WO2021237787A1 - Sounding device - Google Patents

Sounding device Download PDF

Info

Publication number
WO2021237787A1
WO2021237787A1 PCT/CN2020/094696 CN2020094696W WO2021237787A1 WO 2021237787 A1 WO2021237787 A1 WO 2021237787A1 CN 2020094696 W CN2020094696 W CN 2020094696W WO 2021237787 A1 WO2021237787 A1 WO 2021237787A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
base
sounding
extension wall
rear shell
Prior art date
Application number
PCT/CN2020/094696
Other languages
French (fr)
Chinese (zh)
Inventor
吴树文
曹成铭
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021237787A1 publication Critical patent/WO2021237787A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the utility model relates to the field of electro-acoustic conversion, in particular to a sound-producing device applied to portable mobile electronic products.
  • Sounding devices also known as speakers, are widely used in portable mobile electronic products, such as mobile phones, to convert audio signals into sound for playback.
  • the sounding devices have high loudness and amplitude.
  • the related art sounding device includes a basin frame, a vibration system fixed to the basin frame, and a magnetic circuit system with a magnetic gap.
  • the magnetic circuit system drives the vibration system to vibrate and produce sound
  • the vibration system includes The diaphragm of the basin frame and a voice coil fixed to the diaphragm and inserted in the magnetic gap to drive the diaphragm to vibrate and produce sound.
  • the related art sound device does not have a rear cavity structure or the rear cavity is an open structure, when used in portable mobile electronic products such as mobile phones, it will cause the problem of mobile phone shell vibration, resulting in poor user experience; and mobile phone space Due to the limited size, the sound emitting device cannot be designed into a speaker box structure with a back cavity in the prior art to overcome this problem.
  • the sound-generating device of the related art has poor airtightness, thereby affecting the acoustic performance of the sound-generating device.
  • the purpose of the utility model is to provide a sound device with simple structure, good sealing performance, better acoustic performance and good user experience.
  • the present invention provides a sound emitting device, which includes a housing with a housing space and a sound emitting monomer housed in the housing, and the sound emitting monomer includes a diaphragm for vibrating and sounding.
  • the housing includes a base and a rear housing respectively covered on opposite sides of the sound-producing monomer along the vibration direction of the diaphragm;
  • the base includes a base plate that is covered and fixed on a side of the sounding unit close to the diaphragm, and the outer periphery of the base plate is bent in a direction away from the diaphragm along the circumferential side of the sounding unit Extended base extension wall;
  • the rear shell includes a rear shell plate located on a side of the sound emitting unit away from the base plate and spaced from the sound emitting unit, and a peripheral edge of the rear shell plate is approached along the circumferential side of the sound emitting unit
  • a rear shell extension wall bent and extended in the direction of the base extension wall, and the rear shell extension wall abuts against the base extension wall;
  • the sound emitting device further includes a sealing element, the sealing element is arranged at the connection between the extension wall of the rear shell and the extension wall of the base and is simultaneously glued and fixed with the base and the rear shell to form a seal;
  • the base is provided with a sound hole penetrating therethrough, the sound hole is in communication with the diaphragm, and the rear shell plate, the rear shell extension wall, the base extension wall and the sound monomer are jointly enclosed In the rear acoustic cavity, the sound-producing monomer is provided with a leakage part communicating with the rear acoustic cavity, and the rear shell is provided with a leakage hole, and the leakage hole connects the rear acoustic cavity with the outside.
  • the sealing element is partially or completely sandwiched between the extension wall of the base and the extension wall of the rear shell, and the sealing element is elastically deformed.
  • it is arranged outside the accommodating space and attached to the connection between the extension wall of the base and the extension wall of the rear shell.
  • the sound-producing unit includes a basin frame, a vibration system respectively supported and fixed to the basin frame, and a magnetic circuit system that drives the vibration system to vibrate and produce sound, and the thickness of the shell is smaller than the thickness of the basin frame.
  • the ratio of the thickness of the shell to the thickness of the basin frame is less than 0.4.
  • the base extension wall and/or the rear shell extension wall are attached to the basin frame, or the base extension wall and/or the rear shell extension wall and at least one side of the basin frame are provided There is an interval, and the interval is less than 3 times the thickness of the casing.
  • the housing is made of metal material.
  • the housing is at least partially grounded.
  • the sound generating device further includes a conductive member, one end of the conductive member is electrically connected to the housing, and the other end of the conductive member is used for grounding.
  • the conductive member is formed by extending the housing.
  • the sound emitting device further includes a conductive member, the conductive member includes two electrical pathways, one of the electrical pathways is used to connect the sounding monomer with an external electrical signal, and the other of the electrical pathways Used to connect the shell and the ground.
  • the sound emitting device further includes at least two positioning pieces, the two positioning pieces are connected to opposite sides or two diagonal corners of the casing, and the positioning piece is provided with one end away from the casing Through the positioning hole on it.
  • the positioning piece is formed by extending outward from the casing.
  • the shell is made of a 0.15mm thick steel sheet.
  • the sound-producing unit further includes a front cover arranged on the side of the basin frame close to the diaphragm, the front cover, the base and the diaphragm collectively enclose a front sound cavity, and the front
  • the cover is provided with a through hole passing through it along the vibration direction, and the through hole connects the front acoustic cavity with the outside.
  • the sound emitting device further includes a front cover arranged on a side of the basin frame close to the diaphragm, the front cover, the base and the diaphragm collectively enclose a front sound cavity, and the front cover Is provided with a through hole penetrating through it along the vibration direction, and the through hole connects the front acoustic cavity with the outside;
  • the front cover passes through the sound hole and is exposed on the base.
  • the sound generating device further includes a breathable damping member attached to the front cover, and the breathable damping member completely covers the through hole.
  • the sound-emitting device includes a sound-guiding shell covering a side of the sound-emitting monomer away from the rear shell, the sound-guiding shell having a sound-guiding cavity forming a side sound-emitting structure, and the sound-guiding cavity and the vibration The membrane is connected.
  • the housing and the sound-emitting monomer also enclose a sound-guiding cavity forming a side sound-emitting structure, and the sound-guiding cavity is in communication with the diaphragm.
  • the sound emitting device further includes a gas permeable isolator located in the rear acoustic cavity, and the gas permeable isolator is attached to the sound emitting monomer and separates the sound emitting unit from the rear acoustic cavity.
  • the sound generating device further includes a gas-permeable spacer located in the rear acoustic cavity, and the gas-permeable spacer includes a spacer body arranged opposite to the rear shell at intervals, and is directed from the periphery of the spacer body to the A spacer extension part bent and extended in the direction of the rear shell and a spacer fixing part bent and extended from an end of the spacer extension part away from the spacer body; the spacer extension part is spaced from the rear shell extension wall It is provided that the spacer fixing part is fixed to the rear shell; the air-permeable spacer and the rear shell jointly enclose a powder filling space.
  • a side of the isolator body close to the sounding unit is recessed in a direction away from the sounding unit to form an avoiding step, and the avoiding step is arranged directly opposite to the leakage portion.
  • the area ratio of the orthographic projection of the sound-emitting monomer to the rear shell along the vibration direction of the diaphragm to the rear shell is at least 2/3.
  • the interval is less than or equal to 1/3 of the width of the fixed surface of the diaphragm fixed to the basin frame.
  • the base and the rear shell are designed to cover the opposite sides of the basin frame, and the rear shell plate, the rear shell extension wall, and the The extension wall of the base and the sounding monomer jointly enclose a rear sound cavity
  • the rear housing is provided with a leak hole to communicate the rear sound cavity with the outside
  • the sounding device further includes a sealing element which is arranged on the rear housing to extend The connection between the wall and the extension wall of the base and at the same time is glued and fixed with the base and the rear shell to form a seal.
  • the above-mentioned structure forms a sealed rear acoustic cavity structure, which is not only simple in structure, and small in overall size, but also makes the sound device The acoustic effect is better, and the sealed rear acoustic cavity structure enables the sound emitting device to avoid the occurrence of shell vibration after being applied to the mobile terminal, so that the user experience effect is better.
  • the arrangement of the above structure further improves the sealing performance of the base and the rear case.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the sound generating device of the present invention.
  • Figure 2 is an exploded schematic diagram of the three-dimensional structure of the sound device of the present invention.
  • Fig. 3 is a schematic view of a three-dimensional structure of the sound device of the present invention from another perspective;
  • Figure 4 is a cross-sectional view taken along line A-A in Figure 1;
  • Fig. 5 is a three-dimensional structural diagram of an embodiment of adding conductive elements of the sound generating device of the present invention.
  • FIG. 6 is a schematic diagram of a three-dimensional structure of another derivative embodiment of FIG. 5;
  • FIG. 7 is a schematic diagram of a three-dimensional structure of another embodiment of adding conductive elements of the sound device of the present invention.
  • Fig. 8 is an exploded schematic view of a part of the three-dimensional structure of Fig. 7;
  • FIG. 9 is a schematic structural diagram of an embodiment in which the housing of FIG. 4 forms a side sounding structure
  • Fig. 10 is a schematic structural diagram of the sound generating device shown in Fig. 4 added with a breathable spacer;
  • FIG. 11 is a schematic diagram of another embodiment structure of the air-permeable spacer in the embodiment shown in FIG. 10;
  • FIG. 12 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 11;
  • FIG. 13 is a schematic structural diagram of an embodiment in which a positioning piece is added to the sound generating device shown in FIG. 1;
  • FIG. 13 is a schematic structural diagram of an embodiment in which a positioning piece is added to the sound generating device shown in FIG. 1;
  • FIG. 14 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 13.
  • the present invention provides a sound emitting device 100, which includes a housing 1 with a receiving space and a sound emitting monomer 2 housed in the housing 1.
  • the sound unit 2 includes a basin frame 21, a vibration system 22, a magnetic circuit system 23 and a leakage part 24.
  • the vibration system 22 and the magnetic circuit system 23 are respectively supported and fixed to the basin frame 21 and jointly enclose a sounding cavity 103.
  • the magnetic circuit system 23 drives the vibration system 22 to vibrate and produce sound.
  • the vibration system 22 includes a diaphragm 221 fixed to the basin frame 21, and the diaphragm 221 is used for vibrating and sounding.
  • the thickness of the shell 1 is smaller than the thickness of the basin frame 21.
  • the shell 1 is made of a 0.15mm thick steel sheet, which effectively reduces shell vibration.
  • the housing 1 includes a base 11 and a rear shell 12 respectively covering two opposite sides of the sound emitting unit 2 along the vibration direction of the diaphragm 221.
  • the ratio of the thickness of the shell 1 to the thickness of the basin frame 21 is less than 0.4, so that while the structural strength of the shell 1 is satisfied, the size of the sound emitting device 100 along the direction perpendicular to the vibration direction is increased as little as possible. ; Moreover, the structural strength of the basin frame 21 is guaranteed while occupying as little space as possible.
  • the base 11 includes a base plate 111 that is covered and fixed on the side of the sounding unit 2 away from the rear shell 12, and the outer periphery of the base plate 111 is far away from the sounding unit 2 along the circumferential side of the sounding unit 2.
  • the base extension wall 112 is bent and extended in the direction of the diaphragm 221.
  • the rear shell 12 includes a rear shell 121 located on a side of the sound emitting unit 2 away from the base plate 111 and spaced from the sound emitting unit 2, and a rear shell 121 along the periphery of the rear shell 121
  • the rear shell extension wall 122 of the single body 2 is bent and extended in the direction close to the base 11.
  • the rear shell extension wall 122 abuts against the base extension wall 112.
  • the base extension wall 112 and/or the rear shell extension wall 122 are attached to the basin frame 21, or the base extension wall 112 and/or the rear shell extension wall 122 and at least the basin frame 21
  • One side is provided with a gap, and the gap is less than 3 times the thickness of the casing.
  • the arrangement of the interval can make the sound emitting unit 2 be assembled into the housing 1 more quickly, improve the assembly efficiency, and at the same time, will not occupy more lateral space occupied by the sound emitting device 100 perpendicular to the vibration direction.
  • the above-mentioned interval can also be used to increase the volume of the rear acoustic cavity 102 and further improve the acoustic performance.
  • the interval is less than or equal to the fixed surface of the diaphragm 221 (glued). 1/3 of the width of the surface).
  • the sounding device 100 further includes a sealing member 3, which is arranged at the connection between the rear shell extension wall 122 and the base extension wall 112 and is glued and fixed to the base 11 and the rear shell 12 at the same time. Form a seal.
  • the arrangement of this structure further improves the sealing performance of the base 4 and the rear shell 5, and further improves the acoustic performance of the sound emitting device 100.
  • the sealing member 3 is disposed outside the receiving space and attached to the connection between the base extension wall 112 and the rear housing extension wall 122.
  • the sealing element 3 is partially or completely sandwiched between the base extension wall 112 and the rear shell extension wall 122, and the sealing element 3 is elastically deformed. Both of these two methods can further improve the sealing performance of the base 11 and the rear shell 12, and the position of the sealing member 3 can be set according to actual conditions.
  • the base 11 is provided with a sound hole 113 passing through it, and the sound hole 113 communicates with the diaphragm 221 for sound.
  • the rear shell panel 121, the rear shell extension wall 122, the base extension wall 112 and the sound emitting unit 2 collectively enclose a rear acoustic cavity 102.
  • the leakage portion 24 communicates with the rear acoustic cavity 102, so that the sound-emitting cavity 103 is communicated with the rear acoustic cavity 102 through the leakage portion 24 to improve low-frequency acoustic performance.
  • the rear shell 12 is provided with a leakage hole 123, which communicates the rear acoustic cavity 102 with the outside, and is used to balance the sound pressure.
  • the rear shell 121, the rear shell extension wall 122, the base extension wall 112, and the sound-producing monomer 2 collectively enclose a rear acoustic cavity 102, and the sealing member 3 is disposed on the rear shell extension
  • the connection between the wall 122 and the base extension wall 112 is glued and fixed with the base 11 and the rear shell 122 at the same time, so that the rear acoustic cavity 102 is sealed. So far, the above-mentioned sound emitting device 100 of the present invention forms a closed rear acoustic cavity structure, which is simple in structure.
  • the base 11 and the rear case 12 form a vibration absorbing effect, so that the sound-producing device 100 will not cause the mobile terminal and other electronic products to produce case vibration after being used in electronic products such as mobile terminals, which effectively increases the user experience effect of customers.
  • the sound-producing unit 2 further includes a front cover 4 covering a side of the basin frame 21 close to the diaphragm 221, and the front cover 4, the base 11, and the diaphragm 221 share a common Surrounding the front acoustic cavity 101, the front cover 4 is provided with a through hole 41 penetrating the front cover 4 along the vibration direction, and the through hole 41 connects the front acoustic cavity 101 with the outside.
  • the front cover 4 is a part of the structure of the sound emitting monomer 2, that is, the sound emitting monomer 2 has its own front cover 4.
  • the front cover 4 may not be a part of the sound emitting unit 2, but a part of the sound emitting device 100.
  • the sound emitting device 100 may further include a cover provided on the side of the basin frame 21 close to the diaphragm 221.
  • the front cover 4, the front cover 4, the base 11, and the diaphragm 221 collectively enclose a front acoustic cavity 101.
  • the front cover 4 is provided with a through hole 41 penetrating the front cover 4 along the vibration direction, and the through hole 41 connects the front acoustic cavity 101 to the outside. This structural arrangement improves the mid-frequency and high-frequency performance of the sound emitting device 100.
  • the base 11 is pressed and fixed to a side of the front cover 4 away from the diaphragm 221, and the front cover 4 passes through the sound hole 113 and is exposed to the base 11.
  • the sound generating device 100 further includes a breathable damping member 5 attached to the front cover 4, and the breathable damping member 5 completely covers the through hole 41.
  • the damping of the air-permeable damping member 4 can be adjusted in the other direction to adjust the mid-frequency and high-frequency performance of the sound device.
  • the through holes 41 include multiple and are arranged in an array to improve the stability and balance of sound generation.
  • the housing 1 can be made of metal, glass, ceramics and other materials.
  • the housing 1 is made of metal materials, such as steel, iron, copper and the like. It can be designed to be thinner while satisfying the structural strength, thereby further reducing the lateral size of the sound emitting device 100 in the direction perpendicular to the vibration direction.
  • the housing 1 is at least partially grounded, so as to form a shielding effect on the sounding monomer 2, reduce the interference effect of external signals on the sounding monomer 2, and improve reliability.
  • the area ratio of the orthographic projection of the sounding monomer 2 to the rear housing 11 along the vibration direction of the diaphragm 221 to the rear housing 11 is at least 2/3.
  • This structure can make the size of the sound generating device 100 perpendicular to the vibration direction as small as possible, which satisfies the requirements of forming the acoustic cavity 102 to achieve vibration absorption and improve low-frequency acoustic performance, and it is more convenient to install in products with small lateral dimensions in the assembly space.
  • the sound generating device 100 further includes a gas-permeable spacer located in the rear acoustic cavity 102.
  • a gas-permeable spacer located in the rear acoustic cavity 102.
  • the gas-permeable spacer effectively prevents the sound-absorbing particles. Entering into the space between the magnetic circuit system 23 and the vibration system 22 avoids the risk of sound failure and improves reliability.
  • the housing 301 is made of a metal material, such as steel, iron, copper, etc., for example, the housing 301 is made of a steel sheet with a thickness of 0.15 mm.
  • the housing 301 is made of a metal material and can be made thinner with the same structural strength, thereby further reducing the horizontal size of the sound emitting device 300 along the direction of vibration.
  • the main difference from the embodiment shown in FIG. 1 is that: the embodiment also includes a conductive member 6.
  • the sound emitting device 300 further includes a conductive member 6, one end of the conductive member 6 is connected to the housing 301, and the other end of the conductive member 6 is used for grounding, thereby forming a shielding effect, so that the sounding unit 300 avoids external electromagnetic interference and has better working reliability.
  • FIG. 6 is a schematic diagram of the three-dimensional structure of another derivative embodiment of FIG.
  • the rear shell 4012 is formed by extending in a direction away from the basin frame, and is located on the outside of the housing 401.
  • FIG. 7 is a three-dimensional structure diagram of another embodiment of adding conductive elements of the sound device of the present invention.
  • the difference between this embodiment and the embodiment shown in FIG. 5 lies in the structure and function of the conductive member.
  • the sound emitting device 500 further includes a conductive member 506, and the conductive member 506 includes two mutually insulated electrical paths, one of the electrical paths is used to connect the sound emitting monomer 502 with an external electrical signal, It is used to supply power to the sound emitting unit 502, and the other electrical path is used to connect the housing 501 and the ground to form a shield for the sound emitting unit 502.
  • the conductive member 506 is used to form a shielding effect together with the housing 501, and is also used to supply power to the sound generating unit 502, which has a simpler structure and can achieve dual functions.
  • the conductive member 506 has an FPC structure. Specifically, as shown in FIG. 8, the conductive member 506 includes a first arm 5061 that penetrates the base extension wall 50112 and/or the rear shell extension wall 50122 and extends from opposite ends of the first arm 5061 to the basin frame. A second arm 5062 extending in the direction of 5021, a third arm 5064 extending from the first wall 5061 in a direction away from the basin frame 5021, and a fourth arm 5064 extending from the first wall 5061 in a direction away from the basin frame 5021 ⁇ 5064.
  • the first arm 5061 is electrically connected to the housing 501; the second arm 5062 is fixed to the basin frame 5021 and is electrically connected to the sound emitting unit 502 to supply power to the sound emitting unit 502; the third arm 5063 Used to connect external electrical signals; the fourth arm 5064 is used to ground. That is, the first arm 5061 and the fourth arm 5064 jointly connect the housing 501 to the ground to form an electrical path for shielding the sound emitting unit 502; the first arm 5061, the second arm 5062, and The third arm 5063 jointly realizes the electrical connection between the sound emitting unit 502 and the external electrical signal, and is realized as another electrical path through which the sound emitting unit 502 communicates with the external electrical signal.
  • FIG. 9 it is a schematic structural diagram of an embodiment in which side sound is formed on the basis of the embodiment shown in FIG. 4. That is to say, the sound-producing device forms a sound-producing structure from the front side.
  • the sound-emitting device 100 includes a sound-conducting shell 14 covering a side of the sound-emitting unit 2 away from the rear shell 12, and the sound-conducting shell 14 has a sound-guiding cavity 30 forming a side sound-emitting structure.
  • the sound guide cavity 30 is in communication with the diaphragm 221.
  • the side sound structure can better guide the sound, which is convenient for use when the front sound is blocked, and the use flexibility is higher.
  • the sound guide shell 14 and the diaphragm 221 jointly enclose a sound guide cavity 30.
  • the sound conducting shell 14 includes a sound conducting shell plate 141 spaced and opposed to the diaphragm 221, and a peripheral edge of the acoustic conducting shell plate 141 is bent and extended toward the sound emitting unit 2 and supported and fixed to the
  • the sound-guiding shell extension wall 142 on the periphery of the sounding monomer 2 is provided with a sound-guiding hole 143 penetrating the sound-guiding shell extension wall 142 to form a side sounding structure, which is convenient for flexible use of different installation positions.
  • the communication between the sound guiding cavity 30 and the diaphragm 221 may be direct communication, or the diaphragm 221 may communicate with the sound guiding cavity 30 through the front acoustic cavity 101, which is easily understood by those skilled in the art.
  • the sound conducting shell 14 is a component of the sound emitting device 100 and does not belong to the housing 1.
  • the sound conducting shell 14 When the sound conducting shell 14 is understood as a part of the shell 1, it is also feasible, that is, the sound conducting shell 14 may be a part of the shell 1. In this case, it is the shell 1 and the sound emitting monomer. 2 is also enclosed to form a sound guide cavity 30 forming a side sounding structure, and the sound guide cavity 30 is in communication with the diaphragm 221.
  • FIG. 10 is a schematic diagram of the structure of adding air-permeable spacers to the sound emitting device shown in FIG. 4.
  • the sound emitting device 100 further includes a gas-permeable isolator 7 located in the rear acoustic cavity 102, and the gas-permeable isolator 7 is attached to the sound monomer 2 and the sound monomer 2 is removed from the rear sound cavity.
  • the acoustic cavity 102 is partitioned.
  • the air-permeable spacer 7 prevents the sound-absorbing particles from entering the sound-producing monomer 2 and affecting its acoustic performance, thereby improving the reliability of sound production.
  • FIG. 11 is a schematic diagram of the specific structure of the air-permeable spacer in the embodiment shown in FIG. 10.
  • the sound emitting device 600 further includes a gas-permeable isolator 607 located in the rear acoustic cavity 60102, and the gas-permeable isolator 607 includes an isolator body 6071 and a spacer body 6071 arranged opposite to the rear shell 6012.
  • the spacer extension part 6072 whose periphery is bent and extended toward the rear shell 6012 and the spacer fixing part 6073 is bent and extended from an end of the spacer extension part 6072 away from the spacer body 6071.
  • the spacer extension 6072 is spaced apart from the rear shell extension wall 60122, and the spacer fixing part 6073 is fixed to the rear shell 6012; the air-permeable spacer 607 and the rear shell 6012 together form a powder filling Space 601.
  • the structure in which the spacer extension 6072 and the rear shell extension wall 60122 are spaced apart can effectively increase the smoothness of ventilation of the rear acoustic cavity 60102 and improve the stability of low-frequency sound performance.
  • FIG. 12 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 11.
  • the side of the isolator body 7071 close to the sounding unit 702 is recessed in a direction away from the sounding unit 702 to form an avoiding step 7074, and the avoiding step 7074 is in line with the leakage portion 7024. Pair set.
  • This structural arrangement can make the leakage of the sounding cavity 7103 of the sounding monomer 702 smoother, thereby improving the sounding performance.
  • FIG. 13 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 1.
  • the sound emitting device 800 further includes at least two positioning pieces 8 which are connected to the housing 801 respectively.
  • One end of the positioning piece 8 away from the housing 801 is provided with a positioning hole 81 penetrating through it, which is used to fix and position the sound emitting device 800 and the application terminal, such as a threaded hole.
  • the hole 81 is fixed on the terminal device, which is simple and convenient, and the positioning sheet 8 is provided with at least two positioning sheets 8 to form a positioning fixation more effectively.
  • the two positioning pieces 8 are connected to opposite sides or two diagonal corners of the housing 801, and the symmetrical arrangement makes the sound generating device 800 and the whole terminal have a better positioning and fixation effect.
  • the positioning piece 8 is fixed to the housing 801 by welding, that is, the positioning piece 8 and the housing 801 are a separate structure of two devices.
  • FIG. 14 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 13.
  • the positioning piece 908 is formed by extending outward from the housing 901, that is, the positioning piece 908 and the housing 901 are integrally formed
  • the structure is simple to form, reduces the number of components, and improves assembly efficiency.
  • the base and the rear shell are designed to cover the opposite sides of the basin frame, and the rear shell plate, the rear shell extension wall, and the The extension wall of the base and the sounding monomer jointly enclose a rear sound cavity
  • the rear housing is provided with a leak hole to communicate the rear sound cavity with the outside
  • the sounding device further includes a sealing element which is arranged on the rear housing to extend The connection between the wall and the extension wall of the base and at the same time is glued and fixed with the base and the rear shell to form a seal.
  • the above-mentioned structure forms a sealed rear acoustic cavity structure, which is not only simple in structure, and small in overall size, but also makes the sound device The acoustic effect is better, and the sealed rear acoustic cavity structure enables the sound emitting device to avoid the occurrence of shell vibration after being applied to the mobile terminal, so that the user experience effect is better.
  • the arrangement of the above structure further improves the sealing performance of the base and the rear case.

Abstract

The present utility model provides a sounding device, the sounding device comprises a housing having an accommodating space and a sound production monomer. The sound production monomer comprises a diaphragm, and the housing comprises a base and a rear housing; the base comprises a base plate and a base extension wall, and the rear housing comprises a rear housing plate and a rear housing extension wall, wherein the rear housing extension wall abuts against the base extension wall; a sealing member is arranged at the joint between the rear housing extension wall and the base extension wall and is glued and fixed to the base and the rear housing to realize a sealing effect; the base is provided with a sounding hole penetrating through the base, and the sounding hole is in communication with the diaphragm; the rear housing plate, the rear housing extension wall, the base extension wall and the sounding unit jointly enclose a rear sound cavity, and the rear housing is provided with a leakage hole, which communicates the rear sound cavity with the outside. Compared with the prior art, the sounding device in the present utility model is simple in structure, good in sealing performance, excellent in acoustic performance and good in user experience effect.

Description

发声器件Sound device 技术领域Technical field
本实用新型涉及电声转换领域,尤其涉及一种运用于便携式移动电子产品的发声器件。The utility model relates to the field of electro-acoustic conversion, in particular to a sound-producing device applied to portable mobile electronic products.
背景技术Background technique
发声器件又名扬声器,广泛运用于便携式移动电子产品中,比如手机,实现将音频信号转化为声音播放,发声器件响度大,振幅度。Sounding devices, also known as speakers, are widely used in portable mobile electronic products, such as mobile phones, to convert audio signals into sound for playback. The sounding devices have high loudness and amplitude.
相关技术的发声器件包括盆架、分别固定于所述盆架的振动系统和具有磁间隙的磁路系统,所述磁路系统驱动所述振动系统振动发声,所述振动系统包括固定于所述盆架的振膜以及固定于所述振膜并插设于所述磁间隙以驱动所述振膜振动发声的音圈。The related art sounding device includes a basin frame, a vibration system fixed to the basin frame, and a magnetic circuit system with a magnetic gap. The magnetic circuit system drives the vibration system to vibrate and produce sound, and the vibration system includes The diaphragm of the basin frame and a voice coil fixed to the diaphragm and inserted in the magnetic gap to drive the diaphragm to vibrate and produce sound.
技术问题technical problem
然而,相关技术的发声器件因不具有后腔结构或后腔为开放式结构,其运用在手机等便携式移动电子产品中时会引起手机壳振的问题,造成用户体验效果不好;而手机空间尺寸有限,发声器件不能设计成现有技术中的带后腔的扬声器箱结构以克服该问题。另外,相关技术的发声器件的密封性较差,从而影响发声器件的声学性能。However, because the related art sound device does not have a rear cavity structure or the rear cavity is an open structure, when used in portable mobile electronic products such as mobile phones, it will cause the problem of mobile phone shell vibration, resulting in poor user experience; and mobile phone space Due to the limited size, the sound emitting device cannot be designed into a speaker box structure with a back cavity in the prior art to overcome this problem. In addition, the sound-generating device of the related art has poor airtightness, thereby affecting the acoustic performance of the sound-generating device.
因此,实有必要提供一种新的发声器件解决上述技术问题。Therefore, it is necessary to provide a new sound generating device to solve the above technical problems.
技术解决方案Technical solutions
本实用新型的目的在于提供一种结构简单、密封性好、声学性能更优、用户体验效果好的发声器件。The purpose of the utility model is to provide a sound device with simple structure, good sealing performance, better acoustic performance and good user experience.
为了达到上述目的,本实用新型提供了一种发声器件,其包括具有收容空间的壳体和收容于所述壳体内的发声单体,所述发声单体包括用于振动发声的振膜,所述壳体包括沿所述振膜的振动方向分别盖设于所述发声单体相对两侧的底座和后壳;In order to achieve the above-mentioned objective, the present invention provides a sound emitting device, which includes a housing with a housing space and a sound emitting monomer housed in the housing, and the sound emitting monomer includes a diaphragm for vibrating and sounding. The housing includes a base and a rear housing respectively covered on opposite sides of the sound-producing monomer along the vibration direction of the diaphragm;
所述底座包括盖设固定于所述发声单体靠近所述振膜一侧的底座板和由所述底座板的外周缘沿所述发声单体的周侧向远离所述振膜方向弯折延伸的底座延伸壁;The base includes a base plate that is covered and fixed on a side of the sounding unit close to the diaphragm, and the outer periphery of the base plate is bent in a direction away from the diaphragm along the circumferential side of the sounding unit Extended base extension wall;
所述后壳包括位于所述发声单体远离所述底座板的一侧且与所述发声单体间隔的后壳板和由所述后壳板的周缘沿所述发声单体周侧向靠近所述底座延伸壁方向弯折延伸的后壳延伸壁,所述后壳延伸壁抵接于所述底座延伸壁;The rear shell includes a rear shell plate located on a side of the sound emitting unit away from the base plate and spaced from the sound emitting unit, and a peripheral edge of the rear shell plate is approached along the circumferential side of the sound emitting unit A rear shell extension wall bent and extended in the direction of the base extension wall, and the rear shell extension wall abuts against the base extension wall;
所述发声器件还包括密封件,所述密封件设置于所述后壳延伸壁与所述底座延伸壁的连接处并同时与所述底座和所述后壳胶合固定形成密封;The sound emitting device further includes a sealing element, the sealing element is arranged at the connection between the extension wall of the rear shell and the extension wall of the base and is simultaneously glued and fixed with the base and the rear shell to form a seal;
所述底座设有贯穿其上的发声孔,所述发声孔与所述振膜连通,所述后壳板、所述后壳延伸壁、所述底座延伸壁以及所述发声单体共同围成后声腔,所述发声单体设有与所述后声腔连通的泄露部,所述后壳上设有泄露孔,所述泄露孔将所述后声腔与外界连通。The base is provided with a sound hole penetrating therethrough, the sound hole is in communication with the diaphragm, and the rear shell plate, the rear shell extension wall, the base extension wall and the sound monomer are jointly enclosed In the rear acoustic cavity, the sound-producing monomer is provided with a leakage part communicating with the rear acoustic cavity, and the rear shell is provided with a leakage hole, and the leakage hole connects the rear acoustic cavity with the outside.
优选的,所述密封件部分或完全夹设于所述底座延伸壁与所述后壳延伸壁之间,且所述密封件具有弹性变形。Preferably, the sealing element is partially or completely sandwiched between the extension wall of the base and the extension wall of the rear shell, and the sealing element is elastically deformed.
优选的,设置于所述收容空间外且贴设于所述底座延伸壁与所述后壳延伸壁的连接处。Preferably, it is arranged outside the accommodating space and attached to the connection between the extension wall of the base and the extension wall of the rear shell.
优选的,所述发声单体包括盆架、分别支撑固定于所述盆架的振动系统和驱动所述振动系统振动发声的磁路系统,所述壳体的厚度小于所述盆架的厚度。Preferably, the sound-producing unit includes a basin frame, a vibration system respectively supported and fixed to the basin frame, and a magnetic circuit system that drives the vibration system to vibrate and produce sound, and the thickness of the shell is smaller than the thickness of the basin frame.
优选的,所述壳体的厚度与所述盆架的厚度比值小于0.4。Preferably, the ratio of the thickness of the shell to the thickness of the basin frame is less than 0.4.
优选的,所述底座延伸壁和/或所述后壳延伸壁贴合于所述盆架,或所述底座延伸壁和/或所述后壳延伸壁与所述盆架的至少一侧设有间隔,所述间隔小于所述壳体的厚度的3倍。Preferably, the base extension wall and/or the rear shell extension wall are attached to the basin frame, or the base extension wall and/or the rear shell extension wall and at least one side of the basin frame are provided There is an interval, and the interval is less than 3 times the thickness of the casing.
优选的,所述壳体为金属材料制成。Preferably, the housing is made of metal material.
优选的,所述壳体至少部分接地。Preferably, the housing is at least partially grounded.
优选的,所述发声器件还包括导电件,所述导电件的一端电连接于所述壳体,所述导电件的另一端用于接地。Preferably, the sound generating device further includes a conductive member, one end of the conductive member is electrically connected to the housing, and the other end of the conductive member is used for grounding.
优选的,所述导电件由所述壳体延伸形成。Preferably, the conductive member is formed by extending the housing.
优选的,所述发声器件还包括导电件,所述导电件包括两条电性通路,其中一条所述电性通路用于连接所述发声单体与外部电信号,另一条所述电性通路用于连接所述壳体与地。Preferably, the sound emitting device further includes a conductive member, the conductive member includes two electrical pathways, one of the electrical pathways is used to connect the sounding monomer with an external electrical signal, and the other of the electrical pathways Used to connect the shell and the ground.
优选的,所述发声器件还包括至少两个定位片,两个所述定位片连接于所述壳体的相对两侧或两对角处,所述定位片远离所述壳体的一端设有贯穿其上的定位孔。Preferably, the sound emitting device further includes at least two positioning pieces, the two positioning pieces are connected to opposite sides or two diagonal corners of the casing, and the positioning piece is provided with one end away from the casing Through the positioning hole on it.
优选的,所述定位片由所述壳体向外延伸形成。Preferably, the positioning piece is formed by extending outward from the casing.
优选的,所述壳体采用0.15mm厚的钢片制成。Preferably, the shell is made of a 0.15mm thick steel sheet.
优选的,所述发声单体还包括盖设于所述盆架靠近所述振膜一侧的前盖,所述前盖、所述底座以及所述振膜共同围成前声腔,所述前盖设有沿所述振动方向贯穿其上的通孔,所述通孔将所述前声腔与外界连接。Preferably, the sound-producing unit further includes a front cover arranged on the side of the basin frame close to the diaphragm, the front cover, the base and the diaphragm collectively enclose a front sound cavity, and the front The cover is provided with a through hole passing through it along the vibration direction, and the through hole connects the front acoustic cavity with the outside.
优选的,所述发声器件还包括盖设于所述盆架靠近所述振膜一侧的前盖,所述前盖、所述底座以及所述振膜共同围成前声腔,所述前盖设有沿所述振动方向贯穿其上的通孔,所述通孔将所述前声腔与外界连接;所述底座压设固定于所述前盖的周缘远离所述振膜的一侧,所述前盖穿过所述发声孔并外露于所述底座。Preferably, the sound emitting device further includes a front cover arranged on a side of the basin frame close to the diaphragm, the front cover, the base and the diaphragm collectively enclose a front sound cavity, and the front cover Is provided with a through hole penetrating through it along the vibration direction, and the through hole connects the front acoustic cavity with the outside; The front cover passes through the sound hole and is exposed on the base.
优选的,所述发声器件还包括贴设于所述前盖的透气阻尼件,所述透气阻尼件完全覆盖所述通孔。Preferably, the sound generating device further includes a breathable damping member attached to the front cover, and the breathable damping member completely covers the through hole.
优选的,所述发声器件包括盖设于所述发声单体远离所述后壳一侧的导声壳,所述导声壳具有形成侧发声结构的导声腔,所述导声腔与所述振膜连通。Preferably, the sound-emitting device includes a sound-guiding shell covering a side of the sound-emitting monomer away from the rear shell, the sound-guiding shell having a sound-guiding cavity forming a side sound-emitting structure, and the sound-guiding cavity and the vibration The membrane is connected.
优选的,所述壳体与所述发声单体还围成形成侧发声结构的导声腔,所述导声腔与所述振膜连通。Preferably, the housing and the sound-emitting monomer also enclose a sound-guiding cavity forming a side sound-emitting structure, and the sound-guiding cavity is in communication with the diaphragm.
优选的,所述发声器件还包括位于所述后声腔内的透气隔离件,所述透气隔离件贴设于所述发声单体并将所述发声单体从所述后声腔内分隔。Preferably, the sound emitting device further includes a gas permeable isolator located in the rear acoustic cavity, and the gas permeable isolator is attached to the sound emitting monomer and separates the sound emitting unit from the rear acoustic cavity.
优选的,所述发声器件还包括位于所述后声腔内的透气隔离件,所述透气隔离件包括与所述后壳间隔相对设置的隔离件本体、由所述隔离件本体的周缘向所述后壳方向弯折延伸的隔离件延伸部以及由所述隔离件延伸部远离所述隔离件本体的一端弯折延伸的隔离件固定部;所述隔离件延伸部与所述后壳延伸壁间隔设置,所述隔离件固定部固定于所述后壳;所述透气隔离件与所述后壳共同围成灌粉空间。Preferably, the sound generating device further includes a gas-permeable spacer located in the rear acoustic cavity, and the gas-permeable spacer includes a spacer body arranged opposite to the rear shell at intervals, and is directed from the periphery of the spacer body to the A spacer extension part bent and extended in the direction of the rear shell and a spacer fixing part bent and extended from an end of the spacer extension part away from the spacer body; the spacer extension part is spaced from the rear shell extension wall It is provided that the spacer fixing part is fixed to the rear shell; the air-permeable spacer and the rear shell jointly enclose a powder filling space.
优选的,所述隔离件本体靠近所述发声单体的一侧向远离所述发声单体方向凹陷形成避让台阶,所述避让台阶与所述泄露部正对设置。Preferably, a side of the isolator body close to the sounding unit is recessed in a direction away from the sounding unit to form an avoiding step, and the avoiding step is arranged directly opposite to the leakage portion.
优选的,所述发声单体沿所述振膜的振动方向向所述后壳的正投影与所述后壳的面积比至少为2/3。Preferably, the area ratio of the orthographic projection of the sound-emitting monomer to the rear shell along the vibration direction of the diaphragm to the rear shell is at least 2/3.
优选的,所述间隔小于或等于所述振膜固定于所述盆架的固定面的宽度的1/3。Preferably, the interval is less than or equal to 1/3 of the width of the fixed surface of the diaphragm fixed to the basin frame.
有益效果Beneficial effect
与相关技术相比,本实用新型的发声器件中,通过设计底座和后壳分别盖设于所述盆架的相对两侧,并使得所述后壳板、所述后壳延伸壁、所述底座延伸壁以及所述发声单体共同围成后声腔,后壳设置泄漏孔将所述后声腔与外界连通,且所述发声器件还包括密封件,所述密封件设置于所述后壳延伸壁与所述底座延伸壁的连接处并同时与所述底座和所述后壳胶合固定形成密封,上述结构形成了密闭的后声腔结构,不仅结构简单、整体尺寸增加小,且使得发声器件的声学效果更优,而且密闭的后声腔结构使得该发声器件运用于移动终端后避免了壳振现象的产生,使得用户体验效果更好。另一方面,上述结构的设置,进一步提高了所述底座和所述后壳的密封性。Compared with the related art, in the sound device of the present invention, the base and the rear shell are designed to cover the opposite sides of the basin frame, and the rear shell plate, the rear shell extension wall, and the The extension wall of the base and the sounding monomer jointly enclose a rear sound cavity, the rear housing is provided with a leak hole to communicate the rear sound cavity with the outside, and the sounding device further includes a sealing element which is arranged on the rear housing to extend The connection between the wall and the extension wall of the base and at the same time is glued and fixed with the base and the rear shell to form a seal. The above-mentioned structure forms a sealed rear acoustic cavity structure, which is not only simple in structure, and small in overall size, but also makes the sound device The acoustic effect is better, and the sealed rear acoustic cavity structure enables the sound emitting device to avoid the occurrence of shell vibration after being applied to the mobile terminal, so that the user experience effect is better. On the other hand, the arrangement of the above structure further improves the sealing performance of the base and the rear case.
附图说明Description of the drawings
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to explain the technical solutions in the embodiments of the present utility model more clearly, the following will briefly introduce the drawings needed in the description of the embodiments. Obviously, the drawings in the following description are only some implementations of the present utility model. For example, for those of ordinary skill in the art, without creative work, other drawings can be obtained based on these drawings, among which:
图1为本实用新型发声器件的立体结构示意图;Figure 1 is a schematic diagram of the three-dimensional structure of the sound generating device of the present invention;
图2为本实用新型发声器件的立体结构分解示意图;Figure 2 is an exploded schematic diagram of the three-dimensional structure of the sound device of the present invention;
图3为本实用新型发声器件的另一视角的立体结构示意图;Fig. 3 is a schematic view of a three-dimensional structure of the sound device of the present invention from another perspective;
图4为沿图1中A-A线的剖示图;Figure 4 is a cross-sectional view taken along line A-A in Figure 1;
图5为本实用新型发声器件的增加导电件的实施方式的立体结构示意图;Fig. 5 is a three-dimensional structural diagram of an embodiment of adding conductive elements of the sound generating device of the present invention;
图6为图5的另一种衍生实施方式的立体结构示意图;FIG. 6 is a schematic diagram of a three-dimensional structure of another derivative embodiment of FIG. 5;
图7为本实用新型发声器件的增加导电件的另一实施方式的立体结构示意图;FIG. 7 is a schematic diagram of a three-dimensional structure of another embodiment of adding conductive elements of the sound device of the present invention; FIG.
图8为图7的部分立体结构分解示意图;Fig. 8 is an exploded schematic view of a part of the three-dimensional structure of Fig. 7;
图9为图4的壳体形成侧发声结构的实施方式的结构示意图;FIG. 9 is a schematic structural diagram of an embodiment in which the housing of FIG. 4 forms a side sounding structure;
图10为图4所示发声器件增加透气隔离件的结构示意图;Fig. 10 is a schematic structural diagram of the sound generating device shown in Fig. 4 added with a breathable spacer;
图11为图10所示实施方式中透气隔离件的另一种实施方式结构的示意图;FIG. 11 is a schematic diagram of another embodiment structure of the air-permeable spacer in the embodiment shown in FIG. 10;
图12为图11所示实施方式的衍生实施方式结构示意图;FIG. 12 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 11;
图13为图1所示发声器件增加定位片的实施方式结构示意图;FIG. 13 is a schematic structural diagram of an embodiment in which a positioning piece is added to the sound generating device shown in FIG. 1; FIG.
图14为图13所示实施方式的衍生实施方式结构示意图。FIG. 14 is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 13.
本发明的实施方式Embodiments of the present invention
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present utility model with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, not all of them. Examples. Based on the embodiments of the present utility model, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the scope of protection of the present utility model.
请同时参阅图1-4,本实用新型提供了一种发声器件100,其包括具有收容空间的壳体1和收容于所述壳体1内的发声单体2。Please refer to FIGS. 1-4 at the same time. The present invention provides a sound emitting device 100, which includes a housing 1 with a receiving space and a sound emitting monomer 2 housed in the housing 1.
所述发声单体2包括盆架21、振动系统22、磁路系统23以及泄露部24。The sound unit 2 includes a basin frame 21, a vibration system 22, a magnetic circuit system 23 and a leakage part 24.
所述振动系统22和所述磁路系统23分别支撑固定于所述盆架21并共同围成发声内腔103,所述磁路系统23驱动所述振动系统22振动发声。The vibration system 22 and the magnetic circuit system 23 are respectively supported and fixed to the basin frame 21 and jointly enclose a sounding cavity 103. The magnetic circuit system 23 drives the vibration system 22 to vibrate and produce sound.
所述振动系统22包括固定于所述盆架21的振膜221,所述振膜221用于振动发声。The vibration system 22 includes a diaphragm 221 fixed to the basin frame 21, and the diaphragm 221 is used for vibrating and sounding.
本实施方式中,所述壳体1的厚度小于所述盆架21的厚度,优选的,所述壳体1用0.15mm厚的钢片制成,有效减小壳振。In this embodiment, the thickness of the shell 1 is smaller than the thickness of the basin frame 21. Preferably, the shell 1 is made of a 0.15mm thick steel sheet, which effectively reduces shell vibration.
所述壳体1包括沿所述振膜221的振动方向分别盖设于所述发声单体2相对两侧的底座11和后壳12。本实施方式中,所述壳体1厚度与所述盆架21的厚度比值小于0.4,从而在满足壳体1的结构强度的同时,尽可能小的增加发声器件100沿垂直于振动方向的尺寸;而且也使得盆架21的结构强度得到保障的同时尽可能少的占用空间体积。The housing 1 includes a base 11 and a rear shell 12 respectively covering two opposite sides of the sound emitting unit 2 along the vibration direction of the diaphragm 221. In this embodiment, the ratio of the thickness of the shell 1 to the thickness of the basin frame 21 is less than 0.4, so that while the structural strength of the shell 1 is satisfied, the size of the sound emitting device 100 along the direction perpendicular to the vibration direction is increased as little as possible. ; Moreover, the structural strength of the basin frame 21 is guaranteed while occupying as little space as possible.
所述底座11包括盖设固定于所述发声单体2远离所述后壳12一侧的底座板111和由所述底座板111的外周缘沿所述发声单体2的周侧向远离所述振膜221方向弯折延伸的底座延伸壁112。The base 11 includes a base plate 111 that is covered and fixed on the side of the sounding unit 2 away from the rear shell 12, and the outer periphery of the base plate 111 is far away from the sounding unit 2 along the circumferential side of the sounding unit 2. The base extension wall 112 is bent and extended in the direction of the diaphragm 221.
所述后壳12包括位于所述发声单体2远离所述底座板111的一侧且与所述发声单体2间隔的后壳板121和由所述后壳板121的周缘沿所述发声单体2周侧向靠近所述底座11方向弯折延伸的后壳延伸壁122。所述后壳延伸壁122抵接于所述底座延伸壁112。The rear shell 12 includes a rear shell 121 located on a side of the sound emitting unit 2 away from the base plate 111 and spaced from the sound emitting unit 2, and a rear shell 121 along the periphery of the rear shell 121 The rear shell extension wall 122 of the single body 2 is bent and extended in the direction close to the base 11. The rear shell extension wall 122 abuts against the base extension wall 112.
所述底座延伸壁112和/或所述后壳延伸壁122贴合于所述盆架21,或所述底座延伸壁112和/或所述后壳延伸壁122与所述盆架21的至少一侧设有间隔,所述间隔小于所述壳体的厚度的3倍。该间隔的设置可使得发声单体2更快捷装配至壳体1中,提高装配效率,同时也不会更多占用发声器件100在垂直于所述振动方向所占用的横向空间。另外,上述间隔还可用以增加后声腔102的体积,进一步改善声学性能,具体的,本实施方式中,所述间隔小于或等于所述振膜221固定于所述盆架21的固定面(胶合面)的宽度的1/3。The base extension wall 112 and/or the rear shell extension wall 122 are attached to the basin frame 21, or the base extension wall 112 and/or the rear shell extension wall 122 and at least the basin frame 21 One side is provided with a gap, and the gap is less than 3 times the thickness of the casing. The arrangement of the interval can make the sound emitting unit 2 be assembled into the housing 1 more quickly, improve the assembly efficiency, and at the same time, will not occupy more lateral space occupied by the sound emitting device 100 perpendicular to the vibration direction. In addition, the above-mentioned interval can also be used to increase the volume of the rear acoustic cavity 102 and further improve the acoustic performance. Specifically, in this embodiment, the interval is less than or equal to the fixed surface of the diaphragm 221 (glued). 1/3 of the width of the surface).
所述发声器件100还包括密封件3,所述密封件3设置于所述后壳延伸壁122与所述底座延伸壁112的连接处并同时与所述底座11和所述后壳12胶合固定形成密封。该结构的设置,进一步提高了所述底座4和所述后壳5的密封性,进而提升了所述发声器件100的声学性能。The sounding device 100 further includes a sealing member 3, which is arranged at the connection between the rear shell extension wall 122 and the base extension wall 112 and is glued and fixed to the base 11 and the rear shell 12 at the same time. Form a seal. The arrangement of this structure further improves the sealing performance of the base 4 and the rear shell 5, and further improves the acoustic performance of the sound emitting device 100.
具体的,本实施方式中,所述密封件3设置于所述收容空间外且贴设于所述底座延伸壁112与所述后壳延伸壁122的连接处。当然,不限于此,或者,所述密封件3部分或完全夹设于所述底座延伸壁112与所述后壳延伸壁122之间,且所述密封件3具有弹性变形。这两种方式均能进一步提高所述底座11和所述后壳12的密封性,所述密封件3的位置可根据实际情况进行设置。Specifically, in this embodiment, the sealing member 3 is disposed outside the receiving space and attached to the connection between the base extension wall 112 and the rear housing extension wall 122. Of course, it is not limited to this. Alternatively, the sealing element 3 is partially or completely sandwiched between the base extension wall 112 and the rear shell extension wall 122, and the sealing element 3 is elastically deformed. Both of these two methods can further improve the sealing performance of the base 11 and the rear shell 12, and the position of the sealing member 3 can be set according to actual conditions.
所述底座11设有贯穿其上的发声孔113,所述发声孔113与所述振膜221连通,用于发声。所述后壳板121、所述后壳延伸壁122、所述底座延伸壁112以及所述发声单体2共同围成后声腔102。The base 11 is provided with a sound hole 113 passing through it, and the sound hole 113 communicates with the diaphragm 221 for sound. The rear shell panel 121, the rear shell extension wall 122, the base extension wall 112 and the sound emitting unit 2 collectively enclose a rear acoustic cavity 102.
本实施方式中,所述泄露部24与所述后声腔102连通,从而通过所述泄露部24将所述发声内腔103与所述后声腔102连通,用以改善低频声学性能。所述后壳12上设有泄露孔123,所述泄露孔123将所述后声腔102与外界连通,用于平衡声压。In this embodiment, the leakage portion 24 communicates with the rear acoustic cavity 102, so that the sound-emitting cavity 103 is communicated with the rear acoustic cavity 102 through the leakage portion 24 to improve low-frequency acoustic performance. The rear shell 12 is provided with a leakage hole 123, which communicates the rear acoustic cavity 102 with the outside, and is used to balance the sound pressure.
进一步的,所述后壳板121、所述后壳延伸壁122、所述底座延伸壁112以及所述发声单体2共同围成后声腔102,所述密封件3设置于所述后壳延伸壁122与所述底座延伸壁112的连接处并同时与所述底座11和所述后壳122胶合固定,使得所述后声腔102密封。至此,本实用新型的上述发声器件100则形成了封闭的后声腔结构,其结构简单,一方面改善了发声器件100的声学性能,特别是低频声学性能,另一方面因后声腔102结构的存在,底座11和后壳12形成吸振作用,使得所述发声器件100运用于移动终端等电子产品中后不会使移动终端等电子产品产生壳振现象,有效增加了客户的用户体验效果。Further, the rear shell 121, the rear shell extension wall 122, the base extension wall 112, and the sound-producing monomer 2 collectively enclose a rear acoustic cavity 102, and the sealing member 3 is disposed on the rear shell extension The connection between the wall 122 and the base extension wall 112 is glued and fixed with the base 11 and the rear shell 122 at the same time, so that the rear acoustic cavity 102 is sealed. So far, the above-mentioned sound emitting device 100 of the present invention forms a closed rear acoustic cavity structure, which is simple in structure. On the one hand, it improves the acoustic performance of the sound emitting device 100, especially the low-frequency acoustic performance, and on the other hand, due to the existence of the rear acoustic cavity 102 structure The base 11 and the rear case 12 form a vibration absorbing effect, so that the sound-producing device 100 will not cause the mobile terminal and other electronic products to produce case vibration after being used in electronic products such as mobile terminals, which effectively increases the user experience effect of customers.
更优的,所述发声单体2还包括盖设于所述盆架21靠近所述振膜221一侧的前盖4,所述前盖4、所述底座11以及所述振膜221共同围成前声腔101,所述前盖4设有沿所述振动方向贯穿其上的通孔41,所述通孔41将所述前声腔101与外界连接。本实施方式中,所述前盖4属于发声单体2的一部分结构,即发声单体2自带前盖4。More preferably, the sound-producing unit 2 further includes a front cover 4 covering a side of the basin frame 21 close to the diaphragm 221, and the front cover 4, the base 11, and the diaphragm 221 share a common Surrounding the front acoustic cavity 101, the front cover 4 is provided with a through hole 41 penetrating the front cover 4 along the vibration direction, and the through hole 41 connects the front acoustic cavity 101 with the outside. In this embodiment, the front cover 4 is a part of the structure of the sound emitting monomer 2, that is, the sound emitting monomer 2 has its own front cover 4.
或者,前盖4也可以不是发声单体2的一部分结构,而是发声器件100的一个部件,比如,所述发声器件100还包括盖设于所述盆架21靠近所述振膜221一侧的前盖4,所述前盖4、所述底座11以及所述振膜221共同围成前声腔101。所述前盖4设有沿所述振动方向贯穿其上的通孔41,所述通孔41将所述前声腔101与外界连接,该结构设置使改善了发声器件100的中频高频性能。本实施方式中,所述底座11压设固定于所述前盖4的周缘远离所述振膜221的一侧,所述前盖4穿过所述发声孔113并外露于所述底座11。Alternatively, the front cover 4 may not be a part of the sound emitting unit 2, but a part of the sound emitting device 100. For example, the sound emitting device 100 may further include a cover provided on the side of the basin frame 21 close to the diaphragm 221. The front cover 4, the front cover 4, the base 11, and the diaphragm 221 collectively enclose a front acoustic cavity 101. The front cover 4 is provided with a through hole 41 penetrating the front cover 4 along the vibration direction, and the through hole 41 connects the front acoustic cavity 101 to the outside. This structural arrangement improves the mid-frequency and high-frequency performance of the sound emitting device 100. In this embodiment, the base 11 is pressed and fixed to a side of the front cover 4 away from the diaphragm 221, and the front cover 4 passes through the sound hole 113 and is exposed to the base 11.
为了进一步改善发声器件100的中频高频性能,所述发声器件100还包括贴设于所述前盖4的透气阻尼件5,所述透气阻尼件5完全覆盖所述通孔41,一方面用于防异物进入前声腔101,另一方向可通过调节所述透气阻尼件4的阻尼以调节发声器件的中频高频性能。In order to further improve the mid-frequency and high-frequency performance of the sound generating device 100, the sound generating device 100 further includes a breathable damping member 5 attached to the front cover 4, and the breathable damping member 5 completely covers the through hole 41. In order to prevent foreign objects from entering the front acoustic cavity 101, the damping of the air-permeable damping member 4 can be adjusted in the other direction to adjust the mid-frequency and high-frequency performance of the sound device.
本实施方式中,所述通孔41包括多个且呈阵列排布,用于改善发声稳定性和平衡性。In this embodiment, the through holes 41 include multiple and are arranged in an array to improve the stability and balance of sound generation.
本实施方式中,所述壳体1可为金属、玻璃、陶瓷等材料制成。优选为壳体1为金属材料制成,如钢、铁、铜等。其可在满足结构强度的同时设计更薄,从而进一步减小发声器件100在沿垂直于振动方向的横向尺寸。In this embodiment, the housing 1 can be made of metal, glass, ceramics and other materials. Preferably, the housing 1 is made of metal materials, such as steel, iron, copper and the like. It can be designed to be thinner while satisfying the structural strength, thereby further reducing the lateral size of the sound emitting device 100 in the direction perpendicular to the vibration direction.
更优的,所述壳体1至少部分接地,从而可形成对发声单体2屏蔽作用,减小外部信号对发声单体2的干涉影响,提高可靠性。More preferably, the housing 1 is at least partially grounded, so as to form a shielding effect on the sounding monomer 2, reduce the interference effect of external signals on the sounding monomer 2, and improve reliability.
本实施方式中,所述发声单体2沿所述振膜221的振动方向向所述后壳11的正投影与所述后壳11的面积比至少为2/3。该结构可使得发声器件100在其垂直于振动方向的尺寸尽可能小,满足形成后声腔102实现吸振、提高低频声学性能的同时,更便于安装于装配空间横向尺寸小的产品。In this embodiment, the area ratio of the orthographic projection of the sounding monomer 2 to the rear housing 11 along the vibration direction of the diaphragm 221 to the rear housing 11 is at least 2/3. This structure can make the size of the sound generating device 100 perpendicular to the vibration direction as small as possible, which satisfies the requirements of forming the acoustic cavity 102 to achieve vibration absorption and improve low-frequency acoustic performance, and it is more convenient to install in products with small lateral dimensions in the assembly space.
更优的,所述发声器件100还包括位于所述后声腔102内的透气隔离件,当所述后声腔102内填充吸音材料,如吸音颗粒时,所述透气隔离件有效的防止了吸音颗粒进入磁路系统23和振动系统22之间的空间内,避免了发声失效的风险,提高了可靠性。More preferably, the sound generating device 100 further includes a gas-permeable spacer located in the rear acoustic cavity 102. When the rear acoustic cavity 102 is filled with sound-absorbing materials, such as sound-absorbing particles, the gas-permeable spacer effectively prevents the sound-absorbing particles. Entering into the space between the magnetic circuit system 23 and the vibration system 22 avoids the risk of sound failure and improves reliability.
请结合图5所示图,为本实用新型发声器件的增加导电件的实施方式的立体结构示意图。所述发声器件300中,所述壳体301为金属材料制成,如钢、铁、铜等,比如,所述壳体301均用0.15mm厚的钢片制成。Please refer to the figure shown in FIG. 5, which is a schematic diagram of the three-dimensional structure of the embodiment of adding conductive elements of the sound device of the present invention. In the sound generating device 300, the housing 301 is made of a metal material, such as steel, iron, copper, etc., for example, the housing 301 is made of a steel sheet with a thickness of 0.15 mm.
壳体301通过金属材料制成可在同样结构强度的情况下,做到更薄,从而进一步减小发声器件300的沿垂直于振动方向的水平尺寸。其与图1所示实施方式的主要区别点在于:该实施方式中还包括设置导电件6。The housing 301 is made of a metal material and can be made thinner with the same structural strength, thereby further reducing the horizontal size of the sound emitting device 300 along the direction of vibration. The main difference from the embodiment shown in FIG. 1 is that: the embodiment also includes a conductive member 6.
具体的,所述发声器件300还包括导电件6,所述导电件6的一端连接于所述壳体301,所述导电件6的另一端用于接地,从而形成屏蔽作用,使得发声单体300避免受外界电磁干扰,工作可靠性更好。Specifically, the sound emitting device 300 further includes a conductive member 6, one end of the conductive member 6 is connected to the housing 301, and the other end of the conductive member 6 is used for grounding, thereby forming a shielding effect, so that the sounding unit 300 avoids external electromagnetic interference and has better working reliability.
请结合图6,为图5的另一种衍生实施方式的立体结构示意图,即所述发声器件400中,所述导电件406与壳体401为一体结构,比如,所述导电件406由所述后壳4012向远离所述盆架的方向延伸形成,位于壳体401的外侧。Please refer to FIG. 6, which is a schematic diagram of the three-dimensional structure of another derivative embodiment of FIG. The rear shell 4012 is formed by extending in a direction away from the basin frame, and is located on the outside of the housing 401.
请结合图7所示,为本实用新型发声器件的增加导电件的另一实施方式的立体结构示意图。该实施方式与图5所示的实施方式区别在于,导电件的结构和功能不同。Please refer to FIG. 7, which is a three-dimensional structure diagram of another embodiment of adding conductive elements of the sound device of the present invention. The difference between this embodiment and the embodiment shown in FIG. 5 lies in the structure and function of the conductive member.
具体的,所述发声器件500还包括导电件506,所述导电件506包括两条相互绝缘的电性通路,其中一条所述电性通路用于连接所述发声单体502与外部电信号,用于为发声单体502供电,另一条所述电性通路用于连接所述壳体501与地,形成对发声单体502的屏蔽。本实施例中,导电件506则即用于与壳体501共同形成屏蔽作用,而且还用于为发声单体502供电,结构更简单且能实现双重功能。Specifically, the sound emitting device 500 further includes a conductive member 506, and the conductive member 506 includes two mutually insulated electrical paths, one of the electrical paths is used to connect the sound emitting monomer 502 with an external electrical signal, It is used to supply power to the sound emitting unit 502, and the other electrical path is used to connect the housing 501 and the ground to form a shield for the sound emitting unit 502. In this embodiment, the conductive member 506 is used to form a shielding effect together with the housing 501, and is also used to supply power to the sound generating unit 502, which has a simpler structure and can achieve dual functions.
比如导电件506为一FPC结构。具体如图8所示,所述导电件506包括贯穿所述底座延伸壁50112和/或后壳延伸壁50122的第一臂5061、由所述第一臂5061的相对两端向所述盆架5021方向延伸的第二臂5062、由所述第一壁5061向远离所述盆架5021方向延伸的第三臂5064以及由所述第一壁5061向远离所述盆架5021方向延伸的第四臂5064。For example, the conductive member 506 has an FPC structure. Specifically, as shown in FIG. 8, the conductive member 506 includes a first arm 5061 that penetrates the base extension wall 50112 and/or the rear shell extension wall 50122 and extends from opposite ends of the first arm 5061 to the basin frame. A second arm 5062 extending in the direction of 5021, a third arm 5064 extending from the first wall 5061 in a direction away from the basin frame 5021, and a fourth arm 5064 extending from the first wall 5061 in a direction away from the basin frame 5021臂5064.
所述第一臂5061与所述壳体501电连接;所述第二臂5062固定于所述盆架5021并与发声单体502电连接,为发声单体502供电;所述第三臂5063用于连接外部电信号;所述第四臂5064用于接地。即第一臂5061和第四臂5064共同实现将所述壳体501与地连接,形成对发声单体502实现屏蔽的一条电性通路;所述第一臂5061、所述第二臂5062以及所述第三臂5063共同实现将发声单体502与外部电信号电连接,实现为发声单体502与外部电信号连通的另一条电性通路。The first arm 5061 is electrically connected to the housing 501; the second arm 5062 is fixed to the basin frame 5021 and is electrically connected to the sound emitting unit 502 to supply power to the sound emitting unit 502; the third arm 5063 Used to connect external electrical signals; the fourth arm 5064 is used to ground. That is, the first arm 5061 and the fourth arm 5064 jointly connect the housing 501 to the ground to form an electrical path for shielding the sound emitting unit 502; the first arm 5061, the second arm 5062, and The third arm 5063 jointly realizes the electrical connection between the sound emitting unit 502 and the external electrical signal, and is realized as another electrical path through which the sound emitting unit 502 communicates with the external electrical signal.
如图9所示,为在图4所示实施方式基础上形成侧发声的实施方式的结构示意图。即将发声器件由正面发声形成侧面发声结构。As shown in FIG. 9, it is a schematic structural diagram of an embodiment in which side sound is formed on the basis of the embodiment shown in FIG. 4. That is to say, the sound-producing device forms a sound-producing structure from the front side.
具体的,所述发声器件100包括盖设于所述发声单体2远离所述后壳12一侧的导声壳14,所述导声壳14具有形成侧发声结构的导声腔30,所述导声腔30与所述振膜221连通。该侧发声结构可更好的引导发声,便于正面发声被挡的情况下使用,使用灵活性更高。Specifically, the sound-emitting device 100 includes a sound-conducting shell 14 covering a side of the sound-emitting unit 2 away from the rear shell 12, and the sound-conducting shell 14 has a sound-guiding cavity 30 forming a side sound-emitting structure. The sound guide cavity 30 is in communication with the diaphragm 221. The side sound structure can better guide the sound, which is convenient for use when the front sound is blocked, and the use flexibility is higher.
比如,所述导声壳14及所述振膜221共同围成导声腔30。具体的,所述导声壳14包括与所述振膜221间隔相对的导声壳板141以及由所述导声壳板141的周缘向所述发声单体2弯折延伸并支撑固定于所述发声单体2周缘的导声壳延伸壁142,所述导声壳延伸壁142设有贯穿其上的导声孔143,从而形成侧发声结构,便于安装位置不同的灵活运用。For example, the sound guide shell 14 and the diaphragm 221 jointly enclose a sound guide cavity 30. Specifically, the sound conducting shell 14 includes a sound conducting shell plate 141 spaced and opposed to the diaphragm 221, and a peripheral edge of the acoustic conducting shell plate 141 is bent and extended toward the sound emitting unit 2 and supported and fixed to the The sound-guiding shell extension wall 142 on the periphery of the sounding monomer 2 is provided with a sound-guiding hole 143 penetrating the sound-guiding shell extension wall 142 to form a side sounding structure, which is convenient for flexible use of different installation positions.
需要说明的是,导声腔30与振膜221连通可以是直接连通,也可以是振膜221经前声腔101再与导声腔30连通,这是本领域技术人员容易理解的。此时,理解为导声壳14为发声器件100的一个器件,而不属于壳体1。It should be noted that the communication between the sound guiding cavity 30 and the diaphragm 221 may be direct communication, or the diaphragm 221 may communicate with the sound guiding cavity 30 through the front acoustic cavity 101, which is easily understood by those skilled in the art. At this time, it is understood that the sound conducting shell 14 is a component of the sound emitting device 100 and does not belong to the housing 1.
当将导声壳14理解为壳体1的一部分,这也是可行的,即所述导声壳14可以是壳体1的一部分,此时,则为所述壳体1与所述发声单体2还围成形成侧发声结构的导声腔30,所述导声腔30与所述振膜221连通。When the sound conducting shell 14 is understood as a part of the shell 1, it is also feasible, that is, the sound conducting shell 14 may be a part of the shell 1. In this case, it is the shell 1 and the sound emitting monomer. 2 is also enclosed to form a sound guide cavity 30 forming a side sounding structure, and the sound guide cavity 30 is in communication with the diaphragm 221.
请结合图10所示,为图4所示发声器件中增加透气隔离件的结构示意图。具体的,所述发声器件100还包括位于所述后声腔102内的透气隔离件7,所述透气隔离7件贴设于所述发声单体2并将所述发声单体2从所述后声腔102内分隔,当后声腔102中填充吸音颗粒时,透气隔离件7则防止了吸音颗粒进入发声单体2内部而影响其声学性能,提高发声了可靠性。Please refer to FIG. 10, which is a schematic diagram of the structure of adding air-permeable spacers to the sound emitting device shown in FIG. 4. Specifically, the sound emitting device 100 further includes a gas-permeable isolator 7 located in the rear acoustic cavity 102, and the gas-permeable isolator 7 is attached to the sound monomer 2 and the sound monomer 2 is removed from the rear sound cavity. The acoustic cavity 102 is partitioned. When the rear acoustic cavity 102 is filled with sound-absorbing particles, the air-permeable spacer 7 prevents the sound-absorbing particles from entering the sound-producing monomer 2 and affecting its acoustic performance, thereby improving the reliability of sound production.
请结合图11所示,图10所示实施方式中透气隔离件的具体结构的示意图。所述发声器件600还包括位于所述后声腔60102内的透气隔离件607,所述透气隔离件607包括与所述后壳6012间隔相对设置的隔离件本体6071、由所述隔离件本体6071的周缘向所述后壳6012方向弯折延伸的隔离件延伸部6072以及由所述隔离件延伸部6072远离所述隔离件本体6071的一端弯折延伸的隔离件固定部6073。Please refer to FIG. 11, which is a schematic diagram of the specific structure of the air-permeable spacer in the embodiment shown in FIG. 10. The sound emitting device 600 further includes a gas-permeable isolator 607 located in the rear acoustic cavity 60102, and the gas-permeable isolator 607 includes an isolator body 6071 and a spacer body 6071 arranged opposite to the rear shell 6012. The spacer extension part 6072 whose periphery is bent and extended toward the rear shell 6012 and the spacer fixing part 6073 is bent and extended from an end of the spacer extension part 6072 away from the spacer body 6071.
所述隔离件延伸部6072与所述后壳延伸壁60122间隔设置,所述隔离件固定部6073固定于所述后壳6012;所述透气隔离件607与所述后壳6012共同围成灌粉空间601。其中,所述隔离件延伸部6072与所述后壳延伸壁60122间隔设置的结构可有效增加后声腔60102的通气顺畅性,提高低频发声性能的稳定性。The spacer extension 6072 is spaced apart from the rear shell extension wall 60122, and the spacer fixing part 6073 is fixed to the rear shell 6012; the air-permeable spacer 607 and the rear shell 6012 together form a powder filling Space 601. Wherein, the structure in which the spacer extension 6072 and the rear shell extension wall 60122 are spaced apart can effectively increase the smoothness of ventilation of the rear acoustic cavity 60102 and improve the stability of low-frequency sound performance.
请结合图12所示,为图11所示实施方式的衍生实施方式结构示意图。所述发声器件700中,所述隔离件本体7071靠近所述发声单体702的一侧向远离所述发声单体702方向凹陷形成避让台阶7074,所述避让台阶7074与所述泄露部7024正对设置。该结构设置可使发声单体702的发声内腔7103的泄露更顺畅,从而改善发声性能。Please refer to FIG. 12, which is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 11. In the sounding device 700, the side of the isolator body 7071 close to the sounding unit 702 is recessed in a direction away from the sounding unit 702 to form an avoiding step 7074, and the avoiding step 7074 is in line with the leakage portion 7024. Pair set. This structural arrangement can make the leakage of the sounding cavity 7103 of the sounding monomer 702 smoother, thereby improving the sounding performance.
请结合图13所示,为图1所示实施方式的衍生实施方式结构示意图。所述发声器件800还包括至少两个定位片8并分别与壳体801连接。所述定位片8远离所述壳体801的一端设有贯穿其上的定位孔81,用于将发声器件800与运用终端整机固定定位,比如为螺纹孔,使用螺钉则可通过所述定位孔81固定在终端整机,简单方便,而定位片8设置至少两个可更有效的形成定位固定。为了进一步提高固定稳定性,两个所述定位片8连接于所述壳体801的相对两侧或两对角处,对称设置使发声器件800与终端整机定位固定效果更优。本实施方式中,定位片8通过焊接固定于壳体801,即定位片8与壳体801为两个器件的分体结构。Please refer to FIG. 13, which is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 1. The sound emitting device 800 further includes at least two positioning pieces 8 which are connected to the housing 801 respectively. One end of the positioning piece 8 away from the housing 801 is provided with a positioning hole 81 penetrating through it, which is used to fix and position the sound emitting device 800 and the application terminal, such as a threaded hole. The hole 81 is fixed on the terminal device, which is simple and convenient, and the positioning sheet 8 is provided with at least two positioning sheets 8 to form a positioning fixation more effectively. In order to further improve the fixation stability, the two positioning pieces 8 are connected to opposite sides or two diagonal corners of the housing 801, and the symmetrical arrangement makes the sound generating device 800 and the whole terminal have a better positioning and fixation effect. In this embodiment, the positioning piece 8 is fixed to the housing 801 by welding, that is, the positioning piece 8 and the housing 801 are a separate structure of two devices.
请结合图14所示,为图13所示实施方式的衍生实施方式结构示意图。其与图13所示实施方式的区别在于,本实施方式中的发声器件900中,所述定位片908中由所述壳体901向外延伸形成,即定位片908与壳体901为一体成型结构,成型简单,减少器件数量,提高装配效率。Please refer to FIG. 14, which is a schematic structural diagram of a derivative embodiment of the embodiment shown in FIG. 13. The difference from the embodiment shown in FIG. 13 is that in the sound emitting device 900 in this embodiment, the positioning piece 908 is formed by extending outward from the housing 901, that is, the positioning piece 908 and the housing 901 are integrally formed The structure is simple to form, reduces the number of components, and improves assembly efficiency.
与相关技术相比,本实用新型的发声器件中,通过设计底座和后壳分别盖设于所述盆架的相对两侧,并使得所述后壳板、所述后壳延伸壁、所述底座延伸壁以及所述发声单体共同围成后声腔,后壳设置泄漏孔将所述后声腔与外界连通,且所述发声器件还包括密封件,所述密封件设置于所述后壳延伸壁与所述底座延伸壁的连接处并同时与所述底座和所述后壳胶合固定形成密封,上述结构形成了密闭的后声腔结构,不仅结构简单、整体尺寸增加小,且使得发声器件的声学效果更优,而且密闭的后声腔结构使得该发声器件运用于移动终端后避免了壳振现象的产生,使得用户体验效果更好。另一方面,上述结构的设置,进一步提高了所述底座和所述后壳的密封性。Compared with the related art, in the sound device of the present invention, the base and the rear shell are designed to cover the opposite sides of the basin frame, and the rear shell plate, the rear shell extension wall, and the The extension wall of the base and the sounding monomer jointly enclose a rear sound cavity, the rear housing is provided with a leak hole to communicate the rear sound cavity with the outside, and the sounding device further includes a sealing element which is arranged on the rear housing to extend The connection between the wall and the extension wall of the base and at the same time is glued and fixed with the base and the rear shell to form a seal. The above-mentioned structure forms a sealed rear acoustic cavity structure, which is not only simple in structure, and small in overall size, but also makes the sound device The acoustic effect is better, and the sealed rear acoustic cavity structure enables the sound emitting device to avoid the occurrence of shell vibration after being applied to the mobile terminal, so that the user experience effect is better. On the other hand, the arrangement of the above structure further improves the sealing performance of the base and the rear case.
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。The above are only the embodiments of the present utility model. It should be pointed out here that for those of ordinary skill in the art, improvements can be made without departing from the inventive concept of the present utility model, but these all belong to The scope of protection of the utility model.

Claims (24)

  1. 一种发声器件,其包括具有收容空间的壳体和收容于所述壳体内的发声单体,所述发声单体包括用于振动发声的振膜,其特征在于,A sounding device, comprising a housing with a containing space and a sounding monomer contained in the housing, the sounding monomer comprising a diaphragm for vibrating and sounding, and is characterized in that:
    所述壳体包括沿所述振膜的振动方向分别盖设于所述发声单体相对两侧的底座和后壳;The housing includes a base and a rear housing respectively covering opposite sides of the sound-producing monomer along the vibration direction of the diaphragm;
    所述底座包括盖设固定于所述发声单体靠近所述振膜一侧的底座板和由所述底座板的外周缘沿所述发声单体的周侧向远离所述振膜方向弯折延伸的底座延伸壁;The base includes a base plate that is covered and fixed on a side of the sounding unit close to the diaphragm, and the outer periphery of the base plate is bent in a direction away from the diaphragm along the circumferential side of the sounding unit Extended base extension wall;
    所述后壳包括位于所述发声单体远离所述底座板的一侧且与所述发声单体间隔的后壳板和由所述后壳板的周缘沿所述发声单体周侧向靠近所述底座延伸壁方向弯折延伸的后壳延伸壁,所述后壳延伸壁抵接于所述底座延伸壁;The rear shell includes a rear shell plate located on a side of the sound emitting unit away from the base plate and spaced from the sound emitting unit, and a peripheral edge of the rear shell plate is approached along the circumferential side of the sound emitting unit A rear shell extension wall bent and extended in the direction of the base extension wall, and the rear shell extension wall abuts against the base extension wall;
    所述发声器件还包括密封件,所述密封件设置于所述后壳延伸壁与所述底座延伸壁的连接处并同时与所述底座和所述后壳胶合固定形成密封;The sound emitting device further includes a sealing element, the sealing element is arranged at the connection between the extension wall of the rear shell and the extension wall of the base and is simultaneously glued and fixed with the base and the rear shell to form a seal;
    所述底座设有贯穿其上的发声孔,所述发声孔与所述振膜连通,所述后壳板、所述后壳延伸壁、所述底座延伸壁以及所述发声单体共同围成后声腔,所述发声单体设有与所述后声腔连通的泄露部,所述后壳上设有泄露孔,所述泄露孔将所述后声腔与外界连通。The base is provided with a sound hole penetrating therethrough, the sound hole is in communication with the diaphragm, and the rear shell plate, the rear shell extension wall, the base extension wall and the sound monomer are jointly enclosed In the rear acoustic cavity, the sound-producing monomer is provided with a leakage part communicating with the rear acoustic cavity, and the rear shell is provided with a leakage hole, and the leakage hole connects the rear acoustic cavity with the outside.
  2. 根据权利要求1所述的发声器件,其特征在于,所述密封件部分或完全夹设于所述底座延伸壁与所述后壳延伸壁之间,且所述密封件具有弹性变形。The sounding device according to claim 1, wherein the sealing element is partially or completely sandwiched between the extension wall of the base and the extension wall of the rear case, and the sealing element is elastically deformed.
  3. 根据权利要求1所述的发声器件,其特征在于,所述密封件设置于所述收容空间外且贴设于所述底座延伸壁与所述后壳延伸壁的连接处。The sounding device according to claim 1, wherein the sealing member is arranged outside the receiving space and attached to the connection between the extension wall of the base and the extension wall of the rear case.
  4. 根据权利要求1所述的发声器件,其特征在于,所述发声单体包括盆架、分别支撑固定于所述盆架的振动系统和驱动所述振动系统振动发声的磁路系统,所述壳体的厚度小于所述盆架的厚度。The sound emitting device according to claim 1, wherein the sound emitting unit comprises a basin frame, a vibration system fixed to the basin frame, and a magnetic circuit system that drives the vibration system to vibrate and produce sound, and the shell The thickness of the body is smaller than the thickness of the basin frame.
  5. 根据权利要求4所述的发声器件,其特征在于,所述壳体的厚度与所述盆架的厚度比值小于0.4。The sound emitting device according to claim 4, wherein the ratio of the thickness of the shell to the thickness of the basin frame is less than 0.4.
  6. 根据权利要求4所述的发声器件,其特征在于,所述底座延伸壁和/或所述后壳延伸壁贴合于所述盆架,或所述底座延伸壁和/或所述后壳延伸壁与所述盆架的至少一侧设有间隔,所述间隔小于所述壳体的厚度的3倍。The sounding device according to claim 4, wherein the base extension wall and/or the rear shell extension wall are attached to the basin frame, or the base extension wall and/or the rear shell extension A gap is provided between the wall and at least one side of the basin frame, and the gap is less than 3 times the thickness of the shell.
  7. 根据权利要求1所述的发声器件,其特征在于,所述壳体为金属材料制成。The sound emitting device according to claim 1, wherein the housing is made of metal material.
  8. 根据权利要求7所述的发声器件,其特征在于,所述壳体至少部分接地。The sound emitting device according to claim 7, wherein the housing is at least partially grounded.
  9. 根据权利要求7所述的发声器件,其特征在于,所述发声器件还包括导电件,所述导电件的一端电连接于所述壳体,所述导电件的另一端用于接地。8. The sound generating device according to claim 7, wherein the sound generating device further comprises a conductive member, one end of the conductive member is electrically connected to the housing, and the other end of the conductive member is used for grounding.
  10. 根据权利要求9所述的发声器件,其特征在于,所述导电件由所述壳体延伸形成。The sound emitting device according to claim 9, wherein the conductive member is formed by extending the housing.
  11. 根据权利要求7所述的发声器件,其特征在于,所述发声器件还包括导电件,所述导电件包括两条电性通路,其中一条所述电性通路用于连接所述发声单体与外部电信号,另一条所述电性通路用于连接所述壳体与地。The sound emitting device according to claim 7, wherein the sound emitting device further comprises a conductive member, the conductive member includes two electrical paths, and one of the electrical paths is used to connect the sound emitting monomer and For external electrical signals, the other electrical path is used to connect the housing and the ground.
  12. 根据权利要求7所述的发声器件,其特征在于,所述发声器件还包括至少两个定位片,两个所述定位片连接于所述壳体的相对两侧或两对角处,所述定位片远离所述壳体的一端设有贯穿其上的定位孔。The sounding device according to claim 7, wherein the sounding device further comprises at least two positioning pieces, and the two positioning pieces are connected to opposite sides or two diagonal corners of the housing, and One end of the positioning piece away from the casing is provided with a positioning hole penetrating the top.
  13. 根据权利要求12所述的发声器件,其特征在于,所述定位片由所述壳体向外延伸形成。The sounding device according to claim 12, wherein the positioning piece is formed by extending outward from the casing.
  14. 根据权利要求1所述的发声器件,其特征在于,所述壳体采用0.15mm厚的钢片制成。The sound emitting device according to claim 1, wherein the shell is made of steel sheet with a thickness of 0.15 mm.
  15. 根据权利要求4所述的发声器件,其特征在于,所述发声单体还包括盖设于所述盆架靠近所述振膜一侧的前盖,所述前盖、所述底座以及所述振膜共同围成前声腔,所述前盖设有沿所述振动方向贯穿其上的通孔,所述通孔将所述前声腔与外界连接。The sounding device according to claim 4, wherein the sounding unit further comprises a front cover arranged on a side of the basin frame close to the diaphragm, the front cover, the base, and the The diaphragms collectively enclose a front acoustic cavity, the front cover is provided with a through hole penetrating the front cover along the vibration direction, and the through hole connects the front acoustic cavity with the outside.
  16. 根据权利要求4所述的发声器件,其特征在于,所述发声器件还包括盖设于所述盆架靠近所述振膜一侧的前盖,所述前盖、所述底座以及所述振膜共同围成前声腔,所述前盖设有沿所述振动方向贯穿其上的通孔,所述通孔将所述前声腔与外界连接;所述底座压设固定于所述前盖的周缘远离所述振膜的一侧,所述前盖穿过所述发声孔并外露于所述底座。The sounding device according to claim 4, wherein the sounding device further comprises a front cover arranged on a side of the basin frame close to the diaphragm, the front cover, the base and the vibration The membranes collectively enclose a front acoustic cavity, the front cover is provided with a through hole penetrating therethrough along the vibration direction, and the through hole connects the front acoustic cavity with the outside; the base is pressed and fixed to the front cover The peripheral edge is away from the side of the diaphragm, and the front cover passes through the sound hole and is exposed to the base.
  17. 根据权利要求15或16所述的发声器件,其特征在于,所述发声器件还包括贴设于所述前盖的透气阻尼件,所述透气阻尼件完全覆盖所述通孔。The sound emitting device according to claim 15 or 16, wherein the sound emitting device further comprises a breathable damping member attached to the front cover, and the breathable damping member completely covers the through hole.
  18. 根据权利要求1所述的发声器件,其特征在于,所述发声器件包括盖设于所述发声单体远离所述后壳一侧的导声壳,所述导声壳具有形成侧发声结构的导声腔,所述导声腔与所述振膜连通。The sound-emitting device according to claim 1, wherein the sound-emitting device comprises a sound-conducting shell covering a side of the sound-emitting monomer away from the rear shell, and the sound-conducting shell has a side sound-emitting structure. A sound guide cavity, the sound guide cavity is in communication with the diaphragm.
  19. 根据权利要求1所述的发声器件,其特征在于,所述壳体与所述发声单体还围成形成侧发声结构的导声腔,所述导声腔与所述振膜连通。The sounding device according to claim 1, wherein the housing and the sounding monomer further enclose a sound guide cavity forming a side sounding structure, and the sound guide cavity is in communication with the diaphragm.
  20. 根据权利要求1所述的发声器件,其特征在于,所述发声器件还包括位于所述后声腔内的透气隔离件,所述透气隔离件贴设于所述发声单体并将所述发声单体从所述后声腔内分隔。The sounding device according to claim 1, wherein the sounding device further comprises a gas-permeable isolator located in the rear acoustic cavity, and the gas-permeable isolator is attached to the sounding unit and the sounding unit The body is separated from the rear acoustic cavity.
  21. 根据权利要求1所述的发声器件,其特征在于,所述发声器件还包括位于所述后声腔内的透气隔离件,所述透气隔离件包括与所述后壳间隔相对设置的隔离件本体、由所述隔离件本体的周缘向所述后壳方向弯折延伸的隔离件延伸部以及由所述隔离件延伸部远离所述隔离件本体的一端弯折延伸的隔离件固定部;所述隔离件延伸部与所述后壳延伸壁间隔设置,所述隔离件固定部固定于所述后壳;所述透气隔离件与所述后壳共同围成灌粉空间。The sounding device according to claim 1, wherein the sounding device further comprises a gas-permeable spacer located in the rear acoustic cavity, and the gas-permeable spacer comprises a spacer body arranged opposite to the rear shell, A spacer extension part bent and extended from the periphery of the spacer body in the direction of the rear shell, and a spacer fixing part bent and extended from one end of the spacer extension part away from the spacer body; the spacer The extension part of the element is spaced apart from the extension wall of the rear shell, and the spacer fixing part is fixed to the rear shell; the air-permeable spacer and the rear shell jointly enclose a powder filling space.
  22. 根据权利要求21所述的发声器件,其特征在于,所述隔离件本体靠近所述发声单体的一侧向远离所述发声单体方向凹陷形成避让台阶,所述避让台阶与所述泄露部正对设置。The sounding device according to claim 21, wherein the side of the isolator body close to the sounding unit is recessed in a direction away from the sounding unit to form an avoiding step, and the avoiding step and the leakage portion Set it right.
  23. 根据权利要求1所述的发声器件,其特征在于,所述发声单体沿所述振膜的振动方向向所述后壳的正投影与所述后壳的面积比至少为2/3。The sounding device according to claim 1, wherein the area ratio of the orthographic projection of the sounding monomer to the rear case along the vibration direction of the diaphragm to the rear case is at least 2/3.
  24. 根据权利要求6所述的发声器件,其特征在于,所述间隔小于或等于所述振膜固定于所述盆架的固定面的宽度的1/3。The sound emitting device according to claim 6, wherein the interval is less than or equal to 1/3 of the width of the fixed surface of the diaphragm fixed to the basin frame.
PCT/CN2020/094696 2020-05-29 2020-06-05 Sounding device WO2021237787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020963910.0U CN212628367U (en) 2020-05-29 2020-05-29 Sound production device
CN202020963910.0 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021237787A1 true WO2021237787A1 (en) 2021-12-02

Family

ID=74749739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094696 WO2021237787A1 (en) 2020-05-29 2020-06-05 Sounding device

Country Status (2)

Country Link
CN (1) CN212628367U (en)
WO (1) WO2021237787A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203618121U (en) * 2013-12-11 2014-05-28 歌尔声学股份有限公司 Loudspeaker module
CN204598310U (en) * 2015-05-06 2015-08-26 歌尔声学股份有限公司 Loud speaker module
CN106973348A (en) * 2017-04-24 2017-07-21 歌尔股份有限公司 Loudspeaker module and electronic equipment
CN206575596U (en) * 2017-03-23 2017-10-20 江西联创宏声电子股份有限公司 Loudspeaker module
CN207070324U (en) * 2017-05-31 2018-03-02 歌尔股份有限公司 Loudspeaker module and electronic equipment
CN108322871A (en) * 2018-02-11 2018-07-24 瑞声科技(新加坡)有限公司 Minitype acoustic generator and loudspeaker enclosure
CN109040926A (en) * 2018-08-01 2018-12-18 歌尔股份有限公司 Microphone device and portable terminal
CN110234042A (en) * 2019-07-12 2019-09-13 刘世阳 From pressure release water-proof loudspeaker

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203618121U (en) * 2013-12-11 2014-05-28 歌尔声学股份有限公司 Loudspeaker module
CN204598310U (en) * 2015-05-06 2015-08-26 歌尔声学股份有限公司 Loud speaker module
CN206575596U (en) * 2017-03-23 2017-10-20 江西联创宏声电子股份有限公司 Loudspeaker module
CN106973348A (en) * 2017-04-24 2017-07-21 歌尔股份有限公司 Loudspeaker module and electronic equipment
CN207070324U (en) * 2017-05-31 2018-03-02 歌尔股份有限公司 Loudspeaker module and electronic equipment
CN108322871A (en) * 2018-02-11 2018-07-24 瑞声科技(新加坡)有限公司 Minitype acoustic generator and loudspeaker enclosure
CN109040926A (en) * 2018-08-01 2018-12-18 歌尔股份有限公司 Microphone device and portable terminal
CN110234042A (en) * 2019-07-12 2019-09-13 刘世阳 From pressure release water-proof loudspeaker

Also Published As

Publication number Publication date
CN212628367U (en) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021138952A1 (en) Loudspeaker box
WO2021164080A1 (en) Loudspeaker box
WO2021237791A1 (en) Sound production device
WO2021138954A1 (en) Loudspeaker enclosure
WO2021138950A1 (en) Speaker enclosure
WO2021138953A1 (en) Speaker enclosure
WO2022257738A1 (en) Sound production device and electronic apparatus
WO2021237833A1 (en) Sound-generating device
CN213028516U (en) Sound production device
WO2022041471A1 (en) Sound production device
WO2021253464A1 (en) Loudspeaker enclosure
WO2021253538A1 (en) Loudspeaker enclosure
WO2021237795A1 (en) Sound production device
WO2021138951A1 (en) Speaker enclosure
CN212628370U (en) Sound production device
WO2021237788A1 (en) Sound production device
CN212628371U (en) Sound production device
CN212628368U (en) Sound production device
WO2021237835A1 (en) Sound production device
WO2021237787A1 (en) Sounding device
WO2021237813A1 (en) Sound production device
WO2021237789A1 (en) Sound generating device
WO2021237814A1 (en) Sound generating device
WO2022041458A1 (en) Sound production device
CN213028514U (en) Sound production device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937588

Country of ref document: EP

Kind code of ref document: A1