WO2021238498A1 - 一种直串模块式耗能装置的控制方法 - Google Patents

一种直串模块式耗能装置的控制方法 Download PDF

Info

Publication number
WO2021238498A1
WO2021238498A1 PCT/CN2021/087876 CN2021087876W WO2021238498A1 WO 2021238498 A1 WO2021238498 A1 WO 2021238498A1 CN 2021087876 W CN2021087876 W CN 2021087876W WO 2021238498 A1 WO2021238498 A1 WO 2021238498A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
direct
voltage
line voltage
capacitor
Prior art date
Application number
PCT/CN2021/087876
Other languages
English (en)
French (fr)
Inventor
谢晔源
姚宏洋
田杰
王宇
李钊
袁庆伟
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2021238498A1 publication Critical patent/WO2021238498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • This application relates to the field of power electronics technology, and in particular to a control method of a direct-series modular energy consuming device.
  • the generating end is an inertial power source similar to wind power.
  • the active power cannot be sent or only partly sent to the AC grid.
  • the surplus active power causes the voltage of the DC transmission line to rise, endangering the safety of equipment such as flexible DC converter valves.
  • a DC energy consuming device is added to the DC line to consume excess energy and limit the DC line voltage.
  • power semiconductor devices are directly connected in series and applied to DC energy consuming devices.
  • the resistance is input, and the input of the resistance will make the DC voltage drop.
  • the energy consumption speed of the resistance exceeds the speed of the accumulated energy on the DC side, the DC voltage will drop.
  • the resistance branch is repeatedly turned on and off to form the effect of hysteresis control.
  • the main problem with this method is that when turning off the resistance discharge circuit, it is difficult to ensure consistency because multiple power semiconductor switching devices are turned off at the same time. Once the turning off is not synchronized, there will be slow turn-on devices or fast turn-off. The device is damaged by overvoltage. How to ensure the balance of the DC voltage of the module when the shutdown is not synchronized, the prior art lacks an effective control method, which causes many problems in practical applications, which is not conducive to engineering realization.
  • the embodiment of the present application provides a method for controlling a direct-series modular energy consuming device.
  • the direct-series modular energy consuming device is connected in parallel between DC lines and includes M direct-series modules and energy-consuming resistors connected in series, where M is An integer greater than or equal to 2;
  • the direct-string module includes a first power semiconductor device and a voltage clamping unit;
  • the voltage clamping unit includes an energy storage unit and a discharge unit, and the energy storage unit is connected in parallel with the first power semiconductor device,
  • the energy storage unit includes a capacitor and a third power semiconductor device connected in series;
  • the discharge unit is connected in parallel to both ends of the capacitor or the third power semiconductor device, and the discharge unit includes a second power semiconductor device connected in series with Equalizing resistance;
  • the working mode of the device includes a standby mode and an energy consumption mode
  • the control method includes: when the DC line voltage is normal, controlling the device to be in the standby mode, and the second power semiconductor device of the partial serial module is turned on or off Or
  • the second power semiconductor devices of some of the serial modules in the device are turned on or off, or the first power semiconductor devices and the first power semiconductor devices of some of the serial modules in the device are controlled.
  • the second power semiconductor device is turned on or off at the same time to adjust the capacitor voltage of the direct-string module, including: repeating the following steps to keep the capacitor voltage of all the direct-string modules stable at the first threshold of the capacitor voltage and the first threshold of the capacitor voltage Between the two thresholds: when the capacitor voltage of the straight string module is greater than the first threshold of the capacitor voltage, the second power semiconductor device of the straight string module is turned on, or the first power semiconductor device of the straight string module is turned on at the same time And the second power semiconductor device, the capacitor voltage of the straight string module starts to drop; when the capacitor voltage of the straight string module is less than the second threshold of the capacitor voltage, the second power semiconductor device of the straight string module is turned off, or both The first power semiconductor device and the second power semiconductor device of the linear module.
  • the number of the serial modules in which the first power semiconductor device is in the off state is less than or equal to M.
  • the energy consumption mode includes an offline energy consumption mode and an online energy consumption mode.
  • the second power semiconductor device In the offline energy consumption mode, the second power semiconductor device remains in an off state; in the line energy consumption mode , The second power semiconductor device is turned on and off according to the capacitor voltage of the serial module.
  • the activating the device and controlling the on and off of the energy consuming resistor includes: activating the device when the DC line voltage reaches a startup threshold , All the first power semiconductor devices of the straight string module are all turned on; when the DC line voltage reaches the first threshold of the line voltage, the device is exited, and all the first power semiconductor devices of the straight string module are all turned off.
  • the DC line voltage reaches the second threshold of the line voltage, the device is started, and all the first power semiconductor devices of the direct string module are all turned on; until the working duration of the device reaches the required energy consumption time Or the external fault is eliminated, the DC line voltage returns to the normal range, and the device enters a standby mode.
  • the online energy consumption mode includes a hysteresis control mode and a double closed-loop control mode.
  • the DC line voltage is controlled at Between the first threshold of the line voltage and the second threshold of the line voltage, the capacitor voltage is controlled between the first threshold of the capacitor voltage and the second threshold of the capacitor voltage by controlling the on and off of the second power semiconductor device;
  • the closed-loop control mode the first power semiconductor device is turned on and off through the DC line voltage closed loop control, the DC line voltage is controlled to the line voltage target value, and the second power semiconductor device is turned on and off through the module capacitor voltage closed loop.
  • the DC capacitor voltage is controlled to the target value of the capacitor voltage.
  • the activating the device to control the input and withdrawal of the energy dissipation resistor includes: when the DC line voltage reaches the activation threshold, activating the device , The first power semiconductor devices of all the direct-string modules are turned on simultaneously or sequentially; when the DC line voltage reaches the first threshold of the line voltage, the device is exited, and the first power semiconductor devices of all the direct-string modules are simultaneously turned on Turn off or turn off sequentially; when the DC line voltage reaches the second threshold of the line voltage, the device is started, and the first power semiconductor devices of all the serial modules are turned on at the same time or sequentially, and the first power semiconductor devices in each serial module are calculated.
  • the turn-on time of the power semiconductor device and turn it on according to the turn-on time; until the working duration of the device reaches the required energy consumption time or the external fault is eliminated, and the DC line voltage returns to the normal range, the device enters the standby mode .
  • the calculation formula of the turn-on time t of the second power semiconductor device is as follows:
  • R is the resistance value of the equalizing resistance
  • C is the capacitance value of the capacitor
  • V 0 is the initial voltage of the capacitor
  • V t is the target value of the capacitor voltage.
  • the activating the device, controlling the on and off of the energy dissipation resistor, and adjusting the DC line voltage includes: when the DC line voltage reaches the startup threshold , Start the device; send the error signal between the line voltage target value and the line voltage feedback value to the PI regulator, and control the on and off of each of the first power semiconductor devices according to the regulator output value; set the capacitor voltage target value The error signal with the feedback value of the capacitor voltage is sent to the PI regulator, and the second power semiconductor device is controlled to be turned on and off according to the output value of the regulator; until the working duration of the device reaches the required energy consumption time or external The fault is eliminated, the DC line voltage returns to the normal range, and the device enters a standby mode.
  • the first power semiconductor devices when more than one of the first power semiconductor devices is simultaneously turned on or off, the first power semiconductor devices are sequentially turned on or turned off.
  • the sequential activation includes: sorting the capacitor voltages of the various straight-string modules, and sequentially selecting the first power semiconductors corresponding to the N straight-string modules with the highest capacitor voltages for activation, where N is greater than 1 and less than M
  • the turn-off sequence includes: sorting the capacitor voltages of each straight-string module, and sequentially selecting the first power semiconductor corresponding to the N straight-string module capacitors with the lowest capacitor voltage to turn off, where N is greater than 1 and less than The integer of M.
  • the offline energy consumption mode includes two methods: hysteresis control and double closed-loop control.
  • the power semiconductor device is controlled to achieve precise control of the DC line voltage and to ensure that the capacitor voltage of the direct-string module is in the normal range.
  • Fig. 1 is a typical application scenario of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • FIG. 2 is one of the schematic diagrams of the topological structure of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of a topological structure of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a control method of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • Fig. 5 is a control mode diagram of a direct-series modular energy consumption device provided by an embodiment of the present application.
  • Fig. 6 is a schematic flow chart of a method for controlling the standby mode of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a control effect of a standby mode of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for controlling an offline energy consumption mode of a direct-series modular energy consumption device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a control method for a hysteresis control mode of a direct-series modular energy consumption device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the control effect of a hysteresis control mode of a direct-series modular energy consumption device provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a control method of a dual closed-loop control mode of a direct-series modular energy consumption device provided by an embodiment of the present application.
  • FIG. 12 is a control strategy block diagram of a dual closed-loop control mode of a direct-series modular energy consumption device provided by an embodiment of the present application.
  • FIG. 2 is one of the schematic diagrams of the topological structure of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • the direct-string modular energy consumption device 20 is connected in parallel between the DC lines, and includes M direct-string modules 1 and energy dissipation resistors 7 connected in series, and M is an integer greater than or equal to 2.
  • the direct string module 1 includes a first power semiconductor device 2 and a voltage clamping unit.
  • the voltage clamping unit includes an energy storage unit and a discharge unit.
  • the energy storage unit is connected in parallel with the first power semiconductor device 2, and the energy storage unit includes a capacitor 3 and a third power semiconductor device 6 connected in series.
  • the discharge unit is connected in parallel with both ends of the third power semiconductor device 6, and the discharge unit includes a second power semiconductor 4 and an equalizing resistor 5 connected in series.
  • FIG. 3 is a second schematic diagram of a topological structure of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • the direct-string modular energy consumption device 20 is connected in parallel between the DC lines, and includes M direct-string modules 1 and energy dissipation resistors 7 connected in series, and M is an integer greater than or equal to 2.
  • the direct string module 1 includes a first power semiconductor device 2 and a voltage clamping unit.
  • the voltage clamping unit includes an energy storage unit and a discharge unit.
  • the energy storage unit is connected in parallel with the first power semiconductor device 2, and the energy storage unit includes a capacitor 3 and a third power semiconductor device 6 connected in series.
  • the discharge unit is connected to both ends of the capacitor 3 in parallel, and the discharge unit includes a second power semiconductor 4 and an equalizing resistor 5 connected in series.
  • FIG. 4 is a schematic flow chart of a control method of a direct-series modular energy-consuming device provided by an embodiment of the present application.
  • the working modes of the device include a standby mode and an energy-consuming mode.
  • the number of serial modules in which the first power semiconductor device is in the off state is less than or equal to M.
  • Energy consumption modes include offline energy consumption modes and online energy consumption modes, as shown in Figure 5.
  • the second power semiconductor device In the offline energy consumption mode, the second power semiconductor device remains in the off state.
  • the second power semiconductor device In the online energy consumption mode, the second power semiconductor device is turned on and off according to the capacitor voltage of the serial module.
  • Online energy consumption modes include hysteresis control mode and double closed-loop control mode, as shown in Figure 5.
  • the DC line voltage is controlled between the first threshold of the line voltage and the second threshold of the line voltage by controlling the on and off of the first power semiconductor device, and by controlling the on and off of the second power semiconductor device, Turning off, the capacitor voltage is controlled between the first threshold value of the capacitor voltage and the second threshold value of the capacitor voltage.
  • the first power semiconductor device is turned on and off through the DC line voltage closed loop, the DC line voltage is controlled at the line voltage target value, and the second power semiconductor device is turned on and off through the module capacitor voltage closed loop. Off, the DC capacitor voltage is controlled to the target value of the capacitor voltage.
  • the offline energy consumption mode also includes two methods of hysteresis control and double closed-loop control, respectively controlling the first power semiconductor device and the second power semiconductor device of the energy consuming device, Realize precise control of the DC link voltage and ensure that the capacitor voltage of the direct string module is in the normal range.
  • Fig. 6 is a schematic flow chart of a method for controlling the standby mode of a direct-series modular energy consuming device provided by an embodiment of the present application.
  • S110 in the embodiment of FIG. 4 includes the following control flow.
  • the serial module or device issues an instruction to turn on the second power semiconductor device of the serial module, or turn on the first power of the serial module at the same time
  • the capacitor voltage of the direct-string module begins to drop.
  • the direct string module or device issues an instruction to turn off the second power semiconductor device of the direct string module, or turn off the first power semiconductor device of the direct string module at the same time. Power semiconductor device and second power semiconductor device.
  • FIG. 7 The control effect of this embodiment is shown in FIG. 7, the capacitor voltage in the serial module is controlled between the first threshold value of the capacitor voltage and the second threshold value of the capacitor voltage.
  • FIG. 8 is a schematic flowchart of a method for controlling an offline energy consumption mode of a direct-series modular energy consumption device according to an embodiment of the present application.
  • S120 in the embodiment of FIG. 4 includes the following control flow.
  • Steps S122 and S123 are repeated until the working duration of the device reaches the required energy consumption time or the external fault is eliminated, the DC line voltage returns to the normal range, and the device enters the standby mode.
  • the technical solution provided by this embodiment controls the first power semiconductor device of the energy consuming device in the offline energy consumption mode to achieve precise control of the DC line voltage and ensure that the capacitor voltage of the direct-string module is within the normal range.
  • FIG. 9 is a schematic flowchart of a control method for a hysteresis control mode of a direct-series modular energy consumption device according to an embodiment of the present application.
  • S120 in the embodiment of FIG. 4 includes the following control flow.
  • Turning on sequentially includes: sorting the capacitor voltages of each straight string module, and sequentially selecting the first power semiconductors corresponding to the N straight string modules with the highest capacitor voltage to turn on, where N is an integer greater than 1 and less than M.
  • Turning off sequentially includes: sorting the capacitor voltages of each direct-string module, and sequentially selecting the first power semiconductors corresponding to the N direct-string module capacitors with the lowest capacitor voltage to turn off, where N is an integer greater than 1 and less than M.
  • R is the resistance value of the equalizing resistance
  • C is the capacitance value of the capacitor
  • V 0 is the initial voltage of the capacitor
  • V t is the target value of the capacitor voltage.
  • Steps S125 and S126 are repeated until the working duration of the device reaches the required energy consumption time or the external fault is eliminated, the DC line voltage returns to the normal range, and the device enters the standby mode.
  • the effect of hysteresis control is shown in Figure 10.
  • the first power semiconductor device and the second power semiconductor device of the energy consuming device are respectively controlled to achieve precise control of the DC line voltage and ensure the performance of the direct-series module
  • the capacitor voltage is in the normal range, and the strategy of switching on and off based on the sequence of capacitor voltage is adopted to realize "soft switching", avoiding excessively high voltage and current rate of change, and ensuring the safe operation of the device.
  • FIG. 11 is a schematic flowchart of a control method of a dual closed-loop control mode of a direct-series modular energy consumption device provided by an embodiment of the present application.
  • S120 in the embodiment of FIG. 4 includes the following control flow.
  • the error signal between the line voltage target value and the line voltage feedback value is sent to the PI regulator, and each first power semiconductor device is controlled to be turned on and off according to the output value of the regulator, as shown in FIG. 12.
  • the first power semiconductor devices are sequentially turned on or turned off.
  • Turning on sequentially includes: sorting the capacitor voltages of each straight string module, and sequentially selecting the first power semiconductors corresponding to the N straight string modules with the highest capacitor voltage to turn on, where N is an integer greater than 1 and less than M.
  • Turning off sequentially includes: sorting the capacitor voltages of each direct-string module, and sequentially selecting the first power semiconductors corresponding to the N direct-string module capacitors with the lowest capacitor voltage to turn off, where N is an integer greater than 1 and less than M.
  • the error signal between the capacitor voltage target value and the capacitor voltage feedback value is sent to the PI regulator, and each second power semiconductor device is controlled to be turned on and off according to the regulator output value, as shown in FIG. 12.
  • Steps S128 and S129 are repeated until the working duration of the device reaches the required energy consumption time or the external fault is eliminated, the DC line voltage returns to the normal range, and the device enters the standby mode.
  • the technical solution provided by this embodiment controls the first power semiconductor device and the second power semiconductor device of the energy consuming device respectively in the dual closed-loop control mode, so as to achieve precise control of the DC line voltage and ensure the performance of the direct-series module
  • the capacitor voltage is in the normal range, and the strategy of switching on and off based on the sequence of capacitor voltage is adopted to realize "soft switching", avoiding excessively high voltage and current rate of change, and ensuring the safe operation of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本申请提供一种直串模块式耗能装置的控制方法。所述直串模块式耗能装置并联连接在直流线路之间,包括串联的M个直串模块与耗能电阻;直串模块包括第一功率半导体器件和电压钳位单元;电压钳位单元包括储能单元和放电单元,储能单元与第一功率半导体器件并联;放电单元包括串联的第二功率半导体与均衡电阻;控制方法包括:直流线路电压正常时,控制装置处于待机模式,部分第二功率半导体器件开通或关断,或部分第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压;直流线路电压达到启动阈值时,控制装置处于耗能模式,启动装置,控制耗能电阻的投入和退出,调节直流线路电压。

Description

一种直串模块式耗能装置的控制方法 技术领域
本申请涉及电力电子技术领域,具体涉及一种直串模块式耗能装置的控制方法。
背景技术
国内外对于新能源并网低电压穿越能力都有明确的规范要求。对于采用高压柔性直流输电技术并网的新能源系统,如图1所示,诸如发电端为与风电类似的惯性电源,当受电端发生故障导致交流电网电压跌落时,由于送端换流器为功率控制,有功功率无法送出或者只能部分送出至交流电网,富余有功功率造成直流输电线路的电压升高,危害柔性直流换流阀等设备的安全。
通常在直流线路增加直流耗能装置,消耗过剩的能量,限制直流线路电压。现有技术中,采用功率半导体器件直接串联应用于直流耗能装置。当直流电压过高时,通过电力电子器件的控制,投入电阻,电阻的投入将使直流电压下降,当电阻的耗能速度超过直流侧累积能量的速度,直流电压就会下降,此时,再去关断电阻放电回路,直流电压再上升,反复的开通和关断电阻支路,形成滞环控制的效果。
该方法主要存在的问题在于:在关断电阻放电回路时,由于多个功率半导体开关器件同时关断很难保证一致性,一旦关断不同步,就会有导通慢的器件或关断快的器件承受过电压而损坏。如何在关断不同步的情况下确保模块直流电压的均衡,现有技术中缺乏有效的控制方法,使得实际应用中存在诸多问题,不利于工程化实现。
发明内容
本申请实施例提供一种直串模块式耗能装置控制方法,所述直串模块式耗能装置并联连接在直流线路之间,包括串联连接的M个直串模块与耗能电阻,M为大于等于2的整数;所述直串模块包括第一功率半导体器件以及电压钳位单元;所述电压钳位单元包括储能单元和放电单元,所述储能单元与第一功率半导体器件并联,所述储能单元包括串联连接的电容和第三功率半导体器件;所述放电单元并联在所述电容或所述第三功率半导体器件两端,所述放电单元包括串联连接的第二功率半导体与均衡电阻;所述装置的工作模式包括待机模式和耗能模式,所述控制方法包括:直流线路电压正常时,控制所述装置处于待机模式,部分直串模块的第二功率半导体器件开通或关断,或者部分直串模块的第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压;直流线路电压达到启动阈值时,控制所述装置处于耗能模式,启动所述装置,控制所述耗能电阻的投入和退出,调节直流线路电压。
根据一些实施例,在所述装置处于待机模式时,所述装置中部分直串模块的第二功率半导体器件开通或关断,或者控制所述装置中部分直串模块的第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压,包括:重复以下步骤,以保持所有直串模块的电容电压稳定在所述电容电压第一阈值和所述电容电压第二阈值之间:当所述直串模块的电容电压大于电容电压第一阈值时,导通所述直串模块的第二功率半导体器件,或同时开通所述直串模块的第一功率半导体器件和第二功率半导体器件,直串模块电容电压开始下降;当所述直串模块的电容电压小于电容电压第二阈值时,关断所述直串模块的第二功率半导体器件,或同时关断所述直串模块的第一功率半导体器件和第二功率半导体器件。
根据一些实施例,所述待机模式时,所述第一功率半导体器件处于关断状态的直串模块的的数量小于等于M。
根据一些实施例,所述耗能模式包括离线耗能模式和在线耗能模式,在所述离线耗能模式中,所述第二功率半导体器件保持关断状态;在所述线耗能模式中,所述第二功率半导体器件根据直串模块的电容电压开通和关断。
根据一些实施例,在所述装置处于所述离线耗能模式时,所述启动所述装置,控制耗能电阻的投入和退出,包括:所述直流线路电压达到启动阈值时,启动所述装置,所有的所述直串模块的第一功率半导体器件全部开通;所述直流线路电压达到线路电压第一阈值时,退出所述装置,所有的所述直串模块的第一功率半导体器件全部关断;所述直流线路电压达到线路电压第二阈值时,启动所述装置,所有的所述直串模块的第一功率半导体器件全部开通;直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、所述直流线路电压恢复到正常范围,所述装置进入待机模式。
根据一些实施例,所述在线耗能模式包括滞环控制模式和双闭环控制模式,在所述滞环控制模式中,通过控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压第一阈值与线路电压第二阈值之间,通过控制第二功率半导体器件的开通、关断,将电容电压控制在电容电压第一阈值与电容电压第二阈值之间;在所述双闭环控制模式中,通过直流线路电压闭环控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压目标值,通过模块电容电压闭环控制第二功率半导体器件的开通、关断,将直流电容电压控制在电容电压目标值。
根据一些实施例,在所述装置处于所述滞环控制模式时,所述启动所述装置,控制耗能电阻的投入和退出,包括:所述直流线路电压达到启动阈值时,启动所述装置,所有所述直串模块的第一功率半导体器件同时开通或依次开通;所述直流线路电压达到线路电压第一阈值时,退出所述装置,所有所述直串模块的第一功率半导体器件同时关断或依次关断;所述直流线路电压达到线路电压第二阈值时,启动所述装置,所有所述直串模块的第一功率半导体器件同时开通或依次开通,计算各个 直串模块中第二功率半导体器件的开通时间,并依据所述开通时间进行开通;直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,所述装置进入待机模式。
根据一些实施例,所述第二功率半导体器件的开通时间t的计算公式如下:
t=RC·ln(V 0/V t)
其中,R为均衡电阻阻值,C为电容容值,V 0为电容初始电压,V t为电容电压目标值。
根据一些实施例,在所述装置处于所述双闭环控制模式时,所述启动所述装置,控制耗能电阻的投入和退出,调节直流线路电压,包括:所述直流线路电压达到启动阈值时,启动所述装置;将线路电压目标值与线路电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个所述第一功率半导体器件的开通、关断;将电容电压目标值与电容电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个所述第二功率半导体器件的开通、关断;直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,所述装置进入待机模式。
根据一些实施例,当超过一个所述第一功率半导体器件同时执行开通或关断时,所述第一功率半导体器件依次开通或依次关断。
根据一些实施例,所述依次开通包括:对各个直串模块的电容电压进行排序,依次选择所述电容电压最高的N个直串模块对应的第一功率半导体进行开通,N为大于1小于M的整数;所述依次关断包括:按各个直串模块的电容电压进行排序,依次选择所述电容电压最低的N个直串模块电容对应的第一功率半导体进行关断,N为大于1小于M的整数。
本申请实施例提供的技术方案,待机模式下,轮流开通一部分直串模块,在直流线路电压正常范围时,确保子模块电压均衡,同时,利用电容的钳位作用,稳定直流线路电压;耗能模式下,提出离线耗能模式和在线耗能模式,在线耗能模式又包括滞环控制和双闭环控制两种方式,在耗 能时,分别对耗能装置的第一功率半导体器件、第二功率半导体器件进行控制,实现对直流线路电压的精确控制,并确保直串模块的电容电压在正常范围。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种直串模块式耗能装置的典型应用场景。
图2是本申请实施例提供的一种直串模块式耗能装置拓扑结构示意图之一。
图3是本申请实施例提供的一种直串模块式耗能装置拓扑结构示意图之二。
图4是本申请实施例提供的一种直串模块式耗能装置的控制方法流程示意图。
图5是本申请实施例提供的一种直串模块式耗能装置的控制模式导图。
图6是本申请实施例提供的一种直串模块式耗能装置待机模式的控制方法流程示意图。
图7是本申请实施例提供的一种直串模块式耗能装置待机模式的控制效果示意图。
图8是本申请实施例提供的一种直串模块式耗能装置离线耗能模式的控制方法流程示意图。
图9是本申请实施例提供的一种直串模块式耗能装置滞环控制模式的控制方法流程示意图。
图10是本申请实施例提供的一种直串模块式耗能装置滞环控制模式的控制效果示意图。
图11是本申请实施例提供的一种直串模块式耗能装置双闭环控制模式的控制方法流程示意图。
图12是本申请实施例提供的一种直串模块式耗能装置双闭环控制模式的控制策略框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,本申请的权利要求、说明书及附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序。本申请的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图2是本申请实施例提供的一种直串模块式耗能装置拓扑结构示意图之一。
如图2所示,直串模块式耗能装置20并联连接在直流线路之间,包括串联连接的M个直串模块1与耗能电阻7,M为大于等于2的整数。 直串模块1包括第一功率半导体器件2以及电压钳位单元。电压钳位单元包括储能单元和放电单元。储能单元与第一功率半导体器件2并联,储能单元包括串联连接的电容3和第三功率半导体器件6。
放电单元并联在第三功率半导体器件6两端,放电单元包括串联连接的第二功率半导体4与均衡电阻5。
图3是本申请实施例提供的一种直串模块式耗能装置拓扑结构示意图之二。
如图3所示,直串模块式耗能装置20并联连接在直流线路之间,包括串联连接的M个直串模块1与耗能电阻7,M为大于等于2的整数。直串模块1包括第一功率半导体器件2以及电压钳位单元。电压钳位单元包括储能单元和放电单元。储能单元与第一功率半导体器件2并联,储能单元包括串联连接的电容3和第三功率半导体器件6。
放电单元并联在电容3两端,放电单元包括串联连接的第二功率半导体4与均衡电阻5。
图4是本申请实施例提供的一种直串模块式耗能装置的控制方法流程示意图,装置的工作模式包括待机模式和耗能模式。
在S110中,直流线路电压正常时,耗能装置处于待机模式,装置中部分直串模块的第二功率半导体器件开通或关断,或者控制装置中部分直串模块的第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压。
待机模式时,第一功率半导体器件处于关断状态的直串模块的数量小于等于M。
在S120中,直流线路电压达到启动阈值时,耗能装置处于耗能模式,启动装置,控制耗能电阻的投入和退出,消耗直流线路上的盈余能 量,调节直流线路电压。
耗能模式包括离线耗能模式和在线耗能模式,如图5所示。在离线耗能模式中,第二功率半导体器件保持关断状态。在在线耗能模式中,第二功率半导体器件根据直串模块的电容电压开通和关断。
在线耗能模式包括滞环控制模式和双闭环控制模式,如图5所示。在滞环控制模式中,通过控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压第一阈值与线路电压第二阈值之间,通过控制第二功率半导体器件的开通、关断,将电容电压控制在电容电压第一阈值与电容电压第二阈值之间。
在双闭环控制模式中,通过直流线路电压闭环控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压目标值,通过模块电容电压闭环控制第二功率半导体器件的开通、关断,将直流电容电压控制在电容电压目标值。
本实施例提供的技术方案,待机模式下,轮流开通一部分直串模块,在直流线路电压正常范围时,确保子模块电压均衡,同时,利用电容的钳位作用,稳定直流线路电压;耗能模式下,提出离线耗能模式和在线耗能模式,在线耗能模式又包括滞环控制和双闭环控制两种方式,分别对耗能装置的第一功率半导体器件、第二功率半导体器件进行控制,实现对直流线路电压的精确控制,并确保直串模块的电容电压在正常范围。
图6是本申请实施例提供的一种直串模块式耗能装置待机模式的控制方法流程示意图。
装置处于待机模式时,图4实施例的S110包括以下控制流程。
重复以下步骤,以保持所有直串模块的电容电压稳定在电容电压第一阈值和电容电压第二阈值之间。
在S111中,当直串模块的电容电压大于电容电压第一阈值时,由直串模块或装置下发指令,导通直串模块的第二功率半导体器件,或同 时开通直串模块的第一功率半导体器件和第二功率半导体器件,直串模块电容电压开始下降。
在S112中,当直串模块的电容电压小于电容电压第二阈值时,由直串模块或装置下发指令,关断直串模块的第二功率半导体器件,或同时关断直串模块的第一功率半导体器件和第二功率半导体器件。
本实施例的控制效果如图7所示,直串模块中的电容电压控制在电容电压第一阈值和电容电压第二阈值之间。
本实施例提供的技术方案,待机模式下,轮流开通一部分直串模块,在直流线路电压正常范围时,确保子模块电压均衡,同时,利用电容的钳位作用,稳定直流线路电压。
图8是本申请实施例提供的一种直串模块式耗能装置离线耗能模式的控制方法流程示意图。
装置处于离线耗能模式时,图4实施例的S120包括以下控制流程。
在S121中,直流线路电压达到启动阈值时,启动装置,所有的直串模块的第一功率半导体器件全部开通。
在S122中,直流线路电压达到线路电压第一阈值时,退出装置,所有的直串模块的第一功率半导体器件全部关断。
在S123中,直流线路电压达到线路电压第二阈值时,启动装置,所有的直串模块的第一功率半导体器件全部开通。
重复步骤S122、S123,直至装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,装置进入待机模式。
本实施例提供的技术方案,离线耗能模式下,对耗能装置的第一功率半导体器件进行控制,实现对直流线路电压的精确控制,确保直串模块的电容电压在正常范围。
图9是本申请实施例提供的一种直串模块式耗能装置滞环控制模式的控制方法流程示意图。
装置处于在线耗能模式的滞环控制模式时,图4实施例的S120包括以下控制流程。
在S124中,直流线路电压达到启动阈值时,启动装置,所有直串模块的第一功率半导体器件同时开通或依次开通。
依次开通包括:对各个直串模块的电容电压进行排序,依次选择电容电压最高的N个直串模块对应的第一功率半导体进行开通,N为大于1小于M的整数。
在S125中,直流线路电压达到线路电压第一阈值时,退出装置,所有直串模块的第一功率半导体器件同时关断或依次关断。
依次关断包括:按各个直串模块的电容电压进行排序,依次选择电容电压最低的N个直串模块电容对应的第一功率半导体进行关断,N为大于1小于M的整数。
在S126中,直流线路电压达到线路电压第二阈值时,启动装置,所有直串模块的第一功率半导体器件同时开通或依次开通,计算各个直串模块中第二功率半导体器件的开通时间,并依据开通时间进行开通。
第二功率半导体器件的开通时间t的计算公式如下:
t=RC·ln(V 0/V t)
其中,R为均衡电阻阻值,C为电容容值,V 0为电容初始电压,V t为电容电压目标值。
重复步骤S125、S126,直至装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,装置进入待机模式。滞环控制效果如图10所示。
本实施例提供的技术方案,在滞环控制模式下,分别对耗能装置的第一功率半导体器件、第二功率半导体器件进行控制,实现对直流线路电压的精确控制,并确保直串模块的电容电压在正常范围,采用基于电容电压的排序开通和关断的策略,实现“软开关”,避免了过高的电压、电流变化 率,确保装置安全工作。
图11是本申请实施例提供的一种直串模块式耗能装置双闭环控制模式的控制方法流程示意图。
装置处于在线耗能模式的双闭环控制模式时,图4实施例的S120包括以下控制流程。
在S127中,直流线路电压达到启动阈值时,启动装置。
在S128中,将线路电压目标值与线路电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个第一功率半导体器件的开通、关断,如图12所示。
当超过一个第一功率半导体器件同时执行开通或关断时,第一功率半导体器件依次开通或依次关断。
依次开通包括:对各个直串模块的电容电压进行排序,依次选择电容电压最高的N个直串模块对应的第一功率半导体进行开通,N为大于1小于M的整数。
依次关断包括:按各个直串模块的电容电压进行排序,依次选择电容电压最低的N个直串模块电容对应的第一功率半导体进行关断,N为大于1小于M的整数。
在S129中,将电容电压目标值与电容电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个第二功率半导体器件的开通、关断,如图12所示。
重复步骤S128、S129,直至装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,装置进入待机模式。
本实施例提供的技术方案,在双闭环控制模式下,分别对耗能装置的第一功率半导体器件、第二功率半导体器件进行控制,实现对直流线路电压的精确控制,并确保直串模块的电容电压在正常范围,采用基于电容电压的排序开通和关断的策略,实现“软开关”,避免了过高的电压、电流变 化率,确保装置安全工作。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本申请的方法及其核心思想。同时,本领域技术人员依据本申请的思想,基于本申请的具体实施方式及应用范围上做出的改变或变形之处,都属于本申请保护的范围。综上所述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种直串模块式耗能装置的控制方法,所述直串模块式耗能装置并联连接在直流线路之间,包括串联连接的M个直串模块与耗能电阻,M为大于等于2的整数;所述直串模块包括第一功率半导体器件以及电压钳位单元;所述电压钳位单元包括储能单元和放电单元,所述储能单元与第一功率半导体器件并联,所述储能单元包括串联连接的电容和第三功率半导体器件;所述放电单元并联在所述电容或所述第三功率半导体器件两端,所述放电单元包括串联连接的第二功率半导体与均衡电阻;所述装置的工作模式包括待机模式和耗能模式,所述控制方法包括:
    直流线路电压正常时,控制所述装置处于待机模式,部分直串模块的第二功率半导体器件开通或关断,或者部分直串模块的第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压;
    直流线路电压达到启动阈值时,控制所述装置处于耗能模式,启动所述装置,控制所述耗能电阻的投入和退出,调节直流线路电压。
  2. 如权利要求1所述的控制方法,其中,所述装置处于待机模式时,所述装置中部分直串模块的第二功率半导体器件开通或关断,或者控制所述装置中部分直串模块的第一功率半导体器件和第二功率半导体器件同时开通或关断,以调节直串模块的电容电压,包括:
    重复以下步骤,以保持所有直串模块的电容电压稳定在所述电容电压第一阈值和所述电容电压第二阈值之间:
    当所述直串模块的电容电压大于电容电压第一阈值时,导通所述直串模块的第二功率半导体器件,或同时开通所述直串模块的第一功率半导体器件和第二功率半导体器件,直串模块电容电压开始下降;
    当所述直串模块的电容电压小于电容电压第二阈值时,关断所述直 串模块的第二功率半导体器件,或同时关断所述直串模块的第一功率半导体器件和第二功率半导体器件。
  3. 如权利要求1所述的控制方法,其中,所述待机模式时,所述第一功率半导体器件处于关断状态的直串模块的数量小于等于M。
  4. 如权利要求1所述的控制方法,其中,所述耗能模式包括:
    离线耗能模式,所述第二功率半导体器件保持关断状态;
    在线耗能模式,所述第二功率半导体器件根据直串模块的电容电压开通和关断。
  5. 如权利要求4所述的控制方法,其中,在所述装置处于所述离线耗能模式时,所述启动所述装置,控制耗能电阻的投入和退出,调节直流线路电压,包括:
    所述直流线路电压达到启动阈值时,启动所述装置,所有的所述直串模块的第一功率半导体器件全部开通;
    所述直流线路电压达到线路电压第一阈值时,退出所述装置,所有的所述直串模块的第一功率半导体器件全部关断;
    所述直流线路电压达到线路电压第二阈值时,启动所述装置,所有的所述直串模块的第一功率半导体器件全部开通;
    直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、所述直流线路电压恢复到正常范围,所述装置进入待机模式。
  6. 如权利要求4所述的控制方法,其中,所述在线耗能模式包括:
    滞环控制模式,通过控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压第一阈值与线路电压第二阈值之间,通过控 制第二功率半导体器件的开通、关断,将电容电压控制在电容电压第一阈值与电容电压第二阈值之间;
    双闭环控制模式,通过直流线路电压闭环控制第一功率半导体器件的开通、关断,将直流线路电压控制在线路电压目标值,通过模块电容电压闭环控制第二功率半导体器件的开通、关断,将直流电容电压控制在电容电压目标值。
  7. 如权利要求6所述的控制方法,其中,在所述装置处于所述滞环控制模式时,所述启动所述装置,控制耗能电阻的投入和退出,包括:
    所述直流线路电压达到启动阈值时,启动所述装置,所有所述直串模块的第一功率半导体器件同时开通或依次开通;
    所述直流线路电压达到线路电压第一阈值时,退出所述装置,所有所述直串模块的第一功率半导体器件同时关断或依次关断;
    所述直流线路电压达到线路电压第二阈值时,启动所述装置,所有所述直串模块的第一功率半导体器件同时开通或依次开通,计算各个直串模块中第二功率半导体器件的开通时间,并依据所述开通时间进行开通;
    直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,所述装置进入待机模式。
  8. 根据权利要求7所述的控制方法,其中,所述第二功率半导体器件的开通时间t的计算公式如下:
    t=RC·ln(V 0/V t)
    其中,R为均衡电阻阻值,C为电容容值,V 0为电容初始电压,V t为电容电压目标值。
  9. 如权利要求6所述的控制方法,其中,在所述装置处于所述双 闭环控制模式时,所述启动所述装置,控制耗能电阻的投入和退出,调节直流线路电压,包括:
    所述直流线路电压达到启动阈值时,启动所述装置;
    将线路电压目标值与线路电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个所述第一功率半导体器件的开通、关断;
    将电容电压目标值与电容电压反馈值的误差信号送入PI调节器,根据调节器输出值控制各个所述第二功率半导体器件的开通、关断;
    直至所述装置工作的持续时间达到要求的耗能时间或外部故障消除、直流线路电压恢复到正常范围,所述装置进入待机模式。
  10. 如权利要求9所述的控制方法,其中,当超过一个所述第一功率半导体器件同时执行开通或关断时,所述第一功率半导体器件依次开通或依次关断。
  11. 根据权利要求7或10所述的控制方法,其中,
    所述依次开通包括:对各个直串模块的电容电压进行排序,依次选择所述电容电压最高的N个直串模块对应的第一功率半导体进行开通,N为大于1小于M的整数;
    所述依次关断包括:按各个直串模块的电容电压进行排序,依次选择所述电容电压最低的N个直串模块电容对应的第一功率半导体进行关断,N为大于1小于M的整数。
PCT/CN2021/087876 2020-05-27 2021-04-16 一种直串模块式耗能装置的控制方法 WO2021238498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010463041.XA CN111654032B (zh) 2020-05-27 2020-05-27 一种直串模块式耗能装置的控制方法
CN202010463041.X 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021238498A1 true WO2021238498A1 (zh) 2021-12-02

Family

ID=72348345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087876 WO2021238498A1 (zh) 2020-05-27 2021-04-16 一种直串模块式耗能装置的控制方法

Country Status (2)

Country Link
CN (1) CN111654032B (zh)
WO (1) WO2021238498A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654032B (zh) * 2020-05-27 2022-07-22 南京南瑞继保电气有限公司 一种直串模块式耗能装置的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067322A1 (en) * 2013-11-11 2015-05-14 Green Power Technologies. S.L. Modular voltage converter and method for mitigating the effects of a fault on a dc line
CN109494752A (zh) * 2018-11-22 2019-03-19 詹长江 一种集中式电阻耗能装置及其控制方法
CN109546656A (zh) * 2018-11-07 2019-03-29 姜田贵 一种耗能支路及控制方法
CN109787264A (zh) * 2018-11-22 2019-05-21 詹长江 一种集中式耗能装置及其控制方法
CN111654032A (zh) * 2020-05-27 2020-09-11 南京南瑞继保电气有限公司 一种直串模块式耗能装置的控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586334A (zh) * 2018-11-07 2019-04-05 詹长江 一种集成耗能电路功能的换流器
CN209787067U (zh) * 2019-06-25 2019-12-13 新疆金风科技股份有限公司 制动模块、制动电路、换流功率单元、换流阀及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067322A1 (en) * 2013-11-11 2015-05-14 Green Power Technologies. S.L. Modular voltage converter and method for mitigating the effects of a fault on a dc line
CN109546656A (zh) * 2018-11-07 2019-03-29 姜田贵 一种耗能支路及控制方法
CN109494752A (zh) * 2018-11-22 2019-03-19 詹长江 一种集中式电阻耗能装置及其控制方法
CN109787264A (zh) * 2018-11-22 2019-05-21 詹长江 一种集中式耗能装置及其控制方法
CN111654032A (zh) * 2020-05-27 2020-09-11 南京南瑞继保电气有限公司 一种直串模块式耗能装置的控制方法

Also Published As

Publication number Publication date
CN111654032B (zh) 2022-07-22
CN111654032A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
RU2665683C1 (ru) Топология схемы демпфирования токов короткого замыкания, метод и преобразователь на ее основе
CN107370387B (zh) 一种功率转换模块及由该功率转换模块串并联组成的电源系统
US11329486B2 (en) Method for initiating flexible DC transmission system under isolated island condition
CN109787264B (zh) 一种集中式耗能装置及其控制方法
US8339110B2 (en) Single stage hybrid charge pump
CN104836446A (zh) 隔离式变换器的控制方法、控制电路及开关电源
CN107294391B (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
KR101725087B1 (ko) Mmc 컨버터의 서브모듈용 전원제어장치
CN109494752B (zh) 一种集中式电阻耗能装置及其控制方法
KR101417669B1 (ko) 양방향 컨버터 제어 시스템
WO2021238498A1 (zh) 一种直串模块式耗能装置的控制方法
CN103107725A (zh) 一种具有直流电压反向功能的多电平换流器
CN103066826B (zh) 开关电源转换器的软启动系统
CN109245530B (zh) 一种用于稳定输出信号的电路以及电源转换器
CN204794688U (zh) 直流电源脉冲负载适配器
CN110571782B (zh) 一种能量控制电路及方法
WO2021031766A1 (zh) 一种限压电路
CN111431395B (zh) 一种基于门极驱动器的开关振铃抑制电路及其控制方法
CN104953823B (zh) 直流电源脉冲负载适配器
WO2021017337A1 (zh) 能量控制电路及其控制方法
CN203056997U (zh) 一种直流电源
CN111756262B (zh) 一种基于功率交互的并联逆变器下垂控制方法
CN113760028A (zh) 一种柔直子模块的取能电源及取能方法
CN108574301B (zh) 一种具备分布式均压的光伏集成组件控制器
CN208078912U (zh) 一种降容电路和模块化多电平换流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813161

Country of ref document: EP

Kind code of ref document: A1