WO2021235560A1 - Power unit - Google Patents

Power unit Download PDF

Info

Publication number
WO2021235560A1
WO2021235560A1 PCT/JP2021/019675 JP2021019675W WO2021235560A1 WO 2021235560 A1 WO2021235560 A1 WO 2021235560A1 JP 2021019675 W JP2021019675 W JP 2021019675W WO 2021235560 A1 WO2021235560 A1 WO 2021235560A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
crank shaft
power unit
engine
angular momentum
Prior art date
Application number
PCT/JP2021/019675
Other languages
French (fr)
Japanese (ja)
Inventor
常雄 今野
Original Assignee
株式会社アルテミス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルテミス filed Critical 株式会社アルテミス
Publication of WO2021235560A1 publication Critical patent/WO2021235560A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/26Compensation of inertia forces of crankshaft systems using solid masses, other than the ordinary pistons, moving with the system, i.e. masses connected through a kinematic mechanism or gear system

Definitions

  • the present invention relates to a power unit provided with a reciprocating internal combustion engine, and more particularly to a power unit having a vibration suppression function.
  • vibration suppression technologies for automobile engines.
  • the energy conversion mechanism disclosed in Patent Document 2 has a V-type 2-cylinder internal combustion engine and two generators.
  • the first shaft of the internal combustion engine and the second shaft of the energy conversion mechanism are arranged in parallel and rotate in the reverse direction.
  • the product of the moment of inertia and the number of revolutions is said to cancel each other at least almost.
  • the main causes of engine vibration are the force due to the gas pressure in the combustion chamber and the force due to the inertial force of the piston system. Both are forces in the cylinder axial direction, but a lateral component force is generated via the crank and connecting rod mechanism, and a rotational force is generated around the crank axis, which causes vibration in the rotational direction.
  • Vibration in the cylinder axis direction can be countered by the balancer shaft and balance weight that rotate in synchronization with the crank axis. They are conventionally known as primary balancers and secondary balancers.
  • the vibration in the rotation direction of the crank shaft has both a gas pressure torque (depending on the load) due to the gas pressure and an inertial torque (depending on the rotation) due to the inertial force. ..
  • the drive wheels are always driven by an electric motor.
  • This is called EV (Electric Vehicle) driving.
  • EV Electric Vehicle
  • the engine is started to shift to the power generation mode.
  • the vibration of the engine causes the floor of the vehicle to vibrate greatly, and the occupants in the vehicle interior know that the engine has started, which impairs the EV feeling (low vibration and quietness peculiar to electric vehicles).
  • a problem it is known that when a power generation engine is mounted on a drone having a lightweight structure, vibration is large in a normal engine, and the sensor attached to the airframe is likely to malfunction or be damaged.
  • the present invention has been made in view of the above problems, and provides a power unit that realizes low vibration and low noise of an engine by preventing vibration generated in an internal combustion engine from being transmitted from the engine frame to the outside. The purpose.
  • the present inventor first, in the series hybrid system, in addition to reducing the rolling vibration of the engine, the primary inertial force, the primary inertial couple, the secondary inertial couple and the secondary inertia couple. I got the idea that it is possible to realize a substantially zero vibration engine by reducing the vibration caused by inertia, and to reduce the vibration and noise in the room caused by the engine vibration.
  • the power unit includes an engine skeleton including at least one cylinder and at least one piston reciprocating in the cylinders. It has at least one crank shaft that is rotationally supported by the engine skeleton and is rotationally driven by the reciprocating motion of the piston, and at least one driven rotating body that is rotationally supported by the engine skeleton and rotates together with the crank shaft.
  • the power unit is characterized in that the total angular momentum of the crank shaft and the driven rotating body is kept substantially zero regardless of the rotation speeds of the crank shaft and the driven rotating body. And.
  • the angular momentum of the engine skeleton may be substantially zero.
  • the angular momentum is exchanged between the entire crank shaft and the driven rotating body and the entire engine skeleton. It may be configured so that it does not occur.
  • the driven rotating body includes at least one reverse rotating body that rotates in the direction opposite to the crank shaft. , May be.
  • the driven rotating body may include a rotor of at least one generator.
  • the at least one generator may supply electric power to the electric motor for driving the vehicle.
  • the driven rotating body is provided with a balance weight and the rotation speed of the crank shaft is opposite to that of the crank shaft.
  • a reverse rotation secondary balancer that rotates at twice the rotation speed of the crank shaft, and a forward rotation secondary balancer that has a balance weight and rotates at a rotation speed twice the rotation speed of the crank shaft in the same direction as the crank shaft. May include.
  • the driven rotating body is provided with a balance weight and the rotation speed of the crank shaft in the direction opposite to the crank shaft. It may include a primary balancer that rotates at the same rotation speed as.
  • the at least one cylinder includes the first and second cylinders, and the at least one piston is the said.
  • a first piston reciprocating in the first cylinder and a second piston reciprocating in the second cylinder are included, and the at least one crank shaft is rotationally driven by the first piston. It may include a first crank shaft and a second crank shaft that is rotationally driven by the second piston in the opposite direction at the same rotation speed as the first crank shaft.
  • each aspect of the present invention it is possible to realize low vibration and low noise of the engine by preventing the vibration generated in the internal combustion engine from being transmitted from the engine frame to the outside.
  • the power unit according to the embodiment of the present invention will be described.
  • the "rotating body” includes a crank shaft, a part of the connecting rod weight (large end portion), and various driven rotating bodies rotated by the crank shaft.
  • the "engine frame” is equipped with parts that do not move in conjunction with the crank shaft, and includes structural parts such as bearings, cylinder blocks, and cylinder heads that support the rotating body, and functional parts such as inlet manifolds and exhaust manifolds. including. Further, by incorporating the primary balancer and the secondary balancer into the angular momentum adjustment system, it is possible to substantially achieve zero vibration of the engine.
  • the piston stands still for a moment at top dead center (TDC) with a crank angle of 0 degrees and bottom dead center (BDC) with a crank angle of 180 degrees, but at other crank angles it moves vertically and has momentum. There is.
  • the crank shaft that rotates has an angular momentum.
  • the piston inertial force exerts a force on the crank shaft in a direction that reduces its speed (the downward momentum of the piston increases, and the angular momentum of the crank shaft increases. Decrease.).
  • the direction of the piston inertial force reverses, so the piston inertial force acts in the direction of increasing the speed of the crank shaft until it reaches the bottom dead point (the momentum decreases, the angular momentum increases). To increase.).
  • the piston inertial force exerts a force on the crank shaft in a direction that reduces its speed (the upward momentum of the piston increases, and the angular momentum of the crank shaft increases. Decrease.).
  • the direction of the piston inertial force is reversed, so that the piston inertial force acts in the direction of increasing the speed of the crank shaft until the top dead point (the momentum decreases, the angular momentum increases). To increase.).
  • the momentum of the piston and the angular momentum of the crank shaft are moving while exchanging the momentum and the angular momentum.
  • Torque fluctuation occurs in the crank shaft due to the rotation fluctuation of the crank shaft. This is known as inertial torque due to piston mass. This torque fluctuation is larger than the torque fluctuation due to combustion gas, intake gas, and exhaust gas in the high rpm region, and is a major cause of engine vibration.
  • the piston / crank mechanism is a mechanism in which the momentum of a linearly moving piston and the angular momentum on a rotationally moving crank shaft move while interacting with each other, so that rotational fluctuation of the crank shaft is unavoidable. Further, the rotation fluctuation of the crank shaft causes the rotation fluctuation of the engine frame.
  • the engine frame Since the engine frame is held with respect to the vehicle body via a rubber mount or the like, it can rotate around an axis parallel to the crank axis due to rotational fluctuations of the rotating body.
  • the spring constant of the engine mount is low, the following formulation can be approximated.
  • the moving body of the engine and the engine frame exert forces on the piston through the cylinder wall surface and the crank shaft and the like through the bearing. This is a force of the same magnitude and opposite to each other according to the law of action and reaction. Due to this interaction, each moving body and the engine skeleton generate opposite movements around the axis parallel to the crank axis. Since this force is not a force given from the outside but an interaction inside the engine, it acts to keep the angular momentum of the entire engine including the engine frame constant.
  • the rotation angle of the engine frame is limited, but the total angular momentum is kept constant within the rotatable range.
  • the angular momentum of the engine frame is expressed as Ic ⁇ ⁇ c
  • the angular momentum of each rotating body is expressed as Ii ⁇ ⁇ i.
  • the moment of inertia of the engine skeleton is Ic
  • its angular velocity is ⁇ c
  • the moment of inertia of each of the rotating bodies i 1, 2, 3 ?”
  • Is Ii, and their angular velocities are ⁇ i.
  • Equation (2) shows that when the rotation system fluctuates due to some disturbance, the angular momentum of the engine frame decreases / increases according to the increase / decrease of the angular momentum of the rotation system. That is, the angular momentum of the entire engine is kept constant by exchanging the angular momentum between the engine rotation system and the engine frame.
  • the engine has camshafts driven by gears, chains, timing belts, etc., and auxiliary equipment such as oil pumps and water pumps.
  • auxiliary equipment such as oil pumps and water pumps.
  • FIG. 1A is a diagram showing a schematic configuration of a power unit according to the first embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 1B is a skeleton diagram of the power unit according to the first embodiment of the present invention.
  • the power unit 101 has a crank in-line 3-cylinder reciprocating internal combustion engine (engine) 111.
  • the internal combustion engine 111 includes a crank shaft 11a, three cylinders 61, three pistons 61a each reciprocating in these cylinders 61, and a connecting rod connecting the crank shaft 11a and each piston 61a (FIG. 6). Not shown) and included.
  • the power unit 101 includes a gear train consisting of two gears 21C and 14, and one generator 12. The rotor 12a of the generator 12 rotates together with the gear 21C and the rotating shaft 12b.
  • the cylinder 61 forms a part of the engine skeleton 2. Further, the rotary shaft 12b of the crank shaft 11a and the gear 21C is rotatably supported with respect to the engine skeleton 2 via a bearing (not shown).
  • the rotor 12a, the gear 21C, and the rotating shaft 12b form a driven rotating body that is rotationally driven by the crank shaft 11a.
  • crank shaft 11a and the rotating shaft 12b extend in the direction perpendicular to the paper surface of FIG. 1A.
  • An oil pan 3 for storing lubricating oil is installed at the bottom of the engine frame 2.
  • a gear train composed of two gears 21C and 14 will be described.
  • the crank shaft 11a is provided with a gear 14 which is an original gear.
  • the gear 14 is a large gear.
  • the gear 21C which is a small gear, circumscribes with the gear 14 and rotates in the direction opposite to that of the gear 14.
  • the gear train consisting of the two gears 21C and 14 is shared by the angular momentum adjustment system described below.
  • the total value of the angular momentum of the clockwise rotating system and the total value of the angular momentum of the counterclockwise rotating system are almost equal.
  • the angular momentum in the rotation direction (clockwise) of the crank shaft 12a is positive
  • the angular momentum in the opposite rotation direction (counterclockwise) is negative.
  • the sum of the angular momentum (positive value) of the clockwise rotating system and the angular momentum (negative value) of the counterclockwise rotating system can be set to be close to zero.
  • the angular momentum of the engine frame can be reduced to zero, and the angular momentum adjustment system is configured.
  • this power unit 101 is equipped with an angular momentum adjustment system, when the internal combustion engine 111 is driven, angular momentum is not generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
  • FIG. 2A is a diagram showing a schematic configuration of a power unit according to a second embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 2B is a skeleton diagram of the power unit according to the second embodiment of the present invention.
  • the power unit 102 is powered by a reciprocating V-type 2-cylinder internal combustion engine (engine) 112 having a bank angle of 90 degrees and the internal combustion engine 112. It has generators 12 and 13 that rotate and generate power.
  • engine V-type 2-cylinder internal combustion engine
  • the internal combustion engine 112 includes a crank shaft 11a, two cylinders 61, and two pistons 61a, each of which reciprocates in these cylinders 61.
  • the cylinder 61 forms a part of the engine skeleton 2. Further, the crank shaft 11a of the internal combustion engine 113 and the rotating shafts 12b, 13b, 33b of each gear are rotatably supported with respect to the engine skeleton 2 via bearings (not shown).
  • An oil pan 3 for storing lubricating oil is installed at the bottom of the engine frame 2.
  • the power unit 102 When the internal combustion engine 112 is driven, a secondary inertial force that generally causes vibration to the engine skeleton 2 and an angular momentum of the engine skeleton 2 are generated. Therefore, the power unit 102 has a secondary inertial force balancer (secondary balancer) and an angular momentum. It is equipped with an exercise amount adjustment system. The generation of the primary inertial force can be suppressed by adjusting the mass and direction of the balance weight (not shown) provided on the crank shaft 11a.
  • the power unit 102 includes a gear train composed of four gears 14, 15, 16 and 17, and two generators 12 and 13 provided coaxially with the two gears 15 and 16.
  • the gear 14 is an original gear provided on the crank shaft 11a of the internal combustion engine 112.
  • a balance weight 34a for a secondary balancer is attached to a rotating shaft 12b common to the gear 15 and the rotor 12a of the generator 12. Further, a balance weight 34b for a secondary balancer is provided on the rotating shaft 33b of the gear 17.
  • the gears 15, 16, 17 and the generators 12, 13 and the like that rotate with them constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
  • the power unit 102 may be arranged so that the crank shaft 11a of the internal combustion engine 11 extends horizontally, or may be arranged so as to be vertical.
  • gear train consisting of four gears 14, 15, 16, and 17 will be described.
  • the gear 14 is a large gear
  • the gear 15 and the gear 17 are small gears having half the number of teeth of the gear 14.
  • the gear 14 is a raw gear which is a large gear fixed to the crank shaft 11a of the internal combustion engine 11.
  • the gear 15 and the gear 17 are slave gears.
  • the gear 15 is circumscribed with the gear 14 of the large gear.
  • the gear 16 is circumscribed with the gear 14.
  • the gear 17 does not mesh directly with the gear 14.
  • the two gears 15 and 17 are arranged equidistant upward and downward with respect to the engine cross-sectional center line Z passing through the center of the gear 14, and rotate in opposite directions to each other. Therefore, the two gears 15 and 16 which are small gears rotate in the reverse direction with respect to the gear 14 which is a large gear, and the gear 17 rotates in the same direction with respect to the gear 14.
  • the gear 15 is attached to the rotating shaft 12b of the rotor 12a of the generator 12.
  • the gear 16 is attached to the rotating shaft 13b of the rotor 13a of the generator 13. Therefore, the rotors 12a and 13a both rotate in the opposite direction to the crank shaft 11a.
  • the gear train consisting of the four gears 14, 15, 16 and 17 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
  • the rotating shaft of the gear 15 is the rotating shaft 12b of the generator 12.
  • the balance weight 34a is attached to the rotation shaft 12b at a position corresponding to the engine plane center line X.
  • a balance weight 34b is attached to the rotating shaft 33b so as to coincide with the engine plane center line X.
  • the balance weight 34a constitutes a reverse rotation secondary balancer together with the rotation shaft 12b. Further, the balance weight 34b and the rotation shaft 33b form a forward rotation secondary balancer.
  • a secondary inertial force balancer (secondary balancer) is composed of these reverse rotation secondary balancers and forward rotation secondary balancers. The reverse rotation secondary balancer and the forward rotation secondary balancer rotate at a rotation speed twice the rotation speed of the crank shaft 11a, and can eliminate the secondary inertial force generated in the internal combustion engine 11.
  • the two cylinders 61 are offset from the center line X in FIG. 2B, but the offset is not shown. Further, this offset generates a moment that causes vibration, but it is usually negligible because the absolute value is low.
  • the power unit 102 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. Therefore, the angular momentum adjustment system is configured.
  • the power unit 102 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
  • FIG. 3A is a diagram showing a schematic configuration of a power unit according to a third embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 3B is a skeleton diagram of the power unit according to the third embodiment of the present invention.
  • the power unit 103 includes the reciprocating internal combustion engine (engine) 113 having a crank in-line 3-cylinder engine and the power of the engine, as in the first embodiment. It has a generator 12 that rotates and generates power. When the engine is driven, a primary inertia couple, a secondary inertia couple, and an angular momentum of the engine skeleton are generated. Therefore, the power unit 103 of the third embodiment further has a primary inertia couple (primary balancer). And equipped with a secondary inertia couple balancer (secondary balancer).
  • the power unit 103 has a gear train composed of six gears 21C, 14, 21A, 21B, 20, and 18.
  • the rotor 12a of the generator 12 rotates together with the rotating shaft 12b of the gear 21C.
  • Balance weights 35 and 35 for two primary balancers are attached to the rotating shaft 13b of the gear 21B.
  • Balance weights 34b and 34b for two secondary balancers are attached to the rotating shaft 33b of the gear 20.
  • Balance weights 34a and 34a for the secondary balancer are attached to the rotating shaft 33a of the gear 18.
  • the gears 21C, 21B, 20, 18 and the rotor 12a, rotating shafts 12b, 13b, 33b, 33a, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
  • a gear train consisting of six gears 21C, 14, 21A, 21B, 20, and 18 will be described.
  • a gear 14 which is an original gear and a gear 21A inside the gear 14 are attached to the crank shaft 11a of the internal combustion engine 113.
  • the gear 14 is a large gear.
  • the gear 21A and the gear 21B are medium gears having the same number of teeth that circumscribe and rotate in the opposite direction to each other.
  • the gear 20 is a small gear having half the number of teeth of the gear 21A, and is circumscribed with the gear 21B and rotates in the opposite direction to each other.
  • the gear 18 is a small gear having half the number of teeth of the gear 21A, and is circumscribed with the gear 20.
  • the gears 18 and 20 are located in FIG. 2A downward from the center of the gear 14 and equidistant on both sides of the engine vertical cross-sectional center line Y.
  • the gear 21C circumscribes with the gear 14 and rotates in the reverse direction with respect to the gear 14.
  • the gear 18 which is a small gear rotates in the reverse direction at twice the speed of the gear 21A which is a middle gear. Further, the gear 20 which is a small gear rotates at double speed in the same direction with respect to the gear 21A.
  • the gear 21B, which is a middle gear, rotates at the same speed in the opposite direction to the crank shaft 11a.
  • the gear train consisting of the six gears 21C, 14, 21A, 21B, 20 and 18 consists of the primary inertia couple balancer (primary balancer), the secondary inertia couple balancer (secondary balancer) and the angular momentum described below. Shared with the coordination system.
  • the gear 21B is circumscribed to the gear 21A, and the balance weights 35 and 35 for the primary balancer are arranged so as to be out of phase at an angle of approximately 30 degrees to the left.
  • the gear 20 circumscribes the gear 21B and rotates in the opposite direction.
  • the balance weights 34b and 34b for the secondary balancer are arranged so as to be out of phase by an angle of about 30 degrees to the left.
  • the phase angle is based on the position when the first piston is at top dead center. The same applies to the following.
  • the gear 18 circumscribes with the gear 20 and rotates in the opposite direction to the gear 20.
  • the gear 20 does not directly mesh with the gear 21A.
  • the balance weights 34a and 34a for the secondary balancer are arranged so as to be out of phase by an angle of approximately 30 degrees to the right.
  • the rotating shaft 13b having the balance weights 35 and 35 constitutes a primary inertia couple (primary balancer), and the primary inertia couple generated in the internal combustion engine 113 can be eliminated.
  • the two balance weights 35 and 35 are on the opposite side of the rotating shaft 13b, and the two balance weights 34a and 34a are on the opposite side of the rotating shaft 33a.
  • the balance weights 34b and 34b are on the opposite side of the rotating shaft 33b.
  • the rotary shaft 33a having the balance weights 34a and 34a and the rotary shaft 33b having the balance weights 34b and 34b form a secondary inertia couple balancer (secondary balancer), and the secondary inertia couple generated in the internal combustion engine 113.
  • the force can be eliminated.
  • the rotation system of the crank shaft 11a and the gears 14, 21A, the rotation system of the gear 20, the rotation shaft 33b, and the balance weights 34b, 34b are clockwise rotation systems. Further, the rotation system of the gear 21B, the rotation shaft 13b and the balance weights 35 and 35, the rotation system of the gear 18, the rotation shaft 33a and the balance weights 34a and 34a, and the gear 21C and the rotation shaft 12b are counterclockwise rotation systems. ..
  • the power unit 103 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the three counterclockwise rotating systems are equal. That is, the angular momentum of the five rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • the power unit 103 includes a primary inertia couple balancer, a secondary inertia couple balancer, and an angular momentum adjustment system, when the engine is driven, the primary inertia couple, the secondary couple, and the angle of the engine skeleton are provided. No momentum is generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
  • FIG. 4A is a diagram showing a schematic configuration of a power unit according to a fourth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 4B is a skeleton diagram of the power unit according to the fourth embodiment of the present invention.
  • the power unit 104 rotates and generates power by the power of a reciprocating internal combustion engine (engine) 114 having a 180-degree crank in-line 4-cylinder engine and the internal combustion engine 114. It has a generator 13 (flat plane L4).
  • engine reciprocating internal combustion engine
  • the power unit 104 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjusting system.
  • the original gear 14 which is a large gear attached to the crank shaft 11a, drives the shaft 13b provided with the rotor 13a of the generator 13 and the two shafts 12b and 33b provided with weights for the secondary inertial force balancer.
  • the power unit 104 includes a gear train consisting of five gears 14, 15, 16, 17, and 21A.
  • the gears 14 and 21A are original gears attached to the crank shaft 11a of the internal combustion engine 114.
  • the generator 13 is mounted coaxially with the rotating shaft 13b of one gear 16 in the gear train.
  • a balance weight 34a for a secondary balancer is attached to the rotating shaft 12b of the gear 15. Further, a balance weight 34b for a secondary balancer is attached to the rotating shaft 33b of the gear 17.
  • the gears 15, 16, 17, 21A and the rotating shafts 12b, 13b, 33b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
  • gear train consisting of five gears 14, 15, 16, 17, and 21A will be described.
  • the gear 15 and the gear 17 are small gears having half the number of teeth of the gear 21A and are circumscribed with each other.
  • the gear 14 is a raw gear which is a large gear attached to the crank shaft 11a of the internal combustion engine 114.
  • the gear 15 and the gear 21A are circumscribed with each other.
  • the gear 16 is circumscribed with the gear 14.
  • the gear 17 does not directly mesh with the gear 21A.
  • the two gears 15 and 17 are arranged equidistant in the left-right direction with respect to the engine cross-sectional center line Y passing through the center of the gear 14, and rotate in opposite directions to each other.
  • the number of teeth of the gear 16 is arbitrary.
  • the gear 17 rotates in the same direction with respect to the gears 14 and 21A. Further, the gear 15 and the gear 16 rotate in opposite directions with respect to the gears 14 and 21A.
  • the gear 15 is attached to the rotating shaft 12b. Further, the gear 16 is attached to the rotating shaft 13b of the rotor 13a of the generator 13. Therefore, the rotor 13a rotates in the opposite direction to the crank shaft 11a.
  • the gear train consisting of the five gears 14, 15, 16, 17, and 21A is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
  • a balance weight 34a is attached to the rotating shaft 12b of the gear 15, and a balance weight 34b is attached to the rotating shaft 33b of the gear 17.
  • the balance weights 34a and 34b form a secondary inertial force balancer (secondary balancer) including the two rotation shafts 12b and 33b, and rotate at a rotation speed twice the rotation speed of the crank shaft 11a.
  • secondary inertial force generated in the internal combustion engine 114 can be eliminated.
  • the total value of the angular momentums of the two clockwise rotating systems shown in FIG. 4A can be set to be equal to the total value of the angular momentums of the two counterclockwise rotating systems. Therefore, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • the power unit 104 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, neither the secondary inertial force nor the angular momentum of the engine skeleton is generated when the engine is driven. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
  • the secondary balancer shaft (rotary shaft 12b) may be provided with a generator (not shown).
  • FIG. 5A is a diagram showing a schematic configuration of a power unit according to a fifth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft.
  • FIG. 5B is a skeleton diagram of the power unit according to the fifth embodiment of the present invention.
  • FIG. 5C is a diagram showing the positional relationship of the crankpins of the 4-cylinder engine in the power unit according to the fifth embodiment of the present invention.
  • the internal combustion engine 115 is a reciprocating four-cylinder engine in series with cranks, and a crossplane in which crankpins are arranged in a phase of 90 degrees. It is an engine (crossplane L14).
  • the power unit 105 includes an internal combustion engine 115 and a generator 12 that rotates and generates electricity by the power of the internal combustion engine 115.
  • the power unit 105 includes a primary inertia couple balancer (primary balancer) and an angular momentum adjusting system.
  • the power unit 105 has a gear 14 and a gear 21A which are raw gears attached to a crank shaft 11a of an internal combustion engine 115, a gear 17 of a rotary shaft 33b which is externally meshed with the gear 21A, and externally meshed with the gear 14.
  • the gear 21C of the rotating shaft 12b provided with the generator 12 is included.
  • Balance weights 35, 36, 35, 36 for the primary inertia couple are arranged on the gear 17 so as to be out of phase with each other by an angle of 90 °.
  • the internal combustion engine 115 which is a 4-cylinder engine, has an unequal interval explosion instead of an ignition interval of 180 degrees.
  • the gears 21C, 17 and the rotating shafts 12b, 33b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
  • a gear train consisting of four gears 21C, 14, 21A, and 17 will be described. As shown in FIGS. 5A and 5B, the gear 21C circumscribes the large gear 14.
  • the gear 17 is circumscribed with the gear 21A arranged inside the crank shaft 11a, and the number of teeth thereof is the same as the number of teeth of the gear 21A. Therefore, the gear 17 rotates in the reverse direction at the same speed as the crank shaft 11a.
  • the gear 21C is attached to the rotating shaft 12b of the rotor 12a of the generator 12. Therefore, the rotor 12a rotates in the opposite direction to the crank shaft 11a.
  • the gear train consisting of the four gears 21C, 14, 21A, and 17 is shared by the primary inertia couple balancer (primary balancer) and the angular momentum adjustment system described below.
  • the rotating shaft 12b of the gear 21C is the rotating shaft 12b of the generator 12.
  • the balance weights 35, 36, 35, 36 are arranged on the rotation shaft 33b of the gear 17 with their phases shifted by an angle of 90 ° from each other.
  • the balance weights 35 and 36 form a primary inertia couple balancer (primary balancer) together with the rotation shaft 33b, and rotate in the reverse direction at the same rotation speed as the rotation speed of the crank shaft 11a.
  • primary inertia couple generated in the internal combustion engine 115 can be eliminated.
  • the power unit 105 is equipped with a primary inertia couple balancer and an angular momentum adjustment system, when the internal combustion engine 115 is driven, the primary inertia couple and the angular momentum of the engine frame are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the structure of the internal combustion engine 115.
  • FIG. 6A is a diagram showing a schematic configuration of a power unit according to a sixth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 6B is a skeleton diagram of a part of the power unit according to the sixth embodiment of the present invention.
  • the power unit 106 includes an internal combustion engine 116 which is a reciprocating two-cylinder tandem twin engine and generators 12 and 13 which are rotated by the power of the internal combustion engine 116 to generate electricity. Have. When the internal combustion engine 116 is driven, a secondary inertial force and an angular momentum of the engine skeleton 2 are generally generated. Therefore, the power unit 106 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjusting system.
  • secondary inertial force balancer secondary balancer
  • the power unit 106 includes an internal combustion engine 116, two generators 12 and 13 that are powered and generated from the internal combustion engine 116, and a gear train consisting of six gears 23, 24, 25, 26, 26, 27, 28.
  • a balance weight 34a for the secondary balancer is attached to the rotating shaft 33a of the gear 25.
  • a balance weight 34b for a secondary balancer is attached to the rotating shaft 33b of the gear 26.
  • the gears 25, 26, 26, 27, 28 and the rotating shafts 33a, 33b, 12b, 13b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
  • a gear train consisting of six gears 23, 24, 25, 26, 26, 27, 28 will be described.
  • a gear 23 and a gear 24, which are large gears having the same number of teeth, are attached to each of the two crank shafts 11a1 and 11a2 of the internal combustion engine 116, and the gear 23 and the gear 24 are externally meshed with each other.
  • the gear 25 and the gear 26 are small gears having half the number of teeth of the large gear, and they are circumscribed with the gear 23 and the gear 24, respectively.
  • the gear 27 and the gear 28 are circumscribed with the gear 25 and the gear 26, respectively. It is desirable that the number of teeth of the gear 27 and the gear 28 is the same as each other.
  • the gear 23 and the gear 24 rotate in opposite directions at the same speed.
  • the gear 25 and the gear 26 rotate in reverse at double speed with respect to the meshing gear 23 and the gear 24.
  • the gear 27 and the gear 28 rotate in opposite directions to each other.
  • the gear train consisting of the six gears 23, 24, 25, 26, 26, 27, 28 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
  • the gear 25 and the gear 26 are equidistant downward from the line connecting the centers of the two internal combustion engines 116 and equidistant on both sides with respect to the engine longitudinal cross-sectional center line Y, and the crank shafts 11a1 are located.
  • the rotation speed is twice the rotation speed of 11a2 and the rotation speeds are opposite to each other.
  • a balance weight 34a for the secondary balancer is attached at a position corresponding to the engine plane center line X of the rotation shaft 33a of the gear 25.
  • a balance weight 34b for a secondary balancer is attached at a position corresponding to the engine plane center line X of the rotating shaft 33b of the gear 26.
  • the balance weights 34a and 34b form a secondary inertial force balancer (secondary balancer) together with the two rotating shafts 33a and 33b, and rotate at twice the rotation speed of the crank shafts 11a1 and 11a2 to rotate the internal combustion engine 116.
  • the secondary inertial force generated in the above can be eliminated.
  • the rotation system of the crank shaft 11a1 and the gear 23, the rotation system of the gear 27 and the generator 12, and the rotation system of the gear 26, the rotation shaft 33b, and the balance weight 34b are clockwise rotation systems.
  • the rotation system of the crank shaft 11a2 and the gear 24, the rotation system of the gear 25, the rotation shaft 33a and the balance weight 34a, and the rotation system of the gear 28 and the generator 13 are counterclockwise rotation systems.
  • the total value of the angular momentums of the three clockwise rotating systems shown in FIG. 6A can be set to be equal to the total value of the angular momentums of the three counterclockwise rotating systems. Therefore, the angular momentum of the six rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • the power unit 106 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
  • the position of the generator 12 and the position of the balancer are exchanged, and the position of the generator 13 and the balancer (gear 26, balance) are exchanged.
  • the positions of the weights 34b and the rotating shaft 33b) may be exchanged (not shown).
  • FIG. 7A is a diagram showing a schematic configuration of a power unit according to a seventh embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 7B is a skeleton diagram of the power unit according to the seventh embodiment of the present invention.
  • the power unit 107 is a reciprocating two-cylinder tandem twin engine internal combustion engine 117 and two generators 12 that are transmitted by power from the internal combustion engine 117 to generate power. , 13 and a gear train consisting of six gears 23, 24, 29, 30, 31, 32.
  • a balance weight 34a for a secondary balancer is attached to a rotating shaft 12b common to the gear 30 and the rotor 12a of the generator 12.
  • a balance weight 34b for a secondary balancer is attached to a rotating shaft 13b common to the gear 32 and the rotor 13a of the generator 13.
  • the power unit 107 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjustment system.
  • the gears 29, 30, 31, 32 and the rotating shafts 29b, 12b, 31b, 13b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
  • the gear train consists of six gears 23, 24, 29, 30, 31, 32, and includes intermediate gears (idler gears) 29, 31.
  • gears 23 and 24 which are large gears having the same number of teeth, are attached to each of the two crank shafts 11a1 and 11a2 of the internal combustion engine 117, and the gears 23 and 24 are externally meshed with each other. There is.
  • the gear 30 and the gear 32 are small gears having half the number of teeth of the large gears 23 and 24, and their respective centers of rotation are attached at symmetrical positions on both sides of the engine vertical cross-sectional center line Y.
  • the intermediate gear 29 and the intermediate gear 31 have no limitation on the number of teeth.
  • the gear 29 is circumscribed to the gear 23 and the gear 30 at the same time, and the gear 31 is circumscribed to the gear 24 and the gear 32 at the same time.
  • the gear 23 and the gear 24 rotate in opposite directions at the same speed.
  • the gear 30 rotates in the same direction at twice the speed of the gear 23.
  • the gear 32 rotates in the same direction at twice the speed of the gear 24.
  • the gear train consisting of the six gears 23, 24, 29, 30, 31, and 32 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
  • the rotary shaft 12b of the gear 30 is also the rotary shaft 12b of the generator 12, and the rotary shaft 12b also serves as a secondary inertial force balancer.
  • the rotating shaft 13b of the gear 32 is also the rotating shaft 13b of the generator 13, and the rotating shaft 13b also serves as a secondary inertial force balancer.
  • the two generators 12 and 13 are arranged on both sides of the two cylinders 61 of the internal combustion engine 117. Further, gears 29 and 31 that serve as idler gears are arranged. As a result, the rotation direction of the rotor 12a is the same as the rotation direction of the crank shaft 11a1, and the rotation direction of the rotor 13a is the same as the rotation direction of the crank shaft 11a2.
  • the total value of the angular momentums of the three clockwise rotating systems shown in FIG. 7A can be set to be equal to the total value of the angular momentums of the three counterclockwise rotating systems. Therefore, the angular momentum of the six rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • the power unit 107 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
  • a configuration (not shown) may be used in which the gears 29 and 31 serving as idlers are eliminated.
  • a tandem twin engine is used as a reciprocating two-cylinder internal combustion engine, and one generator 12 and 13 are provided corresponding to the two crank shafts 11a1 and 11a2, respectively.
  • one of the generators 12 and 13 may be removed, and a flywheel may be attached in place of the removed generator (not shown).
  • the flywheel replaced with the generator does not need to be installed centrally on one axis, and can be installed in a distributed manner so that the angular momentum of the rotation system becomes zero.
  • FIG. 8A is a diagram showing a schematic configuration of a power unit according to an eighth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 8B is a skeleton diagram of the power unit according to the eighth embodiment of the present invention.
  • the power unit 108 is a reciprocating two-cylinder tandem twin engine internal combustion engine 118 and one generator that is powered by the internal combustion engine 118 to generate power. Includes 12, one flywheel 50, and a gear train consisting of four gears 23, 24, 29, 30.
  • the gears 29, 30 and the rotating shafts 51, 12b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
  • the gear train consists of four gears 23, 24, 29, 30.
  • the gears 31 and 32 are absent, and the balance weights 34a and 34b for the secondary balancer are also absent.
  • FIG. 8A the gears 23 and the gears 24 attached to the two crank shafts 11a1 and 11a2 of the internal combustion engine 118 are meshed with each other. Further, the gear 29 is circumscribed to the gear 23 attached to one of the crank shafts 11a1, and the gear 30 is circumscribed to the gear 29.
  • the gear 23 and the gear 24 rotate in opposite directions at the same speed.
  • the gear 29 rotates in the opposite direction to the gear 23, and the gear 30 circumscribes the gear 29 and rotates in the same direction with respect to the gear 23.
  • the rotor 12a of the generator 12 is attached to the rotating shaft 12b of the gear 30, and the flywheel 50 is attached to the rotating shaft 51 of the gear 29.
  • the generator 12 is arranged only on the rotating shaft 12b on one cylinder side, and does not have a secondary balancer function.
  • the transmission rate of this vibration to the vehicle body floor is low, so that the secondary balancer can be omitted. This makes it possible to configure a lightweight, compact, low friction engine.
  • the power unit 108 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • this power unit 108 is equipped with an angular momentum adjustment system, when the internal combustion engine 118 is driven, no angular momentum is generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
  • FIG. 9A is a diagram showing a schematic configuration of a power unit according to a ninth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 9B is a skeleton diagram of the power unit according to the ninth embodiment of the present invention.
  • the power unit 109 includes an internal combustion engine 119 which is a reciprocating two-cylinder tandem twin engine, and one generator 12 which is powered and generated by power transmission from the internal combustion engine 119. It includes one flywheel 50 and a gear train consisting of four gears 23, 24, 29, 30.
  • the gears 29, 30 and the rotating shafts 51, 12b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
  • the gear train consists of four gears 23, 24, 29, 30.
  • the gears 31 and 32 are absent, and the balance weights 34a and 34b for the secondary balancer are also absent.
  • the gears 23 and the gears 24 attached to the two crank shafts 11a1 and 11a2 of the internal combustion engine 119 are meshed with each other. Further, the gear 29 is circumscribed to the gear 23 attached to one crank shaft 11a1, and the gear 30 is circumscribed to the other crank shaft 11a2.
  • the gear 23 and the gear 24 rotate in opposite directions at the same speed.
  • the gear 29 rotates in the opposite direction to the gear 23, and the gear 30 rotates in the opposite direction to the gear 24.
  • the rotor 12a of the generator 12 is attached to the rotating shaft 12b of the gear 30, and the flywheel 50 is attached to the rotating shaft 51 of the gear 29.
  • the generator 12 is arranged only in one cylinder (rotating shaft 12b) and does not have a secondary balancer function.
  • the transmission rate of this vibration to the vehicle body floor is low, so it is possible to omit the secondary balancer, which makes it lightweight and compact.
  • a low friction engine can be configured.
  • the power unit 109 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
  • this power unit 109 is equipped with an angular momentum adjustment system, when the internal combustion engine 119 is driven, angular momentum is not generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
  • intermediate gears may be provided on both sides of the gears 23 and 24, respectively.
  • the generator, secondary balancer, and flywheel can be freely combined as long as the angular momentum adjustment system is satisfied.
  • Internal combustion engine X ...
  • Engine plane transverse center line Y ...
  • Engine vertical section center line Z ...

Abstract

This power unit includes: an engine frame (2) including a cylinder (61); a piston (61a) which reciprocates inside the cylinder (61); at least one crankshaft (11a) which is rotationally supported by the engine frame (2), and which is rotationally driven by means of the reciprocating movement of the piston (61a); and at least one driven rotating body (12) which is rotationally supported by the engine frame, and which rotates together with the crankshaft (11a). Regardless of the rotational speed of the crankshaft (11a) and the driven rotating body (12), the sum of the angular momentums of the crankshaft (11a) and the driven rotating body (12) is maintained substantially at zero.

Description

パワーユニットPower unit
 本発明は、レシプロ形内燃機関を備えたパワーユニットに関し、特に、振動抑制機能を有するパワーユニットに関する。 The present invention relates to a power unit provided with a reciprocating internal combustion engine, and more particularly to a power unit having a vibration suppression function.
 自動車用エンジンの振動抑制技術として種々のものが知られている。 Various technologies are known as vibration suppression technologies for automobile engines.
 特許文献1に開示された常時噛み合い式スタータ機構では、エンジンのクランク軸と電動機の回転軸とを偶数個の中間回転軸により連結する。電動機の回転軸に加わる回転駆動力がクランク軸廻りのモーメントを生じ、エンジンのローリング振動を低減させることができる。 In the constant meshing starter mechanism disclosed in Patent Document 1, the crank shaft of the engine and the rotating shaft of the motor are connected by an even number of intermediate rotating shafts. The rotational driving force applied to the rotary shaft of the motor generates a moment around the crank shaft, and the rolling vibration of the engine can be reduced.
 特許文献2に開示されたエネルギ変換機構は、V形2気筒の内燃機関と2つのジェネレータを有する。内燃機関の第1シャフトとエネルギ変換機構の第2シャフトとが平行に配置され、かつ逆回転する。これにより、慣性モーメントと回転数との積が相互に少なくともほぼ相殺するとされている。 The energy conversion mechanism disclosed in Patent Document 2 has a V-type 2-cylinder internal combustion engine and two generators. The first shaft of the internal combustion engine and the second shaft of the energy conversion mechanism are arranged in parallel and rotate in the reverse direction. As a result, the product of the moment of inertia and the number of revolutions is said to cancel each other at least almost.
特開2001-234836号公報Japanese Unexamined Patent Publication No. 2001-234863 特表2013-534586号公報Special Table 2013-534586
 特許文献1,2に開示された技術思想においては構造が限定され、利用性が低いといわざるを得ない。また、エンジン駆動時に発生する1次慣性力、1次慣性偶力、2次慣性力及び2次慣性偶力による振動を統合的にゼロまたはゼロに近い値に抑制することについての知見や開示はない。 In the technical ideas disclosed in Patent Documents 1 and 2, it must be said that the structure is limited and the usability is low. In addition, there is no knowledge or disclosure regarding the integrated suppression of vibrations due to the primary inertial force, primary inertial couple, secondary inertial force, and secondary inertial couple generated when the engine is driven to a value of zero or close to zero. No.
 レシプロエンジンにおいて、エンジンの振動のおもな原因は、燃焼室のガス圧による力、及び、ピストン系の慣性力による力である。両者ともシリンダ軸方向の力であるが、クランク、コンロッド機構を介して横方向の分力が発生し、クランク軸廻りに回転力を生むので、これが回転方向の振動の原因となる。 In a reciprocating engine, the main causes of engine vibration are the force due to the gas pressure in the combustion chamber and the force due to the inertial force of the piston system. Both are forces in the cylinder axial direction, but a lateral component force is generated via the crank and connecting rod mechanism, and a rotational force is generated around the crank axis, which causes vibration in the rotational direction.
 シリンダ軸方向の振動は、クランク軸に同期して回転するバランサ用シャフト及びバランスウェイトにより対策が可能である。それらは1次バランサ、2次バランサとして従来から知られている。一方、クランク軸回転方向の振動は、ガス圧によるガス圧トルク(負荷依存)と慣性力による慣性トルク(回転依存)との両者を有するので、従来のバランサ用シャフト及びバランスウェイトでは対策できなかった。 Vibration in the cylinder axis direction can be countered by the balancer shaft and balance weight that rotate in synchronization with the crank axis. They are conventionally known as primary balancers and secondary balancers. On the other hand, the vibration in the rotation direction of the crank shaft has both a gas pressure torque (depending on the load) due to the gas pressure and an inertial torque (depending on the rotation) due to the inertial force. ..
 シリーズハイブリッドシステム車では、駆動輪の駆動は常時電動機で行う。これをEV(Electric Vehicle)走行と呼ぶ。EV走行時においてバッテリ容量が低下してきたときに、エンジンを起動して発電モードに移行する。このとき、エンジンの振動は車両のフロアを大きく振動させ、車室内にいる乗員にエンジンが起動したことが分かってしまうので、EV感(電気自動車特有の低振動性、静粛性)を損なう、という問題がある。また、軽量構造のドローンに発電用エンジンを搭載した場合、通常のエンジンでは振動が大きく、機体に取り付けたセンサーの誤作動や破損を招きやすいことが知られている。 In the series hybrid system vehicle, the drive wheels are always driven by an electric motor. This is called EV (Electric Vehicle) driving. When the battery capacity is low during EV driving, the engine is started to shift to the power generation mode. At this time, the vibration of the engine causes the floor of the vehicle to vibrate greatly, and the occupants in the vehicle interior know that the engine has started, which impairs the EV feeling (low vibration and quietness peculiar to electric vehicles). There's a problem. Further, it is known that when a power generation engine is mounted on a drone having a lightweight structure, vibration is large in a normal engine, and the sensor attached to the airframe is likely to malfunction or be damaged.
 本発明は、上記問題点に鑑みてなされたものであり、内燃機関で発生する振動がエンジン躯体から外部に伝わらないようにして、エンジンの低振動、低騒音を実現するパワーユニットを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a power unit that realizes low vibration and low noise of an engine by preventing vibration generated in an internal combustion engine from being transmitted from the engine frame to the outside. The purpose.
 本発明者は、まず、上記課題の解決に当たって、特にシリーズハイブリッドシステムでは、エンジンのローリング振動の低減に加えて、1次慣性力、1次慣性偶力、2次慣性力及び2次慣性偶力による振動を低減することによって実質的なゼロバイブレーションエンジンを実現し、エンジン振動に由来する室内の振動と騒音を低減することができるとの着想を得た。 In order to solve the above problems, the present inventor first, in the series hybrid system, in addition to reducing the rolling vibration of the engine, the primary inertial force, the primary inertial couple, the secondary inertial couple and the secondary inertia couple. I got the idea that it is possible to realize a substantially zero vibration engine by reducing the vibration caused by inertia, and to reduce the vibration and noise in the room caused by the engine vibration.
 ゼロバイブレーションエンジンを実現できれば、エンジンの回転数及び負荷を、運転状況に応じて適宜に変えることができ、エンジン振動、騒音もEV感を損なわないハイブリット車を実現できる、と着想した。 The idea was that if a zero vibration engine could be realized, the engine speed and load could be changed as appropriate according to the driving conditions, and a hybrid vehicle could be realized in which engine vibration and noise did not impair the EV feeling.
 そこで、上述の課題(の少なくとも一部)を解決するべく、本発明の第1の態様に係るパワーユニットは、少なくとも一つのシリンダを含むエンジン躯体と、前記シリンダ内を往復動する少なくとも一つのピストンと、前記エンジン躯体に回転支持されて前記ピストンの往復動によって回転駆動される少なくとも一つのクランク軸と、前記エンジン躯体に回転支持されて前記クランク軸とともに回転する少なくとも一つの従動回転体と、を有するパワーユニットであって、前記クランク軸および前記従動回転体の回転数によらず前記クランク軸および前記従動回転体の角運動量の総和が実質的にゼロに保たれるように構成されていることを特徴とする。 Therefore, in order to solve (at least a part of) the above-mentioned problems, the power unit according to the first aspect of the present invention includes an engine skeleton including at least one cylinder and at least one piston reciprocating in the cylinders. It has at least one crank shaft that is rotationally supported by the engine skeleton and is rotationally driven by the reciprocating motion of the piston, and at least one driven rotating body that is rotationally supported by the engine skeleton and rotates together with the crank shaft. The power unit is characterized in that the total angular momentum of the crank shaft and the driven rotating body is kept substantially zero regardless of the rotation speeds of the crank shaft and the driven rotating body. And.
 本発明の第2の態様として、前記第1の態様の特徴に加えて、前記エンジン躯体の角運動量が実質的にゼロになるように構成してもよい。 As the second aspect of the present invention, in addition to the features of the first aspect, the angular momentum of the engine skeleton may be substantially zero.
 本発明の第3の態様として、前記第1または第2の態様の特徴に加えて、前記クランク軸及び前記従動回転体の全体と、前記エンジン躯体全体との間で、角運動量が交換されることがないように構成してもよい。 As a third aspect of the present invention, in addition to the features of the first or second aspect, the angular momentum is exchanged between the entire crank shaft and the driven rotating body and the entire engine skeleton. It may be configured so that it does not occur.
 本発明の第4の態様として、前記第1ないし第3の態様のいずれかの特徴に加えて、前記ピストンの往復動による運動量と前記エンジン躯体の角運動量との間の交換がないように構成されていること、としてもよい。 As a fourth aspect of the present invention, in addition to the features of any one of the first to third aspects, there is no exchange between the momentum due to the reciprocating motion of the piston and the angular momentum of the engine skeleton. It may be done.
 本発明の第5の態様として、前記第1ないし第4の態様のいずれかの特徴に加えて、前記従動回転体は、前記クランク軸と逆向きに回転する少なくとも一つの逆回転体を含むこと、としてもよい。 As a fifth aspect of the present invention, in addition to the feature of any one of the first to fourth aspects, the driven rotating body includes at least one reverse rotating body that rotates in the direction opposite to the crank shaft. , May be.
 本発明の第6の態様として、前記第1ないし第5の態様のいずれかの特徴に加えて、前記従動回転体は少なくとも一つのジェネレータのロータを含むこと、としてもよい。 As a sixth aspect of the present invention, in addition to the features of any one of the first to fifth aspects, the driven rotating body may include a rotor of at least one generator.
 本発明の第7の態様として、前記第6の態様の特徴に加えて、前記少なくとも一つのジェネレータは、車両を駆動する電動機に電力を供給するものであること、としてもよい。 As a seventh aspect of the present invention, in addition to the features of the sixth aspect, the at least one generator may supply electric power to the electric motor for driving the vehicle.
 本発明の第8の態様として、前記第1ないし第7の態様のいずれかの特徴に加えて、前記従動回転体は、バランスウェイトを備えて前記クランク軸と逆向きに前記クランク軸の回転速度の2倍の回転速度で回転する逆回転2次バランサと、バランスウェイトを備えて前記クランク軸と同じ向きに前記クランク軸の回転速度の2倍の回転速度で回転する正回転2次バランサと、を含むこと、としてもよい。 As an eighth aspect of the present invention, in addition to the feature of any one of the first to seventh aspects, the driven rotating body is provided with a balance weight and the rotation speed of the crank shaft is opposite to that of the crank shaft. A reverse rotation secondary balancer that rotates at twice the rotation speed of the crank shaft, and a forward rotation secondary balancer that has a balance weight and rotates at a rotation speed twice the rotation speed of the crank shaft in the same direction as the crank shaft. May include.
 本発明の第9の態様として、前記第1ないし第8の態様のいずれかの特徴に加えて、前記従動回転体は、バランスウェイトを備えて前記クランク軸と逆向きに前記クランク軸の回転速度と同じ回転速度で回転する1次バランサを含むこと、としてもよい。 As a ninth aspect of the present invention, in addition to the feature of any one of the first to eighth aspects, the driven rotating body is provided with a balance weight and the rotation speed of the crank shaft in the direction opposite to the crank shaft. It may include a primary balancer that rotates at the same rotation speed as.
 本発明の第10の態様として、前記第1ないし第9の態様のいずれかの特徴に加えて、前記少なくとも一つのシリンダは第1および第2のシリンダを含み、前記少なくとも一つのピストンは、前記第1のシリンダ内を往復動する第1のピストンと、前記第2のシリンダ内を往復動する第2のピストンとを含み、前記少なくとも一つのクランク軸は、前記第1のピストンによって回転駆動される第1のクランク軸と、前記第1のクランク軸と同じ回転数で逆向きに前記第2のピストンによって回転駆動される第2のクランク軸と、を含むこと、としてもよい。 As a tenth aspect of the present invention, in addition to the features of any one of the first to ninth aspects, the at least one cylinder includes the first and second cylinders, and the at least one piston is the said. A first piston reciprocating in the first cylinder and a second piston reciprocating in the second cylinder are included, and the at least one crank shaft is rotationally driven by the first piston. It may include a first crank shaft and a second crank shaft that is rotationally driven by the second piston in the opposite direction at the same rotation speed as the first crank shaft.
 本発明の各態様によれば、内燃機関で発生する振動がエンジン躯体から外部に伝わらないようにして、エンジンの低振動、低騒音を実現することができる。 According to each aspect of the present invention, it is possible to realize low vibration and low noise of the engine by preventing the vibration generated in the internal combustion engine from being transmitted from the engine frame to the outside.
本発明の第1の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 1st Embodiment of this invention, and is the sectional view which is perpendicular to the direction of a crank shaft. 本発明の第1の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 1st Embodiment of this invention. 本発明の第2の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 2nd Embodiment of this invention, and is the sectional view which is perpendicular to the direction of a crank shaft. 本発明の第2の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 3rd Embodiment of this invention, and is the sectional view which is perpendicular to the direction of a crank shaft. 本発明の第3の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 4th Embodiment of this invention, and is the sectional view perpendicular to the direction of a crank shaft. 本発明の第4の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 4th Embodiment of this invention. 本発明の第5の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 5th Embodiment of this invention, and is the sectional view perpendicular to the direction of a crank shaft. 本発明の第5の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 5th Embodiment of this invention. 本発明の第5の実施の形態に係るパワーユニットにおける4気筒エンジンのクランクピンの位置関係を示す図である。It is a figure which shows the positional relationship of the crankpin of a 4-cylinder engine in the power unit which concerns on 5th Embodiment of this invention. 本発明の第6の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 6th Embodiment of this invention, and is the sectional view perpendicular to the direction of a crank shaft. 本発明の第6の実施の形態に係るパワーユニットの一部のスケルトン図である。It is a skeleton diagram of a part of the power unit which concerns on 6th Embodiment of this invention. 本発明の第7の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 7th Embodiment of this invention, and is the sectional view perpendicular to the direction of a crank shaft. 本発明の第7の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 7th Embodiment of this invention. 本発明の第8の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 8th Embodiment of this invention, and is the sectional view which is perpendicular to the direction of a crank shaft. 本発明の第8の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 8th Embodiment of this invention. 本発明の第9の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。It is a figure which shows the schematic structure of the power unit which concerns on 9th Embodiment of this invention, and is the sectional view which is perpendicular to the direction of a crank shaft. 本発明の第9の実施の形態に係るパワーユニットのスケルトン図である。It is a skeleton diagram of the power unit which concerns on 9th Embodiment of this invention.
 以下、本発明の実施形態に係るパワーユニットについて説明する。以下に詳述する各実施の形態によれば、回転体の各々の角運動量を調整することによって、ピストンの慣性力や、燃焼ガスによる爆発力がエンジン躯体を回転変動させることを防ぐことができ、これにより、エンジン躯体の低振動化を達成することができるものである。なお、ここで、「回転体」には、クランク軸とコンロッド重量の一部(大端部)、クランク軸によって回転される種々の従動回転体が含まれる。また、「エンジン躯体」は、クランク軸に連動して運動しない部品を備えてなり、回転体を支持する軸受、シリンダーブロック、シリンダヘッド等の構造部品と、インレットマニフォールド、エキゾーストマニフォールド等の機能部品とを含む。また、角運動量調整システムに1次バランサや2次バランサを組み込むことにより、実質的にエンジンのゼロバイブレーション化を達成することが可能となる。 Hereinafter, the power unit according to the embodiment of the present invention will be described. According to each embodiment detailed below, by adjusting the angular momentum of each of the rotating bodies, it is possible to prevent the inertial force of the piston and the explosive force of the combustion gas from causing the engine frame to rotate and fluctuate. As a result, it is possible to achieve low vibration of the engine frame. Here, the "rotating body" includes a crank shaft, a part of the connecting rod weight (large end portion), and various driven rotating bodies rotated by the crank shaft. In addition, the "engine frame" is equipped with parts that do not move in conjunction with the crank shaft, and includes structural parts such as bearings, cylinder blocks, and cylinder heads that support the rotating body, and functional parts such as inlet manifolds and exhaust manifolds. including. Further, by incorporating the primary balancer and the secondary balancer into the angular momentum adjustment system, it is possible to substantially achieve zero vibration of the engine.
 まず、往復直線運動をするピストンと回転運動をするクランク軸の相互作用について述べる。ここでは、一組のピストン、コンロッド、クランク軸(単気筒)が、フリクションが無い状態で回転している場合を想定する。 First, the interaction between the piston that makes a reciprocating linear motion and the crank shaft that makes a rotary motion will be described. Here, it is assumed that a set of pistons, connecting rods, and a crank shaft (single cylinder) are rotating without friction.
 ピストンはクランク角0度の上死点(TDC)及び、クランク角180度の下死点(BDC)では一瞬静止するが、他のクランク角では上下方向に運動をしており、運動量を持っている。また、回転運動するクランク軸は角運動量を持っている。 The piston stands still for a moment at top dead center (TDC) with a crank angle of 0 degrees and bottom dead center (BDC) with a crank angle of 180 degrees, but at other crank angles it moves vertically and has momentum. There is. In addition, the crank shaft that rotates has an angular momentum.
 上死点からクランク角が約90度までの範囲では、ピストン慣性力はクランク軸に対してその速度を低下させる方向の力を及ぼす(ピストンの下向きの運動量は増加し、クランク軸の角運動量は減少する。)。ピストンが最大速度に達した後では、ピストン慣性力の方向が反転するので、下死点に至るまでピストン慣性力はクランク軸の速度を増加させる方向に作用する(運動量は減少し、角運動量は増加する。)。 In the range from the top dead point to a crank angle of about 90 degrees, the piston inertial force exerts a force on the crank shaft in a direction that reduces its speed (the downward momentum of the piston increases, and the angular momentum of the crank shaft increases. Decrease.). After the piston reaches its maximum speed, the direction of the piston inertial force reverses, so the piston inertial force acts in the direction of increasing the speed of the crank shaft until it reaches the bottom dead point (the momentum decreases, the angular momentum increases). To increase.).
 下死点からクランク角が約270度までの範囲では、ピストン慣性力はクランク軸に対してその速度を低下させる方向の力を及ぼす(ピストンの上向きの運動量は増加し、クランク軸の角運動量は減少する。)。ピストンが最大速度に達した後では、ピストン慣性力の方向が反転するので、上死点に至るまでピストン慣性力はクランク軸の速度を増加させる方向に作用する(運動量は減少し、角運動量は増加する。)。 In the range from the bottom dead point to a crank angle of about 270 degrees, the piston inertial force exerts a force on the crank shaft in a direction that reduces its speed (the upward momentum of the piston increases, and the angular momentum of the crank shaft increases. Decrease.). After the piston reaches the maximum speed, the direction of the piston inertial force is reversed, so that the piston inertial force acts in the direction of increasing the speed of the crank shaft until the top dead point (the momentum decreases, the angular momentum increases). To increase.).
 上記のように、ピストンの運動量とクランク軸の角運動量はその運動量と角運動量を交換しながら運動している。 As mentioned above, the momentum of the piston and the angular momentum of the crank shaft are moving while exchanging the momentum and the angular momentum.
 このクランク軸の回転変動に伴い、クランク軸にはトルク変動が発生する。これはピストン質量による慣性トルクとして知られている。このトルク変動は高回転領域では燃焼ガスや吸気、排気によるトルク変動よりも大きくなり、エンジン振動の主要な原因となっている。 Torque fluctuation occurs in the crank shaft due to the rotation fluctuation of the crank shaft. This is known as inertial torque due to piston mass. This torque fluctuation is larger than the torque fluctuation due to combustion gas, intake gas, and exhaust gas in the high rpm region, and is a major cause of engine vibration.
 以上述べたように、ピストン・クランク機構とは直線運動するピストンの運動量と回転運動するクランク軸上の角運動量とが相互作用しながら運動する機構のため、クランク軸の回転変動は避けられない。また、このクランク軸の回転変動がエンジン躯体の回転変動の原因となっている。 As described above, the piston / crank mechanism is a mechanism in which the momentum of a linearly moving piston and the angular momentum on a rotationally moving crank shaft move while interacting with each other, so that rotational fluctuation of the crank shaft is unavoidable. Further, the rotation fluctuation of the crank shaft causes the rotation fluctuation of the engine frame.
 本発明の各実施形態では、以下に述べるように、ピストン慣性力や燃焼ガス圧等を、回転する機械の外乱要因と見なしてエンジン躯体の回転振動を低減できることを示す。 In each embodiment of the present invention, as described below, it is shown that the rotational vibration of the engine frame can be reduced by regarding the piston inertial force, the combustion gas pressure, and the like as disturbance factors of the rotating machine.
 エンジン躯体は車体に対してラバーマウント等を介して保持されているので、回転体の回転変動によりクランク軸と平行な軸廻りに回転しうる。エンジンマウントのバネ定数が低い場合、近似的に以下のような定式化が可能である。 Since the engine frame is held with respect to the vehicle body via a rubber mount or the like, it can rotate around an axis parallel to the crank axis due to rotational fluctuations of the rotating body. When the spring constant of the engine mount is low, the following formulation can be approximated.
 エンジンの運動体とエンジン躯体とは、ピストンはシリンダ壁面を通じて、またクランク軸等は軸受けを通じて力を及ぼし合う。これは作用・反作用の法則により大きさが同じで互いに逆方向の力である。この相互作用により、各運動体及びエンジン躯体にはクランク軸と平行な軸廻りにお互いに逆の運動を生じる。この力は外部から与えられた力ではなく、エンジン内部での相互作用なので、エンジン躯体を含めたエンジン全体の角運動量を一定に保つように作用する。 The moving body of the engine and the engine frame exert forces on the piston through the cylinder wall surface and the crank shaft and the like through the bearing. This is a force of the same magnitude and opposite to each other according to the law of action and reaction. Due to this interaction, each moving body and the engine skeleton generate opposite movements around the axis parallel to the crank axis. Since this force is not a force given from the outside but an interaction inside the engine, it acts to keep the angular momentum of the entire engine including the engine frame constant.
 実際のエンジンではエンジン躯体の回転角には制限があるが、回転可能な範囲では角運動量の総和は一定に保たれる。 In an actual engine, the rotation angle of the engine frame is limited, but the total angular momentum is kept constant within the rotatable range.
 エンジン躯体の角運動量はIc×ωc、回転体の各々の角運動量はIi×ωiと表わされる。ただし、エンジン躯体の慣性モーメントをIcとし、その角速度をωcとし、回転体i(i=1,2,3・・・)それぞれの慣性モーメントをIiとし、それらの角速度をωiとする。 The angular momentum of the engine frame is expressed as Ic × ωc, and the angular momentum of each rotating body is expressed as Ii × ωi. However, the moment of inertia of the engine skeleton is Ic, its angular velocity is ωc, the moment of inertia of each of the rotating bodies i (i = 1, 2, 3 ...) Is Ii, and their angular velocities are ωi.
 エンジン躯体がクランク軸(クランクシャフト)回転方向に対して自由に回転可能に保持され、クランク軸がある回転数で回転しているとき、エンジン全体の角運動量Lは、式(1)で表される。
 L=Ic×ωc+ΣIi×ωi …(1)
 エンジンのフリクションを無視すれば、この運動系全体の角運動量は、角運動量保存の法則により一定である。
 L=Ic×ωc+ΣIi×ωi=C(constant) …(2)
When the engine frame is held freely rotatably in the direction of rotation of the crankshaft (crankshaft) and the crankshaft is rotating at a certain rotation speed, the angular momentum L of the entire engine is expressed by the equation (1). NS.
L = Ic × ωc + ΣIi × ωi… (1)
If the friction of the engine is ignored, the angular momentum of the entire motion system is constant according to the law of conservation of angular momentum.
L = Ic × ωc + ΣIi × ωi = C (constant)… (2)
 式(2)は回転体系が何らかの外乱により回転変動した場合、回転体系の角運動量の増加・減少に応じてエンジン躯体の角運動量が減少・増加することを示す。すなわち、エンジン回転体系とエンジン躯体が角運動量を交換することによりエンジン全体の角運動量を一定に保つ。 Equation (2) shows that when the rotation system fluctuates due to some disturbance, the angular momentum of the engine frame decreases / increases according to the increase / decrease of the angular momentum of the rotation system. That is, the angular momentum of the entire engine is kept constant by exchanging the angular momentum between the engine rotation system and the engine frame.
 エンジン回転体系とエンジン躯体が角運動量を交換しないためには、エンジン回転体系の角運動量の合計がゼロであれば良い。
 ΣIi×ωi=0 …(3)
In order for the engine rotation system and the engine frame not to exchange the angular momentum, it is sufficient that the total angular momentum of the engine rotation system is zero.
ΣIi × ωi = 0… (3)
 角運動量はベクトル量なので、回転方向により正負がある。クランク軸の回転方向を正、逆回転方向を負として、エンジン回転体の正の角運動量と負の角運動量とが同じ絶対値をとるときに、式(3)が成立すると言い換えることができる。式(3)が成立するとき、エンジン躯体の角運動量は一定値を取る。初期条件としてエンジン躯体が静止していれば、以降もエンジン躯体は回転する作用を受けない。
 Ic×ωc=0 …(4)
Since the angular momentum is a vector quantity, there are positive and negative depending on the direction of rotation. It can be rephrased that the equation (3) holds when the positive angular momentum and the negative angular momentum of the engine rotating body take the same absolute value, where the rotation direction of the crank shaft is positive and the reverse rotation direction is negative. When the equation (3) holds, the angular momentum of the engine frame takes a constant value. If the engine skeleton is stationary as an initial condition, the engine skeleton will not be affected by the rotation thereafter.
Ic x ωc = 0 ... (4)
 ここで、ピストンの運動量変化がエンジン躯体に与える影響について考察する。ピストン運動量の変動に応じてクランク軸及び正転回転体の角運動量が変動するが、式(3)により逆転方向の角運動量も、正転方向の角運動量と同じ値だけ変化して回転体系の角運動量の合計はゼロに保たれる。よって、エンジン躯体の角運動量はピストン運動量変化の影響を受けない。すなわち、ピストンの慣性トルクはエンジン躯体を回転させない。燃焼ガスによる影響も同様である。 Here, we will consider the effect of changes in the momentum of the piston on the engine frame. The angular momentum of the crank shaft and the forward rotation body fluctuates according to the fluctuation of the piston momentum, but the angular momentum in the reverse rotation direction also changes by the same value as the angular momentum in the normal rotation direction according to Eq. (3). The total angular momentum is kept at zero. Therefore, the angular momentum of the engine frame is not affected by the change in piston momentum. That is, the inertial torque of the piston does not rotate the engine frame. The same applies to the effects of combustion gas.
 以上が、角運動量調整システムにより、クランク軸の角運動量が変化してもエンジン躯体の角運動量が変化しない原理である。 The above is the principle that the angular momentum of the engine frame does not change even if the angular momentum of the crank shaft changes due to the angular momentum adjustment system.
 エンジンには、ギアやチェーン、タイミングベルト等で駆動されるカムシャフトや、オイルポンプ、ウォーターポンプ等の補機が存在する。しかし、通常これらの慣性モーメントは小さいため、以下の説明及び添付図面ではこれらを無視する。計算には前記式に従い角運動量として算入しても良い。 The engine has camshafts driven by gears, chains, timing belts, etc., and auxiliary equipment such as oil pumps and water pumps. However, since these moments of inertia are usually small, they are ignored in the following description and accompanying drawings. In the calculation, it may be included as the angular momentum according to the above formula.
 なお、前述のようにクランク軸の回転速度の変動は避けられないが、シリーズハイブリッドシステムではクランク軸の回転速度の変動は発電機の回転変動をもたらすものの車室の振動にはつながらないので問題ない。 As mentioned above, fluctuations in the rotational speed of the crank shaft are unavoidable, but in the series hybrid system, fluctuations in the rotational speed of the crank shaft cause fluctuations in the rotation of the generator, but do not lead to vibration in the passenger compartment, so there is no problem.
 以下、具体的な実施の形態について、図面を参照しながら説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。 Hereinafter, specific embodiments will be described with reference to the drawings. Here, common reference numerals are given to parts that are the same as or similar to each other, and duplicate description is omitted.
 [第1の実施の形態]
 図1Aは、本発明の第1の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図1Bは、本発明の第1の実施の形態に係るパワーユニットのスケルトン図である。
[First Embodiment]
FIG. 1A is a diagram showing a schematic configuration of a power unit according to the first embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 1B is a skeleton diagram of the power unit according to the first embodiment of the present invention.
 図1A,図1Bに示すように、この第1の実施の形態に係るパワーユニット101は、クランク直列3気筒のレシプロ形内燃機関(エンジン)111を有する。内燃機関111は、クランク軸11aと、3個のシリンダ61と、これらのシリンダ61内でそれぞれが往復運動をする3個のピストン61aと、クランク軸11aと各ピストン61aとを連接するコンロッド(図示せず)とを含む。パワーユニット101は、2個の歯車21C、14からなる歯車列と、1つのジェネレータ12を含む。ジェネレータ12のロータ12aは、歯車21C及び回転軸12bとともに回転する。 As shown in FIGS. 1A and 1B, the power unit 101 according to the first embodiment has a crank in-line 3-cylinder reciprocating internal combustion engine (engine) 111. The internal combustion engine 111 includes a crank shaft 11a, three cylinders 61, three pistons 61a each reciprocating in these cylinders 61, and a connecting rod connecting the crank shaft 11a and each piston 61a (FIG. 6). Not shown) and included. The power unit 101 includes a gear train consisting of two gears 21C and 14, and one generator 12. The rotor 12a of the generator 12 rotates together with the gear 21C and the rotating shaft 12b.
 シリンダ61は、エンジン躯体2の一部をなしている。また、クランク軸11a及び歯車21Cの回転軸12bは、軸受(図示せず)を介して、エンジン躯体2に対して回転可能に支持されている。 The cylinder 61 forms a part of the engine skeleton 2. Further, the rotary shaft 12b of the crank shaft 11a and the gear 21C is rotatably supported with respect to the engine skeleton 2 via a bearing (not shown).
 ロータ12a,歯車21C,回転軸12bは、クランク軸11aによって回転駆動される従動回転体をなしている。 The rotor 12a, the gear 21C, and the rotating shaft 12b form a driven rotating body that is rotationally driven by the crank shaft 11a.
 クランク軸11aおよび回転軸12bはともに、図1Aの紙面に垂直な方向に延びている。 Both the crank shaft 11a and the rotating shaft 12b extend in the direction perpendicular to the paper surface of FIG. 1A.
 エンジン躯体2の底部には潤滑油を溜めるためのオイルパン3が設置されている。 An oil pan 3 for storing lubricating oil is installed at the bottom of the engine frame 2.
 [歯車列について]
 2個の歯車21C,14からなる歯車列について説明する。クランク軸11aには原歯車である歯車14が設けられている。歯車14は大歯車である。小歯車である歯車21Cは、歯車14と外接噛合し、歯車14とは逆向きに回転する。
[About the gear train]
A gear train composed of two gears 21C and 14 will be described. The crank shaft 11a is provided with a gear 14 which is an original gear. The gear 14 is a large gear. The gear 21C, which is a small gear, circumscribes with the gear 14 and rotates in the direction opposite to that of the gear 14.
 2個の歯車21C,14からなる歯車列は、以下に説明する角運動量調整システムに共用される。 The gear train consisting of the two gears 21C and 14 is shared by the angular momentum adjustment system described below.
 [角運動量調整システムについて]
 図1Aにおいて、クランク軸11aと歯車14の回転系は右回りの回転系であり、また、歯車21Cと回転軸12bは左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 1A, the rotation system of the crank shaft 11a and the gear 14 is a clockwise rotation system, and the rotation system of the gear 21C and the rotation shaft 12b is a counterclockwise rotation system.
 パワーユニット101では、右回りの回転系の角運動量の合計値と左回りの回転系の角運動量の合計値とがほぼ等しい。ここで、たとえばクランク軸12aの回転方向(右回り)の角運動量を正とし、その逆の回転方向(左回り)の角運動量を負とする。この場合、右回りの回転系の角運動量(正の値)と左回りの回転系の角運動量(負の値)の合計がゼロに近くなるように設定できる。これにより、エンジン躯体の角運動量をゼロにすることができ、角運動量調整システムが構成される。 In the power unit 101, the total value of the angular momentum of the clockwise rotating system and the total value of the angular momentum of the counterclockwise rotating system are almost equal. Here, for example, the angular momentum in the rotation direction (clockwise) of the crank shaft 12a is positive, and the angular momentum in the opposite rotation direction (counterclockwise) is negative. In this case, the sum of the angular momentum (positive value) of the clockwise rotating system and the angular momentum (negative value) of the counterclockwise rotating system can be set to be close to zero. As a result, the angular momentum of the engine frame can be reduced to zero, and the angular momentum adjustment system is configured.
 このパワーユニット101は、角運動量調整システムを備えているので、内燃機関111を駆動すると、エンジン躯体2に角運動量が発生せず、エンジンに起因する振動・騒音を有意に抑制することができる。 Since this power unit 101 is equipped with an angular momentum adjustment system, when the internal combustion engine 111 is driven, angular momentum is not generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
 [第2の実施の形態]
 図2Aは、本発明の第2の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図2Bは、本発明の第2の実施の形態に係るパワーユニットのスケルトン図である。
[Second Embodiment]
FIG. 2A is a diagram showing a schematic configuration of a power unit according to a second embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 2B is a skeleton diagram of the power unit according to the second embodiment of the present invention.
 図2A,図2Bに示すように、この第2の実施の形態に係るパワーユニット102は、バンク角が90度のレシプロ形V形2気筒の内燃機関(エンジン)112と、内燃機関112の動力で回転し発電するジェネレータ12,13とを有する。 As shown in FIGS. 2A and 2B, the power unit 102 according to the second embodiment is powered by a reciprocating V-type 2-cylinder internal combustion engine (engine) 112 having a bank angle of 90 degrees and the internal combustion engine 112. It has generators 12 and 13 that rotate and generate power.
 内燃機関112は、クランク軸11aと、2個のシリンダ61と、これらのシリンダ61内でそれぞれが往復運動をする2個のピストン61aとを含む。 The internal combustion engine 112 includes a crank shaft 11a, two cylinders 61, and two pistons 61a, each of which reciprocates in these cylinders 61.
 シリンダ61はエンジン躯体2の一部をなしている。また、内燃機関113のクランク軸11a及び各歯車の回転軸12b,13b,33bは、軸受(図示せず)を介して、エンジン躯体2に対して回転可能に支持されている。 The cylinder 61 forms a part of the engine skeleton 2. Further, the crank shaft 11a of the internal combustion engine 113 and the rotating shafts 12b, 13b, 33b of each gear are rotatably supported with respect to the engine skeleton 2 via bearings (not shown).
 エンジン躯体2の底部には潤滑油を溜めるためのオイルパン3が設置されている。 An oil pan 3 for storing lubricating oil is installed at the bottom of the engine frame 2.
 内燃機関112を駆動すると、一般にエンジン躯体2に振動を与える原因となる2次慣性力とエンジン躯体2の角運動量が発生するので、パワーユニット102は、2次慣性力バランサ(2次バランサ)と角運動量調整システムとを備えている。なお、1次慣性力については、クランク軸11aに設けるバランスウェイト(図示せず)の質量や方向を調整することで発生を抑制できる。 When the internal combustion engine 112 is driven, a secondary inertial force that generally causes vibration to the engine skeleton 2 and an angular momentum of the engine skeleton 2 are generated. Therefore, the power unit 102 has a secondary inertial force balancer (secondary balancer) and an angular momentum. It is equipped with an exercise amount adjustment system. The generation of the primary inertial force can be suppressed by adjusting the mass and direction of the balance weight (not shown) provided on the crank shaft 11a.
 この実施の形態に係るパワーユニット102は、4つの歯車14,15,16,17からなる歯車列と、2つの歯車15,16と同軸上に設けられた2つのジェネレータ12,13と、を含む。歯車14は、内燃機関112のクランク軸11aに設けられる原歯車である。歯車15とジェネレータ12のロータ12aとに共通する回転軸12bに、2次バランサ用のバランスウェイト34aが取り付けられている。また、歯車17の回転軸33bに、2次バランサ用のバランスウェイト34bが設けられている。 The power unit 102 according to this embodiment includes a gear train composed of four gears 14, 15, 16 and 17, and two generators 12 and 13 provided coaxially with the two gears 15 and 16. The gear 14 is an original gear provided on the crank shaft 11a of the internal combustion engine 112. A balance weight 34a for a secondary balancer is attached to a rotating shaft 12b common to the gear 15 and the rotor 12a of the generator 12. Further, a balance weight 34b for a secondary balancer is provided on the rotating shaft 33b of the gear 17.
 歯車15,16,17およびそれらとともに回転するジェネレータ12,13等は、クランク軸11aによって回転駆動される従動回転体を構成する。 The gears 15, 16, 17 and the generators 12, 13 and the like that rotate with them constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
 なお、パワーユニット102は、内燃機関11のクランク軸11aが水平に延びるように配置することもでき、また、鉛直になるように配置することもできる。 The power unit 102 may be arranged so that the crank shaft 11a of the internal combustion engine 11 extends horizontally, or may be arranged so as to be vertical.
 [歯車列について]
 4つの歯車14,15,16,17からなる歯車列について説明する。図2A,図2Bに示すように、歯車14は大歯車であり、歯車15と歯車17は歯車14の歯数の半分の小歯車である。歯車14は、内燃機関11のクランク軸11aに固定された大歯車である原歯車である。歯車15と歯車17は、従歯車である。歯車15は大歯車の歯車14に外接噛合している。歯車16は歯車14に外接噛合している。歯車17は歯車14に直接噛合していない。
[About the gear train]
A gear train consisting of four gears 14, 15, 16, and 17 will be described. As shown in FIGS. 2A and 2B, the gear 14 is a large gear, and the gear 15 and the gear 17 are small gears having half the number of teeth of the gear 14. The gear 14 is a raw gear which is a large gear fixed to the crank shaft 11a of the internal combustion engine 11. The gear 15 and the gear 17 are slave gears. The gear 15 is circumscribed with the gear 14 of the large gear. The gear 16 is circumscribed with the gear 14. The gear 17 does not mesh directly with the gear 14.
 2つの歯車15,17は、図2Aにおいて、歯車14の中心を通る機関横断面中心線Zに対し上方向と下方向に等距離に配置され、互いに逆回転する。したがって、小歯車である2つの歯車15,16は、大歯車である歯車14に対し逆回転し、歯車17は歯車14に対し同一方向に回転する。 In FIG. 2A, the two gears 15 and 17 are arranged equidistant upward and downward with respect to the engine cross-sectional center line Z passing through the center of the gear 14, and rotate in opposite directions to each other. Therefore, the two gears 15 and 16 which are small gears rotate in the reverse direction with respect to the gear 14 which is a large gear, and the gear 17 rotates in the same direction with respect to the gear 14.
 そして、歯車15はジェネレータ12のロータ12aの回転軸12bに取り付けられている。また、歯車16はジェネレータ13のロータ13aの回転軸13bに取り付けられている。したがって、ロータ12a,13aは、クランク軸11aに対しいずれも逆方向に回転する。4つの歯車14,15,16,17からなる歯車列は、以下に説明する2次慣性力バランサ(2次バランサ)と角運動量調整システムとに共用される。 Then, the gear 15 is attached to the rotating shaft 12b of the rotor 12a of the generator 12. Further, the gear 16 is attached to the rotating shaft 13b of the rotor 13a of the generator 13. Therefore, the rotors 12a and 13a both rotate in the opposite direction to the crank shaft 11a. The gear train consisting of the four gears 14, 15, 16 and 17 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
 [2次慣性力バランサについて]
 図2Bに示すように、歯車15の回転軸はジェネレータ12の回転軸12bである。そして、バランスウェイト34aが、回転軸12bに機関平面中心線Xに一致する位置に取り付けられている。回転軸33bには、バランスウェイト34bが機関平面中心線Xに一致して取り付けられている。
[About the secondary inertial force balancer]
As shown in FIG. 2B, the rotating shaft of the gear 15 is the rotating shaft 12b of the generator 12. Then, the balance weight 34a is attached to the rotation shaft 12b at a position corresponding to the engine plane center line X. A balance weight 34b is attached to the rotating shaft 33b so as to coincide with the engine plane center line X.
 バランスウェイト34aは、回転軸12bとともに逆回転2次バランサを構成する。また、バランスウェイト34bは、回転軸33bとともに正回転2次バランサを構成する。これらの逆回転2次バランサと正回転2次バランサとで2次慣性力バランサ(2次バランサ)が構成される。これら逆回転2次バランサおよび正回転2次バランサは、クランク軸11aの回転数の2倍の回転数で回転して、内燃機関11に生じる2次慣性力を解消することができる。 The balance weight 34a constitutes a reverse rotation secondary balancer together with the rotation shaft 12b. Further, the balance weight 34b and the rotation shaft 33b form a forward rotation secondary balancer. A secondary inertial force balancer (secondary balancer) is composed of these reverse rotation secondary balancers and forward rotation secondary balancers. The reverse rotation secondary balancer and the forward rotation secondary balancer rotate at a rotation speed twice the rotation speed of the crank shaft 11a, and can eliminate the secondary inertial force generated in the internal combustion engine 11.
 V型2気筒エンジンの場合、2つのシリンダ61は図2Bの中心線Xに対して各々オフセットしているが、オフセットの図示は省略する。また、このオフセットにより振動の原因となるモーメントが発生するが、絶対値が低いため通常無視可能である。 In the case of a V-twin engine, the two cylinders 61 are offset from the center line X in FIG. 2B, but the offset is not shown. Further, this offset generates a moment that causes vibration, but it is usually negligible because the absolute value is low.
 [角運動量調整システムについて]
 図2Aにおいて、クランク軸11aと歯車14の回転系と、歯車17と回転軸33bとバランスウェイト34bの回転系は右回りの回転系である。また、歯車12と回転軸12bとバランスウェイト34aの回転系と、歯車16と回転軸13bの回転系は左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 2A, the rotation system of the crank shaft 11a and the gear 14, and the rotation system of the gear 17, the rotation shaft 33b, and the balance weight 34b are clockwise rotation systems. Further, the rotation system of the gear 12, the rotation shaft 12b, and the balance weight 34a, and the rotation system of the gear 16 and the rotation shaft 13b are counterclockwise rotation systems.
 パワーユニット102は、2つの右回りの回転系の角運動量の合計値と2つの左回りの回転系の角運動量の合計値とが等しくなるように設定することができる。すなわち、4つの回転系全体としての角運動量をゼロに設定できる。したがって、角運動量調整システムが構成される。 The power unit 102 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. Therefore, the angular momentum adjustment system is configured.
 パワーユニット102は、2次慣性力バランサと角運動量調整システムとを備えているので、エンジンを駆動すると、2次慣性力とエンジン躯体の角運動量が発生しない。したがって、エンジンに起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 102 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
 [第3の実施の形態]
 図3Aは、本発明の第3の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図3Bは、本発明の第3の実施の形態に係るパワーユニットのスケルトン図である。
[Third Embodiment]
FIG. 3A is a diagram showing a schematic configuration of a power unit according to a third embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 3B is a skeleton diagram of the power unit according to the third embodiment of the present invention.
 図3A,図3Bに示すように、この第3の実施の形態に係るパワーユニット103は、第1の実施形態と同様に、クランク直列3気筒のレシプロ形内燃機関(エンジン)113と、エンジンの動力で回転し発電するジェネレータ12とを有する。エンジンを駆動すると1次慣性偶力と2次慣性偶力とエンジン躯体の角運動量が発生するので、この第3の実施の形態のパワーユニット103はさらに、1次慣性偶力バランサ(1次バランサ)と2次慣性偶力バランサ(2次バランサ)を備えている。 As shown in FIGS. 3A and 3B, the power unit 103 according to the third embodiment includes the reciprocating internal combustion engine (engine) 113 having a crank in-line 3-cylinder engine and the power of the engine, as in the first embodiment. It has a generator 12 that rotates and generates power. When the engine is driven, a primary inertia couple, a secondary inertia couple, and an angular momentum of the engine skeleton are generated. Therefore, the power unit 103 of the third embodiment further has a primary inertia couple (primary balancer). And equipped with a secondary inertia couple balancer (secondary balancer).
 この実施の形態に係るパワーユニット103は、6つの歯車21C、14,21A,21B,20,18からなる歯車列を有する。ジェネレータ12のロータ12aは、歯車21Cの回転軸12bとともに回転する。歯車21Bの回転軸13bには、2個の1次バランサ用のバランスウェイト35,35が取り付けられている。歯車20の回転軸33bには、2個の2次バランサ用のバランスウェイト34b,34bが取り付けられている。歯車18の回転軸33aには、2次バランサ用のバランスウェイト34a,34aが取り付けられている。 The power unit 103 according to this embodiment has a gear train composed of six gears 21C, 14, 21A, 21B, 20, and 18. The rotor 12a of the generator 12 rotates together with the rotating shaft 12b of the gear 21C. Balance weights 35 and 35 for two primary balancers are attached to the rotating shaft 13b of the gear 21B. Balance weights 34b and 34b for two secondary balancers are attached to the rotating shaft 33b of the gear 20. Balance weights 34a and 34a for the secondary balancer are attached to the rotating shaft 33a of the gear 18.
 歯車21C,21B,20,18およびこれらの歯車とそれぞれ一体で回転するロータ12a,回転軸12b,13b,33b,33a等は、クランク軸11aによって回転駆動される従動回転体を構成する。 The gears 21C, 21B, 20, 18 and the rotor 12a, rotating shafts 12b, 13b, 33b, 33a, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
 [歯車列について]
 6つの歯車21C,14,21A,21B,20,18からなる歯車列について説明する。内燃機関113のクランク軸11aには、原歯車である歯車14とその内側の歯車21Aとが取り付けられている。歯車14は大歯車である。歯車21Aと歯車21Bは、互いに外接噛合し互いに逆回転する同じ歯数の中歯車である。歯車20は、歯数が歯車21Aの半分の小歯車であり、歯車21Bに外接噛合し互いに逆回転する。
[About the gear train]
A gear train consisting of six gears 21C, 14, 21A, 21B, 20, and 18 will be described. A gear 14 which is an original gear and a gear 21A inside the gear 14 are attached to the crank shaft 11a of the internal combustion engine 113. The gear 14 is a large gear. The gear 21A and the gear 21B are medium gears having the same number of teeth that circumscribe and rotate in the opposite direction to each other. The gear 20 is a small gear having half the number of teeth of the gear 21A, and is circumscribed with the gear 21B and rotates in the opposite direction to each other.
 歯車18は、歯数が歯車21Aの半分の小歯車であり、歯車20に外接噛合している。歯車18、20は、図2Aにおいて、歯車14の中心から下方向で、かつ機関縦断面中心線Yの両側の等距離に位置する。歯車21Cは、歯車14と外接噛合し、歯車14に対して逆回転する。 The gear 18 is a small gear having half the number of teeth of the gear 21A, and is circumscribed with the gear 20. The gears 18 and 20 are located in FIG. 2A downward from the center of the gear 14 and equidistant on both sides of the engine vertical cross-sectional center line Y. The gear 21C circumscribes with the gear 14 and rotates in the reverse direction with respect to the gear 14.
 したがって、小歯車である歯車18は、中歯車である歯車21Aに対し2倍速で逆回転する。また、小歯車である歯車20は、歯車21Aに対し同一方向に2倍速で回転する。中歯車である歯車21Bは、クランク軸11aに対し逆方向に同一速度で回転する。 Therefore, the gear 18 which is a small gear rotates in the reverse direction at twice the speed of the gear 21A which is a middle gear. Further, the gear 20 which is a small gear rotates at double speed in the same direction with respect to the gear 21A. The gear 21B, which is a middle gear, rotates at the same speed in the opposite direction to the crank shaft 11a.
 6つの歯車21C,14,21A,21B,20,18からなる歯車列は、以下に説明する1次慣性偶力バランサ(1次バランサ)と2次慣性偶力バランサ(2次バランサ)と角運動量調整システムとに共用される。 The gear train consisting of the six gears 21C, 14, 21A, 21B, 20 and 18 consists of the primary inertia couple balancer (primary balancer), the secondary inertia couple balancer (secondary balancer) and the angular momentum described below. Shared with the coordination system.
 [1次慣性偶力バランサ及び2次慣性偶力バランサについて]
 ランチェスターの理論を用いて1次慣性偶力バランサを設定する手法が知られている。ランチェスターの理論とは、「ピストンの往復運動による慣性力は、その二分の一の慣性力を持ち、お互いに逆回転する一対の回転体の遠心力と等価である。」というものである。2次慣性偶力バランサのウェイトも同じように、ランチェスターの理論を適用して設定可能である。
[About the primary inertia couple balancer and the secondary inertia couple balancer]
A method of setting a first-order inertia couple balancer using Lanchester's theory is known. Lanchester's theory is that "the inertial force due to the reciprocating motion of the piston has half the inertial force and is equivalent to the centrifugal force of a pair of rotating bodies that rotate in opposite directions." Similarly, the weight of the secondary inertia couple balancer can be set by applying Lanchester's theory.
 図3A,図3Bにおいて、歯車21Bは、歯車21Aに外接噛合しており、1次バランサ用のバランスウェイト35,35が左方向へ略30度の角度に位相をずらして配置されている。歯車20は、歯車21Bに外接噛合し、逆方向に回転する。このとき、2次バランサ用のバランスウェイト34b,34bは、左方向へ角度略30度だけ位相をずらして配置されている。なお、位相角度は、第1ピストンが上死点にある時の位置を基準とする。以下も同様である。 In FIGS. 3A and 3B, the gear 21B is circumscribed to the gear 21A, and the balance weights 35 and 35 for the primary balancer are arranged so as to be out of phase at an angle of approximately 30 degrees to the left. The gear 20 circumscribes the gear 21B and rotates in the opposite direction. At this time, the balance weights 34b and 34b for the secondary balancer are arranged so as to be out of phase by an angle of about 30 degrees to the left. The phase angle is based on the position when the first piston is at top dead center. The same applies to the following.
 歯車18は、歯車20と外接噛合し、歯車20に対して逆方向に回転する。歯車20は歯車21Aとは直接噛合していない。2次バランサ用のバランスウェイト34a,34aは、右方向へ角度略30度だけ位相をずらして配置されている。 The gear 18 circumscribes with the gear 20 and rotates in the opposite direction to the gear 20. The gear 20 does not directly mesh with the gear 21A. The balance weights 34a and 34a for the secondary balancer are arranged so as to be out of phase by an angle of approximately 30 degrees to the right.
 これにより、バランスウェイト35,35を有する回転軸13bは、1次慣性偶力バランサ(1次バランサ)を構成し、内燃機関113に生じる1次慣性偶力を解消することができる。 Thereby, the rotating shaft 13b having the balance weights 35 and 35 constitutes a primary inertia couple (primary balancer), and the primary inertia couple generated in the internal combustion engine 113 can be eliminated.
 図3Aに示すように、2個のバランスウェイト35,35は回転軸13bに対して反対側にあり、2個のバランスウェイト34a,34aは回転軸33aに対して反対側にあり、2個のバランスウェイト34b,34bは回転軸33bに対して反対側にある。 As shown in FIG. 3A, the two balance weights 35 and 35 are on the opposite side of the rotating shaft 13b, and the two balance weights 34a and 34a are on the opposite side of the rotating shaft 33a. The balance weights 34b and 34b are on the opposite side of the rotating shaft 33b.
 また、バランスウェイト34a,34aを有する回転軸33a、及びバランスウェイト34b,34bを有する回転軸33bは、2次慣性偶力バランサ(2次バランサ)を構成し、内燃機関113に生じる2次慣性偶力を解消することができる。 Further, the rotary shaft 33a having the balance weights 34a and 34a and the rotary shaft 33b having the balance weights 34b and 34b form a secondary inertia couple balancer (secondary balancer), and the secondary inertia couple generated in the internal combustion engine 113. The force can be eliminated.
 [角運動量調整システムについて]
 図3Aで、クランク軸11aと歯車14,21Aの回転系と、歯車20と回転軸33bとバランスウェイト34b,34bの回転系は右回りの回転系である。また、歯車21Bと回転軸13bとバランスウェイト35,35の回転系と、歯車18と回転軸33aとバランスウェイト34a,34aの回転系と、歯車21Cと回転軸12bは左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 3A, the rotation system of the crank shaft 11a and the gears 14, 21A, the rotation system of the gear 20, the rotation shaft 33b, and the balance weights 34b, 34b are clockwise rotation systems. Further, the rotation system of the gear 21B, the rotation shaft 13b and the balance weights 35 and 35, the rotation system of the gear 18, the rotation shaft 33a and the balance weights 34a and 34a, and the gear 21C and the rotation shaft 12b are counterclockwise rotation systems. ..
 パワーユニット103は、2つの右回りの回転系の角運動量の合計値と3つの左回りの回転系の角運動量の合計値とが等しくなるように設定することができる。すなわち、5つの回転系全体としての角運動量をゼロに設定できる。これにより、角運動量調整システムが構成される。 The power unit 103 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the three counterclockwise rotating systems are equal. That is, the angular momentum of the five rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 パワーユニット103は、1次慣性偶力バランサと2次慣性偶力バランサと角運動量調整システムとを備えているので、エンジンを駆動すると、1次慣性偶力と2次慣性偶力とエンジン躯体の角運動量が発生しない。したがって、エンジンに起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 103 includes a primary inertia couple balancer, a secondary inertia couple balancer, and an angular momentum adjustment system, when the engine is driven, the primary inertia couple, the secondary couple, and the angle of the engine skeleton are provided. No momentum is generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
 [第4の実施の形態]
 図4Aは、本発明の第4の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図4Bは、本発明の第4の実施の形態に係るパワーユニットのスケルトン図である。
[Fourth Embodiment]
FIG. 4A is a diagram showing a schematic configuration of a power unit according to a fourth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 4B is a skeleton diagram of the power unit according to the fourth embodiment of the present invention.
 図4A,図4Bに示すように、この第4の実施の形態に係るパワーユニット104は、180度クランク直列4気筒のレシプロ形内燃機関(エンジン)114と、内燃機関114の動力で回転し発電するジェネレータ13とを有する(フラットプレーンL4)。内燃機関114を駆動すると、一般に2次慣性力とエンジン躯体2の角運動量が発生するので、パワーユニット104は、2次慣性力バランサ(2次バランサ)と角運動量調整システムとを備えている。 As shown in FIGS. 4A and 4B, the power unit 104 according to the fourth embodiment rotates and generates power by the power of a reciprocating internal combustion engine (engine) 114 having a 180-degree crank in-line 4-cylinder engine and the internal combustion engine 114. It has a generator 13 (flat plane L4). When the internal combustion engine 114 is driven, a secondary inertial force and an angular momentum of the engine skeleton 2 are generally generated. Therefore, the power unit 104 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjusting system.
 クランク軸11aに取り付けられた大歯車である原歯車14は、ジェネレータ13のロータ13aを備えた軸13bと、2次慣性力バランサ用ウェイトを備えた2軸12b,33bとを駆動する。 The original gear 14, which is a large gear attached to the crank shaft 11a, drives the shaft 13b provided with the rotor 13a of the generator 13 and the two shafts 12b and 33b provided with weights for the secondary inertial force balancer.
 この実施の形態に係るパワーユニット104は、5つの歯車14,15,16,17,21Aからなる歯車列を含む。歯車14,21Aは、内燃機関114のクランク軸11aに取り付けられる原歯車である。ジェネレータ13は、歯車列の中の1つの歯車16の回転軸13bと同軸上に取り付けられている。歯車15の回転軸12bに2次バランサ用のバランスウェイト34aが取り付けられている。また、歯車17の回転軸33bに2次バランサ用のバランスウェイト34bが取り付けられている。 The power unit 104 according to this embodiment includes a gear train consisting of five gears 14, 15, 16, 17, and 21A. The gears 14 and 21A are original gears attached to the crank shaft 11a of the internal combustion engine 114. The generator 13 is mounted coaxially with the rotating shaft 13b of one gear 16 in the gear train. A balance weight 34a for a secondary balancer is attached to the rotating shaft 12b of the gear 15. Further, a balance weight 34b for a secondary balancer is attached to the rotating shaft 33b of the gear 17.
 歯車15,16,17,21Aおよびこれらの歯車とそれぞれ一体で回転する回転軸12b,13b,33b等は、クランク軸11aによって回転駆動される従動回転体を構成する。 The gears 15, 16, 17, 21A and the rotating shafts 12b, 13b, 33b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
 [歯車列について]
 5つの歯車14,15,16,17,21Aからなる歯車列について説明する。図4A,図4Bに示すように、歯車15と歯車17は、歯数が歯車21Aの半分の小歯車で、互いに外接噛合している。歯車14は、内燃機関114のクランク軸11aに取り付けられた大歯車である原歯車である。歯車15と歯車21Aは互いに外接噛合している。歯車16は歯車14に外接噛合している。
[About the gear train]
A gear train consisting of five gears 14, 15, 16, 17, and 21A will be described. As shown in FIGS. 4A and 4B, the gear 15 and the gear 17 are small gears having half the number of teeth of the gear 21A and are circumscribed with each other. The gear 14 is a raw gear which is a large gear attached to the crank shaft 11a of the internal combustion engine 114. The gear 15 and the gear 21A are circumscribed with each other. The gear 16 is circumscribed with the gear 14.
 歯車17は歯車21Aに直接噛合していない。2つの歯車15,17は、図4Aにおいて、歯車14の中心を通る機関横断面中心線Yに対し左右方向に等距離に配置され、互いに逆回転する。歯車16の歯数は任意である。 The gear 17 does not directly mesh with the gear 21A. In FIG. 4A, the two gears 15 and 17 are arranged equidistant in the left-right direction with respect to the engine cross-sectional center line Y passing through the center of the gear 14, and rotate in opposite directions to each other. The number of teeth of the gear 16 is arbitrary.
 小歯車である2つの歯車15,17は、大歯車である歯車14に対し2倍速で回転する。歯車17は歯車14,21Aに対し同一方向に回転する。また、歯車15と歯車16は、歯車14,21Aに対し逆方向に回転する。 The two gears 15 and 17, which are small gears, rotate at twice the speed of the gear 14, which is a large gear. The gear 17 rotates in the same direction with respect to the gears 14 and 21A. Further, the gear 15 and the gear 16 rotate in opposite directions with respect to the gears 14 and 21A.
 歯車15は回転軸12bに取り付けられている。また、歯車16はジェネレータ13のロータ13aの回転軸13bに取り付けられている。したがって、ロータ13aは、クランク軸11aに対し逆方向に回転する。 The gear 15 is attached to the rotating shaft 12b. Further, the gear 16 is attached to the rotating shaft 13b of the rotor 13a of the generator 13. Therefore, the rotor 13a rotates in the opposite direction to the crank shaft 11a.
 5つの歯車14,15,16,17,21Aからなる歯車列は、以下に説明する2次慣性力バランサ(2次バランサ)と角運動量調整システムとに共用される。 The gear train consisting of the five gears 14, 15, 16, 17, and 21A is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
 [2次慣性力バランサについて]
 図4A,図4Bに示すように、歯車15の回転軸12bにはバランスウェイト34aが取り付けられており、歯車17の回転軸33bにはバランスウェイト34bが取り付けられている。
[About the secondary inertial force balancer]
As shown in FIGS. 4A and 4B, a balance weight 34a is attached to the rotating shaft 12b of the gear 15, and a balance weight 34b is attached to the rotating shaft 33b of the gear 17.
 バランスウェイト34a,34bは、2つの回転軸12b,33bを含めて2次慣性力バランサ(2次バランサ)を構成し、クランク軸11aの回転数の2倍の回転数で回転する。これにより、内燃機関114に生じる2次慣性力を解消することができる。 The balance weights 34a and 34b form a secondary inertial force balancer (secondary balancer) including the two rotation shafts 12b and 33b, and rotate at a rotation speed twice the rotation speed of the crank shaft 11a. As a result, the secondary inertial force generated in the internal combustion engine 114 can be eliminated.
 [角運動量調整システムについて]
 パワーユニット104では、図4Aに示す2つの右回りの回転系の角運動量の合計値と、2つの左回りの回転系の角運動量の合計値が等しくなるように設定することができる。したがって、4つの回転系全体としての角運動量をゼロに設定することができる。これにより、角運動量調整システムを構成する。
[About the angular momentum adjustment system]
In the power unit 104, the total value of the angular momentums of the two clockwise rotating systems shown in FIG. 4A can be set to be equal to the total value of the angular momentums of the two counterclockwise rotating systems. Therefore, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 パワーユニット104は、2次慣性力バランサと角運動量調整システムとを備えているので、エンジンを駆動すると、2次慣性力とエンジン躯体の角運動量がどちらも発生しない。したがって、エンジンに起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 104 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, neither the secondary inertial force nor the angular momentum of the engine skeleton is generated when the engine is driven. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
 なお、本実施形態の変形例として、2次バランサ軸(回転軸12b)にジェネレータを備えていてもよい(図示せず)。 As a modification of this embodiment, the secondary balancer shaft (rotary shaft 12b) may be provided with a generator (not shown).
 [第5の実施の形態]
 図5Aは、本発明の第5の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図5Bは、本発明の第5の実施の形態に係るパワーユニットのスケルトン図である。さらに、図5Cは、本発明の第5の実施の形態に係るパワーユニットにおける4気筒エンジンのクランクピンの位置関係を示す図である。
[Fifth Embodiment]
FIG. 5A is a diagram showing a schematic configuration of a power unit according to a fifth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 5B is a skeleton diagram of the power unit according to the fifth embodiment of the present invention. Further, FIG. 5C is a diagram showing the positional relationship of the crankpins of the 4-cylinder engine in the power unit according to the fifth embodiment of the present invention.
 図5A,図5B,図5Cに示すように、この第5の実施の形態に係る内燃機関115は、クランク直列のレシプロ形4気筒で、クランクピンが90度の位相で配置されているクロスプレーンエンジン(クロスプレーンL14)である。クランク軸11aに取り付けられた大歯車である原歯車14は、ジェネレータ12のロータ12aを備えた軸12bを駆動し、1次慣性偶力バランサを角度90°のクロス状に備えた軸33bを、原歯車14と同軸の歯車21Aによって駆動する。 As shown in FIGS. 5A, 5B, and 5C, the internal combustion engine 115 according to the fifth embodiment is a reciprocating four-cylinder engine in series with cranks, and a crossplane in which crankpins are arranged in a phase of 90 degrees. It is an engine (crossplane L14). The original gear 14, which is a large gear attached to the crank shaft 11a, drives the shaft 12b provided with the rotor 12a of the generator 12, and has a shaft 33b provided with a primary inertia couple balancer in a cross shape at an angle of 90 °. It is driven by a gear 21A coaxial with the original gear 14.
 図5A,図5B,図5Cに示すように、この実施の形態に係るパワーユニット105は、内燃機関115と、内燃機関115の動力で回転し発電するジェネレータ12とを有する。内燃機関115を駆動すると、1次慣性偶力とエンジン躯体2の角運動量が発生するので、パワーユニット105は、1次慣性偶力バランサ(1次バランサ)と角運動量調整システムとを備える。 As shown in FIGS. 5A, 5B, and 5C, the power unit 105 according to this embodiment includes an internal combustion engine 115 and a generator 12 that rotates and generates electricity by the power of the internal combustion engine 115. When the internal combustion engine 115 is driven, a primary inertia couple and an angular momentum of the engine skeleton 2 are generated. Therefore, the power unit 105 includes a primary inertia couple balancer (primary balancer) and an angular momentum adjusting system.
 この実施の形態に係るパワーユニット105は、内燃機関115のクランク軸11aに取り付けられる原歯車である歯車14及び歯車21Aと、歯車21Aと外接噛合する回転軸33bの歯車17と、歯車14と外接噛合するジェネレータ12を備えた回転軸12bの歯車21Cとを含む。歯車17には、1次慣性偶力用のバランスウェイト35,36,35,36が、互いに角度90°だけ位相をずらして配置されている。4気筒エンジンたる内燃機関115は、図5Cに示すように、点火間隔が180度ではなく、不等間隔爆発である。
 歯車21C,17およびこれらの歯車とそれぞれ一体で回転する回転軸12b,33b等は、クランク軸11aによって回転駆動される従動回転体を構成する。
The power unit 105 according to this embodiment has a gear 14 and a gear 21A which are raw gears attached to a crank shaft 11a of an internal combustion engine 115, a gear 17 of a rotary shaft 33b which is externally meshed with the gear 21A, and externally meshed with the gear 14. The gear 21C of the rotating shaft 12b provided with the generator 12 is included. Balance weights 35, 36, 35, 36 for the primary inertia couple are arranged on the gear 17 so as to be out of phase with each other by an angle of 90 °. As shown in FIG. 5C, the internal combustion engine 115, which is a 4-cylinder engine, has an unequal interval explosion instead of an ignition interval of 180 degrees.
The gears 21C, 17 and the rotating shafts 12b, 33b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shaft 11a.
 [歯車列について]
 4つの歯車21C,14,21A,17からなる歯車列について説明する。図5A,図5Bに示すように、歯車21Cは大歯車14に外接噛合する。歯車17は、クランク軸11aの内側に配した歯車21Aに外接噛合しており、その歯数は歯車21Aの歯数と同じである。したがって、歯車17は、クランク軸11aと同速度で逆回転する。
[About the gear train]
A gear train consisting of four gears 21C, 14, 21A, and 17 will be described. As shown in FIGS. 5A and 5B, the gear 21C circumscribes the large gear 14. The gear 17 is circumscribed with the gear 21A arranged inside the crank shaft 11a, and the number of teeth thereof is the same as the number of teeth of the gear 21A. Therefore, the gear 17 rotates in the reverse direction at the same speed as the crank shaft 11a.
 歯車21Cは、ジェネレータ12のロータ12aの回転軸12bに取り付けられている。したがって、ロータ12aは、クランク軸11aに対し逆方向に回転する。 The gear 21C is attached to the rotating shaft 12b of the rotor 12a of the generator 12. Therefore, the rotor 12a rotates in the opposite direction to the crank shaft 11a.
 4つの歯車21C,14、21A、17からなる歯車列は、以下に説明する1次慣性偶力バランサ(1次バランサ)と角運動量調整システムとに共用される。 The gear train consisting of the four gears 21C, 14, 21A, and 17 is shared by the primary inertia couple balancer (primary balancer) and the angular momentum adjustment system described below.
 [1次慣性偶力バランサについて]
 図5A,図5Bに示すように、歯車21Cの回転軸12bはジェネレータ12の回転軸12bである。そして、バランスウェイト35,36,35,36が、歯車17の回転軸33bに互いに角度90°だけ位相をずらして配置されている。
[About the primary inertia couple balancer]
As shown in FIGS. 5A and 5B, the rotating shaft 12b of the gear 21C is the rotating shaft 12b of the generator 12. The balance weights 35, 36, 35, 36 are arranged on the rotation shaft 33b of the gear 17 with their phases shifted by an angle of 90 ° from each other.
 バランスウェイト35,36は、回転軸33bとともに1次慣性偶力バランサ(1次バランサ)を構成し、クランク軸11aの回転数と同じ回転数で逆回転する。これにより、内燃機関115に生じる1次慣性偶力を解消することができる。 The balance weights 35 and 36 form a primary inertia couple balancer (primary balancer) together with the rotation shaft 33b, and rotate in the reverse direction at the same rotation speed as the rotation speed of the crank shaft 11a. As a result, the primary inertia couple generated in the internal combustion engine 115 can be eliminated.
 [角運動量調整システムについて]
 パワーユニット105では、図5Aに示す1つの右回りの回転系の角運動量と、2つの左回りの回転系の角運動量の合計値が等しくなるように設定することができる。したがって、3つの回転系全体としての角運動量をゼロに設定することができる。これにより、角運動量調整システムを構成する。
[About the angular momentum adjustment system]
In the power unit 105, the total value of the angular momentum of one clockwise rotating system and the angular momentum of two counterclockwise rotating systems shown in FIG. 5A can be set to be equal to each other. Therefore, the angular momentum of the three rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 パワーユニット105は、1次慣性偶力バランサと角運動量調整システムとを備えているので、内燃機関115を駆動すると、1次慣性偶力とエンジン躯体の角運動量が発生しない。したがって、内燃機関115の構造に起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 105 is equipped with a primary inertia couple balancer and an angular momentum adjustment system, when the internal combustion engine 115 is driven, the primary inertia couple and the angular momentum of the engine frame are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the structure of the internal combustion engine 115.
 [第6の実施の形態]
 図6Aは、本発明の第6の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図6Bは、本発明の第6の実施の形態に係るパワーユニットの一部のスケルトン図である。
[Sixth Embodiment]
FIG. 6A is a diagram showing a schematic configuration of a power unit according to a sixth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 6B is a skeleton diagram of a part of the power unit according to the sixth embodiment of the present invention.
 図6A,図6Bに示すように、この実施の形態に係るパワーユニット106は、レシプロ形2気筒のタンデムツインエンジンたる内燃機関116と、内燃機関116の動力で回転し発電するジェネレータ12,13とを有する。内燃機関116を駆動すると、一般に2次慣性力とエンジン躯体2の角運動量が発生するので、パワーユニット106は、2次慣性力バランサ(2次バランサ)と角運動量調整システムとを備えている。 As shown in FIGS. 6A and 6B, the power unit 106 according to this embodiment includes an internal combustion engine 116 which is a reciprocating two-cylinder tandem twin engine and generators 12 and 13 which are rotated by the power of the internal combustion engine 116 to generate electricity. Have. When the internal combustion engine 116 is driven, a secondary inertial force and an angular momentum of the engine skeleton 2 are generally generated. Therefore, the power unit 106 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjusting system.
 パワーユニット106は、内燃機関116と、内燃機関116から動力伝達され発電する2つのジェネレータ12,13と、6つの歯車23,24,25,26,26,27,28からなる歯車列とを含む。歯車25の回転軸33aに2次バランサ用のバランスウェイト34aが取り付けられている。また、歯車26の回転軸33bに2次バランサ用のバランスウェイト34bが取り付けられている。 The power unit 106 includes an internal combustion engine 116, two generators 12 and 13 that are powered and generated from the internal combustion engine 116, and a gear train consisting of six gears 23, 24, 25, 26, 26, 27, 28. A balance weight 34a for the secondary balancer is attached to the rotating shaft 33a of the gear 25. Further, a balance weight 34b for a secondary balancer is attached to the rotating shaft 33b of the gear 26.
 歯車25,26,26,27,28およびこれらの歯車とそれぞれ一体で回転する回転軸33a,33b,12b,13b等は、クランク軸11a1,11a2によって回転駆動される従動回転体を構成する。 The gears 25, 26, 26, 27, 28 and the rotating shafts 33a, 33b, 12b, 13b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
 [歯車列について]
 6つの歯車23,24,25,26,26,27,28からなる歯車列について説明する。内燃機関116の2つのクランク軸11a1,11a2のそれぞれに歯数が同数の大歯車である歯車23、歯車24が取り付けられ、歯車23と歯車24は互いに外接噛合している。歯車25と歯車26は、歯数が大歯車の半数の小歯車であり、それらは歯車23及び歯車24にそれぞれ外接噛合している。歯車27と歯車28は、歯車25及び歯車26にそれぞれ外接噛合している。歯車27と歯車28の歯数は、互いに同数であることが望ましい。
[About the gear train]
A gear train consisting of six gears 23, 24, 25, 26, 26, 27, 28 will be described. A gear 23 and a gear 24, which are large gears having the same number of teeth, are attached to each of the two crank shafts 11a1 and 11a2 of the internal combustion engine 116, and the gear 23 and the gear 24 are externally meshed with each other. The gear 25 and the gear 26 are small gears having half the number of teeth of the large gear, and they are circumscribed with the gear 23 and the gear 24, respectively. The gear 27 and the gear 28 are circumscribed with the gear 25 and the gear 26, respectively. It is desirable that the number of teeth of the gear 27 and the gear 28 is the same as each other.
 したがって、歯車23と歯車24は、同一速度で互いに逆回転する。歯車25と歯車26は、噛合している歯車23及び歯車24に対し2倍速で逆回転する。歯車27と歯車28は互いに逆方向に回転する。 Therefore, the gear 23 and the gear 24 rotate in opposite directions at the same speed. The gear 25 and the gear 26 rotate in reverse at double speed with respect to the meshing gear 23 and the gear 24. The gear 27 and the gear 28 rotate in opposite directions to each other.
 6つの歯車23,24,25,26,26,27,28からなる歯車列は、以下に説明する2次慣性力バランサ(2次バランサ)と角運動量調整システムとに共用される。 The gear train consisting of the six gears 23, 24, 25, 26, 26, 27, 28 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
 [2次慣性力バランサについて]
 図6Aに示すように、歯車25と歯車26は、2つの内燃機関116の中心を結ぶ線から下方に等距離でかつ機関縦断面中心線Yに関し両側に等距離に位置し、クランク軸11a1、11a2の回転数の2倍の回転数で互いに逆方向に回転するようになっている。そして、歯車25の回転軸33aの機関平面中心線Xに一致する位置に2次バランサ用のバランスウェイト34aが取り付けられている。また、歯車26の回転軸33bの機関平面中心線Xに一致する位置に、2次バランサ用のバランスウェイト34bが取り付けられている。
[About the secondary inertial force balancer]
As shown in FIG. 6A, the gear 25 and the gear 26 are equidistant downward from the line connecting the centers of the two internal combustion engines 116 and equidistant on both sides with respect to the engine longitudinal cross-sectional center line Y, and the crank shafts 11a1 are located. The rotation speed is twice the rotation speed of 11a2 and the rotation speeds are opposite to each other. A balance weight 34a for the secondary balancer is attached at a position corresponding to the engine plane center line X of the rotation shaft 33a of the gear 25. Further, a balance weight 34b for a secondary balancer is attached at a position corresponding to the engine plane center line X of the rotating shaft 33b of the gear 26.
 バランスウェイト34a,34bは、2つの回転軸33a,33bとともに2次慣性力バランサ(2次バランサ)を構成し、クランク軸11a1,11a2の回転数の2倍の回転数で回転して内燃機関116に生じる2次慣性力を解消することができる。 The balance weights 34a and 34b form a secondary inertial force balancer (secondary balancer) together with the two rotating shafts 33a and 33b, and rotate at twice the rotation speed of the crank shafts 11a1 and 11a2 to rotate the internal combustion engine 116. The secondary inertial force generated in the above can be eliminated.
 [角運動量調整システムについて]
 図6Aで、クランク軸11a1と歯車23の回転系と、歯車27とジェネレータ12の回転系と、歯車26と回転軸33bとバランスウェイト34bの回転系は、右回りの回転系である。クランク軸11a2と歯車24の回転系と、歯車25と回転軸33aとバランスウェイト34aの回転系と、歯車28とジェネレータ13の回転系は、左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 6A, the rotation system of the crank shaft 11a1 and the gear 23, the rotation system of the gear 27 and the generator 12, and the rotation system of the gear 26, the rotation shaft 33b, and the balance weight 34b are clockwise rotation systems. The rotation system of the crank shaft 11a2 and the gear 24, the rotation system of the gear 25, the rotation shaft 33a and the balance weight 34a, and the rotation system of the gear 28 and the generator 13 are counterclockwise rotation systems.
 パワーユニット106では、図6Aに示す3つの右回りの回転系の角運動量の合計値と、3つの左回りの回転系の角運動量の合計値が等しくなるように設定することができる。したがって、6つの回転系全体としての角運動量をゼロに設定することができる。これにより、角運動量調整システムを構成する。 In the power unit 106, the total value of the angular momentums of the three clockwise rotating systems shown in FIG. 6A can be set to be equal to the total value of the angular momentums of the three counterclockwise rotating systems. Therefore, the angular momentum of the six rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 パワーユニット106は、2次慣性力バランサと角運動量調整システムとを備えているので、エンジンを駆動すると、2次慣性力とエンジン躯体の角運動量が発生しない。したがって、エンジンに起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 106 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
 以上説明した第6の実施の形態の変形例として、ジェネレータ12の位置とバランサ(歯車25,バランスウェイト34a,回転軸33a)の位置とを交換し、ジェネレータ13の位置とバランサ(歯車26,バランスウェイト34b,回転軸33b)の位置とを交換しても良い(図示せず)。 As a modification of the sixth embodiment described above, the position of the generator 12 and the position of the balancer (gear 25, balance weight 34a, rotary shaft 33a) are exchanged, and the position of the generator 13 and the balancer (gear 26, balance) are exchanged. The positions of the weights 34b and the rotating shaft 33b) may be exchanged (not shown).
 [第7の実施の形態]
 図7Aは、本発明の第7の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図7Bは、本発明の第7の実施の形態に係るパワーユニットのスケルトン図である。
[7th Embodiment]
FIG. 7A is a diagram showing a schematic configuration of a power unit according to a seventh embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 7B is a skeleton diagram of the power unit according to the seventh embodiment of the present invention.
 図7A,図7Bに示すように、この第7の実施の形態に係るパワーユニット107は、レシプロ形2気筒のタンデムツインエンジンたる内燃機関117と、内燃機関117から動力伝達され発電する2つのジェネレータ12,13と、6つの歯車23,24,29,30,31,32からなる歯車列とを含む。歯車30とジェネレータ12のロータ12aとに共通する回転軸12bに、2次バランサ用のバランスウェイト34aが取り付けられている。同様に、歯車32とジェネレータ13のロータ13aとに共通する回転軸13bに、2次バランサ用のバランスウェイト34bが取り付けられている。 As shown in FIGS. 7A and 7B, the power unit 107 according to the seventh embodiment is a reciprocating two-cylinder tandem twin engine internal combustion engine 117 and two generators 12 that are transmitted by power from the internal combustion engine 117 to generate power. , 13 and a gear train consisting of six gears 23, 24, 29, 30, 31, 32. A balance weight 34a for a secondary balancer is attached to a rotating shaft 12b common to the gear 30 and the rotor 12a of the generator 12. Similarly, a balance weight 34b for a secondary balancer is attached to a rotating shaft 13b common to the gear 32 and the rotor 13a of the generator 13.
 タンデムツインエンジンたる内燃機関117を駆動すると、一般に2次慣性力とエンジン躯体2の角運動量が発生する。そのため、パワーユニット107は2次慣性力バランサ(2次バランサ)と角運動量調整システムとを備えている。 When the internal combustion engine 117, which is a tandem twin engine, is driven, a secondary inertial force and an angular momentum of the engine skeleton 2 are generally generated. Therefore, the power unit 107 includes a secondary inertial force balancer (secondary balancer) and an angular momentum adjustment system.
 歯車29,30,31,32およびこれらの歯車とそれぞれ一体で回転する回転軸29b,12b,31b,13b等は、クランク軸11a1,11a2によって回転駆動される従動回転体を構成する。 The gears 29, 30, 31, 32 and the rotating shafts 29b, 12b, 31b, 13b and the like that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
 [歯車列について]
 歯車列は、6つの歯車23,24,29,30,31,32からなり、中間歯車(アイドラーギア)29,31が含まれている。図7Aに示すように、内燃機関117の2つのクランク軸11a1,11a2のそれぞれに歯数が同数の大歯車である歯車23、歯車24が取り付けられ、歯車23と歯車24は互いに外接噛合している。
[About the gear train]
The gear train consists of six gears 23, 24, 29, 30, 31, 32, and includes intermediate gears (idler gears) 29, 31. As shown in FIG. 7A, gears 23 and 24, which are large gears having the same number of teeth, are attached to each of the two crank shafts 11a1 and 11a2 of the internal combustion engine 117, and the gears 23 and 24 are externally meshed with each other. There is.
 歯車30と歯車32は、歯数が大歯車23,24の半数の小歯車であり、それぞれの回転中心が機関縦断面中心線Yの両側の対称位置に取り付けられている。中間歯車29と中間歯車31は、歯数に限定条件がない。歯車29は歯車23と歯車30に同時に外接噛合しており、歯車31は歯車24と歯車32に同時に外接噛合している。 The gear 30 and the gear 32 are small gears having half the number of teeth of the large gears 23 and 24, and their respective centers of rotation are attached at symmetrical positions on both sides of the engine vertical cross-sectional center line Y. The intermediate gear 29 and the intermediate gear 31 have no limitation on the number of teeth. The gear 29 is circumscribed to the gear 23 and the gear 30 at the same time, and the gear 31 is circumscribed to the gear 24 and the gear 32 at the same time.
 したがって、歯車23と歯車24は同一速度で互いに逆回転する。歯車30は、歯車23に対し2倍速で同一方向に回転するようになっている。歯車32は、歯車24に対し2倍速で同一方向に回転するようになっている。 Therefore, the gear 23 and the gear 24 rotate in opposite directions at the same speed. The gear 30 rotates in the same direction at twice the speed of the gear 23. The gear 32 rotates in the same direction at twice the speed of the gear 24.
 6つの歯車23,24,29,30,31,32からなる歯車列は、以下に説明する2次慣性力バランサ(2次バランサ)と角運動量調整システムとに共用される。 The gear train consisting of the six gears 23, 24, 29, 30, 31, and 32 is shared by the secondary inertial force balancer (secondary balancer) and the angular momentum adjustment system described below.
 歯車30の回転軸12bはジェネレータ12の回転軸12bでもあって、回転軸12bは2次慣性力バランサを兼ねている。また、歯車32の回転軸13bはジェネレータ13の回転軸13bでもあって、回転軸13bは2次慣性力バランサを兼ねている。 The rotary shaft 12b of the gear 30 is also the rotary shaft 12b of the generator 12, and the rotary shaft 12b also serves as a secondary inertial force balancer. Further, the rotating shaft 13b of the gear 32 is also the rotating shaft 13b of the generator 13, and the rotating shaft 13b also serves as a secondary inertial force balancer.
 2つのジェネレータ12,13は、内燃機関117の2つのシリンダ61の両側に配置されている。また、アイドラーギアとなる歯車29,31が配置されている。これにより、ロータ12aの回転方向がクランク軸11a1の回転方向と同一であり、またロータ13aの回転方向がクランク軸11a2の回転方向と同一である。 The two generators 12 and 13 are arranged on both sides of the two cylinders 61 of the internal combustion engine 117. Further, gears 29 and 31 that serve as idler gears are arranged. As a result, the rotation direction of the rotor 12a is the same as the rotation direction of the crank shaft 11a1, and the rotation direction of the rotor 13a is the same as the rotation direction of the crank shaft 11a2.
 [角運動量調整システムについて]
 図7Aで、クランク軸11a1と歯車23の回転系と、歯車31とその回転軸31bの回転系と、歯車30とジェネレータ12とバランスウェイト34aの回転系は右回りの回転系である。また、クランク軸11a2と歯車24の回転系と、歯車29とその回転軸29bの回転系と、歯車32とジェネレータ13とバランスウェイト34bの回転系は左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 7A, the rotation system of the crank shaft 11a1 and the gear 23, the rotation system of the gear 31 and its rotation shaft 31b, and the rotation system of the gear 30, the generator 12, and the balance weight 34a are clockwise rotation systems. Further, the rotation system of the crank shaft 11a2 and the gear 24, the rotation system of the gear 29 and its rotation shaft 29b, and the rotation system of the gear 32, the generator 13 and the balance weight 34b are counterclockwise rotation systems.
 パワーユニット107では、図7Aに示す3つの右回りの回転系の角運動量の合計値と、3つの左回りの回転系の角運動量の合計値が等しくなるように設定することができる。したがって、6つの回転系全体としての角運動量をゼロに設定することができる。これにより、角運動量調整システムを構成する。 In the power unit 107, the total value of the angular momentums of the three clockwise rotating systems shown in FIG. 7A can be set to be equal to the total value of the angular momentums of the three counterclockwise rotating systems. Therefore, the angular momentum of the six rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 パワーユニット107は、2次慣性力バランサと角運動量調整システムとを備えているので、エンジンを駆動すると、2次慣性力とエンジン躯体の角運動量が発生しない。したがって、エンジンに起因する振動・騒音を実質的になくしてゼロバイブレーションエンジンを実現することができる。 Since the power unit 107 is equipped with a secondary inertial force balancer and an angular momentum adjustment system, when the engine is driven, the secondary inertial force and the angular momentum of the engine skeleton are not generated. Therefore, it is possible to realize a zero vibration engine by substantially eliminating vibration and noise caused by the engine.
 以上説明した第7の実施の形態の変形例として、アイドラとなる歯車29,31をなくした構成(図示せず)としてもよい。 As a modification of the seventh embodiment described above, a configuration (not shown) may be used in which the gears 29 and 31 serving as idlers are eliminated.
 [第6、第7の実施の形態の変形例]
 第6、第7の実施形態は、レシプロ形2気筒の内燃機関としてタンデムツインエンジンを用いており、2つのクランク軸11a1、11a2のそれぞれに対応して1つのジェネレータ12、13を備えている。これらの実施の形態の変形例として、それぞれのジェネレータ12,13のいずれか1つを取り外し、取り外した1つのジェネレータに替えてフライホイールを取り付けた構成(図示せず)とすることもできる。ジェネレータに替えたフライホイールは1つの軸に集中して設置する必要はなく、回転体系の角運動量がゼロになるように分散して設置することも可能である。
[Variations of the Sixth and Seventh Embodiments]
In the sixth and seventh embodiments, a tandem twin engine is used as a reciprocating two-cylinder internal combustion engine, and one generator 12 and 13 are provided corresponding to the two crank shafts 11a1 and 11a2, respectively. As a modification of these embodiments, one of the generators 12 and 13 may be removed, and a flywheel may be attached in place of the removed generator (not shown). The flywheel replaced with the generator does not need to be installed centrally on one axis, and can be installed in a distributed manner so that the angular momentum of the rotation system becomes zero.
 [第8の実施の形態]
 図8Aは、本発明の第8の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図8Bは、本発明の第8の実施の形態に係るパワーユニットのスケルトン図である。
[Eighth Embodiment]
FIG. 8A is a diagram showing a schematic configuration of a power unit according to an eighth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 8B is a skeleton diagram of the power unit according to the eighth embodiment of the present invention.
 図8A,図8Bに示すように、この第8の実施の形態に係るパワーユニット108は、レシプロ形2気筒のタンデムツインエンジンである内燃機関118と、内燃機関118から動力伝達され発電する1つのジェネレータ12と、1つのフライホイール50と、4つの歯車23,24,29,30からなる歯車列とを含む。 As shown in FIGS. 8A and 8B, the power unit 108 according to the eighth embodiment is a reciprocating two-cylinder tandem twin engine internal combustion engine 118 and one generator that is powered by the internal combustion engine 118 to generate power. Includes 12, one flywheel 50, and a gear train consisting of four gears 23, 24, 29, 30.
 歯車29,30およびこれらの歯車とそれぞれ一体で回転する回転軸51,12b等は、クランク軸11a1,11a2によって回転駆動される従動回転体を構成する。 The gears 29, 30 and the rotating shafts 51, 12b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
 [歯車列について]
 歯車列は、4つの歯車23,24,29,30からなる。前述の第7の実施の形態(図7A,図7B)に比べて、歯車31、32が無く、しかも2次バランサ用のバランスウェイト34a,34bも無い点が相違する。図8Aに示すように、内燃機関118の2つのクランク軸11a1,11a2にそれぞれ取り付けられた歯車23と歯車24とが噛合している。さらに、一方のクランク軸11a1に取り付けられた歯車23に歯車29が外接噛合し、歯車29には歯車30が外接噛合している。
[About the gear train]
The gear train consists of four gears 23, 24, 29, 30. Compared with the above-mentioned seventh embodiment (FIGS. 7A and 7B), the gears 31 and 32 are absent, and the balance weights 34a and 34b for the secondary balancer are also absent. As shown in FIG. 8A, the gears 23 and the gears 24 attached to the two crank shafts 11a1 and 11a2 of the internal combustion engine 118 are meshed with each other. Further, the gear 29 is circumscribed to the gear 23 attached to one of the crank shafts 11a1, and the gear 30 is circumscribed to the gear 29.
 歯車23と歯車24は同一速度で互いに逆回転する。歯車29は、歯車23に対し逆方向に回転し、歯車30は、歯車29に外接噛合して、歯車23に対し同一方向に回転するようになっている。 The gear 23 and the gear 24 rotate in opposite directions at the same speed. The gear 29 rotates in the opposite direction to the gear 23, and the gear 30 circumscribes the gear 29 and rotates in the same direction with respect to the gear 23.
 図8A,図8Bに示すように、歯車30の回転軸12bにジェネレータ12のロータ12aが取り付けられ、歯車29の回転軸51にフライホイール50が取り付けられている。このように、一方のシリンダ側の回転軸12bにのみジェネレータ12が配置されており、2次バランサ機能は有しない。エンジンを水平に搭載して2次慣性力が車体前後方向に生じる場合、この振動の車体フロアへの伝達率は低いので、2次バランサを省略することが可能となる。これにより、軽量、コンパクト、低フリクションのエンジンを構成可能である。 As shown in FIGS. 8A and 8B, the rotor 12a of the generator 12 is attached to the rotating shaft 12b of the gear 30, and the flywheel 50 is attached to the rotating shaft 51 of the gear 29. As described above, the generator 12 is arranged only on the rotating shaft 12b on one cylinder side, and does not have a secondary balancer function. When the engine is mounted horizontally and a secondary inertial force is generated in the front-rear direction of the vehicle body, the transmission rate of this vibration to the vehicle body floor is low, so that the secondary balancer can be omitted. This makes it possible to configure a lightweight, compact, low friction engine.
 [角運動量調整システムについて]
 図8Aで、クランク軸11a1と歯車23の回転系と、歯車30と回転軸12bとロータ12aの回転系は右回りの回転系である。また、歯車29と回転軸51とフライホイール50の回転系と、クランク軸11a2と歯車24の回転系は左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 8A, the rotation system of the crank shaft 11a1 and the gear 23, and the rotation system of the gear 30, the rotation shaft 12b, and the rotor 12a are clockwise rotation systems. Further, the rotation system of the gear 29, the rotation shaft 51, and the fly wheel 50, and the rotation system of the crank shaft 11a2 and the gear 24 are counterclockwise rotation systems.
 パワーユニット108は、2つの右回りの回転系の角運動量の合計値と2つの左回りの回転系の角運動量の合計値とが等しくなるように設定することができる。すなわち、4つの回転系全体としての角運動量をゼロに設定できる。これにより、角運動量調整システムが構成される。 The power unit 108 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 このパワーユニット108は、角運動量調整システムを備えているので、内燃機関118を駆動すると、エンジン躯体2に角運動量が発生せず、エンジンに起因する振動・騒音を有意に抑制することができる。 Since this power unit 108 is equipped with an angular momentum adjustment system, when the internal combustion engine 118 is driven, no angular momentum is generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
 [第9の実施の形態]
 図9Aは、本発明の第9の実施の形態に係るパワーユニットの概略構成を示す図であって、クランク軸の方向に垂直な断面図である。また、図9Bは、本発明の第9の実施の形態に係るパワーユニットのスケルトン図である。
[9th embodiment]
FIG. 9A is a diagram showing a schematic configuration of a power unit according to a ninth embodiment of the present invention, and is a cross-sectional view perpendicular to the direction of the crank shaft. Further, FIG. 9B is a skeleton diagram of the power unit according to the ninth embodiment of the present invention.
 図9A,図9Bに示すように、この実施の形態に係るパワーユニット109は、レシプロ形2気筒のタンデムツインエンジンである内燃機関119と、内燃機関119から動力伝達され発電する1つのジェネレータ12と、1つのフライホイール50と、4つの歯車23,24,29,30からなる歯車列とを含む。 As shown in FIGS. 9A and 9B, the power unit 109 according to this embodiment includes an internal combustion engine 119 which is a reciprocating two-cylinder tandem twin engine, and one generator 12 which is powered and generated by power transmission from the internal combustion engine 119. It includes one flywheel 50 and a gear train consisting of four gears 23, 24, 29, 30.
 歯車29,30およびこれらの歯車とそれぞれ一体で回転する回転軸51,12b等は、クランク軸11a1,11a2によって回転駆動される従動回転体を構成する。 The gears 29, 30 and the rotating shafts 51, 12b, etc. that rotate integrally with these gears constitute a driven rotating body that is rotationally driven by the crank shafts 11a1, 11a2.
 [歯車列について]
 歯車列は、4つの歯車23,24,29,30からなる。前述の第7の実施の形態(図7A,図7B)に比べて、歯車31、32が無く、しかも2次バランサ用のバランスウェイト34a,34bも無い点が相違する。
[About the gear train]
The gear train consists of four gears 23, 24, 29, 30. Compared with the above-mentioned seventh embodiment (FIGS. 7A and 7B), the gears 31 and 32 are absent, and the balance weights 34a and 34b for the secondary balancer are also absent.
 図9A,図9Bに示すように、内燃機関119の2つのクランク軸11a1,11a2にそれぞれ取り付けられた歯車23と歯車24とが噛合している。さらに、一方のクランク軸11a1に取り付けられた歯車23に歯車29が外接噛合し、他方のクランク軸11a2に歯車30が外接噛合している。 As shown in FIGS. 9A and 9B, the gears 23 and the gears 24 attached to the two crank shafts 11a1 and 11a2 of the internal combustion engine 119 are meshed with each other. Further, the gear 29 is circumscribed to the gear 23 attached to one crank shaft 11a1, and the gear 30 is circumscribed to the other crank shaft 11a2.
 歯車23と歯車24は同一速度で互いに逆回転する。歯車29は、歯車23に対し逆方向に回転し、歯車30は、歯車24に対し逆方向に回転する。 The gear 23 and the gear 24 rotate in opposite directions at the same speed. The gear 29 rotates in the opposite direction to the gear 23, and the gear 30 rotates in the opposite direction to the gear 24.
 図9A,図9Bに示すように、歯車30の回転軸12bにジェネレータ12のロータ12aが取り付けられ、歯車29の回転軸51にフライホイール50が取り付けられている。このように、一方のシリンダ(回転軸12b)にのみジェネレータ12が配置されており、2次バランサ機能は有しない。エンジンを水平に搭載して2次慣性力が車体前後方向に生じる場合、この振動の車体フロアへの伝達率は低いので、2次バランサを省略することが可能となる、これにより、軽量、コンパクト、低フリクションのエンジンを構成可能である。 As shown in FIGS. 9A and 9B, the rotor 12a of the generator 12 is attached to the rotating shaft 12b of the gear 30, and the flywheel 50 is attached to the rotating shaft 51 of the gear 29. As described above, the generator 12 is arranged only in one cylinder (rotating shaft 12b) and does not have a secondary balancer function. When the engine is mounted horizontally and a secondary inertial force is generated in the front-rear direction of the vehicle body, the transmission rate of this vibration to the vehicle body floor is low, so it is possible to omit the secondary balancer, which makes it lightweight and compact. , A low friction engine can be configured.
 [角運動量調整システムについて]
 図9Aで、クランク軸11a1と歯車23の回転系と、歯車30と回転軸12bとロータ12aの回転系は右回りの回転系である。また、歯車29と回転軸51とフライホイール50の回転系と、クランク軸11a2と歯車24の回転系は左回りの回転系である。
[About the angular momentum adjustment system]
In FIG. 9A, the rotation system of the crank shaft 11a1 and the gear 23, and the rotation system of the gear 30, the rotation shaft 12b, and the rotor 12a are clockwise rotation systems. Further, the rotation system of the gear 29, the rotation shaft 51, and the fly wheel 50, and the rotation system of the crank shaft 11a2 and the gear 24 are counterclockwise rotation systems.
 パワーユニット109は、2つの右回りの回転系の角運動量の合計値と2つの左回りの回転系の角運動量の合計値とが等しくなるように設定することができる。すなわち、4つの回転系全体としての角運動量をゼロに設定できる。これにより、角運動量調整システムが構成される。 The power unit 109 can be set so that the total value of the angular momentums of the two clockwise rotating systems and the total value of the angular momentums of the two counterclockwise rotating systems are equal. That is, the angular momentum of the four rotation systems as a whole can be set to zero. This constitutes an angular momentum adjustment system.
 このパワーユニット109は、角運動量調整システムを備えているので、内燃機関119を駆動すると、エンジン躯体2に角運動量が発生せず、エンジンに起因する振動・騒音を有意に抑制することができる。 Since this power unit 109 is equipped with an angular momentum adjustment system, when the internal combustion engine 119 is driven, angular momentum is not generated in the engine skeleton 2, and vibration and noise caused by the engine can be significantly suppressed.
 また、以上説明した第9の実施の形態の変形例として、歯車23,24の両側に各々中間歯車(図示せず)を設けても良い。なお、角運動量調整システムを満たす範囲で、ジェネレータ、2次バランサ、フライホイールを自在に組み合わせることができる。 Further, as a modification of the ninth embodiment described above, intermediate gears (not shown) may be provided on both sides of the gears 23 and 24, respectively. The generator, secondary balancer, and flywheel can be freely combined as long as the angular momentum adjustment system is satisfied.
 [他の実施の形態]
 以上、種々の実施の形態について説明したが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。また、上述の実施の形態の特徴を組み合わせてもよい。
[Other embodiments]
Although various embodiments have been described above, the present invention is carried out with various modifications within a range that does not deviate from the gist thereof. Further, the features of the above-described embodiments may be combined.
 2…エンジン躯体
 3…オイルパン
 11a,11a1,11a2…クランク軸
 12,13…ジェネレータ(従動回転体)
 12a,13a…ロータ(従動回転体)
 12b,13b,29b,31b,33a,33b,51…回転軸(従動回転体)
 14(21A),23,24…歯車(原歯車)
 15,16,17,18,19,20,21,21A,21B,21C,22,25,26,27,28,29,30,31,32,45,46…歯車(従動回転体)
 34a,34b,35,35a,35b,36,47a,47b…バランスウェイト
 37,50…フライホイール(従動回転体)
 61…シリンダ
 61a…ピストン
 101,102,103,104,105,107,108,109…パワーユニット
 111,112,113,114,115,116,117,118,119…内燃機関
 X…機関平面横断中心線
 Y…機関縦断面中心線
 Z…機関横断面中心線
 
 
2 ... Engine frame 3 ... Oil pan 11a, 11a1, 11a2 ... Crank shaft 12, 13 ... Generator (driven rotating body)
12a, 13a ... Rotor (driven rotating body)
12b, 13b, 29b, 31b, 33a, 33b, 51 ... Rotation axis (driven rotating body)
14 (21A), 23, 24 ... Gear (original gear)
15, 16, 17, 18, 19, 20, 21, 21, 21A, 21B, 21C, 22, 25, 26, 27, 28, 29, 30, 31, 32, 45, 46 ... Gears (driven rotating body)
34a, 34b, 35, 35a, 35b, 36, 47a, 47b ... Balance weight 37, 50 ... Flywheel (driven rotating body)
61 ... Cylinder 61a ... Piston 101, 102, 103, 104, 105, 107, 108, 109 ... Power unit 111, 112, 113, 114, 115, 116, 117, 118, 119 ... Internal combustion engine X ... Engine plane transverse center line Y ... Engine vertical section center line Z ... Engine cross section center line

Claims (10)

  1.  少なくとも一つのシリンダを含むエンジン躯体と、
     前記シリンダ内を往復動する少なくとも一つのピストンと、
     前記エンジン躯体に回転支持されて前記ピストンの往復動によって回転駆動される少なくとも一つのクランク軸と、
     前記エンジン躯体に回転支持されて前記クランク軸とともに回転する少なくとも一つの従動回転体と、
     を有するパワーユニットであって、
     前記クランク軸および前記従動回転体の回転数によらず前記クランク軸および前記従動回転体の角運動量の総和が実質的にゼロに保たれるように構成されていることを特徴とするパワーユニット。
    An engine skeleton containing at least one cylinder,
    With at least one piston reciprocating in the cylinder,
    At least one crank shaft that is rotationally supported by the engine frame and rotationally driven by the reciprocating motion of the piston,
    At least one driven rotating body that is rotationally supported by the engine frame and rotates together with the crank shaft.
    It is a power unit with
    A power unit characterized in that the total angular momentum of the crank shaft and the driven rotating body is kept substantially zero regardless of the rotation speeds of the crank shaft and the driven rotating body.
  2.  前記エンジン躯体の角運動量が実質的にゼロになるように構成されていることを特徴とする請求項1に記載のパワーユニット。 The power unit according to claim 1, wherein the angular momentum of the engine skeleton is configured to be substantially zero.
  3.  前記クランク軸及び前記従動回転体の全体と、前記エンジン躯体全体との間で、角運動量が交換されることがないように構成されていることを特徴とする請求項1または請求項2に記載のパワーユニット。 The first or second aspect of the present invention, wherein the angular momentum is not exchanged between the entire crank shaft and the driven rotating body and the entire engine skeleton. Power unit.
  4.  前記ピストンの往復動による運動量と前記エンジン躯体の角運動量との間の交換がないように構成されていること、を特徴とする請求項1ないし請求項3のいずれか一項に記載のパワーユニット。 The power unit according to any one of claims 1 to 3, wherein the power unit is configured so that there is no exchange between the momentum due to the reciprocating movement of the piston and the angular momentum of the engine frame.
  5.  前記従動回転体は、前記クランク軸と逆向きに回転する少なくとも一つの逆回転体を含むこと、を特徴とする請求項1ないし請求項4のいずれか一項に記載のパワーユニット。 The power unit according to any one of claims 1 to 4, wherein the driven rotating body includes at least one reverse rotating body that rotates in the direction opposite to the crank shaft.
  6.  前記従動回転体は少なくとも一つのジェネレータのロータを含むことを特徴とする請求項1ないし請求項5のいずれか一項に記載のパワーユニット。 The power unit according to any one of claims 1 to 5, wherein the driven rotating body includes a rotor of at least one generator.
  7.  前記少なくとも一つのジェネレータは、車両を駆動する電動機に電力を供給するものであること、を特徴とする請求項6に記載のパワーユニット。 The power unit according to claim 6, wherein the at least one generator supplies electric power to an electric motor for driving a vehicle.
  8.  前記従動回転体は、
     バランスウェイトを備えて前記クランク軸と逆向きに前記クランク軸の回転速度の2倍の回転速度で回転する逆回転2次バランサと、
     バランスウェイトを備えて前記クランク軸と同じ向きに前記クランク軸の回転速度の2倍の回転速度で回転する正回転2次バランサと、
     を含むこと、を特徴とする請求項1ないし請求項7のいずれか一項に記載のパワーユニット。
    The driven rotating body is
    A reverse rotation secondary balancer equipped with a balance weight and rotating in the opposite direction to the crank shaft at a rotation speed twice the rotation speed of the crank shaft.
    A forward rotation secondary balancer equipped with a balance weight and rotating in the same direction as the crank shaft at a rotation speed twice the rotation speed of the crank shaft.
    The power unit according to any one of claims 1 to 7, wherein the power unit comprises.
  9.  前記従動回転体は、バランスウェイトを備えて前記クランク軸と逆向きに前記クランク軸の回転速度と同じ回転速度で回転する1次バランサを含むこと、を特徴とする請求項1ないし請求項8のいずれか一項に記載のパワーユニット。 The driven rotating body according to claim 1 to 8, wherein the driven rotating body includes a primary balancer having a balance weight and rotating in the direction opposite to the crank shaft at the same rotation speed as the rotation speed of the crank shaft. The power unit described in any one of the items.
  10.  前記少なくとも一つのシリンダは第1および第2のシリンダを含み、
     前記少なくとも一つのピストンは、前記第1のシリンダ内を往復動する第1のピストンと、前記第2のシリンダ内を往復動する第2のピストンとを含み、
     前記少なくとも一つのクランク軸は、前記第1のピストンによって回転駆動される第1のクランク軸と、前記第1のクランク軸と同じ回転数で逆向きに前記第2のピストンによって回転駆動される第2のクランク軸と、を含むこと、
     を特徴とする請求項1ないし請求項9のいずれか一項に記載のパワーユニット。
     
     
    The at least one cylinder includes a first cylinder and a second cylinder.
    The at least one piston includes a first piston that reciprocates in the first cylinder and a second piston that reciprocates in the second cylinder.
    The at least one crank shaft is rotationally driven by a first crank shaft that is rotationally driven by the first piston and by the second piston in the opposite direction at the same rotation speed as the first crank shaft. Including 2 crank axles,
    The power unit according to any one of claims 1 to 9.

PCT/JP2021/019675 2020-05-22 2021-05-24 Power unit WO2021235560A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020090088 2020-05-22
JP2020-090088 2020-05-22
JP2020-163949 2020-09-29
JP2020163949 2020-09-29

Publications (1)

Publication Number Publication Date
WO2021235560A1 true WO2021235560A1 (en) 2021-11-25

Family

ID=78708660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019675 WO2021235560A1 (en) 2020-05-22 2021-05-24 Power unit

Country Status (1)

Country Link
WO (1) WO2021235560A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357044B2 (en) 2021-12-17 2023-10-05 ヤマハ発動機株式会社 Series hybrid engine drive power supply unit and electric mobile object

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155715A (en) * 2003-11-21 2005-06-16 Yamaha Motor Co Ltd Balancer device of engine
JP2006038126A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Vibration reducer of reciprocating internal combustion engine
JP2009068364A (en) * 2007-09-11 2009-04-02 Suzuki Motor Corp Balancer device of engine
JP2010275990A (en) * 2009-06-01 2010-12-09 Toyota Central R&D Labs Inc Engine with valve-timing variable mechanism
JP2014109358A (en) * 2012-12-04 2014-06-12 Honda Motor Co Ltd Balancer device for internal combustion engine
JP2016023671A (en) * 2014-07-17 2016-02-08 本田技研工業株式会社 Balancer device
JP2019124153A (en) * 2018-01-15 2019-07-25 国立大学法人広島大学 Power generator and automobile
JP2019148186A (en) * 2018-02-26 2019-09-05 株式会社石川エナジーリサーチ engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155715A (en) * 2003-11-21 2005-06-16 Yamaha Motor Co Ltd Balancer device of engine
JP2006038126A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Vibration reducer of reciprocating internal combustion engine
JP2009068364A (en) * 2007-09-11 2009-04-02 Suzuki Motor Corp Balancer device of engine
JP2010275990A (en) * 2009-06-01 2010-12-09 Toyota Central R&D Labs Inc Engine with valve-timing variable mechanism
JP2014109358A (en) * 2012-12-04 2014-06-12 Honda Motor Co Ltd Balancer device for internal combustion engine
JP2016023671A (en) * 2014-07-17 2016-02-08 本田技研工業株式会社 Balancer device
JP2019124153A (en) * 2018-01-15 2019-07-25 国立大学法人広島大学 Power generator and automobile
JP2019148186A (en) * 2018-02-26 2019-09-05 株式会社石川エナジーリサーチ engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357044B2 (en) 2021-12-17 2023-10-05 ヤマハ発動機株式会社 Series hybrid engine drive power supply unit and electric mobile object

Similar Documents

Publication Publication Date Title
US7533639B1 (en) Dual crankshaft engine with counter rotating inertial masses
US20130199463A1 (en) Machine
JP3071815B2 (en) Engine balancer device
RU142741U1 (en) ENGINE (OPTIONS)
US3402707A (en) Vibrationless engines
CN111587315B (en) Power generation device and automobile
US10989273B2 (en) Power unit
JP2018501420A (en) Power unit
WO2021235560A1 (en) Power unit
EP0158453B1 (en) Multi-cylinder internal combusion engine
KR102398982B1 (en) Piston internal combustion engine with generator
JP2006514725A (en) Piston engine with crankshaft rotating in opposite direction
JP2010169045A (en) Balance device in multicylinder internal combustion engine
JP2000249191A (en) Arrangement for mass balance and/or moment balance of reciprocating internal-combustion engine
JP2009138619A (en) Internal combustion engine
CN113279852B (en) In-line piston engine, aircraft engine and aircraft with balancing mechanism
JP7127889B2 (en) power unit
CN215256473U (en) In-line piston engine, aircraft engine and aircraft
JP2001304374A (en) Flywheel mechanism and internal combustion engine equipped with the mechanism
JP6278247B2 (en) 4 cycle engine
JPH0633989A (en) Engine equipped with balancer shaft
JPH0223741B2 (en)
JP2007002698A (en) 6-cylinder engine
JP2010275990A (en) Engine with valve-timing variable mechanism
JPH09250597A (en) Balancer device for four-cylinder engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP