WO2021233231A1 - 一种对集输联合站以及关键设备的可靠性评价方法及系统 - Google Patents
一种对集输联合站以及关键设备的可靠性评价方法及系统 Download PDFInfo
- Publication number
- WO2021233231A1 WO2021233231A1 PCT/CN2021/093914 CN2021093914W WO2021233231A1 WO 2021233231 A1 WO2021233231 A1 WO 2021233231A1 CN 2021093914 W CN2021093914 W CN 2021093914W WO 2021233231 A1 WO2021233231 A1 WO 2021233231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reliability
- analysis
- equipment
- key equipment
- safety
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000004458 analytical method Methods 0.000 claims abstract description 119
- 230000008569 process Effects 0.000 claims abstract description 38
- 238000013480 data collection Methods 0.000 claims abstract description 11
- 238000004445 quantitative analysis Methods 0.000 claims description 26
- 238000004451 qualitative analysis Methods 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 claims description 19
- 238000011156 evaluation Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 14
- 230000001364 causal effect Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012954 risk control Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Definitions
- the invention relates to the technical field of station library reliability analysis, in particular to a whole-process reliability evaluation method and system applied to a combined station of an oil field gathering and transportation system.
- the gathering and transportation joint station is a production unit that collects, stores, heats, dehydrates, separates, and measures the crude oil produced by the oil wells in the oil field, and is a place where high risks exist and are concentrated.
- the production process involved in the gathering and transportation station is very complicated, and the process conditions are very strict.
- the production medium has the characteristics of high temperature and high pressure, inflammable, explosive or corrosive, and toxic.
- the present invention optimizes the reliability analysis method from three aspects: the failure analysis of key equipment, the reliability model of the whole process of the joint station, and the reliability calculation method of the joint station. Improve the adaptability of the reliability analysis method under the complex process of the joint station; adopt the following technical solutions:
- the present invention provides a method for evaluating the safety and reliability of a gathering and transportation joint station and key equipment.
- the steps include:
- the GO method is used to carry out the reliability analysis of the whole process of the joint station, and the layered stepped reliability analysis is realized.
- the present invention also provides a safety and reliability evaluation system for the gathering and transportation joint station and key equipment, including:
- the acquisition module is configured to: collect basic data of key equipment;
- the fault feature analysis module is configured to: perform fault feature analysis of key equipment, build a fault tree of key equipment based on the analysis results; use basic data collection to perform qualitative and quantitative analysis of the reliability of the fault tree of key equipment, and establish an equipment reliability analysis model, Obtain reliability parameters through the reliability analysis model to realize single equipment-level reliability analysis;
- the whole-process reliability analysis module is configured to: use the GO method to perform the whole-process reliability analysis of the joint station according to the reliability parameters, and realize the hierarchical reliability analysis.
- the present invention also provides a computer-readable storage medium for storing computer instructions.
- the computer instructions When the computer instructions are executed by a processor, they complete the processing of the integrated gathering station and key equipment as described in the first aspect. Safety and reliability evaluation method.
- the present invention also provides an electronic device, including a memory, a processor, and computer instructions stored in the memory and running on the processor.
- the computer instructions When the computer instructions are executed by the processor, the computer instructions perform as described in the first aspect.
- the present invention optimizes the reliability analysis method from three aspects: the failure analysis of key equipment, the reliability model of the whole process of the joint station, and the reliability calculation method of the joint station. It improves the adaptability of reliability analysis method under the complex process of joint station, and solves the limitation of traditional method for reliability analysis of process system with actual logistics.
- the reliability calculation method of the joint station adopted by the present invention can improve the accuracy of the reliability calculation result of the joint station.
- the hierarchical calculation method adopted can calculate the reliability of any component in the process of the joint station, which is convenient to find the link with the lowest reliability in the process, and the link can be checked and repaired in time.
- the critical equipment reliability analysis method used in the present invention can determine the contribution of system components to system failures, rank the importance of key parts, and evaluate the impact of system components and external events on system reliability, and identify Establish a system maintenance management system for the key parts of the system.
- the GO method used in the present invention can describe the state and state changes of the system and components at various points in time, and can be used for the probabilistic analysis of the joint station system with time sequence, and can directly represent the interaction and the interaction between the system and the components as well as the components. Relevance, easy to check, change and modify.
- the present invention combines the fault tree analysis method and the GO method, as a graphical deduction method, makes the method more visual and intuitive, and can link various factors that may cause system failures, including direct and indirect factors, to improve the reliability of the system The accuracy of the analysis.
- Figure 1 is a flowchart of the reliability analysis of the key equipment of the present invention.
- Figure 2 is a flow chart of the reliability analysis of the whole process of the joint station of the present invention.
- azimuth or position relationship is based on the azimuth or position relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element of the present invention. It does not specifically refer to any component or element in the present invention and cannot be understood as a reference Limitations of the invention.
- a method for evaluating the safety and reliability of the combined gathering station and key equipment including the reliability analysis of the key equipment and the reliability analysis of the whole process of the joint station.
- the reliability analysis of the key equipment adopts the fault tree analysis method, and the reliability analysis of the whole process of the joint station adopts the GO method.
- the key equipment reliability analysis includes basic data collection, key equipment failure feature analysis, fault tree construction, and equipment reliability qualitative and quantitative analysis.
- the basic data collection includes equipment's mean time between failures (MTBF) and accident rate. And reliability.
- the described key equipment failure feature analysis is to investigate and summarize the failure feature mode of the joint station equipment. Through the analysis of the key equipment failure characteristics, a fault tree of the equipment can be constructed, and the reliability of the constructed fault tree can be analyzed qualitatively and quantitatively by using the basic data collection, thereby forming a complete equipment reliability analysis model.
- the reliability analysis of the whole process of the joint station is based on the reliability analysis of the key equipment.
- the standard operators defined by the GO method are used to connect into a logical functional block diagram according to the process flow of the joint station. .
- the reliability parameters of the single equipment can be obtained.
- the GO method can be used to perform the qualitative and quantitative analysis of the reliability of the whole process of the joint station, so as to realize the stratification from the single equipment level to the joint station level. Stepped reliability analysis method, and then the reliability analysis and evaluation of the entire system.
- the described fault tree construction takes the equipment failure event as the analysis target, finds all the direct factors and possible causes that lead to the occurrence of the top event, and traces back to the most basic direct factors that caused the system failure, and describes the logical causal relationship between the events
- the logic gate symbol connects the above-mentioned various levels of events into a fault tree.
- the qualitative and quantitative analysis of equipment reliability includes qualitative analysis and quantitative analysis of the fault tree.
- the qualitative analysis uses the smallest cut set to find the weak link in the failure mode, and the quantitative analysis is based on the probability of the occurrence of the bottom event. Find the probability of the top event occurring.
- the GO method is to use operators to represent the specific components in the system schematic diagram, flow chart or engineering diagram, and to connect the operators with signal flow.
- the GO diagram and the operation rules of the GO operators can be used to complete the GO method for system reliability.
- the reliability analysis process of key equipment is provided. Before reliability analysis, basic data collection and equipment failure mode analysis are required. In the collection and investigation of the analyzed equipment failures in the past and possible future After the occurrence of the fault, find out the logical causal relationship between the specific fault of the system, namely the top event and all possible factors that caused the fault, and connect this relationship with various logic gate symbols to form a fault tree diagram, and then Carry out qualitative and quantitative analysis, find out the weak links of equipment and calculation reliability, propose and implement effective measures.
- the reliability analysis process of the whole process of the joint station is provided.
- After performing the reliability analysis of the key equipment use the operators and signal flow defined by the GO method to establish the GO diagram, and conduct qualitative and quantitative analysis from the single equipment level to the joint station level.
- the joint station proposes improvement measures, the efficiency evaluation is carried out again, thus forming a cyclical reliability evaluation model system.
- the above-mentioned qualitative analysis is one of the core content of reliability analysis and the basis of quantitative analysis.
- the main purpose is to find out all possible failure modes that lead to system failures, that is, to identify the cause or combination of causes that lead to the occurrence of top events.
- identify the potential failures of the system in order to optimize the design of the system, guide the diagnosis of system failures, and improve the use and maintenance plan of the system.
- the main purpose of the above quantitative analysis is to use the fault tree and GO diagram as the analysis and calculation model to find the occurrence probability of the top event (joint station system failure) under the condition that the occurrence probability of the bottom event (single device) is known, so as to improve the system performance. Reliability, safety and risk are quantitatively evaluated.
- the above-mentioned effective measures are proposed and implemented. According to the results of qualitative and quantitative analysis, the potential risk factors of the system should be identified, the weak links of the system should be identified, and the price, technology and other factors should be taken into account to formulate the most economical and reasonable
- the risk control plan is implemented to achieve the purpose of reducing the risk of system failure and improving the reliability and safety of the system.
- the connection mode of the process flow is different, and the calculation method of the reliability parameter is also different.
- the system reliability parameter ⁇ (X) can be expressed as:
- the system reliability parameter ⁇ (X) can be expressed as:
- ⁇ (X) is the system reliability parameter
- ⁇ (x i ) is the reliability parameter of a single device
- n is the number of devices.
- the equivalent analysis method can be used, and the analysis is carried out according to the following process: First, the system structure is analyzed, and the parallel or series part of the system is simplified and divided into subsystems. The parallel calculation method calculates the reliability parameters of the subsystems; then, each subsystem is equivalent to the constituent unit of the system, that is, it is restored to a simple parallel or series system with the same structure as the original system.
- the invention provides a method for evaluating the safety and reliability of a gathering and transportation joint station and key equipment, which is characterized in that the steps include:
- Collect basic data of key equipment analyze the characteristics of key equipment failures, and build a fault tree of key equipment based on the analysis results; use basic data collection to perform qualitative and quantitative reliability analysis of the fault tree of key equipment, establish equipment reliability analysis models, and pass reliability
- the analysis model obtains the reliability parameters to realize the reliability analysis of the single equipment; according to the reliability parameters, the GO method is used to carry out the reliability analysis of the whole process of the joint station to realize the layered stepped reliability analysis.
- the basic data of the collected key equipment includes the mean time without failure of the equipment, the accident rate and the reliability of the equipment.
- the described key equipment failure feature analysis is to investigate and summarize the failure feature mode of the joint station equipment.
- the whole process reliability analysis steps of the joint station include: use the standard operators defined by the GO method to connect into a logical functional block diagram according to the joint station process flow; obtain the reliability parameters of the individual equipment through the key equipment reliability analysis, and use the GO method
- the calculation carries out the qualitative and quantitative analysis of the reliability of the whole process of the joint station, so as to realize the hierarchical stepped reliability analysis method from the single equipment level to the joint station level.
- the qualitative and quantitative analysis of equipment reliability includes qualitative analysis and quantitative analysis of the fault tree.
- the qualitative analysis uses the smallest cut set to find the weak link in the failure mode, and the quantitative analysis is based on the probability of the occurrence of the bottom event. Find the probability of the top event occurring.
- the described fault tree construction takes the equipment failure event as the analysis target, finds all the direct factors and possible causes that lead to the occurrence of the top event, until the basic direct factor that causes the system failure, and uses logic gates that describe the logical causal relationship between events Symbols connect various levels of equipment failure events into a fault tree.
- the GO method described is to use operators to represent specific components in system schematics, flowcharts, or engineering diagrams; connect operators with signal flow, and use GO diagrams and GO operators to complete the GO method for system reliability analysis Function.
- the calculation method of the reliability parameter is divided into the series system calculation and the parallel system calculation.
- the series system is used for calculation. Assuming that the units of the system are independent of each other, the system reliability parameter ⁇ (X) can be expressed as: In the formula, ⁇ (X) is the system reliability parameter, ⁇ (x i ) is the reliability parameter of a single device, and n is the number of devices.
- the present invention also provides:
- a safety and reliability evaluation system for the gathering and transportation combined station and key equipment including:
- the acquisition module is configured to: collect basic data of key equipment;
- the fault feature analysis module is configured to: perform fault feature analysis of key equipment, build a fault tree of key equipment based on the analysis results; use basic data collection to perform qualitative and quantitative analysis of the reliability of the fault tree of key equipment, and establish an equipment reliability analysis model, Obtain reliability parameters through the reliability analysis model to realize single equipment-level reliability analysis;
- the whole-process reliability analysis module is configured to: use the GO method to perform the whole-process reliability analysis of the joint station according to the reliability parameters, and realize the hierarchical reliability analysis.
- the specific processes of the acquisition module, the fault feature analysis module and the full-process reliability analysis module respectively correspond to the safety and reliability evaluation methods of the gathering and transportation combined station and the key equipment described in the above-mentioned embodiments.
- a computer-readable storage medium is used to store computer instructions. When the computer instructions are executed by a processor, the method for evaluating the safety and reliability of the combined gathering station and key equipment as described in the above-mentioned embodiment is completed.
- An electronic device including a memory and a processor, and computer instructions stored on the memory and running on the processor.
- the computer instructions When executed by the processor, they complete the collection and transportation combined station as described in the above-mentioned embodiment and Evaluation method of safety and reliability of key equipment.
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Marketing (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Development Economics (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种对集输联合站以及关键设备的可靠性评价方法及系统,步骤包括:采集关键设备基础数据;进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析;提高了可靠性分析方法在联合站复杂流程下的适应性,解决了传统方法对于有实际物流的过程系统的可靠性分析的局限性;便于找出流程内可靠性最低的环节,并可以对该环节及时检查、修复;高系统可靠性的分析精度。
Description
本发明涉及站库可靠性分析技术领域,特别是涉及应用于油田集输系统联合站的全流程可靠性评价方法及系统。
集输联合站是将油田中油井所生产的原油汇集、储存、加热、脱水、分离、计量后进行外输的生产单元,是高风险存在并集中的场所。集输联合站涉及的生产工艺过程非常复杂,工艺条件要求十分严格,生产介质具有高温高压、易燃易爆或腐蚀、有毒等特性,随着油田油气开采难度的加大以及挖潜增产的迫切需要,随之带来的安全问题日益显现,生产装置趋向大型化以及生产过程的连续性、自动化程度的提高等,使生产过程发生事故的可能性增大,一旦发生安全事故,造成的危害和损失也极为严重。因此提出一种对集输联合站以及关键设备的安全可靠性评价方法,采用由单体设备级到联合站级的分层阶梯式可靠性分析方法,建立联合站可靠性分析模型,提高其安全可靠性。
发明内容
为解决上述技术问题,本发明与传统的可靠性分析方法相比,从关键设备的故障分析、联合站全流程的可靠性模型和联合站可靠性计算方法三方面对可靠性分析方法进行优化。提高了可靠性分析方法在联合站复杂流程下的适应性;采用如下技术方案:
第一方面,本发明提供了一种对集输联合站以及关键设备的安全可靠性评 价方法,步骤包括:
采集关键设备基础数据;
进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;
根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析。
第二方面,本发明还提供了一种对集输联合站以及关键设备的安全可靠性评价系统,包括:
采集模块,被配置为:采集关键设备基础数据;
故障特征分析模块,被配置为:进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;
全流程可靠性分析模块,被配置为:根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析。
第三方面,本发明还提供了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成如第一方面所述的对集输联合站以及关键设备的安全可靠性评价方法。
第四方面,本发明还提供了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时, 完成如第一方面所述的对集输联合站以及关键设备的安全可靠性评价方法。
与现有技术相比,本发明的有益效果为:
1、本发明与传统的可靠性分析方法相比,从关键设备的故障分析、联合站全流程的可靠性模型和联合站可靠性计算方法三方面对可靠性分析方法进行优化。提高了可靠性分析方法在联合站复杂流程下的适应性,解决了传统方法对于有实际物流的过程系统的可靠性分析的局限性。
2、本发明采用的联合站可靠性计算方法,相较于采用传统的计算方法,可以提高联合站可靠度计算结果的准确性。采用的分层阶梯式计算方法可以计算联合站流程内任意一个组成部分的可靠度,便于找出流程内可靠性最低的环节,并可以对该环节及时检查、修复。
3、本发明采用的关键设备可靠性分析方法,可确定系统部件对系统故障的贡献,对关键部位的重要性进行排序,用于评价系统的组成部分和外部事件对系统可靠性的影响,鉴别系统的关键部位,建立系统维修管理体系。
4、本发明采用的GO法,可以描述系统和部件在各个时间点的状态和状态的变化,可用于有时序的联合站系统概率分析,可直接表示系统和部件以及部件之间的相互作用和相关性,易于检查、变换和修改。
5、本发明将故障树分析法和GO法相结合,作为一种图形演绎法使得该方法更加形象直观,能够将可能造成系统故障的各种因素包括直接、间接因素等因素联系起来,提高系统可靠性的分析精度。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的关键设备可靠性分析的流程图。
图2为本发明的联合站全流程的可靠性分析的流程图。
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体的连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。
实施例1
一种对集输联合站以及关键设备的安全可靠性评价方法,包括关键设备可 靠性分析以及联合站全流程可靠性分析。所述的关键设备可靠性分析采用故障树分析法,所述的联合站全流程可靠性分析采用GO法。
所述的关键设备可靠性分析包括基础数据采集、关键设备故障特征分析、故障树构建和设备可靠性定性定量分析,所述的基础数据采集包括设备的平均无故障运行时间(MTBF)、事故率以及可靠度。所述的关键设备故障特征分析为调查、总结联合站设备的故障特征模式。通过所述的关键设备故障特征分析可构建设备的故障树,利用所述的基础数据采集可对所构建的故障树进行可靠性定性定量分析,从而形成完整的设备可靠性分析模型。
所述的联合站全流程可靠性分析建立在所述的关键设备可靠性分析基础之上,建立设备可靠性分析模型后,根据联合站工艺流程利用GO法定义的标准操作符连接成逻辑功能框图。通过所述的关键设备可靠性分析可得到单体设备的可靠性参数,利用GO法运算可进行联合站全流程的可靠性定性定量分析,从而实现由单体设备级到联合站级的分层阶梯式可靠性分析方法,进而对整个系统进行可靠性分析评价。
所述的故障树构建以设备故障事件作为分析目标,找出导致顶事件发生的所有直接因素和可能原因,直至追溯到引起系统发生故障的那些最基本的直接因素,用描述事件间逻辑因果关系的逻辑门符号把上述各种级别的事件连接成故障树。
所述的设备可靠性定性定量分析包括故障树的定性分析和定量分析,所述的定性分析就是利用最小割集找出故障模式中的薄弱环节,所述的定量分析就是根据底事件发生的概率求顶事件发生的概率。
所述的GO法是把系统原理图、流程图或工程图中的具体部件用操作符表示、用信号流连接操作符,利用GO图和GO操作符的运算规则可以完成GO法进行系统可靠性分析的各种功能。
如图1所示,提供了关键设备的可靠性分析流程,在进行可靠性分析之前,需要进行基础数据采集、设备故障模式分析,在收集、调查所分析设备曾经发生过的故障和将来有可能发生的故障后,找出系统特定故障即顶事件和导致这一故障发生的所有可能因素之间的逻辑因果关系,并将这种关系用各种逻辑门符号连接起来,形成故障树图,再进行定性定量分析,找出设备的薄弱环节以及计算可靠度,提出并实施有效的措施。
如图2所示,提供了联合站全流程的可靠性分析流程,先要熟悉整个联合站系统的情况,包括联合站的功能、结构原理,工作程序、运行情况以及各种重要参数等,并要画出工艺流程图及布置图,进行所述的关键设备可靠性分析后,利用GO法定义的操作符和信号流建立GO图,由单体设备级到联合站级进行定性定量分析,对联合站提出改进措施后再次进行效能评价,从而形成一个循环的可靠性评价的模型体系。
上述的定性分析是可靠性分析的核心内容之一,是定量分析的基础,主要目的是找出导致系统故障发生的所有可能的故障模式,即识别出导致顶事件发生的原因或原因的组合,从而发现系统的薄弱环节,判别系统的潜在故障,以便优化系统的设计,指导系统故障的诊断,改进系统的使用与维修方案。
上述的定量分析主要目的是利用故障树和GO图作为分析计算模型,在已知底事件(单体设备)发生概率的条件下求顶事件(联合站系统故障)的发生概 率,从而对系统的可靠性、安全性和风险性做出定量化的评估。
上述的提出并实施有效的措施,要针对定性分析和定量分析的结果,找出系统的潜在风险因素,识别出系统的薄弱环节,并考虑到价格、技术等因素,制定出最经济、最合理的控制风险方案并付诸实施,以实现降低系统故障风险、提高系统可靠性和安全性的目的。
上述的联合站全流程可靠性分析的定量分析中,工艺流程的连接方式不同,可靠性参数的计算方法也有所区别。在串联系统中,假设系统各单元相互独立,则系统可靠性参数Φ(X)可表示为:
在并联系统中,假设系统各单元相互独立,则系统可靠性参数Φ(X)可表示为:
式中,Φ(X)为系统可靠性参数,Φ(x
i)为单体设备可靠性参数,n为设备数目。对于混联系统的可靠性分析可采用等效分析法,并按如下过程进行分析:首先对系统结构进行分析,将系统中并联或串联的部分进行简化并将其划分为子系统,通过串联、并联计算方法计算出子系统可靠性参数;再将每一个子系统等效为系统的组成单元,即还原为与原系统结构相同的简单并联或串联系统。
实施例2,
本发明提供了一种对集输联合站以及关键设备的安全可靠性评价方法,其特征在于,步骤包括:
采集关键设备基础数据;进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定 量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析。
所述采集关键设备基础数据包括设备的平均无故障运行时间、事故率和可靠度。所述的关键设备故障特征分析为调查、总结联合站设备的故障特征模式。
联合站全流程可靠性分析步骤包括:根据联合站工艺流程利用GO法定义的标准操作符连接成逻辑功能框图;通过所述的关键设备可靠性分析得到单体设备的可靠性参数,利用GO法运算进行联合站全流程的可靠性定性定量分析,从而实现由单体设备级到联合站级的分层阶梯式可靠性分析方法。
所述的设备可靠性定性定量分析包括故障树的定性分析和定量分析,所述的定性分析就是利用最小割集找出故障模式中的薄弱环节,所述的定量分析就是根据底事件发生的概率求顶事件发生的概率。
所述的故障树构建以设备故障事件作为分析目标,找出导致顶事件发生的所有直接因素和可能原因,直至到引起系统发生故障的基本的直接因素,用描述事件间逻辑因果关系的逻辑门符号把各种级别的设备故障事件连接成故障树。
所述的GO法是把系统原理图、流程图或工程图中的具体部件用操作符表示;用信号流连接操作符,利用GO图和GO操作符的运算规则完成GO法进行系统可靠性分析功能。
所述联合站全流程可靠性分析的定量分析中,根据工艺流程的连接方式不同,可靠性参数的计算方法分为串联系统计算和并联系统计算。
在其他实施例中,本发明还提供了:
一种对集输联合站以及关键设备的安全可靠性评价系统,包括:
采集模块,被配置为:采集关键设备基础数据;
故障特征分析模块,被配置为:进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;
全流程可靠性分析模块,被配置为:根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析。
进一步的,所述采集模块、故障特征分析模块和全流程可靠性分析模块,被配置的具体过程分别对应上述实施例中所述的对集输联合站以及关键设备的安全可靠性评价方法。
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成如上述实施例中所述的对集输联合站以及关键设备的安全可靠性评价方法。
一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成如上述实施例中所述的对集输联合站以及关键设备的安全可靠性评价方法。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
Claims (10)
- 一种对集输联合站以及关键设备的安全可靠性评价方法,其特征在于,步骤包括:采集关键设备基础数据;进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;根据可靠性参数利用GO法运算进行联合站全流程可靠性分析,实现分层阶梯式可靠性分析。
- 一种如权利要求1所述的安全可靠性评价方法,其特征在于,联合站全流程可靠性分析步骤包括:根据联合站工艺流程利用GO法定义的标准操作符连接成逻辑功能框图;通过所述的关键设备可靠性分析得到单体设备的可靠性参数,利用GO法运算进行联合站全流程的可靠性定性定量分析,从而实现由单体设备级到联合站级的分层阶梯式可靠性分析方法。
- 一种如权利要求1所述的安全可靠性评价方法,其特征在于,所述的设备可靠性定性定量分析包括故障树的定性分析和定量分析,所述的定性分析就是利用最小割集找出故障模式中的薄弱环节,所述的定量分析就是根据底事件发生的概率求顶事件发生的概率。
- 一种如权利要求1所述的安全可靠性评价方法,其特征在于,所述的故障树构建以设备故障事件作为分析目标,找出导致顶事件发生的所有直接因素和可能原因,直至到引起系统发生故障的基本的直接因素,用描述事件间逻辑 因果关系的逻辑门符号把各种级别的设备故障事件连接成故障树。
- 一种如权利要求1所述的安全可靠性评价方法,其特征在于,所述的GO法是把系统原理图、流程图或工程图中的具体部件用操作符表示;用信号流连接操作符,利用GO图和GO操作符的运算规则完成GO法进行系统可靠性分析功能。
- 一种如权利要求1所述的安全可靠性评价方法,其特征在于,所述联合站全流程可靠性分析的定量分析中,根据工艺流程的连接方式不同,可靠性参数的计算方法分为串联系统计算和并联系统计算。
- 一种对集输联合站以及关键设备的安全可靠性评价系统,其特征在于,包括:采集模块,被配置为:采集关键设备基础数据;故障特征分析模块,被配置为:进行关键设备故障特征分析,根据分析结果构建关键设备的故障树;利用基础数据采集对关键设备的故障树进行可靠性定性定量分析,建立设备可靠性分析模型,通过可靠性分析模型获取可靠性参数,实现单体设备级可靠性分析;全流程可靠性分析模块,被配置为:根据可靠性参数利用GO法运算进行联 合站全流程可靠性分析,实现分层阶梯式可靠性分析。
- 一种计算机可读存储介质,用于存储计算机指令,其特征在于,所述计算机指令被处理器执行时,完成如权利要求1-7任一所述的对集输联合站以及关键设备的安全可靠性评价方法。
- 一种电子设备,其特征在于,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成如如权利要求1-7任一所述的对集输联合站以及关键设备的安全可靠性评价方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010430786.6 | 2020-05-20 | ||
CN202010430786.6A CN111598467A (zh) | 2020-05-20 | 2020-05-20 | 一种对集输联合站以及关键设备的可靠性评价方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021233231A1 true WO2021233231A1 (zh) | 2021-11-25 |
Family
ID=72190425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/093914 WO2021233231A1 (zh) | 2020-05-20 | 2021-05-14 | 一种对集输联合站以及关键设备的可靠性评价方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111598467A (zh) |
WO (1) | WO2021233231A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114897081A (zh) * | 2022-05-19 | 2022-08-12 | 重庆大学 | 一种基于元动作的机电产品故障树分析方法 |
CN117150827A (zh) * | 2023-10-30 | 2023-12-01 | 中国核电工程有限公司 | 一种供电系统可靠性分析方法、装置、计算机设备及介质 |
CN117407993A (zh) * | 2023-12-14 | 2024-01-16 | 中国石油大学(华东) | 超深水打桩锤系统可靠性优化方法 |
CN118096116A (zh) * | 2024-02-19 | 2024-05-28 | 北京凯隆分析仪器有限公司 | 一种环保监测设备运行状态分析方法及系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111598467A (zh) * | 2020-05-20 | 2020-08-28 | 中国石油大学(华东) | 一种对集输联合站以及关键设备的可靠性评价方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071607A1 (en) * | 2000-03-17 | 2001-09-27 | Siemens Aktiengesellschaft | Menu driven management and operation technique |
CN102298978A (zh) * | 2011-05-17 | 2011-12-28 | 哈尔滨工程大学 | 船用核动力装置基于多层流模型的不确定性故障诊断方法 |
CN110174883A (zh) * | 2019-05-28 | 2019-08-27 | 北京润科通用技术有限公司 | 一种系统健康状态评估方法及装置 |
CN111598467A (zh) * | 2020-05-20 | 2020-08-28 | 中国石油大学(华东) | 一种对集输联合站以及关键设备的可靠性评价方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7681086B2 (en) * | 2007-09-20 | 2010-03-16 | Embraer- Empresa Brasileira De Aeronautica S.A. | Fault tree map generation |
CN105244903A (zh) * | 2015-11-05 | 2016-01-13 | 南方电网科学研究院有限责任公司 | 一种背靠背异步联网混合直流输电系统的可靠性评估方法 |
CN108182307A (zh) * | 2017-12-19 | 2018-06-19 | 中国北方车辆研究所 | 一种特种车辆多功能系统平均维修时间的确定方法 |
CN109559048A (zh) * | 2018-12-02 | 2019-04-02 | 湖南大学 | 一种核电装备的系统可靠性评估方法 |
CN110658308B (zh) * | 2019-10-12 | 2022-01-21 | 重庆科技学院 | 考虑共因失效的烟气在线监测系统安全可靠性评价方法 |
-
2020
- 2020-05-20 CN CN202010430786.6A patent/CN111598467A/zh active Pending
-
2021
- 2021-05-14 WO PCT/CN2021/093914 patent/WO2021233231A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071607A1 (en) * | 2000-03-17 | 2001-09-27 | Siemens Aktiengesellschaft | Menu driven management and operation technique |
CN102298978A (zh) * | 2011-05-17 | 2011-12-28 | 哈尔滨工程大学 | 船用核动力装置基于多层流模型的不确定性故障诊断方法 |
CN110174883A (zh) * | 2019-05-28 | 2019-08-27 | 北京润科通用技术有限公司 | 一种系统健康状态评估方法及装置 |
CN111598467A (zh) * | 2020-05-20 | 2020-08-28 | 中国石油大学(华东) | 一种对集输联合站以及关键设备的可靠性评价方法及系统 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114897081A (zh) * | 2022-05-19 | 2022-08-12 | 重庆大学 | 一种基于元动作的机电产品故障树分析方法 |
CN117150827A (zh) * | 2023-10-30 | 2023-12-01 | 中国核电工程有限公司 | 一种供电系统可靠性分析方法、装置、计算机设备及介质 |
CN117150827B (zh) * | 2023-10-30 | 2024-02-06 | 中国核电工程有限公司 | 一种供电系统可靠性分析方法、装置、计算机设备及介质 |
CN117407993A (zh) * | 2023-12-14 | 2024-01-16 | 中国石油大学(华东) | 超深水打桩锤系统可靠性优化方法 |
CN117407993B (zh) * | 2023-12-14 | 2024-02-27 | 中国石油大学(华东) | 超深水打桩锤系统可靠性优化方法 |
CN118096116A (zh) * | 2024-02-19 | 2024-05-28 | 北京凯隆分析仪器有限公司 | 一种环保监测设备运行状态分析方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111598467A (zh) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021233231A1 (zh) | 一种对集输联合站以及关键设备的可靠性评价方法及系统 | |
CN101950327B (zh) | 一种基于故障树信息的设备状态预测方法 | |
CN103336222B (zh) | 基于模糊推理脉冲神经膜系统的电力系统故障诊断方法 | |
CN101251564A (zh) | 一种利用可拓学与粗糙集理论相结合的电力变压器故障诊断方法 | |
CN111639430A (zh) | 一种数字孪生驱动的天然气管道泄漏识别系统 | |
US20140026085A1 (en) | System and Method for Effective Plant Performance Monitoring In Gas Oil Separation Plant (GOSP) | |
CN101446827A (zh) | 一种流程工业系统的过程故障分析装置及方法 | |
CN108051709A (zh) | 基于人工智能技术的变压器状态在线评估分析方法 | |
CN102765643A (zh) | 基于数据驱动的电梯故障诊断与预警方法 | |
CN103218695A (zh) | 二次设备智能状态评估诊断系统及其方法 | |
CN106600115A (zh) | 一种企业信息系统运维智能分析方法 | |
CN104298225A (zh) | 化工过程异常工况因果关系推理模型建模与图形化展示方法 | |
CN107862324B (zh) | 一种基于mwspca的cbr预测模型智能化预警方法 | |
CN107609325A (zh) | 基于sat的故障树求解最小割集的方法 | |
CN104657613A (zh) | 一种复杂机电系统使用寿命评估方法 | |
CN114519382B (zh) | 一种核动力装置关键运行参数提取与异常监测方法 | |
CN111260261A (zh) | 一种系统概率风险自动评价方法 | |
CN114138982A (zh) | 一种用于干式变压器故障诊断的知识图谱的构建方法 | |
CN114487856A (zh) | 换电站电池的热失控预警方法及系统 | |
CN104281525A (zh) | 一种缺陷数据分析方法及利用其缩减软件测试项目的方法 | |
CN103529337B (zh) | 设备故障与电气量信息间非线性相关关系的识别方法 | |
CN108051637A (zh) | 一种智能电能表时钟电池故障诊断方法 | |
CN114897271B (zh) | 数字孪生环境下基于故障传播的中央空调预测性维护方法 | |
CN109035763A (zh) | 基于c4.5的高速公路事故主次因分析及事故类型判断方法 | |
CN110703183A (zh) | 一种智能电能表故障数据分析方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21807577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21807577 Country of ref document: EP Kind code of ref document: A1 |