WO2021235472A1 - Multilayer body, heat exchanger and air conditioner - Google Patents

Multilayer body, heat exchanger and air conditioner Download PDF

Info

Publication number
WO2021235472A1
WO2021235472A1 PCT/JP2021/018937 JP2021018937W WO2021235472A1 WO 2021235472 A1 WO2021235472 A1 WO 2021235472A1 JP 2021018937 W JP2021018937 W JP 2021018937W WO 2021235472 A1 WO2021235472 A1 WO 2021235472A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
plate material
plate
base
laminated body
Prior art date
Application number
PCT/JP2021/018937
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 中島
亮平 川端
宏徳 栗木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022524509A priority Critical patent/JP7286015B2/en
Publication of WO2021235472A1 publication Critical patent/WO2021235472A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a laminate in which an internal space is formed, a heat exchanger, and an air conditioner.
  • a laminated body in which a plurality of plate materials are laminated and a heat exchanger in which the laminated body is used are known.
  • the heat exchanger is provided in, for example, the outdoor unit and the indoor unit of the air conditioner. Since the heat exchanger installed in the outdoor unit is used outdoors, water may adhere to it due to rainfall, etc., and the metal material constituting the heat exchanger laminate may corrode, resulting in performance deterioration and malfunction. There is. Since the heat exchanger installed in the indoor unit may be exposed to dew when the air conditioner is in cooling operation, the metal material constituting the heat exchanger laminate is corroded and the performance deteriorates. And dysfunction may occur.
  • the entire laminate including the end face of the laminate may be protected by applying a paste-like flux containing a material having a lower redox potential than the material of the laminate and baking the laminate.
  • a material having a lower redox potential than the material of the laminate include an aluminum alloy, and examples of the material having a lower redox potential than the material of the laminate include zinc. It is known that such a material having a low redox potential not only protects the coated portion but also has a remote anticorrosion action to protect the portion slightly distant from the coated portion.
  • Patent Document 1 discloses an aluminum alloy material in which an aluminum alloy layer having a zinc concentration of about 1% to 2% is laminated and coated. In Patent Document 1, two or more aluminum alloy layers having a higher zinc concentration than the core material are laminated and coated on at least one surface of the aluminum-based material as the core material. As a result, Patent Document 1 attempts to improve the corrosion resistance of the surface layer of the core material.
  • Patent Document 1 can protect the surface layer of the core material, it cannot improve the corrosion resistance of the end face of the core material.
  • This disclosure is made to solve the above-mentioned problems, and provides a laminate, a heat exchanger, and an air conditioner that improve the corrosion resistance of the end face.
  • the laminated body according to the present disclosure is a laminated body in which a plurality of plate materials having at least one plate material having holes are combined and laminated to form an internal space, and there is a portion where the end faces of the plate materials are displaced. At least a part of the surface of the plate material exposed as a result of the displacement has a layer containing a base material having a lower redox potential than the base layer of the plate material as a component.
  • the position of the end face of the surface of a base material having a redox potential lower than that of the base layer, or a material having both a component having a redox potential lower than that of the base layer and a brazing material component is the surface. It is out of alignment with the position of the end face of the material that is joined next to each other. Therefore, the remote anticorrosion action provided by the base material of one plate material extends to the end face of the other plate material. Therefore, the corrosion resistance of the end face can be improved.
  • FIG. It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1.
  • FIG. It is a front view which shows the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a side view which shows the heat exchanger which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the laminated body which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the laminated body which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the remote anticorrosion action of zinc. It is a graph which shows the remote anticorrosion action of zinc.
  • It is sectional drawing which shows the laminated body which concerns on Embodiment 3.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 is a device for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3 connected to the outdoor unit 2.
  • the outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, a heat exchanger 8, an outdoor blower 9, and an expansion unit 10.
  • the indoor unit 3 is provided with an indoor heat exchanger 11 and an indoor blower 12.
  • a compressor 6, a flow path switching device 7, a heat exchanger 8, an expansion unit 10, and an indoor heat exchanger 11 are connected by a refrigerant pipe 5, and a refrigerant circuit 4 through which a refrigerant as a working gas flows is configured.
  • the compressor 6 sucks in a refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the sucked refrigerant.
  • the flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve.
  • the heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant.
  • the heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 9 is a device that sends outdoor air to the heat exchanger 8.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted.
  • the indoor heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant.
  • the indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
  • cooling operation Next, the operation mode of the air conditioner 1 will be described.
  • the cooling operation In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 8 acting as a condenser, and in the heat exchanger 8, the outdoor blower 9 causes the refrigerant to flow into the heat exchanger 8. It exchanges heat with the sent outdoor air, condenses and liquefies.
  • the condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 11 that acts as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with the indoor air sent by the indoor blower 12, and is evaporated and gasified. do. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower. It exchanges heat with the indoor air sent by No. 12, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room.
  • the condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the heat exchanger 8 that acts as an evaporator, and in the heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 to evaporate and gasify. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • FIG. 2 is a front view showing the heat exchanger 8 according to the first embodiment
  • FIG. 3 is a side view showing the heat exchanger 8 according to the first embodiment.
  • the heat exchanger 8 will be described in detail.
  • the heat exchanger 8 is, for example, a parallel flow type heat exchanger 8.
  • the heat exchanger 8 may be a fin tube type heat exchanger 8 or a finless type heat exchanger 8.
  • the heat exchanger 8 includes a heat transfer tube 20, fins 30, and a laminate 40.
  • the heat transfer tube 20 is a tube through which a refrigerant flows, and a plurality of heat transfer tubes 20 are arranged and made of aluminum or an aluminum alloy.
  • the heat transfer tube 20 may use a clad material having aluminum as a core material.
  • the heat transfer tube 20 is, for example, a flat tube in which a plurality of flow paths 21 (see FIG. 4) through which a refrigerant flows are formed in a row.
  • the heat transfer tube 20 may be a circular tube.
  • the fin 30 is a member that transfers the heat of the refrigerant flowing through the heat transfer tube 20, and is, for example, a corrugated fin that is bent and arranged between the heat transfer tube 20 and the heat transfer tube 20.
  • the fin 30 is made of, for example, aluminum.
  • the fin 30 may be made of the same material as the heat transfer tube 20, or may be made of a different material.
  • the fin 30 may be a plate fin.
  • the laminated body 40 is made of aluminum, for example, in which the refrigerant flows in the internal space 40a (see FIG. 4) and the refrigerant is diverted to the plurality of inserted heat transfer tubes 20. As described above, the laminated body 40 may use the same material as the heat transfer tube 20, or may use a different material.
  • FIG. 4 is a cross-sectional view showing the laminated body 40 according to the first embodiment, and is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a cross-sectional view showing the laminated body 40 according to the first embodiment, and is a cross-sectional view taken along the line BB of FIG.
  • the laminated body 40 will be described in detail. As shown in FIGS. 4 and 5, the laminated body 40 includes a first plate material 41 and a second plate material 45.
  • the first plate material 41 is a plate-shaped member having a base layer 42 and a brazing material layer 43, and is, for example, a clad material.
  • the base layer 42 is made of, for example, aluminum.
  • the brazing filler metal layer 43 is made of a brazing filler metal containing a base material.
  • the base material is a material provided on the surface of the base layer 42 and having a lower redox potential than the base layer 42, and is, for example, zinc.
  • the brazing material is formed by brazing and joining the first plate material 41, the second plate material 45, the laminate 40, and the heat transfer tube 20.
  • the brazing filler metal layer 43 is provided on both sides of the base layer 42.
  • the base material and the brazing material may be individually provided in the base layer 42.
  • the second plate material 45 is a plate-shaped member that is alternately laminated with the first plate material 41 to form an internal space 40a in the laminated body 40 together with the first plate material 41, and is, for example, a bare material.
  • the second plate material 45 is not limited to the bare material but may be a clad material.
  • the brazing material layer 43 is formed on the surface layer of the first plate material 41 or the surface layer of the second plate material 45.
  • the brazing material layer 43 is not provided on the surface of the second plate material 45.
  • the second plate material 45 may be made of aluminum as in the base layer 42.
  • the end surface of the second plate material 45 and the end surface of the first plate material 41 are misaligned. Specifically, the end face of the first plate member 41 protrudes from the end face of the second plate member 45 by a predetermined length T. Further, as shown in FIG. 5, the first plate material 41 protrudes from the second plate material 45 over the entire circumference.
  • FIG. 6 is a schematic diagram showing the remote anticorrosion action of zinc.
  • a base material such as zinc, which has a lower redox potential than aluminum
  • FIG. 6 shows that when aluminum is exposed to a corroded environment, the surface in contact with the corroded environment corrodes relatively slowly and entirely in the same manner, and pitting corrosion that progresses locally at a relatively high speed.
  • By providing the aluminum alloy member containing zinc with respect to the member made of aluminum it is possible to promote corrosion of the aluminum alloy member having a low oxidation-reduction potential and prevent pitting corrosion of the member made of aluminum.
  • such a base material having a low redox potential not only protects the coated portion but also protects a position slightly distant from the coated portion by remote protection. It is known to have an action.
  • the region R1 containing zinc on the surface protects the region R2 containing no zinc on the surface.
  • the region R1 containing zinc on the surface is separated from R2, and the region R3 containing no zinc on the surface is not protected against corrosion.
  • FIG. 7 is a graph showing the remote anticorrosion effect of zinc. This assumes that the aluminum member is exposed to the environment in which the outdoor unit of the air conditioner is generally placed.
  • the horizontal axis indicates the width X of R1 and the vertical axis indicates the width Y of R2.
  • R1 has a remote anticorrosion action up to a position 5 mm away.
  • the maximum width of the portion having no base material is 10 mm or less.
  • the entire end face of the second plate material 45 falls within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that corrosion is prevented.
  • the laminated body 40 is a laminated body 40 in which a plate material having no holes and a plate material having holes formed are combined and laminated to form an internal space 40a.
  • Some plate materials have the same or different surface layers on the front and back of the base layer.
  • the surface layer includes the base layer 42 and the same material as the base layer 42, a base material having a lower redox potential than the base layer 42, a brazing material, or both a component having a base redox potential than the base layer and a brazing material component. Is one of the materials having.
  • the surface of the plate material exposed as a result of the displacement includes a layer containing a base material having a lower redox potential than the base layer of the plate material as a component.
  • the remote anticorrosion action provided by the base material of one plate material extends to the end face of the plate material itself and the end face of the other plate material. Therefore, the corrosion resistance of the end face can be improved.
  • the redox potential of the brazing material layer 43 of the first plate material 41 is a base material, which is a remote effect.
  • the anticorrosion action extends to the end faces of the first plate material 41 and the second plate material 45. Therefore, the corrosion resistance of the end face of the laminated body 40 can be improved.
  • the base layer 42 is aluminum
  • the base material contained in the brazing material layer 43 is zinc
  • the distance from the first plate material 41 to the second plate material 45 is 5 mm or less.
  • the indoor heat exchanger 11 may have the same configuration.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 4 showing the laminated body 140 according to the second embodiment.
  • the laminated body 140 according to the second embodiment is different from the first embodiment in that the brazing filler metal layer 43 is provided on one surface of the base layer 42.
  • the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the brazing filler metal layer 43 is provided on one surface of the base layer 42.
  • a second brazing filler metal layer 44 containing no base material having a lower redox potential than the base layer 42 is provided on the other surface of the base layer 42.
  • the entire end faces of the first plate material 41 and the second plate material 45 fall within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that they are protected from corrosion.
  • the amount of the base material having a lower redox potential than that of the base layer 42 can be reduced.
  • FIG. 9 is a cross-sectional view showing the laminated body 240 according to the third embodiment.
  • the amount of deviation between the end face of the second plate material 45 and the end face of the first plate material 41 is different from that of the first embodiment.
  • the parts common to the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
  • the position of the end surface of the second plate material 45 and the position of the end surface of the first plate material 41 coincide with each other.
  • the length L2 (the length of the arrow in FIG. 9) in the depth direction of the second plate 45 is shorter than the predetermined length, the remote anticorrosion action of zinc of the first plate 41 extends over the entire depth direction. Therefore, it is not necessary for the first plate material 41 to protrude from the second plate material 45.
  • the length of the end surface of the first plate material 41 protruding from the position of the end surface of the second plate material 45 is shorter than that of the first embodiment.
  • the entire end faces of the first plate material 41 and the second plate material 45 fall within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that they are protected from corrosion.
  • FIG. 10 is a cross-sectional view showing the laminated body 340 according to the fourth embodiment.
  • the first plate material 41 does not have a brazing material component
  • the second plate material 45 does not contain a base material. It differs from the first to third embodiments in that the material layer 44 is provided.
  • the laminate 340 is provided with a sacrificial layer 46 on one surface of the base layer 42, in which the first plate material 41 has only a base material having a lower redox potential than the base layer 42 added to the components of the base layer 42.
  • neither the first plate material 41 nor the second plate material 45 requires a brazing material layer 43 made of a brazing material containing a base material. Since the brazing material layer 43 made of a brazing material containing a base material is generally a custom-made specification, there are restrictions when procuring it. On the other hand, the second brazing material layer 44 and the sacrificial layer 46 containing no base material can be manufactured as general-purpose specifications by a manufacturer of the clad material, and are easily available.
  • FIG. 11 is an exploded perspective view showing the laminated body 440 according to the fifth embodiment.
  • the first layer 60, the second layer 61, the third layer 62, and the fourth layer 63 are overlapped with each other and the heat transfer tube 64 in the first row. It is configured by brazing the heat transfer tube 65 in the second row.
  • the first layer 60, the second layer 61, the third layer 62, and the fourth layer 63 have different shapes.
  • a heat transfer tube insertion hole 66 is formed in the first layer 60, and the heat transfer tube 64 in the first row and the heat transfer tube 65 in the second row are inserted.
  • a connecting hole 67 is formed in each of the second layer 61 and the third layer 62.
  • FIG. 12 is a cross-sectional view showing the laminated body according to the fifth embodiment.
  • the connecting holes 67 formed in the second layer 61 and the third layer 62 overlap each other to form a large internal space 40a.
  • the first layer 60, the second layer 61, and the third layer 62 contain a base material on one surface of the surface of the base layer 42.
  • a brazing filler metal layer 43 is provided, and a sacrificial layer 46 is provided on the other surface.
  • the fourth layer 63 is a material composed of only the base layer 42.
  • the size of the plate materials may be alternately increased or decreased as shown in FIG. 4 or the like, or as shown in FIG. 12, depending on the required dimensions of the plate materials.
  • the end face may be displaced in a stepped manner.
  • the fifth embodiment is different from the first to fourth embodiments in that the fourth layer 63 does not contain a base material having a lower redox potential than the base layer 42.
  • the portion such as the outermost surface 68 in FIG. 12 includes a base material having a lower redox potential than the base layer 42, and the anticorrosion effect of the entire surface is enhanced.
  • the base layer is aluminum and the base material is zinc
  • the base layer has a thickness of about 3 mm
  • the possibility of opening a hole penetrating the plate material due to corrosion is practically reduced.
  • the fourth layer 63 since the fourth layer 63 has a plate thickness of 4 mm, the outermost surface 68 remains as the base layer. As described above, if the outermost surface 68 can be left as the base layer, there is an effect that the amount of the clad material, which is expensive and has restrictions on availability, can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)

Abstract

This multilayer body (40) is obtained by stacking and combining a plurality of plate materials including one plate material that is at least provided with a hole, thereby forming an internal space (40a). This multilayer body has a portion where the end face of a plate material is out of alignment, and at least a part of the thus-exposed surface of the plate material has a layer (43) that contains, as a component, a base material which has a lower redox potential than the base layer of the plate material.

Description

積層体、熱交換器及び空気調和機Laminates, heat exchangers and air conditioners
 本開示は、内部空間が形成された積層体、熱交換器及び空気調和機に関する。 The present disclosure relates to a laminate in which an internal space is formed, a heat exchanger, and an air conditioner.
 従来、複数の板材が積層された積層体と、積層体が用いられる熱交換器が知られている。熱交換器は、例えば空気調和機の室外機及び室内機に設けられている。室外機に設けられた熱交換器は、屋外で使用されるため、降雨等によって水が付着し、熱交換器の積層体を構成する金属材料が腐食して、性能低下及び機能不全が生じるおそれがある。室内機に設けられた熱交換器は、空気調和機が冷房運転を行っている場合、着露する可能性があるため、熱交換器の積層体を構成する金属材料が腐食して、性能低下及び機能不全が生じるおそれがある。そこで、積層体に対し、積層体の材料よりも酸化還元電位が卑である材料を含むペースト状のフラックスを塗布して焼き付けることによって、積層体の端面を含む全体を防食する場合がある。積層体の材料として、例えばアルミニウム合金が挙げられ、積層体の材料よりも酸化還元電位が卑である材料として、例えば亜鉛が挙げられる。このような酸化還元電位が卑である材料は、塗布された部分を防食するのみではなく、塗布された部分から若干離れた位置を防食する遠隔的な防食作用を有することが知られている。 Conventionally, a laminated body in which a plurality of plate materials are laminated and a heat exchanger in which the laminated body is used are known. The heat exchanger is provided in, for example, the outdoor unit and the indoor unit of the air conditioner. Since the heat exchanger installed in the outdoor unit is used outdoors, water may adhere to it due to rainfall, etc., and the metal material constituting the heat exchanger laminate may corrode, resulting in performance deterioration and malfunction. There is. Since the heat exchanger installed in the indoor unit may be exposed to dew when the air conditioner is in cooling operation, the metal material constituting the heat exchanger laminate is corroded and the performance deteriorates. And dysfunction may occur. Therefore, the entire laminate including the end face of the laminate may be protected by applying a paste-like flux containing a material having a lower redox potential than the material of the laminate and baking the laminate. Examples of the material of the laminate include an aluminum alloy, and examples of the material having a lower redox potential than the material of the laminate include zinc. It is known that such a material having a low redox potential not only protects the coated portion but also has a remote anticorrosion action to protect the portion slightly distant from the coated portion.
 特許文献1には、亜鉛濃度が1%~2%程度のアルミニウム合金層が積層被覆されたアルミニウム合金材が開示されている。特許文献1は、芯材となるアルミニウム系素材の少なくとも片面に、芯材よりも亜鉛濃度が高いアルミニウム合金層を2層以上積層被覆している。これにより、特許文献1は、芯材の表層の防食性を向上させようとするものである。 Patent Document 1 discloses an aluminum alloy material in which an aluminum alloy layer having a zinc concentration of about 1% to 2% is laminated and coated. In Patent Document 1, two or more aluminum alloy layers having a higher zinc concentration than the core material are laminated and coated on at least one surface of the aluminum-based material as the core material. As a result, Patent Document 1 attempts to improve the corrosion resistance of the surface layer of the core material.
特開平7-52308号公報Japanese Unexamined Patent Publication No. 7-52308
 しかしながら、特許文献1に開示されたアルミニウム合金材は、芯材の表層を保護することはできるものの、芯材の端面の防食性を向上させることはできない。 However, although the aluminum alloy material disclosed in Patent Document 1 can protect the surface layer of the core material, it cannot improve the corrosion resistance of the end face of the core material.
 本開示は、上記のような課題を解決するためになされたもので、端面の防食性を向上させる積層体、熱交換器及び空気調和機を提供するものである。 This disclosure is made to solve the above-mentioned problems, and provides a laminate, a heat exchanger, and an air conditioner that improve the corrosion resistance of the end face.
 本開示に係る積層体は、少なくとも穴が形成された板材を1枚有する複数の板材を組み合わせて積層され内部空間が形成される積層体であって、板材の端面がずれている部分があり、ずれた結果露出した板材の表面の少なくとも一部には、板材の基層よりも酸化還元電位が卑である卑材料を成分として含む層を持つ。 The laminated body according to the present disclosure is a laminated body in which a plurality of plate materials having at least one plate material having holes are combined and laminated to form an internal space, and there is a portion where the end faces of the plate materials are displaced. At least a part of the surface of the plate material exposed as a result of the displacement has a layer containing a base material having a lower redox potential than the base layer of the plate material as a component.
 本開示によれば、基層よりも酸化還元電位が卑である卑材料、又は基層よりも酸化還元電位が卑である成分とろう材成分との両方を有する材料の表面の端面の位置は、表面に隣り合って接合されている材料の端面の位置とずれている。このため、一方の板材の卑材料がもたらす遠隔的な防食作用が、他方の板材の端面に及ぶ。このため、端面の防食性を向上させることができる。 According to the present disclosure, the position of the end face of the surface of a base material having a redox potential lower than that of the base layer, or a material having both a component having a redox potential lower than that of the base layer and a brazing material component is the surface. It is out of alignment with the position of the end face of the material that is joined next to each other. Therefore, the remote anticorrosion action provided by the base material of one plate material extends to the end face of the other plate material. Therefore, the corrosion resistance of the end face can be improved.
実施の形態1に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 1. FIG. 実施の形態1に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 1. FIG. 亜鉛の遠隔的な防食作用を示す模式図である。It is a schematic diagram which shows the remote anticorrosion action of zinc. 亜鉛の遠隔的な防食作用を示すグラフである。It is a graph which shows the remote anticorrosion action of zinc. 実施の形態2に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 2. 実施の形態3に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 3. 実施の形態4に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 4. 実施の形態5に係る積層体を示す分解斜視図である。It is an exploded perspective view which shows the laminated body which concerns on Embodiment 5. 実施の形態5に係る積層体を示す断面図である。It is sectional drawing which shows the laminated body which concerns on Embodiment 5.
 以下、本開示の積層体、熱交換器及び空気調和機の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。なお、一部の図面において、断面図のハッチングを一部省略している。 Hereinafter, embodiments of the laminate, heat exchanger, and air conditioner of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the following drawings including FIG. 1, the relationship between the sizes of the constituent members may differ from the actual one. In addition, in the following description, terms indicating directions are appropriately used to facilitate understanding of the present disclosure, but these terms are for the purpose of explaining the present disclosure, and these terms are intended to limit the present disclosure. is not it. Examples of the term indicating the direction include "top", "bottom", "right", "left", "front", "rear", and the like. In some drawings, the hatching of the cross-sectional view is partially omitted.
実施の形態1.
 図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室内空間の空気を調整する装置であり、室外機2と、室外機2に接続された室内機3とを備えている。室外機2には、圧縮機6、流路切替装置7、熱交換器8、室外送風機9及び膨張部10が設けられている。室内機3には、室内熱交換器11及び室内送風機12が設けられている。
Embodiment 1.
FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 is a device for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3 connected to the outdoor unit 2. The outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, a heat exchanger 8, an outdoor blower 9, and an expansion unit 10. The indoor unit 3 is provided with an indoor heat exchanger 11 and an indoor blower 12.
 圧縮機6、流路切替装置7、熱交換器8、膨張部10及び室内熱交換器11が冷媒配管5により接続されて、作動ガスである冷媒が流れる冷媒回路4が構成されている。圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路4において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 A compressor 6, a flow path switching device 7, a heat exchanger 8, an expansion unit 10, and an indoor heat exchanger 11 are connected by a refrigerant pipe 5, and a refrigerant circuit 4 through which a refrigerant as a working gas flows is configured. The compressor 6 sucks in a refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the sucked refrigerant. The flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve. The heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant. The heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
 室外送風機9は、熱交換器8に室外空気を送る機器である。膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部10は、例えば開度が調整される電子式膨張弁である。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11に室内空気を送る機器である。 The outdoor blower 9 is a device that sends outdoor air to the heat exchanger 8. The expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant. The expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted. The indoor heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant. The indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
 (運転モード、冷房運転)
 次に、空気調和機1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する熱交換器8に流入し、熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 8 acting as a condenser, and in the heat exchanger 8, the outdoor blower 9 causes the refrigerant to flow into the heat exchanger 8. It exchanges heat with the sent outdoor air, condenses and liquefies. The condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 11 that acts as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with the indoor air sent by the indoor blower 12, and is evaporated and gasified. do. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱交換器8に流入し、熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower. It exchanges heat with the indoor air sent by No. 12, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room. The condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the heat exchanger 8 that acts as an evaporator, and in the heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 to evaporate and gasify. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 図2は、実施の形態1に係る熱交換器8を示す正面図であり、図3は、実施の形態1に係る熱交換器8を示す側面図である。次に、熱交換器8について詳細に説明する。図2及び図3に示すように、熱交換器8は、例えばパラレルフロー型の熱交換器8である。なお、熱交換器8は、フィンチューブ型の熱交換器8であってもよいし、フィンレス型の熱交換器8であってもよい。熱交換器8は、伝熱管20と、フィン30と、積層体40とを備えている。伝熱管20は、内部に冷媒が流れるチューブであり、複数並べられており、アルミニウム製又はアルミニウム合金製である。また、伝熱管20は、アルミニウムを芯材とするクラッド材を用いたものでもよい。伝熱管20は、例えば冷媒が流れる流路21(図4参照)が一列に複数形成された扁平管である。なお、伝熱管20は、円管でもよい。 FIG. 2 is a front view showing the heat exchanger 8 according to the first embodiment, and FIG. 3 is a side view showing the heat exchanger 8 according to the first embodiment. Next, the heat exchanger 8 will be described in detail. As shown in FIGS. 2 and 3, the heat exchanger 8 is, for example, a parallel flow type heat exchanger 8. The heat exchanger 8 may be a fin tube type heat exchanger 8 or a finless type heat exchanger 8. The heat exchanger 8 includes a heat transfer tube 20, fins 30, and a laminate 40. The heat transfer tube 20 is a tube through which a refrigerant flows, and a plurality of heat transfer tubes 20 are arranged and made of aluminum or an aluminum alloy. Further, the heat transfer tube 20 may use a clad material having aluminum as a core material. The heat transfer tube 20 is, for example, a flat tube in which a plurality of flow paths 21 (see FIG. 4) through which a refrigerant flows are formed in a row. The heat transfer tube 20 may be a circular tube.
 フィン30は、伝熱管20に流れる冷媒の熱を伝達する部材であり、例えば伝熱管20と伝熱管20との間に折り曲げて配置されたコルゲートフィンである。フィン30は、例えばアルミニウム製である。このように、フィン30は、伝熱管20と同じ材料が用いられてもよいし、異なる材料が用いられてもよい。なお、フィン30は、プレートフィンでもよい。 The fin 30 is a member that transfers the heat of the refrigerant flowing through the heat transfer tube 20, and is, for example, a corrugated fin that is bent and arranged between the heat transfer tube 20 and the heat transfer tube 20. The fin 30 is made of, for example, aluminum. As described above, the fin 30 may be made of the same material as the heat transfer tube 20, or may be made of a different material. The fin 30 may be a plate fin.
 積層体40は、内部空間40a(図4参照)に冷媒が流れ、挿入された複数の伝熱管20に冷媒を分流するものであり、例えばアルミニウム製である。このように、積層体40は、伝熱管20と同じ材料が用いられてもよいし、異なる材料が用いられてもよい。 The laminated body 40 is made of aluminum, for example, in which the refrigerant flows in the internal space 40a (see FIG. 4) and the refrigerant is diverted to the plurality of inserted heat transfer tubes 20. As described above, the laminated body 40 may use the same material as the heat transfer tube 20, or may use a different material.
 図4は、実施の形態1に係る積層体40を示す断面図であり、図3のA-A断面図である。図5は、実施の形態1に係る積層体40を示す断面図であり、図2のB-B断面図である。次に、積層体40について詳細に説明する。図4及び図5に示すように、積層体40は、第1の板材41と、第2の板材45とを備えている。 FIG. 4 is a cross-sectional view showing the laminated body 40 according to the first embodiment, and is a cross-sectional view taken along the line AA of FIG. FIG. 5 is a cross-sectional view showing the laminated body 40 according to the first embodiment, and is a cross-sectional view taken along the line BB of FIG. Next, the laminated body 40 will be described in detail. As shown in FIGS. 4 and 5, the laminated body 40 includes a first plate material 41 and a second plate material 45.
 第1の板材41は、基層42と、ろう材層43とを有している板状の部材であり、例えばクラッド材である。基層42は、例えばアルミニウムからなる。ろう材層43は、卑材料を含有するろう材からなる。卑材料は、基層42の表面に設けられ、基層42よりも酸化還元電位が卑である材料であり、例えば亜鉛である。ろう材は、第1の板材41と第2の板材45及び積層体40と伝熱管20とをろう付けして接合するものである。本実施の形態1において、ろう材層43は、基層42の両面に設けられている。なお、本実施の形態1では、ろう材に卑材料が混入されたろう材層43が用いられる場合について例示しているが、卑材料とろう材とが基層42に個別に設けられてもよい。 The first plate material 41 is a plate-shaped member having a base layer 42 and a brazing material layer 43, and is, for example, a clad material. The base layer 42 is made of, for example, aluminum. The brazing filler metal layer 43 is made of a brazing filler metal containing a base material. The base material is a material provided on the surface of the base layer 42 and having a lower redox potential than the base layer 42, and is, for example, zinc. The brazing material is formed by brazing and joining the first plate material 41, the second plate material 45, the laminate 40, and the heat transfer tube 20. In the first embodiment, the brazing filler metal layer 43 is provided on both sides of the base layer 42. Although the case where the brazing material layer 43 in which the base material is mixed with the brazing material is used in the first embodiment, the base material and the brazing material may be individually provided in the base layer 42.
 第2の板材45は、第1の板材41と交互に積層されて、第1の板材41と共に積層体40に内部空間40aを形成する板状の部材であり、例えばベア材である。なお、第2の板材45は、ベア材に限らずクラッド材としてもよい。このように、積層体40は、積層して内部空間40aを形成するために、第1の板材41の表層又は第2の板材45の表層にろう材層43が形成されている。第2の板材45の表面には、ろう材層43が設けられていない。なお、第2の板材45は、基層42と同様にアルミニウムからなるものでもよい。そして、積層体40において、第2の板材45の端面と第1の板材41の端面とがずれている。具体的には、第1の板材41の端面が、第2の板材45の端面よりも所定の長さTだけ突出している。また、図5に示すように、第1の板材41は、全周にわたって第2の板材45よりも突出している。 The second plate material 45 is a plate-shaped member that is alternately laminated with the first plate material 41 to form an internal space 40a in the laminated body 40 together with the first plate material 41, and is, for example, a bare material. The second plate material 45 is not limited to the bare material but may be a clad material. As described above, in order to laminate the laminated body 40 to form the internal space 40a, the brazing material layer 43 is formed on the surface layer of the first plate material 41 or the surface layer of the second plate material 45. The brazing material layer 43 is not provided on the surface of the second plate material 45. The second plate material 45 may be made of aluminum as in the base layer 42. Then, in the laminated body 40, the end surface of the second plate material 45 and the end surface of the first plate material 41 are misaligned. Specifically, the end face of the first plate member 41 protrudes from the end face of the second plate member 45 by a predetermined length T. Further, as shown in FIG. 5, the first plate material 41 protrudes from the second plate material 45 over the entire circumference.
 図6は、亜鉛の遠隔的な防食作用を示す模式図である。ここで、亜鉛といったアルミニウムよりも酸化還元電位が卑である卑材料の防食作用について説明する。アルミニウムが腐食環境下にさらされたとき、腐食環境に接する面が比較的ゆっくりと全面的に同様に腐食する全面腐食と、局部的に比較的高速で進行する孔食が知られている。アルミニウムからなる部材に対し、亜鉛を含有するアルミニウム合金部材を設けることによって、酸化還元電位が卑であるアルミニウム合金部材の腐食を促し、アルミニウムからなる部材の孔食を防止することができる。更に、図6に示すように、このような酸化還元電位が卑である卑材料は、塗布された部分を防食するのみではなく、塗布された部分から若干離れた位置を防食する遠隔的な防食作用を有することが知られている。 FIG. 6 is a schematic diagram showing the remote anticorrosion action of zinc. Here, the anticorrosion action of a base material such as zinc, which has a lower redox potential than aluminum, will be described. It is known that when aluminum is exposed to a corroded environment, the surface in contact with the corroded environment corrodes relatively slowly and entirely in the same manner, and pitting corrosion that progresses locally at a relatively high speed. By providing the aluminum alloy member containing zinc with respect to the member made of aluminum, it is possible to promote corrosion of the aluminum alloy member having a low oxidation-reduction potential and prevent pitting corrosion of the member made of aluminum. Further, as shown in FIG. 6, such a base material having a low redox potential not only protects the coated portion but also protects a position slightly distant from the coated portion by remote protection. It is known to have an action.
 図6において、表面に亜鉛を含む領域R1は、表面に亜鉛を含まない領域R2を防食する。一方、図6において、表面に亜鉛を含む領域R1は、R2よりも離れており表面に亜鉛を含まない領域R3までは防食しない。 In FIG. 6, the region R1 containing zinc on the surface protects the region R2 containing no zinc on the surface. On the other hand, in FIG. 6, the region R1 containing zinc on the surface is separated from R2, and the region R3 containing no zinc on the surface is not protected against corrosion.
 図7は、亜鉛の遠隔的な防食作用を示すグラフである。これはアルミニウム部材が、空気調和機の室外機が一般的に置かれる環境にさらされた場合を想定したものである。図7において、横軸はR1の幅Xを示し、縦軸はR2の幅Yを示す。図7に示すように、R1は5mm離れた位置にまで、遠隔的な防食作用を有する。本実施の形態1では、図7のグラフを考慮し、図4に示すように、第2の板材45の厚さSを10mm(=5mm×2)以内としている。このように、積層体40は、表層において、卑材料を有しない部分の最大幅が10mm以下である。これにより、第2の板材45の端面の全体が、第1の板材41のろう材層43からの距離5mmの範囲内に入るため、防食される。 FIG. 7 is a graph showing the remote anticorrosion effect of zinc. This assumes that the aluminum member is exposed to the environment in which the outdoor unit of the air conditioner is generally placed. In FIG. 7, the horizontal axis indicates the width X of R1 and the vertical axis indicates the width Y of R2. As shown in FIG. 7, R1 has a remote anticorrosion action up to a position 5 mm away. In the first embodiment, in consideration of the graph of FIG. 7, as shown in FIG. 4, the thickness S of the second plate material 45 is set to be within 10 mm (= 5 mm × 2). As described above, in the surface layer of the laminated body 40, the maximum width of the portion having no base material is 10 mm or less. As a result, the entire end face of the second plate material 45 falls within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that corrosion is prevented.
 このように、積層体40は、穴が形成されていない板材と、穴が形成された板材とを複数種類組み合わせて積層され内部空間40aが形成される積層体40である。板材の中には、基層と、基層の裏表に同一又は異なる表面層を有するものもある。表面層は、基層42と、基層42と同じ材料、基層42よりも酸化還元電位が卑である卑材料、ろう材、又は基層よりも酸化還元電位が卑である成分とろう材成分との両方を有する材料のうちいずれかである。そして、板材の端面がずれている部分があり、ずれた結果露出した板材の表面は、板材の基層よりも酸化還元電位が卑である卑材料を成分として含む層を持つ。 As described above, the laminated body 40 is a laminated body 40 in which a plate material having no holes and a plate material having holes formed are combined and laminated to form an internal space 40a. Some plate materials have the same or different surface layers on the front and back of the base layer. The surface layer includes the base layer 42 and the same material as the base layer 42, a base material having a lower redox potential than the base layer 42, a brazing material, or both a component having a base redox potential than the base layer and a brazing material component. Is one of the materials having. Then, there is a portion where the end face of the plate material is displaced, and the surface of the plate material exposed as a result of the displacement has a layer containing a base material having a lower redox potential than the base layer of the plate material as a component.
 本実施の形態1によれば、板材の端面がずれている部分があり、ずれた結果露出した板材の表面は、板材の基層よりも酸化還元電位が卑である卑材料を成分として含む層を持つ。このため、一方の板材の卑材料がもたらす遠隔的な防食作用が、その板材自身の端面と他方の板材の端面に及ぶ。このため、端面の防食性を向上させることができる。このように、第2の板材45の端面と第1の板材41の端面とがずれているため、第1の板材41のろう材層43の酸化還元電位が卑である卑材料がもたらす遠隔的な防食作用が、第1の板材41及び第2の板材45の端面に及ぶ。このため、積層体40の端面の防食性を向上させることができる。 According to the first embodiment, there is a portion where the end face of the plate material is displaced, and the surface of the plate material exposed as a result of the displacement includes a layer containing a base material having a lower redox potential than the base layer of the plate material as a component. Have. Therefore, the remote anticorrosion action provided by the base material of one plate material extends to the end face of the plate material itself and the end face of the other plate material. Therefore, the corrosion resistance of the end face can be improved. As described above, since the end surface of the second plate material 45 and the end surface of the first plate material 41 are displaced from each other, the redox potential of the brazing material layer 43 of the first plate material 41 is a base material, which is a remote effect. The anticorrosion action extends to the end faces of the first plate material 41 and the second plate material 45. Therefore, the corrosion resistance of the end face of the laminated body 40 can be improved.
 また、基層42はアルミニウムであり、ろう材層43が含有する卑材料は亜鉛であり、第1の板材41から第2の板材45までの距離が5mm以下である。これにより、図7に示すように、積層体40の端面の防食性を確実に向上させることができる。 Further, the base layer 42 is aluminum, the base material contained in the brazing material layer 43 is zinc, and the distance from the first plate material 41 to the second plate material 45 is 5 mm or less. As a result, as shown in FIG. 7, the corrosion resistance of the end face of the laminated body 40 can be reliably improved.
 なお、本実施の形態1は、室外機2に設けられる熱交換器8について例示しているが、室内熱交換器11が同様の構成を有していてもよい。 Although the first embodiment illustrates the heat exchanger 8 provided in the outdoor unit 2, the indoor heat exchanger 11 may have the same configuration.
実施の形態2.
 図8は、実施の形態2に係る積層体140を示す図4に対応した断面図である。本実施の形態2に係る積層体140は、ろう材層43が基層42の一方の面に設けられている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 8 is a cross-sectional view corresponding to FIG. 4 showing the laminated body 140 according to the second embodiment. The laminated body 140 according to the second embodiment is different from the first embodiment in that the brazing filler metal layer 43 is provided on one surface of the base layer 42. In the second embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図8に示すように、ろう材層43は、基層42の一方の面に設けられている。なお、基層42の他方の面には、基層42よりも酸化還元電位が卑である卑材料を含有しない第2のろう材層44が設けられている。端面においてろう材層43からろう材層43までの長さL1(図8の矢印の長さ)が所定の長さより短い場合、亜鉛の遠隔的な防食作用が端面の広範囲に及ぶため、基層42の一方の面にのみ亜鉛を含有するろう材層43が設けられていれば防食作用は充分である。この場合、長さL1は、10mm(=5mm×2)以内である。これにより、第1の板材41と第2の板材45の端面の全体が、第1の板材41のろう材層43からの距離5mmの範囲内に入るため、防食される。このように、本実施の形態2は、基層42よりも酸化還元電位が卑である卑材料の使用量を削減することができる。 As shown in FIG. 8, the brazing filler metal layer 43 is provided on one surface of the base layer 42. A second brazing filler metal layer 44 containing no base material having a lower redox potential than the base layer 42 is provided on the other surface of the base layer 42. When the length L1 (the length of the arrow in FIG. 8) from the brazing filler metal layer 43 to the brazing filler metal layer 43 on the end face is shorter than a predetermined length, the remote anticorrosion action of zinc extends over a wide range of the end face, so that the base layer 42 If the brazing filler metal layer 43 containing zinc is provided on only one surface, the anticorrosion action is sufficient. In this case, the length L1 is within 10 mm (= 5 mm × 2). As a result, the entire end faces of the first plate material 41 and the second plate material 45 fall within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that they are protected from corrosion. As described above, in the second embodiment, the amount of the base material having a lower redox potential than that of the base layer 42 can be reduced.
実施の形態3.
 図9は、実施の形態3に係る積層体240を示す断面図である。本実施の形態3に係る積層体240は、第2の板材45の端面と第1の板材41の端面とのずれ量が、実施の形態1と相違する。本実施の形態3では、実施の形態1及び2と共通する部分は同一の符号を付して説明を省略し、実施の形態1及び2との相違点を中心に説明する。
Embodiment 3.
FIG. 9 is a cross-sectional view showing the laminated body 240 according to the third embodiment. In the laminated body 240 according to the third embodiment, the amount of deviation between the end face of the second plate material 45 and the end face of the first plate material 41 is different from that of the first embodiment. In the third embodiment, the parts common to the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
 図9に示すように、積層体240の一端部において、第2の板材45の端面の位置と第1の板材41の端面の位置とが一致している。第2の板材45の奥行方向の長さL2(図9の矢印の長さ)が所定の長さより短い場合、第1の板材41の亜鉛の遠隔的な防食作用が奥行方向全体に及ぶ。このため、第1の板材41が第2の板材45から突出する必要がない。また、積層体240の他端部において、第1の板材41の端面が第2の板材45の端面の位置より突出している長さが、実施の形態1よりも短い。第2の板材45の奥行方向の長さL2(図9の矢印の長さ)が短い場合、第1の板材41の亜鉛の遠隔的な防食作用が奥行方向全体に及ぶ。このため、第1の板材41が第2の板材45から突出する量を減らすことができる。この場合、長さL2は、10mm(=5mm×2)以内である。これにより、第1の板材41と第2の板材45の端面の全体が、第1の板材41のろう材層43からの距離5mmの範囲内に入るため、防食される。 As shown in FIG. 9, at one end of the laminated body 240, the position of the end surface of the second plate material 45 and the position of the end surface of the first plate material 41 coincide with each other. When the length L2 (the length of the arrow in FIG. 9) in the depth direction of the second plate 45 is shorter than the predetermined length, the remote anticorrosion action of zinc of the first plate 41 extends over the entire depth direction. Therefore, it is not necessary for the first plate material 41 to protrude from the second plate material 45. Further, at the other end of the laminated body 240, the length of the end surface of the first plate material 41 protruding from the position of the end surface of the second plate material 45 is shorter than that of the first embodiment. When the length L2 (the length of the arrow in FIG. 9) in the depth direction of the second plate material 45 is short, the remote anticorrosion action of zinc of the first plate material 41 extends over the entire depth direction. Therefore, the amount of the first plate material 41 protruding from the second plate material 45 can be reduced. In this case, the length L2 is within 10 mm (= 5 mm × 2). As a result, the entire end faces of the first plate material 41 and the second plate material 45 fall within the range of a distance of 5 mm from the brazing material layer 43 of the first plate material 41, so that they are protected from corrosion.
実施の形態4.
 図10は、実施の形態4に係る積層体340を示す断面図である。図10に示すように、本実施の形態4に係る積層体340は、第1の板材41がろう材成分を有しておらず、第2の板材45に卑材料を含まない第2のろう材層44が設けられている点で、実施の形態1~3と相違する。積層体340は、第1の板材41が、基層42よりも酸化還元電位が卑である卑材料のみを基層42の成分に添加した犠牲層46が基層42の一方の面に設けられている。
Embodiment 4.
FIG. 10 is a cross-sectional view showing the laminated body 340 according to the fourth embodiment. As shown in FIG. 10, in the laminated body 340 according to the fourth embodiment, the first plate material 41 does not have a brazing material component, and the second plate material 45 does not contain a base material. It differs from the first to third embodiments in that the material layer 44 is provided. The laminate 340 is provided with a sacrificial layer 46 on one surface of the base layer 42, in which the first plate material 41 has only a base material having a lower redox potential than the base layer 42 added to the components of the base layer 42.
 本実施の形態4によれば、第1の板材41及び第2の板材45のいずれにも、卑材料を含有するろう材からなるろう材層43が不要となる。卑材料を含有するろう材からなるろう材層43は、一般的に特注仕様となるため、調達する際に制約が生じる。これに対し、卑材料を含有しない第2のろう材層44及び犠牲層46は、クラッド材の製造メーカであれば汎用的な仕様として製造が可能であり、入手性が容易である。 According to the fourth embodiment, neither the first plate material 41 nor the second plate material 45 requires a brazing material layer 43 made of a brazing material containing a base material. Since the brazing material layer 43 made of a brazing material containing a base material is generally a custom-made specification, there are restrictions when procuring it. On the other hand, the second brazing material layer 44 and the sacrificial layer 46 containing no base material can be manufactured as general-purpose specifications by a manufacturer of the clad material, and are easily available.
実施の形態5.
 図11は、実施の形態5に係る積層体440を示す分解斜視図である。図11に示すように、本実施の形態5に係る積層体440は、第1層60、第2層61、第3層62及び第4層63が重ねられ、1列目の伝熱管64と2列目の伝熱管65とがろう付けされて構成されている。ここで、第1層60、第2層61、第3層62及び第4層63は、それぞれ形状が相違する。第1層60には、伝熱管挿入穴66が形成されており、1列目の伝熱管64と2列目の伝熱管65とが挿入される。第2層61及び第3層62には、それぞれ連結穴67が形成されている。
Embodiment 5.
FIG. 11 is an exploded perspective view showing the laminated body 440 according to the fifth embodiment. As shown in FIG. 11, in the laminated body 440 according to the fifth embodiment, the first layer 60, the second layer 61, the third layer 62, and the fourth layer 63 are overlapped with each other and the heat transfer tube 64 in the first row. It is configured by brazing the heat transfer tube 65 in the second row. Here, the first layer 60, the second layer 61, the third layer 62, and the fourth layer 63 have different shapes. A heat transfer tube insertion hole 66 is formed in the first layer 60, and the heat transfer tube 64 in the first row and the heat transfer tube 65 in the second row are inserted. A connecting hole 67 is formed in each of the second layer 61 and the third layer 62.
 図12は、実施の形態5に係る積層体を示す断面図である。図12に示すように、第2層61及び第3層62に形成された連結穴67同士が重なり合い、大きな内部空間40aが形成されている。ここで、板材の材料の仕様に着目すると、図12に示すように、第1層60、第2層61及び第3層62は、基層42の表面の一方の面に、卑材料を含有するろう材層43が設けられており、他方の面に犠牲層46が設けられている。そして、第4層63は、基層42のみで構成された材料である。 FIG. 12 is a cross-sectional view showing the laminated body according to the fifth embodiment. As shown in FIG. 12, the connecting holes 67 formed in the second layer 61 and the third layer 62 overlap each other to form a large internal space 40a. Here, focusing on the specifications of the material of the plate material, as shown in FIG. 12, the first layer 60, the second layer 61, and the third layer 62 contain a base material on one surface of the surface of the base layer 42. A brazing filler metal layer 43 is provided, and a sacrificial layer 46 is provided on the other surface. The fourth layer 63 is a material composed of only the base layer 42.
 なお、板材同士の端面のずれについては、図4等に示すように板材の大きさが交互に大きくなったり小さくなったりしてもよいし、図12に示すように、板材の必要寸法に応じて端面が階段状にずれていくものでもよい。 Regarding the deviation of the end faces between the plate materials, the size of the plate materials may be alternately increased or decreased as shown in FIG. 4 or the like, or as shown in FIG. 12, depending on the required dimensions of the plate materials. The end face may be displaced in a stepped manner.
 ここで、本実施の形態5は、第4層63に、基層42よりも酸化還元電位が卑である卑材料が含まれていない点で、実施の形態1~4と相違する。概して、図12の最表面68のような部分には、基層42よりも酸化還元電位が卑である卑材料を含めて面全体の防食効果が高まる。基層がアルミニウムであり卑材料が亜鉛である場合、3mm程度の厚みを有していれば、実用上腐食によって板材を貫通する穴が開く可能性が著しく低下することが知られている。本実施の形態5では、第4層63を4mmの板厚としているため、最表面68は基層のままとしている。このように、最表面68を基層のままにすることができると、高額で入手性に制約があるクラッド材の使用量を削減することができるという効果を奏する。 Here, the fifth embodiment is different from the first to fourth embodiments in that the fourth layer 63 does not contain a base material having a lower redox potential than the base layer 42. In general, the portion such as the outermost surface 68 in FIG. 12 includes a base material having a lower redox potential than the base layer 42, and the anticorrosion effect of the entire surface is enhanced. It is known that when the base layer is aluminum and the base material is zinc, if the base layer has a thickness of about 3 mm, the possibility of opening a hole penetrating the plate material due to corrosion is practically reduced. In the fifth embodiment, since the fourth layer 63 has a plate thickness of 4 mm, the outermost surface 68 remains as the base layer. As described above, if the outermost surface 68 can be left as the base layer, there is an effect that the amount of the clad material, which is expensive and has restrictions on availability, can be reduced.
 1 空気調和機、2 室外機、3 室内機、4 冷媒回路、5 冷媒配管、6 圧縮機、7 流路切替装置、8 熱交換器、9 室外送風機、10 膨張部、11 室内熱交換器、12 室内送風機、20 伝熱管、21 流路、30 フィン、40 積層体、40a 内部空間、41 第1の板材、42 基層、43 ろう材層、44 第2のろう材層、45 第2の板材、46 犠牲層、50 扁平管、60 第1層、61 第2層、62 第3層、63 第4層、64 伝熱管、65 伝熱管、66 伝熱管挿入穴、67 連結穴、68 最表面、140 積層体、240 積層体、340 積層体、440 積層体。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 refrigerant pipe, 6 compressor, 7 flow path switching device, 8 heat exchanger, 9 outdoor blower, 10 expansion part, 11 indoor heat exchanger, 12 indoor blower, 20 heat transfer tube, 21 flow path, 30 fins, 40 laminate, 40a internal space, 41 first plate material, 42 base layer, 43 brazing material layer, 44 second brazing material layer, 45 second plate material , 46 sacrificial layer, 50 flat tube, 60 1st layer, 61 2nd layer, 62 3rd layer, 63 4th layer, 64 heat transfer tube, 65 heat transfer tube, 66 heat transfer tube insertion hole, 67 connecting hole, 68 outermost surface , 140 laminated body, 240 laminated body, 340 laminated body, 440 laminated body.

Claims (9)

  1.  少なくとも穴が形成された板材を1枚有する複数の板材を組み合わせて積層され内部空間が形成される積層体であって、
     前記板材の端面がずれている部分があり、ずれた結果露出した板材の表面の少なくとも一部には、板材の基層よりも酸化還元電位が卑である卑材料を成分として含む層を持つ
     積層体。
    It is a laminated body in which a plurality of plate materials having at least one plate material having holes formed are combined and laminated to form an internal space.
    A laminated body having a layer containing a base material having a lower redox potential than the base layer of the plate material as a component on at least a part of the surface of the plate material exposed as a result of the deviation of the end face of the plate material. ..
  2.  基層と、前記基層の表面に設けられ前記基層よりも酸化還元電位が卑である卑材料を有する板状の第1の板材と、
     前記第1の板材に積層されて前記第1の板材と共に内部空間を形成し、端面が前記第1の板材の端面とずれている板状の第2の板材と、
     を備える積層体であって、
     積層して内部空間を形成するために、前記第1の板材の表層又は前記第2の板材の表層にろう材層が形成されている
     積層体。
    A base layer, a plate-shaped first plate material provided on the surface of the base layer and having a base material having a lower redox potential than the base layer, and a plate-like first plate material.
    A plate-shaped second plate material that is laminated on the first plate material to form an internal space together with the first plate material and whose end face is deviated from the end face of the first plate material.
    It is a laminated body equipped with
    A laminated body in which a brazing material layer is formed on the surface layer of the first plate material or the surface layer of the second plate material in order to form an internal space by laminating.
  3.  前記基層はアルミニウムであり、
     前記卑材料は亜鉛であり、
     表層において、卑材料を有しない部分の最大幅が10mm以下である
     請求項1又は請求項2に記載の積層体。
    The base layer is aluminum
    The base material is zinc,
    The laminate according to claim 1 or 2, wherein the maximum width of the portion of the surface layer having no base material is 10 mm or less.
  4.  少なくとも最表面は、前記基層よりも酸化還元電位が卑である卑材料である
     請求項3に記載の積層体。
    The laminate according to claim 3, wherein at least the outermost surface is a base material having a redox potential lower than that of the base layer.
  5.  最表面を有する材料の厚みが3mm以上の場合、
     前記最表面は、前記基層よりも酸化還元電位が卑である卑材料ではない
     請求項3に記載の積層体。
    When the thickness of the material with the outermost surface is 3 mm or more,
    The laminate according to claim 3, wherein the outermost surface is not a base material having a redox potential lower than that of the base layer.
  6.  少なくとも一つの板材はろう材成分を有しておらず、少なくとも一つの板材に卑材料を含まないろう材層が設けられている
     請求項1~5のいずれか1項に記載の積層体。
    The laminate according to any one of claims 1 to 5, wherein the at least one plate material does not have a brazing material component, and at least one plate material is provided with a brazing material layer containing no base material.
  7.  基層よりも酸化還元電位が卑である卑材料が含まれておらず、基層のみで構成された層を有する
     請求項1~6のいずれか1項に記載の積層体。
    The laminate according to any one of claims 1 to 6, which does not contain a base material having a lower redox potential than the base layer and has a layer composed of only the base layer.
  8.  請求項1~7のいずれか1項に記載の積層体と、
     前記積層体の前記内部空間に挿入され、内部に冷媒が流れる複数の伝熱管と、
     を備える熱交換器。
    With the laminate according to any one of claims 1 to 7.
    A plurality of heat transfer tubes inserted into the internal space of the laminated body and flowing a refrigerant inside,
    A heat exchanger equipped with.
  9.  請求項8に記載の熱交換器
     を備える空気調和機。
    An air conditioner comprising the heat exchanger according to claim 8.
PCT/JP2021/018937 2020-05-22 2021-05-19 Multilayer body, heat exchanger and air conditioner WO2021235472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524509A JP7286015B2 (en) 2020-05-22 2021-05-19 Laminates, heat exchangers and air conditioners

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089839 2020-05-22
JP2020-089839 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235472A1 true WO2021235472A1 (en) 2021-11-25

Family

ID=78707816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018937 WO2021235472A1 (en) 2020-05-22 2021-05-19 Multilayer body, heat exchanger and air conditioner

Country Status (2)

Country Link
JP (1) JP7286015B2 (en)
WO (1) WO2021235472A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127306A (en) * 2005-11-01 2007-05-24 Denso Corp Heat transfer plate member, heat exchanger using the same, and its manufacturing method
WO2016178278A1 (en) * 2015-05-01 2016-11-10 三菱電機株式会社 Layered header, heat exchanger, and air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127306A (en) * 2005-11-01 2007-05-24 Denso Corp Heat transfer plate member, heat exchanger using the same, and its manufacturing method
WO2016178278A1 (en) * 2015-05-01 2016-11-10 三菱電機株式会社 Layered header, heat exchanger, and air conditioner

Also Published As

Publication number Publication date
JPWO2021235472A1 (en) 2021-11-25
JP7286015B2 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
US8708034B2 (en) Air conditioner
US20110226454A1 (en) Heat exchanger
WO2013121933A1 (en) Outdoor unit for refrigeration device
CN109564067A (en) Heat exchanger and the refrigeration system for using it
CN109564071A (en) Heat exchanger and the refrigeration system for using it
JP6074648B2 (en) Tube member assembly and heat exchanger of refrigeration cycle apparatus
JP2007127306A (en) Heat transfer plate member, heat exchanger using the same, and its manufacturing method
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2006322636A (en) Heat exchanger
JPH08247678A (en) Heat-exchanger made of aluminum
US11002489B2 (en) Heat exchanger and air conditioning apparatus
WO2021235472A1 (en) Multilayer body, heat exchanger and air conditioner
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
CN109564075A (en) Heat exchanger and the refrigeration system for using it
JP7003306B2 (en) Heat exchanger for air conditioning
JP6797304B2 (en) Heat exchanger and air conditioner
WO2020202560A1 (en) Air conditioning device
JP7086278B2 (en) Heat exchanger and air conditioner
WO2024089798A1 (en) Heat exchanger and refrigeration cycle device equipped with heat exchanger
US11035623B2 (en) Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method
US20220373264A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
WO2020250167A1 (en) Heat exchanger
WO2021214993A1 (en) Outdoor heat exchanger of air conditioner
WO2020213227A1 (en) Heat exchanger and refrigeration system in which heat exchanger is used
JP2018040513A (en) Tube for heat exchanger, and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807558

Country of ref document: EP

Kind code of ref document: A1