WO2021237609A1 - Novel use of oridonin or oridonin derivative - Google Patents

Novel use of oridonin or oridonin derivative Download PDF

Info

Publication number
WO2021237609A1
WO2021237609A1 PCT/CN2020/093017 CN2020093017W WO2021237609A1 WO 2021237609 A1 WO2021237609 A1 WO 2021237609A1 CN 2020093017 W CN2020093017 W CN 2020093017W WO 2021237609 A1 WO2021237609 A1 WO 2021237609A1
Authority
WO
WIPO (PCT)
Prior art keywords
oridonin
dnmt3a
derivative
cells
related disease
Prior art date
Application number
PCT/CN2020/093017
Other languages
French (fr)
Inventor
Jianwei Wang
Min Liao
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to PCT/CN2020/093017 priority Critical patent/WO2021237609A1/en
Publication of WO2021237609A1 publication Critical patent/WO2021237609A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention relates to the medical field, more particularly to the novel use of oridonin or oridonin derivative in treating, preventing or lessening a DNMT3A R882H mutation related disease and to a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
  • Hematopoietic stem cell generates all blood cells throughout lifespan and certain mutations drive clonal hematopoiesis with aging, which is a risk factor for many diseases, especially for blood malignancies.
  • Aging-elevated DNMT3A R882H-driven clonal hematopoiesis is a risk factor for myeloid malignancies remission and overall survival. Even though some studies were performed to investigate this phenomenon, the exact mechanism is still under debate.
  • the present disclosure is completed based on the following founding: disclosing the molecular mechanism behind R882H-driven clonal hematopoiesis is a crucial step to uncover the internal link between aging and myeloid malignancies. Moreover, finding small molecule (s) that can inhibit DNMT3A R882H-carrying hematopoietic cells will be of great clinical significance.
  • Dnmt3a R878H HSCs human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human
  • R878H HSCs human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human
  • R878H HSCs displayed enhanced reconstitution capacity compared to wild-type HSCs by preventing the activation of RIPK1-RIPK3-MLKL mediated necroptosis induced by aging inflammatory milieu.
  • the inventors elucidated the molecular mechanism driving DNMT3A R882H-based clonal hematopoiesis and identified oridonin selectively inhibiting hematopoietic and leukemic cells carrying Dnmt3a R878/DNMT3A R882 mutation, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
  • a method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof comprises administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.
  • a pharmaceutical composition for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof comprising: oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof.
  • oridonin or oridonin derivative in another aspect, provided is use of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof in the manufacture of a medicament for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof.
  • a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease comprising: mixing a mutant cell carrying DNMT3A R882H mutation and a wild type cell at predetermined number ratio of the wild type cell to the mutant cell to obtain a cell mixture; contacting the cell mixture with a candidate compound; and determining a number ratio after contacting of the wild type cell to the mutant cell to obtain, wherein the number ratio after contacting higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
  • Fig. 1 shows (A) Schematic illustration for the design of the DNMT3AR882H/R882H allele to produce a K562 cell line with DNMT3A R882H mutation (K562-R882H) .
  • B An EGFP and tdTomato reporter gene were, respectively, inserted into adeno-associated virus integration site 1 (AAVS1) allele of K562-WT and K562-R882H cell line to generate K562-WT-EGFP (WT) and K562-R882H-tdTomato (R882H) cell lines.
  • C Shows the experimental procedure designed for high-throughput screening to obtain small molecules selectively inhibit cell lines with DNMT3A R882 mutations.
  • Fig. 2 shows preliminary active compound from the first round screening is exhibited in the histogram (The y-axis is a ratio of WT to R882H cells, NT: non-treatment control) .
  • Fig. 3 shows six active small molecules were obtained after additional validation.
  • Fig. 4 shows the inhibition rate of oridonin by a 48-hour treatment at different concentrations, all data are presented as mean ⁇ SD and compared to NT; *p ⁇ 0.05, **p ⁇ 0.01, and ***p ⁇ .001.
  • Fig. 5 shows that Necroptosis-associated genes (RIPK1, RIPK3 and MLKL) were determined by qRT-PCR in OCL-AML2 or OCL-AML3 cells treated with oridonin (data are presented as mean ⁇ SD with two biological replicates) .
  • Fig. 6 shows that oridonin selectively inhibits Dnmt3a R878H HSC in vivo.
  • Fig. 6A shows the schematic diagram of the experiment designed for oridonin treatment in vivo.
  • WT or R878H BM cells (CD45.2) were mixed with WT competitor BM cells (CD45.1) at a ratio of 1: 1 (3 ⁇ 10 5 : 3 ⁇ 10 5 ) and transplanted into lethally irradiated recipient mice (CD45.1/2) .
  • the chimeric mice were exposed to continuous treatment with oridonin (10 mg/kg injected i.p. every day for 15 days) or vehicle accordingly. Chimerism in PB was analyzed monthly.
  • 6B to 6F show that the frequencies of donor derived cells in the PB of WT ⁇ oridonin (B) or R878H ⁇ oridonin (C) recipients at indicated time point and frequencies of B cells, T cells, myeloid within donor-derived PB at 20 weeks post-transplantation were evaluated (D) .
  • Fig. 6G shows OCL-AML2 or OCL-AML3 cells were subcutaneously inoculated into the right flank of nude mice to generate mouse xenograft model. 20 mg/kg oridonin or related volume of vehicle were intraperitoneal injection into the left flank of tumor inoculated mice when tumors were measurable.
  • the present disclosure is completed based on the following founding: disclosing the molecular mechanism behind R882H-driven clonal hematopoiesis is a crucial step to uncover the internal link between aging and myeloid malignancies. Moreover, finding small molecule (s) that can inhibit DNMT3A R882H-carrying hematopoietic cells will be of great clinical significance.
  • Dnmt3a R878H HSCs human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human
  • R878H HSCs human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human
  • R878H HSCs displayed enhanced reconstitution capacity compared to wild-type HSCs by preventing the activation of RIPK1-RIPK3-MLKL mediated necroptosis induced by aging inflammatory milieu.
  • the inventors elucidated the molecular mechanism driving DNMT3A R882H-based clonal hematopoiesis and identified oridonin selectively inhibiting hematopoietic and leukemic cells carrying Dnmt3a R878/DNMT3A R882 mutation, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
  • a method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof comprises administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.
  • DNMT3A R882H means that the amino acid No. 882 in wild type DNMT3A is Arginine (Arg or R) , and the Arginine in the mutant may be replaced with Histidine (His or H) .
  • the person skilled in the art may understand that the numbering of the amino acid is based on the wild type human allel of DNMT3A with the sequence as follows (the underline R is R882) :
  • DNMT3A may have many variants in some organisms other than human or some cells, the person skilled in the art may obtain the corresponding amino acid site of R882 by alignment, for example, the for mouse, the real numbering is “R878H” .
  • the inventors measured the IC 50 of DOT1L inhibitors SGC0946 and EPZ5676 using experimental conditions performed in this study, and the results show that the IC 50 of SGC0946 for OCL-AML2 and OCL-AML3 cells are 25.1 ⁇ M and 22.0 ⁇ M separately, the IC 50 of EPZ5676 for OCL-AML2 and OCL-AML3 cells are 101 ⁇ M and 79.2 ⁇ M . While the IC 50 of oridonin for OCL-AML2 and OCL-AML3 cells are 4.6 ⁇ M and 2.1 ⁇ M, which is significantly lower than DOT1L inhibitor and the selectivity is much better ( Figures 5I) .
  • AML patients with DNMT3A R882 mutation have poor outcome when treated with anthracycline. It will be interesting for us to explore whether oridonin can improve the overall survival of AML patients carrying DNMT3A R882 mutation.
  • Oridonin is mainly extracted from a Chinese herbal medicine named Donglingcao which has been used as traditional medicine to treat inflammation and cancer for hundreds of years, and its analog called HAO472 has entered into Phase I human clinical trial (CTR20150246; www. chinadrugtrails. org. cn) in China for targeting AML1-ETO (Hu et al., 2019) . All these data suggest oridonin may be a promising drug candidate or a good lead compound for treating AML with DNMT3A R882 mutation.
  • the DNMT3A R882H mutation related disease involves clonal hematopoiesis. In some examples, the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
  • the oridonin derivative comprises a 14-O-Acyl derivative of oridonin .
  • the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  • oridonin The structure and carbon atom numbering of oridonin is shown below:
  • a pharmaceutical composition for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof comprising: oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof.
  • the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
  • the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease.
  • the oridonin derivative comprises a 14-O-Acyl derivative of oridonin .
  • the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  • the compound of the invention may be typically formulated into a dosage form adapted for administration to the patient by the desired route of administration.
  • dosage forms include those adapted for (1) oral administration such as tablets, capsules, caplets, pills, troches, powders, syrups, elixirs, suspensions, solutions, emulsions, sachets, and cachets; (2) parenteral administration such as sterile solutions, suspensions, and powders for reconstitution; (3) transdermal administration such as transdermal patches; (4) rectal administration such as suppositories; (5) inhalation such as aerosols, solutions, and dry powders; and (6) topical administration such as creams, ointments, lotions, solutions, pastes, sprays, foams, and gels.
  • the compound (oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof ) may be formulatedd into solid dispersion, injection, for examples nanosuspension, liposomes.
  • a pharmaceutically acceptable derivative or a prodrug includes, but is not limited to, pharmaceutically acceptable prodrugs, salts, esters, salts of such esters, or any other adduct or derivative which upon administration to a patient in need thereof is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof.
  • the compounds disclosed herein can be prepared to oral dosage forms. In one embodiment, the compounds disclosed herein can be prepared to inhalation dosage forms. In one embodiment, the compounds disclosed herein can be prepared to dosage forms of nasal administration. In one embodiment, the compounds disclosed herein can be prepared to transdermal dosage forms. In one embodiment, the compounds disclosed herein can be prepared to dosage forms of topical administration.
  • compositions provided herein may be provided as compressed tablets, tablet triturates, chewable lozenges, rapidly dissolving tablets, multiple compressed tablets, or enteric-coating tablets, sugar-coated, or film-coated tablets.
  • Enteric-coated tablets are compressed tablets coated with substances that resist the action of stomach acid but dissolve or disintegrate in the intestine, thus protecting the active ingredients from the acidic environment of the stomach.
  • Enteric-coatings include, but are not limited to, fatty acids, fats, phenylsalicylate, waxes, shellac, ammoniated shellac, and cellulose acetate phthalates.
  • Sugar-coated tablets are compressed tablets surrounded by a sugar coating, which may be beneficial in covering up objectionable tastes or odors and in protecting the tablets from oxidation.
  • Film-coated tablets are compressed tablets that are covered with a thin layer or film of a water-soluble material.
  • Film coatings include, but are not limited to, hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000, and cellulose acetate phthalate. Film coating imparts the same general characteristics as sugar coating.
  • Multiple compressed tablets are compressed tablets made by more than one compression cycle, including layered tablets, and press-coated or dry-coated tablets.
  • compositions provided herein may be provided in liquid and semisolid dosage forms, including emulsions, solutions, suspensions, elixirs, and syrups.
  • An emulsion is a two-phase system, in which one liquid is dispersed in the form of small globules throughout another liquid, which can be oil-in-water or water-in-oil.
  • Emulsions may include a pharmaceutically acceptable non-aqueous liquids or solvent, emulsifying agent, and preservative.
  • Suspensions may include a pharmaceutically acceptable suspending agent and preservative.
  • Aqueous alcoholic solutions may include a pharmaceutically acceptable acetal, such as a di (lower alkyl) acetal of a lower alkyl aldehyde, e.g., acetaldehyde diethyl acetal; and a water-miscible solvent having one or more hydroxy groups, such as propylene glycol and ethanol.
  • Elixirs are clear, sweetened, and hydroalcoholic solutions.
  • Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may also contain a preservative.
  • a solution in a polyethylene glycol may be diluted with a sufficient quantity of a pharmaceutically acceptable liquid carrier, e.g., water, to be measured conveniently for administration.
  • compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the patient for a prolonged period of time.
  • the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3 (6) , 318 (1986) .
  • compositions provided herein may be formulated as immediate or modified release dosage forms, including delayed-, sustained, pulsed-, controlled, targeted-, and programmed-release forms.
  • compositions provided herein may be formulated for single or multiple dosage administration.
  • the single dosage formulations are packaged in an ampoule, a vial, or a syringe.
  • the multiple dosage parenteral formulations must contain an antimicrobial agent at bacteriostatic or fungistatic concentrations. All parenteral formulations must be sterile, as known and practiced in the art.
  • compositions provided herein may be co-formulated with other active ingredients which do not impair the desired therapeutic action, or with substances that supplement the desired action.
  • oridonin or oridonin derivative in another aspect, provided is use of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof in the manufacture of a medicament for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof.
  • the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
  • the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
  • the oridonin derivative comprises a 14-O-Acyl derivative of oridonin.
  • the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  • a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease comprising:
  • the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
  • the mutant cell further carries a first reporter gene
  • the wild type cell further carries a second reporter gene
  • the first reporter gene is different from the second reporter gene
  • one of the first reporter gene and the second reporter gene is EGFP, and the another one of the first reporter gene and the second reporter gene is red fluorescent protein.
  • the number ratio is determined by signals from the first reporter gene and the second reporter gene.
  • the number ratio after contacting being at least 50%higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
  • Dnmt3aflox-R878H mice were obtained from Cyagen Biosciences Inc. (Guangzhou, China) .
  • Targeting vectors were kindly provided by Professor Saijuan Chen from Shanghai Jiao Tong University ( Figure 1A; Dai et al., 2017) .
  • the Dnmt3a R878H knock-in construct was generated via the recombineering method. Briefly, approximately 17.5 kb of genomic DNA surrounding Dnmt3a exon 23 was subcloned into targeting vector ( Figure 1A) .
  • the linearized vector was subsequently delivered to ES cells (C57BL/6) via electroporation, followed by drug selection, PCR screening, and Southern Blot confirmation.
  • Dnmt3aflox-R878H and Dnmt3a+/+littermate mice were genotyped by PCR with primers Dnmt3a-FP (5’-GCCAGTATAGATGCCTGTGAGGT-3’) and Dnmt3a-RP (5’-TGCCTCTTGGATGTGCTCTACAG -3’) using the following parameters: 94°C for 3 min, followed by 35 cycles of 94°C for 20 sec, 60°C for 20 sec, 72°C for 20 sec and 72°C for 5 min to final extension.
  • PCR product for WT and Mutant band is 260 bp and 316 bp, respectively.
  • Vav-iCre knockin mice were heterozygous for both the Dnmt3aR878H allele and the Vav-iCre allele (Dnmt3aR878H/WTVav-iCre+ or Dnmt3aR878H/WT) .
  • xenograft AML mouse models four-week-old female BALB/c nude mice were bought from Beijing Vital River Laboratory Animal Technology Co., Ltd and all mice were allowed to acclimate for 1 week in the Laboratory Animal Research Center at Tsinghua University before tumor cells inoculated. All mice were housed in specific-pathogen-free, AAALAC-accredited animal care facilities at the Laboratory Animal Research Center, Tsinghua University and all procedures were approved by Institutional Animal Care and Use Committee of Tsinghua University.
  • K562 cells and OCL-AML2 cells were purchased from DSMZ.
  • OCL-AML3 cells were kindly gifted by Professor Min Xiao from Huazhong University of Science and Technology.
  • K562-R882H cells (K562 cell line with DNMT3A R882H mutation) were generated by replacing the 882th amino acid (Arginine) in DNMT3A gene with Histidine through CRISPR-Cas9 gene editing system.
  • a gene fragment editing a red fluorescent protein was inserted into AAVS1 gene site of K562-R882H cells to obtain K562-R882H-tdTomato cells and K562-WT-EGFP cells were developed by inserting a gene fragment editing an enhanced green fluorescent protein (EGFP) into AAVS1 gene site of WT K562 cells.
  • EGFP enhanced green fluorescent protein
  • HBSS+ buffer D-Hank's buffer containing 2%fetal bovine serum and 1%HEPES
  • Flow cytometric analysis data were collected with a BD LSRFortessa SORP flow cytometer (BD Biosciences) and analyzed using FlowJo TM Software (Becton, Dickinson and Company) . Cell sorting was performed by BD Influx (BD Biosciences) and target fraction was sorted into HBSS+ buffer.
  • Non-lysed bone marrow (BM) cells were applied for analysis of HSPC (antibodies containing Lin-APC/Cy7 cocktail, c-Kit APC, Sca-1 PE/Cy7, CD150 PE, CD34 AF700, CD127 BV421, CD16/32 FITC and CD135 PE-CF594) and lineage (antibodies against Mac1, Gr1, B220, CD3) .
  • HSPC antibodies containing Lin-APC/Cy7 cocktail, c-Kit APC, Sca-1 PE/Cy7, CD150 PE, CD34 AF700, CD127 BV421, CD16/32 FITC and CD135 PE-CF594
  • lineage antibodies against Mac1, Gr1, B220, CD3
  • WT CD45.1/2 recipient mice (F1 generated by mating CD45.1 with CD45.2 mice, C57BL/6J mice) were co-injected intravenously (i.v. ) with 3 ⁇ 10 5 pooled WT or Dnmt3a R878H (CD45.2, C57BL/6J mice) whole BM cells and 3 ⁇ 10 5 WT (CD45.1, C57BL/6J mice) whole BM competitor cells for the competitive bone marrow transplantation assay and oridonin treatment assay.
  • the repopulating capacity of the test bone marrow populations was analyzed by FACS in the peripheral blood of recipient monthly post-transplantation.
  • a mixture of 5 ⁇ 10 5 whole BM cells from WT or Dnmt3a R878H (CD45.2, C57BL/6J mice) mice for treatment with PBS or 3 LPS combined with 5 ⁇ 10 5 WT (CD45.1, C57BL/6J mice) whole BM competitor cells were transplanted into lethally irradiated (10 Gy) WT recipients (CD45.1/2, C57BL/6J mice) and the chimera were evaluated monthly.
  • OCL-AML2 and OCL-AML3 cells were applied to further evaluate the selectivity of 6 candidates by CCK-8 assay described above and identified oridonin as a potential DNMT3A R882 mutations inhibitor from both Selleck and TargetMol library.
  • clonal hematopoiesis mouse model 1 ⁇ 10 5 total BM cells either from WT or R878H mice (CD45.2, C57BL/6J mice) were transplanted into lethally irradiated recipients (CD45.1/2, C57BL/6J mice) mixed with 5 ⁇ 10 5 competitor cells (CD45.1, C57BL/6J 4 mice) .
  • LPS 0.8 mg/kg was administrated to the recipients intraperitoneally every two days for 15 doses, and the chimera of peripheral blood was evaluated every month until the 5th month.
  • WT or R878H mice were intraperitoneally injected with LPS (0.8 mg/kg) or PBS for a single dose and mature cells from peripheral blood together with HSPC from BM of treated mice were analyzed 48 h later. While 5 doses (every other day) of LPS (0.8 mg/kg) or PBS injection were administrated to WT or R878H mice intraperitoneally for the chronic inflammatory challenge experiment, and the hematologic fraction was evaluated at the 10th day.
  • chimeric mice generated as in Figure 6A were injected intraperitoneally with oridonin (10 mg/kg) or vehicle (2%DMSO + 20%PEG300 + 78%PBS) once a day for 15 days, and donor-derived peripheral blood was evaluated every four weeks before analyzing donor-derived HSPCs until the 20th weeks.
  • Cell viability of cells treated with small molecules was measured by CCK-8 assay using the Cell Counting Kit-8 (Dojindo, Cat #CK04-11) .
  • OCL-AML2 or OCL-AML3 cells were seeded in 96-well plates at 1 ⁇ 10 5 /ml density with 100 ⁇ l medium and exposed to various concentrations of chemicals in triplicate for 72 h. Then, 10 ⁇ l of CCK-8 reagent was added to each wells by incubating at 37 °C for 4 to 6 h and the absorbance was measured by an Envision Multilabel Reader (PerkinElmer) spectrophotometry until with the maximum absorbance reached value of about 1 optical density (OD) at 450 nm. Values between the treatment group and vehicle controls were normalized, and measured data were submitted to GraphPad Prism 6 software to calculate the concentration of chemicals at which there was half cell death (IC 50 ) .
  • BM cells were harvested from one femur and kept in HBSS+ buffer on ice before evaluating by Vi-CELL Cell Counter (Beckman) .
  • c-Kit+ BM cells purified from magnetic beads enrichment (Miltenyi Biotec) after staining with c-Kit-APC antibody or 1 ⁇ 10 6 AML cell lines obtained after related treatment lysed with 150 ⁇ L NETN buffer (100 mM NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM PMSF and 0.5%Nonidet P-40) on ice for 30 min and subsequently centrifuged at 14000 g for 5 min. The supernatant was combined with 2 ⁇ loading buffer and then lysed by sonication before boiling for 6 min. Samples were resolved on 10%SDS-PAGE followed by transferring onto a PVDF membrane (BioRad) , and then membrane was blocked by 5%skim milk in TBST buffer before incubating with indicated primary antibodies.
  • NETN buffer 100 mM NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA,
  • Dnmt3a R878H HSCs To investigate the function of Dnmt3a R878H HSCs, the inventors generated Dnmt3afl-R878H/+ mice and confirmed the mutation by sequencing analysis of the genomic site, and then crossed them with Vav-iCre mice to generate Dnmt3a R878H heterozygous mice (Dnmt3aR878H/+) , wherein Dnmt3a R878H occurs mainly in hematopoietic cells (hereafter named R878H mice or R878H HSCs) .
  • R878H mice or R878H HSCs Dnmt3a R878H mice
  • the inventors then analyzed R878H mice at the age of 2-4 months and observed that the cell counts in peripheral blood (PB) and the frequency of lineage cells (B cells, T cells and myeloid) in PB and bone marrow (BM) of R878H mice display no difference compared to wild-type (WT) mice.
  • PB peripheral blood
  • B cells, T cells and myeloid lineage cells
  • BM bone marrow
  • the frequency and absolute number of HSCs in R878H mice is significantly larger than WT mice, but the frequency and absolute number of CMP (common myeloid progenitor) , GMP (granulocytemacrophage progenitors) , CLP (common lymphoid progenitors) , MEP (megakaryocyte-erythroid progenitors) , ST-HSC (short-term HSC) and MPP (multipotent progenitor cell) of R878H mice holds static compared to WT mice.
  • CMP common myeloid progenitor
  • GMP granulocytemacrophage progenitors
  • CLP common lymphoid progenitors
  • MEP megakaryocyte-erythroid progenitors
  • ST-HSC short-term HSC
  • MPP multipotent progenitor cell
  • R878H HSCs To further evaluate the function of R878H HSCs, the inventors performed competitive transplantation assay by transplanting 3 ⁇ 10 5 freshly isolated total bone marrow cells from either R878H mice or WT mice into lethally irradiated recipients together with 3 ⁇ 10 5 competitor cells, and the chimera was investigated every month until the 4th month. The result shows that R878H HSCs exhibited significant growth advantage compared to age-matched WT HSCs and the distribution of mature hematopoietic lineages exhibits no difference between R878H and WT cells. These data indicate that R878H HSCs display enhanced self-renewal capacity at both steady and stressed condition.
  • R878H HSCs Given that the self-renewal capacity of R878H HSCs increases, and that DNMT3A R882H promotes clonal hematopoiesis in the elderly, and that aged bone marrow microenvironment displays elevated inflammatory stress, the inventors attempt to speculate that aged microenvironment might select R878H HSCs. To test this hypothesis, the inventors transplanted 1 ⁇ 10 5 either R878H or WT total bone marrow cells into lethally irradiated young (2-month) and aged (15-month) recipients together with 5 ⁇ 10 5 competitor cells and the chimera in peripheral blood was evaluated every month until the 4 th month .
  • the inventors applied continuous LPS challenge to imitate chronic inflammation.
  • the inventors transplanted freshly isolated 1 ⁇ 10 5 total bone marrow cells from either WT or R878H mice into lethally irradiated young recipients together with 5 ⁇ 10 5 competitor cells.
  • LPS 0. mg/kg
  • the inventors injected the recipients with LPS (0.8 mg/kg) every two days intraperitoneally for one month, and the chimera of peripheral blood was evaluated every month until the 5 th month.
  • the result shows that R878H cells significantly outcompeted the competitor cells upon LPS challenge compared to PBS-treated ones (70.0% ⁇ 29.0%vs.
  • Example 3 Dnmt3a R878H Prevents the Exhaustion of HSCs Induced by Chronic Inflammation
  • Example 4 Dnmt3a R878H Prevents the Activation of Necroptosis in HSCs upon Inflammatory Stress
  • Ripk1, Ripk3 and Mlkl were evaluated by qRT-PCR and the result showed that the expression of Ripk1, Ripk3 and Mlkl is significantly lower in R878H LSKs compared to WT, indicating that the necroptosis signaling is compromised in R878H cells in response to proliferation stress.
  • phosphorylated MLKL acts as a final executioner of necroptosis
  • the inventors then sought to investigate whether R878H regulates the expression of p-MLKL.
  • the inventors treated freshly isolated WT and R878H cKit+ bone marrow cells with TSZ (T, Tnf ⁇ ; S, Smac mimetic; Z, z-VAD) for 3 hours, which is a frequently used approach to activate p-MLKL.
  • TSZ T, Tnf ⁇ ; S, Smac mimetic
  • Z, z-VAD a frequently used approach to activate p-MLKL.
  • the result revealed that the expression of p-MLKL in R878H cells is lower than WT upon TSZ stimulation, suggesting that R878H limits the activation of necroptosis in response to TSZ stimulation.
  • the inventors challenged two-month old WT, Dnmt3aR878H/+, Ripk1K45A, Ripk3 ⁇ / ⁇ and Mlkl-/-mice with 3 doses of TNF ⁇ (5 ⁇ g/mouse, intraperitoneal injection) every 12 hours and analyzed them 48 hours later.
  • TNF ⁇ injection depletes HSCs in WT and Ripk1K45A mice to about half of the PBS-treated counterpart, while the frequency of HSCs in Dnmt3aR878H, Ripk3 ⁇ / ⁇ and Mlkl-/-mice keeps static
  • progenitor cells including CMP, GMP, MEP and CLP, and lineage cells remain unaffected in response to TNF ⁇ administration. All these data suggest that Dnmt3a R878H protected HSCs from inflammatory insult by modulating necroptosis signaling.
  • human DNMT3A R882H (mouse R878H) is a driver mutation for clonal hematopoiesis and is one of the most risk factor for myeloid leukemia progression, it is of great importance to obtain a small molecule selectively inhibiting hematopoietic cells carrying DNMT3A R882H mutation.
  • K562-R882H a K562 cell line with DNMT3A R882H mutation
  • two reporter cell lines K562-R882H-tdTomato, wherein a red fluorescent protein (tdTomato) was inserted into AAVS1 gene site of K562-R882H
  • K562-EGFP an enhanced green fluorescent protein (EGFP) was inserted into AAVS1 gene site of WT K562 cell line.
  • a total of 30 active compounds showed inhibitory effect on R882H cells and further verification reduced the number to 6 (Fig. 2 and 3) .
  • the inventors treated OCL-AML2 (DNMT3A R882 WT cell line) and OCL-AML3 (DNMT3A R882C cell line, which is frequently used as a model to study the function of DNMT3A R882 mutatio) cells with these 6 small compounds separately and measured cell viability using Cell Counting Kit-8 (CCK8) assay.
  • the results show that only S2335, a natural product named oridonin, selectively inhibited OCL-AML3 cells (Fig.
  • the IC 50 of oridonin on OCL-AML2 and OCL-AML3 is 4.6 ⁇ M and 2.1 ⁇ M respectively.
  • the IC 50 of oridonin on K562-R882H-tdTomato and K562-EGFP cells is 3.7 ⁇ M and 6.4 ⁇ M respectively.
  • the inhibition efficiency of oridonin on R882H cells is in a concentration-dependent manner, but the selective inhibition effect decreases when the concentration is over 6 ⁇ M.
  • Example 6 Oridonin Selectively Inhibits Dnmt3a R878H HSC in vivo
  • a mouse xenograft model was established by subcutaneous inoculation of 4 ⁇ 10 7 OCL-AML2 or OCL-AML3 cells into the right flank of nude mice. When the recipients developed a measurable tumor at day 7, half of mice in each group were treated intraperitoneally with oridonin (20 mg/kg) and the rest were administrated with equal volume of vehicle. Volume of tumors was measured every day using published method (Zhou et al., 2007) for 14 consecutive days (Fig. 6G) and body weights of all recipients were recorded throughout the study.
  • oridonin selectively restricts leukemic cells or hematopoietic stem cells carrying DNMT3A R882H/C or mouse R878H mutation and it may be a promising candidate for treating DNMT3A R882 mutation related clonal hematopoiesis or leukemia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof is provided and the method comprises administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.

Description

Novel Use of Oridonin or Oridonin Derivative FIELD
The present invention relates to the medical field, more particularly to the novel use of oridonin or oridonin derivative in treating, preventing or lessening a DNMT3A R882H mutation related disease and to a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
BACKGROUND
Hematopoietic stem cell (HSC) generates all blood cells throughout lifespan and certain mutations drive clonal hematopoiesis with aging, which is a risk factor for many diseases, especially for blood malignancies. Aging-elevated DNMT3A R882H-driven clonal hematopoiesis is a risk factor for myeloid malignancies remission and overall survival. Even though some studies were performed to investigate this phenomenon, the exact mechanism is still under debate.
.
SUMMARY
The following just summarizes some aspects of the invention, but are not limited to these. These aspects and other parts will be described more completely later. All references of this specification are incorporated herein by reference in their entirety. Where there are differences between disclosure of the present specification and cited references, the disclosure of the present specification controls.
The present disclosure is completed based on the following founding: disclosing the molecular mechanism behind R882H-driven clonal hematopoiesis is a crucial step to uncover the internal link between aging and myeloid malignancies. Moreover, finding small molecule (s) that can inhibit DNMT3A R882H-carrying hematopoietic cells will be of great clinical significance. The present inventors surprisingly observed that Dnmt3a R878H HSCs (human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human) displayed enhanced reconstitution capacity compared to wild-type HSCs by preventing the activation of RIPK1-RIPK3-MLKL mediated necroptosis induced by aging inflammatory milieu. The inventors  then performed small molecule screen and found that oridonin selectively inhibits hematopoietic and leukemic cells carrying Dnmt3a R878H/DNMT3A R882H in vitro and in vivo at low micromolar concentration (IC 50 = 2.1μM) by activating necroptosis. Briefly, the inventors elucidated the molecular mechanism driving DNMT3A R882H-based clonal hematopoiesis and identified oridonin selectively inhibiting hematopoietic and leukemic cells carrying Dnmt3a R878/DNMT3A R882 mutation, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
Then in one aspect of present disclosure, a method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof is provided, and in some embodiments of present disclosure, the method comprises administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.
In another aspect, provided is a pharmaceutical composition for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof, comprising: oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof.
In another aspect, provided is use of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof in the manufacture of a medicament for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof.
In another aspect, provided is a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease, comprising: mixing a mutant cell carrying DNMT3A R882H mutation and a wild type cell at predetermined number ratio of the wild type cell to the mutant cell to obtain a cell mixture; contacting the cell mixture with a candidate compound; and determining a number ratio after contacting of the wild type cell to the mutant cell to obtain, wherein the number ratio after contacting higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
The foregoing merely summarizes certain aspects disclosed herein and is not intended to be limiting in nature. These aspects and other aspects and embodiments are described more fully below.
BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 shows (A) Schematic illustration for the design of the DNMT3AR882H/R882H allele to produce a K562 cell line with DNMT3A R882H mutation (K562-R882H) . (B) An EGFP and tdTomato reporter gene were, respectively, inserted into adeno-associated virus integration site 1 (AAVS1) allele of K562-WT and K562-R882H cell line to generate K562-WT-EGFP (WT) and K562-R882H-tdTomato (R882H) cell lines. (C) Shows the experimental procedure designed for high-throughput screening to obtain small molecules selectively inhibit cell lines with DNMT3A R882 mutations.
Fig. 2 shows preliminary active compound from the first round screening is exhibited in the histogram (The y-axis is a ratio of WT to R882H cells, NT: non-treatment control) .
Fig. 3 shows six active small molecules were obtained after additional validation.
Fig. 4 shows the inhibition rate of oridonin by a 48-hour treatment at different concentrations, all data are presented as mean ± SD and compared to NT; *p < 0.05, **p < 0.01, and ***p < .001.
Fig. 5 shows that Necroptosis-associated genes (RIPK1, RIPK3 and MLKL) were determined by qRT-PCR in OCL-AML2 or OCL-AML3 cells treated with oridonin (data are presented as mean ± SD with two biological replicates) .
Fig. 6 shows that oridonin selectively inhibits Dnmt3a R878H HSC in vivo. Fig. 6A shows the schematic diagram of the experiment designed for oridonin treatment in vivo. WT or R878H BM cells (CD45.2) were mixed with WT competitor BM cells (CD45.1) at a ratio of 1: 1 (3×10 5 : 3×10 5 ) and transplanted into lethally irradiated recipient mice (CD45.1/2) . Five weeks ost-transplant, the chimeric mice were exposed to continuous treatment with oridonin (10 mg/kg injected i.p. every day for 15 days) or vehicle accordingly. Chimerism in PB was analyzed monthly. Fig. 6B to 6F show that the frequencies of donor derived cells in the PB of WT ±oridonin (B) or R878H ± oridonin (C) recipients at indicated time point and frequencies of B cells, T cells, myeloid within donor-derived PB at 20 weeks post-transplantation were evaluated  (D) . Gating strategy with representative flow cytometry plots and the frequency of donor-derived (CD45.2+) HSC (Lineage–Sca1+ c-Kit+ CD34–CD150+ ) in WT ± oridonin (E) or R878H ± oridonin (F) recipients are shown in the histograms (n = 3–8 mice/group from 3 independent experiments) .
Fig. 6G shows OCL-AML2 or OCL-AML3 cells were subcutaneously inoculated into the right flank of nude mice to generate mouse xenograft model. 20 mg/kg oridonin or related volume of vehicle were intraperitoneal injection into the left flank of tumor inoculated mice when tumors were measurable. Fig. 6H shows the volume of tumors was recorded in each groups at the indicated time points during treatment (H) . (n = 4-6 animals per cohort from two independent experiments) .
DESCRIPTION OF THE DISCLOSURE
The following just summarizes some aspects of the invention, but are not limited to these. These aspects and other parts will be described more completely later. All references of this specification are incorporated herein by reference in their entirety. Where there are differences between disclosure of the present specification and cited references, the disclosure of the present specification controls.
The present disclosure is completed based on the following founding: disclosing the molecular mechanism behind R882H-driven clonal hematopoiesis is a crucial step to uncover the internal link between aging and myeloid malignancies. Moreover, finding small molecule (s) that can inhibit DNMT3A R882H-carrying hematopoietic cells will be of great clinical significance. The present inventors surprisingly observed that Dnmt3a R878H HSCs (human allele: DNMT3A R882H, hereafter named “R878H HSCs” for mouse and “R882H HSCs” for human) displayed enhanced reconstitution capacity compared to wild-type HSCs by preventing the activation of RIPK1-RIPK3-MLKL mediated necroptosis induced by aging inflammatory milieu. The inventors then performed small molecule screen and found that oridonin selectively inhibits hematopoietic and leukemic cells carrying Dnmt3a R878H/DNMT3A R882H in vitro and in vivo at low micromolar concentration (IC 50 = 2.1μM) by activating necroptosis. Briefly, the inventors elucidated the molecular mechanism driving DNMT3A R882H-based clonal hematopoiesis and  identified oridonin selectively inhibiting hematopoietic and leukemic cells carrying Dnmt3a R878/DNMT3A R882 mutation, which raises clinical value for treating DNMT3A R882H-driven clonal hematopoiesis and myeloid malignancies with aging.
Then in one aspect of present disclosure, a method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof is provided, and in some embodiments of present disclosure, the method comprises administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.
It should be noted that the expression of “DNMT3A R882H” means that the amino acid No. 882 in wild type DNMT3A is Arginine (Arg or R) , and the Arginine in the mutant may be replaced with Histidine (His or H) . And the person skilled in the art may understand that the numbering of the amino acid is based on the wild type human allel of DNMT3A with the sequence as follows (the underline R is R882) :
Figure PCTCN2020093017-appb-000001
Then the person skilled in the art may understand that DNMT3A may have many variants in some organisms other than human or some cells, the person skilled in the art may obtain the corresponding amino acid site of R882 by alignment, for example, the for mouse, the real numbering is “R878H” .
As described above, it was surprisingly found by the inventors that oridonin selectively inhibits hematopoietic and leukemic cells carrying Dnmt3a R878H/DNMT3A R882H in vitro and in vivo at low micromolar concentration (IC 50 = 2.1μM) by activating necroptosis.
In details, it was revealed that aging-induced TNFα impairs HSCs through ERK-ETS1-IL27Ra signaling. In this study, the inventors found that aged microenvironment and LPS challenge increased the repopulation capacity of R878H cells, suggesting that inflammatory factors facilitates Dnmt3a R878H-driven clonal hematopoiesis. Another study exhibited that chronic inflammation is able to accelerate clonal hematopoiesis driven by Tet2 12 deficiency. Mechanically, the inventors found that RIPK1-RIPK3-MLK-mediated necroptosis pathway is restrained in mouse HSPCs carrying DNMT3A mR878H/hR882H in response to aging-elevated inflammatory insult and this results in age-related clonal hematopoiesis. In this study, the inventors also identified that oridonin selectively inhibits mR878H/hR882H cells by activating necroptosis. A previous study revealed that DOT1L inhibitor exhibited selective inhibition effect on AML cells carrying DNMT3A R882 mutation. The inventors measured the IC 50 of DOT1L inhibitors SGC0946 and EPZ5676 using experimental conditions performed in this study, and the results show that the IC 50 of SGC0946 for OCL-AML2 and OCL-AML3 cells are 25.1 μM and 22.0 μM separately, the IC 50 of EPZ5676 for OCL-AML2 and OCL-AML3 cells are 101 μM and 79.2 μM . While the IC 50 of oridonin for OCL-AML2 and OCL-AML3 cells are 4.6 μM and 2.1 μM, which is significantly lower than DOT1L inhibitor and the selectivity is much better (Figures 5I) . AML patients with DNMT3A R882 mutation have poor outcome when treated with anthracycline. It will be interesting for us to explore whether oridonin can improve the overall survival of AML patients carrying DNMT3A R882 mutation. Oridonin is mainly extracted from a Chinese herbal medicine named Donglingcao which has been used as traditional medicine to treat inflammation and cancer for hundreds of years, and its analog called HAO472 has entered into Phase I human clinical trial (CTR20150246; www. chinadrugtrails. org. cn) in China for targeting  AML1-ETO (Hu et al., 2019) . All these data suggest oridonin may be a promising drug candidate or a good lead compound for treating AML with DNMT3A R882 mutation.
In some examples, the DNMT3A R882H mutation related disease involves clonal hematopoiesis. In some examples, the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
In some examples, the oridonin derivative comprises a 14-O-Acyl derivative of oridonin . In some examples, the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
The structure and carbon atom numbering of oridonin is shown below:
Figure PCTCN2020093017-appb-000002
In another aspect, provided is a pharmaceutical composition for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof, comprising: oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof.
In some examples, the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
In some examples, wherein the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease.
In some examples, the oridonin derivative comprises a 14-O-Acyl derivative of oridonin .
In some examples, the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
The compound of the invention may be typically formulated into a dosage form adapted for administration to the patient by the desired route of administration. For example, dosage forms include those adapted for (1) oral administration such as tablets, capsules, caplets, pills, troches, powders, syrups, elixirs, suspensions, solutions, emulsions, sachets, and cachets; (2) parenteral administration such as sterile solutions, suspensions, and powders for reconstitution; (3) transdermal administration such as transdermal patches; (4) rectal administration such as suppositories; (5) inhalation such as aerosols, solutions, and dry powders; and (6) topical administration such as creams, ointments, lotions, solutions, pastes, sprays, foams, and gels.
In some examples, the compound (oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof ) may be formulatedd into solid dispersion, injection, for examples nanosuspension, liposomes.
It will also be appreciated that certain of the compounds of present invention can exist in free form for treatment, or where appropriate, as a pharmaceutically acceptable derivative or a prodrug thereof. According to the present invention, a pharmaceutically acceptable derivative or a prodrug includes, but is not limited to, pharmaceutically acceptable prodrugs, salts, esters, salts of such esters, or any other adduct or derivative which upon administration to a patient in need thereof is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof.
In one embodiment, the compounds disclosed herein can be prepared to oral dosage forms. In one embodiment, the compounds disclosed herein can be prepared to inhalation dosage forms. In one embodiment, the compounds disclosed herein can be prepared to dosage forms of nasal administration. In one embodiment, the compounds disclosed herein can be prepared to transdermal dosage forms. In one embodiment, the compounds disclosed herein can be prepared to dosage forms of topical administration.
The pharmaceutical compositions provided herein may be provided as compressed tablets, tablet triturates, chewable lozenges, rapidly dissolving tablets, multiple compressed tablets, or enteric-coating tablets, sugar-coated, or film-coated tablets. Enteric-coated tablets are compressed  tablets coated with substances that resist the action of stomach acid but dissolve or disintegrate in the intestine, thus protecting the active ingredients from the acidic environment of the stomach. Enteric-coatings include, but are not limited to, fatty acids, fats, phenylsalicylate, waxes, shellac, ammoniated shellac, and cellulose acetate phthalates. Sugar-coated tablets are compressed tablets surrounded by a sugar coating, which may be beneficial in covering up objectionable tastes or odors and in protecting the tablets from oxidation. Film-coated tablets are compressed tablets that are covered with a thin layer or film of a water-soluble material. Film coatings include, but are not limited to, hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000, and cellulose acetate phthalate. Film coating imparts the same general characteristics as sugar coating. Multiple compressed tablets are compressed tablets made by more than one compression cycle, including layered tablets, and press-coated or dry-coated tablets.
The pharmaceutical compositions provided herein may be provided in liquid and semisolid dosage forms, including emulsions, solutions, suspensions, elixirs, and syrups. An emulsion is a two-phase system, in which one liquid is dispersed in the form of small globules throughout another liquid, which can be oil-in-water or water-in-oil. Emulsions may include a pharmaceutically acceptable non-aqueous liquids or solvent, emulsifying agent, and preservative. Suspensions may include a pharmaceutically acceptable suspending agent and preservative. Aqueous alcoholic solutions may include a pharmaceutically acceptable acetal, such as a di (lower alkyl) acetal of a lower alkyl aldehyde, e.g., acetaldehyde diethyl acetal; and a water-miscible solvent having one or more hydroxy groups, such as propylene glycol and ethanol. Elixirs are clear, sweetened, and hydroalcoholic solutions. Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may also contain a preservative. For a liquid dosage form, for example, a solution in a polyethylene glycol may be diluted with a sufficient quantity of a pharmaceutically acceptable liquid carrier, e.g., water, to be measured conveniently for administration.
Pharmaceutical compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the patient for a prolonged period of time. For example, the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3 (6) , 318 (1986) .
The pharmaceutical compositions provided herein may be formulated as immediate or modified release dosage forms, including delayed-, sustained, pulsed-, controlled, targeted-, and programmed-release forms.
The pharmaceutical compositions provided herein may be formulated for single or multiple dosage administration. The single dosage formulations are packaged in an ampoule, a vial, or a syringe. The multiple dosage parenteral formulations must contain an antimicrobial agent at bacteriostatic or fungistatic concentrations. All parenteral formulations must be sterile, as known and practiced in the art.
The pharmaceutical compositions provided herein may be co-formulated with other active ingredients which do not impair the desired therapeutic action, or with substances that supplement the desired action.
In another aspect, provided is use of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof in the manufacture of a medicament for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof.
In some examples, the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
In some examples, the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
In some examples, the oridonin derivative comprises a 14-O-Acyl derivative of oridonin.
In some examples, the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
In another aspect, provided is a method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease, comprising:
mixing a mutant cell carrying DNMT3A R882H mutation and a wild type cell at predetermined number ratio of the wild type cell to the mutant cell to obtain a cell mixture;
contacting the cell mixture with a candidate compound; and
determining a number ratio after contacting of the wild type cell to the mutant cell to obtain, wherein the number ratio after contacting higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
In some examples, the mutant cell further carries a first reporter gene, the wild type cell further carries a second reporter gene, and the first reporter gene is different from the second reporter gene.
In some examples, one of the first reporter gene and the second reporter gene is EGFP, and the another one of the first reporter gene and the second reporter gene is red fluorescent protein.
In some examples, the number ratio is determined by signals from the first reporter gene and the second reporter gene.
In some examples, the number ratio after contacting being at least 50%higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
The foregoing merely summarizes certain aspects disclosed herein and is not intended to be limiting in nature. These aspects and other aspects and embodiments are described more fully below.
Examples
EXPERIMENTAL MODEL AND SUBJECT DETAILS
Mice
Dnmt3aflox-R878H mice were obtained from Cyagen Biosciences Inc. (Guangzhou, China) . Targeting vectors were kindly provided by Professor Saijuan Chen from Shanghai Jiao Tong University (Figure 1A; Dai et al., 2017) . The Dnmt3a R878H knock-in construct was generated via the recombineering method. Briefly, approximately 17.5 kb of genomic DNA surrounding Dnmt3a exon 23 was subcloned into targeting vector (Figure 1A) . The linearized vector was subsequently delivered to ES cells (C57BL/6) via electroporation, followed by drug selection, PCR screening, and Southern Blot confirmation. After gaining 99 drug-resistant clones, 4 potentially targeted clones were confirmed, 4 of which were expanded for Southern Blotting. After confirming correctly targeted ES clones, some clones were selected for blastocyst  microinjection, followed by chimera production. F0 generation were confirmed as germline-transmitted via crossbreeding with wile-type. Dnmt3aflox-R878H and Dnmt3a+/+littermate mice were genotyped by PCR with primers Dnmt3a-FP (5’-GCCAGTATAGATGCCTGTGAGGT-3’) and Dnmt3a-RP (5’-TGCCTCTTGGATGTGCTCTACAG -3’) using the following parameters: 94℃ for 3 min, followed by 35 cycles of 94℃ for 20 sec, 60℃ for 20 sec, 72℃ for 20 sec and 72℃ for 5 min to final extension. PCR product for WT and Mutant band is 260 bp and 316 bp, respectively. Expression of the R878H mutation (that results in an arginine to histidine substitution at amino acid position 878, Dnmt3a R878H) was confirmed by cDNA sequencing using the following primer: 5’-GGAGTGTGAATCTCAAAGCTGGGAT-3’.
When Dnmt3aflox-R878H mice exposed to Cre recombinase leads to inversion of the mutant exon inserted and then with an excision reaction to remove the WT exon and one loxP site, and another loxP site, fixing the inversion in the right place (Figure 1A) . To achieve hematopoietic-specifically mutant mice, Dnmt3aflox-R878H mice crossed to Vav-iCre mice. In all experiments, Vav-iCre knockin mice were heterozygous for both the Dnmt3aR878H allele and the Vav-iCre allele (Dnmt3aR878H/WTVav-iCre+ or Dnmt3aR878H/WT) . For xenograft AML mouse models, four-week-old female BALB/c nude mice were bought from Beijing Vital River Laboratory Animal Technology Co., Ltd and all mice were allowed to acclimate for 1 week in the Laboratory Animal Research Center at Tsinghua University before tumor cells inoculated. All mice were housed in specific-pathogen-free, AAALAC-accredited animal care facilities at the Laboratory Animal Research Center, Tsinghua University and all procedures were approved by Institutional Animal Care and Use Committee of Tsinghua University.
Cell Lines
K562 cells and OCL-AML2 cells were purchased from DSMZ. OCL-AML3 cells were kindly gifted by Professor Min Xiao from Huazhong University of Science and Technology. K562-R882H cells (K562 cell line with DNMT3A R882H mutation) were generated by replacing the 882th amino acid (Arginine) in DNMT3A gene with Histidine through CRISPR-Cas9 gene editing system. A gene fragment editing a red fluorescent protein (tdTomato) was inserted into AAVS1 gene site of K562-R882H cells to obtain K562-R882H-tdTomato cells and K562-WT-EGFP cells were developed by inserting a gene fragment editing an enhanced green  fluorescent protein (EGFP) into AAVS1 gene site of WT K562 cells. DNMT3A R882 mutations was confirmed in every batch of cells at least once by Sanger sequencing. All cell lines were grown in RPMI-1640 medium supplemented with 10–15%fetal bovine serum and penicillin/streptomycin at 37℃ with 5%CO 2.
METHOD DETAILS
Flow Cytometric Analysis and Cell Sorting
2 Cells were suspended in HBSS+ buffer (D-Hank's buffer containing 2%fetal bovine serum and 1%HEPES) and then stained with fluorochrome-labeled antibodies. Flow cytometric analysis data were collected with a BD LSRFortessa SORP flow cytometer (BD Biosciences) and analyzed using FlowJo TM Software (Becton, Dickinson and Company) . Cell sorting was performed by BD Influx (BD Biosciences) and target fraction was sorted into HBSS+ buffer. Non-lysed bone marrow (BM) cells were applied for analysis of HSPC (antibodies containing Lin-APC/Cy7 cocktail, c-Kit APC, Sca-1 PE/Cy7, CD150 PE, CD34 AF700, CD127 BV421, CD16/32 FITC and CD135 PE-CF594) and lineage (antibodies against Mac1, Gr1, B220, CD3) . Chimerism analysis in mature cells from peripheral blood (PB) were lysed by ACK buffer (NH 4Cl 150 mM, KHCO 3 10 mM, Na 2EDTA 0.1 mM, adjust the pH to 7.2–7.4) and subsequently subjected to flow cytometer after staining with fluorochrome-conjugated antibodies (antibodies containing Mac1, B220, CD3, CD45.1 and CD45.2) .
Competitive Bone Marrow Transplantation
Lethally irradiated (10 Gy) WT CD45.1/2 recipient mice (F1 generated by mating CD45.1 with CD45.2 mice, C57BL/6J mice) were co-injected intravenously (i.v. ) with 3×10 5 pooled WT or Dnmt3a R878H (CD45.2, C57BL/6J mice) whole BM cells and 3×10 5 WT (CD45.1, C57BL/6J mice) whole BM competitor cells for the competitive bone marrow transplantation assay and oridonin treatment assay. The repopulating capacity of the test bone marrow populations was analyzed by FACS in the peripheral blood of recipient monthly post-transplantation. For the young and old recipient transplantation assay, 1×10 5 either WT or R878H (CD45.2, C57BL/6J mice) total BM cells were transplanted into 2 months and 15 months lethally irradiated (10 Gy) WT recipients (CD45.1, C57BL/6J mice) together with 5×10 5 WT competitor cells (CD45.1/2, C57BL/6J mice) and the chimera in peripheral blood was evaluated every month until the 4th month. In the LPS-treated assay, a mixture of 5×10 5 whole BM cells from WT or Dnmt3a R878H  (CD45.2, C57BL/6J mice) mice for treatment with PBS or 3 LPS combined with 5×10 5 WT (CD45.1, C57BL/6J mice) whole BM competitor cells were transplanted into lethally irradiated (10 Gy) WT recipients (CD45.1/2, C57BL/6J mice) and the chimera were evaluated monthly.
Small Molecules Screening
An FDA-approved Drug Library containing 2572 drugs purchased from Selleck Chemicals and two natural products libraries (Yaodu with 936 compounds and TargetMol with 409 compounds) were employed for DNMT3A R882H selectively inhibitors screening. All chemicals in 384-well plates were dissolved in DMSO and stored at -20℃ as 10 mM stock solutions until use. 1×10 4 (K562-WT-EGFP cells: K562-R882H-tdTomato cells = 1: 1) cells were seeded into 96-well plates before different chemicals were added into each well (final concentration to 5μM) by an 
Figure PCTCN2020093017-appb-000003
550 Liquid Handler (Labcyte Inc. ) and equal volume of DMSO were used as control. Then, cell suspension was subjected to a BD LSRFortessa SORP with a BD TM High Throughput Sampler (HTS) for analysis after 72 h. Frequency of GFP+ and RFP+ cells were represent DNMT3A WT and R882H cells respectively. Preliminary candidates were identified with a criteria of inhibition ratio no less than 1.5, and the following formula was used to calculate inhibition ratio: Inhibition ratio = (WT/R882H) treatment / (WT/R882H) control. Subsequently, preliminary candidates were identified in triplicate to exclude false positive candidates and obtained 6 compounds. OCL-AML2 and OCL-AML3 cells were applied to further evaluate the selectivity of 6 candidates by CCK-8 assay described above and identified oridonin as a potential DNMT3A R882 mutations inhibitor from both Selleck and TargetMol library.
In vivo Treatments
For clonal hematopoiesis mouse model, 1×10 5 total BM cells either from WT or R878H mice (CD45.2, C57BL/6J mice) were transplanted into lethally irradiated recipients (CD45.1/2, C57BL/6J mice) mixed with 5×10 5 competitor cells (CD45.1, C57BL/6J 4 mice) . One month later, LPS (0.8 mg/kg) was administrated to the recipients intraperitoneally every two days for 15 doses, and the chimera of peripheral blood was evaluated every month until the 5th month. In the acute inflammatory insult experiment, WT or R878H mice were intraperitoneally injected with LPS (0.8 mg/kg) or PBS for a single dose and mature cells from peripheral blood together with HSPC from BM of treated mice were analyzed 48 h later. While 5 doses (every other day) of LPS (0.8 mg/kg) or PBS injection were administrated to WT or R878H mice intraperitoneally for the chronic  inflammatory challenge experiment, and the hematologic fraction was evaluated at the 10th day. For the Dnmt3a R878H-driven clonal hematopoiesis rescue assay, chimeric mice generated as in Figure 6A were injected intraperitoneally with oridonin (10 mg/kg) or vehicle (2%DMSO + 20%PEG300 + 78%PBS) once a day for 15 days, and donor-derived peripheral blood was evaluated every four weeks before analyzing donor-derived HSPCs until the 20th weeks.
Cell Viability and Proliferation Assays
Cell viability of cells treated with small molecules was measured by CCK-8 assay using the Cell Counting Kit-8 (Dojindo, Cat #CK04-11) . Generally, OCL-AML2 or OCL-AML3 cells were seeded in 96-well plates at 1×10 5/ml density with 100 μl medium and exposed to various concentrations of chemicals in triplicate for 72 h. Then, 10 μl of CCK-8 reagent was added to each wells by incubating at 37 ℃ for 4 to 6 h and the absorbance was measured by an Envision Multilabel Reader (PerkinElmer) spectrophotometry until with the maximum absorbance reached value of about 1 optical density (OD) at 450 nm. Values between the treatment group and vehicle controls were normalized, and measured data were submitted to GraphPad Prism 6 software to calculate the concentration of chemicals at which there was half cell death (IC 50) .
In vivo Tumor Xenograft
Four-week-old female BALB/c nude mice bought from Beijing Vital River Laboratory Animal Technology Co., Ltd were subcutaneous inoculated with 4 × 10 7 OCL-AML2 or OCL-AML3 cells into the right flank. When tumor was measurable, nude mice were treated with oridonin (20 mg/kg) or vehicle (2%DMSO + 20%PEG300 + 78%PBS) intraperitoneally once a day for 14 consecutive days. Tumor volumes and body weights were measured every day. Length and width of tumor were calipered and the following formula was utilized to calculate tumor volumes: tumor volumes = 4/3 × (width/2)  2 × (length/2) . When tumors reached 2 cm or the mice became moribund, animals were killed and tumors were isolated for analysis. All procedures were performed in the Laboratory Animal Research Center and were approved by Institutional Animal Care and Use Committee of Tsinghua University.
Hematological Cell Counts
Hematologic parameters in PB after tail bleeding were analyzed by Auto Hematology Analyzer BC-5000 (MINDRAY) . BM cells were harvested from one femur and kept in HBSS+ buffer on ice before evaluating by Vi-CELL Cell Counter (Beckman) .
Western Blotting
5 × 10 6 c-Kit+ BM cells purified from magnetic beads enrichment (Miltenyi Biotec) after staining with c-Kit-APC antibody or 1 × 10 6 AML cell lines obtained after related treatment lysed with 150 μL NETN buffer (100 mM NaCl, 20 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM PMSF and 0.5%Nonidet P-40) on ice for 30 min and subsequently centrifuged at 14000 g for 5 min. The supernatant was combined with 2×loading buffer and then lysed by sonication before boiling for 6 min. Samples were resolved on 10%SDS-PAGE followed by transferring onto a PVDF membrane (BioRad) , and then membrane was blocked by 5%skim milk in TBST buffer before incubating with indicated primary antibodies.
Quantitative Real-time PCR
Total RNA was extracted using TRIzol (Invitrogen) according to the manufacturer’s instructions from 5 × 10 4 donor-derived CD45.2 LSK cells sorted from BM of the fourth month recipient after whole BM transplantation or 2 × 10 4 AML cell lines collected after treating with chemicals. Concentration of RNA was normalized and cDNA was synthesized by PrimeScript RT reagent Kit (Takara, Cat #RR047A) . Acquired cDNA was analyzed by PowerUp TM SYBR TM Green mix (Applied Biosystems, Cat #A25780) with indicated primers on a QuantStudio-3 Real-time PCR System (Applied Biosystems) .
Statistical Analysis
All data are shown as mean ± SD. Two-tailed unpaired Student’s t-test was used for statistical significance analysis after testing for normal distribution and data were
Example 1 Dnmt3a R878H HSCs Display Enhanced Self-renewal Capacity
To investigate the function of Dnmt3a R878H HSCs, the inventors generated Dnmt3afl-R878H/+ mice and confirmed the mutation by sequencing analysis of the genomic site, and then crossed them with Vav-iCre mice to generate Dnmt3a R878H heterozygous mice (Dnmt3aR878H/+) , wherein Dnmt3a R878H occurs mainly in hematopoietic cells (hereafter named R878H mice or R878H HSCs) . The inventors then analyzed R878H mice at the age of 2-4 months and observed that the cell counts in peripheral blood (PB) and the frequency of lineage cells (B cells, T cells and myeloid) in PB and bone marrow (BM) of R878H mice display no difference compared to wild-type (WT) mice. The frequency and absolute number of HSCs in R878H mice is significantly larger than WT mice, but the frequency and absolute number of CMP (common myeloid progenitor) , GMP (granulocytemacrophage progenitors) , CLP (common lymphoid progenitors) , MEP (megakaryocyte-erythroid progenitors) , ST-HSC (short-term HSC) and MPP (multipotent progenitor cell) of R878H mice holds static compared to WT mice.
To further evaluate the function of R878H HSCs, the inventors performed competitive transplantation assay by transplanting 3×10 5 freshly isolated total bone marrow cells from either R878H mice or WT mice into lethally irradiated recipients together with 3×10 5 competitor cells, and the chimera was investigated every month until the 4th month. The result shows that R878H HSCs exhibited significant growth advantage compared to age-matched WT HSCs and the distribution of mature hematopoietic lineages exhibits no difference between R878H and WT cells. These data indicate that R878H HSCs display enhanced self-renewal capacity at both steady and stressed condition.
Example 2 Aged Bone Marrow Microenvironment Promotes Dnmt3a R878H-based Clonal Hematopoiesis
Given that the self-renewal capacity of R878H HSCs increases, and that DNMT3A R882H promotes clonal hematopoiesis in the elderly, and that aged bone marrow microenvironment displays elevated inflammatory stress, the inventors attempt to speculate that aged  microenvironment might select R878H HSCs. To test this hypothesis, the inventors transplanted 1×10 5 either R878H or WT total bone marrow cells into lethally irradiated young (2-month) and aged (15-month) recipients together with 5×10 5 competitor cells and the chimera in peripheral blood was evaluated every month until the 4 th month . The result shows that the reconstitution capacity of R878H cells in aged recipients is significantly higher than that in young recipients (60.6%± 7.1%vs 36.0%± 17.8%) , while WT cells exhibit no difference between young and aged recipients (8.0%± 5.6%vs 4.0%± 2.5%) , indicating that aged bone marrow milieu fosters R878H cells. Moreover, the inventors observed significantly increased differentiation potential towards myeloid lineage of WT and R878H cells in aged recipients , which is consistent with a conclusion that aged bone marrow environment promotes the differentiation bias to myeloid lineage, and decreased potential towards T lineage of WT cells . This result indicates that inflammatory environment resulted in the enhanced self-renewal capacity and differentiation skewing of R878H HSCs. To further test whether inflammatory stress propagates R878H cells and lead to differentiation skewing, the inventors applied continuous LPS challenge to imitate chronic inflammation. The inventors transplanted freshly isolated 1×10 5 total bone marrow cells from either WT or R878H mice into lethally irradiated young recipients together with 5×10 5 competitor cells. One month later, the inventors injected the recipients with LPS (0.8 mg/kg) every two days intraperitoneally for one month, and the chimera of peripheral blood was evaluated every month until the 5 th month. The result shows that R878H cells significantly outcompeted the competitor cells upon LPS challenge compared to PBS-treated ones (70.0%±29.0%vs. 36.7%±26.2%) and the difference mainly stemmed from myeloid lineage. Similarly, the mature hematopoietic lineage distribution revealed significant differentiation skewing towards myeloid lineage of R878H cells in response to LPS challenge and this trend primarily originated from the significant increase of myeloid progenitors (CMP, GMP and MEP) . However, no difference was observed in WT group in response to LPS challenge. Moreover, HSC analysis shows that LPS-induced inflammation propagates R878H HSCs, but has no effect on WT HSCs. The above data suggest that R878H HSCs resist inflammatory stress and exhibit differentiation bias towards myeloid lineage.
Example 3: Dnmt3a R878H Prevents the Exhaustion of HSCs Induced by Chronic Inflammation
The above experimental results were generated by using bone marrow transplantation assay. In order to further verify our hypothesis, the inventors challenged WT and R878H mice by LPS intraperitoneally (0.8 mg/kg) and analyzed these mice 48 hours later. The result shows that the frequency of HSCs, ST-HSCs and MPP in both mutant and WT mice increase significantly upon inflammatory insult, While, the fold change of HSCs (7.2 vs1.4) , ST-HSC (10.4 vs. 5.0) and MPP (4.4 vs. 2.5) is significantly higher in WT mice compared to R878H mice in response to LPS challenge. The frequency of CMP, MEP and CLP of both WT and mutant mice decrease significantly upon the single-dose LPS challenge compared to PBS treated group respectively, while GMP holds static. Meanwhile, lineage cells (B cells, T cells and myeloid) in both BM and PB of WT and R878H mice showed similar trend upon LPS challenge. These data indicate that R878H mutation blunts the response of hematopoietic stem and progenitor cells, but not downstream progenitor and mature differentiated cells, upon acute inflammatory stress.
Repeated activation of HSCs out of their dormant state may provoke the attrition of normal HSCs , the inventors then speculate that R878H HSCs might withstand repeated activation. To test this hypothesis, the inventors injected LPS (0.8 mg/kg) every other day to WT and R878H mice for 5 times. At the 10th day, all mice were analyzed and the result shows that the frequency of HSC, ST-HSC and MPP in LPS-treated WT mice declined significantly compared to PBS-treated ones. While the frequency of HSCs increased significantly, and the frequency of ST-HSCs and MPPs holds static in LPS-treated R878H mice compared to PBS-treated ones. Further analysis revealed that WT HSCs, ST-HSCs and MPPs decreased by 50%, 30%and 40%upon consecutive LPS challenge, but R878H HSCs increased by 40%and the difference between WT and R878H mice is significant. Meanwhile, consecutive LPS stimulation in R878H or WT mice resulted in a decrease of CMP, MEP and CLP, but not GMP relative to PBS-treated group. However, the fold change of CMP, MEP and CLP displays no difference between WT and R878H mice. Moreover, no differences were observed for mature hematopoietic lineages in the bone marrow of R878H mice compared to WT mice after continuous LPS stimulation even though B cells, T cells and myeloid exhibited significant change in both WT and R878H mice. While T cells, but not B and myeloid cells, in the peripheral blood of R878H mice revealed compromised response compared to WT mice.  These data indicate that R878H mutation prevent the attrition of HSC, ST-HSC and MPP compartments induced by chronic inflammation.
Example 4 Dnmt3a R878H Prevents the Activation of Necroptosis in HSCs upon Inflammatory Stress
Given our data shows that R878H HSCs withstand acute and chronic inflammatory stress, and necroptosis is a direct target in response to inflammatory insult, the inventors then set out to investigate the influence of R878H on necroptosis in HSCs. the inventors transplanted 5×10 5 bone marrow cells freshly isolated from either R878H mice or wild-type mice into lethally irradiated recipients together with 5×10 5 competitor cells and the inventors isolated donor-derived 5×104 LSK cells (Lineage-ScaI+ cKit+) at the 4th month after transplantation . The expression of Ripk1, Ripk3 and Mlkl was evaluated by qRT-PCR and the result showed that the expression of Ripk1, Ripk3 and Mlkl is significantly lower in R878H LSKs compared to WT, indicating that the necroptosis signaling is compromised in R878H cells in response to proliferation stress.
Given that phosphorylated MLKL (p-MLKL) acts as a final executioner of necroptosis, the inventors then sought to investigate whether R878H regulates the expression of p-MLKL. the inventors treated freshly isolated WT and R878H cKit+ bone marrow cells with TSZ (T, Tnfα; S, Smac mimetic; Z, z-VAD) for 3 hours, which is a frequently used approach to activate p-MLKL. The result revealed that the expression of p-MLKL in R878H cells is lower than WT upon TSZ stimulation, suggesting that R878H limits the activation of necroptosis in response to TSZ stimulation.
Given that necroptosis and apoptosis are the most important pathways leading to cell death, to determine whether R878H results in cell death through necroptosis, the inventors stimulated freshly isolated WT and R878H LSK cells by various combination of TSZ and the inventors observed that there is no difference between WT and R878H LSKs in non-treated group (NT) or TS-treated group (TS stimulation introduces apoptosis) . However, R878H LSKs exhibit significantly less cell death upon TSZ stimulation (TSZ activates necroptosis) . These data further confirms that hematopoietic stem cells carrying Dnmt3a R878H mutation compromised TSZ-induced necroptosis.
To further verify this observation in vivo, the inventors challenged two-month old WT, Dnmt3aR878H/+, Ripk1K45A, Ripk3Δ/Δ and Mlkl-/-mice with 3 doses of TNF α (5μg/mouse,  intraperitoneal injection) every 12 hours and analyzed them 48 hours later. The results show that TNFα injection depletes HSCs in WT and Ripk1K45A mice to about half of the PBS-treated counterpart, while the frequency of HSCs in Dnmt3aR878H, Ripk3Δ/Δ and Mlkl-/-mice keeps static
However, all of progenitor cells, including CMP, GMP, MEP and CLP, and lineage cells remain unaffected in response to TNFα administration. All these data suggest that Dnmt3a R878H protected HSCs from inflammatory insult by modulating necroptosis signaling.
Example 5: Small Molecules Screening Targeting DNMT3A R882 Mutation
Given that human DNMT3A R882H (mouse R878H) is a driver mutation for clonal hematopoiesis and is one of the most risk factor for myeloid leukemia progression, it is of great importance to obtain a small molecule selectively inhibiting hematopoietic cells carrying DNMT3A R882H mutation. In order to screen such compound (s) , the inventors generated a K562 cell line with DNMT3A R882H mutation (hereafter named K562-R882H) and two reporter cell lines: K562-R882H-tdTomato, wherein a red fluorescent protein (tdTomato) was inserted into AAVS1 gene site of K562-R882H, and K562-EGFP, wherein an enhanced green fluorescent protein (EGFP) was inserted into AAVS1 gene site of WT K562 cell line. These construction of the above cells were confirmed by sequencing. Then, inventors mixed K562-R882H-tdTomato and K562-EGFP cells at the ratio of 1: 1 and screened three small molecule libraries (one FDA-approved drug library and two natural product libraries See Table 1) for small molecule (s) that can inhibitK562-R882H-tdTomato by detecting the ratio of tdTomato: EGFP. (See Fig. 1)
Table 1
Figure PCTCN2020093017-appb-000004
A total of 30 active compounds showed inhibitory effect on R882H cells and further verification reduced the number to 6 (Fig. 2 and 3) . To determine the selectivity of these 6 active compounds, the inventors treated OCL-AML2 (DNMT3A R882 WT cell line) and OCL-AML3 (DNMT3A R882C cell line, which is frequently used as a model to study the function of DNMT3A R882  mutatio) cells with these 6 small compounds separately and measured cell viability using Cell Counting Kit-8 (CCK8) assay. The results show that only S2335, a natural product named oridonin, selectively inhibited OCL-AML3 cells (Fig. 4) and the IC 50 of oridonin on OCL-AML2 and OCL-AML3 is 4.6 μM and 2.1 μM respectively. Similiarly, the IC 50 of oridonin on K562-R882H-tdTomato and K562-EGFP cells is 3.7 μM and 6.4 μM respectively. Moreover, the inhibition efficiency of oridonin on R882H cells is in a concentration-dependent manner, but the selective inhibition effect decreases when the concentration is over 6 μM.
Given that R878H prevented the activation of necroptosis, and that oridonin selectively inhibits R882H leukemic cells, it is conceivable that oridonin might modulate necroptosis. To test this hypothesis, we then treated OCL-AML2 and OCL-AML3 cells with oridonin for 48h, and the expression of RIPK1, RIPK3 and MLKL was evaluated by qRT-PCR. The results show that the expression level of RIPK1, RIPK3 and MLKL in both OCL-AML2 and OCL-AML3 increase significantly in response to oridonin stimulation, but the increase is much larger in OCL-AML3 cells (Fig. 5) . Combining the aforementioned data that the R878H/R882H cells exhibited growth advantage through limiting necroptosis pathway and the efficiency of oridonin to activate necroptosis is significantly higher in OCL-AML3, it may be concluded that oridonin selectively inhibits OCL-AML3 by activating necroptosis signaling.
Example 6 Oridonin Selectively Inhibits Dnmt3a R878H HSC in vivo
To test the inhibitory effect of oridonin on Dnmt3a R878H HSCs in vivo, inventors transplanted 3×10 5 total bone marrow cells either from WT or Dnmt3a R878H mice into lethally irradiated recipients together with 3×10 5 competitor cells and the chimera of PB was evaluated every 4 weeks until the 5th month. One month after transplantation, the inventors treated the recipients with either vehicle or oridonin by i.p. injection for 15 days. The result shows that oridonin had no effect on the reconstitution efficiency of WT bone marrow cells (Fig. 6B) , while the percentage of R878H-derived cells declines after oridonin treatment, including B, T and myeloid lineages (Fig. 6C) . Moreover, the distribution of mature hematopoietic lineages exhibits no difference between oridonin-treated and vehicle-treated group in both WT and R878H cells (Fig. 6D) .
When the inventors analyzed donor-derived HSCs (Lineage-ScaI+ cKit+ CD34-CD150+) , it was  observed that the percentage of WT donor-derived HSCs remains unchanged (42.9 ± 8.4 vs 38.6 ±8.6) between oridonin-treated and vehicle-treated group (Fig. 6E) . The percentage of R878H HSCs dominated in the vehicle-treated group, but it declines significantly after oridonin treatment (Fig. 6F) . These data suggest that oridonin specifically inhibit hematopoietic stem cells carrying Dnmt3a R878H mutation in vivo.
Inventors then evaluated the inhibitory effect of oridonin on DNMT3A R882 mutation in vivo. A mouse xenograft model was established by subcutaneous inoculation of 4×10 7 OCL-AML2 or OCL-AML3 cells into the right flank of nude mice. When the recipients developed a measurable tumor at day 7, half of mice in each group were treated intraperitoneally with oridonin (20 mg/kg) and the rest were administrated with equal volume of vehicle. Volume of tumors was measured every day using published method (Zhou et al., 2007) for 14 consecutive days (Fig. 6G) and body weights of all recipients were recorded throughout the study. The results showed that the volume of the OCL-AML3 tumors were significantly reduced after treating with oridonin compared with the control group, whereas the tumor volume of OCL-AML2 showed no difference between the oridonin and control group (Figure 6H) . Notably, oridonin did not affect body weight of mice indicating no obvious toxicity under this treatment paradigm. These data suggests oridonin selectively inhibits leukemic cells with DNMT3A R882 mutation in vivo. In brief, oridonin selectively restricts leukemic cells or hematopoietic stem cells carrying DNMT3A R882H/C or mouse R878H mutation and it may be a promising candidate for treating DNMT3A R882 mutation related clonal hematopoiesis or leukemia.
Reference throughout this specification to "an embodiment, " "some embodiments, " "one embodiment" , "another example, " "an example, " "a specific examples, " or "some examples, " means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as "in some embodiments, " "in one embodiment" , "in an embodiment" , "in another example, " in an example, " "in a specific examples, " or "in some examples, " in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures,  materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.

Claims (20)

  1. A method of treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof, comprising:
    administrating a therapeutically effective amount of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof to the subject.
  2. The method of claim 1, wherein the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
  3. The method of claim 2, wherein the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
  4. The method of claim 1, wherein the oridonin derivative comprises a 14-O-Acyl derivative of oridonin.
  5. The method of claim 4, wherein the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  6. A pharmaceutical composition for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof, comprising:
    oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof.
  7. The pharmaceutical composition of claim 6, wherein the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
  8. The pharmaceutical composition of claim 7, wherein the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
  9. The pharmaceutical composition of claim 6, wherein the oridonin derivative comprises a 14-O-Acyl derivative of oridonin.
  10. The pharmaceutical composition of claim 9, wherein the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  11. Use of oridonin or oridonin derivative, a stereoisomer, a tautomer, an N-oxide, a solvate, a metabolite, a pharmaceutically acceptable salt or a prodrug thereof in the manufacture of a medicament for treating, preventing or lessening a DNMT3A R882H mutation related disease in a subject in need thereof.
  12. The use of claim 11, wherein the DNMT3A R882H mutation related disease involves clonal hematopoiesis.
  13. The use of claim 11, wherein the DNMT3A R882H mutation related disease comprises at least one selected from a group comprising: cancer, acute myeloid leukemia, cardiovascular disease, inflammatory disease, and diabete.
  14. The use of claim 11, wherein the oridonin derivative comprises a 14-O-Acyl derivative of oridonin.
  15. The use of claim 11, wherein the 14-O-Acyl derivative of oridonin comprises 14-O-Dodecanoyl derivative of oridonin, 14-O-tetradecanoyl derivative of oridonin, and 14-O-hexandecanoyl derivative of oridonin.
  16. A method for screening drug for treating, preventing or lessening a DNMT3A R882H mutation related disease, comprising:
    mixing a mutant cell carrying DNMT3A R882H mutation and a wild type cell at predetermined number ratio of the wild type cell to the mutant cell to obtain a cell mixture;
    contacting the cell mixture with a candidate compound; and
    determining a number ratio after contacting of the wild type cell to the mutant cell to obtain, wherein the number ratio after contacting higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
  17. The method of claim 14, wherein the mutant cell further carries a first reporter gene, the wild type cell further carries a second reporter gene, and the first reporter gene is different from the second reporter gene.
  18. The method of claim 15, wherein one of the first reporter gene and the second reporter gene is EGFP, and the another one of the first reporter gene and the second reporter gene is tdTomato.
  19. The method of claim 15, wherein the number ratio is determined by signals from the first reporter gene and the second reporter gene.
  20. The mehtod of claim 15, wherein the number ratio after contacting being at least 50%higher than the predetermined number ratio is an indication that the candidate compound may be a drug for treating, preventing or lessening a DNMT3A R882H mutation related disease.
PCT/CN2020/093017 2020-05-28 2020-05-28 Novel use of oridonin or oridonin derivative WO2021237609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093017 WO2021237609A1 (en) 2020-05-28 2020-05-28 Novel use of oridonin or oridonin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093017 WO2021237609A1 (en) 2020-05-28 2020-05-28 Novel use of oridonin or oridonin derivative

Publications (1)

Publication Number Publication Date
WO2021237609A1 true WO2021237609A1 (en) 2021-12-02

Family

ID=78745416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093017 WO2021237609A1 (en) 2020-05-28 2020-05-28 Novel use of oridonin or oridonin derivative

Country Status (1)

Country Link
WO (1) WO2021237609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380780A (en) * 2022-01-24 2022-04-22 中国药科大学 Novel longikaurin A derivative, preparation method and medical application thereof
CN115124499A (en) * 2022-07-29 2022-09-30 中国中医科学院中药研究所 Compound for targeted killing of aged cells and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139350A (en) * 2007-10-15 2008-03-12 中国药科大学 Oridonin derivative, preparation method and uses thereof
CN102002051A (en) * 2010-10-18 2011-04-06 中国药科大学 ent-6,7-open-cycle kaurene type rubescensine A derivative with anti-tumor activity and preparation method and use thereof
CN102295649A (en) * 2011-08-31 2011-12-28 中国药科大学 Oridonin with antitumor resistance activity, 6,7-open ring oridonin fluorine-containing derivative, preparation method and application
CA2842635A1 (en) * 2014-01-20 2015-07-20 University Health Network Pre-cancerous cells and their identification in the prevention and treatment of cancer
CN105503894A (en) * 2012-01-21 2016-04-20 杭州本生药业有限公司 1-oxo/acylated-14-acylated Oridonin derivative and preparation method and application thereof
CN110151749A (en) * 2018-02-13 2019-08-23 中国科学技术大学 Application of the Oridonin in the drug of preparation prevention or treatment NLRP3 inflammation corpusculum related disease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139350A (en) * 2007-10-15 2008-03-12 中国药科大学 Oridonin derivative, preparation method and uses thereof
CN102002051A (en) * 2010-10-18 2011-04-06 中国药科大学 ent-6,7-open-cycle kaurene type rubescensine A derivative with anti-tumor activity and preparation method and use thereof
CN102295649A (en) * 2011-08-31 2011-12-28 中国药科大学 Oridonin with antitumor resistance activity, 6,7-open ring oridonin fluorine-containing derivative, preparation method and application
CN105503894A (en) * 2012-01-21 2016-04-20 杭州本生药业有限公司 1-oxo/acylated-14-acylated Oridonin derivative and preparation method and application thereof
CA2842635A1 (en) * 2014-01-20 2015-07-20 University Health Network Pre-cancerous cells and their identification in the prevention and treatment of cancer
CN110151749A (en) * 2018-02-13 2019-08-23 中国科学技术大学 Application of the Oridonin in the drug of preparation prevention or treatment NLRP3 inflammation corpusculum related disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BERA RABINDRANATH, CHIU MING-CHUN, HUANG YING-JUNG, LIANG DER-CHERNG, LEE YUN-SHIEN, SHIH LEE-YUNG: "Genetic and Epigenetic Perturbations by DNMT3A-R882 Mutants Impaired Apoptosis through Augmentation of PRDX2 in Myeloid Leukemia Cells", NEOPLASIA, NEOPLASIA PRESS, US, vol. 20, no. 11, 1 November 2018 (2018-11-01), US , pages 1106 - 1120, XP055871309, ISSN: 1476-5586, DOI: 10.1016/j.neo.2018.08.013 *
HE HONGBIN, JIANG HUA, CHEN YUN, YE JIN, WANG AOLI, WANG CHAO, LIU QINGSONG, LIANG GAOLIN, DENG XIANMING, JIANG WEI, ZHOU RONGBIN: "Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity", NATURE COMMUNICATIONS, vol. 9, no. 1, 1 December 2018 (2018-12-01), XP055871313, DOI: 10.1038/s41467-018-04947-6 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380780A (en) * 2022-01-24 2022-04-22 中国药科大学 Novel longikaurin A derivative, preparation method and medical application thereof
CN114380780B (en) * 2022-01-24 2023-12-01 中国药科大学 Novel long tannin extract A derivative, preparation method and medical application thereof
CN115124499A (en) * 2022-07-29 2022-09-30 中国中医科学院中药研究所 Compound for targeted killing of aged cells and application thereof
CN115124499B (en) * 2022-07-29 2023-12-26 中国中医科学院中药研究所 Compound for targeted killing of aged cells and application thereof

Similar Documents

Publication Publication Date Title
Rankin et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO
KR20190126431A (en) Combination Therapy for the Treatment or Prevention of Tumors
Barakat et al. C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome–lysosome fusion
WO2021237609A1 (en) Novel use of oridonin or oridonin derivative
Zhang et al. Sigma-1 receptor deficiency reduces GABAergic inhibition in the basolateral amygdala leading to LTD impairment and depressive-like behaviors
CN103619168B (en) Be used for the treatment of leukemic compositions, method and medicine box
KR20220100912A (en) Treatment for hematopoietic cell malignancies using genetically engineered T cells targeting CD70
US10918697B2 (en) Co-activation of mTOR and STAT3 pathways to promote neuronal survival and regeneration
Kunimi et al. Inhibition of the HIF‐1α/BNIP3 pathway has a retinal neuroprotective effect
Miller et al. PPM1D modulates hematopoietic cell fitness and response to DNA damage and is a therapeutic target in myeloid malignancy
US10947503B2 (en) Method for modifying T cell population
US11077110B2 (en) Compositions and methods for treating and preventing metabolic disorders
CA3122100A1 (en) Cxcr7 inhibitors for the treatment of cancer
US20230398153A1 (en) A method for efficient microglia replacement
CN116144600A (en) Cell membrane bionic nano vesicle for expressing transferrin, and preparation method and application thereof
Zhong et al. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers
Sabui et al. Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and on colon physiology
JP6437649B2 (en) Pharmaceutical composition for cancer treatment and biomarker for drug screening
Kim et al. MANF stimulates autophagy and restores mitochondrial homeostasis to treat toxic proteinopathy
US10413564B2 (en) Compositions and methods for combating drug-resistant cancers
Kogiso et al. EXTH-45. THERAPEUTIC EFFICACY OF MUTANT ISOCITRATE DEHYDROGENASE 1 (IDH1) INHIBITOR SYC-435 WITH STANDARD THERAPY IN PATIENT-DERIVED IDH1 MUTANT GLIOMA XENOGRAFT MOUSE MODELS
Dees et al. TMOD-19. INDIVIDUAL SPECIFIC HUMAN GUT MICROBE COMMUNITIES INFLUENCE RESPONSE TO IMMUNOTHERAPY IN A HUMANIZED MICROBIOME MOUSE MODEL OF GLIOMA
Contreras et al. PS1451 THE EFFECT OF HYDROXYUREA ON DNA METHYLATION AND GENE EXPRESSION IN POLYCYTHEMIA VERA AND ESSENTIAL THROMBOCYTHEMIA
WO2024054902A1 (en) Methods of treating ischemia-reperfusion injuries
Rao The Microenvironment as a Regulator of Nervous System Development, Brain Tumor Growth and Treatment Resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937766

Country of ref document: EP

Kind code of ref document: A1