WO2021233365A1 - User equipment, network node and methods therein for facilitating charging for direct ue-to-ue communication - Google Patents

User equipment, network node and methods therein for facilitating charging for direct ue-to-ue communication Download PDF

Info

Publication number
WO2021233365A1
WO2021233365A1 PCT/CN2021/094786 CN2021094786W WO2021233365A1 WO 2021233365 A1 WO2021233365 A1 WO 2021233365A1 CN 2021094786 W CN2021094786 W CN 2021094786W WO 2021233365 A1 WO2021233365 A1 WO 2021233365A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
usage information
relay
network node
information report
Prior art date
Application number
PCT/CN2021/094786
Other languages
French (fr)
Inventor
Shabnam Sultana
Juying GAN
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Juying GAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ), Juying GAN filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Publication of WO2021233365A1 publication Critical patent/WO2021233365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present disclosure relates to communication technology, and more particularly, to a User Equipment (UE) , a network node and methods therein for facilitating charging for direct UE-to-UE communication.
  • UE User Equipment
  • Proximity-based Service (ProSe) communication in Evolved Packet System (EPS) is specified in the 3 rd Generation Partnership Project (3GPP) Technical Specification (TS) 23.303, V15.1.0, which is incorporated herein by reference in its entirety.
  • the ProSe allows direct UE-to-UE communication over a Prose Communication reference point 5 (PC5) , also referred to as PC5 communication hereinafter.
  • PC5 Prose Communication reference point 5
  • the 3GPP TS 23.303 defines a ProSe UE-to-Network relay for public safety.
  • Fig. 1 shows an exemplary architecture model using a ProSe UE-to-Network relay.
  • a UE referred to as a remote UE
  • eNB evolved NodeB
  • the remote UE establishes a PC5 link to the UE-to-Network relay UE.
  • the eNB is in turn connected to an Evolved Packet Core (EPC) which is connected to e.g., a public safety Application Server (AS) .
  • EPC Evolved Packet Core
  • AS Public safety Application Server
  • the relay UE relays unicast traffic (both uplink and downlink) between the remote UE and the network.
  • the relay UE provides a generic function that can relay any IP traffic.
  • the UE-to-Network relay is expected to be used for commercial use cases, in addition to the public safety use case.
  • a UE-to-UE relay is supported, which allows a remote UE to be connected to another UE via a relay UE (in particular referred to as UE-to-UE relay UE) .
  • the charging for ProSe communication or PC5 communication in the EPS is specified in the 3GPP TS 32.277, V15.1.0, which is incorporated herein by reference in its entirety.
  • the charging for ProSe communication or PC5 communication is the 5G system is discussed in the 3GPP Technical Report (TR) 23.752, V0.3.0, which is incorporated herein by reference in its entirety.
  • TR 23.752 a Session Management Function (SMF) or Access and Mobility Management Function (AMF) may be responsible for interacting with a Charging Function (CHF) for the purpose of charging for ProSe or PC5 communication.
  • SMF Session Management Function
  • AMF Access and Mobility Management Function
  • Usage (e.g., data usage) information of a direct UE-to-UE communication (such as ProSe or PC5 communication) is reported by a UE and such reporting is completely up to the UE.
  • a network operator may want to apply different charging policies depending on a role of a UE in the direct UE-to-UE communication, e.g., whether it is a remote UE or a relay UE.
  • a network operator may want to check the consistency of usage information of a direct UE-to-UE communication reported from different UEs, e.g., a remote UE and a relay UE.
  • a direct UE-to-UE communication e.g., ProSe or PC5 communication.
  • a method in a UE includes: transmitting a usage information report to a network node.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF.
  • a UE includes a communication interface, a processor and a memory.
  • the memory contains instructions executable by the processor whereby the UE is operative to perform the method according to the above first aspect.
  • a computer readable storage medium has computer program instructions stored thereon.
  • the computer program instructions when executed by a processor in a UE, cause the UE to perform the method according to the above first aspect.
  • a method in a network node includes: receiving a usage information report from a UE.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the method further includes: forwarding the usage information report to another network node.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
  • a method in a network node includes: receiving a usage information report from another network node.
  • the usage information report contains usage information of a direct communication between a UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the method further includes: creating a charging record associated with the UE based on the usage information and the role of the UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
  • a network node includes a communication interface, a processor and a memory.
  • the memory contains instructions executable by the processor whereby the network node is operative to perform the method according to the above fourth or fifth aspect.
  • a computer readable storage medium has computer program instructions stored thereon.
  • the computer program instructions when executed by a processor in a network node, cause the network node to perform the method according to the above fourth or fifth aspect.
  • a UE can transmit a usage information report to a network node (e.g., an SMF or an AMF) , containing usage information of a direct UE-to-UE communication and further containing an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the network node can forward the usage information report to e.g., a CHF. This allows the network to be aware of the UE’s role (e.g., remote UE or relay UE) in the direct UE-to-UE communication, so as to enable the network to apply more accurate and/or more flexible charging for the direct UE-to-UE communication.
  • Fig. 1 is a schematic diagram showing an exemplary architecture model using a ProSe UE-to-Network relay
  • Fig. 2 is a flowchart illustrating a method in a UE according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart illustrating a method in a network node according to an embodiment of the present disclosure
  • Fig. 4 is a flowchart illustrating a method in a network node according to another embodiment of the present disclosure
  • Fig. 5 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure
  • Fig. 6 is a sequence diagram of a procedure for charging for a PC5 communication according to another embodiment of the present disclosure.
  • Fig. 7 is a block diagram of a UE according to an embodiment of the present disclosure.
  • Fig. 8 is a block diagram of a UE according to another embodiment of the present disclosure.
  • Fig. 9 is a block diagram of a network node according to an embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a network node according to another embodiment of the present disclosure.
  • Fig. 11 is a block diagram of a network node according to yet another embodiment of the present disclosure.
  • references in the specification to "one embodiment, “an embodiment, “”an example embodiment, “ and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • a UE refers to any end device that can access a wireless communication network and receive services therefrom.
  • a UE may refer to a mobile terminal or any other suitable device.
  • a UE may be configured for communication in accordance with one or more communication standards promulgated by the 3GPP, such as 3GPP's Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , and/or 5G standards.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • 5G 5G
  • a UE may not necessarily have a "user" in the sense of a human user who owns and/or operates the relevant device.
  • a UE may be configured to transmit and/or receive information without direct human interaction.
  • a UE may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the wireless communication network.
  • a UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user.
  • the UE may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, and may in this case be referred to as a D2D communication device.
  • D2D device-to-device
  • a UE may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another UE and/or network equipment.
  • the UE may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • MTC machine-type communication
  • the UE may implement the 3GPP narrow band internet of things (NB-IoT) standard.
  • NB-IoT narrow band internet of things
  • a UE may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • a “network node” refers to any physical or virtual node that is configured to implement a network function, including but not limited to network functions specified by the 3GPP.
  • a network node can be implemented in a physical device or a virtualized environment, e.g., a cloud environment.
  • ProSe charging data reported from a UE to a ProSe function contains a “Role of UE” field, indicating whether the UE is Announcing UE, Monitoring UE, Discoveree UE or Discoverer UE, i.e., how the UE discovers, or is discovered by, another UE to establish the ProSe communication (see Table 6.1.3.2.1 ) .
  • the ProSe charging data contains a “ProSe UE-to-Network Relay UE ID” field for uniquely representing the ProSe UE-to-Network Relay UE in the context of ProSe Direct Communication via UE-to-Network Relay (see Table 6.1.3.4.1) .
  • Fig. 2 is a flowchart illustrating a method 200 according to an embodiment of the present disclosure.
  • the method 200 can be performed at a UE, which can be a remote UE or a relay UE in a direct UE-to-UE communication.
  • a usage information report is transmitted to a network node.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the indication indicates the role of the UE as a UE-to-network relay UE
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direct communication may be a ProSe communication or a PC5 communication. It can be appreciated that the principle of the present disclosure also applies to other direct UE-to-UE communications as appropriate.
  • the network node to which the usage information report is transmitted may include a network node implementing an SMF, an AMF, or any other appropriate network function (s) .
  • the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
  • Fig. 3 is a flowchart illustrating a method 300 according to an embodiment of the present disclosure.
  • the method 300 can be performed at a network node implementing e.g., an SMF or an AMF.
  • a usage information report is received from a UE.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the indication indicates the role of the UE as a UE-to-network relay UE
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direct communication may be e.g., a ProSe communication or a PC5 communication.
  • the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
  • the usage information report is forwarded to another network node.
  • the other network node may be a network node implementing a CHF or any other appropriate network function (s) .
  • Fig. 4 is a flowchart illustrating a method 400 according to an embodiment of the present disclosure.
  • the method 400 can be performed at a network node implementing e.g., a CHF.
  • a usage information report is received from another network node.
  • the usage information report contains usage information of a direct communication between a UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the indication indicates the role of the UE as a UE-to-network relay UE
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the other network node from which the usage information report is received may include a network node implementing an SMF, an AMF, or any other appropriate network function (s) .
  • the direct communication may be e.g., a ProSe communication or a PC5 communication.
  • the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
  • a charging record (e.g., Charging Detail Record, or CDR) associated with the UE is created based on the usage information and the role of the UE.
  • CDR Charging Detail Record
  • the charging record may be created based further on the identifier of the other UE.
  • the charging record may include data usage of the PC5 communication between the UE-to-network relay UE and the remote ME, and the identifier of the remote UE, such that the data usage can be crosschecked with data usage of the same PC5 communication as reported from the remote UE.
  • Fig. 5 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure.
  • a Policy Control Function (PCF) is responsible for generating a charging policy for a PC5 direct communication by interacting with an Application Function (AF) , and enforcing of policy decisions related to charging, and applying the charging policy to a UE.
  • An SMF is responsible for interacting with a CHF for charging for the PC5 direct communication.
  • the PCF may generate the charging policy for PC5 by interacting with the AF as well as following the operator's policy.
  • the AF may provide charging related application level information.
  • the ProSe service authorization has been successfully executed as per described in the 3GPP TS 23.303, V15.1.0.
  • theAF sends, to the PCF, subscribed PC5 charging policy-related application level information.
  • the PCF delivers its PC5 charging related policies, including usage reporting rule, to the UE.
  • a PC5 communication takes place over PC5.
  • the UE (which can be a remote UE or a relay UE) creates a usage information report when a reporting criteria is met.
  • the usage information report contains, among others, usage information of the PC5 communication and a role of the UE in the PC5 communication, e.g., remote UE or relay UE (including UE-to-UE relay UE or UE-to-network relay UE) .
  • the usage information report may further contain an identifier of a remote UE in direct communication with the UE-to-network relay UE over PC5.
  • the UE sends, to the SMF, a Non-Access Stratum (NAS) message containing the usage information report.
  • NAS Non-Access Stratum
  • the UE initiates a PDU session establishment procedure, and then sends to the SMF a NAS message containing the usage information report.
  • the SMF forwards the usage information report to the CHF in a charging data request, notifying the CHF to create a CDR.
  • the CHF is selected as defined in section 5.1.8 of the 3GPP TS 32.255, V16.4.0.
  • the CHF creates a CDR based on the usage information report (the usage information, the role of the UE, and the identifier of the remote UE if the role of the UE is a UE-to-network relay UE) .
  • the CHF sends a charging data response to the SMF.
  • Fig. 6 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure.
  • a UE reports usage information of a PC5 communication to an AMF if a reporting criteria (the reporting criteria in the UE may be implementation specific) is met when the UE has access to the network.
  • the AMF reports the usage information to a CHF using an existing interface.
  • UE 1 and UE 2 communicate with each other directly over PC5.
  • UE 1 may be a remote UE and UE 2 may be a relay UE, or vice versa.
  • Each of UE 1 and UE 2 is required to generate a usage information report and provide the report to a core network when it is connected to a 5G System (5GS) via a Uu interface.
  • 5GS 5G System
  • UE 1 if UE 1 is not registered yet when it enters coverage, it performs registration as specified in section 4.2.2.2.2 of the 3GPP TS 23.501, V16.4.0.
  • UE 1 creates a usage information report when a reporting criteria is met.
  • the usage information report contains, among others, usage information of the PC5 communication and a role of UE 1 in the PC5 communication, e.g., remote UE or relay UE (including UE-to-UE relay UE or UE-to-network relay UE) .
  • the usage information report may further contain an identifier of UE 2 as a remote UE in direct communication with the UE-to-network relay UE over PC5.
  • UE 1 sends the usage information report to the AMF.
  • the existing UL NAS TRANSPORT message can be reused, with an extended definition of a payload container type.
  • the AMF forwards the usage information report to the CHF in a charging data request for the charging purpose.
  • the AMF discovers the CHF as specified in section 5.1.3 of the 3GPP TS 32.256, V16.0.0, and the same service operations as specified in the 3GPP TS 32.291, V16.3.0 will be reused.
  • the CHF sends a charging data response to the AMF.
  • the same procedure as described above in 6.2 ⁇ 6.6 applies to UE 2 for reporting of its usage information of the PC5 communication.
  • a UE is provided.
  • Fig. 7 is a block diagram of a UE 700 according to an embodiment of the present disclosure.
  • the UE 700 can be operative to perform the method 200 as shown in Fig. 2.
  • the UE 700 includes a transmitting unit 710 configured to transmit a usage information report to a network node.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF.
  • the unit 710 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 2.
  • a processor or a micro-processor and adequate software and memory for storing of the software e.g., a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 2.
  • PLD Programmable Logic Device
  • Fig. 8 is a block diagram of a UE 800 according to another embodiment of the present disclosure.
  • the UE 800 includes a communication interface 810, a processor 820 and a memory 830.
  • the memory 830 may contain instructions executable by the processor 820 whereby the UE 800 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 2.
  • the memory 830 contains instructions executable by the processor 820 whereby the UE 800 is operative to: transmit a usage information report to a network node.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF.
  • Fig. 9 is a block diagram of a network node 900 according to an embodiment of the present disclosure.
  • the network node 900 can be operative to perform the method 300 as shown in Fig. 3.
  • the network node 900 includes a receiving unit 910 configured to receive a usage information report from a UE.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the network 900 further includes a forwarding unit 920 configured to forward the usage information report to another network node.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
  • the units 910 and 920 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 3.
  • a processor or a micro-processor and adequate software and memory for storing of the software e.g., a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 3.
  • PLD Programmable Logic Device
  • Fig. 10 is a block diagram of a network node 1000 according to another embodiment of the present disclosure.
  • the network node 1000 can be operative to perform the method 400 as shown in Fig. 4.
  • the network node 1000 includes a receiving unit 1010 configured to receive a usage information report from another network node.
  • the usage information report contains usage information of a direct communication between a UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the network node 1000 further includes a creating unit 1020 configured to create a charging record associated with the UE based on the usage information and the role of the UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
  • the units 1010 and 1020 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 4.
  • a processor or a micro-processor and adequate software and memory for storing of the software e.g., a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 4.
  • PLD Programmable Logic Device
  • Fig. 11 is a block diagram of a network node 1100 according to yet another embodiment of the present disclosure.
  • the network node 1100 includes a communication interface 1110, a processor 1120 and a memory 1130.
  • the memory 1130 may contain instructions executable by the processor 1120 whereby the network node 1100 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 3. Particularly, the memory 1130 contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: receive a usage information report from a UE.
  • the usage information report contains usage information of a direct communication between the UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the memory 1130 further contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: forward the usage information report to another network node.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
  • the memory 1130 may contain instructions executable by the processor 1120 whereby the network node 1100 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 4. Particularly, the memory 1130 contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: receive a usage information report from another network node.
  • the usage information report contains usage information of a direct communication between a UE and another UE.
  • the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  • the memory 1130 further contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: create a charging record associated with the UE based on the usage information and the role of the UE.
  • the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
  • the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
  • the direction communication may be a ProSe communication or a PC5 communication.
  • the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
  • the present disclosure also provides at least one computer program product in the form of a non-volatile or volatile memory, e.g., a non-transitory computer readable storage medium, an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory and a hard drive.
  • the computer program product includes a computer program.
  • the computer program includes: code/computer readable instructions, which when executed by the processor 820 causes the UE 800 to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 2, or code/computer readable instructions, which when executed by the processor 1120 causes the network node 1100 to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 3 or 4.
  • the computer program product may be configured as a computer program code structured in computer program modules.
  • the computer program modules could essentially perform the actions of the flow illustrated in Fig. 2, 3, or 4.
  • the processor may be a single CPU (Central Processing Unit) , but could also comprise two or more processing units.
  • the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuits (ASICs) .
  • the processor may also comprise board memory for caching purposes.
  • the computer program may be carried by a computer program product connected to the processor.
  • the computer program product may comprise a non-transitory computer readable storage medium on which the computer program is stored.
  • the computer program product may be a flash memory, a Random Access Memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable programmable read-only memory

Abstract

The present disclosure provides a method (200) in a User Equipment, UE. The method (200) includes: transmitting (210) a usage information report to a network node, the usage information report containing usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.

Description

USER EQUIPMENT, NETWORK NODE AND METHODS THEREIN FOR FACILITATING CHARGING FOR DIRECT UE-TO-UE COMMUNICATION TECHNICAL FIELD
The present disclosure relates to communication technology, and more particularly, to a User Equipment (UE) , a network node and methods therein for facilitating charging for direct UE-to-UE communication.
BACKGROUND
Proximity-based Service (ProSe) communication in Evolved Packet System (EPS) is specified in the 3 rd Generation Partnership Project (3GPP) Technical Specification (TS) 23.303, V15.1.0, which is incorporated herein by reference in its entirety. The ProSe allows direct UE-to-UE communication over a Prose Communication reference point 5 (PC5) , also referred to as PC5 communication hereinafter.
The 3GPP TS 23.303 defines a ProSe UE-to-Network relay for public safety. Fig. 1 shows an exemplary architecture model using a ProSe UE-to-Network relay. As shown, a UE (referred to as a remote UE) is connected to an evolved NodeB (eNB) via another UE serving as a ProSe UE-to-Network relay (referred to as a relay UE, or in particular UE-to-Network relay UE) . Here, the remote UE establishes a PC5 link to the UE-to-Network relay UE. The eNB is in turn connected to an Evolved Packet Core (EPC) which is connected to e.g., a public safety Application Server (AS) . The relay UE relays unicast traffic (both uplink and downlink) between the remote UE and the network. The relay UE provides a generic function that can relay any IP traffic.
In the 5 th Generation (5G) system, the UE-to-Network relay is expected to be used for commercial use cases, in addition to the public safety use case. In the 5G system, in addition to the UE-to-Network relay, a UE-to-UE relay is supported, which allows a remote UE to be connected to another UE via a relay UE (in particular referred to as UE-to-UE relay UE) .
The charging for ProSe communication or PC5 communication in the EPS is specified in the 3GPP TS 32.277, V15.1.0, which is incorporated herein by reference in its entirety. The charging for ProSe communication or PC5  communication is the 5G system is discussed in the 3GPP Technical Report (TR) 23.752, V0.3.0, which is incorporated herein by reference in its entirety. According to the 3GPP TR 23.752, a Session Management Function (SMF) or Access and Mobility Management Function (AMF) may be responsible for interacting with a Charging Function (CHF) for the purpose of charging for ProSe or PC5 communication.
SUMMARY
Usage (e.g., data usage) information of a direct UE-to-UE communication (such as ProSe or PC5 communication) is reported by a UE and such reporting is completely up to the UE. In some scenarios, a network operator may want to apply different charging policies depending on a role of a UE in the direct UE-to-UE communication, e.g., whether it is a remote UE or a relay UE. In some scenarios, a network operator may want to check the consistency of usage information of a direct UE-to-UE communication reported from different UEs, e.g., a remote UE and a relay UE.
It is an object of the present disclosure to provide to a UE, a network node and methods therein, capable of facilitating charging for a direct UE-to-UE communication, e.g., ProSe or PC5 communication.
According to a first aspect of the present disclosure, a method in a UE is provided. The method includes: transmitting a usage information report to a network node. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF.
According to a second aspect of the present disclosure, a UE is provided. The UE includes a communication interface, a processor and a memory. The memory contains instructions executable by the processor whereby the UE is operative to perform the method according to the above first aspect.
According to a third aspect of the present disclosure, a computer readable storage medium is provided. The computer readable storage medium has computer program instructions stored thereon. The computer program instructions, when executed by a processor in a UE, cause the UE to perform the method according to the above first aspect.
According to a fourth aspect of the present disclosure, a method in a network node is provided. The method includes: receiving a usage information report from a UE. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The method further includes: forwarding the usage information report to another network node.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
According to a fifth aspect of the present disclosure, a method in a network node is provided. The method includes: receiving a usage information report from another network node. The usage information report contains usage information of a direct communication between a UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The method further includes: creating a charging record associated with the UE based on the usage information and the role of the UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
According to a sixth aspect of the present disclosure, a network node is provided. The network node includes a communication interface, a processor and a memory. The memory contains instructions executable by the processor whereby the network node is operative to perform the method according to the above fourth or fifth aspect.
According to a seventh aspect of the present disclosure, a computer readable storage medium is provided. The computer readable storage medium has computer program instructions stored thereon. The computer program instructions, when executed by a processor in a network node, cause the network node to perform the method according to the above fourth or fifth aspect.
With the embodiments of the present disclosure, a UE can transmit a usage information report to a network node (e.g., an SMF or an AMF) , containing usage information of a direct UE-to-UE communication and further containing an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The network node can forward the usage information report to e.g., a CHF. This allows the network to be aware of the UE’s role (e.g., remote UE or relay UE) in the direct UE-to-UE communication, so as to enable the network to apply more accurate and/or more flexible charging for the direct UE-to-UE communication.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages will be more apparent from the following description of embodiments with reference to the figures, in which:
Fig. 1 is a schematic diagram showing an exemplary architecture model using a ProSe UE-to-Network relay;
Fig. 2 is a flowchart illustrating a method in a UE according to an embodiment of the present disclosure;
Fig. 3 is a flowchart illustrating a method in a network node according to an embodiment of the present disclosure;
Fig. 4 is a flowchart illustrating a method in a network node according to another embodiment of the present disclosure;
Fig. 5 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure;
Fig. 6 is a sequence diagram of a procedure for charging for a PC5 communication according to another embodiment of the present disclosure;
Fig. 7 is a block diagram of a UE according to an embodiment of the present disclosure;
Fig. 8 is a block diagram of a UE according to another embodiment of the present disclosure;
Fig. 9 is a block diagram of a network node according to an embodiment of the present disclosure;
Fig. 10 is a block diagram of a network node according to another embodiment of the present disclosure; and
Fig. 11 is a block diagram of a network node according to yet another embodiment of the present disclosure.
DETAILED DESCRIPTION
References in the specification to "one embodiment, " "an embodiment, " "an example embodiment, " and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms "first" and "second" etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed terms. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms "a" , "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" , "comprising" , "has" , "having" , "includes" and/or "including" , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
The term "UE" refers to any end device that can access a wireless communication network and receive services therefrom. By way of example and not limitation, a UE may refer to a mobile terminal or any other suitable device. As one example, a UE may be configured for communication in accordance with one or more communication standards promulgated by the 3GPP, such as 3GPP's  Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , and/or 5G standards. As used herein, a UE may not necessarily have a "user" in the sense of a human user who owns and/or operates the relevant device. In some embodiments, a UE may be configured to transmit and/or receive information without direct human interaction. For instance, a UE may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the wireless communication network. A UE may represent a device that is intended for sale to, or operation by, a human user but that may not initially be associated with a specific human user. The UE may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, and may in this case be referred to as a D2D communication device. As yet another example, in an Internet of Things (IOT) scenario, a UE may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another UE and/or network equipment. The UE may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device. As one particular example, the UE may implement the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, for example refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a UE may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
As used herein, a “network node” refers to any physical or virtual node that is configured to implement a network function, including but not limited to network functions specified by the 3GPP. A network node can be implemented in a physical device or a virtualized environment, e.g., a cloud environment.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
According to the 3GPP TS 32.277, V15.1.0, ProSe charging data reported from a  UE to a ProSe function contains a “Role of UE” field, indicating whether the UE is Announcing UE, Monitoring UE, Discoveree UE or Discoverer UE, i.e., how the UE discovers, or is discovered by, another UE to establish the ProSe communication (see Table 6.1.3.2.1 ) . When the UE is a ProSe UE-to-Network Relay UE, the ProSe charging data contains a “ProSe UE-to-Network Relay UE ID” field for uniquely representing the ProSe UE-to-Network Relay UE in the context of ProSe Direct Communication via UE-to-Network Relay (see Table 6.1.3.4.1) .
Fig. 2 is a flowchart illustrating a method 200 according to an embodiment of the present disclosure. The method 200 can be performed at a UE, which can be a remote UE or a relay UE in a direct UE-to-UE communication.
At block 210, a usage information report is transmitted to a network node. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
Here, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE. When the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
The direct communication may be a ProSe communication or a PC5 communication. It can be appreciated that the principle of the present disclosure also applies to other direct UE-to-UE communications as appropriate.
The network node to which the usage information report is transmitted may include a network node implementing an SMF, an AMF, or any other appropriate network function (s) .
As an example, the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
Fig. 3 is a flowchart illustrating a method 300 according to an embodiment of the present disclosure. The method 300 can be performed at a network node implementing e.g., an SMF or an AMF.
At block 310, a usage information report is received from a UE. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
Here, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE. When the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
The direct communication may be e.g., a ProSe communication or a PC5 communication.
As an example, the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
At block 320, the usage information report is forwarded to another network node.
Here, the other network node may be a network node implementing a CHF or any other appropriate network function (s) .
Fig. 4 is a flowchart illustrating a method 400 according to an embodiment of the present disclosure. The method 400 can be performed at a network node implementing e.g., a CHF.
At block 410, a usage information report is received from another network node. The usage information report contains usage information of a direct communication between a UE and another UE. The usage information report  further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
Here, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE. When the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
The other network node from which the usage information report is received may include a network node implementing an SMF, an AMF, or any other appropriate network function (s) .
The direct communication may be e.g., a ProSe communication or a PC5 communication.
As an example, the usage information report may further contain information required for charging for data usage, such as List of Transmission Data and List of Reception Data, with reference to e.g., Table 6.1.3.2.1 and Table 6.1.3.4.1 of the 3GPP TS 32.277, V15.1.0.
At block 420, a charging record (e.g., Charging Detail Record, or CDR) associated with the UE is created based on the usage information and the role of the UE.
When the usage information report further contains the identifier of the other UE as a remote UE, the charging record may be created based further on the identifier of the other UE. For example, the charging record may include data usage of the PC5 communication between the UE-to-network relay UE and the remote ME, and the identifier of the remote UE, such that the data usage can be crosschecked with data usage of the same PC5 communication as reported from the remote UE.
In the following, the  above methods  200, 300, and 400 will be explained in detail with reference to the sequence diagrams of Figs. 5 and 6.
Fig. 5 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure. In this example, a Policy Control Function (PCF) is responsible for generating a charging policy for a PC5 direct communication by interacting with an Application Function (AF) , and enforcing of policy decisions related to charging, and applying the charging policy to a UE. An SMF is responsible for interacting with a CHF for charging for the PC5 direct communication. The PCF may generate the charging policy for PC5 by interacting with the AF as well as following the operator's policy. In addition to the basic charging data defined by the 3GPP TS 32.277, V15.1.0, the AF may provide charging related application level information.
As shown, at 5.1, the ProSe service authorization has been successfully executed as per described in the 3GPP TS 23.303, V15.1.0. At 5.2, theAF sends, to the PCF, subscribed PC5 charging policy-related application level information. At 5.3, the PCF delivers its PC5 charging related policies, including usage reporting rule, to the UE. At 5.4, a PC5 communication takes place over PC5. At 5.5, the UE (which can be a remote UE or a relay UE) creates a usage information report when a reporting criteria is met. The usage information report contains, among others, usage information of the PC5 communication and a role of the UE in the PC5 communication, e.g., remote UE or relay UE (including UE-to-UE relay UE or UE-to-network relay UE) . When the role of the UE is a UE-to-network relay UE, the usage information report may further contain an identifier of a remote UE in direct communication with the UE-to-network relay UE over PC5. At 5.6, if there is an existing PDU session, the UE sends, to the SMF, a Non-Access Stratum (NAS) message containing the usage information report. If there is no existing PDU session, the UE initiates a PDU session establishment procedure, and then sends to the SMF a NAS message containing the usage information report. At 5.7, the SMF forwards the usage information report to the CHF in a charging data request, notifying the CHF to create a CDR. Here, the CHF is selected as defined in section 5.1.8 of the 3GPP TS 32.255, V16.4.0. At 5.8, the CHF creates a CDR based on the usage information report (the usage information, the role of the UE, and the identifier of the remote UE if the role of the UE is a UE-to-network relay UE) . At 5.9, the CHF sends a charging data response to the SMF.
Fig. 6 is a sequence diagram of a procedure for charging for a PC5 communication according to an embodiment of the present disclosure. In this example, a UE reports usage information of a PC5 communication to an AMF if a reporting criteria (the reporting criteria in the UE may be implementation specific) is met when the UE has access to the network. The AMF reports the usage information to a CHF using an existing interface.
At 6.1, two UEs, UE 1 and UE 2, communicate with each other directly over PC5. Here, UE 1 may be a remote UE and UE 2 may be a relay UE, or vice versa. Each of UE 1 and UE 2 is required to generate a usage information report and provide the report to a core network when it is connected to a 5G System (5GS) via a Uu interface. At 6.2, if UE 1 is not registered yet when it enters coverage, it performs registration as specified in section 4.2.2.2.2 of the 3GPP TS 23.501, V16.4.0. At 6.3, UE 1 creates a usage information report when a reporting criteria is met. The usage information report contains, among others, usage information of the PC5 communication and a role of UE 1 in the PC5 communication, e.g., remote UE or relay UE (including UE-to-UE relay UE or UE-to-network relay UE) . When the role of UE 1 is a UE-to-network relay UE, the usage information report may further contain an identifier of UE 2 as a remote UE in direct communication with the UE-to-network relay UE over PC5. At 6.4, UE 1 sends the usage information report to the AMF. Here, the existing UL NAS TRANSPORT message can be reused, with an extended definition of a payload container type. At 6.5, the AMF forwards the usage information report to the CHF in a charging data request for the charging purpose. The AMF discovers the CHF as specified in section 5.1.3 of the 3GPP TS 32.256, V16.0.0, and the same service operations as specified in the 3GPP TS 32.291, V16.3.0 will be reused. At 6.6, the CHF sends a charging data response to the AMF. Then, at 6.7, the same procedure as described above in 6.2~6.6 applies to UE 2 for reporting of its usage information of the PC5 communication.
Correspondingly to the method 200 as described above, a UE is provided. Fig. 7 is a block diagram of a UE 700 according to an embodiment of the present disclosure.
The UE 700 can be operative to perform the method 200 as shown in Fig. 2. As shown in Fig. 7, the UE 700 includes a transmitting unit 710 configured to  transmit a usage information report to a network node. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF.
The unit 710 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 2.
Fig. 8 is a block diagram of a UE 800 according to another embodiment of the present disclosure.
The UE 800 includes a communication interface 810, a processor 820 and a memory 830. The memory 830 may contain instructions executable by the processor 820 whereby the UE 800 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 2. Particularly, the memory 830 contains instructions executable by the processor 820 whereby the UE 800 is operative to: transmit a usage information report to a network node. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report  further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF.
Correspondingly to the method 300 as described above, a network node is provided. Fig. 9 is a block diagram of a network node 900 according to an embodiment of the present disclosure.
The network node 900 can be operative to perform the method 300 as shown in Fig. 3. As shown in Fig. 9, the network node 900 includes a receiving unit 910 configured to receive a usage information report from a UE. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The network 900 further includes a forwarding unit 920 configured to forward the usage information report to another network node.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
The  units  910 and 920 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 3.
Correspondingly to the method 400 as described above, a network node is provided. Fig. 10 is a block diagram of a network node 1000 according to another embodiment of the present disclosure.
The network node 1000 can be operative to perform the method 400 as shown in Fig. 4. As shown in Fig. 10, the network node 1000 includes a receiving unit 1010 configured to receive a usage information report from another network node. The usage information report contains usage information of a direct communication between a UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The network node 1000 further includes a creating unit 1020 configured to create a charging record associated with the UE based on the usage information and the role of the UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
The  units  1010 and 1020 can be implemented as a pure hardware solution or as a combination of software and hardware, e.g., by one or more of: a processor or a micro-processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e.g., in Fig. 4.
Fig. 11 is a block diagram of a network node 1100 according to yet another embodiment of the present disclosure.
The network node 1100 includes a communication interface 1110, a processor 1120 and a memory 1130. The memory 1130 may contain instructions executable by the processor 1120 whereby the network node 1100 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 3. Particularly, the memory 1130 contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: receive a usage information report from a UE. The usage information report contains usage information of a direct communication between the UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The memory 1130 further contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: forward the usage information report to another network node.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement an SMF or an AMF, and the other network node may implement a CHF.
Alternatively, the memory 1130 may contain instructions executable by the processor 1120 whereby the network node 1100 is operative to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 4. Particularly, the memory 1130 contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: receive a usage information report from another network node. The usage information report contains usage information of a direct communication between a UE and another UE. The usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE. The memory 1130 further contains instructions executable by the processor 1120 whereby the network node 1100 is operative to: create a charging record associated with the UE based on the usage information and the role of the UE.
In an embodiment, the relay UE may include a UE-to-network relay UE or a UE-to-UE relay UE.
In an embodiment, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report may further contain an identifier of the other UE as a remote UE in the direct communication, and the charging record may be created based further on the identifier of the other UE.
In an embodiment, the direction communication may be a ProSe communication or a PC5 communication.
In an embodiment, the network node may implement a CHF, and the other network node may implement an SMF or an AMF.
The present disclosure also provides at least one computer program product in the form of a non-volatile or volatile memory, e.g., a non-transitory computer readable storage medium, an Electrically Erasable Programmable Read-Only  Memory (EEPROM) , a flash memory and a hard drive. The computer program product includes a computer program. The computer program includes: code/computer readable instructions, which when executed by the processor 820 causes the UE 800 to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 2, or code/computer readable instructions, which when executed by the processor 1120 causes the network node 1100 to perform the actions, e.g., of the procedure described earlier in conjunction with Fig. 3 or 4.
The computer program product may be configured as a computer program code structured in computer program modules. The computer program modules could essentially perform the actions of the flow illustrated in Fig. 2, 3, or 4.
The processor may be a single CPU (Central Processing Unit) , but could also comprise two or more processing units. For example, the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuits (ASICs) . The processor may also comprise board memory for caching purposes. The computer program may be carried by a computer program product connected to the processor. The computer program product may comprise a non-transitory computer readable storage medium on which the computer program is stored. For example, the computer program product may be a flash memory, a Random Access Memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories.
The disclosure has been described above with reference to embodiments thereof. It should be understood that various modifications, alternations and additions can be made by those skilled in the art without departing from the spirits and scope of the disclosure. Therefore, the scope of the disclosure is not limited to the above particular embodiments but only defined by the claims as attached.

Claims (19)

  1. A method (200) in a User Equipment, UE, comprising:
    transmitting (210) a usage information report to a network node, the usage information report containing usage information of a direct communication between the UE and another UE,
    wherein the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE.
  2. The method (200) of claim 1, wherein the relay UE comprises a UE-to-network relay UE or a UE-to-UE relay UE.
  3. The method (200) of claim 2, wherein, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report further contains an identifier of the other UE as a remote UE in the direct communication.
  4. The method (200) of any of claims 1-3, wherein the direction communication is a Proximity-based Service, ProSe, communication or a Prose Communication reference point 5, PC5, communication.
  5. The method (200) of any of claims 1-4, wherein the network node implements a Session Management Function, SMF, or an Access and Mobility Management Function, AMF.
  6. A User Equipment, UE (800) , comprising a communication interface (810) , a processor (820) and a memory (830) , the memory (830) comprising instructions executable by the processor (820) whereby the UE (800) is operative to perform the method according to any of claims 1-5.
  7. A computer readable storage medium having computer program instructions stored thereon, the computer program instructions, when executed by a processor in a User Equipment, UE, causing the UE to perform the method according to any of claims 1-5.
  8. A method (300) in a network node, comprising:
    receiving (310) a usage information report from a User Equipment, UE, the usage information report containing usage information of a direct communication between the UE and another UE, wherein the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE; and
    forwarding (320) the usage information report to another network node.
  9. The method (300) of claim 8, wherein the relay UE comprises a UE-to-network relay UE or a UE-to-UE relay UE.
  10. The method (300) of claim 9, wherein, when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report further contains an identifier of the other UE as a remote UE in the direct communication.
  11. The method (300) of any of claims 8-10, wherein the direction communication is a Proximity-based Service, ProSe, communication or a Prose Communication reference point 5, PC5, communication.
  12. The method (300) of any of claims 8-11, wherein the network node implements a Session Management Function, SMF, or an Access and Mobility Management Function, AMF, and the other network node implements a Charging Function, CHF.
  13. A method (400) in a network node, comprising:
    receiving (410) a usage information report from another network node, the usage information report containing usage information of a direct communication between a User Equipment, UE, and another UE, wherein the usage information report further contains an indication of a role of the UE in the direct communication as a remote UE or a relay UE; and
    creating (420) a charging record associated with the UE based on the usage information and the role of the UE.
  14. The method (400) of claim 13, wherein the relay UE comprises a UE-to-network relay UE or a UE-to-UE relay UE.
  15. The method (400) of claim 14, wherein
    when the indication indicates the role of the UE as a UE-to-network relay UE, the usage information report further contains an identifier of the other UE as a remote UE in the direct communication, and
    the charging record is created based further on the identifier of the other UE.
  16. The method (400) of any of claims 13-15, wherein the direction communication is a Proximity-based Service, ProSe, communication or a Prose Communication reference point 5, PC5, communication.
  17. The method (400) of any of claims 13-16, wherein the network node implements a Charging Function, CHF, and the other network node implements a Session Management Function, SMF, or an Access and Mobility Management Function, AMF.
  18. A network node (1100) comprising a communication interface (1110) , a processor (1120) and a memory (1130) , the memory (1130) comprising instructions executable by the processor (1120) whereby the network node (1100) is operative to perform the method according to any of claims 8-17.
  19. A computer readable storage medium having computer program instructions stored thereon, the computer program instructions, when executed by a processor in a network node, causing the network node to perform the method according to any of claims 8-17.
PCT/CN2021/094786 2020-05-21 2021-05-20 User equipment, network node and methods therein for facilitating charging for direct ue-to-ue communication WO2021233365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/091584 2020-05-21
CN2020091584 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021233365A1 true WO2021233365A1 (en) 2021-11-25

Family

ID=78708111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094786 WO2021233365A1 (en) 2020-05-21 2021-05-20 User equipment, network node and methods therein for facilitating charging for direct ue-to-ue communication

Country Status (1)

Country Link
WO (1) WO2021233365A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992184A (en) * 2015-03-04 2016-10-05 阿尔卡特朗讯 Method and device for carrying out cooperative charging of ProSe network relay service
WO2018067956A1 (en) * 2016-10-06 2018-04-12 Convida Wireless, Llc Session management with relaying and charging for indirect connection for internet of things appplications in 3gpp network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992184A (en) * 2015-03-04 2016-10-05 阿尔卡特朗讯 Method and device for carrying out cooperative charging of ProSe network relay service
WO2018067956A1 (en) * 2016-10-06 2018-04-12 Convida Wireless, Llc Session management with relaying and charging for indirect connection for internet of things appplications in 3gpp network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "KI #7: Sol #13&15: Update to clarify the reported info for PC5", 3GPP DRAFT; S2-2003789, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Electronic, Elbonia; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051889813 *
ERICSSON: "Solution for Key Issue #7: Charging for PC5 Direct Communication", 3GPP DRAFT; S2-2000446, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, KR; 20200113 - 20200117, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051842513 *
NEC: "Solution for Key Issue #7: Charging for PC5 Direct Communication", 3GPP DRAFT; S2-2001490, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, Korea; 20200113 - 20200117, 16 January 2020 (2020-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051844227 *

Similar Documents

Publication Publication Date Title
US11503446B2 (en) Service capability exposure at the user equipment
CN107104755B (en) Method and apparatus for handling latency in congested wireless communication networks
US11089520B2 (en) Session migration method and device
US20180077682A1 (en) Method and apparatus for application aware notifications in a wireless communication network
US11337139B2 (en) Enforcement of service exemption on a per access network technology type
CN111867142B (en) Method, equipment and system for establishing communication bearer
AU2020208514A1 (en) Label management method and apparatus for terminal device
CN109429366B (en) PDU session processing method and device
US20200296575A1 (en) Method and apparatus for determining status of terminal device, and device
EP2566116B1 (en) Method for establishing a connection between a node of a communication system and a node of a data service network in a wireless communication system
US20220312517A1 (en) D2d communication method, apparatus, and system
US20230336961A1 (en) Methods and terminal devices for enhanced discovery procedure
TW201826842A (en) Method for transmitting information, terminal equipment, and network equipment
WO2021238864A1 (en) Methods and apparatuses for controlling connection state of terminal device
US20140140282A1 (en) Service response method, device and system
WO2021233365A1 (en) User equipment, network node and methods therein for facilitating charging for direct ue-to-ue communication
US20190098456A1 (en) Method for associating mission critical user with user equipment of mission critical user, and related device
JP2023040195A (en) Communication method and user device
GB2493722A (en) Machine-to-machine transmission using a bearer connection with a security context
CN114422320A (en) Terminal control method, device and system
WO2022156517A1 (en) Method and apparatus for relay service code management
US20230247691A1 (en) Method and network node for port management
WO2015010325A1 (en) Data transmission method and apparatus
CN111937438A (en) Method and apparatus for terminating cellular network connection of unauthenticated terminal
CN111526602B (en) Method and apparatus for transmitting user data under congestion control in wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808941

Country of ref document: EP

Kind code of ref document: A1