽。第一设备基于获得的所述瞬时带宽,将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,P’为所述第二可靠性概率。
在第一设备获取设备缓存阈值和满足缓存阈值的可靠性概率的情况下,提供获取第一带宽的计算方式,以提高业务流传输可靠性,实现业务传输需求。
在一种可能的实现方式中,第一设备先获取端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率。第一设备根据所述业务流的传输路径上的设备的个数和第二时延确定单个设备传输所述业务流的第一时延阈值。第一设备根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定单个设备小于等于所述第一阈值的第一可靠性概率。
在一种可能的实现方式中,第一设备根据所述业务流的传输路径上的设备的个数和所述第二时延确定所述第一时延阈值,具体通过以下公式获得:
D’=(D-D f)/H
其中,所述D’为所述第一时延阈值,所述H为所述业务流的传输路径上的设备的个数,所述D为所述第二时延阈值,所述D f为所述业务流传输路径上的固定时延,所述固定时延包括所述业务流传输路径上的链路时延、设备的处理时延、设备的出接口时延和设备的初始时延中至少一个。
在一种可能的实现方式中,第一设备根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定所述第一可靠性概率,具体通过以下公式获得:
P’=1-(1-p) 1/H
其中,所述H为所述业务流的传输路径上的设备的个数,所述p为所述第三可靠性概率,所述P’为所述第一可靠性概率。
在一种可能的实现方式中,第一设备还可以继续向第三设备发送所述业务流的瞬时带宽,所述瞬时带宽用于第三设备根据所述瞬时带宽确定第二带宽。
第一设备将计算第一带宽的中间过程值发送给设备,使业务路径上的设备可以利用所述中间过程值计算更新带宽值,实现利用带宽资源的快速更新。
在一种可能的实现方式中,第一设备还可以基于所述业务流的第二流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第三带宽。响应于第一设备确定所述第三带宽大于或等于所述带宽门限,所述第一设备确定使用所述第三带宽传输所述业务流。
为了避免带宽值计算结果频繁变化,导致带宽配置频繁震荡,影响业务流传输,第一设备通过设定带宽门限,并在更新带宽值大于或等于带宽门限情况下调整配置带宽,增加网络带宽配置的稳定性。
在一种可能的实现方式中,响应于确定所述第三带宽大于或等于带宽门限,所述第一设备确定使用所述第三带宽传输所述业务流的实现方式包括:响应于所述第三带 宽大于或等于所述带宽门限持续的时间大于或等于时间门限,第一设备确定使用所述第三带宽传输所述业务流。
为了避免带宽值计算结果频繁变化,导致带宽配置频繁震荡,影响业务流传输,第一设备通过设定带宽门限和时间门限,并在更新带宽值大于或等于带宽门的持续时间大于或等于时间门限的情况下调整配置带宽,进一步增加网络带宽配置的稳定性。
第二方面,提供一种确定传输业务流的带宽的方法,所述方法由第二设备执行,第二设备为所述业务流传输路径上的设备。
第二设备向第一设备发送业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息,所述第一流量采样集合用于所述第一设备确定第一带宽。第二设备接收来自所述第一设备的通告报文,所述通告报文包括所述第一带宽;第二设备根据所述第一带宽设置传输所述业务流的带宽。
在一种可能的实现方式中,第二设备向第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,所述服务等级参数和所述可靠性概率用于第一设备确定所述第一带宽。
在一种可能的实现方式中,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
在一种可能的实现方式中,所述第一流量采样集合包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳。
在一种可能的实现方式中,第二设备向第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率包括以下情况:
向第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流小于等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;或者/和
向所述第一设备发送传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率,所述第一缓存阈值为所述单个设备的缓存的最小值。
根据所述实现方式,应当理解的是,在一种情况下,第二设备向第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流小于等于所述第一阈值的第一可靠性概率。在另一种情况下,第二设备向第一设备发送所述单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。在另一种情况下,第二设备向第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流小于等于所述第一阈值的第一可靠性概率,所述单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。
在一种可能的实现方式中,所述第二设备向所述第一设备发送传输所述业务流的端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率,所述第二时延阈值为端到端传输所述业务流的最大时延。
在一种可能的实现方式中,第二设备还可以根据所述业务流的第二流量采样集合、所述服务等级参数以及所述可靠性概率确定第二带宽。第二设备根据所述第一带宽和 所述第二带宽确定传输所述业务流的带宽。
在一种可能的实现方式中,第二设备根据所述业务流的第二采样信息、所述服务等级参数以及所述可靠性概率确定第二带宽的实现方式包括:基于所述第二流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度;根据S ij=A i+A i+1+…+A j获得一个或多个所述业务流中的累计的报文长度;根据所述一个或多个累计的报文长度和所述服务等级参数获得所述业务流的瞬时带宽;根据所述瞬时带宽和所述可靠性概率获得传输所述业务流的所述第二带宽。
在一种可能的实现方式中,在所述服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第二流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳时,根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽的实现方式包括:根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽。根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽的实现方式包括:将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第二带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
在一种可能的实现方式中,在所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第二流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳时,所述根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽的实现方式包括:根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽。根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽的实现方式包括:将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,P’为所述第二可靠性概率。
在一种可能的实现方式中,第二设备根据所述业务流的第三采样信息、所述服务等级参数以及所述可靠性概率确定第二带宽获得第三带宽。第二设备响应于所述第三带宽大于或等于带宽门限,使用所述第三带宽传输所述业务流。
在一种可能的实现方式中,第二设备响应于所述第三带宽大于或等于带宽门限,使用所述第三带宽传输所述业务流的实现方式包括:第二设备响应于所述第三带宽大于或等于带宽门限持续的时间大于或等于时间门限,使用所述第三带宽传输所述业务流的带宽。
在一种可能的实现方式中,第二设备根据所述第一带宽设置传输所述业务流的带宽的实现方式包括:第二设备将传输所述业务流的端口的承诺信息速率CIR的值设置为所述第一带宽的数值,并根据所述CIR发送所述业务流。
在一种可能的实现方式中,所述第二设备根据所述第一带宽设置传输所述业务流的带宽的另一种实现方式包括:第二设备根据传输所述业务流的端口带宽和所述第一带宽设置 传输所述业务流的调度权重值,并根据所述调度权重值发送所述业务流。
在一种可能的实现方式中,根据网络切片的标识与所述业务流的映射关系,所述第二设备的第一端口使用所述第一带宽传输所述业务流的带宽,所述第一端口属于所述网络切片。
第三方面,提供一种第一设备,用于执行第一方面或第一方面的任意一种可能的实现方式中的方法。具体地,该网络设备包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的单元。
第四方面,提供一种第二设备,用于执行第二方面或第二方面的任意一种可能的实现方式中的方法。具体地,该网络设备包括用于执行第二方面或第二方面的任意一种可能的实现方式中的方法的单元。
第五方面,提供一种第一设备,该控制器包括:处理器、通信接口和存储器。通信接口用于接收或发送报文。存储器可以用于存储程序代码,处理器用于调用存储器中的程序代码执行第一方面或第一方面的任意一种可能的实现方式,具体参见方法示例中的详细描述,此处不再赘述。
第六方面,提供一种第二设备,该控制器包括:处理器、通信接口和存储器。通信接口用于接收或发送报文。存储器可以用于存储程序代码,处理器用于调用存储器中的程序代码执行前述第二方面或第二方面的任意一种可能的实现方式中的方法,具体参见方法示例中的详细描述,此处不再赘述。
第七方面,提供一种确定传输业务流的带宽的系统,该系统包括用于执行第一方面或第一方面的任意一种可能的实现方式中的方法的第一设备和用于执行第二方面或第二方面的任意一种可能的实现方式中的方法的第二设备。例如,第一设备用于获取业务流的第一流量采样集合、对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,并根据所述第一流量采样集合、所述业务流的服务等级参数和所述可靠性概率确定传输所述业务流的第一流量带宽,向第二设备发送第一带宽,所述第一流量采样集合包括一个或多个流量采样信息。第二设备用于向所述第一设备发送所述第一流量采样集合,接收第一带宽并根据所述第一带宽设置传输所述业务流的带宽。
第八方面,提供了一种计算机可读介质,包括指令,当其在计算机上执行时,使得所述计算机执行上述第一方面或第一方面的任意一种可能的实现方式中的方法,或者执行第二方面或第二方面的任意一种可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的实现方式中的方法,或者执行第二方面或第二方面的任意一种可能的实现方式中的方法。
附图说明
图1为本申请实施例提供一种确定传输业务流的带宽的系统架构示意图;
图2为本申请实施例提供一种确定传输业务流的带宽的应用场景示意图;
图3为本申请实施例提供一种确定传输业务流的带宽的方法流程示意图;
图4为本申请实施例提供一种业务流的采样信息示意图;
图5为本申请实施例提供另一种业务流的采样信息示意图;
图6为本申请实施例提供一种确定传输业务流的带宽的方法流程示意图;
图7为本申请实施例提供一种确定传输业务流的带宽的方法流程示意图;
图8为本申请实施例提供一种报文格式示意图;
图9为本申请实施例提供一种第一设备的结构示意图;
图10为本申请实施例提供一种第二设备的结构示意图;
图11为本申请实施例提供一种第一设备的硬件结构示意图;
图12为本申请实施例提供一种第二设备的硬件结构示意图;
图13为本申请实施例提供一种确定传输业务流的带宽的系统。
具体实施方式
下面结合附图,对本申请实施例提供的确定传输业务流的带宽的方法、设备和系统的实现方式进行介绍。
在互联网协议(Internet Protocol,IP)网络中,带宽常用于形容单位时间内流量大小。带宽的大小与业务流的特征统计周期有关。例如,平均带宽用于描述在较长时间内的平稳数据量,统计周期较长。峰值带宽用于描述瞬间的数据量的最大值,统计周期较短,例如,统计过程可以根据业务流的特征选择毫秒或者微秒的时间单位对业务流进行统计。此外,带宽的分类还包括有效带宽和满足时延需求的带宽。前者用于描述随机流量的大小,后者用于描述传输业务流满足低时延需求的流量大小。然而,不同的业务类型对传输业务需要满足的服务等级参数的可靠性概率(还可以简称为满足服务等级的概率)的需求不同,上述分类中的带宽类型不能满足不同业务对不同可靠性概率的需求,因此不能满足5G中URLLC的业务传输需求。
据此,本申请实施例提出确定传输业务流的带宽的方法、设备和系统,能功满足不同业务流在传输过程中对符合服务等级参数需求的概率的不同需求,一定程度上提高了业务流的传输可靠性。该方法基于业务流的流量采样信息与业务流对应的服务等级协议(Service Level Agreement,SLA)参数和满足该服务等级参数的可靠性概率,确定传输所述业务流的带宽。
SLA是网络服务提供商和客户之间的一种协议,用于保证可计量的网络服务性能达到所定义的品质。SLA协议所约定的网络服务性能的内容可以根据业务需求进行定义。客户根据业务类型选择服务等级参数以及满足该服务等级参数为业务提供服务的可靠性概率。在一种实现中,SLA指标包括服务等级参数和满足服务等级参数传输业务流的可靠性概率。例如,当服务等级参数为时延阈值时,SLA指标包括传输业务流的时延阈值和传输所述业务流的时延小于或等于所述时延阈值的可靠性概率。举例来说,5G业务中定义的多类业务关联的SLA指标包括低时延需求。需要说明的是,传输业务流的时延阈值可以是传输业务流路径上的单个设备传输业务流的时延阈值,或者端到端传输业务流的时延阈值,所述时延阈值可以包括时延抖动阈值。在另一种实现中,当服务等级参数为设备的缓存阈值时,SLA指标包括传输业务流的设备的缓存阈值和传输所述业务流的设备的缓存大于或等于所述缓存阈值的可靠性概率。在另一种实现中,当服务等级参数为时延阈值和设备的缓存阈值时,SLA指标包括传输业务流的时延阈值、传输业务流的设备的缓存阈值以及传输所述业务流的时延小于或等于所述时延阈值的可靠性概率和传输所述业务流的设备的缓存大于或等于所述缓存阈值的可靠性概率。
可以理解的是,本申请实施例提出的确定传输业务流的带宽的方法可应用于5G中的URLLC场景,这些场景需要网络合理地协调可用带宽资源,对带宽资源进行分配和预留。 如工业制造自动化场景、电力自动化场景、车联网场景等,这些场景对传输的可靠性概率有严格要求。举例来说,本申请实施例的方案可用于为智能电网差动保护业务提供高可靠性的有界时延保证,也可以为园区网络中的控制类业务的业务流提供高可靠性、有界时延的转发服务。还可以在用于智能工厂,基于有线以太网或无线网络,为传感器采集业务流量、工业控制流量、视频监控流量等提供高可靠性的有界时延保证。
下面以图1为例,对本申请实施例方案适用的网络架构进行介绍。图1所示的网络100包括控制设备101和网络设备102-104。发送端设备105为发送业务流的源端设备,接收端设备106为业务流的目的端设备。设备102-104为业务流传输路径上的转发设备,用于在网络100中将业务流从发送端设备105转发到接收端设备106。设备103分别与设备102和设备104连接。控制设备101分别与设备102-104连接,以实现对设备102-104的管理和资源部署。需要说明的是,图1仅为本申请实施例提供一种示例性的系统架构示意图,不应对本方案的网络架构构成限制,例如图1中的网络100还可以包括除设备102-104之外的其他多个转发设备。
需要说明的是,控制设备既可以如图1中所示,为独立的物理设备,即物理上独立于网络设备102-104;控制设备还可以是一个功能单元,集成在网络设备102-104中任意一个设备上;控制设备还可以拆分成若干个子功能单元分布式部署在网络设备102-104上。只要控制设备具备逻辑上相应的管理和控制功能即可,本申请实施例对控制设备的存在形式不做限制。图1中设备102-104可以为硬件或软硬结合的形式,是一个独立的设备,例如交换机、路由器等具有转发功能的设备,用于对网络100中的业务流进行接收和发送。
进一步,图2为本申请实施例提供一种确定传输业务流带宽的应用场景示意图,该场景为电力自动化系统场景示意图。电力设备的差动保护是电力网络重要的自我保护手段,例如,将输电线两端的电气量进行比较以判断故障范围,实现故障的精准隔离,以避免停电影响范围扩大。因此,电力自动化场景需要对传输业务流的带宽有低时延和高可靠性需求,以保证图2中电力设备A和电力设备B实现电力设备的差动保护。
结合图1和图2所示的场景示意图,图3为本申请实施例提供了确定传输业务流带宽的方法流程示意图,其中步骤301和步骤302并无先后顺序的限制,例如既可以在实施步骤301后再实施步骤302,也可以在实施步骤302后再实施步骤301。下面介绍确定传输业务流带宽的方法包括:
步骤301,第一设备获取对应业务流的服务等级参数和满足所述服务等级参数的可靠性概率。
结合图1所示,第一设备可以是图1中的控制设备101或图2中的控制设备,第二设备为图1或图2中的网络设备。第一设备既可以从本地设备获取对应业务流的服务等级参数和满足所述服务等级参数的可靠性概率,也可以从业务流传输路径上的第二设备(例如,网络设备102)获取对应业务流的服务等级参数和满足所述服务等级参数的可靠性概率。
不同的业务类型绑定或者关联不同的SLA指标。例如,SLA参数包括时延阈值,或者SLA参数包括设备的缓存阈值,或者SLA参数包括时延阈值和设备的缓存阈值这两者的组合。例如,由于工业制造场景中的高端制造业对车间设备的延迟和稳定性有着非常高的需求,因此,工作制造厂场景的业务流的SLA的内容包括时延阈值。应当理解的是,在获得SLA参数时,还会获得满足所述SLA参数的可靠性概率,所述可靠性概率与SLA参数同样是业务流传输需要满足的条件参数。例如,在获得对应业务流的SLA参数为时延阈值时, 还会获得传输所述业务流小于等于所述时延阈值的可靠性概率。在获得对应业务流的SLA参数为网络设备的缓存阈值时,还可以获得传输所述业务流的设备的缓存大于或等于所述缓存阈值的可靠性概率。
下面对本申请实施例中的时延阈值、缓存阈值和可靠性概率分别进行介绍:
时延阈值表示传输业务流所允许的最大时延,可分为端到端传输业务流的时延阈值,传输所述业务流路径上的单个设备传输业务流的时延阈值。在一种情况下,时延阈值还可以是时延抖动阈值。端到端传输业务流的时延阈值是指业务流从发送端设备传输到目的端设备的过程中所允许的最大时延。进一步,当发送端设备和目的端设备分别为网络的边缘设备时,时延阈值表示业务流在该网络钟内传输的最大时延。例如,虚拟现实(virtual reality,VR)游戏的下行业务流,在承载网内的时延阈值为20毫秒。单个设备传输业务流的时延阈值是指传输所述业务流路径上的单个设备传输业务流的最大时延。例如,单个设备传输业务流的时延阈值为业务流从设备的入端口到该设备出端口的最大时延。时延抖动阈值是指业务流中的每个数据包之间的延迟不一致的最大值。在一种实现中,时延抖动阈值可以通过使用探测报文获得,可以是单个设备的时延抖动阈值。对于实时通信技术而言,时延抖动阈值是重要参数,例如,IP电话,视频会议和虚拟桌面等业务中需要限定时延抖动阈值。端到端传输业务流的时延阈值和单个设备传输业务流的时延阈值具备关联关系。例如,业务流的传输路径上存在多个设备,第一设备根据传输业务流的端到端时延阈值和传输业务流路径上设备的个数获得单个设备传输业务流的时延阈值。
缓存阈值表示业务流在设备上能够占用的最小缓存,缓存阈值可以是设备支持的队列缓存,可以理解为设备为所述业务流配置的队列缓存。在一种实现中,传输业务流路径上的设备根据业务流确定所述业务流能够占用的缓存阈值,并将缓存阈值上报给第一设备。在另一种实现中,第一设备根据收集的传输路径上各个设备的缓存能力,预先给业务流在设备上分配缓存阈值并保存各个设备的缓存阈值。
可靠性概率表示传输业务流的过程中满足SLA参数的概率大小。例如,在对应业务流的SLA参数为时延阈值时,对应的可靠性概率为传输所述业务流的时延小于或等于所述时延阈值的可靠性概率。在对应业务流的SLA参数为网络设备的缓存阈值时,对应的可靠性概率为传输所述业务流的设备的缓存大于或等于所述缓存阈的可靠性概率。在一种实现中,可靠性概率p是小于等于1的参数,在获取时延/缓存违背概率(delay violation probability/buffer overflow probability)ε时,可以通过关系式ε=1-p获得可靠性概率p,ε是违背概率的最大值。在一种实现中,根据业务的传输业务流的端到端的可靠性概率,获得网络上设备的可靠性概率。
根据上述介绍,应当理解的是,当服务等级参数为传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值时,第一设备获取所述第一时延阈值以及所述单个设备满足传输所述业务流的时延小于或等于所述第一缓存阈值的第一可靠性概率。当服务等级参数为所述业务流的路径上单个设备的第一缓存阈值时,第一设备获取所述第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。当服务等级参数包括第一时延阈值和第一缓存阈值时,第一设备获取所述第一时延阈值和所述单个设备满足传输所述业务流的时延小于或等于所述第一阈值的第一可靠性概率,以及所述单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率。
举例来说,在图2中的电力差动保护场景下,业务流从电力设备A传输到电力设备B或 者业务流从电力设备B传输到电力设备A的过程中,需要满足的服务等级参数为电力设备A传输到电力设备B的传输时延最大值为20ms,可靠性概率为0.99999。或者,在工业自动化网络中,基于网络传输业务流的稳定性的考虑,要求业务流传输路径上的设备的最小缓存为1兆字节的可靠性概率为0.999。
在一种实现中,第一设备通过用户网络接口(User Network Interface,UNI)或用户集中配置(Centralized User Configuration,CUC)从其他设备获取与业务流对应的SLA指标。在另一种可能的设计中,第一设备从自身保存的业务流和SLA的对应关系获得与业务流对应的SLA指标。在另一种可能的设计中,第一设备从业务流的发送端设备获得与业务流对应的SLA指标。
步骤302,第一设备获取业务流的第一流量集合。
结合图1所示,第一设备可以是控制设备101,第一设备既可以从业务流传输路径上的第二设备(例如,网络设备102)获取第二设备采样的第一流量集合,可以理解的是第二设备对传输的业务流进行采集,并将采集获取的第一流量集合发送给第一设备。如果第一设备为传输业务流的路径上的设备,并且部署有控制单元的设备,则第一设备可以从本地获取第一设备采样的第一流量集合。
第一流量集合包括一个或多个流量采样信息,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度,所述第一流量采样集合还可以包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳。
举例来说,以业务流A为例,业务流A的流量集合包括一个或多个流量采样信息。每个流量采样信息包括在采样周期ΔT k内获取业务流A的累计报文长度A k。业务流A的流量集合还可以包括获取所述流量采样信息的时间戳T k,其中报文的长度的计数单位为比特或字节,记录业务流A的流量集合的形式为:{时间戳T k,累计报文长度A k},其中,k=1,…N,N为采样次数。应当理解的是,时间戳T k表示为{T k,k=1,…,N},属于顺序递增的时间序列,单位可以为秒、毫秒、微秒等。相邻两个时间戳的间隔可以是相同的,也可以是不同的,即周期为ΔT k=T k-T k-1可以是恒定值ΔT,也可以是变化值。累计报文长度A k表示在时间戳T k采样得到的属于业务流A的累计报文长度A k,也可以理解为从上一个时间戳T k-1到当前时间T k之间到达的累计报文长度A k
图4为本申请实施例提供一种业务流的流量采样信息示意图,在相邻时间戳(T k-1,T k]之间到达业务流A中的累计报文长度,以ΔT k为0.01秒为例对业务流采集,获得{时间戳T k,累计报文长度A k},例如{T k=0.01秒,0.02秒,0.03秒,0.04秒,…,0.6秒,k=1,…,N}。如图5所示,为本申请实施例提供另一种业务流的流量采样信息示意图,在获得图4所示的流量采样信息的基础上,根据业务需求设定统计周期,例如设定周期为0.1秒,将图4中在设定周内的报文长度进行累加,获得与时间戳对应的在设定周期内的累计报文长度,使得业务流的流量采样信息的获取方式更加灵活。
在一种实现中,由于对业务流的采样次数和采样的时间、采样间隔与设备支持的存储大小等因素关联,因此,对业务流的采样次数根据相关配置进行设定。举例来说,例如路由器芯片可以支持以ΔT=0.1s为间隔,对累积到达业务流采样,采样的时间长度为5s,对应采样次数N=50。在一种实现中,采用双精度格式存储时间戳和数据量{T k,A k}的方式,N个点采样数据占据的存储空间为8Byte*2*N。
步骤303,第一设备基于第一流量采样集合、服务等级参数和满足所述服务等级参数传输所述业务流的可靠性概率确定传输所述业务流的第一带宽。
下面根据第一设备获取不同的SLA参数说明确定传输业务流带宽的不同实现方式:
场景一:第一设备获取传输业务流的单个设备的时延阈值D′和满足时延阈值D′的可靠性概率P’。
在一种实现中,第一设备获得第一流量采样集合,所述第一流量采样集合包括N个流量采样信息,例如所述流量采样信息包括A i,A i+1…A j,以及对应于获取流量采样信息的时间戳T k,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度。第一设备基于获得的流量采样信息选取若干组相邻的流量采样信息获得累计到达报文长度S ij=A i+A i+1+…+A j。第一设备根据累计到达报文长度S ij、采样周期ΔT k=T k-T k-1、时延阈值D′获得业务流的瞬时带宽。第一设备基于瞬时带宽以及可靠性概率P’获得第一带宽。在一种示例中,单个设备传输业务流的时延阈值可以是业务流入队的队列时延,或者是队列时延和调度时延之和。应当理解的是,当i=j时说明第一设备获得的第一流量采样集合包括一个流量采样信息,则第一设备基于获得的流量采样信息选取若干组相邻的流量采样信息获得累计到达报文长度S ij=A i
进一步,举例来说,第一设备根据累计到达报文长度S ij、采样周期ΔT k、时延阈值D′获得业务流的瞬时带宽的实现方式包括:第一设备根据公式BW′=S ij/((j-i)T+D′)获得瞬时带宽BW′,其中所述T为与相邻两次流量采样信息对应的时间戳之差或者为设定获取流量采样信息的周期。第一设备根据所述瞬时带宽和所述可靠性概率获得第一带宽的实现方式包括:将获得的瞬时带宽BW′按照升序排列获得向量ρ,并根据排位第M=N(N+1)/2×P’的对应的元素的值为传输第一带宽的值,其中所述M对应的值为第一带宽的值。
在一种实现中,第一设备获得所述业务流的第二流量采样集合,第二流量采样集合包括一个或多个流量采样信息{T N+1,A N+1}。在一种实现方式中,第一设备将第一流量采样集合和第二流量采样集合根据上述公式和算法获得更新带宽。另一种实现方式中,第一设备仅根据第二流量采样集合根据上述公式和算法获得更新带宽。
场景二:第一设备获取传输业务流的端到端的时延阈值D和满足时延阈值D的可靠性概率P。
在一种实现中,第一设备在获取传输所述业务流的路径上单个设备传输所述业务流的时延阈值D′之前,第一设备接收并获取端到端的时延阈值D。应当理解的是,第一设备需要根据时延阈值D计算获得时延阈值D′,具体为第一设备根据所述业务流的传输路径上的设备的个数和端到端的时延阈值D确定所述时延阈值D′。在一种示例中,第一设备将端到端时延阈值D减去固定时延D f,然后除以设备的个数,获得单个设备的时延阈值D′,例如根据公式获得时延阈值D’=(D-D f)/H,所述H为所述业务流的传输路径上的设备的个数。所述D f包括所述业务流传输路径上的链路时延、设备的处理时延、设备的接口时延和设备的初始时延中至少一个,例如,D f包括链路时延和设备的处理时延,或者包括链路时延、设备的处理时延和设备的接口时延,或者包括链路时延、设备的处理时延、设备的接口时延和设备的初始时延。光纤时延可以是第一设备 在业务规划阶段中获得,或者通过遥测(telemetry)技术获得。设备处理时延是设备指标参数,第一设备可以通过设备上报获得,或者作为静态参数存储在第一设备的数据库中。接口时延是指在存储转发工作模式的设备中,报文经过一定速率的端口需要的最大时延。例如,接口时延=最大报文长度/端口带宽。在另一种示例中,固定时延D f还包括调度器的初始时延T β。初始时延T β是指调度器中出现的多个业务流竞争出队,导致业务流面临的队列时延。初始时延定义为一个业务流在等待被调度器调度时,初始等待的最大时延。
举例来说,如图2所示的电力差动保护业务,在承载网中的业务流从设备A到设备E的端到端时延阈值D=2ms。业务流传输路径上的光纤时延为1.1ms,单个设备处理时延为25μs,单个设备的接口时延=最大报文长度/端口带宽=400Byte/1G=3.2μs。业务流传输路径经过的转发设备数是5。则固定时延:D f=1.1ms+25μs*5+3.2μs*5=1.231ms。另外,如果设备A-E使用的调度都是绝对优先级调度(strict priority,SP)发送业务流,其初始时延=最大突发长度/端口带宽,即T β=14*400Byte/1G=44.8μs,总的初始时延是5*T β=224μs,则单个网络设传输业务流的时延阈值是D’=2ms–1.231ms–0.224ms=0.545ms。
若第一设备在获取满足时延阈值D′的可靠性概率P’之前,第一设备获取满足端到端传输业务流时延阈值D的可靠性概率P,则第一设备根据业务流的传输路径上的设备的个和可靠性概率P确定可靠性概率P’。举例来说,第一设备根据公式获得可靠性概率P’=1-(1-p) 1/H,其中H为业务流传输路径上的设备的个数。
应当理解的是,基于上述方法获得的单个设备的时延阈值D′和满足时延阈值D′的可靠性概率P’,参考场景一中的方法获得第一带宽。
场景三:第一设备获取传输业务流的单个设备的缓存阈值B和满足缓存阈值B的可靠性概率P’。
在一种实现中,通过步骤302,第一设备获得的流量采样集合包括A i,A i+1…A j和对应于获取流量采样信息的时间戳T k,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度。设备基于获得的流量采样信息选取若干组相邻的流量采样信息获得累计到达报文长度S ij=A i+A i+1+…+A j。第一设备根据累计到达报文长度S ij、采样周期ΔT k=T k-T k-1、单个设备缓存阈值B获得业务流的瞬时带宽。第一设备基于瞬时带宽以及可靠性概率P’获得第一带宽。应当理解的是,当i=j时说明第一设备获得的第一流量采样集合包括一个流量采样信息,则第一设备基于获得的流量采样信息选取若干组相邻的流量采样信息获得累计到达报文长度S ij=A i
进一步,举例来说,第一设备根据累计到达报文长度S ij、采样周期ΔT k=T k-T k-1和单个设备缓存阈值B获得业务流的瞬时带宽的实现方式包括:第一设备根据公式获得瞬时带宽BW′=(S ij-B)/((j-i+1)T),其中所述T为与相邻两次流量采样信息对应的时间戳之差或者为设定获取流量采样信息的周期。第一设备根据所述瞬时带宽和所述可靠性概率获得第一带宽的实现方式包括:第一设备将获得的瞬时带宽BW′按照升序排列获得向量ρ,并根据排位第M=N(N+1)/2×P’的对应的元素的值为传输第一带宽的值,其中与所述M对应的值为第一带宽的值。
场景四:第一设备获取传输业务流的时延抖动阈值D jitter和可靠性概率P’。
在一种实现中,若给出单个设备的时延抖动的上界D jitter,将其作为单个设备的时延阈值D’,并按照场景一所示的方法获得第一带宽。
可以理解的是,上述四个场景中计算带宽的方法既可以在可编程流量管理(Programmable Traffic Management,PTM)上运行,也可以在第一设备上运行。第一设备根据获得的第一带宽对网络中传输业务流的设备进行资源部署,为业务提供SLA的差异化服务,提高传输业务流的可靠性。
在一种示例中,业务流传输路径上的第二设备对业务流再次采集,获得第二流量采样集合,并根据第二流量采样集合、服务等级参数和满足所述服务等级参数传输业务流的可靠性概率确定第二带宽,并根据第二带宽配置传输业务流的带宽。第二设备确定第二带宽的方法可以参考上述四个场景中介绍的方法实现。
下面根据第一设备的不同部署形式,分别介绍两种实现方式:
在这种实现方式中,控制设备是独立的设备,如图1和2所示,独立于网络中的其他设备。控制设备通过与传输业务流的设备的通信,实现对设备的管理和资源部署,如图6所示,提供了一种确定传输业务流的带宽的方法,图6中包括多条业务流,分别为第一业务流、第二业务流和第三业务流,其中,第一业务流和第二业务流为时延敏感业务,传输过程需求为低时延的高可靠性,第三业务流为非时延敏感业务。对于确定第一业务流或第二业务流的传输带宽的方法包括如下步骤:
步骤1:控制设备获取业务流的传输路径信息。
控制设备通过多协议标签交换(Multiprotocol Label Switching,MPLS)或者流量工程(traffic engineering,TE)技术获得业务流的传输路径,确定传输路径上的传输业务流的设备。控制设备在确定传输业务流的路径上的设备后,可以基于网络配置协议(network configuration protocol,NETCONF)或表征状态传输配置协议(Representational State Transfer Configuration Protocol,RESTCONF)获取网络状态信息和设备能力信息,例如获取端口速率、链路的最大可用带宽、所述链路的最大剩余带宽、所述链路的权重、所述链路的最大传输单元(Maximum Transmission Unit,MTU)、设备的调度方法及参数、设备的处理时延、设备的缓存能力等信息。举例来说,控制设备通过NETCONF/YANG或者RESTCONF/YANG获取所述网络状态信息和设备能力信息。应当理解的是,控制设备可以根据上述网络状态信息和设备能力信息部署网络资源。
步骤2:控制设备获取业务流的服务等级和对应的可靠性概率。
SLA指标包括与业务流对应的服务等级参数和满足该服务等级参数的可靠性概率。控制设备一方面可以从本地获取业务流的服务等级参数和满足该服务等级参数的可靠性概率。例如,控制设备通过自己保存的业务流所属的业务类型与SLA的内容的对应关系,获得与该业务流对应的服务等级参数和满足该服务等级参数的可靠性概率。结合下表1所示,控制设备保存业务流和SLA指标的对应关系,例如,第一业务流为VR业务流,第二业务流为高清视频业务流,第三业务流为网页浏览业务流。应该理解的是,第一业务流和第二业务流为时延敏感业务,第三业务流为非时延敏感业务,因此第三业务流无SLA指标需求。另一方面,控制设备还可以接收其他设备发送的业务流的SLA指标。例如,控制设备根据已经获得网络拓扑信息确定传输业务流的路径以及该传输路径上一个或多个设备。控制设备从所述传输路径上的设备获得业务流的SLA指标,例如图1中网络设备102将业务流的SLA指标发送给控制设备。
业务流所属业务类型 SLA指标
第一业务流 单个网路设备的阈值为0.1ms,可靠性概率为0.9;
第二业务流 端到端时延阈值为1s,可靠性概率为0.6;
第三业务流 无(非时延敏感业务)
表1
结合上述控制设备从传输业务流的网络设备获得SLA指标的实现方式,所述网络设备可以通过用户网络接口(User Network Interface,UNI)将SLA指标通过多重注册协议(multiple registration protocol,MRP)报文、本地链路注册协议(link-local registration protocol,LRP)报文、网络配置协议(Network Configuration Protocol,NETCONF)报文、RESTCONF报文或者管理信息库(management information base,MIB)报文等。
举例来说,如图8所示,为本申请实施例提供了携带业务流的SLA指标的报文格式示意图。图8所示的UserToNetworkRequirements TLV中,MaxLatency字段携带时延阈值,新增字段Latency_ConfidenceLevel携带可靠性概率。如果Latency_ConfidenceLevel字段取值为999900,则其含义是用户接受在99.99%的情况下,网络保障传输时延小于等于MaxLatency携带的时延阈值。所述网络设备可以把UserToNetworkRequirements TLV中携带的业务流SLA指标注册到自己的MPR数据单元(MRP Data Unit,MRPDU)中,并发出宣告(declaration),向控制设备发送。所述网络设备还可以把UserToNetworkRequirements TLV中携带的业务流SLA指标注册到LRP的数据库中,并发出宣告(declaration),向控制设备发送。
在一种实现中,结合控制设备从传输业务流的网络设备获得SLA指标的实现方式,该传输路径上的设备还可以通过集中用户配置(Centralized User Configuration,CUC)设备将业务流的服务等级参数和满足该服务等级参数的可靠性概率发送给控制设备。
在一种实现中,控制设备可以接收一个或多个不同业务流的SLA指标。对于不同业务流的区分可以根据业务流是否具有相同的服务质量(quality of service,Qos)参数,例如根据业务流是否具有相同的时延、抖动或吞吐量来区分业务流。具备相同Qos参数的业务流属于同一业务流。
步骤3:控制设备接收业务流传输路径上的设备发送的流量采样集合。
如果控制设备获取多个不同业务流的服务等级参数和满足所述服务等级参数的可靠性概率,则控制设备需要对所述多个不同业务流分别进行采样获得多个流量采样集合。举例来说,如表1所示,网络设备分别对VR和高清视频会议进行采样,分别获得第一流量采样集合和第二流量采样集合,网络设备将第一流量采样集合和第二流量采样集合发给控制设备。具体采样方法和流量采样集合的内容可以参考图3中步骤302的相关描述。
步骤4:控制设备基于流量采样集合和SLA指标确定设备传输业务流的带宽。
如果业务流的SLA指标包括传输业务流的单个设备的时延阈值和可靠性概率,参考步骤303中场景一的方法获得业务流的带宽。
如果业务流的SLA指标包括传输业务流的端到端的时延阈值和可靠性概率,参考步骤303中场景二的方法获得业务流的带宽。
如果业务流的SLA指标包括传输业务流的单个设备的缓存阈值和可靠性概率,参考步骤303中场景三的方法获得业务流的带宽。
如果业务流的SLA指标包括传输业务流的单个设备的时延抖动阈值和可靠性概率,参考步骤303中场景四的方法获得业务流的带宽。
步骤5:控制设备配置设备带宽。
控制设备使用步骤4获得的带宽对设备的资源进行配置。在一种示例中,控制设备通过NETCONF/YANG或RESTCONF/YANG的调度程序实例(scheduler instance)的承若信息速率(committed information rate,CIR)将带宽下发给设备。如果设备使用层次化的调度(Hierarchical Scheduler),将有SLA需求的业务流设置在高优先级,例如,加速转发EF(expedited forwarding,EF)优先级,并将CIR的值配置为从控制设备获得的带宽值。在一种示例中,对于设备使用带宽共享进行调度的情况,例如轮询调度(Round Robin,RR)、亏空轮询(Deficit Round Robin,DRR)、加权公平队列(Weighted Fair Queuing,WFQ)等,设备根据R*r=BW,获得调度器的带宽权重r,其中R是调度的总带宽(单位bit/s),BW为设备从控制设备获得的带宽值。设备根据调度权重r传输业务流。在一种示例中,对于多类业务混合承载的情况,针对不同业务类型,分别根据上述步骤获得与业务对应的带宽。设备根据与业务对应的带宽,配置设备调度器的参数,为对应的业务设置带宽。
在一种实现中,网络切片是5G(5th generation)网络的一个重要特征,网络切片是一种按需组网的方式,例如,网络分片不同于物理网络,是虚拟的端到端网络拓扑。不同网络切片之间可以实现逻辑隔离,以适配不同策略,特别是对面向业务的业务进行差异化网络保障。例如,控制设备或者目标切片的管理设备根据目标网络切片与业务流的映射关系,将计算获得的带宽值设置为目标网络切片传输业务流的预设带宽。在一种示例中,对于单一网络切片,根据业务类型将业务流与网络切片建立映射关系,并将从控制设备获得的带宽设置为该网络切片传输该业务的业务流的带宽,例如,在网络切片中设备的接口传输所述业务流的带宽值配置为从控制设备获得的带宽值。
在一种实现中,设备将从控制设备获得的带宽作为初始带宽,计算带宽的初始算法运行在控制设备上,并将计算初始带宽的带宽向量ρ,例如将控制设备通过上述四个场景中计算获得的瞬时带宽按照升序或者降序排列,下发给业务流路径上的设备。设备对新的业务流采样获得新的采样信息,基于带宽向量ρ和新的采样信息在设备本地PTM(Programmable Traffic Management)上运行图3中步骤303描述的算法,求得带宽更新值。设备获得的带宽更新值可以作为本设备的带宽配置参考。该方法适用于快速变化的流量,或者流量经过设备后会特征可能发生变化,需要逐跳设备进行监测或算法运行的初始阶段或可靠性概率要求较高。通过快速更新算法,以保持实时监测流量的形态,以获得适配流量特征的SLA带宽资源。
在一种可能的实现方式中,设备将从控制设备获得的带宽作为初始带宽,根据对业务流的新的采样信息对初始带宽进行更新计算获得带宽更新值,更新计算的方法可参考图3中步骤303描述的算法。为了避免带宽值计算结果频繁变化,导致带宽配置频繁震荡,在一种示例中,设备根据初始带宽和带宽更新值的平均值确定传输所述业务流的带宽。在一种示例中,设备设置带宽门限值BW th或时间门限值T th,设备基于带宽更新值大于或等于带宽门限值,则根据带宽更新值调整传输业务流的带宽,进一步,网络基于在时间门限内带宽更新值大于或等于所述带宽门限,则根据初始带宽更新值调整传输所述业务流的带宽。例如,更新的带宽BW(n)相比于上次更新算法输出的BW(n-1)差距大于带宽门限:BW(n)– BW(n-1)≥BW th,调整更新的带宽BW(n)为传输业务流的带宽。或者,基于更新的带宽BW(n)保持稳定了一段时间T th不变,即BW(n+1)=BW(n+2)…持续时间为设置的T th,则根据BW(n)配置设备带宽。对总带宽10G的设备,带宽门限值可以取为BW th=100Mbps,时间门限取为1s,更新带宽大于或等于带宽门限保持时间门限1s以上时,设备根据更新带宽值调整传输业务流的带宽。在一种示例中,也可以将确定的带宽BW放大一定的系数配置设备传输业务流的带宽,使得配置带宽的安全可靠,例如根据BW*1.2来配置设备带宽。
在一种实现中,控制设备定期检测部署带宽是否能够满足业务流的SLA指标要求。此外,该可以使用遥测技术,检测一部分业务流的报文在给定的路径上的传输时延,控制设备比较遥测测得传输时延是否小于等于业务的SLA规定的时延阈值。若比较结果为“否”,则确定部署带宽不安全。另一种方法是,控制设备运行网络演算(network calculus,NC)工具,计算预设带宽下的时延理论上界,控制器比较NC理论上界是否小于给出SLA规定的时延阈值。若比较结果为“是”,则部署带宽满足SLA要求。
通过上述方法,控制设备基于业务流的采样信息、服务等级参数和满足该服务等级参数的可靠性概率值,确定传输该业务流所需的带宽,指导有可靠性概率需求的时延敏感业务的带宽分配,提高时延敏感业务流传输的高可靠性。
在这种实现方式中,控制设备是一个功能单元,集成在业务流传输路径的设备上,如图1所示,控制单元集成在设备102-104中任意一个设备上,或者将控制单元拆分成若干个子功能单元分布式部署在设备102-104上,实现对设备的管理和资源部署,具体包括如下步骤:
步骤11:设备获得业务流的服务等级参数和对应的可靠性概率。
在一种实现中,控制单元集成在业务流传输路径中的一个设备上时,可以理解的是,设备可以通过用户网络接口(User Network Interface,UNI)获得携带业务流的服务等级参数和满足该服务等级参数的可靠性概率的报文,例如携带业务流的服务等级参数和满足该服务等级参数的可靠性概率的报文为通过多重注册协议(multiple registration protocol,MRP)报文、本地链路注册协议(link-local registration protocol,LRP)报文、网络配置协议(Network Configuration Protocol,NETCONF)报文、RESTCONF报文或者管理信息库(management information base,MIB)报文等。在一种可能的实现中,控制单元分布式部署在业务流传输路径中的设备上,设备从本地设备获得与业务流对应的SLA内容。其中,NETCONF可采用安全外壳协议(Secure Shell,SSH)、安全传输层协议(Transport Layer Security,TLS)或者传输控制协议(Transmission Control Protocol,TCP)携带SLA的业务流的服务等级参数和满足该服务等级参数的可靠性概率。
步骤12:设备对业务流采样获取流量采样集合。
如果设备获得多个不同业务的SLA,则设备需要对上述多个不同业务的业务流分别进行采集获得多个流量采样集合。
举例来说,如表1所示,设备分别对VR和高清视频会议进行采集,分别获得VR业务流的流量采样集合和高清视频会议的流量采样集合。采样方法可以参考图3中步骤302所示的方法。
步骤13:设备基于采样信息、服务等级参数和对应的可靠性概率获得带宽。
如果业务流的SLA的内容包括传输业务流的单个设备的时延阈值和可靠性概率,参考上述场景一的方法获得业务流的带宽。
如果业务流的SLA的内容包括传输业务流的端到端的时延阈值和可靠性概率,参考上述场景二的方法获得业务流的带宽。
如果业务流的SLA的内容包括传输业务流的单个设备的缓存阈值和可靠性概率,参考上述场景三的方法获得业务流的带宽。
如果业务流的SLA的内容包括传输业务流的单个设备的缓存阈值和可靠性概率,参考上述场景三的方法获得业务流的带宽。
如果业务流的SLA的内容包括传输业务流的时延抖动阈值和可靠性概率,参考上述场景四的方法获得业务流的带宽。
步骤14:设备为业务流配置带宽。
设备根据步骤13获得的带宽为业务流配置带宽,配置方法可参考图6中步骤5的描述。
图9为本申请实施例的第一设备900的结构示意图。图9所示的第一设备900可以执行上述实施例的方法中第一设备或控制设备执行的相应步骤,例如第一设备900可以执行图3中步骤301-303中第一设备执行的方法步骤,图6中步骤1至步骤5中控制设备执行的方法步骤,图7中步骤11-14中设备执行的方法步骤。如图9所示,第一设备900包括获取单元901和处理单元902。所述获取单元901用于获取业务流的第一流量采样集合和对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,第一流量采样集合包括一个或多个流量采样信息。所述处理单元902用于根据所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第一带宽。
在一种实现中,所述获取单元901具体用于接收来自第二设备的所述第一流量采样集合,所述第二设备为所述业务流传输路径上的设备。
在一种实现中,第一设备还可以包括第一发送单元,所述第一发送单元用于向第二设备发送通告报文,所述通告报文携带所述第一带宽,所述通告报文用于指示所述第二设备根据所述第一带宽设置传输所述业务流的带宽。
在一种实现中,所述获取单元901具体用于获取所述第一设备采集的所述第一流量采样集合。所述处理单元902还用于根据所述第一带宽设置所述第一设备传输所述业务流的带宽。
在一种实现中,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
在一种实现中,所述获取单元901具体用于:获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于或等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
获取传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率,所述第一缓存阈值为所述单个设备的缓存的最小值。
在一种实现中,所述处理单元902具体用于基于所述第一流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度。所述处理单元902具体用于根据S ij=A i+A i+1+…+ A j获得一个或多个所述业务流中的累计的报文长度。所述处理单元902具体用于根据所述一个或多个累计的报文长度和所述服务等级参数获得所述业务流的瞬时带宽。所述处理单元902具体用于根据所述瞬时带宽和所述可靠性概率获得所述第一带宽。
在一种实现中,当所述服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第一流量采样集合还包括获得所述每个流量采样信息的时间戳时,所述处理单元902具体用于根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽。所述处理单元902具体用于将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
在一种实现中,当所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第一流量采样集合还包括获得所述每个流量采样信息的时间戳时,所述处理单元902具体用于根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽。所述处理单元902具体用于将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,P’为所述第二可靠性概率。
在一种实现中,在所述获取单元901获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流小于等于所述第一阈值的第一可靠性概率之前,还用于获取端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率。所述处理单元902还用于根据所述业务流的传输路径上的设备的个数和所述第二时延确定所述第一时延阈值。所述处理单元902还用于根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定所述第一可靠性概率。
在一种实现中,所述处理单元902具体用于根据如下公式确定所述第一时延阈值;
D’=(D-D f)/H
其中,所述D’为所述第一时延阈值,所述H为所述业务流的传输路径上的设备的个数,所述D为所述第二时延阈值,所述D f为所述业务流传输路径上的固定时延,所述固定时延包括所述业务流传输路径上的链路时延、设备的处理时延、设备的出接口时延和设备的初始时延中至少一个。
在一种实现中,所述处理单元902具体用于根据如下公式确定所述第一可靠性概率包括:
P’=1-(1-p) 1/H
其中,所述P’为所述第一可靠性概率,所述H为所述业务流的传输路径上的设备的个数,所述p为所述第三可靠性概率。
在一种实现中,第一设备还包括第二发送单元,所述第二发送单元用于向第三设备发送所述业务流的瞬时带宽,所述瞬时带宽用于所述第三设备根据所述瞬时带宽确定第二带宽值。
图10为本申请实施例第二设备1000的结构示意图。图10所示的第二设备1000可以执行上述实施例的方法中第二设备执行的相应步骤,例如第一设备900可以执行图3中步 骤301-303中实施例中描述的第二设备执行的方法步骤。第二设备被部署在通信网络中,所述通信网络还包括控制设备。如图10所示,第二设备1000包括发送单元1001、接收单元1002和处理单元1003。所述发送单元1001用于发送业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息,所述第一流量采样集合用于所述第一设备确定第一带宽。所述接收单元1002用于接收来自所述第一设备的通告报文,所述通告报文包括所述第一带宽。所述处理单元1003用于根据所述第一带宽设置传输所述业务流的带宽。
在一种实现中,所述发送单元1001还用于向所述第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,所述服务等级参数和所述可靠性概率用于所述第一设备确定所述第一带宽。
在一种实现中,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
在一种实现中,所述发送单元1001具体用于向所述第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
向所述第一设备发送传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率中至少一个,所述第一缓存阈值为所述单个设备的缓存的最小值。
在一种实现中,所述发送单元1001具体用于向所述第一设备发送端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率。
在一种实现中,所述处理单元1003具体用于将传输所述业务流的端口的承诺信息速率CIR的值设置为所述第一带宽的数值,并根据所述CIR发送所述业务流。
在一种实现中,所述处理单元1003具体用于根据传输所述业务流的端口带宽和所述第一带宽设置传输所述业务流的调度权重值,并根据所述调度权重值发送所述业务流。
图11为本申请实施例的第一设备1100的硬件结构示意图。图11所示的第一设备1100可以执行上述实施例的方法中第一设备或者控制设备执行的相应步骤。如图11所示,第一设备1100包括处理器1101、接口1102和总线1103。上述处理器1101和接口1102通过总线1103连接。
在一种实现中,接口1103包括发送器和接收器,用于设备1100与上述实施例中的第二设备之间或者与业务流传输路径上其他网络设备之间收发报文。作为举例,接口1103用于支持图3中步骤301和302,图6中步骤1-3和步骤5,以及图7中步骤11-12和步骤14。处理器1101用于执行上述实施例中由第一设备进行的处理,和/或用于本文所描述的技术的其他过程。作为举例,处理器1101用于执行基于第一流量采样集合、服务等级参数以及满足所述服务等级参数传输所述业务流的可靠性概率确定传输所述业务流的第一带宽。作为举例,处理器1101用于支持图2中步骤203,图6中步骤4以及图7中步骤13。
在一种实现中,第一设备1100还可以包括存储器。存储器可以用于存储程序、代码或指令。当处理器或硬件设备执行这些程序、代码或指令时可以完成方法实施例中 涉及第一设备的处理过程。可选地,所述存储器可以包括只读存储器(Read-only Memory,ROM)和随机存取存储器(Random Access Memory,RAM)。其中,所述ROM包括基本输入/输出系统(Basic Input/Output System,BIOS)或嵌入式系统;所述RAM包括应用程序和动作系统。当需要运行第一设备1100时,通过固化在ROM中的BIOS或者嵌入式系统中的bootloader引导系统进行启动,引导第一设备1100进入正常运行状态。在第一设备1100进入正常运行状态后,运行在RAM中的应用程序和动作系统,从而,完成方法实施例中涉及第一设备或控制设备的处理过程。可以理解的是,图11仅仅示出了第一设备1100的简化设计。在实际应用中,第一设备可以包含任意数量的接口,处理器或者存储器。
应理解的是,上述处理器可以是中央处理器(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。值得说明的是,处理器可以是支持进阶精简指令集机器(advanced RISC machines,ARM)架构的处理器。
进一步地,在一种可选的实施例中,上述存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用。例如,静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data date SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
图12为本申请实施例的第二设备1200的硬件结构示意图,可以理解第二设备为业务流传输路径上的设备。图12所示的第二设备1200可以执行上述实施例的方法中第二设备执行的相应步骤。如图12所示,第二设备1200包括处理器1201、接口1202和总线1203。上述处理器1201和接口1202通过总线1203连接。
在一种实现中,接口1201包括发送器和接收器,用于第二设备与上述实施例中的第一设备之间或者与上述实施例中的控制设备之间收发报文。作为举例,接口1202用于发送业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息,所述第一流量采样集合用于所述第一设备确定第一带宽;以及用于接收来自所述第一设备的通告报文,所述通告报文包括所述第一带宽。处理器1201用于执行上述实施例中由第二设备进行的处理,和/或用于本文所描述的技术的其他过程。作为举例, 处理器1201用于执行根据所述第一带宽设置传输所述业务流的带宽。
在一种实现中,第二设备1200还可以包括存储器。可选的,存储器可以用于存储程序、代码或指令。当处理器或硬件设备执行这些程序、代码或指令时可以完成方法实施例中涉及第一设备的处理过程。可选地,所述存储器1202可以包括ROM和RAM。其中,所述ROM包括基本输入/输出系统(Basic Input/Output System,BIOS)或嵌入式系统;所述RAM包括应用程序和动作系统。当需要运行第二设备1200时,通过固化在ROM中的BIOS或者嵌入式系统中的bootloader引导系统进行启动,引导第二设备1200进入正常运行状态。在第二设备1200进入正常运行状态后,运行在RAM中的应用程序和动作系统,从而,完成方法实施例中涉及第二设备的处理过程。可以理解的是,图12仅仅示出了第二设备1200的简化设计。在实际应用中,第一设备可以包含任意数量的接口,处理器或者存储器。应理解的是,上述处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。值得说明的是,处理器可以是支持ARM架构的处理器。
进一步地,在一种可选的实施例中,上述存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用。例如,静态随机存取存储器SRAM、DRAM、SDRAM、DDR SDRAM、ESDRAM、SLDRAM和DR RAM。
图13为本申请实施例提供一种确定传输业务流的带宽的系统结构示意图,该系统1300用于实现前述方法实施例中确定传输业务流的带宽的方法。所述系统包括第一设备1301和第二设备1302,第一设备可用于执行图3、图6和图7中第一设备或者控制设备或者设备的方法步骤,具备的相应的功能。第二设备用于执行步骤301-303中实施例中描述的第二设备执行的步骤,具备相应的功能。
在一种示例中,第一设备1301用于获取业务流的第一流量采样集合、对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,并根据所述第一流量采样集合、所述业务流的服务等级参数和所述可靠性概率确定传输所述业务流的第一流量带宽,向第二设备发送第一带宽,所述第一流量采样集合包括一个或多个流量采样信息。第二设备1302用于向所述第一设备发送所述第一流量采样集合,接收第一带宽并根据所述第一带宽设置传输所述业务流的带宽。
本申请实施例还提供了一种计算机可读存储介质,包括至少一条指令、程序或代码,当所述指令、程序或代码在计算机上加载运行时,使得计算机执行如上任一所述的确定传输业务流的带宽方法步骤。例如,可以执行图3、图6或图7中实施例中第一设备、第二设备、控制设备或者设备执行的方法实施例中对应的方法步骤。
本申请实施例提供了一种计算机程序产品,包括至少一条指令、程序或代码,当所述指令、程序或代码在计算机上加载运行时,使得计算机可以执行图3、图6或图7中实施例中第一设备、第二设备、控制设备或者设备执行的方法实施例中对应的各个方法步骤。
需说明的是,以上描述的任意装置实施例都仅仅是示意性的,其中所述作为分离部件 说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请实施例提供的第一网络节点或控制器实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (49)

  1. 一种确定传输业务流的带宽的方法,其特征在于,该方法包括:
    第一设备获取业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息;
    所述第一设备获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率;
    所述第一设备基于所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第一带宽。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备获取所述第一流量采样集合包括:
    所述第一设备接收第二设备发送的所述第一流量采样集合。
  3. 根据权利要求2所述方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送通告报文,所述通告报文携带所述第一带宽,所述通告报文用于指示所述第二设备根据所述第一带宽设置传输所述业务流的带宽,所述第二设备为所述业务流传输路径上的设备。
  4. 根据权利要求1所述的方法,其特征在于,所述第一设备获取所述第一流量采样集合包括:所述第一设备获取所述第一设备采集的所述第一流量采样集合;
    所述方法还包括:所述第一设备根据所述第一带宽设置所述第一设备传输所述业务流的带宽。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
  6. 根据权利要求1-5中任一所述的方法,其特征在于,所述第一设备获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率包括:
    所述第一设备获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
    所述第一设备获取传输所述业务流的路径上单个设备的第一缓存阈值和满足所述单个设备缓存大于或等于所述第一缓存阈值的第二可靠性概率,所述第一缓存阈值为所述单个设备缓存的最小值。
  7. 根据权利要求1-6中任一所述的方法,其特征在于,所述第一设备基于所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第一带宽包括:
    所述第一设备基于所述第一流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度;
    所述第一设备根据S ij=A i+A i+1+…+A j获得一个或多个所述业务流中的累计的报文长度;
    所述第一设备根据所述一个或多个累计的报文长度和所述服务等级参数获得所述 业务流的瞬时带宽;
    所述第一设备根据所述瞬时带宽和所述可靠性概率获得所述第一带宽。
  8. 根据权利要求7所述的方法,其特征在于,当所述服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第一流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽包括:
    根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    所述根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽包括:
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
  9. 根据权利要求7所述的方法,其特征在于,当所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第一流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽包括:
    根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽包括:
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第二可靠性概率。
  10. 根据权利要求6-9任一所述的方法,其特征在于,所述第一设备获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备传输所述业务流的时延小于等于所述第一阈值的第一可靠性概率之前,所述方法还包括:
    所述第一设备获取端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率,所述第二时延阈值为端到端传输所述业务流的最大值;
    所述第一设备根据所述业务流的传输路径上的设备的个数和所述第二时延确定所述第一时延阈值;
    所述第一设备根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定所述第一可靠性概率。
  11. 根据权利要求10所述的方法,其特征在于,所述第一设备根据所述业务流的传输路径上的设备的个数和所述第二时延确定所述第一时延阈值,包括:
    D’=(D-D f)/H
    其中,所述D’为所述第一时延阈值,所述H为所述业务流的传输路径上的设备的 个数,所述D为所述第二时延阈值,所述D f为所述业务流传输路径上的固定时延,所述固定时延包括所述业务流传输路径上的链路时延、设备的处理时延、设备的出接口时延和设备的初始时延中至少一个。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一设备根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定所述第一可靠性概率包括:
    P’=1-(1-p) 1/H
    其中,所述P’为所述第一可靠性概率,所述H为所述业务流的传输路径上的设备的个数,所述p为所述第三可靠性概率。
  13. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一设备向第三设备发送所述业务流的瞬时带宽,所述瞬时带宽用于所述第三设备根据所述瞬时带宽确定第二带宽。
  14. 根据权利要求1-13中任一所述的方法,其特征在于,所述方法还包括:
    所述第一设备获取所述业务流的第二流量采样集合;
    所述第一设备基于所述第二流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第三带宽;
    响应于所述第一设备确定所述第三带宽大于或等于带宽门限,所述第一设备确定使用所述第三带宽传输所述业务流。
  15. 根据权利要求14所述的方法,其特征在于,所述响应于所述第一设备确定所述第三带宽大于或等于带宽门限,所述第一设备确定使用所述第三带宽传输所述业务流包括:
    响应于所述第一设备确定所述第三带宽大于或等于所述带宽门限持续的时间大于或等于时间门限,所述第一设备确定使用所述第三带宽传输所述业务流。
  16. 一种确定传输业务流的带宽的方法,其特征在于,所述方法包括:
    第二设备向第一设备发送业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息,所述第一流量采样集合用于所述第一设备确定第一带宽,所述第二设备为所述业务流传输路径上的设备;
    所述第二设备接收来自所述第一设备的通告报文,所述通告报文包括所述第一带宽;
    所述第二设备根据所述第一带宽设置传输所述业务流的带宽。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,所述服务等级参数和所述可靠性概率用于确定所述第一带宽。
  18. 根据权利要求16或17所述的方法,其特征在于,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二设备向所述第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率包括:
    所述第二设备向所述第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
    所述第二设备向所述第一设备发送传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率,所述第一缓存阈值为所述单个设备的缓存的最小值。
  20. 根据权利要求17或18所述的方法,其特征在于,所述第二设备向所述第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率包括:
    所述第二设备向所述第一设备发送传输所述业务流的端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率,所述第二时延阈值为端到端传输所述业务流的最大时延。
  21. 根据权利要求16-20任一所述的方法,其特征在于,所述方法还包括:
    所述第二设备获取所述业务流的第二流量采样集合;
    所述第二设备根据所述第二流量采样集合、所述服务等级参数以及所述可靠性概率确定第二带宽;
    所述第二设备根据所述第一带宽和所述第二带宽确定传输所述业务流的带宽。
  22. 根据权利要求21所述的方法,其特征在于,所述第二设备根据所述第二流量采样集合、所述服务等级参数以及所述可靠性概率确定第二带宽包括:
    所述第二设备根据所述第二流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度;
    所述第二设备根据S ij=A i+A i+1+…+A j获得一个或多个所述业务流中的累计的报文长度;
    所述第二设备根据所述一个或多个累计的报文长度和所述服务等级参数获得所述业务流的瞬时带宽;
    根据所述瞬时带宽和所述可靠性概率获得传输所述业务流的所述第二带宽。
  23. 根据权利要求22所述的方法,其特征在于,当所述服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第二流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽包括:
    根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    所述根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽包括:
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第二带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
  24. 根据权利要求22所述的方法,其特征在于,当所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第二流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述根据所述累计的报文长度和所述服务等级参数获得所述数据流的瞬时带宽包括:
    根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    根据所述瞬时带宽和所述可靠性概率获得传输所述数据流的带宽包括:
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,P’为所述第二可靠性概率。
  25. 根据权利要求16-24任一所述的方法,其特征在于,所述第二设备根据所述第一带宽设置传输所述业务流的带宽包括:
    所述第二设备将传输所述业务流的端口的承诺信息速率CIR的值设置为所述第一带宽的数值,并根据所述CIR发送所述业务流。
  26. 根据权利要求16-25任一所述的方法,其特征在于,所述第二设备根据所述第一带宽设置传输所述业务流的带宽包括:
    所述第二设备根据传输所述业务流的端口带宽和所述第一带宽设置传输所述业务流的调度权重值,并根据所述调度权重值发送所述业务流。
  27. 根据权利要求16-26任一所述的方法,其特征在于,所述方法还包括:
    根据网络切片的标识与所述业务流的映射关系,所述第二设备的使用所述第一带宽传输所述业务流的带宽。
  28. 一种第一设备,其特征在于,所述第一设备包括获取单元和处理单元;
    所述获取单元,用于获取业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息;
    所述获取单元,还用于获取对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率;
    所述处理单元,用于根据所述第一流量采样集合、所述服务等级参数以及所述可靠性概率确定传输所述业务流的第一带宽。
  29. 根据权利要求28所述的第一设备,其特征在于,所述获取单元具体用于:接收来自第二设备的所述第一流量采样集合,所述第二设备为所述业务流传输路径上的设备。
  30. 根据权利要求29所述的第一设备,其特征在于,所述第一设备还包括第一发送单元;
    所述第一发送单元,用于向所述第二设备发送通告报文,所述通告报文携带所述第一带宽,所述通告报文用于指示所述第二设备根据所述第一带宽设置传输所述业务流的带宽。
  31. 根据权利要求28所述的第一设备,其特征在于,所述获取单元具体用于:获取所述第一设备采集的所述第一流量采样集合;
    所述处理单元,还用于根据所述第一带宽设置所述第一设备传输所述业务流的带宽。
  32. 根据权利要求28-31任一所述的第一设备,其特征在于,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的 总长度。
  33. 根据权利要求28-32任一所述的第一设备,其特征在于,所述获取单元具体用于:获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于或等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
    获取传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率,所述第一缓存阈值为所述单个设备的缓存的最小值。
  34. 根据权利要求28-33中任一所述的第一设备,其特征在于,所述处理单元具体用于:
    基于所述第一流量采样集合获得N个流量采样信息,所述N个流量采样信息包括A i,A i+1…A j,其中,1≤i≤j≤N,i,j为整数,所述A i为第i个流量采样信息中属于所述业务流的报文的总长度,所述A i+1为第i+1个流量采样信息中属于所述业务流的报文的总长度,所述A j为第j个流量采样信息中属于所述业务流的报文的总长度;
    根据S ij=A i+A i+1+…+A j获得一个或多个所述业务流中的累计的报文长度;
    根据所述一个或多个累计的报文长度和所述服务等级参数获得所述业务流的瞬时带宽;
    根据所述瞬时带宽和所述可靠性概率获得所述第一带宽。
  35. 根据权利要求34所述的第一设备,其特征在于,当所述服务等级参数包括所述第一时延阈值,所述可靠性概率包括所述第一可靠性概率,所述第一流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述处理单元具体用于:
    根据公式BW′=S ij/((j-i+1)T+D′)获得所述瞬时带宽,其中,所述D′为所述第一时延阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,所述P’为所述第一可靠性概率。
  36. 根据权利要求34所述的第一设备,其特征在于,当所述服务等级参数包括所述第一缓存阈值和所述可靠性概率包括所述第二可靠性概率,所述第一流量采样集合还包括获取所述一个或多个流量采样信息中每个流量采样信息的时间戳;
    所述处理单元具体用于:
    根据公式BW′=(S ij-B)/((j-i+1)T)获得所述瞬时带宽,其中,所述B为所述第一缓存阈值,所述T为与相邻两次流量采样信息对应的时间戳之差,所述BW′为所述瞬时带宽;
    将所述瞬时带宽的值按升序排列,确定排位第M=N(N+1)/2×P’的元素对应的值为所述第一带宽,所述M对应的值为所述第一带宽的值,P’为所述第二可靠性概率。
  37. 根据权利要求33-36任一所述的第一设备,其特征在于,在所述获取单元获取传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流小于等于所述第一阈值的第一可靠性概率之前,还用于获取端到 端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率;
    所述处理单元还用于:
    根据所述业务流的传输路径上的设备的个数和所述第二时延确定所述第一时延阈值;
    根据所述业务流的传输路径上的设备的个数和所述第三可靠性概率确定所述第一可靠性概率。
  38. 根据权利要求37所述的第一设备,其特征在于,所述处理单元具体用于根据如下公式确定所述第一时延阈值;
    D’=(D-D f)/H
    其中,所述D’为所述第一时延阈值,所述H为所述业务流的传输路径上的设备的个数,所述D为所述第二时延阈值,所述D f为所述业务流传输路径上的固定时延,所述固定时延包括所述业务流传输路径上的链路时延、设备的处理时延、设备的出接口时延和设备的初始时延中至少一个。
  39. 根据权利要求37或38所述的第一设备,其特征在于,所述处理单元具体用于根据如下公式确定所述第一可靠性概率包括:
    P’=1-(1-p) 1/H
    其中,所述P’为所述第一可靠性概率,所述H为所述业务流的传输路径上的设备的个数,所述p为所述第三可靠性概率。
  40. 根据权利要求35或36所述的第一设备,其特征在于,所述第一设备还包括第二发送单元;
    所述第二发送单元,用于向第三设备发送所述业务流的瞬时带宽,所述瞬时带宽用于所述第三设备根据所述瞬时带宽确定第二带宽值。
  41. 一种第二设备,其特征在于,所述第二设备为所述业务流传输路径上的设备,
    所述第二设备包括发送单元、接收单元和处理单元;
    所述发送单元,用于发送业务流的第一流量采样集合,所述第一流量采样集合包括一个或多个流量采样信息,所述第一流量采样集合用于所述第一设备确定第一带宽;
    所述接收单元,用于接收来自所述第一设备的通告报文,所述通告报文包括所述第一带宽;
    所述处理单元,用于根据所述第一带宽设置传输所述业务流的带宽。
  42. 根据权利要求41所述的第二设备,其特征在于,所述发送单元,还用于向所述第一设备发送所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,所述服务等级参数和所述可靠性概率用于所述第一设备确定所述第一带宽。
  43. 根据权利要求41或42所述的第二设备,其特征在于,所述一个或多个流量采样信息中的每个流量采样信息包括在设定周期内获得的属于所述业务流的报文的总长度。
  44. 根据权利要求41-43任一所述的第二设备,其特征在于,所述发送单元具体用于:向所述第一设备发送传输所述业务流的路径上单个设备传输所述业务流的第一时延阈值和所述单个设备满足传输所述业务流的时延小于等于所述第一阈值的第一可靠性概率,所述第一时延阈值为所述单个设备传输所述业务流的最大时延;和/或
    向所述第一设备发送传输所述业务流的路径上单个设备的第一缓存阈值和所述单个设备的缓存大于或等于所述第一缓存阈值的第二可靠性概率中至少一个,所述第一缓存阈值为所述单个设备缓存的最小值。
  45. 根据权利要求41-43任一所述的第二设备,其特征在于,所述发送单元具体用于:向所述第一设备发送端到端传输所述业务流的第二时延阈值和端到端传输所述业务流的时延小于等于所述第二时延阈值的第三可靠性概率。
  46. 根据权利要求41-45中任一所述的第二设备,其特征在于,所述处理单元具体用于:将传输所述业务流的端口的承诺信息速率CIR的值设置为所述第一带宽的数值,并根据所述CIR发送所述业务流。
  47. 根据权利要求41-45中任一所述的第二设备,其特征在于,所述处理单元具体用于:根据传输所述业务流的端口带宽和所述第一带宽设置传输所述业务流的调度权重值,并根据所述调度权重值发送所述业务流。
  48. 一种确定传输业务流的带宽的系统,其特征在于,所述系统包括第一设备和第二设备;
    所述第一设备,用于获取业务流的第一流量采样集合、对应所述业务流的服务等级参数和满足所述服务等级参数的可靠性概率,并根据所述第一流量采样集合、所述业务流的服务等级参数和所述可靠性概率确定传输所述业务流的第一带宽,向所述第二设备发送所述第一带宽,所述第一流量采样集合包括一个或多个流量采样信息;
    所述第二设备,用于向所述第一设备发送所述第一流量采样集合,接收所述第一带宽并根据所述第一带宽设置传输所述业务流的带宽。
  49. 一种计算机可读存储介质,其特征在于,包括指令、程序或代码,当其在计算机上执行时,使得所述计算机执行所述权利要求1至27任一项权利要求所述的方法。
PCT/CN2021/094056 2020-05-25 2021-05-17 确定传输业务流的带宽的方法、设备和系统 WO2021238694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21813367.6A EP4149155A4 (en) 2020-05-25 2021-05-17 METHOD FOR DETERMINING BANDWIDTH FOR TRANSMISSION OF SERVICE FLOW, DEVICE AND SYSTEM
US18/058,605 US20230096280A1 (en) 2020-05-25 2022-11-23 Method, Device, and System for Determining Bandwidth for Service Flow Transmission

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010449643 2020-05-25
CN202010449643.X 2020-05-25
CN202010890854.7 2020-08-29
CN202010890854.7A CN113727389A (zh) 2020-05-25 2020-08-29 确定传输业务流的带宽的方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/058,605 Continuation US20230096280A1 (en) 2020-05-25 2022-11-23 Method, Device, and System for Determining Bandwidth for Service Flow Transmission

Publications (1)

Publication Number Publication Date
WO2021238694A1 true WO2021238694A1 (zh) 2021-12-02

Family

ID=78672268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094056 WO2021238694A1 (zh) 2020-05-25 2021-05-17 确定传输业务流的带宽的方法、设备和系统

Country Status (4)

Country Link
US (1) US20230096280A1 (zh)
EP (1) EP4149155A4 (zh)
CN (1) CN113727389A (zh)
WO (1) WO2021238694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174411A (zh) * 2022-07-29 2022-10-11 北京达佳互联信息技术有限公司 跨地域带宽的确定方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141407A (zh) * 2007-10-17 2008-03-12 杭州华三通信技术有限公司 一种分配带宽的方法、设备和系统
CN102264109A (zh) * 2010-05-27 2011-11-30 中国移动通信集团广东有限公司 为业务分配带宽、为终端的业务执行分配带宽方法及设备
US20150195149A1 (en) * 2014-01-06 2015-07-09 Cisco Technology, Inc. Predictive learning machine-based approach to detect traffic outside of service level agreements
WO2018167318A1 (en) * 2017-03-16 2018-09-20 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin System and method for dynamic bandwidth assignment (dba) virtualization in a multi-tenant passive optical network
US20190102717A1 (en) * 2017-09-29 2019-04-04 At&T Intellectual Property I, L.P. Microservice auto-scaling for achieving service level agreements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141407A (zh) * 2007-10-17 2008-03-12 杭州华三通信技术有限公司 一种分配带宽的方法、设备和系统
CN102264109A (zh) * 2010-05-27 2011-11-30 中国移动通信集团广东有限公司 为业务分配带宽、为终端的业务执行分配带宽方法及设备
US20150195149A1 (en) * 2014-01-06 2015-07-09 Cisco Technology, Inc. Predictive learning machine-based approach to detect traffic outside of service level agreements
WO2018167318A1 (en) * 2017-03-16 2018-09-20 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin System and method for dynamic bandwidth assignment (dba) virtualization in a multi-tenant passive optical network
US20190102717A1 (en) * 2017-09-29 2019-04-04 At&T Intellectual Property I, L.P. Microservice auto-scaling for achieving service level agreements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU XING; LIU BO; ZHANG LIJIA; MAO YAYA; WU XIANGYU; REN JIANXIN; TIAN BO; ZHANG YING; XIN XIANGJUN: "A Novel Dynamic Bandwidth Allocation Algorithm for NG-PON based on QoS and SLA", 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE, 26 October 2018 (2018-10-26), pages 1 - 3, XP033487235, DOI: 10.1109/ACP.2018.8596285 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174411A (zh) * 2022-07-29 2022-10-11 北京达佳互联信息技术有限公司 跨地域带宽的确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113727389A (zh) 2021-11-30
EP4149155A1 (en) 2023-03-15
EP4149155A4 (en) 2023-10-18
US20230096280A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US11316795B2 (en) Network flow control method and network device
US11381452B2 (en) Network slicing method and system
Yu et al. Traffic statistics and performance evaluation in optical burst switched networks
CN110177054B (zh) 一种端口队列调度方法、装置、网络控制器及存储介质
EP4024778A1 (en) Method for determining required bandwidth for data stream transmission, and devices and system
KR20030072226A (ko) 트래픽 및 서비스 수준 협정에 근거한 자동 라우터 구성
EP2869506B1 (en) Congestion avoidance and fairness in data networks with multiple traffic sources
US20220407808A1 (en) Service Level Adjustment Method, Apparatus, Device, and System, and Storage Medium
WO2021238694A1 (zh) 确定传输业务流的带宽的方法、设备和系统
US20230336486A1 (en) Service flow scheduling method and apparatus, and system
Jiang et al. Measurement-based admission control for a flow-aware network
US8824285B1 (en) System and method for collision detection and avoidance during packet based communications
Georgoulas et al. An integrated bandwidth allocation and admission control framework for the support of heterogeneous real-time traffic in class-based IP networks
Jiang Granular differentiated queueing services for QoS: structure and cost model
Min et al. Traffic scheduling strategy of power communication network based on SDN
WO2023280004A1 (zh) 一种网络配置方法、设备和系统
KR100453825B1 (ko) Ip망에서 큐오에스 제공을 위한 자원 관리 방법
Jiang Link-based fair aggregation: A simple approach to scalable support of per-flow service guarantees
US9088530B2 (en) Maximizing bottleneck link utilization under constraint of minimizing queuing delay for targeted delay-sensitive traffic
Cao et al. Synchronized multi-hop scheduling for real-time traffic on sdns
Phan et al. FICC-DiffServ: A new QoS architecture supporting resources discovery, admission and congestion controls
Jiang et al. Implicit admission control for a differentiated services network
Dong et al. Traffic Shaping based Queue Management for Delay Sensitive Multimedia Applications
Lehrieder et al. RCFT: A termination method for simple PCN-based flow control
Gelenbe et al. Controlling QoS with delays and cell drops

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021813367

Country of ref document: EP

Effective date: 20221207

NENP Non-entry into the national phase

Ref country code: DE