WO2021235043A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2021235043A1
WO2021235043A1 PCT/JP2021/008602 JP2021008602W WO2021235043A1 WO 2021235043 A1 WO2021235043 A1 WO 2021235043A1 JP 2021008602 W JP2021008602 W JP 2021008602W WO 2021235043 A1 WO2021235043 A1 WO 2021235043A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
distance
control device
target
preceding vehicle
Prior art date
Application number
PCT/JP2021/008602
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 清水
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021235043A1 publication Critical patent/WO2021235043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control device, and relates to a vehicle control device for following a vehicle while maintaining a safe inter-vehicle distance and relative speed with a preceding vehicle.
  • the front of the own vehicle (hereinafter, also referred to as the own vehicle) is monitored by using a radar or a camera, and the preceding vehicle in front of the own vehicle (hereinafter, also referred to as the preceding vehicle) is monitored. ) And the vehicle distance and relative speed are measured, and the vehicle automatically follows the preceding vehicle without the driver operating the accelerator or brake (such technology is also called Adaptive Cruise Control: ACC). Is known (see, for example, Patent Document 1 below).
  • control device described in Patent Document 1 is intended for a four-wheeled vehicle, the function of keeping the distance and relative speed between the vehicle and the preceding vehicle safe is compared with that of a two-wheeled saddle-riding vehicle. It is conceivable that it is applied to a small vehicle and automatically follows the preceding vehicle without the driver (rider) operating the throttle or brake. However, unlike a four-wheeled vehicle, a vehicle with a short width that allows multiple vehicles to run side by side on the same driving lane (within one driving zone), such as a saddle-riding vehicle, has a large number of friends gathering together.
  • the distance between the vehicles in front during the following vehicle is reset according to the distance between the side vehicles and the vehicle to be followed by the own vehicle, and the preceding vehicle is either left or right in the traveling zone.
  • the width of the travelable area in front of the own vehicle is narrowed by driving close to the vehicle, if the distance between the side vehicles and the vehicle to be followed is large, the distance between the vehicles in front is shortened. It ends up. Therefore, if the width of the travelable area in front of the own vehicle is narrow according to the position of the preceding vehicle in the traveling zone, the rider who controls the own vehicle cannot continue to follow the vehicle while ensuring a safe space in front of the vehicle, which is uncomfortable. There is a problem that occurs.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of traveling at an inter-vehicle distance with less discomfort.
  • the vehicle control device controls the acceleration of the own vehicle based on the target inter-vehicle distance set between the vehicle and the preceding vehicle in front of the own vehicle by using the outside world recognition device.
  • the outside world recognition device Based on the information of the preceding vehicle and the traveling zone recognized by using the outside world recognition device when the own vehicle follows the preceding vehicle and travels in the traveling zone in which a plurality of the own vehicles can travel in parallel in the vehicle control device. It is characterized by having a target vehicle-to-vehicle distance correction unit that corrects the target vehicle-to-vehicle distance when following the preceding vehicle according to the distance between the preceding vehicle and the lateral traveling zone road end of the traveling zone. ..
  • the vehicle control device of the present invention when the driving force of the own vehicle is automatically controlled to control the acceleration while keeping the inter-vehicle distance and the relative speed with the preceding vehicle safe, the own vehicle and the following in the traveling zone are performed. Depending on the traveling position of the target preceding vehicle, it is possible to travel at a distance between vehicles with less discomfort.
  • System configuration block diagram of vehicle equipped with ACC Device configuration block diagram of a stereo camera. Explanatory drawing of the formula by stereo view of a stereo camera. Functional block diagram of stereo camera and vehicle control device. Flowchart of acceleration control processing of ACC. Flow chart of the process to calculate the target acceleration for the preceding vehicle. Flow chart of the process to correct the target inter-vehicle distance. Flow chart of the process to calculate the acceleration request to the engine. Flow chart of the process to calculate the acceleration request to the brake. A bird's-eye view explaining the symbols when following the vehicle ahead on the right. A bird's-eye view explaining the symbols when following the vehicle ahead on the left. A bird's-eye view explaining the symbols when following the vehicle in front.
  • FIG. 3 is a functional block diagram of a stereo camera having a number linkage function and a vehicle control device according to the third modification. The flowchart of the process which corrects the target inter-vehicle distance in consideration of the number of the following vehicle which concerns on modification 3.
  • the vehicle control device 100 is mounted on the vehicle 1 (hereinafter, may be referred to as the own vehicle or the own vehicle), and the vehicle 1 is constructed according to the block diagram as shown in FIG.
  • the vehicle 1 is a relatively small vehicle such as a two-wheeled saddle-riding vehicle, and a plurality of vehicles can travel in parallel (staggered traveling) in one traveling zone.
  • the vehicle 1 is equipped with ACC (Adaptive Cruise Control), and in the following, group driving (mass touring) is performed in which the vehicle 1 follows the preceding vehicle in a traveling zone in which a plurality of vehicles can travel in parallel.
  • ACC Adaptive Cruise Control
  • group driving mass touring
  • the vehicle control device 100 is connected to a stereo camera 200 which is an outside world recognition device, and the distance between the preceding vehicle and the roadside of the traveling zone with respect to the own vehicle measured by the stereo camera 200 is transmitted to the vehicle control device 100 by communication. .. Further, the vehicle control device 100 is connected to the wheel speed sensor 300 attached to the wheel, the rotation speed of the tire 900 is measured by the wheel speed sensor 300, and the speed of the own vehicle converted from the measured rotation speed is controlled by the vehicle. Sent to device 100. In addition, the vehicle control device 100 is connected to the ACC control switch 700, and the rider's switch operation information is transmitted to the vehicle control device 100 to determine the rider's ACC control start, ACC control release, and set speed during ACC driving. do. With this configuration, the vehicle control device 100 calculates the control amount by obtaining the inter-vehicle distance, the own vehicle speed, and the set speed during ACC traveling.
  • the vehicle control device 100 calculates the control amount of the brake 410 and the control amount of the engine 510 based on the calculated control amount, and determines the notification method to the rider.
  • the calculated control amount of the brake 410 is transmitted by communication to the brake control unit 400 connected to the vehicle control device 100, and the brake control unit 400 operates the brake 410, which is an actuator, and uses the frictional force against the tire 900. Controls the deceleration (negative acceleration) of vehicle 1.
  • control amount of the engine 510 is transmitted by communication to the engine control unit 500 connected to the vehicle control device 100, and the engine control unit 500 operates the engine 510.
  • the acceleration force generated by the engine 510 is boosted through the torque converter 520, transmission 530, and final gear 540, and transmitted to the tire 900 via the chain and rear sprocket to control the acceleration of vehicle 1.
  • the notification method to the rider determined by the vehicle control device 100 is transmitted by communication to the meter control unit 600 connected to the vehicle control device 100, so that the meter control unit 600 gives an auditory warning using the buzzer 620. Also, visual control status notification using the display device 610 is performed.
  • FIG. 2 shows the device configuration of the stereo camera 200.
  • the stereo camera 200 has a CCD camera (right) 210 and a CCD camera (left) 220 as image pickup units, and an image processing unit 230 obtains images (data) obtained by the CCD camera (right) 210 and the CCD camera (left) 220.
  • the distance to the detection target is transmitted to the vehicle control device 100 through the CAN bus of the vehicle through the communication processing unit 250.
  • the distance to the detection target is measured by processing the images obtained from the left and right CCD cameras by the image processing unit 230, and the principle will be described with reference to FIG.
  • FIG. 3 is a diagram showing the positional relationship between the CCD camera (right) 210, the CCD camera (left) 220, and the detection target A.
  • the CCD camera (right) 210 and the CCD camera (left) 220 are attached to the vehicle so that the imaging surface faces the forward direction of the vehicle and is horizontal to the ground.
  • the direction toward the side surface of the vehicle that is, the left-right direction or the vehicle width direction of the vehicle is set as the X-axis (X-axis direction), and is orthogonal to the X-axis, and the direction in which the detection target A is located, that is, the forward direction of the vehicle.
  • Y-axis Y-axis direction
  • the detection target A is l away from the camera installation position in the Y-axis direction.
  • f be the focal lengths of the CCD camera (right) 210 and the CCD camera (left) 220.
  • the shooting surface of the CCD camera (right) 210 is Sr, the focal position is Or, and the intersection of the straight lines A-Or and Sr is Pr.
  • the shooting surface of the CCD camera (left) 220 is Sl, the focal position is Ol, and the intersection of the straight lines A-Ol and Sl is Pl.
  • the CCD camera (right) 210 and the CCD camera (left) 220 are placed at positions separated by the baseline length B in the X-axis direction. Then, the intersection of the straight lines A'-Ol and Sl, in which the position of the straight line A-Or is translated by the distance of the baseline length B, is defined as Pr', and the distance between Pl and Pr'in the X-axis direction is defined as the parallax p. .. This parallax p corresponds to the amount of deviation of the image formation position of the detection target A in each image taken in stereoscopic view by the CCD camera (right) 210 and the CCD camera (left) 220.
  • the distance l to the detection target A can be calculated by the following formula.
  • the distance l to the detection target A can be calculated using the stereo camera 200.
  • the baseline length B can be clarified by fixing the installation positions of the CCD camera (right) 210 and the CCD camera (left) 220 in configuring the hardware.
  • the focal length f can be clarified by fixing the curvature of the lens in configuring the hardware. Therefore, the detection target A was taken out from the images captured by the CCD camera (right) 210 and the CCD camera (left) 220, and stereoscopically viewed by the CCD camera (right) 210 and the CCD camera (left) 220 was obtained.
  • the distance l is obtained by calculating the parallax p.
  • the vehicle in front of the own vehicle and the own vehicle are in the front-rear direction. It is possible to measure how much distance (inter-vehicle distance) there is in the lateral direction.
  • the detection target A is a lane marking line such as the outside line of the roadway or the center line of the roadway, the distance between the lane marking line in the front-rear direction and the lateral direction is measured and the vehicle travels.
  • the left and right roadside positions (traveling zone roadside positions) of the zone (traveling zone on which the own vehicle is traveling). Furthermore, as targets for detecting the own vehicle's driving zone, not only the lane markings including the outside line and the center line of the road, but also the steps separating the road and the sidewalk, the change in the color of the road, the ruts, guardrails, poles, and walls. , Bot's Dots, Chatter Bar, Parked vehicles on the side of the road, road construction indications, etc. are identified by image processing, and the left and right own vehicle driving zone roadside positions based on any or all of the identification information Can be detected (acquired).
  • the own vehicle traveling zone detected at this time refers to the lane in which the own vehicle travels, and does not include the adjacent lane or the oncoming lane. Therefore, the own vehicle traveling zone is specified from the objects existing in the vicinity for determining the own lane, and the object existing outside the own lane is not used for determining the traveling zone. For example, when viewed from the own lane, the roadside of the own vehicle is not detected by using an object such as a lane marking or a wall existing on the opposite side of the oncoming lane.
  • the left and right vehicle lane roadside positions and the preceding vehicle traveling in front of the vehicle can be simultaneously determined. Can be recognized. Therefore, unlike the case where the monocular camera recognizes the position of the roadside of the own vehicle and the millimeter wave radar is used to recognize the position of the preceding vehicle, the simultaneous sensing can be ensured, and the sensing timing is corrected. It is possible to obtain a recognition result with a simple configuration and a small measurement error due to a deviation in sensing timing by omitting such processing.
  • the vehicle control device 100 is configured as a microcomputer (also referred to as a microcomputer) having a CPU, ROM, RAM, etc. inside, and the CPU executes various programs stored in the ROM, and the CPU is executed. The information generated by this is temporarily stored in the RAM.
  • a microcomputer also referred to as a microcomputer
  • the stereo camera 200 includes a stereoscopic object recognition unit 231 that recognizes the position and type of a three-dimensional object around the own vehicle by processing image data obtained by capturing an image of the surroundings of the own vehicle. Further, the stereo camera 200 (image processing unit 230) detects information for identifying the traveling zone such as a lane marking from the image data captured in the same manner, and detects the traveling zone in which the own vehicle travels. To prepare for.
  • the vehicle control device 100 uses the ACC control switch 700 without the rider's throttle and brake operations.
  • the acceleration in the front-rear direction that should be generated in the own vehicle, that is, the target acceleration is determined, and the engine output and brake output for achieving the target acceleration are calculated. do. Therefore, the vehicle control device 100 is set by the rider as a target acceleration calculation unit 130 for the preceding vehicle, which calculates the target acceleration for traveling according to the speed of the vehicle (preceding vehicle) traveling in front of the own vehicle. It is equipped with a target acceleration calculation unit 140 for a set vehicle speed that calculates a target acceleration for traveling according to the vehicle speed.
  • the target acceleration determination for finally determining the target acceleration of the own vehicle is determined. It is equipped with a part 150. Further, the engine acceleration request calculation unit 160 that calculates the acceleration request (control amount) for the engine 510 of the own vehicle and sends it to the engine control unit 500 using the target acceleration obtained by the target acceleration determination unit 150, and the target acceleration determination. It is equipped with a brake acceleration request calculation unit 170 that calculates an acceleration request (control amount) for the brake 410 of the own vehicle and transmits it to the brake control unit 400 using the target acceleration obtained by the unit 150.
  • the tracking target preceding vehicle information generation unit 133 identifies a three-dimensional object to be followed by the own vehicle. For example, a vehicle that is in an adjacent lane and travels outside the own vehicle's driving zone, or an inappropriate target for following the own vehicle such as a pedestrian is excluded, and information on the preceding vehicle to be followed is generated for subsequent processing. .. That is, the follow-up target preceding vehicle information generation unit 133 also has a function as a follow-up target selection unit for selecting the follow-up target preceding vehicle of the own vehicle.
  • the relative speed calculation unit 135 performs time differentiation using the front-rear distance between the following vehicle and the own vehicle included in the tracking target preceding vehicle information generated by the tracking target preceding vehicle information generation unit 133. Calculate the relative speed between the preceding vehicle to be followed and the own vehicle.
  • the basic target inter-vehicle distance calculation unit 136a is used to target the own vehicle in the front-rear direction. Calculate the basic target inter-vehicle distance, which is the value before correction of the inter-vehicle distance (target inter-vehicle distance).
  • the basic target inter-vehicle distance calculated by the basic target inter-vehicle distance calculation unit 136a is corrected by the target inter-vehicle distance correction unit 136b, and the target inter-vehicle distance is calculated.
  • the target inter-vehicle distance correction unit 136b travels from the lateral position of the following vehicle ahead, the width of the back surface, and the own vehicle obtained from the traveling zone detection unit 232, which is acquired by the following vehicle information generation unit 133.
  • the width that can be traveled in front of the vehicle is determined. It is equipped with a vehicle front travelable width calculation unit 136b6 to calculate, and corrects the basic target vehicle-to-vehicle distance using the vehicle front travelable width obtained by the calculation of the vehicle front travelable width calculation unit 136b6. Later).
  • the target inter-vehicle distance calculated by the target inter-vehicle distance correction unit 136b the relative speed between the preceding vehicle and the own vehicle obtained by the relative speed calculation unit 135, and the preceding vehicle and the own vehicle obtained by the following target vehicle information generation unit 133.
  • the target acceleration appropriate for traveling following the target preceding vehicle is calculated for each preceding vehicle by the target acceleration calculation unit 137 for each preceding vehicle.
  • the target acceleration selection unit 138 selects from the target accelerations for each preceding vehicle calculated by the target acceleration calculation unit 137 for each preceding vehicle, which preceding vehicle the target acceleration is finally calculated for, and leads. Select the output of the target acceleration calculation unit 130 for the vehicle.
  • the symbols are defined as follows. Let the speed of your vehicle be Vh. Let Vp be the speed of the preceding vehicle. The relative velocity is Vdiff, and the direction away from the positive value. The set vehicle speed is Vtgt. Let l be the distance to the preceding vehicle. Let Th be the head time. The Loffset is the distance from the preceding vehicle when the vehicle stops following the preceding vehicle. Let l_tgt_base be the target inter-vehicle distance (basic target inter-vehicle distance) before correction. Let l_tgt_offset be the amount of correction for the target inter-vehicle distance. Let l_tgt be the target inter-vehicle distance.
  • TgtA be the target acceleration.
  • the target acceleration for the preceding vehicle is TgtA_Pv.
  • TgtA_Spd be the target acceleration for the set vehicle speed. Acceleration request to engine AccelReq_Eg. Acceleration request to the brake AccelReq_Brk.
  • EgBrkAccel be the acceleration generated by engine braking.
  • Tc be the execution cycle of the acceleration control process.
  • width_p be the width (vehicle width) of the back of the preceding vehicle.
  • the distance (side position) from the center of the own vehicle to the center of the preceding vehicle in the lateral direction is defined as side_pos.
  • the width (vehicle width) of the own vehicle be width_o.
  • the distance from the center of the vehicle in the lateral direction to the left end of the vehicle lane (driving lane) (roadside position in the left direction of the vehicle) is defined as left_road_edge.
  • the distance from the center of the vehicle in the lateral direction to the right end of the vehicle lane (driving lane) (roadside position in the right direction of the vehicle) is defined as right_road_edge.
  • Safe_width is the lateral distance (width in front of the vehicle) that indicates the area where the vehicle does not collide with the vehicle ahead even if the vehicle that exists between the vehicle ahead and the roadside of the vehicle enters.
  • Acceleration control of ACC by the vehicle control device 100 starts from process S101 and is executed from judgment S110.
  • control ACC If any of the above conditions are met, it is inappropriate to control ACC and control is prohibited. If none of the above conditions are met, control is permitted. If it is determined that control is prohibited in the determination S110, the control is not performed by executing the process S165 and the process S175 to cancel the acceleration request AccelReq_Eg to the engine and the acceleration request AccelReq_Brk to the brake.
  • the process proceeds to processing S133, and the information obtained from the stereo camera 200 is used to generate information on the preceding vehicle to be followed by the own vehicle.
  • the preceding vehicle information to be followed by the own vehicle is obtained from the stereo camera 200 (three-dimensional object recognition unit 231) as information on the three-dimensional object existing in the front direction of the own vehicle in the lateral direction as seen from the own vehicle.
  • the side position side_pos (see Fig. 10 etc.), which is the lateral position measured from the center position of the width to the center position of the vehicle width, and the distance l, which is the front-rear position from the rear end of the three-dimensional object to the tip of the vehicle (Fig. 10).
  • Type of three-dimensional object such as four-wheeled vehicle, pedestrian, bicycle, motorcycle, and other three-dimensional objects acquired by pattern matching, width_p (on the back) seen from the own vehicle of the three-dimensional object (see Fig. 10 etc.)
  • the information of the three-dimensional object existing in front of the own vehicle is not limited to one, and usually, the information of a plurality of three-dimensional objects is acquired at the same time.
  • the stereo camera 200 (traveling zone detection unit 232) acquires the traveling zone roadside position in the right direction of the vehicle and the traveling zone roadside position in the left direction together with the three-dimensional object.
  • the left end position in the lateral direction of the three-dimensional object and the right end position in the lateral direction of the three-dimensional object are calculated by adding the lateral position and half of the width in the left-right direction, respectively.
  • the left end position in the lateral direction of the three-dimensional object is on the left side of the right end position of the own vehicle traveling zone, and the right end position in the lateral direction of the three-dimensional object is on the right side of the left end position of the own vehicle traveling zone. Judging that the three-dimensional object exists on the vehicle traveling zone, it is selected as the tracking target of the own vehicle.
  • the side position side_pos of the three-dimensional object 10 (here, the four-wheeled vehicle) and the right end position right_side_pos_edge in the lateral direction of the three-dimensional object calculated from the width width_p are the left end positions of the own vehicle traveling zone left_road_edge.
  • the three-dimensional object 10 exists on the own vehicle traveling zone because it exists on the right side of the vehicle and the left_side_pos_edge at the left end position in the lateral direction of the three-dimensional object exists on the left side of the right end position right_road_edge of the own vehicle traveling zone. Treat as.
  • the side position side_pos of the three-dimensional object 20 (here, the motorcycle) and the left end position in the lateral direction of the three-dimensional object calculated from the width width_p, the left_side_pos_edge, are the right end positions of the own vehicle traveling zone. Since it exists on the right side of right_road_edge, the three-dimensional object 20 is not treated as existing on the own vehicle running zone.
  • the lane markings become thinner due to deterioration over time, and the lane markings cannot be detected due to the effects of dirt, puddles, and snow, making it impossible to detect the left and right roadside positions of the vehicle's driving zone (in other words,). , It may not be possible to acquire external recognition information for determining the driving zone).
  • the position of the left road end of the own vehicle traveling zone is 2 [m] to the left from the own vehicle (traveling path)
  • the position of the right road edge of the own vehicle traveling zone is from the own vehicle (traveling path). Calculate by replacing the area with a certain distance width from the own vehicle (travel path) to the left and right, such as the position of 2 [m] to the right, with the own vehicle running zone.
  • the traveling path of the own vehicle can be estimated from the own vehicle speed, the bank angle, and the like.
  • the position of the road end of the own vehicle traveling zone cannot be detected by the stereo camera 200 (in other words, in other words).
  • the outside world recognition information for determining the traveling zone cannot be acquired from the stereo camera 200), it is possible to determine whether the vehicle is a three-dimensional object traveling on the traveling zone of the own vehicle.
  • the own vehicle stays at the lane end position before the lane change.
  • the vehicle to be tracked will not be tracked.
  • the detected target if the type of the three-dimensional object is either a four-wheeled vehicle or a motorcycle, it is set as a tracking target of the own vehicle, and for pedestrians, bicycles, and other three-dimensional objects, the own vehicle is set. Do not set it as a tracking target of.
  • the stereoscopic camera 200 detects (selects) a plurality of three-dimensional objects to be followed by the own vehicle, generates the above-mentioned information on the preceding vehicle to be followed, and proceeds to the determination S134.
  • the determination S134 it is determined whether or not there is a preceding vehicle to be followed that has not been processed, and it is determined whether or not the processing is terminated.
  • the process proceeds from the processing S133 to the determination S134, it is determined whether or not the following vehicle ahead is present using the following vehicle information generated by the process S133, and if the preceding vehicle to be followed does not exist, the vehicle is followed. Proceed to process S139 and end process S130.
  • the TgtA_Pv initialized with the invalid value in the process S132 is not updated, the TgtA_Pv used in the process S130 or later has an invalid value, that is, the target acceleration for the preceding vehicle is not used and the follow-up control for the preceding vehicle is not performed. Means.
  • the process proceeds to the process S135, and the target acceleration TgtA_Pv for the preceding vehicle is updated using the subsequent processes.
  • the relative speed Vdiff between the preceding vehicle and the own vehicle to be followed is calculated.
  • the distance l in the front-rear direction with respect to the three-dimensional object acquired by the stereo camera 200 and the distance l in the front-rear direction one cycle before, that is, before the control cycle Tc, which is sequentially stored in the RAM.
  • the relative velocity Vdiff can be obtained by taking the difference and dividing by the control period Tc.
  • the basic target inter-vehicle distance l_tgt_base is calculated by the process S136a.
  • the basic target inter-vehicle distance l_tgt_base is calculated by the following formula.
  • Th and Loffset can be driven at an inter-vehicle distance that suits the rider's taste by providing a function that changes according to the rider's taste and the operating condition of the steering switch.
  • the preceding vehicle speed Vp used in the calculation can be obtained by (own vehicle speed Vh + relative speed Vdiff).
  • the process S136b1 is started, and in the determination S136b2, it is determined whether the target preceding vehicle is the nearest vehicle. Specifically, among the preceding vehicles registered in the information of the preceding vehicle to be followed generated by the processing S133, if the front-rear distance of the preceding vehicle to be processed this time is the closest to the own vehicle, it is the nearest neighbor. And proceed to process S136b3. If it is determined that it is not the closest, proceed to process S136b8, set the basic target inter-vehicle distance l_tgt_base calculated by the execution of process S136b for the target inter-vehicle distance l_tgt, and set the vehicle group running information belonging to the preceding vehicle information to be followed.
  • Set group_ride to Off proceed to process S136b9 and end process S136b without correcting the target inter-vehicle distance. That is, when a plurality of preceding vehicles are detected as tracking targets, the correction is performed only for the preceding vehicle having the closest front-rear distance to the own vehicle, and the preceding vehicle having the shortest front-rear distance to the own vehicle is corrected. No correction is performed for the preceding vehicle that is not a vehicle, and the process S136b is terminated.
  • the correction is performed only for the preceding vehicle closest to the front-rear direction, so that the inter-vehicle distance to the preceding vehicle existing in front of the preceding vehicle is not shortened. This is because each vehicle is positioned alternately on the left and right when traveling in a staggered manner, so it is a target that is shifted to either the left or right just before the front-rear direction of the own vehicle, that is, the nearest vehicle travels at a close distance. A vehicle that exists in front of the nearest preceding vehicle can be treated as a desirable vehicle in the formation that the lateral positional relationship with the own vehicle does not deviate.
  • the target vehicle-to-vehicle distance is separated or brought closer even though the front-rear distance has not changed.
  • processing S136b3 After processing S136b3, processing S136b62 or processing S136b63 is executed by the own vehicle forward travelable width calculation unit 136b6 in the target vehicle-to-vehicle distance correction unit 136b.
  • the left and right end side positions side_pos_edge (see FIGS. 10, 11, and 12) of the preceding vehicle in the own vehicle for use in the subsequent processes are calculated.
  • the left and right side position side_pos_edge is obtained by the following formula using the width_p of the back surface of the preceding vehicle (see Fig. 10, Fig. 11 and Fig. 12) and the side position side_pos (see Fig. 10, Fig. 11 and Fig. 12). Be done.
  • the width_p and side_pos of the back surface of the preceding vehicle used at this time are acquired by the stereo camera 200 (stereoscopic object recognition unit 231). Further, the side position side_pos used at this time is treated as a positive value in the right direction and a negative value in the left direction with respect to the own vehicle. As a result, the left and right end lateral positions side_pos_edge are the lateral distance from the center of the own vehicle (lateral direction) to the left end of the preceding vehicle, or the lateral distance from the center of the own vehicle (lateral direction) to the right end of the preceding vehicle. Can be obtained as.
  • the method of determining whether the side position of the preceding vehicle is the front is to compare the absolute value of the left and right end side position side_pos_edge with the half value of the vehicle width width_o of the own vehicle, and the absolute value of the left and right end side position side_pos_edge. If the value is smaller than half the width_o of the own vehicle, it can be determined that the side position of the preceding vehicle is the front, that is, the preceding vehicle exists in front of the own vehicle (as an example, in the case of FIG. 12). ).
  • the vehicle width width_o of the own vehicle used at this time is incorporated in the ROM mounted on the vehicle control device 100 in advance as a parameter peculiar to the own vehicle and referred to. If it is determined in the determination S136b4 that the preceding vehicle exists in front of the own vehicle, the process proceeds to the process S136b5, the basic target inter-vehicle distance l_tgt_base calculated by the execution of the process S136b is set for the target inter-vehicle distance l_tgt, and the vehicle follows. Set the vehicle group running information group_ride belonging to the target preceding vehicle information to Off, proceed to the process S136b9 and end the process S136b without correcting the target inter-vehicle distance.
  • the absolute value of the left and right end side position side_pos_edge is compared with the half value of the vehicle width width_o of the own vehicle, and the absolute value of the left and right end side position side_pos_edge is half the value of the vehicle width width_o of the own vehicle. If it is determined that the preceding vehicle does not exist in front of the own vehicle, the process proceeds to determination S136b61.
  • the judgment of whether or not the preceding vehicle exists in front of the own vehicle in the judgment S136b4 agrees with the judgment of whether or not the distance between the preceding vehicle and the driving zone roadside position is equal to or larger than the width of the own vehicle. Is. That is, according to this determination S136b4, the correction is performed only for the preceding vehicle in which the distance between the preceding vehicle and the traveling zone road edge is equal to or larger than the vehicle width of the own vehicle, and the distance between the preceding vehicle and the traveling zone road edge is the own vehicle. Processing S136b will be terminated without making corrections for the preceding vehicle that is less than the vehicle width.
  • the correction is performed only for the preceding vehicle that does not exist in front of the own vehicle, so that the inter-vehicle distance to the preceding vehicle that exists in front of the own vehicle is not shortened. This is because when traveling in a staggered manner, the preceding vehicle that does not exist in front of the own vehicle is targeted, and the preceding vehicle that exists in front of the own vehicle is excluded from mass touring (staggered traveling). The feeling of strangeness to the rider can be reduced.
  • the preceding vehicle existing in front of the own vehicle that is, the preceding vehicle in which the distance between the preceding vehicle and the roadside end position is smaller than the width of the own vehicle and is narrow, is excluded from the correction for shortening the distance, and the own vehicle is excluded.
  • the preceding vehicle that does not exist in front that is, the preceding vehicle in which the distance between the preceding vehicle and the roadside end position is widely secured by the width of the own vehicle or more, is subject to the correction to shorten the distance. The feeling of strangeness to the rider can be reduced.
  • determination S136b61 it is determined whether the lateral position of the preceding vehicle is shifted to the right (as an example in the case of FIG. 10) or to the left (as an example in the case of FIG. 11). If the side position side_pos of the preceding vehicle or the side_pos_edge of the left and right end side positions is a positive value, it is assumed that the preceding vehicle is traveling in a position shifted to the right, and the process proceeds to processing S136b62, which must be a positive value. If so, it is assumed that the preceding vehicle is traveling at a position shifted to the left, and the process proceeds to processing S136b63.
  • the width that can be traveled in front of the vehicle vehicle is safe_width (see Fig. 10) by the following formula. ) Is calculated.
  • the left_road_edge position on the left side of the vehicle and the right_road_edge position on the right side of the vehicle used in the processing S136b62 and the processing S136b63 are set to a positive value in the right direction and a positive value in the left direction with respect to the center of the vehicle as in the side position side_pos. It is treated as a negative value and measured by the stereo camera 200 (traveling zone detector 232).
  • the safe_width that allows the vehicle to travel in front of the vehicle calculated by processing S136b62 and processing S136b63 is an area that does not collide with the preceding vehicle even if the vehicle that exists between the preceding vehicle and the roadside of the driving zone enters (the vehicle can travel). Lateral width) is shown.
  • the safe_width corresponding to the distance between the preceding vehicle and the roadside
  • the traveling lane road that exists in the lateral direction in which the own vehicle exists when viewed from the preceding vehicle.
  • the roadside is on the left side, and if the preceding vehicle is to the left of the own vehicle (see Fig. 11).
  • the width between the right side roadside it seems that it can only be reached by traveling directly behind the preceding vehicle such as the width between the preceding vehicle existing to the right of the own vehicle and the right side roadside. Area is omitted, and the width of the area in front of the own vehicle (in other words, the area in the direction of the traveling road) is obtained so as not to collide with the preceding vehicle.
  • the basic target inter-vehicle distance l_tgt_base calculated by the process S136a using the safe_width that can travel ahead of the own vehicle is corrected, and the target inter-vehicle distance l_tgt is set.
  • the correction amount l_tgt_offset performed for the basic target inter-vehicle distance l_tgt_base is calculated based on the map value preset by the vehicle front travelable width safe_width and the basic target inter-vehicle distance l_tgt_base. A positive value is set as the map value used at this time.
  • the correction amount l_tgt_offset is set to 0 [m]. If the safe_width that can be driven in front of the vehicle is larger than the correction upper limit driving width threshold, for example, 1.8 m is set as the upper limit driving width threshold, and if it is larger than 1.8 m and the safe_width that can be traveled in front of the vehicle is sufficiently wide, the correction is made. Let the amount l_tgt_offset be the maximum correction amount according to the basic target inter-vehicle distance l_tgt_base.
  • the safe_width that can travel ahead of the vehicle is between the lower correction lower limit driving width threshold and the upper correction upper limit driving width threshold value, smoothly connect the maximum correction amount according to the basic target inter-vehicle distance l_tgt_base and 0 [m].
  • the correction amount l_tgt_offset is increased so that the vehicle can travel closer to the preceding vehicle while the basic target inter-vehicle distance l_tgt_base is set.
  • the correction amount l_tgt_offset is reduced to immediately interrupt the side of the preceding vehicle due to acceleration / deceleration of the preceding vehicle or acceleration / deceleration due to changes in the road surface gradient. Adjust to set a wider distance so that there is no such thing. This parameter is often responsive to acceleration / deceleration of the vehicle, agility when changing tracks, the climate and road environment commonly used by the vehicle, and the rider frequently controls acceleration / deceleration to maintain distance.
  • the correction amount, the correction lower limit running width threshold and the correction upper limit running width threshold are adjusted in advance by experiments according to the characteristics such as whether there are many scenes in which the occurrence of acceleration / deceleration is suppressed regardless of the fluctuation of the distance. Then, the determined parameters are incorporated in the ROM mounted on the vehicle control device 100. By subtracting the correction amount l_tgt_offset obtained by the calculation from the basic target inter-vehicle distance l_tgt_base and setting it to the target inter-vehicle distance l_tgt, the result of correction for the basic target inter-vehicle distance l_tgt_base is set to the target inter-vehicle distance l_tgt. can do.
  • the safe_width that allows the vehicle to travel in front of the vehicle which is wider than the correction upper limit driving width threshold, is secured. If it is possible, the target inter-vehicle distance l_tgt does not change (constant), so acceleration / deceleration is small, fuel efficiency is good, and driving is comfortable. On the other hand, in a scene where the driving width safe_width in front of the own vehicle is not narrower than the correction lower limit driving width threshold value, it is possible to suppress a scene in which the vehicle is too close to the preceding vehicle and achieve both safety.
  • the relationship between the basic target inter-vehicle distance l_tgt_base, the correction amount l_tgt_offset, the vehicle forward travelable width safe_width, and the target inter-vehicle distance l_tgt when the vehicle speed of the preceding vehicle is constant will be described with reference to FIG. ..
  • the safe_width that can travel ahead of the vehicle is 0 [m] and the lower limit of correction is 1.4 [m]
  • the correction amount l_tgt_offset becomes zero, and the values of the basic target inter-vehicle distance l_tgt_base and the target inter-vehicle distance l_tgt are equal. It becomes (constantly).
  • the correction amount is proportional to the value of the vehicle front travelable width safe_width between the correction lower limit travel width threshold value of 1.4 [m] and the correction upper limit travel width threshold value of 1.8 [m].
  • the correction amount l_tgt_offset becomes maximum.
  • the safe_width that can travel ahead of the own vehicle becomes wider than the correction lower limit traveling width threshold of 1.4 [m] in other words, the longer the distance between the preceding vehicle and the roadside of the driving zone, the shorter the target vehicle-to-vehicle distance l_tgt.
  • the target inter-vehicle distance l_tgt is set to the shortest (a constant value according to the basic target inter-vehicle distance l_tgt_base).
  • the correction amount l_tgt_offset can be further corrected by using (curvature of). Specifically, when the road curvature becomes larger than a certain level, the correction amount l_tgt_offset for shortening the target inter-vehicle distance l_tgt is adjusted to be smaller as the road curvature increases.
  • process S136b72 the vehicle group traveling information group_ride is updated.
  • processing S136b71 it is shown that the own vehicle is performing staggered running (parallel running) in a group of vehicles including the preceding vehicle.
  • the vehicle group traveling information group_ride belonging to the following vehicle information is set to On, the process proceeds to the process S136b9, and the process S136b is terminated.
  • the basic target inter-vehicle distance l_tgt_base is corrected using the correction amount l_tgt_offset based on the vehicle front travelable width safe_width etc., and the target inter-vehicle distance l_tgt is calculated.
  • judgment S137d1 if the preceding vehicle is farther than the target inter-vehicle distance, judgment S137d2 is performed and the relative speed calculated by processing S135 is separated, that is, is the preceding vehicle faster than the own vehicle (Vdiff ⁇ 0)? ?) Make a judgment. If the preceding vehicle is faster than the own vehicle, set an invalid value in TgtA_Tmp in processing S137p2.
  • the target acceleration TgtA_Pv_Leave for separation is calculated based on Vdiff and a preset map value based on the deviation between l_tgt and l.
  • the map value should be such that the speed is reduced while approaching the preceding vehicle, the speed is reduced while being separated from the preceding vehicle, the acceleration is performed while being separated from the preceding vehicle, and the relative speed with the preceding vehicle is set to zero.
  • the acceleration is continuously changed to set so that the speed can be controlled. Depending on the relative speed with the preceding vehicle, skip the situation where the speed is reduced while approaching the preceding vehicle or the situation where the speed is decreased while being separated from the preceding vehicle, and only accelerate while being separated from the preceding vehicle. It may be controlled to.
  • the target acceleration calculation for catching up with the process S137p3 will be explained below.
  • the target acceleration TgtA_Pv_Approach for catching up is calculated by the following formula.
  • l is from the deceleration start threshold l_Thr so that deceleration starts from a long distance, during which the preceding vehicle accelerates and wastes deceleration energy, and the ride quality does not deteriorate. If it does not become shorter, TgtA_Tmp is set as an invalid value, and if l is shorter than the deceleration start threshold l_Thr, TgtA_Pv_Approach is set in TgtA_Tmp to calculate the target acceleration to catch up. Normally, if the deceleration start threshold value l_Thr is set to a value of around 70m to 130m with the behavior when the rider drives without using ACC as a guide, the control will be less uncomfortable. It is also considered that the deceleration start threshold value l_Thr is variable depending on the vehicle speed or the like.
  • the determination S138d compares the TgtA_Tmp obtained by the processing S137p1, the processing S137p2, or the processing S137p3 with the TgtA_Pv initialized by the processing S132 with an invalid value. If TgtA_Tmp is smaller than TgtA_Pv, proceed to process S138p and overwrite and update TgtA_Pv with the value of TgtA_Tmp.
  • TgtA_Tmp is smaller than TgtA_Pv means that the target acceleration is large in the negative direction, that is, the preceding vehicle needs to control the inter-vehicle distance using stronger deceleration control of the own vehicle.
  • TgtA_Tmp +1 [m / s 2 ] and TgtA_Pv is an invalid value
  • TgtA_Tmp is treated as a smaller value and TgtA_Pv is updated to +1 [m / s 2 ] in the process S138p. In this way, after updating TgtA_Pv, the process proceeds to determination S134.
  • TgtA_Tmp is TgtA_Pv or more, the process S138p is not performed and the process proceeds to the determination S134.
  • the process proceeds from the determination S138d or the processing S138p to the determination S134, the presence or absence of the preceding vehicle information is determined again.
  • the follow-up target preceding vehicle information used to calculate TgtA_Tmp from the process S135 to the process S138d or the process S138p is ignored by the determination S134, and the presence or absence of other follow-up target preceding vehicle information extracted as the follow-up target preceding vehicle information.
  • the process proceeds to the process S139 to end the process S130, and if the unprocessed follow-up target vehicle information exists, the process proceeds to the process S135. It is determined whether to update TgtA_Pv again, and the processing is repeated until there is no information on the preceding vehicle to be followed that has not been processed.
  • Processing by the target acceleration calculation unit 130 for the preceding vehicle S130 enables control to maintain a safe inter-vehicle distance for multiple detected preceding vehicles, for example, the preceding vehicle in which the preceding vehicle runs in front of the preceding vehicle.
  • a safe inter-vehicle distance for multiple detected preceding vehicles for example, the preceding vehicle in which the preceding vehicle runs in front of the preceding vehicle.
  • acceleration / deceleration is performed with respect to the preceding vehicle existing in the immediate vicinity of the own vehicle. Can be adjusted.
  • TgtA_Spd is calculated by the following formula.
  • K in the above formula is a positive constant and is set between 0.001 and 0.02. Further, if K is set to a variable value such that it is large when accelerating and small when decelerating, it is easy to drive with good fuel efficiency so that the brake is not used for deceleration. In addition, when Vh is large, safety can be improved by adjusting K as a variable value so that acceleration is weak and deceleration is strong. In this way, it is desirable to adjust K as a variable value according to the stability of the vehicle and the preference tendency of the rider who purchases the mounted vehicle.
  • the target acceleration TgtA of the own vehicle is determined.
  • the target acceleration TgtA is TgtA by comparing TgtA_Pv calculated by processing S130 and TgtA_Spd calculated by processing S140, and selecting the smaller one, that is, the one that decelerates more.
  • TgtA_Pv calculated by processing S130
  • TgtA_Spd calculated by processing S140
  • the change amount limit on the acceleration side gives priority to good ride quality and strengthens the suppression
  • the change amount limit on the deceleration side gives priority to safety and makes the change amount limit asymmetrical according to the positive and negative directions. It is desirable that it is difficult to accelerate and it is easy to decelerate.
  • the acceleration request AccelReq_Eg to the engine 510 of the own vehicle is calculated.
  • the acceleration request AccelReq_Eg to the engine is calculated based on the target acceleration TgtA calculated by the process S150. The contents of the process S160 will be described with reference to FIG.
  • the acceleration EgBrkAccel generated by the engine brake by the process S162 is calculated.
  • EgBrkAccel is calculated by adding the deceleration due to the engine and the deceleration due to the running resistance.
  • the deceleration by the engine is set to the value set according to the specifications of the engine and transmission and the gear ratio according to Vh.
  • the running resistance is calculated using the coefficient of air resistance according to the shape of the vehicle and Vp.
  • the slope of the road surface is calculated from the comparison between the front-rear acceleration sensor value mounted on the vehicle and the time derivative value of the wheel speed, and added to the running resistance as the slope resistance.
  • the lower limit is set to TgtA with the EgBrkAccel calculated in the process S162 as the lower limit
  • the acceleration is limited to the acceleration that can be operated by the output control of the engine
  • the acceleration is set to AccelReq_Eg.
  • AccelReq_Eg is subjected to dead zone processing to eliminate the discomfort given to the rider due to vibration in the vehicle body due to slight fluctuations in the output of the engine. Then, the process proceeds to the process S169 and the process S160 is terminated.
  • the acceleration request AccelReq_Brk to the brake 410 of the own vehicle is calculated.
  • the acceleration request AccelReq_Brk to the brake is calculated based on the target acceleration TgtA calculated by the process S150 and the acceleration request AccelReq_Eg calculated by the process S160.
  • the contents of the process S170 will be described with reference to FIG.
  • the process S172 subtracts the acceleration request AccelReq_Eg from the target acceleration TgtA to calculate the target brake deceleration TgtA_Brk required for braking.
  • TgtABrkInitThr is set as a constant value, and if TgtABrkInitThr is set too large, the start of deceleration will be delayed and sudden braking will occur. On the contrary, if TgtABrkInitThr is made too small, the rattling of the vehicle cannot be suppressed. Therefore, it is desirable to set it at about 0.1 [m / s 2 ] according to the braking performance and stability of the vehicle.
  • the process proceeds to processing S102, and the acceleration control of the ACC by the vehicle control device 100 is terminated.
  • the acceleration request AccelReq_Eg to the engine 510 calculated in the process S160 is transmitted from the vehicle control device 100 to the engine control unit 500.
  • the acceleration request AccelReq_Brk to the brake 410 calculated in the process S170 is transmitted from the vehicle control device 100 to the brake control unit 400.
  • a process of generating display information for presenting information to the rider and a target information from the vehicle CAN bus are obtained. Performs communication processing to receive or conversely transmit ACC control information.
  • the process of generating display information determines the display indicating whether control is in progress according to the switch information obtained from the ACC control switch 700 (Figs. 1 and 2) and the conditions of judgment S110 (Fig. 5).
  • control information such as whether or not the preceding vehicle to be controlled can be detected by the stereo camera 200 (FIGS. 1 and 2) and the set vehicle speed used in the process S140 (FIG. 5) is set as display information.
  • AccelReq_Brk calculated as the acceleration control described above is transmitted to the brake unit 400 (Fig. 1, Fig. 2), and AccelReq_Eg is transmitted to the engine control unit 500 (Fig. 1, Fig. 2) to generate display information.
  • the generated display information is transmitted to the meter control unit 600 (Fig. 1).
  • the ACC control switch 700 is installed in a place that the rider can easily operate while driving, such as a switch installed on the steering wheel of the vehicle or a lever attached to the steering column, and the rider's ACC control start, ACC control release, ACC driving Used to change the set speed of the time.
  • the ACC control switch 700 is a switch for starting ACC, a switch for canceling ACC, a switch for changing the set speed during ACC driving in the positive direction, a switch for changing in the negative direction, and also. It is equipped with a switch to enable the use of ACC as needed and a switch to change the inter-vehicle distance during follow-up driving.
  • the switch for starting ACC should be read as a switch for changing the set speed during ACC driving in the positive direction, so that the cost increase due to the increase in switch types should be prevented. You can also.
  • the brake control unit 400 controls the brake 410 by using AccelReq_Brk transmitted from the vehicle control device 100 (brake acceleration request calculation unit 170), and generates a braking force on the tire 900 to generate the acceleration of the vehicle (that is, the acceleration of the vehicle (that is, that is). Deceleration) is controlled.
  • the brake control unit 400 has a function of adjusting the brake output generated for AccelReq_Brk according to the weight of the own vehicle, the tire radius, the effective diameter of the brake, and the like.
  • the engine control unit 500 controls the engine 510 using AccelReq_Eg transmitted from the vehicle control device 100 (engine acceleration request calculation unit 160), and drives the tire 900 through the torque converter 520, the transmission 530, and the final gear 540.
  • the acceleration of the vehicle is controlled by generating force.
  • the engine control unit 500 has a function of adjusting the engine torque generated for AccelReq_Eg in consideration of the weight of the own vehicle, the tire driving radius, the torque converter 520, and the state of the transmission 530, and the engine throttle of the engine 510. Control the opening and injection amount. Furthermore, by controlling the gear ratio of the transmission 530 as needed, the desired acceleration can be obtained.
  • the meter control unit 600 controls the display device 610 and the buzzer 620 according to the display information communicated from the vehicle control device 100, and notifies the rider of an auditory alarm and a visual control state.
  • the vehicle control device 100 of the present embodiment is the own vehicle based on the target inter-vehicle distance set between the vehicle control device 100 and the preceding vehicle in front of the own vehicle by using the stereo camera (outside world recognition device) 200.
  • the preceding vehicle is recognized by using the stereo camera (outside world recognition device) 200 when the own vehicle follows the preceding vehicle in a traveling zone in which a plurality of the own vehicles can travel in parallel.
  • the target distance between vehicles ahead when following the preceding vehicle is obtained.
  • the vehicle control device 100 of the present embodiment when the driving force of the own vehicle is automatically controlled while maintaining the inter-vehicle distance and the relative speed with the preceding vehicle safely, the own vehicle and the following in the traveling zone. Depending on the traveling position of the target preceding vehicle, it is possible to travel at a distance between vehicles with less discomfort.
  • ⁇ Modification 1> As a modification 1, a vehicle configuration will be described. In the vehicle configuration shown in FIG. 1, a vehicle using an engine is described, but since the present invention targets a vehicle acceleration control method, a vehicle using any prime mover such as an electric vehicle, a hybrid vehicle, or a hydrogen vehicle. Is valid for.
  • the engine when targeting an electric vehicle, the engine can be replaced with a motor.
  • the engine brake disappears and the viewpoint of regenerative braking and battery management comes into play, so this implementation is carried out by changing the EgBrkAccel calculated in process S162 (Fig. 8). The form can be easily diverted.
  • the function of the vehicle control device 100 shown in the present embodiment is realized as a software function. Therefore, when the vehicle control device 100 is not prepared as a dedicated control unit but is incorporated as a software function in the stereo camera 200 and also used as the vehicle control device 100, it is also incorporated as a software function in the brake control unit 400. , It may also be used as a vehicle control device 100. These examples are useful for reducing the number of components, simplifying the architecture, and reducing costs.
  • the vehicle is following the motorcycle, and while the vehicle is staggered, the vehicle that is supposed to operate at a low speed of 30 [km / h] or less in the vehicle group of the vehicle
  • the vehicle traveling in front of the own vehicle does not decelerate and overtakes or overtakes the vehicle outside the vehicle group (group) that is supposed to operate at a low speed of 30 [km / h] or less.
  • the own vehicle decelerates by a vehicle outside the vehicle group (group) and temporarily divides the vehicle group (see FIG. 18). In response to this event, changes are made to the generation of information on the preceding vehicle to be followed by the process S133.
  • the vehicle group traveling information group_ride set in the processing S136b in the pre-change control cycle is set to On, that is, the target vehicle-to-vehicle distance correction unit 136b.
  • On that is, the target vehicle-to-vehicle distance correction unit 136b.
  • ⁇ Modification 3> As a modification 3, a method of linking the target inter-vehicle distance correction of the process S136b (FIG. 6) and the vehicle number (number) detection will be described.
  • the vehicle to be followed is an interrupting vehicle outside the vehicle group (group) and is not a vehicle that wants to travel as the same vehicle group. (See Figure 19).
  • the process S136b71 (Fig. 7) may be executed, and the vehicle may travel at an inter-vehicle distance assuming the same vehicle group.
  • the rider of the preceding vehicle being followed and the rider who controls the own vehicle may feel uncomfortable with the short distance between the vehicles.
  • the vehicle control device 100 is provided with a number acquisition unit 191 and a number recording unit 192, and a number detection is performed by the stereoscopic object recognition unit 231 of the stereo camera 200 (image processing unit 230).
  • the part 231n is provided.
  • the number acquisition unit 191 of the vehicle control device 100 is a means for the rider to obtain the number written on the vehicle number plate (license plate) of the vehicle traveling in the same vehicle group of the own vehicle.
  • the means for obtaining the number is, for example, a method in which the rider manually operates a switch, a dial, and a touch panel to directly input a numerical value to the vehicle control device 100, a method in which voice is input to the vehicle control device 100 by a microphone, and the like.
  • the number of the vehicle detected by the number detection unit 231n which will be described later, is presented to the rider, and the presented number is input to the vehicle control device 100 in a form approved by the rider, or using a mobile information terminal.
  • the display device 610 may be diverted, or a display device may be separately provided.
  • the ACC control switch 700 may be used for the operation of the switch, the dial, and the touch panel, a dedicated interface device may be provided separately, or a navigation device or the like which is not shown in FIG. 1 may be provided. You may divert the interface you are using.
  • the number acquisition unit 191 also receives the rider's request to erase the acquired number, and if there is an input error in the number or the vehicle group is disbanded, any number or all the recorded numbers It is possible to obtain the request to delete the number using the same interface as the input of the number.
  • the number storage unit 192 records the number of the vehicle traveling in the same vehicle group of the own vehicle obtained by the number acquisition unit 191.
  • a means of recording there is a method of storing in a memory provided in the vehicle control device 100.
  • the memory for recording the number adopts a non-volatile memory, and the power of the own vehicle It is desirable to have a configuration in which the recorded number is retained even after the power is stopped and the recorded number can be read even after the power is turned on again.
  • the number storage unit 192 has a function of erasing an arbitrary number or all stored numbers when a number erasure request is received by the number acquisition unit 191.
  • the stereoscopic object recognition unit 231 of the stereo camera 200 uses the number detection unit 231n provided in the stereoscopic object recognition unit 231 in addition to the distance and type of the detected obstacle to the own vehicle to capture an image of the obstacle.
  • Vehicle number markers are extracted from the image by pattern matching. Furthermore, by performing pattern matching using letters and numbers indicating the vehicle number in the vehicle number markers extracted by pattern matching, a number that identifies the corresponding obstacle is extracted, and the obstacle and the own vehicle are identified.
  • the number information is transmitted to the vehicle control device 100 together with the distance and type information.
  • the tracking target preceding vehicle information generation unit 133 associates the number information with the tracking target preceding vehicle information. Then, using the number information of the vehicle group traveling vehicle stored in the number storage unit 192 and the number information associated with the follow-up target preceding vehicle information in the follow-up target preceding vehicle information generation unit 133, the changed target vehicle-to-vehicle distance is used. Used in the correction unit 136b.
  • the processing content of the target inter-vehicle distance correction unit 136b after the change will be described using the flowchart shown in FIG. In FIG. 21, the determination of whether the vehicle is the nearest neighbor in the front-rear direction of the determination S136b2 is changed with respect to the target inter-vehicle distance correction process shown in FIG. 7, and the number registration vehicle front-rear direction nearest neighbor determination of the determination S136b2_b, that is, , It is determined whether the vehicle is a number registered vehicle and is the nearest vehicle in the front-rear direction.
  • the changed determination S136b2_b the information of the number associated with the information of the preceding vehicle to be followed is not recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192. This time, the information of the number associated with the preceding vehicle information to be followed is processed only for the vehicle recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, without targeting the vehicle. It is determined whether the vehicle in the front-rear direction of the preceding vehicle is the closest to the own vehicle.
  • the determination S136b2_b is unsuccessful at that time, and the process goes to S136b8. And proceed. Further, although the number of the preceding vehicle to be processed this time is recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, the number storage unit 192 contains the number of the preceding vehicle to be followed.
  • the judgment S136b2_b is It becomes unsuccessful and proceeds to process S136b8.
  • the number of the preceding vehicle to be processed this time is a vehicle recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, and the vehicle in the front-rear direction with respect to the own vehicle is closer to the preceding vehicle to be processed this time. There is no vehicle, or all vehicles whose front-rear distance is closer to the vehicle than the preceding vehicle processed this time are not the same number as the number information of the vehicle group traveling vehicle stored in the number storage unit 192.
  • the processing S136b71 (Fig. 7) can be corrected only for vehicles that want to travel in the same vehicle group. It is possible to suppress discomfort to the rider and the rider who controls the own vehicle.
  • ⁇ Modification example 4> As a modification 4, a means for detecting and recognizing the traveling environment of the own vehicle will be described.
  • the stereo camera 200 which is an outside world recognition device, is used to detect obstacles around the own vehicle, the preceding vehicle, and the own vehicle traveling zone.
  • the means for detecting and recognizing the traveling environment of the own vehicle is not limited to the method using a stereo camera, and examples thereof include a method using a millimeter wave radar and a monocular camera. In this case, the millimeter-wave radar is used to measure obstacles in front of the vehicle and the distance between the preceding vehicle and the vehicle in the front-rear direction and the side direction.
  • the own vehicle traveling zone is recognized. Further, by pattern matching the image information obtained by the monocular camera with the information obtained by the millimeter wave radar, whether the preceding vehicle to be followed is a four-wheeled vehicle or a two-wheeled vehicle, that is, following. It is also possible to determine the type of the target preceding vehicle. With this configuration, it is possible to make an inexpensive system by using a millimeter-wave radar or a monocular camera, which are relatively inexpensive sensors, in combination. In addition, unlike a stereo camera, a layout that is not tied to the mounting positions of the two cameras is possible, and the degree of freedom in vehicle design can be increased. In addition, the selection of sensors is not limited to cameras and millimeter-wave radars such as sonar and laser radar, but by installing other sensors in combination with the own vehicle, it is possible to detect and recognize the driving environment of the own vehicle. Can be done.
  • the means for detecting and recognizing the driving environment of the own vehicle is not limited to the sensor mounted on the own vehicle.
  • the own vehicle and the preceding vehicle are equipped with GPS, and by measuring the position of each vehicle and distributing the information to the vehicles around the own vehicle, the distance between each other can be measured.
  • the vehicle obtains information on the longitude, latitude, and orientation of the vehicle from GPS, and detects the vehicle's travel zone using map information, so that it communicates with GPS instead of the sensor mounted on the vehicle. It is possible to detect and recognize the driving environment of the own vehicle.
  • the own vehicle can detect and recognize the driving environment of the own vehicle only by mounting a relatively inexpensive and small communication device, so that the vehicle price can be suppressed. Further, unlike the sensor, restrictions due to the shield, the direction of installation, and the position are reduced, so that the degree of freedom in vehicle design can be further increased. In addition, when communication is used, it is possible to pair other vehicles in the vehicle group including the own vehicle in advance so that the inter-vehicle distance is not shortened with respect to the vehicles outside the own vehicle group.
  • sensors and communications can be combined to build a vehicle.
  • the detection performance is supplemented by using communication, and if positioning is difficult with GPS such as in a tunnel and the distance measurement performance deteriorates due to diffused reflection even with millimeter wave radar, stereo.
  • Vehicles can also be built for applications such as supplementing performance with cameras.
  • the present invention is not limited to the above-described embodiment, but includes various modified forms.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a vehicle control device which enables a vehicle to travel with a vehicle-to-vehicle distance that is less inappropriate. This device comprises a target vehicle-to-vehicle distance correction module (136b) for, when a vehicle being maneuvered is traveling so as to follow a leading vehicle in a lane along which a plurality of vehicles can travel in parallel, correcting a target vehicle-to-vehicle distance between said vehicle being maneuvered and said leading vehicle which is followed by same, according to a distance that is between said leading vehicle and a lane edge of said lane present in a lateral direction (i.e., the travelable width present in front of said vehicle being maneuvered) and that is based on information on said leading vehicle and said lane as identified with a stereo camera (ambient environment identifying device) (200). Moreover, said target vehicle-to-vehicle distance correction module (136b) corrects said target vehicle-to-vehicle distance so as to be shorter the longer the distance between said leading vehicle and said lane edge (i.e., the travelable width present in front of said vehicle being maneuvered) is (namely, increases the degree of correction for correcting said target vehicle-to-vehicle distance so as to be shorter).

Description

車両制御装置Vehicle control device
 本発明は、車両制御装置に係り、車両にて先行車両との車間距離や相対速度を安全に保ちつつ、追従走行を行うための車両制御装置に関する。 The present invention relates to a vehicle control device, and relates to a vehicle control device for following a vehicle while maintaining a safe inter-vehicle distance and relative speed with a preceding vehicle.
 車両の運転操作において、運転者の負担を軽減するため、レーダーやカメラを用いて自車両(以下、自車ともいう)の前方を監視し、自車前方の先行車両(以下、先行車ともいう)との車間距離及び相対速度を計測し、運転者がアクセルやブレーキの操作を行わずとも、自動的に先行車両に追従走行を行う技術(このような技術をAdaptive Cruise Control:ACCともいう)が知られている(例えば、下記特許文献1を参照)。 In order to reduce the burden on the driver in the driving operation of the vehicle, the front of the own vehicle (hereinafter, also referred to as the own vehicle) is monitored by using a radar or a camera, and the preceding vehicle in front of the own vehicle (hereinafter, also referred to as the preceding vehicle) is monitored. ) And the vehicle distance and relative speed are measured, and the vehicle automatically follows the preceding vehicle without the driver operating the accelerator or brake (such technology is also called Adaptive Cruise Control: ACC). Is known (see, for example, Patent Document 1 below).
 また、特許文献1に記載の制御装置は四輪車を対象としているが、車両にて先行車両との車間距離や相対速度を安全に保つという機能を、二輪の鞍乗り型車両のような比較的小型の車両に適用し、運転者(ライダー)がスロットルやブレーキの操作を行わずとも、自動的に先行車両に追従走行を行うことが考えられる。しかしながら、四輪車と異なって鞍乗り型車両のように同一走行車線上(1つの走行帯内)で複数の車両が並走できるような車幅の短い車両では、仲間同士が多数集まって集団走行(マスツーリング)するような運用があり、その際は車群の長さを短くするために同一走行車線上を左右交互の二列縦隊で走行(千鳥走行)する。このような運用において、自動的に自車前方の先行車両に追従走行を行う技術を組み合わせた際、集団走行時に前方車両との車間距離が長くなりすぎる傾向がある。そのため、前述の車両用制御装置を鞍乗り型車両のような比較的小型の車両に適用する場合、追従対象となる車両に対して、自車両からの側方車間距離(つまり、自車両と追従対象となる前方車両との側方方向距離)に応じて追従時の車間距離を短くして走行し、集団走行時の車群(車列)の長さを短く保ったまま走行することができる技術が知られている(例えば、下記特許文献2を参照)。 Further, although the control device described in Patent Document 1 is intended for a four-wheeled vehicle, the function of keeping the distance and relative speed between the vehicle and the preceding vehicle safe is compared with that of a two-wheeled saddle-riding vehicle. It is conceivable that it is applied to a small vehicle and automatically follows the preceding vehicle without the driver (rider) operating the throttle or brake. However, unlike a four-wheeled vehicle, a vehicle with a short width that allows multiple vehicles to run side by side on the same driving lane (within one driving zone), such as a saddle-riding vehicle, has a large number of friends gathering together. There is an operation such as running (mass touring), and in that case, in order to shorten the length of the vehicle group, it runs on the same running lane in two rows of alternating left and right (staggered running). In such an operation, when the technology for automatically following the preceding vehicle in front of the own vehicle is combined, the distance between the vehicle and the preceding vehicle tends to be too long during group driving. Therefore, when the above-mentioned vehicle control device is applied to a relatively small vehicle such as a saddle-riding vehicle, the lateral inter-vehicle distance from the own vehicle (that is, following the own vehicle) with respect to the vehicle to be followed. It is possible to drive by shortening the inter-vehicle distance during follow-up according to the lateral distance from the target vehicle in front), and to keep the length of the vehicle group (convoy) short during group driving. The technique is known (see, for example, Patent Document 2 below).
特開2009-149254号公報Japanese Unexamined Patent Publication No. 2009-149254 特開2016-34819号公報Japanese Unexamined Patent Publication No. 2016-34819
 しかしながら、前記従来の技術では、自車の追従対象としている車両との側方車間距離に応じて追従走行中の前方車間距離を再設定しており、先行車両が走行帯の中で左右のいずれかに寄って走行し、自車前方の走行可能領域幅が狭くなっているか否かにかかわらず、追従対象としている車両との側方車間距離が離れていれば、前方車間距離を短くしてしまう。そのため、走行帯における先行車両の位置に応じて自車前方の走行可能領域幅が狭いと、自車両を操縦するライダーは前方に安全な空間を確保しながら追従走行を続けることができなくなり、違和感が発生するという問題がある。 However, in the above-mentioned conventional technology, the distance between the vehicles in front during the following vehicle is reset according to the distance between the side vehicles and the vehicle to be followed by the own vehicle, and the preceding vehicle is either left or right in the traveling zone. Regardless of whether the width of the travelable area in front of the own vehicle is narrowed by driving close to the vehicle, if the distance between the side vehicles and the vehicle to be followed is large, the distance between the vehicles in front is shortened. It ends up. Therefore, if the width of the travelable area in front of the own vehicle is narrow according to the position of the preceding vehicle in the traveling zone, the rider who controls the own vehicle cannot continue to follow the vehicle while ensuring a safe space in front of the vehicle, which is uncomfortable. There is a problem that occurs.
 本発明は、上記事情に鑑みてなされたもので、その目的とするところは、違和感の少ない車間距離で走行することのできる車両制御装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of traveling at an inter-vehicle distance with less discomfort.
 前記の問題を解決するため、本発明に係る車両制御装置は、外界認識装置を用いて自車両前方の先行車両との間に設定した目標車間距離に基づいて、前記自車両の加速度制御を行う車両制御装置において、前記自車両が複数台並行走行可能な走行帯を前記先行車両に追従して走行する際に、前記外界認識装置を用いて認識した前記先行車両および前記走行帯の情報に基づき、前記先行車両と前記走行帯の側方方向の走行帯路端との距離に応じて、前記先行車両への追従時の目標車間距離を補正する目標車間距離補正部を有することを特徴とする。 In order to solve the above problem, the vehicle control device according to the present invention controls the acceleration of the own vehicle based on the target inter-vehicle distance set between the vehicle and the preceding vehicle in front of the own vehicle by using the outside world recognition device. Based on the information of the preceding vehicle and the traveling zone recognized by using the outside world recognition device when the own vehicle follows the preceding vehicle and travels in the traveling zone in which a plurality of the own vehicles can travel in parallel in the vehicle control device. It is characterized by having a target vehicle-to-vehicle distance correction unit that corrects the target vehicle-to-vehicle distance when following the preceding vehicle according to the distance between the preceding vehicle and the lateral traveling zone road end of the traveling zone. ..
 本発明の車両制御装置によれば、先行車両との車間距離や相対速度を安全に保ちつつ、自動で自車両の駆動力を制御して加速度制御を行う時、走行帯内の自車両および追従対象となる先行車両の走行位置に応じて、違和感の少ない車間距離で走行することが可能となる。 According to the vehicle control device of the present invention, when the driving force of the own vehicle is automatically controlled to control the acceleration while keeping the inter-vehicle distance and the relative speed with the preceding vehicle safe, the own vehicle and the following in the traveling zone are performed. Depending on the traveling position of the target preceding vehicle, it is possible to travel at a distance between vehicles with less discomfort.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
ACC搭載の車両のシステム構成ブロック図。System configuration block diagram of vehicle equipped with ACC. ステレオカメラの装置構成ブロック図。Device configuration block diagram of a stereo camera. ステレオカメラのステレオ視による式の説明図。Explanatory drawing of the formula by stereo view of a stereo camera. ステレオカメラと車両制御装置の機能ブロック図。Functional block diagram of stereo camera and vehicle control device. ACCの加速度制御処理のフローチャート。Flowchart of acceleration control processing of ACC. 先行車に対する目標加速度を計算する処理のフローチャート。Flow chart of the process to calculate the target acceleration for the preceding vehicle. 目標車間距離を補正する処理のフローチャート。Flow chart of the process to correct the target inter-vehicle distance. エンジンへの加速度要求を計算する処理のフローチャート。Flow chart of the process to calculate the acceleration request to the engine. ブレーキへの加速度要求を計算する処理のフローチャート。Flow chart of the process to calculate the acceleration request to the brake. 右前方先行車追従時の記号を説明する俯瞰図。A bird's-eye view explaining the symbols when following the vehicle ahead on the right. 左前方先行車追従時の記号を説明する俯瞰図。A bird's-eye view explaining the symbols when following the vehicle ahead on the left. 正面先行車追従時の記号を説明する俯瞰図。A bird's-eye view explaining the symbols when following the vehicle in front. 目標車間距離と自車前方走行可能幅の関係を示すグラフ。A graph showing the relationship between the target inter-vehicle distance and the width that can be traveled in front of the vehicle. 車走行帯上の先行車に対する記号を説明する俯瞰図。A bird's-eye view explaining the symbols for the preceding vehicle on the vehicle lane. 車走行帯上でない先行車に対する記号を説明する俯瞰図。A bird's-eye view that explains the symbols for the preceding vehicle that is not on the vehicle driving zone. 自車両が走行帯路端を跨って車線変更を行いつつ先行車追従する状況を説明する俯瞰図。A bird's-eye view that explains the situation in which the own vehicle follows the preceding vehicle while changing lanes across the roadside. 自車両が曲率が大きい走行帯を走行しつつ先行車追従する状況を説明する俯瞰図。A bird's-eye view that explains the situation in which the own vehicle follows the preceding vehicle while traveling in a traveling zone with a large curvature. 変形例2に関する、先行車両および自車両が車群(集団)外の車両に対して追い抜きまたは追い越しを行う状況を説明する俯瞰図。A bird's-eye view illustrating a situation in which the preceding vehicle and the own vehicle overtake or overtake a vehicle outside the vehicle group (group) with respect to the second modification. 変形例3に関する、先行車追従時に割り込み車が存在する状況を説明する俯瞰図。A bird's-eye view illustrating a situation in which an interrupting vehicle exists when following a preceding vehicle with respect to the modified example 3. 変形例3に関する、ナンバー連携機能を有するステレオカメラと車両制御装置の機能ブロック図。FIG. 3 is a functional block diagram of a stereo camera having a number linkage function and a vehicle control device according to the third modification. 変形例3に関する、追従対象車両のナンバーを考慮した目標車間距離を補正する処理のフローチャート。The flowchart of the process which corrects the target inter-vehicle distance in consideration of the number of the following vehicle which concerns on modification 3.
 以下、図面を参照しながら本発明の一実施形態である車両制御装置を説明する。 Hereinafter, the vehicle control device according to the embodiment of the present invention will be described with reference to the drawings.
 車両制御装置100は、車両1(以下、自車や自車両ということがある)に搭載され、図1のようなブロック図に従って車両1を構築する。本実施形態において、車両1は、二輪の鞍乗り型車両のような比較的小型で、1つの走行帯内で複数台並行走行(千鳥走行)可能な車両である。また、車両1にはACC(Adaptive Cruise Control)が搭載されており、以下では、当該車両1が複数台並行走行可能な走行帯を先行車両に追従して走行する集団走行(マスツーリング)を行う際の、当該車両1の加速度制御について説明する。 The vehicle control device 100 is mounted on the vehicle 1 (hereinafter, may be referred to as the own vehicle or the own vehicle), and the vehicle 1 is constructed according to the block diagram as shown in FIG. In the present embodiment, the vehicle 1 is a relatively small vehicle such as a two-wheeled saddle-riding vehicle, and a plurality of vehicles can travel in parallel (staggered traveling) in one traveling zone. In addition, the vehicle 1 is equipped with ACC (Adaptive Cruise Control), and in the following, group driving (mass touring) is performed in which the vehicle 1 follows the preceding vehicle in a traveling zone in which a plurality of vehicles can travel in parallel. The acceleration control of the vehicle 1 will be described.
 車両制御装置100は、外界認識装置であるステレオカメラ200と接続され、ステレオカメラ200で計測した自車両に対する先行車両や走行帯路端との車間距離は、車両制御装置100へ通信によって送信される。また、車両制御装置100は、車輪に取り付けられた車輪速センサ300と接続され、車輪速センサ300でタイヤ900の回転数を計測し、計測した回転数から換算した自車両の速度は、車両制御装置100へ送信される。また、車両制御装置100はACCコントロールスイッチ700と接続され、ライダーのスイッチ操作情報が車両制御装置100へ送信されることで、ライダーのACC制御開始、ACC制御解除、ACC走行時の設定速度を判断する。この構成により、車両制御装置100は、車間距離、自車速度、ACC走行時の設定速度を得ることで、制御量の計算を行う。 The vehicle control device 100 is connected to a stereo camera 200 which is an outside world recognition device, and the distance between the preceding vehicle and the roadside of the traveling zone with respect to the own vehicle measured by the stereo camera 200 is transmitted to the vehicle control device 100 by communication. .. Further, the vehicle control device 100 is connected to the wheel speed sensor 300 attached to the wheel, the rotation speed of the tire 900 is measured by the wheel speed sensor 300, and the speed of the own vehicle converted from the measured rotation speed is controlled by the vehicle. Sent to device 100. In addition, the vehicle control device 100 is connected to the ACC control switch 700, and the rider's switch operation information is transmitted to the vehicle control device 100 to determine the rider's ACC control start, ACC control release, and set speed during ACC driving. do. With this configuration, the vehicle control device 100 calculates the control amount by obtaining the inter-vehicle distance, the own vehicle speed, and the set speed during ACC traveling.
 また、車両制御装置100は、算出した制御量に基づいて、ブレーキ410での制御量、エンジン510での制御量を算出し、ライダーへの報知方法を決定する。 Further, the vehicle control device 100 calculates the control amount of the brake 410 and the control amount of the engine 510 based on the calculated control amount, and determines the notification method to the rider.
 算出したブレーキ410での制御量は、車両制御装置100に接続したブレーキコントロールユニット400に通信で送信され、ブレーキコントロールユニット400は、アクチュエータであるブレーキ410を動作させ、タイヤ900に対する摩擦力を用いて車両1の減速度(負の加速度)を制御する。 The calculated control amount of the brake 410 is transmitted by communication to the brake control unit 400 connected to the vehicle control device 100, and the brake control unit 400 operates the brake 410, which is an actuator, and uses the frictional force against the tire 900. Controls the deceleration (negative acceleration) of vehicle 1.
 更に、エンジン510での制御量は、車両制御装置100に接続したエンジンコントロールユニット500に通信で送信され、エンジンコントロールユニット500は、エンジン510を動作させる。エンジン510で発生した加速力は、トルクコンバータ520、トランスミッション530、ファイナルギア540を通して倍力され、チェーンとリアスプロケットを介してタイヤ900に伝えられることで、車両1の加速度を制御する。 Further, the control amount of the engine 510 is transmitted by communication to the engine control unit 500 connected to the vehicle control device 100, and the engine control unit 500 operates the engine 510. The acceleration force generated by the engine 510 is boosted through the torque converter 520, transmission 530, and final gear 540, and transmitted to the tire 900 via the chain and rear sprocket to control the acceleration of vehicle 1.
 更に、車両制御装置100で決定したライダーへの報知方法は、車両制御装置100に接続されたメータコントロールユニット600に通信で送信されることで、メータコントロールユニット600によるブザー620を用いた聴覚による警告や、表示装置610を用いた視覚による制御状態通知などを行う。 Further, the notification method to the rider determined by the vehicle control device 100 is transmitted by communication to the meter control unit 600 connected to the vehicle control device 100, so that the meter control unit 600 gives an auditory warning using the buzzer 620. Also, visual control status notification using the display device 610 is performed.
 そして、上述する接続は、例えばCAN(Car Area Network)を用いて行われる。 And, the above-mentioned connection is made by using, for example, CAN (Car Area Network).
 次に、図2及び図3を用いて、図1に記載したステレオカメラ200が持つ機能の詳細を説明する。 Next, the details of the functions of the stereo camera 200 described in FIG. 1 will be described with reference to FIGS. 2 and 3.
 ステレオカメラ200の装置構成を図2に示す。ステレオカメラ200は、撮像部としてのCCDカメラ(右)210とCCDカメラ(左)220を持ち、CCDカメラ(右)210とCCDカメラ(左)220で得た画像(データ)を画像処理部230に入力して画像に映る検出対象との距離を測定する。検出対象との距離は、通信処理部250を通して車両のCANバスを通して車両制御装置100へ送信される。検出対象との距離は、画像処理部230によって、左右のCCDカメラから得られた画像を処理して計測するが、その原理を、図3を用いて説明する。 Figure 2 shows the device configuration of the stereo camera 200. The stereo camera 200 has a CCD camera (right) 210 and a CCD camera (left) 220 as image pickup units, and an image processing unit 230 obtains images (data) obtained by the CCD camera (right) 210 and the CCD camera (left) 220. Input to to measure the distance to the detection target reflected in the image. The distance to the detection target is transmitted to the vehicle control device 100 through the CAN bus of the vehicle through the communication processing unit 250. The distance to the detection target is measured by processing the images obtained from the left and right CCD cameras by the image processing unit 230, and the principle will be described with reference to FIG.
 図3は、CCDカメラ(右)210、CCDカメラ(左)220、検出対象Aの位置関係を示す図である。CCDカメラ(右)210とCCDカメラ(左)220は、車両の前進方向に対して撮像面を向け、地面に対して水平となるように、当該車両に取り付けられる。そして、車両の側面に向けた方向、つまり車両の左右方向又は車幅方向をX軸(X軸方向)とし、X軸に対して直交し、検出対象Aのある方向、つまり車両の前進方向をY軸(Y軸方向)と定義する。検出対象Aはカメラの設置位置よりY軸方向にlの距離が離れている。また、CCDカメラ(右)210とCCDカメラ(左)220の焦点距離をfとする。また、CCDカメラ(右)210の撮影面をSr、焦点位置をOrとし、直線A-OrとSrの交点をPrとする。同様に、CCDカメラ(左)220の撮影面をSl、焦点位置をOl、直線A-OlとSlの交点をPlとする。 FIG. 3 is a diagram showing the positional relationship between the CCD camera (right) 210, the CCD camera (left) 220, and the detection target A. The CCD camera (right) 210 and the CCD camera (left) 220 are attached to the vehicle so that the imaging surface faces the forward direction of the vehicle and is horizontal to the ground. Then, the direction toward the side surface of the vehicle, that is, the left-right direction or the vehicle width direction of the vehicle is set as the X-axis (X-axis direction), and is orthogonal to the X-axis, and the direction in which the detection target A is located, that is, the forward direction of the vehicle. Defined as Y-axis (Y-axis direction). The detection target A is l away from the camera installation position in the Y-axis direction. Also, let f be the focal lengths of the CCD camera (right) 210 and the CCD camera (left) 220. The shooting surface of the CCD camera (right) 210 is Sr, the focal position is Or, and the intersection of the straight lines A-Or and Sr is Pr. Similarly, the shooting surface of the CCD camera (left) 220 is Sl, the focal position is Ol, and the intersection of the straight lines A-Ol and Sl is Pl.
 また、CCDカメラ(右)210とCCDカメラ(左)220は、X軸方向に基線長Bだけ離れた位置に配置する。そして、直線A-Orの位置を基線長Bの距離だけ平行移動させた直線A’-OlとSlの交点を、Pr’とし、X軸方向のPlとPr’間の距離を視差pとする。この視差pは、CCDカメラ(右)210とCCDカメラ(左)220によりステレオ視で撮影した際の各画像における検出対象Aの結像位置のズレ量に相当する。 Also, the CCD camera (right) 210 and the CCD camera (left) 220 are placed at positions separated by the baseline length B in the X-axis direction. Then, the intersection of the straight lines A'-Ol and Sl, in which the position of the straight line A-Or is translated by the distance of the baseline length B, is defined as Pr', and the distance between Pl and Pr'in the X-axis direction is defined as the parallax p. .. This parallax p corresponds to the amount of deviation of the image formation position of the detection target A in each image taken in stereoscopic view by the CCD camera (right) 210 and the CCD camera (left) 220.
 そして、図3に示すように、三角形A-Ol-Orと三角形Ol-Pl-Pr’は相似形である。したがって、検出対象Aまでの距離lは、以下の式によって算出することができる。
Figure JPOXMLDOC01-appb-M000001
And, as shown in FIG. 3, the triangle A-Ol-Or and the triangle Ol-Pl-Pr'are similar figures. Therefore, the distance l to the detection target A can be calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
 よって、基線長B、焦点距離f、及び視差pを明らかにすることで、ステレオカメラ200を用いて検出対象Aまでの距離lを算出することができる。 Therefore, by clarifying the baseline length B, the focal length f, and the parallax p, the distance l to the detection target A can be calculated using the stereo camera 200.
 そして、基線長Bはハードウェアを構成する上でCCDカメラ(右)210とCCDカメラ(左)220の設置位置を固定することで明らかにできる。また、焦点距離fも同様にハードウェアを構成する上で、レンズの曲率を固定することで明らかにできる。そのため、CCDカメラ(右)210とCCDカメラ(左)220に撮像された画像から、検出対象Aを取り出し、CCDカメラ(右)210とCCDカメラ(左)220によるステレオ視を行って得られた視差pを算出することで、距離lを得る。 And, the baseline length B can be clarified by fixing the installation positions of the CCD camera (right) 210 and the CCD camera (left) 220 in configuring the hardware. Similarly, the focal length f can be clarified by fixing the curvature of the lens in configuring the hardware. Therefore, the detection target A was taken out from the images captured by the CCD camera (right) 210 and the CCD camera (left) 220, and stereoscopically viewed by the CCD camera (right) 210 and the CCD camera (left) 220 was obtained. The distance l is obtained by calculating the parallax p.
 また、撮像位置と距離lから、検出対象Aが自車両に対してX軸方向にどれだけの距離離れている位置にいるか、三角関数を用いて取得することができる。 Further, from the imaging position and the distance l, it is possible to obtain how far the detection target A is from the own vehicle in the X-axis direction by using a trigonometric function.
 この時、CCDカメラ(右)210とCCDカメラ(左)220で自車両周辺を撮像し、検出対象Aを自車両前方の車両として適用すれば、自車両前方の車両と自車両が前後方向、側方方向にどれだけの距離(車間距離)があるかを計測することができる。また、検出対象Aを車道外側線や車道中央線などの区画線とすれば、区画線が自車に対して前後方向、側方方向にどれだけの距離があるかを計測し、自車両走行帯(自車両が走行している走行帯)の左右路端位置(走行帯路端位置)を検出することもできる。さらに、自車走行帯を検出するための対象として、車道外側線や車道中央線を含む区画線だけではなく、車道と歩道を分離する段差、道路の色の変化、わだち、ガードレール、ポール、壁、ボッツドッツ、チャッターバー、車道脇の駐車車両や道路工事表示などを含む路上障害物を画像処理によって識別し、それらの識別情報のうちいずれか又は全てを基に左右の自車走行帯路端位置を検出(取得)することができる。この時検出する自車走行帯とは、自車の走行する車線のことを指しており、隣接車線や対向車線を含まない。そのため、自車線を判断するための近傍に存在する対象から自車走行帯を特定し、それより外に存在している対象は走行帯を判定するためには用いない。例えば、自車線から見て、対向車線を挟んで反対側に存在する区画線や壁等の対象を用いて自車走行帯路端は検出しない。 At this time, if the area around the own vehicle is imaged with the CCD camera (right) 210 and the CCD camera (left) 220 and the detection target A is applied as the vehicle in front of the own vehicle, the vehicle in front of the own vehicle and the own vehicle are in the front-rear direction. It is possible to measure how much distance (inter-vehicle distance) there is in the lateral direction. In addition, if the detection target A is a lane marking line such as the outside line of the roadway or the center line of the roadway, the distance between the lane marking line in the front-rear direction and the lateral direction is measured and the vehicle travels. It is also possible to detect the left and right roadside positions (traveling zone roadside positions) of the zone (traveling zone on which the own vehicle is traveling). Furthermore, as targets for detecting the own vehicle's driving zone, not only the lane markings including the outside line and the center line of the road, but also the steps separating the road and the sidewalk, the change in the color of the road, the ruts, guardrails, poles, and walls. , Bot's Dots, Chatter Bar, Parked vehicles on the side of the road, road construction indications, etc. are identified by image processing, and the left and right own vehicle driving zone roadside positions based on any or all of the identification information Can be detected (acquired). The own vehicle traveling zone detected at this time refers to the lane in which the own vehicle travels, and does not include the adjacent lane or the oncoming lane. Therefore, the own vehicle traveling zone is specified from the objects existing in the vicinity for determining the own lane, and the object existing outside the own lane is not used for determining the traveling zone. For example, when viewed from the own lane, the roadside of the own vehicle is not detected by using an object such as a lane marking or a wall existing on the opposite side of the oncoming lane.
 このように、CCDカメラ(右)210とCCDカメラ(左)220を含むステレオカメラ200が撮像した画像から、左右の自車走行帯路端位置と、自車前方を走行する先行車とを同時に認識することができる。そのため、単眼カメラで自車走行帯路端の位置を認識し、ミリ波レーダーを用いて先行車の位置を認識するような場合と違ってセンシングの同時性が確保できるため、センシングタイミングを補正するような処理を省き、シンプルな構成であり、かつ、センシングタイミングのずれを原因とした測定誤差の少ない認識結果を得ることができる。 In this way, from the images taken by the stereo camera 200 including the CCD camera (right) 210 and the CCD camera (left) 220, the left and right vehicle lane roadside positions and the preceding vehicle traveling in front of the vehicle can be simultaneously determined. Can be recognized. Therefore, unlike the case where the monocular camera recognizes the position of the roadside of the own vehicle and the millimeter wave radar is used to recognize the position of the preceding vehicle, the simultaneous sensing can be ensured, and the sensing timing is corrected. It is possible to obtain a recognition result with a simple configuration and a small measurement error due to a deviation in sensing timing by omitting such processing.
 次に、図4に記載の機能ブロック図を用いて、図1に記載したステレオカメラ200と車両制御装置100の機能ブロックを説明する。なお、車両制御装置100は、内部にCPU、ROM、RAM等を備えたマイクロコンピュータ(マイコンともいう)として構成されており、CPUは、ROMに格納された各種プログラムを実行し、CPUが実行されることで生成される情報はRAMに一時的に格納される。 Next, the functional blocks of the stereo camera 200 and the vehicle control device 100 shown in FIG. 1 will be described using the functional block diagram shown in FIG. The vehicle control device 100 is configured as a microcomputer (also referred to as a microcomputer) having a CPU, ROM, RAM, etc. inside, and the CPU executes various programs stored in the ROM, and the CPU is executed. The information generated by this is temporarily stored in the RAM.
[ステレオカメラ200の機能ブロック]
 ステレオカメラ200(の画像処理部230)は、自車両周辺を撮像した画像データを処理することで自車両周辺の立体物の位置や種別を認識する立体物認識部231を備える。また、ステレオカメラ200(の画像処理部230)は、同様に撮像した画像データから区画線等の走行帯を識別する情報を検出し、自車両の走行する走行帯を検出する走行帯検出部232を備える。
[Functional block of stereo camera 200]
The stereo camera 200 (image processing unit 230) includes a stereoscopic object recognition unit 231 that recognizes the position and type of a three-dimensional object around the own vehicle by processing image data obtained by capturing an image of the surroundings of the own vehicle. Further, the stereo camera 200 (image processing unit 230) detects information for identifying the traveling zone such as a lane marking from the image data captured in the same manner, and detects the traveling zone in which the own vehicle travels. To prepare for.
[車両制御装置100の機能ブロック]
 そして、ステレオカメラ200と通信によって接続された車両制御装置100では、ライダーのスロットルおよびブレーキ操作を伴わず、自車の前方を走行している車両の速度、または、ライダーがACCコントロールスイッチ700を用いて設定した車速に合わせて走行できるようにするため、自車両に発生させるべき前後方向の加速度、つまり、目標加速度を決定し、その目標加速度を実現するためのエンジン出力、および、ブレーキ出力を計算する。そのため、車両制御装置100は、自車前方を走行している車両(先行車)の速度に合わせて走行するための目標加速度を計算する、先行車に対する目標加速度算出部130と、ライダーが設定した車速に合わせて走行するための目標加速度を計算する、設定車速に対する目標加速度算出部140とを備える。
[Functional block of vehicle control device 100]
Then, in the vehicle control device 100 connected to the stereo camera 200 by communication, the speed of the vehicle traveling in front of the own vehicle or the rider uses the ACC control switch 700 without the rider's throttle and brake operations. In order to be able to drive according to the set vehicle speed, the acceleration in the front-rear direction that should be generated in the own vehicle, that is, the target acceleration is determined, and the engine output and brake output for achieving the target acceleration are calculated. do. Therefore, the vehicle control device 100 is set by the rider as a target acceleration calculation unit 130 for the preceding vehicle, which calculates the target acceleration for traveling according to the speed of the vehicle (preceding vehicle) traveling in front of the own vehicle. It is equipped with a target acceleration calculation unit 140 for a set vehicle speed that calculates a target acceleration for traveling according to the vehicle speed.
 そして、先行車に対する目標加速度算出部130、及び、設定車速に対する目標加速度算出部140で算出した目標加速度を基に、最終的に自車両の目標加速度をいくらとするかを決定する、目標加速度決定部150を備える。更に、目標加速度決定部150で得た目標加速度を用いて、自車両のエンジン510に対する加速度要求(制御量)を算出してエンジンコントロールユニット500に送信するエンジン加速度要求算出部160と、目標加速度決定部150で得た目標加速度を用いて、自車両のブレーキ410に対する加速度要求(制御量)を算出してブレーキコントロールユニット400に送信するブレーキ加速度要求算出部170とを備えている。 Then, based on the target acceleration calculated by the target acceleration calculation unit 130 for the preceding vehicle and the target acceleration calculation unit 140 for the set vehicle speed, the target acceleration determination for finally determining the target acceleration of the own vehicle is determined. It is equipped with a part 150. Further, the engine acceleration request calculation unit 160 that calculates the acceleration request (control amount) for the engine 510 of the own vehicle and sends it to the engine control unit 500 using the target acceleration obtained by the target acceleration determination unit 150, and the target acceleration determination. It is equipped with a brake acceleration request calculation unit 170 that calculates an acceleration request (control amount) for the brake 410 of the own vehicle and transmits it to the brake control unit 400 using the target acceleration obtained by the unit 150.
 特に、車両制御装置100が備える先行車に対する目標加速度算出部130では、ステレオカメラ200が備える立体物認識部231で得た立体物認識情報と、走行帯検出部232で得た走行帯検出情報を用いて、追従対象先行車情報生成部133により、自車の追従対象とする立体物の識別を行う。例えば隣接車線であり、自車走行帯の外を走行する車両や、歩行者等の自車の追従走行対象として不適切な対象を除外し、以降の処理で用いる追従対象先行車情報を生成する。すなわち、追従対象先行車情報生成部133は、自車両の追従対象先行車を選択する追従対象選択部としての機能も有する。 In particular, in the target acceleration calculation unit 130 for the preceding vehicle included in the vehicle control device 100, the three-dimensional object recognition information obtained by the three-dimensional object recognition unit 231 provided in the stereo camera 200 and the travel zone detection information obtained by the travel zone detection unit 232 are obtained. Using this method, the tracking target preceding vehicle information generation unit 133 identifies a three-dimensional object to be followed by the own vehicle. For example, a vehicle that is in an adjacent lane and travels outside the own vehicle's driving zone, or an inappropriate target for following the own vehicle such as a pedestrian is excluded, and information on the preceding vehicle to be followed is generated for subsequent processing. .. That is, the follow-up target preceding vehicle information generation unit 133 also has a function as a follow-up target selection unit for selecting the follow-up target preceding vehicle of the own vehicle.
 次に、追従対象先行車情報生成部133で生成した追従対象先行車情報に含まれる追従対象先行車と、自車との前後方向距離を用いて、相対速度計算部135で時間微分を行い、追従対象先行車と自車の相対速度を算出する。次に、相対速度計算部135で得た相対速度、及び、車輪速センサ300から得た自車両の速度を基に、基本目標車間距離計算部136aを用いて、自車両の目標とする前後方向車間距離(目標車間距離)の補正前の値である基本目標車間距離を計算する。 Next, the relative speed calculation unit 135 performs time differentiation using the front-rear distance between the following vehicle and the own vehicle included in the tracking target preceding vehicle information generated by the tracking target preceding vehicle information generation unit 133. Calculate the relative speed between the preceding vehicle to be followed and the own vehicle. Next, based on the relative speed obtained by the relative speed calculation unit 135 and the speed of the own vehicle obtained from the wheel speed sensor 300, the basic target inter-vehicle distance calculation unit 136a is used to target the own vehicle in the front-rear direction. Calculate the basic target inter-vehicle distance, which is the value before correction of the inter-vehicle distance (target inter-vehicle distance).
 次に、基本目標車間距離計算部136aで計算した基本目標車間距離に対し、目標車間距離補正部136bによって補正を行い、目標車間距離を計算する。この時、目標車間距離補正部136bは、追従対象先行車情報生成部133で取得した追従対象先行車の側方方向位置、背面の幅、また、走行帯検出部232から得た自車から走行帯左右路端までの距離を用いて、追従対象先行車と走行帯路端の間に自車が走行可能な側方方向幅がいくらであるかを判断するため、自車前方走行可能幅を計算する自車前方走行可能幅計算部136b6を備えており、自車前方走行可能幅計算部136b6の計算で得た自車前方走行可能幅を用いて基本目標車間距離に対する補正を行う(詳細は後述)。 Next, the basic target inter-vehicle distance calculated by the basic target inter-vehicle distance calculation unit 136a is corrected by the target inter-vehicle distance correction unit 136b, and the target inter-vehicle distance is calculated. At this time, the target inter-vehicle distance correction unit 136b travels from the lateral position of the following vehicle ahead, the width of the back surface, and the own vehicle obtained from the traveling zone detection unit 232, which is acquired by the following vehicle information generation unit 133. In order to determine how much the lateral width that the vehicle can travel between the preceding vehicle to be followed and the road edge of the traveling zone by using the distance to the left and right road edges of the belt, the width that can be traveled in front of the vehicle is determined. It is equipped with a vehicle front travelable width calculation unit 136b6 to calculate, and corrects the basic target vehicle-to-vehicle distance using the vehicle front travelable width obtained by the calculation of the vehicle front travelable width calculation unit 136b6. Later).
 次に、目標車間距離補正部136bで計算された目標車間距離、相対速度計算部135で得た先行車と自車の相対速度、追従対象先行車情報生成部133で得た先行車と自車の距離から、対象の先行車に追従して走行するために適切な目標加速度を先行車毎目標加速度計算部137によって先行車毎に計算する。そして、目標加速度選択部138によって、先行車毎目標加速度計算部137で計算した先行車毎の目標加速度の中から、最終的にどの先行車に対して目標加速度を計算するのかを選択し、先行車に対する目標加速度算出部130の出力を選択する。 Next, the target inter-vehicle distance calculated by the target inter-vehicle distance correction unit 136b, the relative speed between the preceding vehicle and the own vehicle obtained by the relative speed calculation unit 135, and the preceding vehicle and the own vehicle obtained by the following target vehicle information generation unit 133. From the distance of, the target acceleration appropriate for traveling following the target preceding vehicle is calculated for each preceding vehicle by the target acceleration calculation unit 137 for each preceding vehicle. Then, the target acceleration selection unit 138 selects from the target accelerations for each preceding vehicle calculated by the target acceleration calculation unit 137 for each preceding vehicle, which preceding vehicle the target acceleration is finally calculated for, and leads. Select the output of the target acceleration calculation unit 130 for the vehicle.
[車両制御装置100のACCの加速度制御]
 次に、車両制御装置100で行うACCの加速度制御の処理内容について、図5のフローチャートを用いて説明する。車両制御装置100に組み込まれている処理は、図5のフローチャートに記載の処理を定周期で実施する。車両制御装置100は、前述した車間距離や、設定車速、自車速を受け取り、図5のフローチャートに記載の処理を繰り返し実行することでACCの加速度制御を行う。
[ACC acceleration control of vehicle control device 100]
Next, the processing content of the acceleration control of the ACC performed by the vehicle control device 100 will be described with reference to the flowchart of FIG. As for the processing incorporated in the vehicle control device 100, the processing shown in the flowchart of FIG. 5 is performed at regular intervals. The vehicle control device 100 receives the above-mentioned inter-vehicle distance, set vehicle speed, and own vehicle speed, and repeatedly executes the process described in the flowchart of FIG. 5 to control the acceleration of the ACC.
 本処理内容を説明する上で、記号を以下のように定義する。
 自車両の速度をVhとする。
 先行車両の速度をVpとする。
 相対速度をVdiffとし、正の値を離れる方向とする。
 設定車速をVtgtとする。
 先行車との距離をlとする。
 車頭時間をThとする。
 先行車に追従して停車した場合の先行車との距離をLoffsetとする。
 補正を行う前の目標車間距離(基本目標車間距離)をl_tgt_baseとする。
 目標車間距離の補正量をl_tgt_offsetとする。
 目標車間距離をl_tgtとする。
 目標加速度をTgtAとする。
 先行車に対する目標加速度をTgtA_Pvとする。
 設定車速に対する目標加速度をTgtA_Spdとする。
 エンジンへの加速度要求AccelReq_Egとする。
 ブレーキへの加速度要求AccelReq_Brkとする。
 エンジンブレーキで発生する加速度をEgBrkAccelとする。
 加速度制御処理の実行周期をTcとする。
 先行車両の背面の幅(車幅)をwidth_pとする。
 側方方向における自車中央から先行車両中央までの距離(側方位置)をside_posとする。
 側方方向における自車中央から先行車両左右いずれか近い方の端位置までの距離(左右端側方位置)をside_pos_edgeとする。
 自車の幅(車幅)をwidth_oとする。
 側方方向における自車中央から自車両走行帯(走行車線)の左端までの距離(自車左方向路端位置)をleft_road_edgeとする。
 側方方向における自車中央から自車両走行帯(走行車線)の右端までの距離(自車右方向路端位置)をright_road_edgeとする。
 先行車と走行帯路端の間に存在する自車が進入しても先行車と衝突しない領域を示す側方方向距離(自車前方走行可能幅)をsafe_widthとする。
In explaining the contents of this process, the symbols are defined as follows.
Let the speed of your vehicle be Vh.
Let Vp be the speed of the preceding vehicle.
The relative velocity is Vdiff, and the direction away from the positive value.
The set vehicle speed is Vtgt.
Let l be the distance to the preceding vehicle.
Let Th be the head time.
The Loffset is the distance from the preceding vehicle when the vehicle stops following the preceding vehicle.
Let l_tgt_base be the target inter-vehicle distance (basic target inter-vehicle distance) before correction.
Let l_tgt_offset be the amount of correction for the target inter-vehicle distance.
Let l_tgt be the target inter-vehicle distance.
Let TgtA be the target acceleration.
The target acceleration for the preceding vehicle is TgtA_Pv.
Let TgtA_Spd be the target acceleration for the set vehicle speed.
Acceleration request to engine AccelReq_Eg.
Acceleration request to the brake AccelReq_Brk.
Let EgBrkAccel be the acceleration generated by engine braking.
Let Tc be the execution cycle of the acceleration control process.
Let width_p be the width (vehicle width) of the back of the preceding vehicle.
The distance (side position) from the center of the own vehicle to the center of the preceding vehicle in the lateral direction is defined as side_pos.
The distance from the center of the own vehicle in the lateral direction to the end position of the preceding vehicle, whichever is closer, is defined as side_pos_edge.
Let the width (vehicle width) of the own vehicle be width_o.
The distance from the center of the vehicle in the lateral direction to the left end of the vehicle lane (driving lane) (roadside position in the left direction of the vehicle) is defined as left_road_edge.
The distance from the center of the vehicle in the lateral direction to the right end of the vehicle lane (driving lane) (roadside position in the right direction of the vehicle) is defined as right_road_edge.
Safe_width is the lateral distance (width in front of the vehicle) that indicates the area where the vehicle does not collide with the vehicle ahead even if the vehicle that exists between the vehicle ahead and the roadside of the vehicle enters.
 車両制御装置100によるACCの加速度制御は、処理S101から開始して判断S110から実行する。 Acceleration control of ACC by the vehicle control device 100 starts from process S101 and is executed from judgment S110.
 判断S110のACC制御許可判断では、以下に挙げるようないずれかの状態になっており、ACCの制御ができなくなっていないかを判断する。
 ・故障が発生している。
 ・カメラの画像が取得できない(悪天候やレンズの汚れ)。
 ・スイッチ操作でACCを無効化している。
 ・ブレーキペダルを踏んでいる。
 ・ブレーキレバーを握っている。
 ・ドライブレンジ以外の選択ギア位置となっている。
 ・クラッチを離して一定時間経過している。
 ・制御ができないような速度で走行している。
 ・走行速度に対するギア位置が不適切な組み合わせで一定時間経過している。
 ・自車両のバンク角が一定以上になっている。
Judgment In the ACC control permission judgment of S110, it is judged whether or not the ACC control is not possible due to one of the following states.
-A failure has occurred.
-Camera images cannot be obtained (bad weather or dirty lenses).
-ACC is disabled by operating the switch.
・ You are stepping on the brake pedal.
・ I am holding the brake lever.
・ It is a selected gear position other than the drive range.
・ A certain amount of time has passed after releasing the clutch.
・ You are traveling at a speed that you cannot control.
・ A certain amount of time has passed due to an inappropriate combination of gear positions with respect to the running speed.
・ The bank angle of your vehicle is above a certain level.
 上記のいずれかの状態になっている場合は、ACCの制御を行うのは不適切とし、制御禁止とする。また、上記のいずれの状態にもなっていない場合は、制御許可とする。判断S110において、制御禁止と判断した場合は、処理S165と処理S175を実行してエンジンへの加速度要求AccelReq_Egとブレーキへの加速度要求AccelReq_Brkを解除することで、制御を行わないようにする。 If any of the above conditions are met, it is inappropriate to control ACC and control is prohibited. If none of the above conditions are met, control is permitted. If it is determined that control is prohibited in the determination S110, the control is not performed by executing the process S165 and the process S175 to cancel the acceleration request AccelReq_Eg to the engine and the acceleration request AccelReq_Brk to the brake.
 判断S110において、制御許可と判断した場合は、処理S130から処理S170を実行していく。 If it is determined that control is permitted in the determination S110, the process S130 to the process S170 are executed.
(先行車に対する目標加速度算出部130による処理S130)
 次に処理S130では、先行車に対する目標加速度TgtA_Pvを算出する。先行車に対する目標加速度を計算する処理を、図6のフローチャートを用いて説明する。
 まず、処理S131から開始して、処理S132にて、TgtA_Pvを無効値で初期化する。
(Processing S130 by the target acceleration calculation unit 130 for the preceding vehicle)
Next, in the process S130, the target acceleration TgtA_Pv for the preceding vehicle is calculated. The process of calculating the target acceleration with respect to the preceding vehicle will be described using the flowchart of FIG.
First, starting from process S131, TgtA_Pv is initialized with an invalid value in process S132.
(追従対象先行車情報生成部133による処理S133、S134)
 次に、処理S133へ進み、ステレオカメラ200から得た情報を用いて、自車の追従対象とする先行車情報を生成する。自車の追従対象とする先行車情報は、ステレオカメラ200(の立体物認識部231)から、自車前方向に存在する立体物の情報として、立体物の自車から見た側方方向における幅の中央位置から自車両幅中央位置までを計測した側方方向位置である側方位置side_pos(図10等参照)、立体物後端から自車先端までの前後方向位置である距離l(図10等参照)、パターンマッチングによって取得した、四輪自動車、歩行者、自転車、バイク、その他立体物といった立体物種別、立体物の自車から見た(背面の)幅width_p(図10等参照)を取得する。この時、自車前方に存在する立体物の情報は1つに限られるものではなく、通常複数の立体物情報を同時に取得する。また、立体物と合わせて、ステレオカメラ200(の走行帯検出部232)から、車両右方向の走行帯路端位置、および、左方向の走行帯路端位置を取得する。そして、複数検出した立体物に対して、対象が自車走行帯上に存在しているかを、側方位置、および、幅の情報から判断する。具体的には、側方位置と、幅の半分とを左右方向にそれぞれ加算した立体物側方方向左端位置、立体物側方方向右端位置を算出する。そして、立体物側方方向左端位置が自車走行帯右端位置より左側になっており、立体物側方方向右端位置が自車走行帯左端位置より右側になっていることを判断して、自車走行帯上にその立体物が存在していることを判断して、自車の追従対象として選択する。
(Processing by the preceding vehicle information generation unit 133 to be followed S133, S134)
Next, the process proceeds to processing S133, and the information obtained from the stereo camera 200 is used to generate information on the preceding vehicle to be followed by the own vehicle. The preceding vehicle information to be followed by the own vehicle is obtained from the stereo camera 200 (three-dimensional object recognition unit 231) as information on the three-dimensional object existing in the front direction of the own vehicle in the lateral direction as seen from the own vehicle. The side position side_pos (see Fig. 10 etc.), which is the lateral position measured from the center position of the width to the center position of the vehicle width, and the distance l, which is the front-rear position from the rear end of the three-dimensional object to the tip of the vehicle (Fig. 10). (Refer to 10 etc.), Type of three-dimensional object such as four-wheeled vehicle, pedestrian, bicycle, motorcycle, and other three-dimensional objects acquired by pattern matching, width_p (on the back) seen from the own vehicle of the three-dimensional object (see Fig. 10 etc.) To get. At this time, the information of the three-dimensional object existing in front of the own vehicle is not limited to one, and usually, the information of a plurality of three-dimensional objects is acquired at the same time. In addition, the stereo camera 200 (traveling zone detection unit 232) acquires the traveling zone roadside position in the right direction of the vehicle and the traveling zone roadside position in the left direction together with the three-dimensional object. Then, with respect to the plurality of detected three-dimensional objects, it is determined from the information on the side position and the width whether or not the target exists on the own vehicle traveling zone. Specifically, the left end position in the lateral direction of the three-dimensional object and the right end position in the lateral direction of the three-dimensional object are calculated by adding the lateral position and half of the width in the left-right direction, respectively. Then, it is determined that the left end position in the lateral direction of the three-dimensional object is on the left side of the right end position of the own vehicle traveling zone, and the right end position in the lateral direction of the three-dimensional object is on the right side of the left end position of the own vehicle traveling zone. Judging that the three-dimensional object exists on the vehicle traveling zone, it is selected as the tracking target of the own vehicle.
 図14に示す俯瞰図の例によれば、立体物10(ここでは四輪自動車)の側方位置side_pos、幅width_pから計算した立体物側方方向右端位置right_side_pos_edgeが、自車走行帯左端位置left_road_edgeよりも右側に存在しており、立体物側方方向左端位置left_side_pos_edgeが、自車走行帯右端位置right_road_edgeよりも左側に存在しているため、立体物10は自車走行帯上に存在しているとして扱う。一方、図15に示す俯瞰図の例によれば、立体物20(ここではバイク)の側方位置side_pos、幅width_pから計算した立体物側方方向左端位置left_side_pos_edge、が、自車走行帯右端位置right_road_edgeよりも右側に存在しているため、立体物20は自車走行帯上に存在しているとして扱わない。 According to the example of the bird's-eye view shown in FIG. 14, the side position side_pos of the three-dimensional object 10 (here, the four-wheeled vehicle) and the right end position right_side_pos_edge in the lateral direction of the three-dimensional object calculated from the width width_p are the left end positions of the own vehicle traveling zone left_road_edge. The three-dimensional object 10 exists on the own vehicle traveling zone because it exists on the right side of the vehicle and the left_side_pos_edge at the left end position in the lateral direction of the three-dimensional object exists on the left side of the right end position right_road_edge of the own vehicle traveling zone. Treat as. On the other hand, according to the example of the bird's-eye view shown in FIG. 15, the side position side_pos of the three-dimensional object 20 (here, the motorcycle) and the left end position in the lateral direction of the three-dimensional object calculated from the width width_p, the left_side_pos_edge, are the right end positions of the own vehicle traveling zone. Since it exists on the right side of right_road_edge, the three-dimensional object 20 is not treated as existing on the own vehicle running zone.
 この時、区画線が経年劣化で薄くなる、また、汚れの付着や水たまりの発生、積雪の影響で区画線を検出できなくなるなど、自車両走行帯左右路端位置を検出できなくなる(換言すれば、走行帯を判断するための外界認識情報を取得できなくなる)場合がある。この時は、自車走行帯左路端位置を自車両(の進行路)から左方向に2[m]の位置、また、自車走行帯右路端位置を自車両(の進行路)から右方向に2[m]の位置といったように、自車両(の進行路)から左右側方に一定の距離幅の領域を自車走行帯と置き換えて計算する。なお、自車両の進行路は、自車速やバンク角などから推定することができる。このように自車両の進行路から左右側方に一定間隔の幅を持った領域を自車走行帯として扱うことにより、自車両走行帯路端位置をステレオカメラ200で検出できない(換言すれば、走行帯を判断するための外界認識情報をステレオカメラ200から取得できない)時も、自車走行帯上を走行している立体物であるかを判定することができる。 At this time, the lane markings become thinner due to deterioration over time, and the lane markings cannot be detected due to the effects of dirt, puddles, and snow, making it impossible to detect the left and right roadside positions of the vehicle's driving zone (in other words,). , It may not be possible to acquire external recognition information for determining the driving zone). At this time, the position of the left road end of the own vehicle traveling zone is 2 [m] to the left from the own vehicle (traveling path), and the position of the right road edge of the own vehicle traveling zone is from the own vehicle (traveling path). Calculate by replacing the area with a certain distance width from the own vehicle (travel path) to the left and right, such as the position of 2 [m] to the right, with the own vehicle running zone. The traveling path of the own vehicle can be estimated from the own vehicle speed, the bank angle, and the like. By treating the area having a width of a certain interval from the traveling path of the own vehicle to the left and right sides as the own vehicle traveling zone in this way, the position of the road end of the own vehicle traveling zone cannot be detected by the stereo camera 200 (in other words, in other words). Even when the outside world recognition information for determining the traveling zone cannot be acquired from the stereo camera 200), it is possible to determine whether the vehicle is a three-dimensional object traveling on the traveling zone of the own vehicle.
 また、自車両が走行帯路端を跨って車線変更を行って3[s]間など、自車両が車線変更を行った後一定時間以内は、車線変更前の走行帯路端位置を自車に対して適切な走行帯路端位置として扱うことで(図16参照)、駐車車両などの障害物を回避する際に一時的に車線変更を行った場合でも追従対象となる車両を追従対象外とせず、適切な車間距離の制御および加速度の制御が可能となる。 In addition, within a certain period of time after the own vehicle changes lanes, such as when the own vehicle changes lanes across the lane change for 3 [s], the own vehicle stays at the lane end position before the lane change. By treating it as an appropriate driving zone roadside position (see Fig. 16), even if the lane is temporarily changed when avoiding obstacles such as parked vehicles, the vehicle to be tracked will not be tracked. However, it is possible to control the appropriate inter-vehicle distance and acceleration.
 更に、検出した対象について、立体物の種別が、四輪自動車、バイクのいずれかである場合は、自車の追従対象として設定し、歩行者や自転車、およびその他の立体物については、自車の追従対象として設定しないようにする。 Furthermore, regarding the detected target, if the type of the three-dimensional object is either a four-wheeled vehicle or a motorcycle, it is set as a tracking target of the own vehicle, and for pedestrians, bicycles, and other three-dimensional objects, the own vehicle is set. Do not set it as a tracking target of.
 こうして、自車の追従対象とする立体物をステレオカメラ200から複数検出した結果の中から抽出(選択)し、前述した追従対象先行車情報を生成し、判定S134へ進む。 In this way, the stereoscopic camera 200 detects (selects) a plurality of three-dimensional objects to be followed by the own vehicle, generates the above-mentioned information on the preceding vehicle to be followed, and proceeds to the determination S134.
 判定S134では、処理していない追従対象先行車の存在有無を判定して、処理を終了するかを判定する。処理S133から判定S134へ進んだ場合、処理S133で生成した追従対象先行車情報を用いて追従対象先行車が存在しているかを判定し、追従対象とする先行車が存在しなかった場合は、処理S139へ進んで、処理S130を終了する。この場合、処理S132で無効値で初期化したTgtA_Pvが更新されないため、処理S130以降で用いるTgtA_Pvは無効値、つまり、先行車に対する目標加速度が用いられず、先行車に対する追従制御を行わないことを意味している。一方、判定S134で追従対象とする先行車が存在した場合は、処理S135へ進み、以降の処理を用いて先行車に対する目標加速度TgtA_Pvの更新を行う。 In the determination S134, it is determined whether or not there is a preceding vehicle to be followed that has not been processed, and it is determined whether or not the processing is terminated. When the process proceeds from the processing S133 to the determination S134, it is determined whether or not the following vehicle ahead is present using the following vehicle information generated by the process S133, and if the preceding vehicle to be followed does not exist, the vehicle is followed. Proceed to process S139 and end process S130. In this case, since TgtA_Pv initialized with the invalid value in the process S132 is not updated, the TgtA_Pv used in the process S130 or later has an invalid value, that is, the target acceleration for the preceding vehicle is not used and the follow-up control for the preceding vehicle is not performed. Means. On the other hand, if there is a preceding vehicle to be followed in the determination S134, the process proceeds to the process S135, and the target acceleration TgtA_Pv for the preceding vehicle is updated using the subsequent processes.
(相対速度計算部135による処理S135)
 処理S135では、追従対象とした先行車両と自車両の相対速度Vdiffを計算する。追従対象先行車情報の中には、ステレオカメラ200で取得した立体物に対する前後方向の距離lと、逐次RAMに保存しておいた1周期前、つまり、制御周期Tc前の前後方向の距離lを含んでいる。その差をとって制御周期Tcで除算することで、相対速度Vdiffを得ることができる。
(Processing by relative velocity calculation unit 135 S135)
In the process S135, the relative speed Vdiff between the preceding vehicle and the own vehicle to be followed is calculated. In the information of the preceding vehicle to be followed, the distance l in the front-rear direction with respect to the three-dimensional object acquired by the stereo camera 200 and the distance l in the front-rear direction one cycle before, that is, before the control cycle Tc, which is sequentially stored in the RAM. Includes. The relative velocity Vdiff can be obtained by taking the difference and dividing by the control period Tc.
(基本目標車間距離計算部136aによる処理S136a)
 次に、処理S136aで基本目標車間距離l_tgt_baseを算出する。基本目標車間距離l_tgt_baseは以下の式により算出する。
Figure JPOXMLDOC01-appb-M000002
(Processing by the basic target inter-vehicle distance calculation unit 136a S136a)
Next, the basic target inter-vehicle distance l_tgt_base is calculated by the process S136a. The basic target inter-vehicle distance l_tgt_base is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
 この時、Thには1~3[s]の数値を設定し、Loffsetには3~5[m]の数値を設定する。また、Th及びLoffsetはライダーの好みやステアリングスイッチの操作状況に応じて変化させる機能を設けることで、ライダーの嗜好に合った車間距離で走行することが可能になる。計算に用いる先行車両速度Vpは、(自車両速度Vh+相対速度Vdiff)で求めることができる。 At this time, set a value of 1 to 3 [s] for Th and a value of 3 to 5 [m] for Loffset. In addition, Th and Loffset can be driven at an inter-vehicle distance that suits the rider's taste by providing a function that changes according to the rider's taste and the operating condition of the steering switch. The preceding vehicle speed Vp used in the calculation can be obtained by (own vehicle speed Vh + relative speed Vdiff).
(目標車間距離補正部136bによる処理S136b)
 次に、処理S136bを用いて、処理S136aで計算した基本目標車間距離l_tgt_baseに対して補正を行い、目標車間距離l_tgtを計算する。処理S136bの処理を、図7のフローチャートを用いて説明する。
(Processing by target inter-vehicle distance correction unit 136b S136b)
Next, using the process S136b, the basic target inter-vehicle distance l_tgt_base calculated in the process S136a is corrected, and the target inter-vehicle distance l_tgt is calculated. The process of process S136b will be described with reference to the flowchart of FIG.
 処理S136bではまず、処理S136b1から開始して、判定S136b2で、対象の先行車両が最近傍の車両であるかを判定する。具体的には、処理S133で生成した追従対象先行車情報の中に複数登録されている先行車両の中で、今回処理する先行車両の前後方向距離が自車両に対して最も近い場合は最近傍と判定し、処理S136b3へ進む。最近傍でないと判断した場合は、処理S136b8へ進み、目標車間距離l_tgtに対して処理S136bの実行までに計算した基本目標車間距離l_tgt_baseを設定し、追従対象先行車情報に属する車群走行中情報group_rideをOffで設定し、目標車間距離に対する補正を行わず、処理S136b9へ進んで処理S136bを終了する。つまり、複数の先行車両を追従対象として検出している場合は、自車両に対して前後方向距離が最も近い先行車両に対してのみ補正を行い、自車両に対して前後方向距離が最も近い先行車両でない先行車両に対しては補正を行わず、処理S136bを終了する。 In the process S136b, first, the process S136b1 is started, and in the determination S136b2, it is determined whether the target preceding vehicle is the nearest vehicle. Specifically, among the preceding vehicles registered in the information of the preceding vehicle to be followed generated by the processing S133, if the front-rear distance of the preceding vehicle to be processed this time is the closest to the own vehicle, it is the nearest neighbor. And proceed to process S136b3. If it is determined that it is not the closest, proceed to process S136b8, set the basic target inter-vehicle distance l_tgt_base calculated by the execution of process S136b for the target inter-vehicle distance l_tgt, and set the vehicle group running information belonging to the preceding vehicle information to be followed. Set group_ride to Off, proceed to process S136b9 and end process S136b without correcting the target inter-vehicle distance. That is, when a plurality of preceding vehicles are detected as tracking targets, the correction is performed only for the preceding vehicle having the closest front-rear distance to the own vehicle, and the preceding vehicle having the shortest front-rear distance to the own vehicle is corrected. No correction is performed for the preceding vehicle that is not a vehicle, and the process S136b is terminated.
 判定S136b2によって、前後方向最近傍の先行車両に対してのみ補正を行うようにすることで、先行車より前方に存在している先行車両に対する車間距離を短くしないようにしている。これは、千鳥走行を行う時、左右交互に各車両の位置取りを行うため、自車の前後方向直前、つまり最近傍の車両が距離を詰めて走行する左右のいずれかにずれた対象であり、最近傍の先行車より前方に存在する車両は自車と側方位置関係がずれていないことが隊列上望ましい車両として扱える。そのため、最近傍の先行車より前方に存在する車両は距離を短くする補正の対象外とすることで、ライダーに対する違和感を低減できる。特に、先行車より前方に存在する車両が自車から左右方向に位置を適宜ずらしながら走行しているようなシーンでは前後方向距離が変化していないにもかかわらず目標車間距離を離したり、近づけたりすることで、自車の加減速を引き起こさず、燃費や乗り心地の面で有利となる。 By determining S136b2, the correction is performed only for the preceding vehicle closest to the front-rear direction, so that the inter-vehicle distance to the preceding vehicle existing in front of the preceding vehicle is not shortened. This is because each vehicle is positioned alternately on the left and right when traveling in a staggered manner, so it is a target that is shifted to either the left or right just before the front-rear direction of the own vehicle, that is, the nearest vehicle travels at a close distance. A vehicle that exists in front of the nearest preceding vehicle can be treated as a desirable vehicle in the formation that the lateral positional relationship with the own vehicle does not deviate. Therefore, it is possible to reduce the discomfort to the rider by excluding the vehicle existing in front of the nearest preceding vehicle from the correction for shortening the distance. In particular, in a scene where a vehicle in front of the preceding vehicle is traveling while shifting its position in the left-right direction from the own vehicle, the target vehicle-to-vehicle distance is separated or brought closer even though the front-rear distance has not changed. By doing so, it does not cause acceleration / deceleration of the own vehicle, which is advantageous in terms of fuel efficiency and ride comfort.
 処理S136b3以降、処理S136b62または処理S136b63までは、目標車間距離補正部136bにおける自車前方走行可能幅計算部136b6により実行される。 After processing S136b3, processing S136b62 or processing S136b63 is executed by the own vehicle forward travelable width calculation unit 136b6 in the target vehicle-to-vehicle distance correction unit 136b.
 処理S136b3では、以降の処理で使用するための先行車両の自車両における左右端側方位置side_pos_edge(図10、図11、図12参照)を計算する。左右端側方位置side_pos_edgeは、先行車両の背面の幅width_p(図10、図11、図12参照)、側方位置side_pos(図10、図11、図12参照)を用いて以下の式で得られる。
Figure JPOXMLDOC01-appb-M000003
In the process S136b3, the left and right end side positions side_pos_edge (see FIGS. 10, 11, and 12) of the preceding vehicle in the own vehicle for use in the subsequent processes are calculated. The left and right side position side_pos_edge is obtained by the following formula using the width_p of the back surface of the preceding vehicle (see Fig. 10, Fig. 11 and Fig. 12) and the side position side_pos (see Fig. 10, Fig. 11 and Fig. 12). Be done.
Figure JPOXMLDOC01-appb-M000003
 この時用いる先行車両の背面の幅width_pと側方位置side_posは、ステレオカメラ200(の立体物認識部231)で取得する。また、この時用いる側方位置side_posは、自車両を基準として、右方向を正の値、左方向を負の値として扱う。結果として、左右端側方位置side_pos_edgeは、自車両(側方方向)中心から先行車両左端までの側方方向距離、または、自車両(側方方向)中心から先行車両右端までの側方方向距離として得ることができる。 The width_p and side_pos of the back surface of the preceding vehicle used at this time are acquired by the stereo camera 200 (stereoscopic object recognition unit 231). Further, the side position side_pos used at this time is treated as a positive value in the right direction and a negative value in the left direction with respect to the own vehicle. As a result, the left and right end lateral positions side_pos_edge are the lateral distance from the center of the own vehicle (lateral direction) to the left end of the preceding vehicle, or the lateral distance from the center of the own vehicle (lateral direction) to the right end of the preceding vehicle. Can be obtained as.
 次に、判定S136b4へ進み、先行車両側方位置が正面となっているかを判断する。先行車両側方位置が正面となっているかの判断方法は、左右端側方位置side_pos_edgeの絶対値と、自車両の車幅width_oの半分の値とを比較し、左右端側方位置side_pos_edgeの絶対値が自車両の車幅width_oの半分の値より小さい場合、先行車両側方位置が正面となっている、つまり自車両正面に先行車両が存在していると判断できる(一例として図12の場合)。この時用いる自車両の車幅width_oは、自車両固有のパラメータとしてあらかじめ車両制御装置100に搭載されたROMに組み込んでおき参照する。判定S136b4で自車両正面に先行車両が存在していると判定した場合は、処理S136b5へ進み、目標車間距離l_tgtに対して処理S136bの実行までに計算した基本目標車間距離l_tgt_baseを設定し、追従対象先行車情報に属する車群走行中情報group_rideをOffで設定し、目標車間距離に対する補正を行わず、処理S136b9へ進んで処理S136bを終了する。 Next, proceed to judgment S136b4 and judge whether the side position of the preceding vehicle is in front. The method of determining whether the side position of the preceding vehicle is the front is to compare the absolute value of the left and right end side position side_pos_edge with the half value of the vehicle width width_o of the own vehicle, and the absolute value of the left and right end side position side_pos_edge. If the value is smaller than half the width_o of the own vehicle, it can be determined that the side position of the preceding vehicle is the front, that is, the preceding vehicle exists in front of the own vehicle (as an example, in the case of FIG. 12). ). The vehicle width width_o of the own vehicle used at this time is incorporated in the ROM mounted on the vehicle control device 100 in advance as a parameter peculiar to the own vehicle and referred to. If it is determined in the determination S136b4 that the preceding vehicle exists in front of the own vehicle, the process proceeds to the process S136b5, the basic target inter-vehicle distance l_tgt_base calculated by the execution of the process S136b is set for the target inter-vehicle distance l_tgt, and the vehicle follows. Set the vehicle group running information group_ride belonging to the target preceding vehicle information to Off, proceed to the process S136b9 and end the process S136b without correcting the target inter-vehicle distance.
 判定S136b4で、左右端側方位置side_pos_edgeの絶対値と、自車両の車幅width_oの半分の値とを比較し、左右端側方位置side_pos_edgeの絶対値が自車両の車幅width_oの半分の値以上で、自車両正面に先行車両が存在していないと判断した場合、判定S136b61へ進む。 In the judgment S136b4, the absolute value of the left and right end side position side_pos_edge is compared with the half value of the vehicle width width_o of the own vehicle, and the absolute value of the left and right end side position side_pos_edge is half the value of the vehicle width width_o of the own vehicle. If it is determined that the preceding vehicle does not exist in front of the own vehicle, the process proceeds to determination S136b61.
 なお、判定S136b4の、自車両正面に先行車両が存在しているか否かの判断は、先行車両と走行帯路端位置との距離が自車両の車幅以上であるか否かの判断と同意である。つまり、この判定S136b4によって、先行車両と走行帯路端との距離が自車両の車幅以上である先行車両に対してのみ補正を行い、先行車両と走行帯路端との距離が自車両の車幅未満である先行車両に対しては補正を行わず、処理S136bを終了することになる。 In addition, the judgment of whether or not the preceding vehicle exists in front of the own vehicle in the judgment S136b4 agrees with the judgment of whether or not the distance between the preceding vehicle and the driving zone roadside position is equal to or larger than the width of the own vehicle. Is. That is, according to this determination S136b4, the correction is performed only for the preceding vehicle in which the distance between the preceding vehicle and the traveling zone road edge is equal to or larger than the vehicle width of the own vehicle, and the distance between the preceding vehicle and the traveling zone road edge is the own vehicle. Processing S136b will be terminated without making corrections for the preceding vehicle that is less than the vehicle width.
 判定S136b4によって、自車両正面に存在していない先行車両に対してのみ補正を行うようにすることで、自車両正面に存在している先行車両に対する車間距離を短くしないようにしている。これは、千鳥走行を行う時、自車両正面に存在していない先行車両が対象であり、自車両正面に存在している先行車両は、マスツーリング(千鳥走行)の対象外とすることで、ライダーに対する違和感を低減できる。また、自車両正面に存在している先行車両、つまり、先行車両と走行帯路端位置との距離が自車両の車幅未満で狭い先行車両は距離を短くする補正の対象外とし、自車両正面に存在していない先行車両、つまり、先行車両と走行帯路端位置との距離が自車両の車幅以上で広く確保されている先行車両は距離を短くする補正の対象とすることで、ライダーに対する違和感を低減できる。 According to the judgment S136b4, the correction is performed only for the preceding vehicle that does not exist in front of the own vehicle, so that the inter-vehicle distance to the preceding vehicle that exists in front of the own vehicle is not shortened. This is because when traveling in a staggered manner, the preceding vehicle that does not exist in front of the own vehicle is targeted, and the preceding vehicle that exists in front of the own vehicle is excluded from mass touring (staggered traveling). The feeling of strangeness to the rider can be reduced. In addition, the preceding vehicle existing in front of the own vehicle, that is, the preceding vehicle in which the distance between the preceding vehicle and the roadside end position is smaller than the width of the own vehicle and is narrow, is excluded from the correction for shortening the distance, and the own vehicle is excluded. The preceding vehicle that does not exist in front, that is, the preceding vehicle in which the distance between the preceding vehicle and the roadside end position is widely secured by the width of the own vehicle or more, is subject to the correction to shorten the distance. The feeling of strangeness to the rider can be reduced.
 判定S136b61では、先行車両の側方位置が右方向にずれている(一例として図10の場合)のか、または、左方向にずれている(一例として図11の場合)のかを判定する。先行車両の側方位置side_pos、または、左右端側方位置side_pos_edgeが正の値であれば、先行車両が右方向にずれた位置を走行しているとして、処理S136b62へ進み、正の値でなければ、先行車両が左方向にずれた位置を走行しているとして、処理S136b63へ進む。 In the determination S136b61, it is determined whether the lateral position of the preceding vehicle is shifted to the right (as an example in the case of FIG. 10) or to the left (as an example in the case of FIG. 11). If the side position side_pos of the preceding vehicle or the side_pos_edge of the left and right end side positions is a positive value, it is assumed that the preceding vehicle is traveling in a position shifted to the right, and the process proceeds to processing S136b62, which must be a positive value. If so, it is assumed that the preceding vehicle is traveling at a position shifted to the left, and the process proceeds to processing S136b63.
 処理S136b62では、左右端側方位置side_pos_edgeと自車左方向路端位置(左路端位置ともいう)left_road_edge(図10参照)から、以下の式によって、自車前方走行可能幅safe_width(図10参照)を算出する。
Figure JPOXMLDOC01-appb-M000004
In the processing S136b62, from the left and right end side position side_pos_edge and the vehicle left direction road edge position (also referred to as the left road edge position) left_road_edge (see Fig. 10), the width that can be traveled in front of the vehicle vehicle is safe_width (see Fig. 10) by the following formula. ) Is calculated.
Figure JPOXMLDOC01-appb-M000004
 また、処理S136b63では、左右端側方位置side_pos_edgeと自車右方向路端位置(右路端位置ともいう)right_road_edge(図11参照)から、以下の式によって、自車前方走行可能幅safe_width(図11算出)を算出する。
Figure JPOXMLDOC01-appb-M000005
In addition, in the processing S136b63, from the left and right end side position side_pos_edge and the own vehicle right direction road edge position (also referred to as the right road edge position) right_road_edge (see Fig. 11), the width that can be traveled in front of the own vehicle is safe_width (Fig. 11). 11 Calculation) is calculated.
Figure JPOXMLDOC01-appb-M000005
 処理S136b62および処理S136b63で用いる自車左方向路端位置left_road_edgeと自車右方向路端位置right_road_edgeは、側方位置side_posと同様に自車両中心を基準として、右方向を正の値、左方向を負の値として扱われ、ステレオカメラ200(の走行帯検出部232)によって測定される。 The left_road_edge position on the left side of the vehicle and the right_road_edge position on the right side of the vehicle used in the processing S136b62 and the processing S136b63 are set to a positive value in the right direction and a positive value in the left direction with respect to the center of the vehicle as in the side position side_pos. It is treated as a negative value and measured by the stereo camera 200 (traveling zone detector 232).
 処理S136b62および処理S136b63で算出された自車前方走行可能幅safe_widthは、先行車と走行帯路端の間に存在する自車が進入しても先行車と衝突しない領域(自車が走行可能な側方方向幅)を示している。処理S136b62および処理S136b63で自車前方走行可能幅safe_width(先行車両と走行帯路端との距離に相当)を得る際、先行車両から見て自車両が存在する側方方向に存在する走行帯路端との距離を用い、先行車両が自車より右方向に存在している場合(図10参照)は左側路端、先行車両が自車より左方向に存在している場合(図11参照)は右側路端との間の幅を得ることで、自車より右方向に存在している先行車両と右側路端との幅のような先行車両の真後ろを横切って走行しなければ到達できないような領域を省き、自車の正面領域(言い換えれば、進行路方向領域)で先行車両と衝突しないような領域の幅を得る。 The safe_width that allows the vehicle to travel in front of the vehicle calculated by processing S136b62 and processing S136b63 is an area that does not collide with the preceding vehicle even if the vehicle that exists between the preceding vehicle and the roadside of the driving zone enters (the vehicle can travel). Lateral width) is shown. When obtaining the safe_width (corresponding to the distance between the preceding vehicle and the roadside) that the vehicle can travel ahead in the processing S136b62 and the processing S136b63, the traveling lane road that exists in the lateral direction in which the own vehicle exists when viewed from the preceding vehicle. Using the distance to the end, if the preceding vehicle is to the right of the own vehicle (see Fig. 10), the roadside is on the left side, and if the preceding vehicle is to the left of the own vehicle (see Fig. 11). By obtaining the width between the right side roadside, it seems that it can only be reached by traveling directly behind the preceding vehicle such as the width between the preceding vehicle existing to the right of the own vehicle and the right side roadside. Area is omitted, and the width of the area in front of the own vehicle (in other words, the area in the direction of the traveling road) is obtained so as not to collide with the preceding vehicle.
 そして、処理S136b62または処理S136b63によって自車前方走行可能幅safe_widthを求めた後、処理S136b71へ進む。 Then, after obtaining the safe_width that can travel ahead of the own vehicle by the processing S136b62 or the processing S136b63, proceed to the processing S136b71.
 処理S136b71では、自車前方走行可能幅safe_widthを用いて処理S136aで計算した基本目標車間距離l_tgt_baseに対して補正を行い、目標車間距離l_tgtを設定する。基本目標車間距離l_tgt_baseに対して行う補正量l_tgt_offsetは、自車前方走行可能幅safe_widthと基本目標車間距離l_tgt_baseによってあらかじめ設定されたマップ値を基に演算する。この時使用するマップ値は、正の値が設定される。自車前方走行可能幅safe_widthが補正下限走行幅閾値より小さい場合、例えば補正下限走行幅閾値として1.4mを設定し、1.4mより小さな場合は、補正量l_tgt_offsetを0[m]とする。自車前方走行可能幅safe_widthが補正上限走行幅閾値より大きい場合、例えば補正上限走行幅閾値として1.8mを設定し、1.8mより大きく、自車前方走行可能幅safe_widthが十分に広い場合は、補正量l_tgt_offsetを基本目標車間距離l_tgt_baseに応じた最大補正量とする。自車前方走行可能幅safe_widthが補正下限走行幅閾値から補正上限走行幅閾値の間である場合は、基本目標車間距離l_tgt_baseに応じた最大補正量と0[m]の間をなめらかにつなぐようにパラメータを設定する。また、基本目標車間距離l_tgt_baseの値が大きい場合、つまり、目標とする距離が広い場合は、補正量l_tgt_offsetを大きくして、先行車両により近い位置で走行できるようにしつつ、基本目標車間距離l_tgt_baseの値が小さい場合、つまり、目標とする距離が短い場合は、補正量l_tgt_offsetを小さくして、先行車の加減速や路面勾配の変化による加減速の発生によって即座に先行車両の側面に割り込んでしまわないように距離を広めに設定するように調整する。このパラメータは、搭載する車両の加減速に対する応答性、軌道変更時の機敏性、搭載車両のよく使われる気候や道路環境、ライダーが加減速を頻繁にコントロールして距離を保つようなシーンが多いか、距離の変動に関わらず、加減速の発生を抑止したようなシーンが多いかの特徴などに応じて、補正量、および、補正下限走行幅閾値と補正上限走行幅閾値をあらかじめ実験によって調整しておき、決定したパラメータを車両制御装置100に搭載しているROMに組み込みしておく。こうして演算によって得られた補正量l_tgt_offsetを、基本目標車間距離l_tgt_baseから減算し、目標車間距離l_tgtに設定することで、基本目標車間距離l_tgt_baseに対して補正を行った結果を目標車間距離l_tgtに設定することができる。 In the process S136b71, the basic target inter-vehicle distance l_tgt_base calculated by the process S136a using the safe_width that can travel ahead of the own vehicle is corrected, and the target inter-vehicle distance l_tgt is set. The correction amount l_tgt_offset performed for the basic target inter-vehicle distance l_tgt_base is calculated based on the map value preset by the vehicle front travelable width safe_width and the basic target inter-vehicle distance l_tgt_base. A positive value is set as the map value used at this time. If the safe_width that can travel ahead of the vehicle is smaller than the correction lower limit travel width threshold value, for example, 1.4 m is set as the correction lower limit travel width threshold value, and if it is smaller than 1.4 m, the correction amount l_tgt_offset is set to 0 [m]. If the safe_width that can be driven in front of the vehicle is larger than the correction upper limit driving width threshold, for example, 1.8 m is set as the upper limit driving width threshold, and if it is larger than 1.8 m and the safe_width that can be traveled in front of the vehicle is sufficiently wide, the correction is made. Let the amount l_tgt_offset be the maximum correction amount according to the basic target inter-vehicle distance l_tgt_base. If the safe_width that can travel ahead of the vehicle is between the lower correction lower limit driving width threshold and the upper correction upper limit driving width threshold value, smoothly connect the maximum correction amount according to the basic target inter-vehicle distance l_tgt_base and 0 [m]. Set the parameters. In addition, when the value of the basic target inter-vehicle distance l_tgt_base is large, that is, when the target distance is wide, the correction amount l_tgt_offset is increased so that the vehicle can travel closer to the preceding vehicle while the basic target inter-vehicle distance l_tgt_base is set. If the value is small, that is, if the target distance is short, the correction amount l_tgt_offset is reduced to immediately interrupt the side of the preceding vehicle due to acceleration / deceleration of the preceding vehicle or acceleration / deceleration due to changes in the road surface gradient. Adjust to set a wider distance so that there is no such thing. This parameter is often responsive to acceleration / deceleration of the vehicle, agility when changing tracks, the climate and road environment commonly used by the vehicle, and the rider frequently controls acceleration / deceleration to maintain distance. Or, the correction amount, the correction lower limit running width threshold and the correction upper limit running width threshold are adjusted in advance by experiments according to the characteristics such as whether there are many scenes in which the occurrence of acceleration / deceleration is suppressed regardless of the fluctuation of the distance. Then, the determined parameters are incorporated in the ROM mounted on the vehicle control device 100. By subtracting the correction amount l_tgt_offset obtained by the calculation from the basic target inter-vehicle distance l_tgt_base and setting it to the target inter-vehicle distance l_tgt, the result of correction for the basic target inter-vehicle distance l_tgt_base is set to the target inter-vehicle distance l_tgt. can do.
 この構成とすることで、先行車が左右にふらつきながら走行している時や、自車両が左右にふらつきながら走行していても、補正上限走行幅閾値より広い自車前方走行可能幅safe_widthが確保できていれば、目標車間距離l_tgtが変化しない(一定)ため、加減速が少なく、燃費が良く、乗り心地の良い運転が可能となる。一方、補正下限走行幅閾値より狭いようない自車前方走行可能幅safe_widthとなるシーンでは、先行車両に対して接近しすぎてしまうようなシーンを抑止し、安全性を両立することができる。 With this configuration, even when the preceding vehicle is traveling while swaying from side to side, or when the own vehicle is traveling while swaying from side to side, the safe_width that allows the vehicle to travel in front of the vehicle, which is wider than the correction upper limit driving width threshold, is secured. If it is possible, the target inter-vehicle distance l_tgt does not change (constant), so acceleration / deceleration is small, fuel efficiency is good, and driving is comfortable. On the other hand, in a scene where the driving width safe_width in front of the own vehicle is not narrower than the correction lower limit driving width threshold value, it is possible to suppress a scene in which the vehicle is too close to the preceding vehicle and achieve both safety.
 上記の構成の一例として、先行車の車速を一定とした場合の、基本目標車間距離l_tgt_base、補正量l_tgt_offset、自車前方走行可能幅safe_width、目標車間距離l_tgtの関係を図13を用いて説明する。自車前方走行可能幅safe_widthが0[m]から補正下限走行幅閾値である1.4[m]の間は、補正量l_tgt_offsetがゼロになり、基本目標車間距離l_tgt_baseと目標車間距離l_tgtの値が等しく(一定に)なる。自車前方走行可能幅safe_widthが補正下限走行幅閾値である1.4[m]から補正上限走行幅閾値である1.8[m]の間は、自車前方走行可能幅safe_widthの値に比例して補正量l_tgt_offsetが変化し(大きくなり)、自車前方走行可能幅safe_widthが補正上限走行幅閾値である1.8[m]より大きくなると、補正量l_tgt_offsetが最大となる。結果として自車前方走行可能幅safe_widthが補正下限走行幅閾値である1.4[m]から広くなるにつれて、換言すると、先行車両と走行帯路端との距離が長いほど、目標車間距離l_tgtが短くなり、自車前方走行可能幅safe_widthが補正上限走行幅閾値である1.8[m]より大きくなると、目標車間距離l_tgtが最短(基本目標車間距離l_tgt_baseに応じた一定値)となるようにする。 As an example of the above configuration, the relationship between the basic target inter-vehicle distance l_tgt_base, the correction amount l_tgt_offset, the vehicle forward travelable width safe_width, and the target inter-vehicle distance l_tgt when the vehicle speed of the preceding vehicle is constant will be described with reference to FIG. .. When the safe_width that can travel ahead of the vehicle is 0 [m] and the lower limit of correction is 1.4 [m], the correction amount l_tgt_offset becomes zero, and the values of the basic target inter-vehicle distance l_tgt_base and the target inter-vehicle distance l_tgt are equal. It becomes (constantly). The correction amount is proportional to the value of the vehicle front travelable width safe_width between the correction lower limit travel width threshold value of 1.4 [m] and the correction upper limit travel width threshold value of 1.8 [m]. When l_tgt_offset changes (becomes larger) and the safe_width that can travel ahead of the vehicle becomes larger than the correction upper limit travel width threshold value of 1.8 [m], the correction amount l_tgt_offset becomes maximum. As a result, as the safe_width that can travel ahead of the own vehicle becomes wider than the correction lower limit traveling width threshold of 1.4 [m], in other words, the longer the distance between the preceding vehicle and the roadside of the driving zone, the shorter the target vehicle-to-vehicle distance l_tgt. When the safe_width that can travel ahead of the own vehicle becomes larger than the correction upper limit driving width threshold of 1.8 [m], the target inter-vehicle distance l_tgt is set to the shortest (a constant value according to the basic target inter-vehicle distance l_tgt_base).
 また、この時ステレオカメラ200(の走行帯検出部232)で得た自車走行帯路端位置の、前後方向における自車に対する横位置変化を用いて得た道路曲率(自車両前方の走行帯の曲率)を用いて、補正量l_tgt_offsetをさらに補正する構成とすることもできる。具体的には、道路曲率が一定以上大きくなるような場合は、道路曲率の増大に応じて目標車間距離l_tgtを短くするための補正量l_tgt_offsetの適用割合を小さくするように調整する。これは、道路曲率が大きい急カーブやワインディングロードを走行する際、自車および先行車両が走行帯内のライン取りを各々行い、自車に対する先行車の左右方向位置が激しく変化する。また同様に、自車および先行車に対する走行帯路端の側方位置が激しく変化することが多いため、車群は千鳥走行の隊列を崩し、一列となって走行することが多い(図17参照)。そのため、千鳥走行に基づいた目標車間距離の補正量を小さくすることで、ライダーの違和感を抑止することができる。 Further, at this time, the road curvature (traveling zone in front of the own vehicle) obtained by using the lateral position change of the own vehicle traveling zone roadside position obtained by the stereo camera 200 (traveling zone detection unit 232) with respect to the own vehicle in the front-rear direction. The correction amount l_tgt_offset can be further corrected by using (curvature of). Specifically, when the road curvature becomes larger than a certain level, the correction amount l_tgt_offset for shortening the target inter-vehicle distance l_tgt is adjusted to be smaller as the road curvature increases. This is because when traveling on a sharp curve or a winding road with a large road curvature, the own vehicle and the preceding vehicle each take a line in the traveling zone, and the position of the preceding vehicle with respect to the own vehicle in the left-right direction changes drastically. Similarly, since the lateral position of the roadside of the traveling zone with respect to the own vehicle and the preceding vehicle often changes drastically, the vehicle group often breaks the staggered platoon and travels in a row (see Fig. 17). ). Therefore, by reducing the correction amount of the target inter-vehicle distance based on the staggered running, it is possible to suppress the rider's discomfort.
 次に、処理S136b72へ進む。
 処理S136b72では、車群走行中情報group_rideの更新を行う。処理S136b71の処理を行う場合は、自車両が先行車両を含んだ車群で千鳥走行(並行走行)を行っていることを示している。次周期の車両制御処理へ反映させる目的で、追従対象先行車情報に属する車群走行中情報group_rideをOnで設定し、処理S136b9へ進み、処理S136bを終了する。
Next, the process proceeds to process S136b72.
In the process S136b72, the vehicle group traveling information group_ride is updated. When processing S136b71 is performed, it is shown that the own vehicle is performing staggered running (parallel running) in a group of vehicles including the preceding vehicle. For the purpose of reflecting in the vehicle control processing of the next cycle, the vehicle group traveling information group_ride belonging to the following vehicle information is set to On, the process proceeds to the process S136b9, and the process S136b is terminated.
 こうして、処理S136bでは、基本目標車間距離l_tgt_baseに対して自車前方走行可能幅safe_width等に基づく補正量l_tgt_offsetを用いて補正を行い、目標車間距離l_tgtを計算する。 In this way, in the processing S136b, the basic target inter-vehicle distance l_tgt_base is corrected using the correction amount l_tgt_offset based on the vehicle front travelable width safe_width etc., and the target inter-vehicle distance l_tgt is calculated.
(先行車毎目標加速度計算部137による処理S137d1、S137d2、S137p1、S137p2、S137p3)
 図6に戻り、次に、判定S137d1を行い、先行車が目標車間距離より近くなっているのか(l_tgt≧l?)を判断し、近い場合は、処理S137p1で離間するための目標加速度を計算し、TgtA_Tmpに設定する。また、判定S137d1の結果、先行車が目標車間距離より遠かった場合は、判定S137d2を行い、処理S135で計算した相対速度が離れる、つまり、先行車の方が自車より速いか(Vdiff≧0?)の判断を行う。先行車の方が自車より速い場合は、処理S137p2にてTgtA_Tmpに無効値を設定する。
(Processing by target acceleration calculation unit 137 for each preceding vehicle S137d1, S137d2, S137p1, S137p2, S137p3)
Returning to Fig. 6, next, the judgment S137d1 is performed to determine whether the preceding vehicle is closer than the target vehicle-to-vehicle distance (l_tgt ≧ l?), And if so, the target acceleration for separating by the processing S137p1 is calculated. And set it to TgtA_Tmp. Also, as a result of judgment S137d1, if the preceding vehicle is farther than the target inter-vehicle distance, judgment S137d2 is performed and the relative speed calculated by processing S135 is separated, that is, is the preceding vehicle faster than the own vehicle (Vdiff ≥ 0)? ?) Make a judgment. If the preceding vehicle is faster than the own vehicle, set an invalid value in TgtA_Tmp in processing S137p2.
 判定S137d2の結果、先行車の方が自車より遅い場合は、処理S137p3で追いつきするための目標加速度計算を行って、TgtA_Tmpに設定する。 As a result of judgment S137d2, if the preceding vehicle is slower than the own vehicle, calculate the target acceleration to catch up with the processing S137p3 and set it to TgtA_Tmp.
 処理S137p1で行う、離間するための目標加速度の計算を以下に説明する。離間するための目標加速度TgtA_Pv_Leaveは、Vdiff、及び、l_tgtとlの偏差に基づいてあらかじめ設定されたマップ値を基に演算する。マップ値は、先行車に対して近づきながら速度を低下させる、先行車と離間しながら速度を低下させる、先行車と離間しながら加速するなどを行い、先行車との相対速度をゼロにするように加速度を連続的に変化させて速度が制御できるように設定する。先行車との相対速度に応じて、先行車に対して近づきながら速度を低下させる状況や、先行車と離間しながら速度を低下させる状況を飛ばして、先行車と離間しながら加速のみを行うように制御する場合もある。 The calculation of the target acceleration for separation performed in the process S137p1 will be explained below. The target acceleration TgtA_Pv_Leave for separation is calculated based on Vdiff and a preset map value based on the deviation between l_tgt and l. The map value should be such that the speed is reduced while approaching the preceding vehicle, the speed is reduced while being separated from the preceding vehicle, the acceleration is performed while being separated from the preceding vehicle, and the relative speed with the preceding vehicle is set to zero. The acceleration is continuously changed to set so that the speed can be controlled. Depending on the relative speed with the preceding vehicle, skip the situation where the speed is reduced while approaching the preceding vehicle or the situation where the speed is decreased while being separated from the preceding vehicle, and only accelerate while being separated from the preceding vehicle. It may be controlled to.
 処理S137p3で行う、追いつきするための目標加速度計算を以下に説明する。追いつきするための目標加速度TgtA_Pv_Approachは、以下の計算式で行う。
Figure JPOXMLDOC01-appb-M000006
The target acceleration calculation for catching up with the process S137p3 will be explained below. The target acceleration TgtA_Pv_Approach for catching up is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000006
 更に、長距離から減速を開始してしまい、その間に先行車が加速して減速エネルギー分を無駄にしてしまう、また、乗り心地の悪化をしてしまわないように、lが減速開始閾値l_Thrより短くならなければTgtA_Tmpを無効値とし、lが減速開始閾値l_Thrより短ければTgtA_TmpにTgtA_Pv_Approachを設定することで、追いつきするための目標加速度計算を行う。減速開始閾値l_Thrは通常、ライダーがACCを使わずに運転する際の挙動を目安として、70m~130m前後の値を設定すると、違和感の少ない制御となる。また、この減速開始閾値l_Thrは、自車速などによって可変とすることも考慮される。 Furthermore, l is from the deceleration start threshold l_Thr so that deceleration starts from a long distance, during which the preceding vehicle accelerates and wastes deceleration energy, and the ride quality does not deteriorate. If it does not become shorter, TgtA_Tmp is set as an invalid value, and if l is shorter than the deceleration start threshold l_Thr, TgtA_Pv_Approach is set in TgtA_Tmp to calculate the target acceleration to catch up. Normally, if the deceleration start threshold value l_Thr is set to a value of around 70m to 130m with the behavior when the rider drives without using ACC as a guide, the control will be less uncomfortable. It is also considered that the deceleration start threshold value l_Thr is variable depending on the vehicle speed or the like.
(目標加速度選択部138による処理S138d、S138p)
 次に、判定S138dによって、処理S137p1、処理S137p2、または、処理S137p3によって得たTgtA_Tmpと処理S132によって無効値で初期化したTgtA_Pvとを比較する。TgtA_TmpがTgtA_Pvより小さい場合、処理S138pへ進み、TgtA_PvをTgtA_Tmpの値で上書き更新する。TgtA_TmpがTgtA_Pvより小さいということは、目標加速度が負の方向に対して大きい、つまり、先行車が、自車がより強い減速制御を用いて車間距離を制御する必要がある追従対象である。そのため、目標加速度の最も小さな対象を選択する。この時、TgtA_TmpまたはTgtA_Pvに無効値が設定されている場合は、無効値を最大の値として定義する。例えばTgtA_Tmpが+1[m/s2]、TgtA_Pvが無効値であった場合は、TgtA_Tmpの方が小さな値として扱い、処理S138pでTgtA_Pvを+1[m/s2]へと更新する。こうして、TgtA_Pvを更新した後は、判定S134へと進む。また、判定S138dで、TgtA_TmpとTgtA_Pvを比較した結果、TgtA_TmpがTgtA_Pv以上となっている場合は、処理S138pを行わず、判定S134へ進む。
(Processing by target acceleration selection unit 138 S138d, S138p)
Next, the determination S138d compares the TgtA_Tmp obtained by the processing S137p1, the processing S137p2, or the processing S137p3 with the TgtA_Pv initialized by the processing S132 with an invalid value. If TgtA_Tmp is smaller than TgtA_Pv, proceed to process S138p and overwrite and update TgtA_Pv with the value of TgtA_Tmp. The fact that TgtA_Tmp is smaller than TgtA_Pv means that the target acceleration is large in the negative direction, that is, the preceding vehicle needs to control the inter-vehicle distance using stronger deceleration control of the own vehicle. Therefore, the target with the smallest target acceleration is selected. At this time, if an invalid value is set in TgtA_Tmp or TgtA_Pv, the invalid value is defined as the maximum value. For example, if TgtA_Tmp is +1 [m / s 2 ] and TgtA_Pv is an invalid value, TgtA_Tmp is treated as a smaller value and TgtA_Pv is updated to +1 [m / s 2 ] in the process S138p. In this way, after updating TgtA_Pv, the process proceeds to determination S134. Further, as a result of comparing TgtA_Tmp and TgtA_Pv in the determination S138d, if TgtA_Tmp is TgtA_Pv or more, the process S138p is not performed and the process proceeds to the determination S134.
 そして、判定S138dまたは処理S138pから判定S134へと進んできた場合、再度先行車情報の有無を判定する。この際、処理S135から処理S138dまたは処理S138pでTgtA_Tmpを計算するのに用いた追従対象先行車情報は判定S134では無視され、追従対象先行車情報として抽出されたその他の追従対象先行車情報の有無を判定する。処理されていない追従対象先行車情報が存在しなくなった場合は、処理S139へ進んで処理S130を終了し、処理していない追従対象先行車情報が存在している場合は、処理S135へ進んで再度TgtA_Pvを更新するかを判定し、処理していない追従対象先行車情報が無くなるまで処理を繰り返し行う。 Then, when the process proceeds from the determination S138d or the processing S138p to the determination S134, the presence or absence of the preceding vehicle information is determined again. At this time, the follow-up target preceding vehicle information used to calculate TgtA_Tmp from the process S135 to the process S138d or the process S138p is ignored by the determination S134, and the presence or absence of other follow-up target preceding vehicle information extracted as the follow-up target preceding vehicle information. To judge. If the unprocessed follow-up target vehicle information no longer exists, the process proceeds to the process S139 to end the process S130, and if the unprocessed follow-up target vehicle information exists, the process proceeds to the process S135. It is determined whether to update TgtA_Pv again, and the processing is repeated until there is no information on the preceding vehicle to be followed that has not been processed.
 先行車に対する目標加速度算出部130による処理S130によって、複数検出した追従対象先行車に対して、安全な車間距離を保つような制御が可能となり、例えば、先行車両が先行車両の前を走る先行車両の減速に合わせて減速を開始する前に、自車の減速を開始し、遅れの少ない減速制御を行うことが可能になる。また、この時、先行車両の前を走る先行車両と自車両の距離lが広く、減速の開始が遅くても問題ないような場合は、自車両の直近に存在する先行車両に対して加減速を調整することができる。 Processing by the target acceleration calculation unit 130 for the preceding vehicle S130 enables control to maintain a safe inter-vehicle distance for multiple detected preceding vehicles, for example, the preceding vehicle in which the preceding vehicle runs in front of the preceding vehicle. Before starting deceleration in accordance with the deceleration of the vehicle, it is possible to start deceleration of the own vehicle and perform deceleration control with less delay. At this time, if the distance l between the preceding vehicle running in front of the preceding vehicle and the own vehicle is wide and there is no problem even if the start of deceleration is delayed, acceleration / deceleration is performed with respect to the preceding vehicle existing in the immediate vicinity of the own vehicle. Can be adjusted.
(設定車速に対する目標加速度算出部140による処理S140)
 図5に戻り、処理S140では、設定車速Vtgtに対する目標加速度TgtA_Spdを算出する。TgtA_Spdは、以下の式により計算する。
Figure JPOXMLDOC01-appb-M000007
(Processing S140 by the target acceleration calculation unit 140 for the set vehicle speed)
Returning to FIG. 5, in the process S140, the target acceleration TgtA_Spd for the set vehicle speed Vtgt is calculated. TgtA_Spd is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000007
 上記の式のKは正の定数となり、0.001~0.02で設定する。また、Kは、加速をする場合は大きく、減速する場合は小さくするといった可変値にすると、減速にブレーキを使わないような、燃費の良い運転にしやすい。また、Vhが大きいときは、加速を弱く、減速を強くするように、Kを可変値として調整することで、安全性を高めることもできる。このように、Kを可変値とした調整は、車両の安定性や、搭載車両を購入するライダーの嗜好傾向に応じて調整するのが望ましい。 K in the above formula is a positive constant and is set between 0.001 and 0.02. Further, if K is set to a variable value such that it is large when accelerating and small when decelerating, it is easy to drive with good fuel efficiency so that the brake is not used for deceleration. In addition, when Vh is large, safety can be improved by adjusting K as a variable value so that acceleration is weak and deceleration is strong. In this way, it is desirable to adjust K as a variable value according to the stability of the vehicle and the preference tendency of the rider who purchases the mounted vehicle.
(目標加速度決定部150による処理S150)
 処理S150では、自車両の目標加速度TgtAを決定する。目標加速度TgtAは、処理S130で算出したTgtA_Pvと処理S140で算出したTgtA_Spdとを比較して小さい方、つまり、より減速する方を選択し、TgtAとする。また、TgtAの値が急変してしまうと車両の挙動が不安定になってしまうため、変化量リミットや一次遅れフィルタを用いることで、TgtAの値の変化を滑らかにするのが望ましい。更に加速側の変化量リミットは、乗り心地の良さを優先して抑制を強くし、減速側の変化量リミットは、安全性を優先して、変化量リミットを正負の方向に応じて非対称にし、加速をしにくく、減速をしやすくするのが望ましい。
(Processing by target acceleration determination unit 150 S150)
In the process S150, the target acceleration TgtA of the own vehicle is determined. The target acceleration TgtA is TgtA by comparing TgtA_Pv calculated by processing S130 and TgtA_Spd calculated by processing S140, and selecting the smaller one, that is, the one that decelerates more. In addition, if the TgtA value changes suddenly, the behavior of the vehicle becomes unstable, so it is desirable to smooth the change in the TgtA value by using a change amount limit or a first-order lag filter. Furthermore, the change amount limit on the acceleration side gives priority to good ride quality and strengthens the suppression, and the change amount limit on the deceleration side gives priority to safety and makes the change amount limit asymmetrical according to the positive and negative directions. It is desirable that it is difficult to accelerate and it is easy to decelerate.
(エンジン加速度要求算出部160による処理S160)
 処理S160では、自車両のエンジン510への加速度要求AccelReq_Egを算出する。
 エンジンへの加速度要求AccelReq_Egは、処理S150で算出した目標加速度TgtAに基づいて計算される。処理S160の内容を図8を用いて説明する。
(Processing by engine acceleration request calculation unit 160 S160)
In the process S160, the acceleration request AccelReq_Eg to the engine 510 of the own vehicle is calculated.
The acceleration request AccelReq_Eg to the engine is calculated based on the target acceleration TgtA calculated by the process S150. The contents of the process S160 will be described with reference to FIG.
 まず、処理S161から開始して、処理S162によってエンジンブレーキで発生する加速度EgBrkAccelを計算する。EgBrkAccelは、エンジンによる減速度と走行抵抗による減速度とを加算して計算する。エンジンによる減速度は、Vhに応じてエンジンやトランスミッションの諸元や変速比に応じて設定した値を設定する。また、走行抵抗は、車両の形状に応じた空気抵抗の係数とVpを用いて計算する。また、路面の勾配を、車両に搭載された前後加速度センサ値と車輪速の時間微分値との比較から算出して、勾配抵抗として走行抵抗に加算する。次に、処理S163では、処理S162で算出したEgBrkAccelを下限として、TgtAに下限リミットを行い、エンジンの出力制御で操作できる加速度に制限し、AccelReq_Egに設定する。そして、処理S164でAccelReq_Egに不感帯処理を施して、エンジンでの出力が微小に変動することで車体に振動が発生することによる、ライダーに与える違和感を無くす。そして、処理S169へ進んで処理S160を終了する。 First, starting from the process S161, the acceleration EgBrkAccel generated by the engine brake by the process S162 is calculated. EgBrkAccel is calculated by adding the deceleration due to the engine and the deceleration due to the running resistance. The deceleration by the engine is set to the value set according to the specifications of the engine and transmission and the gear ratio according to Vh. The running resistance is calculated using the coefficient of air resistance according to the shape of the vehicle and Vp. Further, the slope of the road surface is calculated from the comparison between the front-rear acceleration sensor value mounted on the vehicle and the time derivative value of the wheel speed, and added to the running resistance as the slope resistance. Next, in the process S163, the lower limit is set to TgtA with the EgBrkAccel calculated in the process S162 as the lower limit, the acceleration is limited to the acceleration that can be operated by the output control of the engine, and the acceleration is set to AccelReq_Eg. Then, in the processing S164, AccelReq_Eg is subjected to dead zone processing to eliminate the discomfort given to the rider due to vibration in the vehicle body due to slight fluctuations in the output of the engine. Then, the process proceeds to the process S169 and the process S160 is terminated.
(ブレーキ加速度要求算出部170による処理S170)
 処理S170では、自車両のブレーキ410への加速度要求AccelReq_Brkを算出する。
 ブレーキへの加速度要求AccelReq_Brkは、処理S150で算出した目標加速度TgtAと、処理S160で算出した加速度要求AccelReq_Egに基づいて計算される。処理S170の内容を図9を用いて説明する。
(Processing S170 by the brake acceleration request calculation unit 170)
In the process S170, the acceleration request AccelReq_Brk to the brake 410 of the own vehicle is calculated.
The acceleration request AccelReq_Brk to the brake is calculated based on the target acceleration TgtA calculated by the process S150 and the acceleration request AccelReq_Eg calculated by the process S160. The contents of the process S170 will be described with reference to FIG.
 まず、処理S171から開始して、処理S172によって、目標加速度TgtAから加速度要求AccelReq_Egを減算し、ブレーキで必要な目標ブレーキ減速度TgtA_Brkを計算する。次に、判断S173と判断S174によって、ブレーキの制御が未開始(AccelReq_Brk_Old=0)の時にブレーキ要求(=TgtA_Brk)がTgtABrkInitThrの値より小さいような弱いブレーキであるかを判断し、判断S173と判断S174の条件がともに成立している場合は、処理S175によって処理S172で計算した目標ブレーキ減速度TgtA_Brkをゼロにして無効化する。判断S173から処理S175の一連の処理を入れることで、ブレーキの作動と解除が繰り返されず、作動状態を継続し、車両ががたついてしまうような現象が発生しなくなり、乗り心地が良くなる。この時、TgtABrkInitThrは定数値として設定し、TgtABrkInitThrを大きくしすぎると減速開始が遅れて急ブレーキ気味になる。逆にTgtABrkInitThrを小さくしすぎると車両のがたつきが抑えられなくなる。そのため、車両のブレーキ性能や安定性に応じておよそ0.1[m/s2]で設定するのが望ましい。 First, starting from the process S171, the process S172 subtracts the acceleration request AccelReq_Eg from the target acceleration TgtA to calculate the target brake deceleration TgtA_Brk required for braking. Next, by the judgment S173 and the judgment S174, it is judged whether the brake request (= TgtA_Brk) is a weak brake smaller than the value of TgtABrkInitThr when the brake control is not started (AccelReq_Brk_Old = 0), and it is judged as the judgment S173. If both conditions of S174 are satisfied, the target brake deceleration TgtA_Brk calculated in process S172 by process S175 is set to zero and invalidated. By inputting a series of processes from the judgment S173 to the process S175, the operation and release of the brake are not repeated, the operating state is continued, the phenomenon that the vehicle rattles does not occur, and the riding comfort is improved. At this time, TgtABrkInitThr is set as a constant value, and if TgtABrkInitThr is set too large, the start of deceleration will be delayed and sudden braking will occur. On the contrary, if TgtABrkInitThr is made too small, the rattling of the vehicle cannot be suppressed. Therefore, it is desirable to set it at about 0.1 [m / s 2 ] according to the braking performance and stability of the vehicle.
 次に、処理S176でTgtA_Brkに対してゼロを下限としたリミット処理を行い、AccelReq_Brkとすることで、ブレーキに対して誤って加速要求が出ないようにする。次に、処理S177でAccelReq_Brkに不感帯処理を行うことで、ブレーキでの出力が微小に変動することで車体に振動が発生することによる、ライダーに与える違和感を無くし、最終的なブレーキへの加速度要求AccelReq_Brkとする。処理S178では、判定S173でブレーキ制御開始を判断するため、AccelReq_BrkをRAM等に保持しておき、処理S179へ進んで処理S170を終了する。 Next, in the process S176, limit processing with zero as the lower limit is performed for TgtA_Brk, and AccelReq_Brk is set to prevent the brake from being erroneously requested to accelerate. Next, by performing dead zone processing on AccelReq_Brk in processing S177, it eliminates the discomfort given to the rider due to vibration in the vehicle body due to slight fluctuations in the output of the brake, and the acceleration request for the final brake. Let's say AccelReq_Brk. In the process S178, in order to determine the start of brake control by the determination S173, AccelReq_Brk is held in RAM or the like, and the process proceeds to the process S179 to end the process S170.
 そして、処理S102へ進んで、車両制御装置100によるACCの加速度制御を終了する。なお、処理S160で算出されたエンジン510への加速度要求AccelReq_Egは、当該車両制御装置100からエンジンコントロールユニット500に送信される。処理S170で算出されたブレーキ410への加速度要求AccelReq_Brkは、当該車両制御装置100からブレーキコントロールユニット400に送信される。 Then, the process proceeds to processing S102, and the acceleration control of the ACC by the vehicle control device 100 is terminated. The acceleration request AccelReq_Eg to the engine 510 calculated in the process S160 is transmitted from the vehicle control device 100 to the engine control unit 500. The acceleration request AccelReq_Brk to the brake 410 calculated in the process S170 is transmitted from the vehicle control device 100 to the brake control unit 400.
 車両制御装置100では、図5などで示した加速度の制御以外にも、ACCを制御する上で、ライダーに情報を提示するための表示情報を生成する処理と、車両CANバスから目的の情報を受信したり、逆にACCの制御情報を送信する通信処理を行う。 In the vehicle control device 100, in addition to the acceleration control shown in FIG. 5 and the like, in controlling the ACC, a process of generating display information for presenting information to the rider and a target information from the vehicle CAN bus are obtained. Performs communication processing to receive or conversely transmit ACC control information.
 表示情報を生成する処理は、ACCコントロールスイッチ700(図1、図2)から得たスイッチ情報や、判断S110(図5)の条件に伴い、制御中かどうかを示す表示を判断する。また、ステレオカメラ200(図1、図2)で制御対象となる先行車が検出できているかどうか、処理S140(図5)で使用する設定車速などの制御情報を表示情報として設定する。 The process of generating display information determines the display indicating whether control is in progress according to the switch information obtained from the ACC control switch 700 (Figs. 1 and 2) and the conditions of judgment S110 (Fig. 5). In addition, control information such as whether or not the preceding vehicle to be controlled can be detected by the stereo camera 200 (FIGS. 1 and 2) and the set vehicle speed used in the process S140 (FIG. 5) is set as display information.
 通信処理では、前述の加速度の制御として計算したAccelReq_Brkをブレーキユニット400(図1、図2)に、AccelReq_Egをエンジンコントロールユニット500(図1、図2)に送信し、表示情報を生成する処理で生成した表示情報をメータコントロールユニット600(図1)へ送信する。 In the communication process, AccelReq_Brk calculated as the acceleration control described above is transmitted to the brake unit 400 (Fig. 1, Fig. 2), and AccelReq_Eg is transmitted to the engine control unit 500 (Fig. 1, Fig. 2) to generate display information. The generated display information is transmitted to the meter control unit 600 (Fig. 1).
 ACCコントロールスイッチ700は、車両のステアリングハンドルに設置したスイッチや、ステアリングコラムに取り付けたレバーなど、ライダーが運転中に容易に操作できる場所に設置され、ライダーのACC制御開始、ACC制御解除、ACC走行時の設定速度変更を行うために使用する。ACCコントロールスイッチ700は、ACCの開始をするためのスイッチ、ACCの解除をするためのスイッチ、ACC走行時の設定速度をプラス方向に変更するためのスイッチ、マイナス方向に変更するためのスイッチ、また必要に応じてACCを使えるようにするためのスイッチ、追従走行時の車間距離変更スイッチを備える。更に、ACC制御を実行中は、ACCの開始をするためのスイッチをACC走行時の設定速度をプラス方向に変更するためのスイッチと読み替えるなど、スイッチの種類増加によるコスト増加を防ぐ構成とすることもできる。 The ACC control switch 700 is installed in a place that the rider can easily operate while driving, such as a switch installed on the steering wheel of the vehicle or a lever attached to the steering column, and the rider's ACC control start, ACC control release, ACC driving Used to change the set speed of the time. The ACC control switch 700 is a switch for starting ACC, a switch for canceling ACC, a switch for changing the set speed during ACC driving in the positive direction, a switch for changing in the negative direction, and also. It is equipped with a switch to enable the use of ACC as needed and a switch to change the inter-vehicle distance during follow-up driving. Furthermore, while ACC control is being executed, the switch for starting ACC should be read as a switch for changing the set speed during ACC driving in the positive direction, so that the cost increase due to the increase in switch types should be prevented. You can also.
 ブレーキコントロールユニット400は、車両制御装置100(のブレーキ加速度要求算出部170)から送信されたAccelReq_Brkを用いてブレーキ410を制御し、タイヤ900に対して制動力を発生させることで車両の加速度(つまり減速度)を制御する。この時、ブレーキコントロールユニット400は、自車両の重量やタイヤ動半径、ブレーキの有効径などにより、AccelReq_Brkに対して発生させるブレーキ出力を調整する機能を持つ。 The brake control unit 400 controls the brake 410 by using AccelReq_Brk transmitted from the vehicle control device 100 (brake acceleration request calculation unit 170), and generates a braking force on the tire 900 to generate the acceleration of the vehicle (that is, the acceleration of the vehicle (that is, that is). Deceleration) is controlled. At this time, the brake control unit 400 has a function of adjusting the brake output generated for AccelReq_Brk according to the weight of the own vehicle, the tire radius, the effective diameter of the brake, and the like.
 エンジンコントロールユニット500は、車両制御装置100(のエンジン加速度要求算出部160)から送信されたAccelReq_Egを用いてエンジン510を制御し、トルクコンバータ520、トランスミッション530、ファイナルギア540を通してタイヤ900に対して駆動力を発生させることで車両の加速度を制御する。この時、エンジンコントロールユニット500は、自車両の重量やタイヤ動半径、トルクコンバータ520、トランスミッション530の状態を考慮してAccelReq_Egに対して発生させるエンジントルクを調整する機能を持ち、エンジン510のエンジンスロットル開度や噴射量を制御する。更に必要に応じてトランスミッション530の変速比も制御することで、目的の加速度を得られるようにする。 The engine control unit 500 controls the engine 510 using AccelReq_Eg transmitted from the vehicle control device 100 (engine acceleration request calculation unit 160), and drives the tire 900 through the torque converter 520, the transmission 530, and the final gear 540. The acceleration of the vehicle is controlled by generating force. At this time, the engine control unit 500 has a function of adjusting the engine torque generated for AccelReq_Eg in consideration of the weight of the own vehicle, the tire driving radius, the torque converter 520, and the state of the transmission 530, and the engine throttle of the engine 510. Control the opening and injection amount. Furthermore, by controlling the gear ratio of the transmission 530 as needed, the desired acceleration can be obtained.
 メータコントロールユニット600は、車両制御装置100から通信された表示情報に応じて、表示装置610やブザー620を制御し、ライダーに聴覚による警報や視覚による制御状態の通知を行う。 The meter control unit 600 controls the display device 610 and the buzzer 620 according to the display information communicated from the vehicle control device 100, and notifies the rider of an auditory alarm and a visual control state.
 以上で説明したように、本実施形態の車両制御装置100は、ステレオカメラ(外界認識装置)200を用いて自車両前方の先行車両との間に設定した目標車間距離に基づいて、前記自車両の加速度制御を行うもので、前記自車両が複数台並行走行可能な走行帯を前記先行車両に追従して走行する際に、前記ステレオカメラ(外界認識装置)200を用いて認識した前記先行車両および前記走行帯の情報に基づき、前記先行車両と前記走行帯の側方方向の走行帯路端との距離(=自車前方走行可能幅)に応じて、前記先行車両への追従時の目標車間距離を補正する目標車間距離補正部136bを有する。 As described above, the vehicle control device 100 of the present embodiment is the own vehicle based on the target inter-vehicle distance set between the vehicle control device 100 and the preceding vehicle in front of the own vehicle by using the stereo camera (outside world recognition device) 200. The preceding vehicle is recognized by using the stereo camera (outside world recognition device) 200 when the own vehicle follows the preceding vehicle in a traveling zone in which a plurality of the own vehicles can travel in parallel. And, based on the information of the traveling zone, the target at the time of following the preceding vehicle according to the distance between the preceding vehicle and the lateral traveling zone road edge of the traveling zone (= width that can be traveled in front of the own vehicle). It has a target inter-vehicle distance correction unit 136b that corrects the inter-vehicle distance.
 また、前記目標車間距離補正部136bは、前記先行車両と前記走行帯路端との距離(=自車前方走行可能幅)が長いほど、前記目標車間距離を短く補正する(前記目標車間距離を短く補正する補正量を大きくする)。 Further, the target vehicle-to-vehicle distance correction unit 136b corrects the target vehicle-to-vehicle distance to be shorter as the distance between the preceding vehicle and the traveling zone roadside (= the width that can be traveled in front of the own vehicle) is longer (the target vehicle-to-vehicle distance is corrected). Increase the amount of correction to be shortened).
 すなわち、自車走行路の路端位置と追従対象となる先行車両との距離(言い換えれば、走行帯路端に対する先行車両の距離)に応じて、先行車両追従時の目標となる前方車間距離に補正を行う。 That is, according to the distance between the roadside position of the own vehicle's driving road and the preceding vehicle to be followed (in other words, the distance of the preceding vehicle to the traveling zone roadside), the target distance between vehicles ahead when following the preceding vehicle is obtained. Make corrections.
 本実施形態の車両制御装置100によれば、先行車両との車間距離や相対速度を安全に保ちつつ、自動で自車両の駆動力を制御する時、走行帯内の、自車両、および、追従対象となる先行車両の走行位置に応じて、違和感の少ない車間距離で走行することが可能となる。 According to the vehicle control device 100 of the present embodiment, when the driving force of the own vehicle is automatically controlled while maintaining the inter-vehicle distance and the relative speed with the preceding vehicle safely, the own vehicle and the following in the traveling zone. Depending on the traveling position of the target preceding vehicle, it is possible to travel at a distance between vehicles with less discomfort.
 次に、前述した本発明の一実施形態である車両制御装置100に対しての変形例を説明する。 Next, a modified example of the vehicle control device 100 according to the embodiment of the present invention described above will be described.
<変形例1>
 変形例1として、車両構成について説明する。
 図1で示す車両構成では、エンジンを用いる車両を記載しているが、本発明は、車両加速度の制御方法を対象としているため、電気車両やハイブリッド車両、水素車両等、あらゆる原動機を使用する車両に対して有効となる。例えば電気車両を対象とする場合は、エンジンをモータに置き換えることができる。電気車両を対象とする場合は、エンジン車両と異なり、エンジンブレーキが無くなって回生ブレーキやバッテリーマネジメントの観点が入ってくるため、処理S162(図8)で算出するEgBrkAccelを変更することで、本実施形態を容易に流用することができる。
<Modification 1>
As a modification 1, a vehicle configuration will be described.
In the vehicle configuration shown in FIG. 1, a vehicle using an engine is described, but since the present invention targets a vehicle acceleration control method, a vehicle using any prime mover such as an electric vehicle, a hybrid vehicle, or a hydrogen vehicle. Is valid for. For example, when targeting an electric vehicle, the engine can be replaced with a motor. When targeting electric vehicles, unlike engine vehicles, the engine brake disappears and the viewpoint of regenerative braking and battery management comes into play, so this implementation is carried out by changing the EgBrkAccel calculated in process S162 (Fig. 8). The form can be easily diverted.
 また、本実施形態で示した車両制御装置100の機能は、ソフトウェア機能として実現される。そのため、車両制御装置100を、専用のコントロールユニットとして準備せず、ステレオカメラ200の中にソフトウェア機能として組み込み、車両制御装置100として兼用する場合、また、ブレーキコントロールユニット400の中にソフトウェア機能として組み込み、車両制御装置100として兼用する場合なども考えられる。これらの例は、部品数を削減してアーキテクチャを簡易にする、また、コストを削減するためにも有効である。 Further, the function of the vehicle control device 100 shown in the present embodiment is realized as a software function. Therefore, when the vehicle control device 100 is not prepared as a dedicated control unit but is incorporated as a software function in the stereo camera 200 and also used as the vehicle control device 100, it is also incorporated as a software function in the brake control unit 400. , It may also be used as a vehicle control device 100. These examples are useful for reducing the number of components, simplifying the architecture, and reducing costs.
<変形例2>
 変形例2として、処理S133(図6)の追従対象先行車情報生成について説明する。
<Modification 2>
As a second modification, the generation of information on the preceding vehicle to be followed by the process S133 (FIG. 6) will be described.
 上記実施形態の構成では、ステレオカメラ200で検出したバイクをすべて自車の追従制御対象として設定するように記載している。しかしながら、バイクの中には時速30[km/h]以下の低速で運用することを想定している車両、いわゆる原動機付き自転車などがあり、それらの車両は、ステレオカメラ200などを用いた認識では時速30[km/h]以上での運用も想定したバイクと区別しにくい場合があるが、自車両が追突したりしてしまわないような位置に存在している車両であれば、追従対象として選択しないほうが望ましい。特に自車両がバイクに対して追従走行をしており、千鳥走行をしている最中に自車両の車群に30[km/h]以下の低速で運用することを想定している車両が混走すると、自車両より前を走行する車両は、減速を行わず、30[km/h]以下の低速で運用することを想定している車群(集団)外の車両に対して追い抜きまたは追い越しを行うが、自車両は、その車群(集団)外の車両によって減速を行って、一時的に車群を分断してしまうという問題が発生することがある(図18参照)。この事象に対処して、処理S133の追従対象先行車情報生成に対して変更を行う。 In the configuration of the above embodiment, it is described that all the motorcycles detected by the stereo camera 200 are set as the follow-up control targets of the own vehicle. However, some motorcycles are supposed to operate at low speeds of 30 [km / h] or less, so-called motorized bicycles, etc., and these vehicles are recognized by using a stereo camera 200 or the like. It may be difficult to distinguish it from a motorcycle that is supposed to be operated at a speed of 30 [km / h] or more, but if the vehicle is in a position where it will not collide with the vehicle, it should be followed. It is better not to select. In particular, the vehicle is following the motorcycle, and while the vehicle is staggered, the vehicle that is supposed to operate at a low speed of 30 [km / h] or less in the vehicle group of the vehicle When mixed driving, the vehicle traveling in front of the own vehicle does not decelerate and overtakes or overtakes the vehicle outside the vehicle group (group) that is supposed to operate at a low speed of 30 [km / h] or less. However, there may be a problem that the own vehicle decelerates by a vehicle outside the vehicle group (group) and temporarily divides the vehicle group (see FIG. 18). In response to this event, changes are made to the generation of information on the preceding vehicle to be followed by the process S133.
 処理S133の追従対象先行車情報生成については、変更前制御周期において処理S136bで設定した車群走行中情報group_rideがOnと設定された追従対象先行車、つまり、目標車間距離補正部136bによって目標車間距離を短く補正している追従対象の先行車両の走行している速度より、「一定以上低い速度で走行している、または、停車している車両であり」、且つ、「自車走行車線上に存在していても自車の進行路上でない、つまり、自車が減速を行わずに走行した場合に自車が衝突してしまう可能性の高い横位置関係に存在しているバイクでなければ」、当該自車の追従対象として設定しないという条件を追加する。 Regarding the generation of information on the preceding vehicle to be followed by the processing S133, the vehicle group traveling information group_ride set in the processing S136b in the pre-change control cycle is set to On, that is, the target vehicle-to-vehicle distance correction unit 136b. "The vehicle is traveling or stopped at a speed lower than a certain level" and "on the own vehicle lane" than the speed of the preceding vehicle to be followed, which has been corrected to shorten the distance. Even if it exists in, it is not on the path of the own vehicle, that is, it is not a motorcycle that exists in a lateral position where there is a high possibility that the own vehicle will collide if the own vehicle travels without deceleration. ], Add the condition that it is not set as the follow target of the own vehicle.
 この構成に変更することで、30[km/h]以下の低速で運用することを想定している車群(集団)外の車両が自車両車群に混走した場合でも、意図しない自車両の減速を防ぎつつ、減速が発生せず衝突してしまうような危険性のない加減速制御を、ライダーに提供できる。 By changing to this configuration, even if a vehicle outside the vehicle group (group) that is supposed to operate at a low speed of 30 [km / h] or less runs mixed with the own vehicle group, the unintended own vehicle It is possible to provide the rider with acceleration / deceleration control that prevents deceleration and does not cause a collision without deceleration.
<変形例3>
 変形例3として、処理S136b(図6)の目標車間距離補正、及び、車両番号(ナンバー)検出の連携方法について説明する。
 上記実施形態の構成では、自車両がバイクに対してACCを用いて追従する場合、追従対象とする車両が、車群(集団)外の割り込み車であり、同一車群として走行したい車両でない場合がある(図19参照)。この時、追従対象とした車両と自車両の側方位置が離れている場合、処理S136b71(図7)が実行され、同一車群を想定した車間距離での走行を行うことがある。この場合、追従されている先行車両のライダー、および、自車両を操縦するライダーは、車間距離が近いことに対して違和感を覚えることがある。この問題に対して自車両の所属する車群の車両を一意に識別する機能を設けることが好ましい。その方法として、図4に記載の機能ブロック図の構成から、図20に示す機能ブロック図の構成とする。
<Modification 3>
As a modification 3, a method of linking the target inter-vehicle distance correction of the process S136b (FIG. 6) and the vehicle number (number) detection will be described.
In the configuration of the above embodiment, when the own vehicle follows the motorcycle using ACC, the vehicle to be followed is an interrupting vehicle outside the vehicle group (group) and is not a vehicle that wants to travel as the same vehicle group. (See Figure 19). At this time, if the vehicle to be followed and the lateral position of the own vehicle are separated from each other, the process S136b71 (Fig. 7) may be executed, and the vehicle may travel at an inter-vehicle distance assuming the same vehicle group. In this case, the rider of the preceding vehicle being followed and the rider who controls the own vehicle may feel uncomfortable with the short distance between the vehicles. To solve this problem, it is preferable to provide a function for uniquely identifying the vehicle of the vehicle group to which the own vehicle belongs. As a method for this, the configuration of the functional block diagram shown in FIG. 4 is changed from the configuration of the functional block diagram shown in FIG.
 具体的には、図20に示すように、車両制御装置100に、ナンバー取得部191とナンバー記録部192を備え、ステレオカメラ200(の画像処理部230)の立体物認識部231に、ナンバー検出部231nを備えるようにする。 Specifically, as shown in FIG. 20, the vehicle control device 100 is provided with a number acquisition unit 191 and a number recording unit 192, and a number detection is performed by the stereoscopic object recognition unit 231 of the stereo camera 200 (image processing unit 230). The part 231n is provided.
 まず、車両制御装置100のナンバー取得部191は、ライダーが自車両の同一車群で走行する車両の車両番号標(ナンバープレート)に記載されたナンバーを得るための手段である。ナンバーを得るための手段は、例えばライダーがスイッチ、ダイヤル、タッチパネルを手で操作し、数値を直接車両制御装置100へ入力する方法、音声をマイクによって車両制御装置100へ入力する方法、その他にも、後述するナンバー検出部231nで検出している車両のナンバーをライダーへ情報提示し、提示されたナンバーをライダーが承認する形で車両制御装置100へ入力するといった方法、または、携帯情報端末を用いて同一車群のナンバー情報をお互いに交換し、携帯情報端末から無線/有線を問わず、通信によってデータを車両制御装置100まで送り、通信受信装置でナンバー情報を入力する方法のいずれか、または複数の組み合わせなどがあり、それらによって車両制御装置100に入力された情報をナンバー取得部191によって取得する。この時用いられる情報の提示手段は、表示装置610を流用してもよいし、別途表示用の装置を設けてもよい。また、スイッチ、ダイヤル、タッチパネルの操作についてもACCコントロールスイッチ700を流用してもよいし、別途専用のインターフェース装置を設ける、または、ナビゲーション装置等の図1に記載していないような装置に設けられているインターフェースを流用してもよい。更に、ナンバー取得部191は、取得したナンバーを消去するためのライダーの要求も受け取るようにし、ナンバーの入力誤りや車群を解散する場合に、任意の番号、または、記録している全ての番号を消去する要求を、ナンバーの入力同様のインターフェースを用いて取得できるようにする。 First, the number acquisition unit 191 of the vehicle control device 100 is a means for the rider to obtain the number written on the vehicle number plate (license plate) of the vehicle traveling in the same vehicle group of the own vehicle. The means for obtaining the number is, for example, a method in which the rider manually operates a switch, a dial, and a touch panel to directly input a numerical value to the vehicle control device 100, a method in which voice is input to the vehicle control device 100 by a microphone, and the like. , The number of the vehicle detected by the number detection unit 231n, which will be described later, is presented to the rider, and the presented number is input to the vehicle control device 100 in a form approved by the rider, or using a mobile information terminal. Either of the methods of exchanging the number information of the same vehicle group with each other, sending the data from the mobile information terminal to the vehicle control device 100 by communication regardless of wireless or wired, and inputting the number information with the communication receiving device, or There are a plurality of combinations and the like, and the information input to the vehicle control device 100 by them is acquired by the number acquisition unit 191. As the information presenting means used at this time, the display device 610 may be diverted, or a display device may be separately provided. Further, the ACC control switch 700 may be used for the operation of the switch, the dial, and the touch panel, a dedicated interface device may be provided separately, or a navigation device or the like which is not shown in FIG. 1 may be provided. You may divert the interface you are using. In addition, the number acquisition unit 191 also receives the rider's request to erase the acquired number, and if there is an input error in the number or the vehicle group is disbanded, any number or all the recorded numbers It is possible to obtain the request to delete the number using the same interface as the input of the number.
 次に、ナンバー記憶部192は、ナンバー取得部191で得た自車両の同一車群で走行する車両のナンバーを記録する。記録する手段としては、車両制御装置100に備えられたメモリに保存する方法がある。特に、休憩等でバイクの動力を停止した後、改めて発進する際に再度ナンバーを記録し直す手間を省けるようにするため、ナンバーを記録するメモリは不揮発性のメモリを採用し、自車両の動力を停止した後も、記録したナンバーを保持し、再度動力を入れた後も、記録したナンバーを読み出せる構成とすることが望ましい。また、ナンバー記憶部192は、ナンバー取得部191によってナンバーの消去要求を受けた場合、任意の番号、または、記憶している全ての番号を消去する機能を有する。 Next, the number storage unit 192 records the number of the vehicle traveling in the same vehicle group of the own vehicle obtained by the number acquisition unit 191. As a means of recording, there is a method of storing in a memory provided in the vehicle control device 100. In particular, in order to save the trouble of re-recording the number when starting again after stopping the power of the motorcycle due to a break etc., the memory for recording the number adopts a non-volatile memory, and the power of the own vehicle It is desirable to have a configuration in which the recorded number is retained even after the power is stopped and the recorded number can be read even after the power is turned on again. Further, the number storage unit 192 has a function of erasing an arbitrary number or all stored numbers when a number erasure request is received by the number acquisition unit 191.
 次に、ステレオカメラ200の立体物認識部231は、検出した自車に対する障害物との距離や種別のほかに、立体物認識部231が備えるナンバー検出部231nを用いて、撮像した障害物の画像から車両番号標をパターンマッチングによって抽出する。更に、パターンマッチングによって抽出した車両番号標の中に対して車両番号を示す文字や数字を用いたパターンマッチングを行うことによって、該当の障害物を識別するナンバーを抽出し、障害物と自車の距離や種別情報と合わせてナンバーの情報を車両制御装置100に送信する。 Next, the stereoscopic object recognition unit 231 of the stereo camera 200 uses the number detection unit 231n provided in the stereoscopic object recognition unit 231 in addition to the distance and type of the detected obstacle to the own vehicle to capture an image of the obstacle. Vehicle number markers are extracted from the image by pattern matching. Furthermore, by performing pattern matching using letters and numbers indicating the vehicle number in the vehicle number markers extracted by pattern matching, a number that identifies the corresponding obstacle is extracted, and the obstacle and the own vehicle are identified. The number information is transmitted to the vehicle control device 100 together with the distance and type information.
 車両制御装置100では、追従対象先行車情報生成部133でナンバーの情報を追従対象先行車情報に関連付けする。そして、ナンバー記憶部192に記憶している車群走行車両のナンバー情報と追従対象先行車情報生成部133で追従対象先行車情報に関連付けされたナンバーの情報を用いて、変更後の目標車間距離補正部136bで使用する。 In the vehicle control device 100, the tracking target preceding vehicle information generation unit 133 associates the number information with the tracking target preceding vehicle information. Then, using the number information of the vehicle group traveling vehicle stored in the number storage unit 192 and the number information associated with the follow-up target preceding vehicle information in the follow-up target preceding vehicle information generation unit 133, the changed target vehicle-to-vehicle distance is used. Used in the correction unit 136b.
 変更後の目標車間距離補正部136bの処理内容を、図21に示すフローチャートを用いて説明する。図21では、図7で示した目標車間距離補正処理に対して、判定S136b2の前後方向最近傍の車両であるかの判定を変更し、判定S136b2_bの、ナンバー登録車両前後方向最近傍判定、すなわち、ナンバー登録車両、且つ、前後方向最近傍の車両であるかの判定とする。 The processing content of the target inter-vehicle distance correction unit 136b after the change will be described using the flowchart shown in FIG. In FIG. 21, the determination of whether the vehicle is the nearest neighbor in the front-rear direction of the determination S136b2 is changed with respect to the target inter-vehicle distance correction process shown in FIG. 7, and the number registration vehicle front-rear direction nearest neighbor determination of the determination S136b2_b, that is, , It is determined whether the vehicle is a number registered vehicle and is the nearest vehicle in the front-rear direction.
 変更前の判定S136b2(図7)では、処理S133で生成した追従対象先行車情報の中に複数登録されている先行車両と自車の前後方向距離のみを用いて自車に対して最も近い車両であるかを判定していた。それに対して、変更後の判定S136b2_b(図21)では、追従対象先行車情報に関連付けされたナンバーの情報が、ナンバー記憶部192に記憶している車群走行車両のナンバー情報に記録されていない車両を対象とせず、追従対象先行車情報に関連付けされたナンバーの情報が、ナンバー記憶部192に記憶している車群走行車両のナンバー情報に記録されている車両のみを対象として、今回処理する先行車両の前後方向距離が自車に対して最も近い車両であるかを判定する。 In the determination before change S136b2 (Fig. 7), the vehicle closest to the own vehicle using only the front-rear distance between the preceding vehicle and the own vehicle registered in the information of the preceding vehicle to be followed generated by the processing S133. It was judged whether it was. On the other hand, in the changed determination S136b2_b (FIG. 21), the information of the number associated with the information of the preceding vehicle to be followed is not recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192. This time, the information of the number associated with the preceding vehicle information to be followed is processed only for the vehicle recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, without targeting the vehicle. It is determined whether the vehicle in the front-rear direction of the preceding vehicle is the closest to the own vehicle.
 例えば、今回処理する先行車両のナンバーがナンバー記憶部192に記憶している車群走行車両のナンバー情報に記録されている車両でなければ、その時点で判定S136b2_bは不成立となって、処理S136b8へと進む。また、今回処理する先行車両のナンバーがナンバー記憶部192に記憶している車群走行車両のナンバー情報に記録されている車両であるが、追従対象先行車情報の中に、ナンバー記憶部192に記憶している車群走行車両のナンバー情報と同じナンバーの車両であり、自車に対して前後方向距離が今回処理する先行車両より近い車両が1つでも存在している場合は、判定S136b2_bは不成立となって、処理S136b8へと進む。今回処理する先行車両のナンバーがナンバー記憶部192に記憶している車群走行車両のナンバー情報に記録されている車両であり、自車に対して前後方向距離が今回処理する先行車両より近い車両が1つも存在しない、または、自車に対して前後方向距離が今回処理する先行車両より近い車両の全てがナンバー記憶部192に記憶している車群走行車両のナンバー情報と同じナンバーではない車両の場合にのみ、判定S136b2_bは成立となって、処理S136b3へ進む構成とする。すなわち、外界認識装置であるステレオカメラ200を用いて認識した先行車両のナンバーがナンバー記録手段192に記録されている場合のみ、目標車間距離補正部136bによる目標車間距離の補正を有効とする。処理S136b3以降の処理は、図7に基づき説明したのと同じである。 For example, if the number of the preceding vehicle to be processed this time is not the vehicle recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, the determination S136b2_b is unsuccessful at that time, and the process goes to S136b8. And proceed. Further, although the number of the preceding vehicle to be processed this time is recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, the number storage unit 192 contains the number of the preceding vehicle to be followed. If there is at least one vehicle with the same number as the number information of the vehicle group traveling vehicle that is memorized and the front-rear distance to the own vehicle is closer than the preceding vehicle to be processed this time, the judgment S136b2_b is It becomes unsuccessful and proceeds to process S136b8. The number of the preceding vehicle to be processed this time is a vehicle recorded in the number information of the vehicle group traveling vehicle stored in the number storage unit 192, and the vehicle in the front-rear direction with respect to the own vehicle is closer to the preceding vehicle to be processed this time. There is no vehicle, or all vehicles whose front-rear distance is closer to the vehicle than the preceding vehicle processed this time are not the same number as the number information of the vehicle group traveling vehicle stored in the number storage unit 192. Only in the case of, the determination S136b2_b is satisfied, and the process proceeds to the process S136b3. That is, only when the number of the preceding vehicle recognized by the stereo camera 200, which is an outside world recognition device, is recorded in the number recording means 192, the correction of the target vehicle-to-vehicle distance by the target vehicle-to-vehicle distance correction unit 136b is effective. Processing The processing after S136b3 is the same as described with reference to FIG.
 こうすることで、同一車群として走行したい車両にのみ処理S136b71(図7)の補正を行えるため、同一車群でない車両に対して目標車間距離を短くしないようにし、追従されている先行車両のライダー、および、自車両を操縦するライダーに対する違和感を抑止できる。 By doing this, the processing S136b71 (Fig. 7) can be corrected only for vehicles that want to travel in the same vehicle group. It is possible to suppress discomfort to the rider and the rider who controls the own vehicle.
<変形例4>
 変形例4として、自車両の走行環境の検出、認識手段について説明する。
 上記実施形態の構成では、外界認識装置であるステレオカメラ200を用いて、自車両周辺の障害物、先行車、自車走行帯の検出を行うように記載している。しかし、自車両の走行環境の検出、認識手段は、ステレオカメラを用いた方式に限られるものだけではなく、例えばミリ波レーダーと単眼カメラを用いた方式が挙げられる。この場合、ミリ波レーダーを用いて自車前方の障害物や先行車と自車との前後方向および側方方向の距離を計測する。更に単眼カメラで得た画像から、車道区画線を検出することで、自車走行帯を認識する。また、ミリ波レーダーで得た情報に対して、単眼カメラで得た画像情報をパターンマッチングさせることによって、追従対象の先行車が4輪車両であるか、2輪車両であるか、すなわち、追従対象の先行車の種別を判別することもできる。この構成とすることで、比較的に安価なセンサであるミリ波レーダーや単眼カメラを組み合わせて使用することで、安価なシステムとすることが可能となる。また、ステレオカメラのように2つのカメラの取り付け位置に縛られないようなレイアウトが可能となり、車両デザインの際の自由度を上げることができる。また、センサの選択は、ソナーやレーザーレーダーなど、カメラやミリ波レーダーに限らず、その他のセンサを組み合わせて自車両に搭載することで、自車両の走行環境の検出、認識を可能にすることができる。
<Modification example 4>
As a modification 4, a means for detecting and recognizing the traveling environment of the own vehicle will be described.
In the configuration of the above embodiment, it is described that the stereo camera 200, which is an outside world recognition device, is used to detect obstacles around the own vehicle, the preceding vehicle, and the own vehicle traveling zone. However, the means for detecting and recognizing the traveling environment of the own vehicle is not limited to the method using a stereo camera, and examples thereof include a method using a millimeter wave radar and a monocular camera. In this case, the millimeter-wave radar is used to measure obstacles in front of the vehicle and the distance between the preceding vehicle and the vehicle in the front-rear direction and the side direction. Furthermore, by detecting the roadway lane marking from the image obtained by the monocular camera, the own vehicle traveling zone is recognized. Further, by pattern matching the image information obtained by the monocular camera with the information obtained by the millimeter wave radar, whether the preceding vehicle to be followed is a four-wheeled vehicle or a two-wheeled vehicle, that is, following. It is also possible to determine the type of the target preceding vehicle. With this configuration, it is possible to make an inexpensive system by using a millimeter-wave radar or a monocular camera, which are relatively inexpensive sensors, in combination. In addition, unlike a stereo camera, a layout that is not tied to the mounting positions of the two cameras is possible, and the degree of freedom in vehicle design can be increased. In addition, the selection of sensors is not limited to cameras and millimeter-wave radars such as sonar and laser radar, but by installing other sensors in combination with the own vehicle, it is possible to detect and recognize the driving environment of the own vehicle. Can be done.
 更に、自車両の走行環境の検出、認識手段は、自車両に搭載するセンサのみでされるものとは限らない。例えば、自車両と先行車両の通信、および、GPSを用いた自車走行帯の検出によって上述の機能を実現する方法もある。自車両および先行車両はGPSを搭載し、それぞれの車両位置を測定し、その情報を自車両周辺の車両へと配信することでお互いの車両間距離を計測することができる。また、自車はGPSから自車の経度、緯度、向きの情報を得、地図情報を用いて自車走行帯を検出することで、自車両に搭載されたセンサではなく、GPSとの通信によって自車両の走行環境の検出、認識を行うことが可能となる。この構成とすることで、自車両は比較的安価で小型な通信装置を搭載するのみで自車両の走行環境の検出、認識を行うことが可能となるため、車両価格を抑止することができる。更に、センサのように遮蔽物や設置の向き、位置による制限が減るため、車両デザインの際の自由度を更に上げることが可能となる。また、通信を用いる場合は自車両を含む車群の他車両を事前にペアリングすることで、自車群外の車両に対して車間距離を短く補正しないような構成とすることもできる。 Furthermore, the means for detecting and recognizing the driving environment of the own vehicle is not limited to the sensor mounted on the own vehicle. For example, there is also a method of realizing the above-mentioned function by communication between the own vehicle and the preceding vehicle and detection of the own vehicle traveling zone using GPS. The own vehicle and the preceding vehicle are equipped with GPS, and by measuring the position of each vehicle and distributing the information to the vehicles around the own vehicle, the distance between each other can be measured. In addition, the vehicle obtains information on the longitude, latitude, and orientation of the vehicle from GPS, and detects the vehicle's travel zone using map information, so that it communicates with GPS instead of the sensor mounted on the vehicle. It is possible to detect and recognize the driving environment of the own vehicle. With this configuration, the own vehicle can detect and recognize the driving environment of the own vehicle only by mounting a relatively inexpensive and small communication device, so that the vehicle price can be suppressed. Further, unlike the sensor, restrictions due to the shield, the direction of installation, and the position are reduced, so that the degree of freedom in vehicle design can be further increased. In addition, when communication is used, it is possible to pair other vehicles in the vehicle group including the own vehicle in advance so that the inter-vehicle distance is not shortened with respect to the vehicles outside the own vehicle group.
 そして、これらセンサや通信は、組み合わせて車両を構築することもできる。例えば夜間などカメラを用いたセンシングが苦手なシーンについて、通信を用いて検知性能を補う、また、トンネル内などGPSでは測位が難しく、ミリ波レーダーでも乱反射によって測距性能が低下する場合にはステレオカメラを用いて性能を補うなどの用途で車両を構築することもできる。 And these sensors and communications can be combined to build a vehicle. For example, for scenes that are not good at sensing with a camera such as at night, the detection performance is supplemented by using communication, and if positioning is difficult with GPS such as in a tunnel and the distance measurement performance deteriorates due to diffused reflection even with millimeter wave radar, stereo. Vehicles can also be built for applications such as supplementing performance with cameras.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modified forms. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
1 車両(自車両)
100 車両制御装置
130 先行車に対する目標加速度算出部
133 追従対象先行車情報生成部(追従対象選択部)
135 相対速度計算部
136a 基本目標車間距離計算部
136b 目標車間距離補正部
136b6 自車前方走行可能幅計算部
137 先行車毎目標加速度計算部
138 目標加速度選択部
140 設定車速に対する目標加速度算出部
150 目標加速度決定部
160 エンジン加速度要求算出部
170 ブレーキ加速度要求算出部
191 ナンバー取得部
192 ナンバー記録部
200 ステレオカメラ(外界認識装置)
210 CCDカメラ(右)
220 CCDカメラ(左)
230 画像処理部
231 立体物認識部
231n ナンバー検出部
232 走行帯検出部
250 通信処理部
300 車輪速センサ
400 ブレーキコントロールユニット
410 ブレーキ
500 エンジンコントロールユニット
510 エンジン
600 メータコントロールユニット
610 表示装置
620 ブザー
700 ACCコントロールスイッチ
1 vehicle (own vehicle)
100 Vehicle control device
130 Target acceleration calculation unit for the preceding vehicle
133 Following vehicle information generation unit (following target selection unit)
135 Relative velocity calculator
136a Basic target inter-vehicle distance calculation unit
136b Target inter-vehicle distance correction unit
136b6 Own vehicle forward travelable width calculation unit
137 Target acceleration calculation unit for each preceding vehicle
138 Target acceleration selection unit
140 Target acceleration calculation unit for set vehicle speed
150 Target acceleration determination unit
160 Engine acceleration request calculation unit
170 Brake acceleration request calculation unit
191 Number acquisition department
192 Number recording section
200 Stereo camera (outside world recognition device)
210 CCD camera (right)
220 CCD camera (left)
230 Image processing unit
231 3D object recognition unit
231n number detector
232 Travel zone detector
250 Communication processing unit
300 wheel speed sensor
400 Brake control unit
410 brake
500 engine control unit
510 engine
600 meter control unit
610 Display device
620 buzzer
700 ACC control switch

Claims (14)

  1.  外界認識装置を用いて自車両前方の先行車両との間に設定した目標車間距離に基づいて、前記自車両の加速度制御を行う車両制御装置において、
     前記自車両が複数台並行走行可能な走行帯を前記先行車両に追従して走行する際に、前記外界認識装置を用いて認識した前記先行車両および前記走行帯の情報に基づき、前記先行車両と前記走行帯の側方方向の走行帯路端との距離に応じて、前記先行車両への追従時の目標車間距離を補正する目標車間距離補正部を有することを特徴とする車両制御装置。
    In the vehicle control device that controls the acceleration of the own vehicle based on the target inter-vehicle distance set between the vehicle and the preceding vehicle in front of the own vehicle using the outside world recognition device.
    When the own vehicle follows the preceding vehicle in a traveling zone in which a plurality of the own vehicles can travel in parallel, the preceding vehicle and the preceding vehicle are based on the information of the preceding vehicle and the traveling zone recognized by the outside world recognition device. A vehicle control device comprising a target vehicle-to-vehicle distance correction unit that corrects a target vehicle-to-vehicle distance when following a preceding vehicle according to a distance from the traveling zone roadside in the lateral direction of the traveling zone.
  2.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部は、前記先行車両と前記走行帯路端との距離が長いほど、前記目標車間距離を短く補正することを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The target vehicle-to-vehicle distance correction unit is a vehicle control device characterized in that the longer the distance between the preceding vehicle and the traveling zone road end, the shorter the target vehicle-to-vehicle distance correction unit is.
  3.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部は、前記先行車両と前記走行帯路端との距離が所定の補正上限閾値より大きい場合、または、前記先行車両と前記走行帯路端との距離が所定の補正下限閾値より小さい場合、前記目標車間距離を一定に補正することを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    In the target inter-vehicle distance correction unit, when the distance between the preceding vehicle and the traveling zone road end is larger than a predetermined correction upper limit threshold value, or when the distance between the preceding vehicle and the traveling zone road edge is a predetermined correction lower limit threshold value. If it is smaller, the vehicle control device is characterized by correcting the target inter-vehicle distance to be constant.
  4.  請求項1に記載の車両制御装置において、
     前記自車両の前記走行帯上に存在する車両を前記自車両の追従対象として選択する追従対象選択部を有することを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    A vehicle control device comprising a tracking target selection unit that selects a vehicle existing on the traveling zone of the own vehicle as a tracking target of the own vehicle.
  5.  請求項1に記載の車両制御装置において、
     前記先行車両と前記走行帯路端との距離を得る際、前記先行車両から見て前記自車両が存在する側方方向に存在する前記走行帯路端との距離を用いることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    When obtaining the distance between the preceding vehicle and the traveling zone road end, a vehicle characterized in that the distance from the traveling zone road edge existing in the lateral direction in which the own vehicle exists as viewed from the preceding vehicle is used. Control device.
  6.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部は、複数の先行車両を追従対象として検出している場合、前記自車両に対して前後方向距離が最も近い先行車両に対してのみ補正を行い、前記自車両に対して前後方向距離が最も近い先行車両でない先行車両に対しては補正を行わないことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    When the target inter-vehicle distance correction unit detects a plurality of preceding vehicles as tracking targets, the target vehicle-to-vehicle distance correction unit corrects only the preceding vehicle having the closest front-rear direction distance to the own vehicle, and corrects only the preceding vehicle with respect to the own vehicle. A vehicle control device characterized in that correction is not performed for a preceding vehicle that is not the preceding vehicle having the closest distance in the front-rear direction.
  7.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部は、前記先行車両と前記走行帯路端との距離が前記自車両の車幅以上である先行車両に対してのみ補正を行い、前記先行車両と前記走行帯路端との距離が前記自車両の車幅未満である先行車両に対しては補正を行わないことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The target inter-vehicle distance correction unit corrects only for the preceding vehicle in which the distance between the preceding vehicle and the traveling zone road end is equal to or larger than the vehicle width of the own vehicle, and the preceding vehicle and the traveling zone road edge are corrected. A vehicle control device, characterized in that correction is not performed for a preceding vehicle whose distance is less than the width of the own vehicle.
  8.  請求項1に記載の車両制御装置において、
     前記外界認識装置は、2つのカメラによるステレオ視を行って得られた視差情報から、前記先行車両と前記走行帯路端との距離を得ることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The outside world recognition device is a vehicle control device characterized in that the distance between the preceding vehicle and the traveling zone roadside is obtained from the parallax information obtained by performing stereo vision by two cameras.
  9.  請求項1に記載の車両制御装置において、
     前記外界認識装置は、車道外側線または車道中央線を含む区画線、車道と歩道を分離する段差、道路の色の変化、わだち、ガードレール、ポール、壁、ボッツドッツ、チャッターバー、駐車車両または道路工事表示を含む路上障害物のうちいずれか、または全てを検出して前記自車両の前記走行帯を取得し、前記走行帯を判断するための外界認識情報を取得できない場合は、前記自車両の進行路から左右側方に一定間隔の幅を持った領域を前記走行帯として扱うことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The outside world recognition device may be a lane marking line including an outside line or a center line of a roadway, a step separating a roadway and a sidewalk, a change in road color, a rut, a guard rail, a pole, a wall, a botts, a chatter bar, a parked vehicle or a road construction. If any or all of the road obstacles including the display are detected to acquire the traveling zone of the own vehicle and the outside world recognition information for determining the traveling zone cannot be acquired, the progress of the own vehicle A vehicle control device characterized in that a region having a width at regular intervals from the road to the left and right is treated as the traveling zone.
  10.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部が前記目標車間距離を短く補正している最中に、前記自車両が車線変更を行った後一定時間以内は、前記自車両が車線変更を行う前の走行帯を、前記自車両の前記走行帯として扱うことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    While the target inter-vehicle distance correction unit is correcting the target inter-vehicle distance to be short, within a certain period of time after the own vehicle changes lanes, the traveling zone before the own vehicle changes lanes is displayed. A vehicle control device characterized in that it is treated as the traveling zone of the own vehicle.
  11.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部が前記目標車間距離を短く補正している追従対象の先行車両より走行速度が一定以上低い車両、且つ、前記自車両の進行路上に存在しない車両である場合、当該車両を前記自車両の追従対象としないことを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    When the target vehicle-to-vehicle distance correction unit is a vehicle whose traveling speed is lower than a certain level or more than the preceding vehicle to be followed by which the target vehicle-to-vehicle distance is corrected to be short, and the vehicle does not exist on the traveling road of the own vehicle, the vehicle is used. A vehicle control device characterized in that it is not a follow-up target of the own vehicle.
  12.  請求項1に記載の車両制御装置において、
     前記目標車間距離補正部は、前記自車両前方の走行帯の曲率を取得し、前記走行帯の曲率が一定以上大きい場合は、前記目標車間距離を短くするための補正量を小さくすることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The target inter-vehicle distance correction unit acquires the curvature of the traveling zone in front of the own vehicle, and when the curvature of the traveling zone is larger than a certain level, the target inter-vehicle distance correction unit is characterized in that the correction amount for shortening the target inter-vehicle distance is reduced. Vehicle control device.
  13.  請求項1に記載の車両制御装置において、
     前記自車両と集団走行を行う車両の車両番号標に記載されたナンバーを取得するナンバー取得部と、前記ナンバー取得部で取得したナンバーを記録するナンバー記録部とを有し、
     前記外界認識装置を用いて認識した前記先行車両のナンバーが前記ナンバー記録部に記録されている場合のみ、前記目標車間距離補正部による前記目標車間距離の補正を有効とすることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    It has a number acquisition unit that acquires the number written on the vehicle number plate of the own vehicle and a vehicle that performs group traveling, and a number recording unit that records the number acquired by the number acquisition unit.
    A vehicle characterized in that the correction of the target inter-vehicle distance by the target inter-vehicle distance correction unit is effective only when the number of the preceding vehicle recognized by the outside world recognition device is recorded in the number recording unit. Control device.
  14.  請求項1に記載の車両制御装置において、
     前記自車両は、二輪の鞍乗り型車両であることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The own vehicle is a vehicle control device characterized by being a two-wheeled saddle-riding vehicle.
PCT/JP2021/008602 2020-05-21 2021-03-05 Vehicle control device WO2021235043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089181A JP7394018B2 (en) 2020-05-21 2020-05-21 Vehicle control device
JP2020-089181 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021235043A1 true WO2021235043A1 (en) 2021-11-25

Family

ID=78707792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008602 WO2021235043A1 (en) 2020-05-21 2021-03-05 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7394018B2 (en)
WO (1) WO2021235043A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088771A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Travel controller
JP2009149254A (en) * 2007-12-21 2009-07-09 Fuji Heavy Ind Ltd Travel controller for vehicle
JP2016034819A (en) * 2014-08-04 2016-03-17 株式会社エフ・シー・シー Saddle-ride type vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088771A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Travel controller
JP2009149254A (en) * 2007-12-21 2009-07-09 Fuji Heavy Ind Ltd Travel controller for vehicle
JP2016034819A (en) * 2014-08-04 2016-03-17 株式会社エフ・シー・シー Saddle-ride type vehicle

Also Published As

Publication number Publication date
JP7394018B2 (en) 2023-12-07
JP2021183444A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CN107783535B (en) Vehicle control device
CN110053619B (en) Vehicle control device
CN109795490B (en) Automatic driving system
US10513267B2 (en) Vehicle safety system
JP6939428B2 (en) Vehicle control device
JP7416176B2 (en) display device
US8762021B2 (en) Driving support system
JP7172257B2 (en) Autonomous driving system
CN111712414A (en) Vehicle control device
US20120078484A1 (en) Vehicle cruise control apparatus
CN111497834B (en) Driving assistance system
JP6988381B2 (en) Vehicle control device
CN111383477B (en) Information presentation device
JP6349781B2 (en) Vehicle control system, method and program
JP7207256B2 (en) vehicle control system
JP2017136968A (en) Vehicle control device
JP7201310B2 (en) vehicle control system
CN112714718B (en) Vehicle control method and vehicle control device
JP2022139524A (en) Drive support device and recording medium
CN114194186A (en) Vehicle travel control device
US11427252B2 (en) Automatic driving system
JP7107095B2 (en) Autonomous driving system
JP5139816B2 (en) Outside monitoring device
CN114523968B (en) Surrounding vehicle monitoring device and surrounding vehicle monitoring method
WO2021235043A1 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809679

Country of ref document: EP

Kind code of ref document: A1