WO2021237796A1 - 一种横式微型红外气体传感器 - Google Patents

一种横式微型红外气体传感器 Download PDF

Info

Publication number
WO2021237796A1
WO2021237796A1 PCT/CN2020/094772 CN2020094772W WO2021237796A1 WO 2021237796 A1 WO2021237796 A1 WO 2021237796A1 CN 2020094772 W CN2020094772 W CN 2020094772W WO 2021237796 A1 WO2021237796 A1 WO 2021237796A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
optical
channel
circuit board
Prior art date
Application number
PCT/CN2020/094772
Other languages
English (en)
French (fr)
Inventor
李铁
刘延祥
王翊
周宏�
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Publication of WO2021237796A1 publication Critical patent/WO2021237796A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • This application relates to the technical field of gas sensors, and in particular to a horizontal miniature infrared gas sensor.
  • Infrared gas sensors are characterized by their high accuracy, long life and selectivity. The advantages of good, non-poisoning, etc. have received extensive attention and research, and a series of infrared gas sensors have been developed.
  • Infrared gas sensor is a kind of miniature spectrum analysis device, which detects the concentration of gas by detecting the characteristic spectral absorption strength of gas molecules.
  • gas sensors such as electrochemical, catalytic combustion, semiconductor, etc.
  • it has a wide range of applications, long service life, high sensitivity, good stability, less environmental interference, non-poisoning, independent of oxygen, and suitable
  • a series of advantages such as more gas, high cost performance, low maintenance cost, and online analysis. It is widely used in petrochemical industry, metallurgical industry, mining industry, air pollution detection, agriculture, medical and health and other fields.
  • This application aims to solve the technical problem of the large volume of the infrared gas sensor.
  • an embodiment of the present application discloses a horizontal miniature infrared gas sensor, including: a miniature optical gas chamber, an infrared light source, an infrared detector, a power supply chip, an ASIC chip, and a first circuit board;
  • the optical path of the miniature optical chamber is a horizontal folded reflection structure, and the optical path is arranged in parallel with the first circuit board;
  • the miniature optical gas chamber includes a light input end and a light output end; the infrared light source is connected to the light input end, and the infrared detector is connected to the light output end; both the infrared detector and the infrared light source are arranged perpendicular to the optical path; the infrared detector and the infrared light source are arranged in the micro The same side of the optical chamber;
  • the miniature optical gas chamber, infrared light source and infrared detector are integrated on one side of the first circuit board, and the power chip and ASIC chip are integrated on the other side of the first circuit board;
  • the infrared detector adopts MEMS packaging technology for integrated packaging.
  • the micro optical gas chamber includes a first light channel, a second light channel, and a third light channel, one end of the second light channel is connected to the first light channel, and the other end of the second light channel is connected to the third light channel;
  • a first light reflection part is provided at the connection between the first light channel and the second light channel, and a second light reflection part is provided at the connection between the second light channel and the third light channel;
  • the light enters from the light input end through the first light channel to reach the first light reflection part, after being reflected by the first light reflection part, passes through the second light channel to the second light reflection part, and after being reflected by the second light reflection part, it passes through the third light reflection part.
  • the optical channel reaches the optical output end.
  • the horizontal miniature infrared gas sensor further includes a second circuit board and a third circuit board, and both the second circuit board and the third circuit board are arranged perpendicular to the first circuit board;
  • the infrared light source is integrated on the second circuit board, and the infrared detector is integrated on the third circuit board.
  • the radiation spectrum of the infrared light source 2 is broadband
  • Infrared light sources include MEMS light sources.
  • the infrared detector includes a detector chip, a filtering structure and a signal amplification chip;
  • the filter structure of the infrared detector chip and the signal amplifying chip realize integrated packaging through MEMS packaging technology.
  • the detector chip includes a pyroelectric detector chip
  • the filtering structure includes a narrow-band filter or an optical antenna
  • the signal amplification chip can change the signal amplification factor by replacing the external resistance, and can adjust the signal filtering parameters by replacing the capacitor.
  • the material of the micro optical chamber includes aluminum, brass, silicon or glass;
  • the preparation technology of the micro-optical gas chamber includes micro-machining or MEMS processing technology.
  • the inner surfaces of the first light channel, the second light channel and the third light channel are all provided with a gold-plated layer.
  • the power chip can provide power for infrared light sources, infrared detectors and ASIC chips.
  • the ASIC chip integrates an analog-to-digital conversion module and a data processing module.
  • the optical path of the micro optical gas chamber of the horizontal micro infrared gas sensor provided in the present application adopts a horizontal folded reflection structure, and the infrared detector and the infrared light source are arranged perpendicular to the optical path and arranged on the same side of the micro optical gas chamber to improve the space utilization rate.
  • the miniature infrared gas sensor provided by the embodiments of the present application utilizes a system-level hybrid integrated package such as a miniature optical gas chamber, an infrared light source, an infrared detector, a power chip, and an ASIC chip, which can effectively reduce the volume of the infrared gas sensor.
  • FIG. 1 is a schematic structural diagram of a horizontal miniature infrared gas sensor according to an embodiment of the application
  • FIG. 2 is an exploded schematic diagram of a horizontal miniature infrared gas sensor according to an embodiment of the application
  • FIG. 3 is a schematic diagram of the optical path of the miniature optical gas chamber according to the embodiment of the application.
  • FIG. 4 is a schematic diagram of the optical path of the miniature optical gas chamber according to the embodiment of the application.
  • FIG. 5 is a schematic diagram of the structure of an infrared detector according to an embodiment of the application.
  • Fig. 6 is a test curve diagram of a horizontal miniature infrared gas sensor according to an embodiment of the application.
  • 1-Micro optical chamber 11-First optical channel; 12-Second optical channel; 13- Third optical channel; 14-First light reflection part; 15-Second light reflection part; 2-Infrared light source; 3 -Infrared detector; 31-Thermistor; 32-Detector chip; 33-Filter structure; 34-Signal amplification chip; 35-Detector housing; 4-Power chip; 5-ASIC chip; 6-First circuit Board; 7-second circuit board; 8-third circuit board.
  • the "one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present application.
  • the orientation or positional relationship indicated by the terms “upper”, “lower”, “top”, “bottom”, etc. are based on the orientation or positional relationship shown in the drawings, and only It is for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. Moreover, the terms “first”, “second”, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • FIG. 1 is a schematic structural diagram of a horizontal micro infrared gas sensor according to an embodiment of the application
  • FIG. 2 is a disassembled structural schematic diagram of a horizontal micro infrared gas sensor according to an embodiment of the application, including :Miniature optical air chamber 1, infrared light source 2, infrared detector 3, power chip 4, ASIC chip 5 and first circuit board 6;
  • the optical path of the micro optical chamber 1 is a horizontal folded reflection structure, and the optical path is arranged in parallel with the first circuit board 6;
  • the miniature optical gas chamber 1 includes a light input terminal and a light output terminal; the infrared light source 2 is connected to the light input terminal, and the infrared detector 3 is connected to the light output terminal; the infrared detector 3 and the infrared light source 2 are arranged perpendicular to the optical path; the infrared detector 3 The infrared light source 2 and the infrared light source 2 are arranged on the same side of the micro-optical gas chamber 1; wherein, the infrared detector 3 and the infrared light source 2 are arranged perpendicular to the optical path to improve the space utilization rate and further realize the miniaturization of the sensor.
  • the micro optical chamber 1, the infrared light source 2 and the infrared detector 3 are integrated on one side of the first circuit board 6, and the power chip 4 and the ASIC chip 5 are integrated on the other side of the first circuit board 6;
  • the infrared detector 3 adopts MEMS packaging technology for integrated packaging.
  • the miniature infrared gas sensor provided in this application uses a system-level hybrid integrated package such as a miniature optical gas chamber 1, an infrared light source 2, an infrared detector 3, a power chip 4, and an ASIC chip 5 to realize the miniaturization of the infrared gas sensor; the prepared gas
  • the size of the sensor can reach 10mm ⁇ 10mm ⁇ 7mm (L ⁇ W ⁇ H).
  • FIG. 6 is a test curve diagram of the sensor provided in an embodiment of the application.
  • the hybrid integrated package includes the micro optical chamber 1, the infrared light source 2, the infrared detector 3, the power chip 4 and the ASIC chip 5 using board-level integration, and the infrared detector 3 uses MEMS packaging technology for integrated packaging and overall devices, Mechanical packaging of circuit boards and miniature optical chamber 1.
  • the optical path of the micro optical chamber 1 needs to be a horizontally folded structure, that is, the overall optical path is parallel to the first circuit board 6. set up;
  • the miniature optical gas chamber 1 can be shown in FIG. 3, including a first light channel 11, a second light channel 12, and a third light channel 13, and one end of the second light channel 12 is connected to the first light channel
  • the channel 11 is in communication, and the other end of the second optical channel 12 is in communication with the third optical channel 13;
  • a first light reflecting portion 14 is provided at the junction of the first light channel 11 and the second light channel 12, and a second light reflecting portion 15 is provided at the junction of the second light channel 12 and the third light channel 13;
  • the reflection part 14 and the second light reflection part 15 may be mirrors.
  • the first optical channel 11 includes an optical input end, and the second optical channel 12 includes an output end;
  • the light emitted by the infrared light source 2 enters from the light input end through the first light channel 11 and reaches the first light reflection part 14, is reflected by the first light reflection part 14 and then passes through the second light channel 12 and reaches the second light reflection part 15. After being reflected by the second light reflecting part 15, it reaches the light output end through the third light channel 13.
  • the micro optical gas chamber may also be as shown in FIG. 4, and the micro optical gas chamber 1 includes a first light channel 11, a second light channel 12, and a third light channel 13;
  • One end of the second optical channel 12 communicates with the first optical channel 11, and the other end of the second optical channel 12 communicates with the third optical channel 13;
  • the first optical channel 11 includes a first light reflecting part 14, and the third optical channel 13 includes The second light reflection portion 15; wherein, in this embodiment, the first light reflection portion 14 and the second light reflection portion 15 are arc structures.
  • the light emitted by the infrared light source 2 can reach the arc-shaped first light reflecting part 14 along the first light channel 11, and after being reflected by the arc-shaped first light reflecting part 14, reach the arc-shaped second light along the second channel.
  • the reflecting part 15 reaches the infrared detector 3 after being reflected by the arc-shaped second light reflecting part 15.
  • the first light channel 11 and the third light channel 13 are both designed as a curved surface structure as shown in the figure, and the entire or part of the curved surface of the first light channel 11 and the third light channel 13 are respectively used as the first light channel.
  • the first light channel 11 and the third light channel 13 may have other structures, and the corresponding areas of the first light channel 11 and the third light channel 13 where the first light reflecting part 14 and the second light reflecting part 15 are located are provided. It is a curved structure; optionally, the first light reflecting part 14 is arranged at the junction of the first light channel 11 and the second light channel 12, and the second light reflecting part 15 is arranged at the second light channel 12 and the third light channel 13’s connection.
  • the light reflection part adopts a curved surface structure, and its purpose is to use the curved surface to have the function of light converging and improve the transmission efficiency of light.
  • the main propagation direction of light can be approximately aligned along the second light channel 12. It is performed diagonally, so that a sufficiently long optical path can be guaranteed.
  • the light emitting surface of the infrared source 3 and the infrared receiving surface of the infrared detector 3 are parallel to the main propagation direction of the light.
  • the light emitted by the infrared light source 2 can reach the first curved light reflecting portion 14 along the first light channel 11, and the light passes through the first curved light.
  • the reflecting part 14 reaches the second curved light reflecting part 15 along the second channel after being reflected, and reaches the infrared detector 3 after being reflected by the second curved light reflecting part 15, and the whole light travels parallel to the first circuit board.
  • the folded optical path may also be another horizontal optical path that satisfies the propagation of the entire light in a plane parallel to the first circuit board.
  • the micro optical chamber 1 can be selected but not limited to materials such as aluminum and brass, and realized by micro-machining; the micro optical chamber 1 can be selected, but not limited to, silicon wafers, glass sheets and other materials, and processed by MEMS The process can also be realized by using ABS material and plastic injection molding process; for example, the micro air chamber 1 provided in this embodiment is made of brass material and made by micro-machining, and the inner surface finish can reach 0.8um; in order to improve the infrared reflection efficiency
  • the inner surfaces of the first light channel 11, the second light channel 12, and the third light channel 13 of the micro optical gas chamber 1 provided in this embodiment are gold-plated to form a gold-plated layer.
  • the horizontal miniature infrared gas sensor further includes a second circuit and a third circuit board 8.
  • the second circuit board 7 and the third circuit board 8 are both perpendicular to the first circuit board 6 and the infrared light source 2 is integrated in the first circuit board 6.
  • the infrared detector 3 is integrated on the third circuit board 8.
  • the first circuit board 6 and the second circuit board 7 may also be arranged as a whole circuit board.
  • the radiation spectrum of the infrared light source 2 is broadband; the infrared light source 2 can be selected but is not limited to a MEMS light source.
  • FIG. 5 shows a schematic structural diagram of the infrared detector 3 provided by the embodiments of the present application.
  • the infrared detector 3 includes a thermistor 31, a detector chip 32, a filter structure 33, a signal amplifying chip 34, and a detector. Housing 35; Thermistor 31, detector chip 32, filter structure 33, signal amplifying chip 34 and detector housing 35 realize integrated packaging through MEMS packaging technology.
  • the resistance value of the thermistor 31 is selected but not limited to 100K ⁇ .
  • the detector chip 32 can be selected but not limited to a pyroelectric detector chip; the filter structure 33 can be selected but not limited to a narrow band filter or an optical antenna, wherein the optical antenna adopts a MIM metamaterial structure, and the center wavelength is selected but not limited to 4.26 ⁇ m;
  • the signal amplifying chip 34 uses, but is not limited to, a low-noise auto-zero rail-to-rail amplifier powered by a single power supply to amplify the detector signal; the signal amplifying chip 34 can change the signal amplification factor by replacing the external resistor, and can be performed by replacing the capacitor Adjustment of signal filtering parameters.
  • the power chip 4 can provide power for the infrared light source 2, the infrared detector 3, and the ASIC chip 5.
  • the power chip 4 provided in the embodiment of the application provides, but is not limited to, two outputs. One output can use 3.3V to provide power for the ASIC chip 5 and infrared detector 3; the other output can use 3.3V as the infrared light source 2 Provide power.
  • the ASIC chip 5 integrates an analog-to-digital conversion module and a data processing module.
  • the ASIC chip 5 is internally integrated but not limited to an 18-bit successive approximation analog-to-digital converter, adopts a single-ended input, and has no less than 2 input channels.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种横式微型红外气体传感器,包括:微型光学气室(1)、红外光源(2)、红外探测器(3)、电源芯片(4)、ASIC芯片(5)和第一电路板(6);微型光学气室(1)的光路为横式折叠反射结构,光路与第一电路板(6)平行设置;微型光学气室(1)包括光输入端和光输出端;红外光源(2)与光输入端连接,红外探测器(3)与光输出端连接;红外探测器(3)及红外光源(2)均与光路垂直设置;红外探测器(3)及红外光源(2)设于微型光学气室(1)的同一侧;微型光学气室(1)、红外光源(2)和红外探测器(3)集成于第一电路板(6)的一面,电源芯片(4)和ASIC芯片(5)集成于第一电路板(6)的另一面;红外探测器(3)采用MEMS封装技术进行集成化封装。采用系统级混合集成封装有效减小了红外气体传感器的体积。

Description

一种横式微型红外气体传感器 技术领域
本申请涉及气体传感器技术领域,特别涉及一种横式微型红外气体传感器。
背景技术
随着科技的进步和经济的发展,目前社会正逐步跨入物联网时代,感知节点布设越来越多,进而传感器的需求越来越大,红外气体传感器以其精度高、寿命长、选择性好、不中毒等优点受到了人们广泛的关注和研究,开发出了一系列的红外气体传感器。
红外气体传感器是一种微型光谱分析器件,通过检测气体分子的特征光谱吸收强弱,实现对气体的浓度进行检测。它与其它类别气体传感器如电化学式、催化燃烧式、半导体式等相比具有应用广泛、使用寿命长、灵敏度高、稳定性好、受环境干扰因素较小、不中毒、不依赖于氧气、适合气体多、性价比高、维护成本低、可在线分析等一系列优点。其广泛应用于石油化工、冶金工业、工矿开采、大气污染检测、农业、医疗卫生等领域。
随着万物互联技术的发展,对传感器的需求趋于微型化和集成化,目前市场上的红外气体传感器体积相对较大,难以满足某些特定场合微型化气体传感器的需求。
发明内容
本申请要解决是红外气体传感器体积较大的技术问题。
为解决上述技术问题,本申请实施例公开了一种横式微型红外气体传感器,包括:微型光学气室、红外光源、红外探测器、电源芯片和ASIC芯片和第一电路板;
微型光学气室的光路为横式折叠反射结构,光路与第一电路板平行设置;
微型光学气室包括光输入端和光输出端;红外光源与光输入端连接,红外探测器与光输出端连接;红外探测器及红外光源均与光路垂直设置;红外探测器及红外光源设于微型光学气室的同一侧;
微型光学气室、红外光源和红外探测器集成于第一电路板的一面,电源芯片和ASIC芯片集成于第一电路板的另一面;
红外探测器采用MEMS封装技术进行集成化封装。
进一步地,微型光学气室包括第一光通道、第二光通道和第三光通道,第二光通道的一端与第一光通道连通,第二光通道的另一端与第三光通道连通;
第一光通道与第二光通道的连接处设有第一光反射部,第二光通道与第三光通道的连接处设有第二光反射部;
光从光输入端进入后通过第一光通道到达第一光反射部,经第一光反射部反射后通过第二光通道到达第二光反射部,经第二光反射部反射后通过第三光通道到达光输出端。
进一步地,横式微型红外气体传感器还包括第二电路板和第三电路板,第二电路板及第三电路板均与第一电路板垂直设置;
红外光源集成于第二电路板上,红外探测器集成于第三电路板上。
进一步地,红外光源2的辐射光谱为宽带;
红外光源包括MEMS光源。
进一步地,红外探测器包括探测器芯片、滤波结构和信号放大芯片;
红外探测器芯片滤波结构和信号放大芯片通过MEMS封装技术实现集成化封装。
进一步地,探测器芯片包括热电型探测器芯片;
滤波结构包括窄带滤光片或光学天线;
信号放大芯片能够通过更换外置电阻改变信号放大倍数,且能够通过更换电容进行信号滤波参数的调整。
进一步地,微型光学气室的材料包括铝、黄铜、硅或玻璃;
微型光学气室的制备工艺包括微机械加工或MEMS加工工艺。
进一步地,第一光通道、第二光通道和第三光通道的内表面均设有镀金层。
进一步地,电源芯片能够为红外光源、红外探测器和ASIC芯片提供电源。
进一步地,ASIC芯片集成模数转换模块和数据处理模块。
采用上述技术方案,本申请具有如下有益效果:
本申请提供的横式微型红外气体传感器的微型光学气室的光路采用横式折叠反射结构,红外探测器及红外光源均与光路垂直设置并设于微型光学气室的同一侧以提高空间利用率;本申请实施例提供的微型红外气体传感器利用微型光学气室、红外光源、红外探测器、电源芯片和ASIC芯片等的系统级混合集成封装能够有效减小红外气体传感器的体积。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一种横式微型红外气体传感器的结构示意图;
图2为本申请实施例一种横式微型红外气体传感器的分解示意图;
图3为本申请实施例微型光学气室的光路示意图;
图4为本申请实施例微型光学气室的光路示意图;
图5为本申请实施例红外探测器的结构示意图;
图6为本申请实施例横式微型红外气体传感器的测试曲线图。
以下对附图作补充说明:
1-微型光学气室;11-第一光通道;12-第二光通道;13-第三光通道;14-第一光反射部;15-第二光反射部;2-红外光源;3-红外探测器;31-热敏电阻;32-探测器芯片;33-滤波结构;34-信号放大芯片;35-探测器壳体;4-电源芯片;5-ASIC芯片;6-第一电路板;7-第二电路板;8-第三电路板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请实施例的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
请参见图1并结合图2,图1为本申请实施例一种横式微型红外气体传感器的结构示意图,图2为本申请实施例一种横式微型红外气体传感器的拆解结构示意图,包括:微型光学气室1、红外光源2、红外探测器3、电源芯片4和ASIC芯片5和第一电路板6;
微型光学气室1的光路为横式折叠反射结构,光路与第一电路板6平行设置;
微型光学气室1包括光输入端和光输出端;红外光源2与光输入端连接,红外探测器3与光输出端连接;红外探测器3及红外光源2均与光路垂直设置;红外探测器3及红外光源2设于微型光学气室1的同一侧;其中,红外探测器3及红外光源2均与光路垂直设置可以提高空间利用率, 进一步实现传感器的微型化。
微型光学气室1、红外光源2和红外探测器3集成于第一电路板6的一面,电源芯片4和ASIC芯片5集成于第一电路板6的另一面;
红外探测器3采用MEMS封装技术进行集成化封装。本申请提供的微型红外气体传感器,利用微型光学气室1、红外光源2、红外探测器3、电源芯片4和ASIC芯片5等的系统级混合集成封装实现红外气体传感器的微型化;制备的气体传感器的尺寸可以达到10mm×10mm×7mm(L×W×H),图6为本申请实施例提供的传感器的测试曲线图。
其中,混合集成封装包括微型光学气室1、红外光源2、红外探测器3、电源芯片4和ASIC芯片5的采用板级集成、红外探测器3采用MEMS封装技术进行集成化封装以及整体器件、电路板、微型光学气室1的机械封装。
本申请实施例中,微型光学气室1的方案可以有多种,为满足器件的微型化,该微型光学气室1的光路需要为横式折叠结构,即整体光路与第一电路板6平行设置;
一种可实施的方案中,微型光学气室1可以如图3所示,包括第一光通道11、第二光通道12和第三光通道13,第二光通道12的一端与第一光通道11连通,第二光通道12的另一端与第三光通道13连通;
第一光通道11与第二光通道12的连接处设有第一光反射部14,第二光通道12与第三光通道13的连接处设有第二光反射部15;该第一光反射部14与第二光反射部15可以为反光镜。
第一光通道11包括光输入端,第二光通道12包括输出端;
红外光源2发出的光从光输入端进入后通过第一光通道11到达第一光反射部14,经第一光反射部14反射后通过第二光通道12到达第二光反射部15,经第二光反射部15反射后通过第三光通道13到达光输出端。
另一种可实施的方案中,该微型光学气室也可以如图4所示,微型光学气室1包括第一光通道11、第二光通道12和第三光通道13;
第二光通道12的一端与第一光通道11连通,第二光通道12的另一端与第三光通道13连通;第一光通道11包括第一光反射部14,第三光通道13包括第二光反射部15;其中,该实施方案中,第一光反射部14和第二 光反射部15为弧面结构。
红外光源2发出的光线能够沿第一光通道11到达弧面形状的第一光反射部14,经弧面形状的第一光反射部14反射后沿第二通道到达弧面形状的第二光反射部15,经弧面形状的第二光反射部15反射后到达红外探测器3。
该实施方案中,第一光通道11和第三光通道13均设计为如图所示的弧面结构,第一光通道11和第三光通道13的整体或部分弧面分别作为第一光反射部和第二光反射部15。可选的,第一光通道11和第三光通道13可以为其他结构,第一光反射部14和第二光反射部15所在的第一光通道11和第三光通道13的对应区域设为弧面结构;可选的,第一光反射部14设于第一光通道11和第二光通道12的连接处,第二光反射部15设于第二光通道12和第三光通道13的连接处。
该实施方案中光反射部采用弧面结构,其目的为利用弧面具有光线汇聚的作用,提高光的传输效率,该实施方案中,光线主传播方向可以近似为沿第二光通道12呈对角线进行,如此能够保证足够长的光程。红外源3光线发出面和红外探测器3红外线接收面与光线主传播方向平行,红外光源2发出的光线能够沿第一光通道11到达第一弧面光反射部14,经第一弧面光反射部14反射后沿第二通道到达第二弧面光反射部15,经第二弧面光反射部15反射后到达红外探测器3,整体光线的传播于第一电路板平行。本申请实施例中,该折叠光路也可以为满足整体光线的传播在与第一电路板相平行的平面内进行的其他横式光路。
本申请实施例中,微型光学气室1可以选用但不仅限于铝、黄铜等材料,利用微机械加工实现;微型光学气室1可以选用但不仅限于硅片、玻璃片等材料,利用MEMS加工工艺实现,也可以选用ABS材料,利用塑料注塑加工工艺实现;例如,本实施例提供的微型气室1选用黄铜材料采用微机械加工制作,内表面光洁度可以达到0.8um;为提高红外反射效率,本实施例提供的微型光学气室1的第一光通道11、第二光通道12和第三光通道13的内表面表面进行镀金处理,形成镀金层。
本申请实施例中,横式微型红外气体传感器还包括第二电路和第三电路板8,第二电路板7及第三电路板8均与第一电路板6垂直设置红外光源 2集成于第二电路板7上,红外探测器3集成于第三电路板8上。可选的,在图3中所示光路的情况下,第一电路板6与第二电路板7也可以设置为整块的电路板。
本申请实施例中,红外光源2的辐射光谱为宽带;红外光源2可以选用但不仅限于MEMS光源。
本申请实施例中,图5示出了本申请实施例提供的红外探测器3结构示意图,红外探测器3包括热敏电阻31、探测器芯片32、滤波结构33、信号放大芯片34和探测器壳体35;热敏电阻31、探测器芯片32、滤波结构33、信号放大芯片34和探测器壳体35通过MEMS封装技术实现集成化封装。热敏电阻31的阻值选用但不仅限于100KΩ。探测器芯片32可以选用但不仅限于热电型探测器芯片;滤波结构33可以选用但不仅限于窄带滤光片或光学天线,其中,光学天线采用M-I-M超材料结构,中心波长选用但不仅限于4.26μm;信号放大芯片34选用但不仅限于单电源供电的低噪声自稳零轨对轨放大器,对探测器信号进行放大;信号放大芯片34能够通过更换外置电阻改变信号放大倍数,且能够通过更换电容进行信号滤波参数的调整。
本申请实施例中,电源芯片4能够为红外光源2、红外探测器3和ASIC芯片5提供电源。本申请实施例提供的电源芯片4提供但不仅限于2路输出,1路输出可以选用3.3V电压为ASIC芯片5、红外探测器3提供电源;另1路输出可以选用3.3V电源为红外光源2提供电源。
本申请实施例中,ASIC芯片5集成模数转换模块和数据处理模块。ASIC芯片5内部集成但不仅限于18位逐次逼近型模数转换器,采用单端输入,具有不少于2路输入通道。
以上仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种横式微型红外气体传感器,其特征在于,包括:微型光学气室(1)、红外光源(2)、红外探测器(3)、电源芯片(4)和ASIC芯片(5)和第一电路板(6);
    所述微型光学气室(1)的光路为横式折叠反射结构,所述光路与所述第一电路板(6)平行设置;
    所述微型光学气室(1)包括光输入端和光输出端;所述红外光源(2)与所述光输入端连接,所述红外探测器(3)与所述光输出端连接;所述红外探测器(3)及所述红外光源(2)均与所述光路垂直设置;所述红外探测器(3)及所述红外光源(2)设于所述微型光学气室(1)的同一侧;
    所述微型光学气室(1)、所述红外光源(2)和所述红外探测器(3)集成于所述第一电路板(6)的一面,所述电源芯片(4)和所述ASIC芯片(5)集成于所述第一电路板(6)的另一面;
    所述红外探测器(3)采用MEMS封装技术进行集成化封装。
  2. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,
    所述微型光学气室(1)包括第一光通道(11)、第二光通道(12)和第三光通道(13),所述第二光通道(12)的一端与所述第一光通道(11)连通,所述第二光通道(12)的另一端与所述第三光通道(13)连通;
    所述第一光通道(11)与所述第二光通道(12)的连接处设有第一光反射部(14),所述第二光通道(12)与所述第三光通道(13)的连接处设有第二光反射部(15);
    光从所述光输入端进入后通过所述第一光通道(11)到达所述第一光反射部(14),经所述第一光反射部(14)反射后通过所述第二光通道(12)到达所述第二光反射部(15),经所述第二光反射部(15)反射后通过所述第三光通道(13)到达所述光输出端。
  3. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,还 包括第二电路板(7)和第三电路板(8),所述第二电路板(7)及所述第三电路板(8)均与所述第一电路板(6)垂直设置;
    所述红外光源(2)集成于所述第二电路板(7)上,所述红外探测器(3)集成于所述第三电路板(8)上。
  4. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,所述红外光源(2)的辐射光谱为宽带;
    所述红外光源(2)包括MEMS光源。
  5. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,所述红外探测器(3)包括探测器芯片(32)、滤波结构(33)和信号放大芯片(34);
    所述探测器芯片(32)、所述滤波结构(33)和所述信号放大芯片(34)通过MEMS封装技术实现集成化封装。
  6. 根据权利要求5所述的横式微型红外气体传感器,其特征在于,
    所述探测器芯片(32)包括热电型探测器芯片;
    所述滤波结构(33)包括窄带滤光片或光学天线;
    所述信号放大芯片(34)能够通过更换外置电阻改变信号放大倍数,且能够通过更换电容进行信号滤波参数的调整。
  7. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,所述微型光学气室(1)的材料包括铝、黄铜、硅或玻璃;
    所述微型光学气室(1)的制备工艺包括微机械加工或MEMS加工工艺。
  8. 根据权利要求2所述的横式微型红外气体传感器,其特征在于,所述第一光通道(11)、所述第二光通道(12)和所述第三光通道(13)的内表面均设有镀金层。
  9. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,所述电源芯片(4)能够为所述红外光源(2)、所述红外探测器(3)和所述ASIC芯片(5)提供电源。
  10. 根据权利要求1所述的横式微型红外气体传感器,其特征在于,所述ASIC芯片(5)集成模数转换模块和数据处理模块。
PCT/CN2020/094772 2020-05-26 2020-06-05 一种横式微型红外气体传感器 WO2021237796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010454331.8 2020-05-26
CN202010454331.8A CN111562232A (zh) 2020-05-26 2020-05-26 一种横式微型红外气体传感器

Publications (1)

Publication Number Publication Date
WO2021237796A1 true WO2021237796A1 (zh) 2021-12-02

Family

ID=72072357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094772 WO2021237796A1 (zh) 2020-05-26 2020-06-05 一种横式微型红外气体传感器

Country Status (2)

Country Link
CN (1) CN111562232A (zh)
WO (1) WO2021237796A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198134A (zh) * 2020-10-13 2021-01-08 海南聚能科技创新研究院有限公司 一种便携式红外气体分析仪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122223A (zh) * 2014-08-07 2014-10-29 中国科学院上海微系统与信息技术研究所 一种双光程多气体红外气体传感器
CN109564153A (zh) * 2016-08-23 2019-04-02 德尔格安全股份两合公司 用于气体的吸收测量的测量装置
CN109768469A (zh) * 2019-01-22 2019-05-17 大连艾科科技开发有限公司 封装方法、激光器和气体检测装置
CN110132877A (zh) * 2019-06-17 2019-08-16 山东大学 一种基于mems的集成式红外气体传感器
EP3553500A1 (en) * 2016-12-06 2019-10-16 LG Electronics Inc. -1- Gas sensor
CN110462377A (zh) * 2016-12-09 2019-11-15 新加坡国立大学 气体传感器mems结构及其制造方法
CN110927094A (zh) * 2019-11-20 2020-03-27 华中科技大学 一种微型化全集成ndir气体传感器及其制备方法
US20200103339A1 (en) * 2018-09-28 2020-04-02 Stmicroelectronics S.R.L. Ndir detector device for detecting gases having an infrared absorption spectrum
CN111060470A (zh) * 2019-12-31 2020-04-24 山东省科学院激光研究所 带有多点反射矩形吸收池的气体传感器探头及检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100491971C (zh) * 2006-06-07 2009-05-27 中国科学院上海微系统与信息技术研究所 基于闪耀光栅和热堆探测器的微型集成光栅光谱仪及制作方法
CN102128804B (zh) * 2010-11-12 2013-06-19 上海芯敏微系统技术有限公司 一种侧壁进/出气的红外气体传感器
CN102495003B (zh) * 2011-11-16 2013-12-04 上海芯敏微系统技术有限公司 小型长光程红外气体传感器模块
CN205607852U (zh) * 2016-04-15 2016-09-28 南京信息工程大学 一种基于红外吸收原理的小型化长光程甲烷气体传感器
CN109358019B (zh) * 2018-12-13 2023-12-22 上海翼捷工业安全设备股份有限公司 基于红外光谱分析的气体传感器
CN109883979A (zh) * 2019-03-26 2019-06-14 翼捷安全设备(昆山)有限公司 一种可调长光路红外气体传感器及检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122223A (zh) * 2014-08-07 2014-10-29 中国科学院上海微系统与信息技术研究所 一种双光程多气体红外气体传感器
CN109564153A (zh) * 2016-08-23 2019-04-02 德尔格安全股份两合公司 用于气体的吸收测量的测量装置
EP3553500A1 (en) * 2016-12-06 2019-10-16 LG Electronics Inc. -1- Gas sensor
CN110462377A (zh) * 2016-12-09 2019-11-15 新加坡国立大学 气体传感器mems结构及其制造方法
US20200103339A1 (en) * 2018-09-28 2020-04-02 Stmicroelectronics S.R.L. Ndir detector device for detecting gases having an infrared absorption spectrum
CN109768469A (zh) * 2019-01-22 2019-05-17 大连艾科科技开发有限公司 封装方法、激光器和气体检测装置
CN110132877A (zh) * 2019-06-17 2019-08-16 山东大学 一种基于mems的集成式红外气体传感器
CN110927094A (zh) * 2019-11-20 2020-03-27 华中科技大学 一种微型化全集成ndir气体传感器及其制备方法
CN111060470A (zh) * 2019-12-31 2020-04-24 山东省科学院激光研究所 带有多点反射矩形吸收池的气体传感器探头及检测装置

Also Published As

Publication number Publication date
CN111562232A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
KR101339076B1 (ko) 돔 가스 센서
US11747272B2 (en) Gas detection using differential path length measurement
WO2021237796A1 (zh) 一种横式微型红外气体传感器
WO2022267963A1 (zh) 一种用于复合气体的综合检测装置
US8097856B2 (en) Super-miniaturized NDIR gas sensor
CN115236021A (zh) 一种并列式双通道红外气体传感器
CN106979824B (zh) 一种非分光红外乙烯气体传感器及其测量方法
WO2022213584A1 (zh) 一种基于单悬臂梁的差分式光声光谱气体检测装置
CN106596408A (zh) 一种基于三角形结构的长程光谱吸收池
CN111693480A (zh) 一种竖式微型红外气体传感器
CN212207094U (zh) 一种基于热释电红外探测器的ndir气体检测模组
US11353431B2 (en) Photoacoustic sensor
CN102230882A (zh) 一种采用Herroitt多次反射样品室的气体检测平台
CN202018419U (zh) 一种采用Herroitt多次反射样品室的气体检测平台
Li et al. A compact low-noise photodiode detection system for chemiluminescence nitric oxide analyzer
WO2023009605A1 (en) Differential path length sensing using monolithic, dual-wavelength light emitting diode
US11639891B2 (en) Integrated photoacoustic gas sensor and method for manufacturing the same
JPH01503489A (ja) イントラキャビティマルチモードレーザー分光計
US11821836B2 (en) Fully compensated optical gas sensing system and apparatus
CN113008823B (zh) 一种全集成式红外气体传感器
Zhang et al. Gas chamber and thermal isolation structure simulation for an integrated NDIR gas sensor
WO2023210674A1 (ja) 光学式ガスセンサ装置
CN221078434U (zh) 一种基于光声原理的气体传感器
CN216484611U (zh) 一种调频激光吸收光谱气体探测装置
CN210665491U (zh) 一种微型低功耗红外气体传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937277

Country of ref document: EP

Kind code of ref document: A1