WO2021233256A1 - 逆电润湿机械能收集器件及机械能收集装置 - Google Patents

逆电润湿机械能收集器件及机械能收集装置 Download PDF

Info

Publication number
WO2021233256A1
WO2021233256A1 PCT/CN2021/094133 CN2021094133W WO2021233256A1 WO 2021233256 A1 WO2021233256 A1 WO 2021233256A1 CN 2021094133 W CN2021094133 W CN 2021094133W WO 2021233256 A1 WO2021233256 A1 WO 2021233256A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical energy
electrode substrate
collection device
energy collection
liquid
Prior art date
Application number
PCT/CN2021/094133
Other languages
English (en)
French (fr)
Inventor
周国富
唐彪
蒙传芝
钱宇旸
Original Assignee
华南师范大学
深圳市国华光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南师范大学, 深圳市国华光电科技有限公司 filed Critical 华南师范大学
Publication of WO2021233256A1 publication Critical patent/WO2021233256A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/04Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode

Definitions

  • the invention relates to the technical field of reverse electrowetting, in particular to a reverse electrowetting mechanical energy collecting device and a mechanical energy collecting device.
  • Dielectric wetting (electrowetting on dielectric, EWOD) means that after placing polar droplets on an electrode coated with a dielectric layer, if a voltage is applied to this system, the droplets will spread and contact the dielectric layer. Increased phenomenon.
  • Reverse electrowetting (reverse electrowetting on dielectric, REWOD) is the reverse process of dielectric wetting, which means that after the polar droplets are spread under the action of voltage, if they shrink due to external force, the contact area with the dielectric layer Decrease, it will produce current phenomenon in the circuit.
  • reverse electrowetting has been proven to be used for the collection of mechanical energy, and the conversion of mechanical energy to electrical energy can be realized during the cyclic discharge process.
  • the key to the conversion is to use external mechanical energy to change the contact area between the liquid and the dielectric layer to form a discharge current.
  • the thickness and dielectric constant of the dielectric layer determine the size of the capacitance; the voltage applied by the external circuit determines the charge density on the surface of the dielectric layer; the wettability of the surface of the dielectric layer determines the polar droplets and the dielectric layer The degree of change in the contact area.
  • An existing R&D team has proposed an energy harvesting device based on reverse electrowetting.
  • the device directly coats a hydrophobic dielectric layer on the surface of the electrode, and achieves the purpose of charging small electronic devices by collecting the mechanical energy generated by human body movement.
  • the theoretical power per unit area of this energy harvesting device far exceeds other energy harvesting methods such as piezoelectric and electromagnetic.
  • the device uses fluoropolymer as the material of the hydrophobic dielectric layer.
  • the energy collection efficiency is still insufficient due to charge trapping and other reasons.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a reverse electrowetting mechanical energy collection device and a mechanical energy collection device with higher energy collection efficiency.
  • an embodiment of the present invention provides a reverse electrowetting mechanical energy collection device, the reverse electrowetting mechanical energy collection device comprising:
  • a second electrode substrate, the second electrode substrate and the first electrode substrate are disposed opposite to each other to form a receiving cavity;
  • a solid dielectric layer, the solid dielectric layer is arranged on a side of the second electrode substrate close to the first electrode substrate;
  • the liquid-injected smooth and porous surface layer is arranged on the side of the solid dielectric layer close to the first electrode substrate;
  • the conductive fluid is filled in the containing cavity, and the conductive fluid is in contact with the first electrode substrate and the liquid-injected smooth and porous surface layer.
  • the invention adopts the structure design of a solid dielectric layer and a multilayer composite dielectric layer with a liquid-injected smooth porous surface layer to separate the hydrophobicity and insulation of the dielectric layer, so that materials with a higher dielectric constant can be selected
  • a solid dielectric layer it breaks through the dielectric structure limitation of fluoropolymer, greatly improves the functional characteristics of the dielectric layer in the reverse electrowetting system, effectively avoids the problem of charge trapping, and improves the energy generation efficiency of the device.
  • the solid dielectric layer is selected from magnesium oxide, silicon dioxide, strontium titanate, barium titanate, calcium titanate, lanthanum aluminum oxide, manganese oxide, vanadium oxide , Aluminum oxide, titanium oxide, hafnium oxide, titanium nitride and other materials with higher dielectric constant.
  • the hydrophobicity and insulation of the dielectric layer are separated by adding a liquid-injected smooth porous surface layer, so that the above-mentioned materials with higher dielectric coefficient can be considered to improve the functional characteristics of the composite dielectric layer and avoid dielectric The appearance of breakdown.
  • the conductive fluid is used to reversibly deform under the applied mechanical force to change the capacitance between the first electrode substrate and the second electrode substrate.
  • the deformation of the conductive fluid is controlled by the applied mechanical force so that the contact area between the fluid and the dielectric layer changes to change the capacitance, the stored charge changes, and a current is formed in the external circuit, which can perform work on the load mounted on the external circuit, thereby realizing the mechanical energy direction Conversion of electrical energy.
  • the conductive fluid is a conductive liquid.
  • the conductive liquid is selected from at least one of liquid metal, liquid alloy, acid solution, alkali solution, salt solution, and molten salt.
  • the liquid-injected smooth and porous surface layer is formed of a micro-nano material including a lubricant impregnated with a lubricant.
  • Slippery Liquid-Infused Porous Surfaces SLIPS is based on micro-nano materials, and a low surface energy, chemically inert non-polar lubricant is poured into it to achieve infiltration, thereby forming on the surface of the substrate Smooth and chemically homogeneous lubricating layer.
  • the sliding angle of liquids with different surface tensions is less than 5°, and the hysteresis angle is less than 2.5°, which is much smaller than the hysteresis angle of fluoropolymer, which avoids manual pinning during liquid movement and greatly reduces the influence of the hysteresis angle.
  • SLIPS has the characteristics of comprehensive liquid repellency, its compression stability is good, it can self-repair instantly, it has low environmental requirements for conductive liquids, large operating temperature range, high mechanical strength, so that the device can be used in a wider environment and can be collected. The range of mechanical energy is wider.
  • fluoropolymers will have part of the charge fixed in the dielectric under the action of an electric field, which hinders charge collection. SLIPS can effectively avoid the problem of charge trapping and improve the energy generation efficiency of the device.
  • the micro-nano material has a micro-nano porous structure or a micro-nano rough structure.
  • the micro-nano material preferably needs to be constructed on the surface to form a micro-nano porous structure or a micro-nano rough structure.
  • the lubricant is selected from at least one of fluorine oil and silicone oil.
  • an embodiment of the present invention provides a mechanical energy collection device, which is characterized by comprising the above-mentioned reverse electrowetting mechanical energy collection device. Adopting the mechanical energy collection device including the above-mentioned reverse electrowetting mechanical energy collection device can avoid the breakdown of the dielectric layer, reduce the risk of failure, and ensure the reliability of the mechanical energy collection device.
  • the mechanical energy collection device further includes a bias power supply electrically connected to the first electrode substrate and the second electrode substrate to apply a bias voltage.
  • a bias power supply electrically connected to the first electrode substrate and the second electrode substrate to apply a bias voltage.
  • the bias voltage is applied, so that the squeezing deformation of the conductive fluid in the device under the action of the external mechanical force causes the capacitance change, causing the charging and discharging current, thereby converting the mechanical energy in the mechanical force into electrical energy .
  • the mechanical energy collection device further includes an energy storage unit electrically connected to the first electrode substrate and the second electrode substrate to collect electrical energy generated by the reverse electrowetting mechanical energy collection device .
  • an energy storage unit By setting up an energy storage unit, the converted electrical energy is stored to complete the collection and utilization of mechanical energy.
  • Fig. 1 is a schematic diagram of the structure of the reverse electrowetting mechanical energy collecting device of Example 1 of the present invention when no external mechanical force is applied.
  • Example 2 is a schematic diagram of the structure of the reverse electrowetting mechanical energy collecting device of Example 1 of the present invention after applying mechanical external force.
  • Fig. 3 is a schematic structural diagram of a mechanical energy collection device of Embodiment 2 of the present invention.
  • the reverse electrowetting mechanical energy collection device includes a first electrode substrate and a second electrode substrate disposed oppositely.
  • the first electrode substrate includes a first substrate 101 and a first electrode layer 111.
  • the first electrode layer 111 is formed close to the first substrate 101.
  • the second electrode substrate includes a second substrate 102 and a second electrode layer 112, and the second electrode layer 112 is formed on a side of the second substrate 102 close to the first electrode substrate.
  • An accommodating cavity is formed between the first electrode substrate and the second electrode substrate.
  • the side of the second electrode substrate close to the first electrode substrate (that is, the side of the second electrode layer 112 close to the first electrode layer 111) ) Is provided with a solid dielectric layer 113, and a side of the solid dielectric layer 113 close to the first electrode layer 111 (or the first electrode substrate) is provided with a liquid-injected smooth porous surface layer 114.
  • a conductive liquid drop 115 ie, conductive fluid
  • An external circuit is connected between the first electrode layer 111 and the second electrode layer 112.
  • a bias power supply 117 and a load 116 are connected to the external circuit.
  • Figure 2 shows a schematic diagram of the structure of the reverse electrowetting mechanical energy collection device of embodiment 1 of the present invention after applying mechanical external force.
  • the conductive liquid drop 115 in the containing cavity is deformed.
  • the bias power source 117 has applied a bias voltage on both sides of the first electrode substrate and the second electrode substrate to form a capacitance, the deformation of the conductive fluid will cause the capacitance to change, thereby generating a current in the external circuit.
  • the capacitance formula C ⁇ 0 ⁇ r A ls /d, in this system, the dielectric constant ⁇ 0 ⁇ r and the thickness d of the dielectric layer are both fixed
  • the capacitance facing area A ls is the contact area between the conductive droplet 115 and the solid dielectric layer 113.
  • the capacitor When the applied voltage is fixed, if the capacitance facing area A ls of the conductive droplet 115 and the solid dielectric layer 113 increases Large (wetting process), the capacitor can store more charge, the charge enters the capacitor under the action of the external circuit, and the capacitor is charged; The area A ls facing the capacitor decreases (dehumidification process), the charge that can be stored in the capacitor decreases, and the charge flows out of the capacitor, forming a current in the external circuit, which can perform work on the load 116 mounted on the external circuit. The discharge process in this cycle realizes the collection and conversion of mechanical energy to electrical energy.
  • the first substrate 101 and the second substrate 102 are made of strong and insulating materials such as glass, ordinary ceramics, etc., with a thickness of 10 ⁇ m.
  • the first electrode layer 111 formed on the first substrate 101 and the second electrode layer formed on the second substrate 102 are made of materials with good conductivity, such as ITO.
  • the solid dielectric layer 113 is made of dense, high-permittivity materials such as silicon dioxide, aluminum oxide, etc., and its thickness is 50 nm.
  • the liquid-injected smooth porous surface layer 114 is formed by infiltrating lubricant silicone oil with a micro-nano porous material such as PDMS, and has a thickness of 10 ⁇ m.
  • the conductive droplet 115 selects seawater droplets.
  • the bias power supply 117 selects a DC voltage source.
  • the load 116 is an energy storage unit.
  • a lubricating liquid is injected into a material with a micro-nano porous structure to form a liquid-injected smooth porous surface layer with self-healing and super repellency.
  • This composite material layer can repel almost all conductive liquids.
  • the multilayer composite dielectric layer structure designed in this embodiment separates the hydrophobicity and insulation required by the existing dielectric layer structure through the arrangement of a liquid-injected smooth porous surface layer, and uses the liquid-injected smooth porous surface layer.
  • the liquid-injected smooth porous surface layer can repel all liquids, has low environmental requirements, high mechanical strength, and self-healing and self-replenishment characteristics, the device can be used in a wider environment and the range of mechanical energy that can be collected is wider.
  • Fig. 3 is a schematic structural diagram of a mechanical energy collection device according to Embodiment 2 of the present invention.
  • the mechanical energy collection device includes a lower substrate 301, an elastic packaging frame 302, an upper substrate 303, and conductive liquid droplets 115 arranged in an array on the lower substrate 301.
  • the upper substrate 303 is a separate conductive substrate.
  • the lower substrate 301 includes a conductive substrate, and a solid dielectric layer (not shown in the figure) and a liquid-injected smooth porous surface layer (not shown in the figure) are sequentially arranged on the side of the conductive substrate close to the elastic packaging frame 302.
  • the solid dielectric layer is a PTFE layer
  • the liquid-injected smooth porous surface layer is in contact with the conductive liquid drop 115.
  • the lower substrate 301 and the upper substrate 303 are also electrically connected with a DC voltage source to apply a DC voltage between the two substrates, and at the same time, a load capable of storing electrical energy is connected.
  • the device After being packaged, the device can be placed inside the insole or fixed on the surface of other vibration sources (such as engines).
  • the conductive droplets With the vibration generated when the human body moves or the machine is running, the conductive droplets are periodically squeezed and deformed, and the contact area with the device will continue to change, causing periodic charging and discharging currents of the capacitor, thereby converting the mechanical energy contained in the vibration into electrical energy , And stored in the load on the external circuit to complete the collection and utilization of energy.
  • a reverse electrowetting mechanical energy collection device The difference from Embodiment 1 is that the solid dielectric layer and the liquid-injected smooth porous surface layer are replaced with a separate polytetrafluoroethylene (PTFE) layer.
  • PTFE polytetrafluoroethylene
  • An elastic packaging frame is arranged between the two substrates to a default distance of 1 mm, and vibration is generated on the substrate on the mechanical energy collection device at a frequency of 50 Hz.
  • the output power of Example 1 is 200nW; while the output power of Comparative Example 1 is only about 20nW.
  • the peak values of the voltage and current of Example 1 are much higher than those of Comparative Example 1.
  • Example 2 it can be seen that, compared to the use of a separate hydrophobic dielectric layer in Comparative Example 1, the use of a solid dielectric layer and a liquid-injected smooth porous surface layer in Example 2 can effectively improve the energy collection efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提供逆电润湿机械能收集器件及机械能收集装置。该逆电润湿机械能收集器件包括:第一电极基板;第二电极基板,与第一电极基板相对设置以形成容纳腔;固体介电层,设置在第二电极基板靠近第一电极基板的一侧;注液光滑多孔表面层,设置在固体介电层靠近第一电极基板的一侧;导电流体,填充于容纳腔内,与第一电极基板和注液光滑多孔表面层相接触。本发明采用固体介电层和注液光滑多孔表面层的多层复合介电层的结构设计,将介电层的疏水性和绝缘性分隔开,从而可以选择具有较高介电常数的材料作为固体介电层,突破氟聚合物的介电结构限制,极大改善逆电润湿体系中介电层的功能特性,有效规避电荷陷入的问题,提高器件的能量产生效率。

Description

逆电润湿机械能收集器件及机械能收集装置 技术领域
本发明涉及逆电润湿技术领域,尤其是涉及逆电润湿机械能收集器件及机械能收集装置。
背景技术
介电润湿(electrowetting on dielectric,EWOD)是指将极性液滴放置在涂布了介电层的电极后,若向这一体系施加电压就会出现液滴铺展,与介电层接触面积增大的现象。而逆电润湿(reverse electrowetting on dielectric,REWOD)是介电润湿的逆向过程,它是指极性液滴在电压的作用下铺展后,若因外力作用发生收缩、与介电层接触面积减小,则会在电路中产生电流的现象。近年来逆电润湿已被证实可以用于机械能的收集,在循环放电过程实现机械能向电能的转换。转换的关键在于利用外界的机械能来改变液体与介电层的接触面积从而形成放电电流。同时,介电层的厚度、介电常数,决定着电容大小;外电路所施加的电压决定着介电层表面的电荷密度;介电层表面润湿性决定着极性液滴与介电层接触面积变化的程度。这些因素都会对能量收集的效率产生影响。
已有研发团队提出基于逆电润湿的能量收集器件。该器件直接在电极表面涂布一层疏水介电层,通过收集人体运动产生的机械能来达到向小型电子设备充电的目的。这种能量收集器件的理论单位面积功率远超其他能量收集方法如压电、电磁等。然而,该器件为了能够同时满足疏水性和介电性的要求,使用氟聚合物作为疏水介电层材料。但在实际应用中发现,由于电荷陷入等原因使得能量收集效率仍有不足。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种具有较高的能量收集效率的逆电润湿机械能收集器件及机械能收集装置。
第一方面,本发明的一个实施例提供了一种逆电润湿机械能收集器件,该逆电润湿机械能收集器件包括:
第一电极基板;
第二电极基板,第二电极基板与第一电极基板相对设置以形成容纳腔;
固体介电层,固体介电层设置在第二电极基板靠近第一电极基板的一侧;
注液光滑多孔表面层,注液光滑多孔表面层设置在固体介电层靠近第一电极基板的一侧;
导电流体,导电流体填充于容纳腔内,导电流体与第一电极基板和注液光滑多孔表面层相接触。
本发明实施例的逆电润湿机械能收集器件至少具有如下有益效果:
本发明采用固体介电层和注液光滑多孔表面层的多层复合介电层的结构设计,将介电层的疏水性和绝缘性分隔开,从而可以选择具有较高介电常数的材料作为固体介电层,突破氟聚合物的介电结构限制,极大改善逆电润湿体系中介电层的功能特性,有效规避电荷陷入的问题,提高器件的能量产生效率。
根据本发明的一些实施例的逆电润湿机械能收集器件,固体介电层选自氧化镁、二氧化硅、钛酸锶、钛酸钡、钛酸钙、氧化镧铝、氧化锰、氧化钒、氧化铝、氧化钛、氧化铪、氮化钛等具有较高介电常数的材料。本方案通过添加注液光滑多孔表面层将介电层的疏水性与绝缘性分隔开,从而可以考虑使用上述具有较高介电系数的材料以提高复合介电层的功能特性,避免介电击穿的出现。
根据本发明的一些实施例的逆电润湿机械能收集器件,导电流体用于在施加的机械力作用下发生可逆形变而改变第一电极基板和第二电极基板之间的电容。通过施加的机械力控制导电流体的形变使得流体与介电层的接触面积发生改变而改变电容,储存的电荷发生改变,在外电路形成电流,可对搭载在外电路上的负载做功,从而实现机械能向电能的转化。
根据本发明的一些实施例的逆电润湿机械能收集器件,导电流体为导电液体。
根据本发明的一些实施例的逆电润湿机械能收集器件,导电液体选自液态金属、液态合金、酸溶液、碱溶液、盐溶液、熔融盐中的至少一种。
根据本发明的一些实施例的逆电润湿机械能收集器件,注液光滑多孔表面层由包括浸润有润滑剂的微纳材料形成。注液光滑多孔表面层(Slippery Liquid-Infused Porous Surfaces,SLIPS)以微纳材料为基材,向其中灌注低表面能、化学惰性的非极性润滑剂以实现浸润,从而在基材的表面形成光滑且化学均相的润滑层。不同表面张力的液体在其上的滑动角小于5°,滞后角小于2.5°,远小于氟聚合物的滞后角,避免了液体运动时手动的钉扎作用,大大降低滞后角带来的影响。而且,SLIPS具有全面疏液的特性,其抗压稳定性好,能够瞬间自修复,对于导电液体的环境要求低、工作温度范围大,机械强度高,使器件可运用的环境更广,可收集的机械能范围更宽。另外,氟聚合物在电场作用下会有部分电荷被固定在电介质中,阻碍了电荷收集,而SLIPS可以有效规避电荷陷入的问题,提高器件的能量产生效率。
根据本发明的一些实施例的逆电润湿机械能收集器件,微纳材料具有微纳多孔结构或微 纳粗糙结构。为了使微纳材料能够提供足够强的毛细作用和足够大的表面来吸附和储存润滑剂,微纳材料最好需要在表面构建形成微纳多孔结构或微纳粗糙结构。
根据本发明的一些实施例的逆电润湿机械能收集器件,润滑剂选自氟油、硅油中的至少一种。
第二方面,本发明的一个实施例提供一种机械能收集装置,其特征在于,包括上述的逆电润湿机械能收集器件。采用包含上述的逆电润湿机械能收集器件的机械能收集装置可以避免介电层的击穿,降低失效风险,保证机械能收集装置的可靠性。
根据本发明的一些实施例的机械能收集装置,该机械能收集装置还包括偏置电源,该偏置电源与第一电极基板和第二电极基板电连接以施加偏置电压。通过偏置电源的设置,施加偏置电压,从而使器件中的导电流体在外加机械力的作用下发生的挤压形变造成电容变化,引起充电放电电流,从而将机械力中的机械能转化为电能。
根据本发明的一些实施例的机械能收集装置,该机械能收集装置还包括储能单元,该储能单元与第一电极基板和第二电极基板电连接以收集逆电润湿机械能收集器件产生的电能。通过设置储能单元,将转化出的电能储存起来,完成对机械能的收集和利用。
附图说明
图1是本发明的实施例1的逆电润湿机械能收集器件在未施加机械外力时的结构示意图。
图2是本发明的实施例1的逆电润湿机械能收集器件在施加机械外力后的结构示意图。
图3是本发明的实施例2的机械能收集装置的结构示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
参考图1,示出了本发明的实施例1的逆电润湿机械能收集器件在未施加机械外力时的结构示意图。该逆电润湿机械能收集器件包括相对设置的第一电极基板和第二电极基板,第一电极基板包括第一基板101和第一电极层111,第一电极层111形成于第一基板101靠近第二电极基板的一侧。第二电极基板包括第二基板102和第二电极层112,第二电极层112形成于第二基板102靠近第一电极基板的一侧。第一电极基板和第二电极基板之间形成容纳腔, 在该容纳腔内,第二电极基板靠近第一电极基板的一侧(即,第二电极层112靠近第一电极层111的一侧)设置有固体介电层113,固体介电层113靠近第一电极层111(或第一电极基板)的一侧设有注液光滑多孔表面层114。在容纳腔内,注液光滑多孔表面层114和第一电极层111之间填充有导电液滴115(即,导电流体)。第一电极层111和第二电极层112之间连接有外电路。在外电路上接有偏置电源117和负载116。
图2示出了本发明的实施例1的逆电润湿机械能收集器件在施加机械外力后的结构示意图,参考图1和图2,当第一电极基板和/或第二电极基板上施加有机械外力时,容纳腔内的导电液滴115发生形变。此时,如果偏置电源117已在第一电极基板和第二电极基板两侧施加偏置电压形成电容,导电流体的形变会导致电容发生改变,从而在外电路中产生电流。具体解释如下:
若将逆电润湿机械能收集器件视为一个平板电容器,电容公式C=ε 0ε rA ls/d,在这一体系中,介电常数ε 0ε r及介电层厚度d均为定值,而电容正对面积A ls即为导电液滴115与固体介电层113接触面积,当所施加的电压固定时,若导电液滴115与固体介电层113的电容正对面积A ls增大(润湿过程),则电容可储存的电荷变多,电荷在外电路作用下进入电容,电容被充电;若此时因外力作用(通常为机械能)导电液滴115与固体介电层113的电容正对面积A ls减小(去湿过程),则电容可储存的电荷变少,电荷流出电容,在外电路形成电流,可对搭载在外电路上的负载116做功。这一循环中的放电过程即实现了机械能向电能的收集转换。
本实施例中,第一基板101和第二基板102采用坚固、绝缘的材料如玻璃、普通陶瓷等,厚度为10μm。形成于第一基板101上的第一电极层111和形成于第二基板102上的第二电极层采用导电性能良好的材料如ITO等。固体介电层113采用致密、高介电常数的材料如二氧化硅、氧化铝等,其厚度为50nm。注液光滑多孔表面层114采用微纳多孔材料如PDMS等浸润润滑剂硅油后形成,其厚度为10μm。导电液滴115选择海水液滴。偏置电源117选择直流电压源。负载116为一储能单元。
本实施例中通过向具有微纳多孔结构的材料中注入润滑液形成具有自愈合、超排斥的注液光滑多孔表面层。这种复合材料层可以排斥几乎所有的导电液体。本实施例所设计的多层复合介电层结构通过注液光滑多孔表面层的设置将现有的介电层结构所需的疏水性和绝缘性分隔开来,利用注液光滑多孔表面层实现较强的疏水,同时可以选择具有高介电常数的材料 作为固体介电层,从而突破现有的单层氟聚合物介电结构的限制,改善电润湿相关体系中介电层的功能特性,扼制介电击穿现象的发生,提高器件的可靠性。同时,由于注液光滑多孔表面层的使用,避免了导电流体(导电液体)运动时受到的钉扎作用,还避免了氟聚合物因电荷陷入而阻碍去湿过程中电荷收集的问题,实现能量收集效率的提高。另外,由于注液光滑多孔表面层可排斥所有液体、环境要求低、机械强度高、可自愈合自补充的特性,使器件可运用的环境更广,可收集的机械能范围更宽。
实施例2
参考图3,图3是本发明的实施例2的机械能收集装置的结构示意图。该机械能收集装置包括下基板301、弹性封装框302、上基板303和位于下基板301上阵列排布的导电液滴115。上基板303为单独的导电基板。下基板301包括导电基板,在该导电基板靠近弹性封装框302的一侧还依次设有固体介电层(图中未示出)和注液光滑多孔表面层(图中未示出)。其中,固体介电层为PTFE层,注液光滑多孔表面层与导电液滴115相接触。下基板301和上基板303还电连接有直流电压源以在两基板之间施加直流电压,同时接有能够储存电能的负载。该装置在经过封装后可置于鞋垫内部或固定在其他振动源(如发动机)表面。随着人体走动或机器运转时产生的振动,导电液滴受到周期性挤压形变,与装置的接触面积会不断变化,造成电容周期性的充电放电电流,从而将振动中蕴含的机械能转换为电能,并储存在外电路上的负载中,完成对能量的收集利用。
实施例3
对比试验
对比例1:
一种逆电润湿机械能收集器件,与实施例1的区别在于,固体介电层和注液光滑多孔表面层替换为单独的聚四氟乙烯(PTFE)层。
两基板之间设置弹性封装框使其默认距离为1mm,以50Hz的频率在机械能收集装置上基板上产生振动。经检测,实施例1的输出功率为200nW;而对比例1的输出功率仅为20nW左右。同时,在同一测试时间段内,实施例1的电压和电流的峰值相比于对比例1都要高很多。
可以看到,相比于对比例1采用单独的疏水介电层,实施例2采用固体介电层和注液光滑多孔表面层可以有效提高能量收集效率。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技 术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 逆电润湿机械能收集器件,其特征在于,包括:
    第一电极基板;
    第二电极基板,所述第二电极基板与所述第一电极基板相对设置以形成容纳腔;
    固体介电层,所述固体介电层设置在所述第二电极基板靠近所述第一电极基板的一侧;
    注液光滑多孔表面层,所述注液光滑多孔表面层设置在所述固体介电层靠近所述第一电极基板的一侧;
    导电流体,所述导电流体填充于所述容纳腔内,所述导电流体与所述第一电极基板和所述注液光滑多孔表面层相接触。
  2. 根据权利要求1所述的逆电润湿机械能收集器件,其特征在于,所述导电流体用于在施加的机械力作用下发生可逆形变而改变所述第一电极基板和所述第二电极基板之间的电容。
  3. 根据权利要求2所述的逆电润湿机械能收集器件,其特征在于,所述导电流体为导电液体。
  4. 根据权利要求3所述的逆电润湿机械能收集器件,其特征在于,所述导电液体选自液态金属、液态合金、酸溶液、碱溶液、盐溶液、熔融盐中的至少一种。
  5. 根据权利要求1所述的逆电润湿机械能收集器件,其特征在于,所述注液光滑多孔表面层由包括浸润有润滑剂的微纳材料形成。
  6. 根据权利要求5所述的逆电润湿机械能收集器件,其特征在于,所述微纳材料具有微纳多孔结构或微纳粗糙结构。
  7. 根据权利要求5所述的逆电润湿机械能收集器件,其特征在于,所述润滑剂选自氟油、硅油中的至少一种。
  8. 机械能收集装置,其特征在于,包括权利要求1至7任一项所述的逆电润湿机械能收集器件。
  9. 根据权利要求8所述的机械能收集装置,其特征在于,所述机械能收集装置还包括偏置电源,所述偏置电源与所述第一电极基板和所述第二电极基板电连接以施加偏置电压。
  10. 根据权利要求8所述的机械能收集装置,其特征在于,所述机械能收集装置还包括储能单元,所述储能单元与所述第一电极基板和所述第二电极基板电连接以收集所述逆电润湿机械能收集器件产生的电能。
PCT/CN2021/094133 2020-05-20 2021-05-17 逆电润湿机械能收集器件及机械能收集装置 WO2021233256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010429745.5A CN111654206B (zh) 2020-05-20 2020-05-20 逆电润湿机械能收集器件及机械能收集装置
CN202010429745.5 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021233256A1 true WO2021233256A1 (zh) 2021-11-25

Family

ID=72346000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094133 WO2021233256A1 (zh) 2020-05-20 2021-05-17 逆电润湿机械能收集器件及机械能收集装置

Country Status (2)

Country Link
CN (1) CN111654206B (zh)
WO (1) WO2021233256A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654206B (zh) * 2020-05-20 2023-03-14 华南师范大学 逆电润湿机械能收集器件及机械能收集装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493576A (zh) * 2008-01-23 2009-07-29 财团法人工业技术研究院 电润湿法显示器装置及其制造方法
KR20170122033A (ko) * 2016-04-26 2017-11-03 한양대학교 산학협력단 역전기습윤 발전 모듈
CN107786119A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 一种基于逆向电润湿技术的振动式能量转换装置
CN207271276U (zh) * 2017-08-15 2018-04-27 肇庆市华师大光电产业研究院 一种基于液-液电润湿效应的可编程控制的微流控芯片
CN111654206A (zh) * 2020-05-20 2020-09-11 华南师范大学 逆电润湿机械能收集器件及机械能收集装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529240B2 (en) * 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493576A (zh) * 2008-01-23 2009-07-29 财团法人工业技术研究院 电润湿法显示器装置及其制造方法
KR20170122033A (ko) * 2016-04-26 2017-11-03 한양대학교 산학협력단 역전기습윤 발전 모듈
CN107786119A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 一种基于逆向电润湿技术的振动式能量转换装置
CN207271276U (zh) * 2017-08-15 2018-04-27 肇庆市华师大光电产业研究院 一种基于液-液电润湿效应的可编程控制的微流控芯片
CN111654206A (zh) * 2020-05-20 2020-09-11 华南师范大学 逆电润湿机械能收集器件及机械能收集装置

Also Published As

Publication number Publication date
CN111654206B (zh) 2023-03-14
CN111654206A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
Kang et al. 3-V solid-state flexible supercapacitors with ionic-liquid-based polymer gel electrolyte for AC line filtering
TWI601330B (zh) 電極材料及能量儲存設備
US10217572B2 (en) Low frequency converters having electrochemical capacitors
KR102668590B1 (ko) 칩형 울트라캐패시터
KR101000098B1 (ko) 캐패시터용 전극부재, 그의 제조 방법 및 그 전극부재를구비하는 캐패시터
Tõnurist et al. Influence of separator properties on electrochemical performance of electrical double-layer capacitors
KR20180098664A (ko) 고-전압 장치
WO2021233256A1 (zh) 逆电润湿机械能收集器件及机械能收集装置
CN108054951B (zh) 一种基于多层结构的俘能/储能一体化微纳电池
WO2007013456A1 (ja) 固体電解コンデンサ素子及びそれを用いた固体電解コンデンサ
Ho et al. Tailoring electrochemical capacitor energy storage using direct write dispenser printing
KR20230031968A (ko) 에너지 저장 장치를 위한 저장 셀을 제공하기 위한 방법 및 장치
JPH11317332A (ja) 電気二重層キャパシタ
KUDOH et al. Recent development in electrolytic capacitors and electric double layer capacitors
WO2012119994A2 (en) Sensor material prepared of carbon-ionic liquid-polymer composite
Spurney et al. Ultra-high density, thin-film tantalum capacitors with improved frequency characteristics for MHz switching power converters
Spurney et al. High-voltage capacitors for next-generation power modules in electric vehicles
JP6628241B2 (ja) 蓄電材料および蓄電デバイス
RU2784889C2 (ru) Суперконденсатор для систем автономного электроснабжения и портативного пуска автотранспортной техники
Rajeevan et al. Polymers for supercapacitors: An overview
CN1841600A (zh) 电化学装置
EP4078634B1 (en) An electrode for a supercapacitor comprising a grass like dielectric
Kumar et al. Piezoelectric smart material-based self-charging supercapacitor
RU2726945C1 (ru) Плоский суперконденсатор на основе углерод-углеродного нанокомпозита и способ его изготовления
Ono et al. New type of energy harvester with electric double layer electrets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807589

Country of ref document: EP

Kind code of ref document: A1