WO2021233174A1 - 一种光传输设备、系统及光传输方法 - Google Patents

一种光传输设备、系统及光传输方法 Download PDF

Info

Publication number
WO2021233174A1
WO2021233174A1 PCT/CN2021/093267 CN2021093267W WO2021233174A1 WO 2021233174 A1 WO2021233174 A1 WO 2021233174A1 CN 2021093267 W CN2021093267 W CN 2021093267W WO 2021233174 A1 WO2021233174 A1 WO 2021233174A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
optical
circuit board
demultiplexer
multiplexer
Prior art date
Application number
PCT/CN2021/093267
Other languages
English (en)
French (fr)
Inventor
陈昆
李江
昌诗范
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21808530.6A priority Critical patent/EP4145846A4/en
Publication of WO2021233174A1 publication Critical patent/WO2021233174A1/zh
Priority to US17/990,342 priority patent/US20230080248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to the field of optical transmission technology, and in particular to an optical transmission device, system, and optical transmission method.
  • Redundancy protection In the field of optical transmission, two optical transmission devices transmit optical signals to each other through optical fibers.
  • redundancy protection can usually be added to the optical transmission equipment or optical transmission system. Redundant protection means that in the optical transmission equipment or the optical transmission system, a set of part A'that performs the same function is added to the part A (such as a key channel or a key single board) that plays a key role, as a backup for A.
  • the use of A' can keep the optical transmission equipment or the optical transmission system in a normal working state, thereby improving the reliability of optical signal transmission.
  • client side 1+1 or sub-network connection protection (Sub-network Connection Protection, SNCP) is usually used for redundancy protection.
  • SNCP Sub-network Connection Protection
  • the present application provides an optical transmission device, system, and optical transmission method to reduce the cost of redundancy protection.
  • this application provides an optical transmission device, including: tributary boards, electrical crossover boards, main circuit boards, standby circuit boards, first multiplexer/demultiplexer boards, and optical amplifier boards; among them, the number of standby circuit boards is small The number of main circuit boards; the first port of the tributary circuit board is used to transmit customer service data, the tributary circuit board, the main circuit board and the standby circuit board are all electrically connected to the electrical crossover board; the main circuit board and the standby circuit board The optical amplifier board and the optical amplifier board are optically connected to the first multiplexer/demultiplexer board; the second port of the optical amplifier board is used to transmit optical signals carrying customer service data; when the first preset condition is met, the electrical crossover board is used to connect the main The customer service data that should be processed by the circuit board is copied or dispatched to the standby circuit board, and the first combiner/demultiplexer board is used to cooperate with the standby circuit board to perform multiplexing and demultiplexing.
  • the optical transmission equipment provided by the first aspect realizes that multiple main circuit boards share a common standby circuit board, and there is no need to configure the circuit boards in duplicate, which saves the number of standby circuit boards required by the optical transmission equipment and saves redundant protection. the cost of.
  • the first preset condition includes: at least one main circuit board fails or the optical transmission device receives a circuit board switching instruction.
  • the standby circuit board can be activated when the main circuit board fails, or it can actively send the circuit board switching instruction to the optical transmission equipment, so that the optical transmission equipment can receive the circuit board switching instruction When the standby circuit board is enabled. For example, switching from working on a fault-free main circuit board to working on a standby circuit board.
  • the optical transmission device further includes a second combiner/demultiplexer board.
  • the main circuit board, the standby circuit board, and the optical amplifier board all include optical connection elements; when the second preset condition is met, the optical connection elements of the main circuit board are used to establish the main circuit board and the second The optical path of the multiplexer and demultiplexer board, the optical connection element of the standby circuit board is used to establish the optical path between the standby circuit board and the second multiplexer/demultiplexer board, and the optical connection element of the optical amplifier board is used to establish the optical amplifier board and the second combiner/demultiplexer board.
  • the light path of the wave plate when the second preset condition is met, the optical connection elements of the main circuit board are used to establish the main circuit board and the second The optical path of the multiplexer and demultiplexer board, the optical connection element of the standby circuit board is used to establish the optical path between the standby circuit board and the second multiplexer/demultiplexer board, and the optical connection element of the optical amplifier board is used to
  • the optical connection elements provided on the main circuit board, the standby circuit board, and the optical amplifier board can respectively release the binding relationship between the main circuit board, the standby circuit board, and the optical amplifier board and the first multiplexer/demultiplexer board.
  • the main circuit board, the standby circuit board and the optical amplifier board can respectively establish optical paths with the second multiplexer/demultiplexer board. Therefore, even if the first multiplexer/demultiplexer board fails, the optical transmission device can use the second multiplexer/demultiplexer board as a backup multiplexer/demultiplexer board for the first multiplexer/demultiplexer board, and replace the first combiner/demultiplexer board with the second multiplexer/demultiplexer board.
  • the demultiplexer board realizes normal operation. Furthermore, the reliability of the multiplexing and demultiplexing functions is ensured, and the reliability of the signal transmission of the optical transmission equipment is ensured.
  • the optical connection element releases the binding relationship between the single board downstream of the multiplexer/demultiplexer board and a multiplexer/demultiplexer board, so even if the second multiplexer/demultiplexer board is set as the first multiplexer/demultiplexer board The spare of the board does not need to be multiplexed with a series of circuit boards and optical amplifier boards bound to the second multiplexer/demultiplexer board. Therefore, the cost of performing redundant protection on the multiplexer/demultiplexer board of the optical transmission equipment is saved.
  • the second preset condition includes: at least one first multiplexer/demultiplexer board fails or the optical transmission device receives a multiplexer/demultiplexer board switching instruction. That is to say, the backup circuit board can be activated when the first multiplexer/demultiplexer board fails, or the multiplexer/demultiplexer board switching instruction can be actively sent to the optical transmission equipment, so that the second multiplexer/demultiplexer board can be activated when the optical transmission device receives the multiplexer/demultiplexer board switching instruction.
  • Combining and demultiplexing board For example, switching from a fault-free first combiner/demultiplexer board to a second combiner/demultiplexer board.
  • the optical connection element includes a light selection element and/or a light splitting element.
  • the optical selection element is an optical switch or a wavelength selection element.
  • the optical switch can switch the light path, for example, switching from connecting the first light path and blocking the second light path to blocking the first light path and connecting the second light path.
  • the wavelength selection element selects light in the dimension of light wavelength.
  • the optical selective element guarantees the power of the optical signal, making the optical transmission equipment suitable for long-distance optical signal transmission.
  • the two output ends of the light splitting element are respectively connected to the first combining and demultiplexing plate and the second combining and demultiplexing plate.
  • a light splitting element When a light splitting element is used to establish an optical path, the optical path from the input end of the splitting element to the two output ends is always connected, that is, the single board (such as a circuit board or an optical amplifier board) on which the splitting element is located is always connected to the first multiplexing/demultiplexing board and the second multiplexing/demultiplexing board.
  • the combiner and demultiplexer plates are connected.
  • the spectroscopic element can help to detect whether the optical path is connected normally.
  • the above optical transmission equipment further includes: a first controller; the main circuit board, the standby circuit board, the first multiplexer/demultiplexer board, and the optical amplifier board are all electrically connected to the first controller; when the second preset condition is satisfied At this time, the first controller is used to control the working circuit board and the optical amplifier board in the main circuit board and the standby circuit board to establish optical paths with the second multiplexer/demultiplexer board.
  • the first controller may specifically determine the first multiplexer/demultiplexer board based on the fault detection result of the first multiplexer/demultiplexer board or a single board downstream of the first multiplexer/demultiplexer board. The board fails, thereby determining that the optical transmission device satisfies the second preset condition.
  • the first controller may specifically receive the multiplexer/demultiplexer board switching instruction sent by the controller external to the optical transmission device, and determine that the optical transmission device meets the second preset condition.
  • the first combining and demultiplexing board includes multiple implementation manners.
  • the first combiner/demultiplexer plate includes: a combiner and a demultiplexer.
  • the first multiplexer/demultiplexer board includes a wavelength selection switch WSS. The first multiplexer/demultiplexer board not only has the function of multiplexing/demultiplexing, but also has the functions of wavelength selection and wavelength scheduling.
  • the present application provides an optical transmission system, including: a first optical transmission device and a second optical transmission device; wherein the first optical transmission device is the optical transmission device provided in the first aspect;
  • the second port of the amplifying board is optically connected to the second optical transmission device; in the first transmission direction, the first optical transmission device is used to receive customer service data, and process customer service data, and carry the customer service after processing.
  • the optical signal of the data is sent to the second optical transmission device through the second port of the optical amplifier board; when the first preset condition is met, the first optical transmission device activates the standby circuit board; in the second transmission direction, the first optical transmission The device is used to receive the optical signal of the second optical transmission device through the second port of the optical amplifier board, and process the optical signal, convert it into customer service data and send it to the customer side; when the first preset condition is met, the first optical signal
  • the transmission equipment enables the spare circuit board.
  • the first optical transmission device is the optical transmission device provided in the first aspect, the cost of redundant protection can be saved for the entire optical transmission system.
  • the manner in which the first optical transmission device and the second optical transmission device establish a connection may include multiple implementation forms.
  • the second port of the optical amplifier board of the first optical transmission device is connected to the optical transmission device through an optical fiber, or is connected through at least one optical release station.
  • the former is suitable for short-distance transmission; the latter is suitable for long-distance transmission, for example, the first optical transmission device and the second optical transmission device are set in different cities.
  • the present application provides an optical transmission method, which is applied to the optical transmission device provided in the first aspect.
  • the method includes: when the first preset condition is met, the customer service data that should be processed by the main circuit board is copied or dispatched to the standby circuit board through the electrical cross board, and the first multiplexer/demultiplexer board is used to cooperate with the standby circuit board. Multiple waves and split waves.
  • the standby circuit board in the optical transmission equipment can be shared by multiple active circuit boards with its standby function, so the standby circuit board replaces the main Working with circuit boards not only realizes redundancy protection, but also saves the cost of redundancy protection.
  • the customer service data that should be processed by the main circuit board is copied or dispatched to the standby circuit board through the electrical crossover board, and the first multiplexer/demultiplexer board cooperates with the standby circuit board to perform multiplexing and demultiplexing , Specifically including:
  • the tributary board receives customer service data; the customer service data that should be processed by the main circuit board is copied or dispatched to the standby circuit board through the electrical cross board; the standby circuit board performs electro-optical on the customer service data Conversion; the first multiplexer/demultiplexer board receives the optical signal provided by the standby circuit board for multiplexing; the multiplexed optical signal is amplified by the optical amplifier board and then transmitted to the opposite end transmission equipment; the optical signal carries customer service data ;
  • the optical signal from the peer device is received and amplified by the optical amplifier board; the first multiplexer/demultiplexer board demultiplexes the amplified optical signal and provides it to the corresponding circuit board, and the corresponding circuit board includes the standby circuit
  • the spare circuit board performs photoelectric conversion on the received optical signal and then provides it to the electrical cross-connect board; the customer service data processed by the spare circuit board is sent to the client through the first port of the tributary board through the scheduling of the electrical cross-board .
  • the method further includes:
  • the working circuit board of the main circuit board and the standby circuit board and the second circuit board are established through the optical connection elements included in the main circuit board and the standby circuit board.
  • the optical path of the combining and demultiplexing plate is two, and the optical path between the optical amplifying plate and the second combining and demultiplexing plate is established through the optical connection element included in the optical amplifying plate.
  • the optical connection element of the circuit board releases the binding relationship between the circuit board and the first multiplexer/demultiplexer board, so that the circuit board can establish an optical path with the second multiplexer/demultiplexer board; the optical connection element of the optical amplifier board releases the optical amplifier board from The binding relationship of the first multiplexer/demultiplexer board enables the optical amplifier board to establish an optical path with the second multiplexer/demultiplexer board. Therefore, even if the first combiner/demultiplexer board fails, its upstream and downstream boards can be connected to the second combiner/demultiplexer board to ensure normal signal transmission. Furthermore, the operation of the optical transmission device is not affected, and the reliability of the operation is ensured.
  • the present application also provides an optical transmission device, including: a branch-line combination board, a first multiplexer/demultiplexer board, a second multiplexer/demultiplexer board, and an optical amplifier board; wherein, the first port of the branch-line multiplexer board Used to transmit customer service data; both the branch circuit integration board and the optical amplifier board include optical connection elements; when the second preset condition is met, the optical connection components of the branch circuit integration board are used to establish the branch circuit integration board and the second The optical path of the multiplexer and demultiplexer board, and the optical connection element of the optical amplifying board is used to establish the optical path between the optical amplifying board and the second multiplexer and demultiplexer board.
  • the binding relationship between the branch circuit integration board and the first multiplexer/demultiplexer board and the optical amplifier board and The binding relationship of the first combiner/demultiplexer board Therefore, even if the first combiner/demultiplexer board fails, the first combiner and demultiplexer board can be established by establishing the optical path between the branch circuit combiner board and the second combiner/demultiplexer board and the optical amplifier board and the second combiner/demultiplexer board. The work of the demultiplexer board is switched to the second multiplexer/demultiplexer board to ensure the normal operation of the optical transmission equipment. It can be seen that the provided optical connection element improves the reliability of the operation of the optical transmission device.
  • the above-mentioned optical transmission equipment further includes: a second controller; the branch circuit integration board, the first multiplexing/demultiplexing board, and the optical amplifier board are all electrically connected to the second controller; when the second preset condition is satisfied, the second controller is used Both the control branch circuit integration board and the optical amplifier board establish an optical path with the second multiplexer/demultiplexer board.
  • the second controller may specifically determine the first multiplexer/demultiplexer board based on the failure detection result of the first multiplexer/demultiplexer board or a single board downstream of the first multiplexer/demultiplexer board. The board fails, thereby determining that the optical transmission device satisfies the second preset condition.
  • the second controller may specifically receive the multiplexer/demultiplexer board switching instruction sent by the controller external to the optical transmission device, and determine that the optical transmission device satisfies the second preset condition.
  • Any optical transmission device provided in the above aspects may be an integrated device or a device group including multiple discrete devices.
  • the backup circuit board can establish a connection with the upstream and downstream single boards (multiplexer and demultiplexer board and electrical crossover board), when the first preset condition is met, the electrical crossover board is paired
  • a spare circuit board can be used in the optical transmission equipment to replace the function of the main circuit board.
  • the redundant protection of the optical transmission equipment is realized. Since the number of standby circuit boards is less than the number of active circuit boards, that is, the standby circuit board of the optical transmission equipment can be shared by multiple active circuit boards with its standby function, so the cost of redundant protection can be saved.
  • Figure 1 is a schematic diagram of an optical transmission scene
  • FIG. 2 is a schematic structural diagram of an optical transmission device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of another optical transmission device provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of a first sub-connection element of a circuit board establishing an optical path with a second multiplexer/demultiplexer board;
  • FIG. 5 is a schematic diagram of the second sub-connection element of the optical amplifier board establishing an optical path with the second multiplexer/demultiplexer board;
  • FIG. 6 is a schematic diagram of the optical transmission equipment shown in FIG. 3 activating the standby circuit board and the second multiplexer/demultiplexer board;
  • FIG. 7 is a schematic structural diagram of yet another optical transmission device provided by an embodiment of the application.
  • the optical transmission scenario is first introduced.
  • multiple optical transmission devices are usually included.
  • the following describes the implementation process of optical signal transmission by two optical transmission devices C1 and C2 in conjunction with the optical transmission scenario shown in Figure 1.
  • the direction in which the local optical transmission device transmits optical signals to the opposite optical transmission device is defined as the first transmission direction
  • the direction in which the opposite optical transmission device transmits optical signals to the local optical transmission device is defined as the second transmission direction.
  • the optical transmission device C1 can be used as the local optical transmission device
  • the optical transmission device C2 can be used as the opposite optical transmission device.
  • the optical transmission devices C1 and C2 can be located in different geographical locations and have a long optical transmission distance. For example, the optical transmission equipment C1 is located in Shenzhen, and the optical transmission equipment C2 is located in Beijing.
  • the optical transmission device C1 receives customer service data from the client side, processes the customer service data and converts it into an optical signal (for example, an optical signal suitable for long-distance transmission), and then transmits the optical signal to the Optical transmission equipment C2.
  • the optical transmission device C1 receives the optical signal sent by the optical transmission device C2, and the optical transmission device C1 processes the optical signal, converts it into customer service data, and then sends the customer service data to the client side.
  • the client side refers to a working device facing the client. As an example, the client side may be a router or an access device. Customer service data can be transmitted in the form of optical signals or electrical signals.
  • the optical transmission equipment in the optical transmission scenario is usually provided with multiple types of single boards, such as branch boards, electrical crossover boards, circuit boards, branch circuit integrated boards, multiplexer/demultiplexer boards, and optical amplifier boards.
  • the tributary board is used to access customer service data on the client side, complete the conversion from optical signals to electrical signals, map the service package to optical channel data unit k (Optical Data Unit k, ODUk), and send it to the electrical cross-connect board for scheduling .
  • the branch board can also realize the inverse process of the above process at the same time.
  • the electrical cross-connect board is used to complete the electrical signal dispatching between the branch board and the circuit board.
  • the circuit board is used to multiplex and map the electrical signals of the ODUk dispatched by the electrical crossover board, and implement the optical converter unit k (Optical Transport) of the standard wavelength that meets the requirements of the Wavelength Division Multiplexing (WDM) system. Unit k, OTUk) mutual conversion between optical signals.
  • the circuit board can also realize the inverse process of the above process at the same time.
  • the tributary integrated board is a kind of OTU single board.
  • the tributary integrated board is equivalent to combining the functions of the tributary board and the circuit board, and can output optical signals of standard wavelengths that meet the requirements of the WDM system.
  • the branch circuit integration board can also realize the inverse process of the above process at the same time.
  • the multiplexer/demultiplexer board is used to multiplex or demultiplex optical signals of different wavelengths. Its multiplexing function is embodied in: multiplexing multiple optical signals conforming to the WDM standard wavelength into one optical signal in the first transmission direction. Its demultiplexing function is embodied in: demultiplexing one optical signal into multiple optical signals conforming to the WDM standard wavelength in the second transmission direction.
  • the optical amplifier board is an optical amplifier (OA), which is used to achieve power amplification at the optical layer. When the optical signal needs to be transmitted over a long distance, an optical amplifier board can be used to amplify the optical power. The optical amplifier board can also realize the inverse process of the above process at the same time.
  • OA optical amplifier
  • the two devices can specifically establish an optical connection through the optical amplifier board.
  • the "client side 1+1” or SNCP method can be used for redundancy protection to prevent the equipment or system from single board failure. Work stopped.
  • each single board and optical fiber link of the local optical transmission equipment and the opposite optical transmission equipment needs to be backed up and configured, and the cost is very high.
  • the SNCP redundant protection solution eliminates the need for backup configuration for tributary boards, and other boards still need to back up configurations, so it still consumes very high protection costs.
  • embodiments of the present application provide an optical transmission device, system, and optical transmission method.
  • a standby circuit board is provided in the optical transmission equipment, and the number of standby circuit boards is less than that of the main circuit board.
  • the optical transmission equipment activates the standby circuit board to replace the main circuit board by copying or dispatching the customer service data that should be processed by the main circuit board through the electrical crossover board.
  • the function of the circuit board thus, the redundant protection of the optical transmission equipment is realized. Since the number of standby circuit boards is less than the number of active circuit boards, the standby circuit boards can be shared by multiple active circuit boards with their standby functions, so the cost of redundancy protection can be saved.
  • FIG. 2 is a schematic structural diagram of an optical transmission device 200 provided by an embodiment of the application.
  • the optical transmission device 200 includes: a tributary board 201, an electrical crossover board 202, a main circuit board (203A, 203B, and 203C), a standby circuit board 203D, a first multiplexer/demultiplexer board 204, and an optical amplifier board 205.
  • the number N of spare circuit boards is less than the number M of the main circuit boards. Both M and N are positive integers, and N is greater than or equal to 1.
  • the total number of branch boards 201 and the total number of main circuit boards may be the same or different.
  • three tributary boards 201, three main circuit boards, and one backup circuit board are taken as an example. In other examples, other numbers of main circuit boards and backup circuit boards may be provided, for example, 100 main circuit boards and 10 spare circuit boards.
  • the first port of the tributary board 201 is used to transmit customer service data. Transmission here can include sending and/or receiving.
  • the tributary board 201 is responsible for receiving customer service data from the client side in the first transmission direction, and is responsible for sending customer service data to the client side in the second transmission direction.
  • the transmission actions in the first transmission direction and the second transmission direction can be performed simultaneously according to actual service requirements.
  • the tributary board 201, all the main circuit boards 203A-203C, and the backup circuit board 203D are electrically connected to the electrical cross board 202.
  • the main circuit boards 203A-203C, the standby circuit boards 203D, and the optical amplifier board 205 are all optically connected to the first multiplexer/demultiplexer board 204.
  • each branch board corresponds to a different main circuit board 203A, 203B, or 203C.
  • the signals processed by each tributary board 201 are dispatched by the electrical crossover board 202 and sent to the main circuit board corresponding to the tributary board 201.
  • the signals processed by the main circuit boards 203A-203C are dispatched by the electrical cross board 202 and sent to the corresponding tributary board 201.
  • the first combining/demultiplexing board 204 provides a combining function in the first transmission direction, and a demultiplexing function in the second transmission direction.
  • the first multiplexer/demultiplexer board 204 is used to multiplex the light waves provided by the main circuit boards 203A-203C and send it to the optical amplifier board 205.
  • the first multiplexer/demultiplexer board 204 is used to demultiplex the light from the optical amplifier board 205 to the main circuit boards 203A-203C.
  • the optical amplifier board 205 provides the function of amplifying the optical power in the first transmission direction and the second transmission direction.
  • the optical transmission device 200 is used as the local optical transmission device.
  • the second port of the optical amplifier board 205 is the port on the optical amplifier board 205 that establishes an optical connection with the opposite end optical transmission device. This second port is used to transmit and carry customer service data.
  • Light signal. Transmission here can include sending and/or receiving.
  • the optical amplifier board 205 includes a first OA and a second OA, where the first OA works in a first transmission direction, and the second OA works in a second transmission direction.
  • the optical amplifier board 205 includes a multi-stage OA, and the multi-stage OA is used to amplify the optical signal received by the optical amplifier board 205 step by step.
  • a trigger condition for enabling the standby circuit board 203D is preset, that is, the first preset condition.
  • the first preset condition includes: at least one main circuit board fails or the optical transmission device 200 receives a circuit board switching instruction.
  • the main circuit board 203C has a failure, and the standby circuit board 203D is in an idle state. According to the above description, it can be determined that the optical transmission device 200 satisfies the first preset condition. In order to make the optical transmission device 200 work normally without being affected by the failed main circuit board 203C, it is necessary to make the backup circuit board 203D replace the failed main circuit board 203C to work.
  • the electrical cross board 202 of the optical transmission device 200 is used to deliver the customer service data that should be processed by the failed main circuit board 203C to the standby circuit board 203D for processing.
  • the customer service data to be processed by the main circuit board 203C specifically refers to the customer service data carried in the signal that should be sent to the main circuit board 203C under the normal state of the main circuit board 203C.
  • the electrical cross-connect board 202 can copy the customer service data that should be processed by any one of the main circuit boards 203A, 203B, or 203C One copy is sent to the spare circuit board 203D. If the customer service data that is copied and sent in advance is exactly the customer service data to be processed by the main circuit board 203C, when the main circuit board 203C fails, the optical transmission device 200 can directly activate the standby circuit board 203D.
  • the electrical cross board 202 is required to temporarily schedule the customer service data that should be processed by the main circuit board 203C To the spare circuit board 203D.
  • the electrical cross-connect board 202 may not perform a pre-copy operation.
  • the electrical cross-connect board 202 determines that a certain main circuit board is faulty, it temporarily dispatches the customer service data that should be processed by the failed main circuit board to the standby circuit board 203D.
  • the duplication or scheduling operation in the second transmission direction is similar to the first transmission direction, and will not be repeated here.
  • the controller external to the optical transmission device 200 may generate a circuit board switching command in the case of a wireless circuit board failure according to the signal processing conditions of each circuit board or based on the requirements for the sustainability of the optical transmission device’s work.
  • the instruction is sent to the optical transmission device 200 to actively switch the working circuit board.
  • the circuit board switching instruction may carry the identifier of the circuit board to be switched and the identifier of the circuit board after switching.
  • the optical transmission device 200 switches the work of the main circuit board 203C to the standby circuit board 203D for execution.
  • the operation of the electrical cross board 202 to copy or dispatch customer service data that should be processed by the main circuit board 203C to the standby circuit board 203D can be understood as: changing the original correspondence between the tributary board 201 and the circuit board .
  • the main circuit board 203C originally corresponding to the tributary board 201 is changed to the corresponding standby circuit board 203D.
  • the standby circuit board can be activated in the optical transmission equipment to replace the function of the main circuit board.
  • the redundant protection of the optical transmission equipment is realized. Since the number of standby circuit boards is less than the number of active circuit boards, that is, the circuit boards in the optical transmission equipment are not configured in a 1:1 double configuration, the standby circuit boards can be shared by multiple active circuit boards with their standby functions. For example, if one spare circuit board is installed in the optical transmission equipment, the redundant protection of one spare circuit board to M main circuit boards is realized; if the number N of spare circuit boards is greater than 1, then N spare circuit boards are realized Redundant protection of M main circuit boards. Compared with the existing solution, the optical transmission device provided in this embodiment saves the configuration quantity of the circuit board, and can reduce the device cost.
  • the multiplexer/demultiplexer board in optical transmission equipment is usually optically connected to multiple circuit boards.
  • the first multiplexer/demultiplexer board 204 is connected to the main circuit boards 203A-203C.
  • a combiner/demultiplexer board may connect dozens or even hundreds of circuit boards.
  • the working performance of the combiner/demultiplexer board affects the working reliability of the entire optical transmission equipment. Similar to the circuit board, the combiner/demultiplexer board may also malfunction. When a combiner/demultiplexer board fails, if there is no other single board to replace its function, all services related to the combiner/demultiplexer board will be affected.
  • the multiplexer/demultiplexer board Since the multiplexer/demultiplexer board has a binding relationship with the circuit board, when the multiplexer/demultiplexer board needs to be redundantly protected, a series of circuit boards are usually multiplied. For example, the first multiplexer/demultiplexer board is used for optical connection with 10 circuit boards. If the second multiplexer/demultiplexer board is used for redundant protection of the first multiplexer/demultiplexer board, it is often necessary to add 10 additional devices to the second combiner/demultiplexer board. Wave board optical connection circuit board.
  • the present application further provides another optical transmission device.
  • optical connection elements By arranging optical connection elements on the circuit board, the inherent binding relationship between the combiner/demultiplexer board and the circuit board is released. Furthermore, there is no need to add a large number of circuit boards when redundantly protecting the combining and demultiplexing boards.
  • FIG. 3 is a schematic diagram of the structure of the optical transmission device 400. Compared with the optical transmission device 200 shown in FIG. 2, the optical transmission device 400 further includes a second multiplexer/demultiplexer board 401. As shown in Figure 3,
  • the optical transmission device 400 includes a first multiplexer/demultiplexer board 204 and a second multiplexer/demultiplexer board 401.
  • first multiplexer/demultiplexer plates 204 and second multiplexer/demultiplexer plates 401 may also be provided, for example, five first multiplexer/demultiplexer plates 204 and three second multiplexer/demultiplexer plates 401 are provided.
  • the number of the first combining and demultiplexing plates 204 is greater than or equal to the number of the second combining and demultiplexing plates 401.
  • the first multiplexer/demultiplexer board 204 is used as a main function
  • the second multiplexer/demultiplexer board 401 is used as a backup.
  • the second multiplexer/demultiplexer board 401 has the same function as the first multiplexer/demultiplexer board 204.
  • a trigger condition for enabling the second combiner/demultiplexer board 401 is preset, that is, the second preset condition.
  • the optical transmission device 400 can activate the second multiplexer/demultiplexer board 401 in a variety of trigger scenarios. Therefore, the second preset condition is set according to different trigger scenarios.
  • the second preset condition includes: at least one first multiplexer/demultiplexer board fails, or the optical transmission device 400 receives a multiplexer/demultiplexer board switching instruction.
  • All the circuit boards 203A-203D and the optical amplifier board 205 include optical connection elements.
  • the optical connection element is used to establish an optical path between the single board where it is located and the first multiplexer/demultiplexer board 204.
  • the optical connection element is used to establish an optical path between the single board where it is located and the second multiplexer/demultiplexer board 401.
  • the optical connection element of the main circuit board 203A, 203B or 203C is used to establish the optical connection between the main circuit board and the second multiplexer/demultiplexer board 401.
  • the optical connection element of the standby circuit board 203D is used to establish the optical path between the standby circuit board 203D and the second multiplexer/demultiplexer board 401
  • the optical connection element of the optical amplifier board 205 is used to establish the optical amplifier board 205 and the second multiplexer/demultiplexer The light path of the board 401.
  • the two trigger scenarios for enabling the second combiner/demultiplexer board 401 are specifically described below. In the following scenario, it is assumed that the first multiplexer/demultiplexer board 204 is switched to the second multiplexer/demultiplexer board 401 to work.
  • Trigger scenario failure of the first combiner/demultiplexer board.
  • the second preset condition includes: at least one first combiner/demultiplexer board 204 fails.
  • the second combiner/demultiplexer board 402 is in an idle state.
  • the optical transmission device 400 satisfies the second preset condition. In order to make the optical transmission device 400 work normally without being affected by the failed first multiplexer/demultiplexer board 204, it is necessary to use the second multiplexer/demultiplexer board 402 to replace the failed first multiplexer/demultiplexer board 204 to work.
  • the upstream and downstream boards (the optical amplifier board 205 and the working After the optical connection element of the circuit board 203A-203C) establishes the optical path between the single board on which it is located and the second multiplexer/demultiplexer board 401, the second multiplexer/demultiplexer board 401 can be successfully activated to replace the failed first multiplexer/demultiplexer board 204 functions.
  • the second multiplexer/demultiplexer board 402 receives the light waves of the working circuit boards 203A-203C, multiplexes the light and sends it to the optical amplifier board 205; in the second transmission direction, the second multiplexer/demultiplexer board 402 receives the light waves from the optical amplifier board 205, splits them and sends them to the main circuit boards 203A-203C.
  • Trigger scenario Actively switch the combiner/demultiplexer board.
  • the second preset condition includes: the optical transmission device 400 receives the multiplexer/demultiplexer board switching instruction sent by the external controller.
  • the multiplexer/demultiplexer board switching instruction may carry the identifier of the multiplexer/demultiplexer board to be switched and the identifier of the multiplexer/demultiplexer board after the switch.
  • the optical transmission device 400 switches the work of the first multiplexer/demultiplexer board 204 to the second multiplexer/demultiplexer board 401 for execution, and the first multiplexer/demultiplexer board 204 is disabled.
  • the optical connection element establishing the optical path between the single board where it is located and the second multiplexer/demultiplexer board 402 can be understood as changing the correspondence between the single board where the optical connection element is located and the multiplexer/demultiplexer board.
  • the first multiplexer/demultiplexer board 201 originally corresponding to the single board (the circuit board 203A-203D or the optical amplifier board 205) is changed to the second multiplexer/demultiplexer board 401 corresponding to it.
  • the optical transmission device 400 when the optical transmission device 400 satisfies the second preset condition (for example, the first multiplexer/demultiplexer board fails), the optical connection elements included in the boards upstream and downstream of the first multiplexer/demultiplexer board 204 are used to establish the single For the optical path between the board and the second multiplexer/demultiplexer board 401, the optical transmission device 400 can activate the second multiplexer/demultiplexer board 401 to replace the function of the first multiplexer/demultiplexer board 204. Thus, the redundant protection of the multiplexer/demultiplexer board of the optical transmission device 400 is realized.
  • the second preset condition for example, the first multiplexer/demultiplexer board fails
  • the optical transmission device 400 will not be affected, and the optical transmission device 400 can work normally.
  • the optical connection elements of the second multiplexer/demultiplexer board 401 and its upstream and downstream boards release the binding relationship between the circuit board and the multiplexer/demultiplexer board, and the binding relationship between the optical amplifier board and the multiplexer/demultiplexer board, and then The redundancy protection of the multiplexer/demultiplexer board is realized at a lower redundancy protection cost, and the reliability of the operation of the optical transmission device 400 is improved.
  • the optical connection element may include two sub-connection elements, where the first sub-connection element is used to establish the single board where the optical connection element is located and the second multiplexer/demultiplexer when the optical transmission device 400 meets the second preset condition in the first transmission direction.
  • the optical path of the board 401; the second sub-connection element is used to establish the optical path between the single board where the optical connection element is located and the second multiplexer/demultiplexer board 401 when the optical transmission device 400 meets the second preset condition in the second transmission direction .
  • the optical path with the second multiplexer/demultiplexer board 401 can be established only through the first sub-connection element to realize the first transmission.
  • the second sub-connection element is still in communication with the first combiner/demultiplexer plate 204.
  • the optical path with the second multiplexer/demultiplexer board 401 can be established only through the second sub-connection element to realize the transmission in the second transmission direction. Normal light transmission.
  • the first sub-connection element is still in communication with the first combiner/demultiplexer plate 204.
  • both the first sub-connection element and the second sub-connection element are in communication with the second multiplexer/demultiplexer board 401. That is, the functions of the first combining and demultiplexing board 204 in the first transmission direction and in the second transmission direction are both replaced by the second combining and demultiplexing board 401.
  • the first sub-connection element may be an optical selection element or a light splitting element
  • the second sub-connection element may be an optical selection element.
  • the optical connection element of the circuit board uses the optical selection element as the first sub-connection element to realize the selective transmission of the optical signal, that is, the selective transmission to the second multiplexer/demultiplexer board 401; the optical splitter element is used as the first sub-connection element to realize the optical signal transmission.
  • Dual transmission that is, respectively sent to the first multiplexer/demultiplexer board 204 and the second multiplexer/demultiplexer board 401; the optical selection element is used as the second sub-connection element to realize the selective reception of optical signals, that is, the second multiplexer/demultiplexer board is selected 401 receives the optical signal.
  • FIG. 4 takes the main circuit board 203A as an example to show a schematic diagram of establishing an optical path with the second multiplexer/demultiplexer board 402 by using an optical selection element and a light splitting element as the first sub-connection element.
  • the solid connecting line between the main circuit board 203A and the second multiplexer/demultiplexer board 401 represents the optical path established by using the optical selection element as the first sub-connecting element.
  • the light splitting element is used as the first sub-connecting element
  • the solid connecting line and the dashed connecting line in FIG. 4 both indicate the connected optical paths.
  • the schematic diagram of the optical selection element establishing the optical path with the second multiplexer/demultiplexer board 402 can refer to the solid connection line in FIG. 4.
  • the optical connection element included in the optical amplifier board 205 wherein the first sub-connection element may be an optical selection element, and the second sub-connection element may be an optical selection element or a light splitting element.
  • the optical connection element of the optical amplifier board 205 uses an optical selection element as the first sub-connection element to realize the selective reception of optical signals, that is, selects to receive the optical signal from the second multiplexer/demultiplexer board 401; adopts the optical selection element as the second self-connection element , To realize the selective transmission of optical signals, that is, to select and send to the second multiplexer/demultiplexer board 401; to use the splitting element as the second sub-connection element to achieve dual transmission of optical signals, that is, to send to the first multiplexer/demultiplexer board 204 and the first Two-in-one demultiplexing board 401; the optical selection element is used as the second sub-connection element to realize the selective reception of optical signals.
  • FIG. 5 takes the optical amplifier board 205 as an example, and shows a schematic diagram of establishing an optical path with the second multiplexer/demultiplexer board 402 by using an optical selection element and a light splitting element as the second sub-connection element.
  • the solid connecting line between the optical amplifier board 205 and the second multiplexer/demultiplexer board 401 represents the optical path established by using the optical selection element as the second sub-connecting element.
  • the light splitting element is used as the second sub-connecting element
  • the solid connecting line and the dashed connecting line in FIG. 5 both indicate the connected optical paths.
  • the schematic diagram of the optical selection element establishing the optical path with the second multiplexer/demultiplexer board 402 can refer to FIG. 5.
  • the optical selection element illustrated in FIG. 4 and FIG. 5 is an optical switch, and the optical switch is used to realize the optical path selection from the dimension of the spatial optical path.
  • each working circuit board corresponds to a different light wavelength.
  • the main circuit board 203A corresponds to the first wavelength
  • the main circuit board 203B corresponds to the second wavelength
  • the main circuit board 203C corresponds to the third wavelength.
  • each circuit board of the optical transmission device 400 may also be a highly integrated circuit board, which includes multiple sub-modules, and each sub-module corresponds to multiple different optical wavelengths.
  • each optical amplifying board 205 may also be a highly integrated optical amplifying board, which includes multiple sub-modules, and each sub-module corresponds to multiple different light wavelengths.
  • a wavelength selection element can be used as the light selection element. The wavelength selection element is used to realize the selection of light from the dimension of light wavelength.
  • the wavelength selection element of the circuit board in the first transmission direction, when the second preset condition is met, the wavelength selection element of the circuit board establishes an optical path with the second multiplexer/demultiplexer board 401, and the first wavelength The light is sent to the second combining and demultiplexing board 401.
  • FIG. 6 is a schematic diagram of the optical transmission device 400 activating the spare circuit board 203D and the first multiplexer/demultiplexer board 401. As shown in FIG. 6, the work of the main circuit board 203C is replaced by the standby circuit board 203D, and the work of the first combiner/demultiplexer board 204 is replaced by the second combiner/demultiplexer board 401.
  • the optical transmission devices 200 and 400 may further include a first controller.
  • each single board (for example, tributary board 201, electrical crossover board 202, circuit boards 203A-203D, first multiplexer/demultiplexer board 204, second multiplexer/demultiplexer board 401, and optical amplifier board 205) can be connected to The first controller is electrically connected.
  • the electrical connection may be a wired connection or a wireless connection.
  • Each single board electrically connected to the first controller can communicate with the first controller.
  • each single board it can implement fault self-detection, or the single board downstream of the single board can implement fault detection.
  • the circuit boards 203A-203D can feed back the fault detection result to the first controller after the fault self-detection, or the electrical cross board 202 or the working multiplexer/demultiplexer board (the first multiplexer/demultiplexer board 204 or the second multiplexer/demultiplexer board)
  • the demultiplexer board 401) performs fault detection on the circuit board and feeds back the fault detection result to the first controller. If the fault detection result indicates that a certain circuit board is faulty, the optical transmission device 400 meets the first preset condition.
  • the first controller can be used to control the scheduling of switching between the electrical crossover board 202 and the working multiplexer/demultiplexer board (for example, the first multiplexer/demultiplexer board 204), for example, to schedule the customer service data that should be processed by the failed main circuit board 203C to
  • the idle standby circuit board 203D dispatches the optical signals that the first multiplexer/demultiplexer board 204 should dispatch to the main circuit board 203C to the standby circuit board 203D.
  • the first multiplexer/demultiplexer board 204 can feed back the fault detection result to the first controller after the failure self-detection, or the optical amplifier board 205 or a working circuit board can perform fault detection on the first multiplexer/demultiplexer board after The fault detection result is fed back to the first controller. If the fault detection result indicates that the first multiplexer/demultiplexer board is faulty, the optical transmission device 400 meets the second preset condition.
  • the first controller can be used to control the working circuit boards of the circuit boards 203A-203D and the optical amplifier board 205 to establish optical paths with the second multiplexer/demultiplexer board 401.
  • the first controller may activate the standby circuit board 203D or the second multiplexer/demultiplexer board 401 by sending a control instruction to the corresponding single board when receiving the fault detection result.
  • the first controller may also control the single board inside the device to activate the switched circuit board or the multiplexer and demultiplexer board after receiving the circuit board switching instruction or the multiplexer/demultiplexer board switch instruction sent by the controller outside the device.
  • the optical transmission device 400 further includes an input module (such as a touch screen or a keyboard), and the input module is electrically connected to the first controller, the input module may send a circuit board switching instruction or a combination to the first controller in response to a user's operation. Demultiplexer board switching command.
  • the first multiplexer/demultiplexer board 204 may be implemented by using a wavelength selective switch (Wavelength Selective Switch, WSS), or a multiplexer and a demultiplexer.
  • WSS wavelength selective switch
  • the implementation manner of the second multiplexer/demultiplexer board 401 is similar to the implementation manner of the first multiplexer/demultiplexer board 204, and will not be repeated here.
  • the spare circuit board is optional.
  • the services of the tributary board and the circuit board are scheduled by the electrical cross-connect board.
  • the optical transmission device includes a branch line integrated board.
  • the working stability of the equipment can also be improved by arranging a spare combiner/demultiplexer board in the optical transmission equipment. Description will be given below in conjunction with the drawings and embodiments.
  • FIG. 7 is a schematic structural diagram of yet another optical transmission device 900 provided by an embodiment of the application.
  • the optical transmission device 900 includes: branch line combining boards 901A-901C, a first combining/demultiplexing board 204, a second combining/demultiplexing board 401, and an optical amplifier board 205.
  • branch line combining boards 901A-901C branch line combining boards 901A-901C
  • first combining/demultiplexing board 204 a second combining/demultiplexing board 401
  • an optical amplifier board 205 In FIG. 7, only three branch line combination boards are shown, one first combiner/demultiplexer board 204 and one second combiner/demultiplexer board 401. In actual applications, other numbers of boards can be set according to requirements. For example, 20 branch circuit integration boards, 5 first combiner/demultiplex boards 204 and 3 second combine/demultiplex boards 401 are provided. In the embodiment of the present application, the number of the first combining and demultiplexing plates 204 is greater
  • the first port of the branch line integrated board 901A-901C is used to transmit customer service data; the branch line integrated board 901A-901C and the optical amplifier board 205 both include optical connection elements.
  • the optical connection element is used to establish an optical path with the second multiplexer/demultiplexer board 401.
  • the second preset condition has been introduced in the previous article, please refer to the previous article.
  • the device 900 even if the first combiner/demultiplexer board 204 fails, the device 900 will not be affected. Therefore, the stability of the operation of the optical transmission device 900 is improved. If the number of the second multiplexer/demultiplexer board 401 is less than the number of the first multiplexer/demultiplexer board 204, a second multiplexer/demultiplexer board 401 can be shared by multiple first multiplexer/demultiplexer boards 204 for its backup function. The cost of redundant protection of the optical transmission equipment 900.
  • the optical connection components of the second multiplexer/demultiplexer board 401 and its upstream and downstream single boards release the binding relationship between the branch line combination board and the multiplexer/demultiplexer board, and release the binding relationship between the optical amplifier board and the multiplexer/demultiplexer board. Furthermore, the redundancy protection of the multiplexer/demultiplexer board is realized at a lower redundancy protection cost, and the reliability of the operation of the optical transmission device 900 is improved.
  • the implementation of the optical connection element included in the optical amplifying board 205 has been described in detail, which will not be repeated in this embodiment.
  • the following describes the implementation of the optical connection elements provided on the branch circuit integration boards 901A-901C.
  • the first sub-connection element may be an optical selection element or a light splitting element
  • the second sub-connection element may be an optical selection element.
  • the optical selection element is used as the first sub-connection element to realize the selective transmission of optical signals, that is, the selective transmission to the second multiplexer/demultiplexer board 401;
  • the optical splitter element is used as the first sub-connector, and the optical signals are respectively sent to the first multiplexer/demultiplexer
  • the optical selection element is used as the second sub-connection element to achieve selective reception of optical signals, that is, the second multiplexer/demultiplexer board 401 is selected to receive optical signals.
  • the manner in which the branch circuit integrated board 901A of the optical transmission device 900 is provided with optical connection elements is basically the same as the manner in which the main circuit board 203A of the optical transmission device 400 is provided with optical connection elements, which can be seen in FIG. 4.
  • the foregoing optical transmission device 900 may further include: a second controller.
  • the branch circuit integration boards 901A-901C, the first multiplexer/demultiplexer board 204, the second multiplexer/demultiplexer board 401, and the optical amplifier board 205 can all be electrically connected to the second controller.
  • the second controller is used to control the branch circuit integration board and the optical amplifier board 205 to establish optical paths with the second multiplexer/demultiplexer board 401.
  • the second controller determines the fault detection result and controls the single board in a similar manner to the first controller, and may refer to the first controller described in the foregoing embodiment.
  • the individual boards included in the equipment can be distributed in a small space to form an integrated optical transmission equipment.
  • each single board is set up or integrated in a computer room.
  • the individual boards included in the device can be distributed in a larger space to form multiple separate sub-devices.
  • the tributary board, the electrical crossover board, and the multiplexer/demultiplexer board of the optical transmission device 200 are set on the first sub-device
  • the optical amplifier board is set on the second sub-device
  • the first sub-device and the second sub-device are located in different engine room.
  • the spatial form of the optical transmission device and the distribution position of the single board are not limited.
  • the present application further provides an optical transmission system.
  • the specific implementation of the system will be described below in conjunction with the embodiment and FIG. 1.
  • the optical transmission scene shown in Figure 1 also shows an optical transmission system, which includes an optical transmission device C1 and an optical transmission device C2.
  • C1 and C2 may be the optical transmission devices shown in FIG. 2 and FIG. 3, respectively.
  • the second port of the optical amplifier board 205 of the optical transmission device C1 is optically connected to the second port of the optical amplifier board 205 of the optical transmission device C2.
  • the two second ports may be connected by optical fibers.
  • At least one optical amplifier station is also provided on the transmission path between the optical transmission equipment C1 and C2, and the second port of the optical amplifier board 205 of the optical transmission equipment C1 can be connected to the optical amplifier of the optical transmission equipment C2 through at least one optical amplifier station.
  • the second port of the board 205 is also provided on the transmission path between the optical transmission equipment C1 and C2, and the second port of the optical amplifier board 205 of the optical transmission equipment C1 can be connected to the optical amplifier of the optical transmission equipment C2 through at least one optical amplifier station.
  • the optical transmission system can perform optical transmission in two reversible directions.
  • the functions of each board of the optical transmission device C2 in the signal processing process and the implementation of enabling the standby circuit board can be referred to the above description.
  • the spare circuit boards of the optical transmission devices C1 and C2 can be connected to the upstream and downstream single boards (multiplexer and demultiplexer boards and electrical crossover boards), when any optical transmission device satisfies the first
  • the optical transmission device can activate the standby circuit board to replace the function of the main circuit board by copying or dispatching the customer service data that should be processed by the main circuit board through the electrical cross board.
  • the redundant protection of the optical transmission system is realized. Since the number of standby circuit boards is less than the number of active circuit boards, the standby circuit boards can be shared by multiple active circuit boards of the optical transmission equipment to which they belong, thereby saving equipment costs.
  • the second combiner/demultiplexer board 401 is used to replace the first combiner/demultiplexer board 204 to work. Through the second multiplexer/demultiplexer board 401 of the optical transmission device, the reliability of the operation of the optical transmission system is improved.
  • the present application also provides an optical transmission method.
  • the specific implementation of the method will be described below with reference to the embodiments, taking the local optical transmission device as the main body of description.
  • the optical transmission method provided by the embodiment of the present application includes: when the optical transmission device satisfies the first preset condition, copy or dispatch the customer service data that should be processed by the main circuit board through the electrical cross board 202 of the optical transmission device to all
  • the standby circuit board 302 is combined and demultiplexed with the first combiner/demultiplexer board and the standby circuit board.
  • the customer service data that should be processed by the main circuit board 203C is dispatched to the standby circuit board 203D through the electrical cross board 202.
  • the circuit board switching instruction received by the optical transmission equipment instructs to switch from the main circuit board 203C to the standby circuit board 203D
  • the customer service data that should be processed by the main circuit board 203C is dispatched to Spare circuit board 203D.
  • the following describes the operations performed by the optical transmission device when the optical transmission device satisfies the first preset condition from two transmission directions.
  • the tributary board 201 receives customer service data; the electrical cross-connect board 202 copies or dispatches the customer service data that should be processed by the main circuit board (failed or needs to be switched) to the standby circuit board 203D;
  • the backup circuit board 203D performs electro-optical conversion on the customer service data;
  • the first multiplexer/demultiplexer board 204 receives the optical signal provided by the standby circuit board 203D for multiplexing; the multiplexed optical signal is amplified by the optical amplifier board 205 Then it is transmitted to the opposite end transmission equipment; the optical signal carries the customer service data.
  • the optical signal from the peer device is received and amplified by the optical amplifier board 205; the first multiplexer/demultiplexer board 204 demultiplexes and provides the amplified optical signal to the corresponding circuit board, and the corresponding circuit board includes the The standby circuit board 203D; the standby circuit board 203D performs photoelectric conversion on the received optical signal and then provides it to the electric cross board 202; the customer service data obtained by the standby circuit board 203D processed by the electric cross board 202 is dispatched to the tributary board 201 The first port is sent to the client side.
  • the number of spare circuit boards is less than the number of the main circuit boards, that is, the circuit boards in the optical transmission device are not configured in a 1:1 double configuration, and the spare circuit boards can be configured by Multiple main circuit boards share their backup functions, so the cost of redundant protection can be saved.
  • the optical transmission device 400 shown in FIG. 3 includes a second multiplexer/demultiplexer board 401 in addition to the first multiplexer/demultiplexer board 204.
  • Optical transmission methods include:
  • the optical transmission device 400 meets the second preset condition, the optical path between the working circuit board of the main circuit board and the standby circuit board and the second multiplexer/demultiplexer board 401 is established, and the optical amplifier board 205 and the second multiplexer/demultiplexer board 401 are established.
  • the light path of the wave plate 401 is established.
  • the optical transmission device shown in FIG. 7 includes a second multiplexer/demultiplexer board 401 in addition to the first multiplexer/demultiplexer board 204.
  • Optical transmission methods include:
  • an optical path between the branch line integration board and the second multiplexer/demultiplexer board 401 is established, and an optical path between the optical amplifier board 205 and the second multiplexer/demultiplexer board 401 is established.
  • the work of the first multiplexer/demultiplexer board 204 in the optical transmission device of FIGS. 3 and 7 is switched to the second multiplexer/demultiplexer board 401. Therefore, even if the first multiplexer/demultiplexer board 204 fails, the optical transmission device can activate the second multiplexer/demultiplexer board 401 to perform optical signal processing and transmission, so that the optical transmission device works normally. It can be seen that the working reliability of the optical transmission equipment shown in FIG. 3 and FIG. 7 is improved.
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a , B, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光传输设备、系统及光传输方法。一种光传输设备包括:支路板、电交叉板、主用线路板、备用线路板、第一合分波板和光放大板。其中,备用线路板的数量少于主用线路板的数量;支路板的第一端口用于传输客户业务数据,支路板、主用线路板及备用线路板均与电交叉板电连接;主用线路板、备用线路板及光放大板均与第一合分波板光连接;光放大板的第二端口用于传输承载了客户业务数据的光信号;当满足第一预设条件时,电交叉板将主用线路板应处理的客户业务数据复制或调度给备用线路板,第一合分波板用于配合该备用线路板进行合波和分波。光传输设备中备用线路板可由多个主用线路板共享其备用功能,因此节约冗余保护的成本。

Description

一种光传输设备、系统及光传输方法
本申请要求于2020年5月20日提交中国国家知识产权局、申请号为202010430503.8、发明名称为“一种光传输设备、系统及光传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传输技术领域,尤其涉及一种光传输设备、系统及光传输方法。
背景技术
在光传输领域中,两个光传输设备通过光纤相互传输光信号。为了保证光信号传输的可靠性,通常可以在光传输设备或光传输系统中增加冗余保护。冗余保护是指在光传输设备或光传输系统中,对起到关键作用的部分A(如关键通道或关键单板)增加一套以上完成相同功能的部分A’,作为A的备用。当A出现故障时,利用A’能够使光传输设备或光传输系统保持正常工作状态,从而提高光信号传输的可靠性。
目前通常采用“客户侧1+1”或子网连接保护(Sub-network Connection Protection,SNCP)的方式进行冗余保护。但是,这两种保护方式需要双份的资源配置,线路板的使用量大,导致冗余保护的成本较高。
发明内容
本申请提供了一种光传输设备、系统及光传输方法,以降低冗余保护成本。
第一方面,本申请提供一种光传输设备,包括:支路板、电交叉板、主用线路板、备用线路板、第一合分波板和光放大板;其中,备用线路板的数量少于主用线路板的数量;支路板的第一端口用于传输客户业务数据,支路板、主用线路板及备用线路板均与电交叉板电连接;主用线路板、备用线路板及光放大板均与第一合分波板光连接;光放大板的第二端口用于传输承载了客户业务数据的光信号;当满足第一预设条件时,电交叉板用于将主用线路板应处理的客户业务数据复制或调度给备用线路板,第一合分波板用于配合该备用线路板进行合波和分波。
第一方面提供的光传输设备实现了多个主用线路板共享共用备用线路板,不需要对线路板进行双份配置,节省了光传输设备所需的备用线路板的数量,节省冗余保护的成本。
可选地,第一预设条件包括:至少一个主用线路板故障或光传输设备接收到线路板切换指令。由此可知,在第一方面提供的技术方案中,可以在主用线路板故障时启用备用线路板,也可以主动向光传输设备发送线路板切换指令,使光传输设备接收到线路板切换指令时启用备用线路板。例如,从一个无故障的主用线路板工作切换为备用线路板工作。
可选地,光传输设备还包括第二合分波板。在该实现方式中,主用线路板、备用线路板和光放大板均包括光连接元件;当满足第二预设条件时,主用线路板的光连接元件用于建立主用线路板与第二合分波板的光通路,备用线路板的光连接元件用于建立备用线路板 与第二合分波板的光通路,光放大板的光连接元件用于建立光放大板与第二合分波板的光通路。
在上述实现方式中,主用线路板、备用线路板和光放大板上设置的光连接元件分别可以解除主用线路板、备用线路板和光放大板与第一合分波板的绑定关系,使主用线路板、备用线路板和光放大板分别可以与第二合分波板建立光通路。从而,即便第一合分波板出现故障,该光传输设备也可以将第二合分波板作为第一合分波板的备用合分波板,以第二合分波板替代第一合分波板实现正常工作。进而,保证了合波和分波功能的可靠性,保证光传输设备的信号传输的可靠性。
此外,在上述实现方式中,光连接元件解除了合分波板上下游的单板与某一合分波板的绑定关系,因此即便设置了第二合分波板作为第一合分波板的备用,也不需要成倍地配置一系列与第二合分波板绑定的线路板和光放大板。从而,节省对光传输设备的合分波板进行冗余保护需耗费的成本。
可选地,第二预设条件包括:至少一个第一合分波板故障或光传输设备接收到合分波板切换指令。也就是说,可以在第一合分波板故障时启用备用线路板,也可以主动向光传输设备发送合分波板切换指令,使光传输设备接收到合分波板切换指令时启用第二合分波板。例如,从一个无故障的第一合分波板工作切换为第二合分波板工作。
可选地,光连接元件包括光选择元件和/或分光元件。其中,光选择元件为光开关或波长选择元件。光开关可以实现光路切换,例如从连通第一光路并阻断第二光路切换为阻断第一光路并连通第二光路。波长选择元件则是在光波长的维度上对光进行选择。光选择元件保证了光信号的功率,使光传输设备适用于进行长距离的光信号传输。
分光元件的两个输出端分别连接第一合分波板和第二合分波板。当使用分光元件建立光通路时,分光元件的输入端至两个输出端的光路始终连通,即分光元件所在的单板(例如线路板或光放大板)始终与第一合分波板和第二合分波板连通。分光元件可以有助于检测光路的连通是否正常。
可选地,以上光传输设备还包括:第一控制器;主用线路板、备用线路板、第一合分波板和光放大板均与第一控制器电连接;当满足第二预设条件时,第一控制器用于控制主用线路板和备用线路板中工作的线路板以及光放大板均与第二合分波板建立光通路。
在该实现方式中,第一控制器具体可以是根据第一合分波板或第一合分波板上下游的单板对该第一合分波板的故障检测结果确定第一合分波板故障,从而确定光传输设备满足第二预设条件。此外,第一控制器具体可以接收到光传输设备外部的控制器发送的合分波板切换指令,确定光传输设备满足第二预设条件。
可选地,第一合分波板包括多种实现方式。作为一示例方式,第一合分波板包括:合波器和分波器。作为另一示例方式,第一合分波板包括:波长选择开关WSS,该第一合分波板不但具备合波合分波的功能,还具备波长选择和波长调度的功能。
第二方面,本申请提供一种光传输系统,包括:第一光传输设备和第二光传输设备;其中第一光传输设备为第一方面提供的光传输设备;第一光传输设备的光放大板的第二端口与第二光传输设备光连接;在第一传输方向上,第一光传输设备用于接收客户业务数据,并对客户业务数据进行处理,将处理后的承载了客户业务数据的光信号通过光放大板的第 二端口发送给第二光传输设备;当满足第一预设条件时,第一光传输设备启用备用线路板;在第二传输方向上,第一光传输设备用于通过光放大板的第二端口接收第二光传输设备的光信号,并对光信号进行处理,转化为客户业务数据发送给客户侧;当满足第一预设条件时,第一光传输设备启用备用线路板。
由于第一光传输设备为第一方面提供的光传输设备,因此对于整个光传输系统,能够节约冗余保护的成本。
可选地,以上光传输系统中,第一光传输设备与第二光传输设备建立连接的方式可以包括多种实现形式。例如,第一光传输设备的光放大板的第二端口与光传输设备通过光纤连接,或者通过至少一个光放站连接。前者适用于短距离传输;后者适用于长距离传输,例如第一光传输设备和第二光传输设备分别设置在不同的城市。
第三方面,本申请提供一种光传输方法,应用于第一方面提供的光传输设备。该方法包括:当满足第一预设条件时,通过电交叉板将主用线路板应处理的客户业务数据复制或调度给备用线路板,并以第一合分波板配合该备用线路板进行合波和分波。
在第三方面提供的光传输方法中,由于应用了第一方面提供的光传输设备,该光传输设备中备用线路板可以被多个主用线路板共享其备用功能,因此备用线路板替代主用线路板工作不但实现冗余保护,同时也节省了冗余保护的成本。
可选地,以上方法中,通过电交叉板将主用线路板应处理的客户业务数据复制或调度给备用线路板,并以第一合分波板配合该备用线路板进行合波和分波,具体包括:
在第一传输方向上,以支路板接收客户业务数据;通过电交叉板将主用线路板应处理的客户业务数据复制或调度给备用线路板;由备用线路板对该客户业务数据进行电光转换;由第一合分波板接收该备用线路板提供的光信号以进行合波;通过光放大板将合波后的光信号放大后传输给对端传输设备;光信号承载了客户业务数据;
在第二传输方向上,通过光放大板接收对端设备的光信号并放大;由第一合分波板将放大的光信号分波提供给对应的线路板,对应的线路板包括该备用线路板;该备用线路板对接收的光信号进行光电转换再提供给电交叉板;通过电交叉板的调度将该备用线路板处理得到的客户业务数据以支路板的第一端口发送给客户侧。
可选地,若光传输设备还包括第二合分波板,则方法还包括:
当满足第二预设条件时,通过所述主用线路板和所述备用线路板包括的光连接元件,建立所述主用线路板和所述备用线路板中工作的线路板与所述第二合分波板的光通路,并通过所述光放大板包括的光连接元件建立所述光放大板与所述第二合分波板的光通路。
线路板的光连接元件解除了线路板与第一合分波板的绑定关系,使线路板能够与第二合分波板建立光通路;光放大板的光连接元件解除了光放大板与第一合分波板的绑定关系,使光放大板能够与第二合分波板建立光通路。因此,即便第一合分波板故障,其上下游的单板也可以通过与第二合分波板连接,保证信号的正常传输。进而,使光传输设备的工作不受影响,保证了工作的可靠性。
此外,通过解除线路板与第一合分波板的绑定关系以及光放大板与第一合分波板的绑定关系,无需为第二合分波板配置配套的一系列线路板和光放大板,在实现对合分波板的冗余保护的同时,节省了冗余保护成本。
第四方面,本申请还提供一种光传输设备,包括:支线路合一板、第一合分波板、第二合分波板和光放大板;其中,支线路合一板的第一端口用于传输客户业务数据;支线路合一板和光放大板均包括光连接元件;当第二预设条件满足时,支线路合一板的光连接元件用于建立支线路合一板与第二合分波板的光通路,光放大板的光连接元件用于建立光放大板与第二合分波板的光通路。
在第四方面提供的光传输设备中,通过支线路合一板和光放大板上包含的光连接元件,解除了支线路合一板与第一合分波板的绑定关系以及光放大板与第一合分波板的绑定关系。因此,即便第一合分波板故障,也可以通过建立支线路合一板与第二合分波板的光通路及建立光放大板与第二合分波板的光通路,将第一合分波板的工作切换给第二合分波板,保证光传输设备的正常工作。可见,设置的光连接元件提升了光传输设备工作的可靠性。
上述光传输设备,还包括:第二控制器;支线路合一板、第一合分波板和光放大板均与第二控制器电连接;当第二预设条件满足时,第二控制器用于控制支线路合一板和光放大板均与第二合分波板建立光通路。
在该实现方式中,第二控制器具体可以是根据第一合分波板或第一合分波板上下游的单板对该第一合分波板的故障检测结果确定第一合分波板故障,从而确定光传输设备满足第二预设条件。此外,第二控制器具体可以接收到光传输设备外部的控制器发送的合分波板切换指令,确定光传输设备满足第二预设条件。
以上各方面提供的任一光传输设备可以为一体式设备或为包含多个分立设备的设备群。
从以上技术方案可以看出,本申请中,由于备用线路板可以与上下游单板(合分波板和电交叉板)建立连接,因此当满足第一预设条件时,通过电交叉板对主用线路板应处理的客户业务数据的复制或调度操作,光传输设备中可以启用备用线路板来替代主用线路板的功能。从而,实现对该光传输设备的冗余保护。由于备用线路板的数量少于主用线路板的数量,即该光传输设备备用线路板可以由多个主用线路板共享其备用功能,因此能够节约冗余保护的成本。
附图说明
图1为一种光传输场景的示意图;
图2为本申请实施例提供的一种光传输设备的结构示意图;
图3为本申请实施例提供的另一种光传输设备的结构示意图;
图4为线路板的第一子连接元件建立与第二合分波板的光通路的示意图;
图5为光放大板的第二子连接元件建立与第二合分波板的光通路的示意图;
图6为图3所示的光传输设备启用备用线路板和第二合分波板的示意图;
图7为本申请实施例提供的又一种光传输设备的结构示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,首先介绍光传输场景。在光传输场景中通常包括多个光传输设备。下面结合图1所示的光传输场景对两个光 传输设备C1和C2传输光信号的实现过程进行介绍。
本申请实施例中将本端光传输设备向对端光传输设备传输光信号的方向定义为第一传输方向,将对端光传输设备向本端光传输设备传输光信号的方向定义为第二传输方向。在图1所示的场景中,可以将光传输设备C1作为本端光传输设备,将光传输设备C2作为对端光传输设备。实际应用中,光传输设备C1和C2可以分别处于不同地理位置,具有较长的光传输距离。例如,光传输设备C1位于深圳,光传输设备C2位于北京。
在第一传输方向上,光传输设备C1从客户侧接收客户业务数据,对客户业务数据进行处理后转化为光信号(例如适合长距离传输的光信号),再将光信号通过长距离传输给光传输设备C2。在第二传输方向上,光传输设备C1接收光传输设备C2发送的光信号,光传输设备C1对该光信号进行处理,转换为客户业务数据,再将客户业务数据发送给客户侧。客户侧是指面向客户的工作设备,作为示例,客户侧可以是路由器或接入设备等。客户业务数据可以通过光信号或电信号的形式传输。
光传输场景中的光传输设备通常设置有多种类型的单板,例如支路板、电交叉板、线路板、支线路合一板、合分波板和光放大板等。其中,支路板用于接入客户侧的客户业务数据,完成光信号到电信号的转换,将业务封装映射到光通道数据单元k(Optical Data Unit k,ODUk),发送到电交叉板调度。支路板还可同时实现上述过程的逆过程。电交叉板用于完成支路板与线路板之间的电信号调度。线路板用于将电交叉板调度过来的ODUk的电信号进行复用和映射,并实现与符合波分复用(Wavelength Division Multiplexing,WDM)系统要求的标准波长的光转换器单元k(Optical Transport Unit k,OTUk)光信号之间的相互转换。线路板还可同时实现上述过程的逆过程。支线路合一板是OTU类单板的一种。支线路合一板相当于合并了支路板和线路板的功能,可以输出符合WDM系统要求的标准波长的光信号。支线路合一板还可同时实现上述过程的逆过程。合分波板用于将不同波长的光信号进行合波或分波处理。其合波功能体现在:在第一传输方向上将多路符合WDM标准波长的光信号复用成1路光信号。其分波功能体现在:在第二传输方向上将1路光信号解复用为多路符合WDM标准波长的光信号。光放大板是光放大器(Optical Amplifier,OA),用于在光层实现功率放大。当需要对光信号进行远距离传输时,可以采用光放大板对光功率进行放大。光放大板还可同时实现上述过程的逆过程。
通过以上对光传输设备的单板的功能描述可知,当光传输设备C1与光传输设备C2传输光信号时,两设备具体可以通过光放大板建立光连接。
为了提升光传输设备或光传输系统(包含多个光传输设备)工作的可靠性,目前可以采用“客户侧1+1”或SNCP的方式进行冗余保护,以防止单板故障后设备或系统工作停摆。在“客户侧1+1”方案中,需要对本端光传输设备和对端光传输设备的每一个单板及光纤链路进行备份配置,成本非常高。相比于“客户侧1+1”方案,SNCP冗余保护方案省去了对支路板的备份配置,其他单板仍要备份配置,因此仍然消耗非常高的保护成本。
基于以上问题,本申请实施例提供一种光传输设备、系统及光传输方法。本申请实施例提供的技术方案中,在光传输设备中设置备用线路板,且备用线路板的数量少于主用线路板。当满足第一预设条件(例如主用线路板故障)时,通过电交叉板对主用线路板应处理的客户业务数据的复制或调度操作,光传输设备启用备用线路板来替代该主用线路板的 功能。从而,实现对该光传输设备的冗余保护。由于备用线路板的数量少于主用线路板的数量,备用线路板可以由多个主用线路板共享其备用功能,因此能够节约冗余保护的成本。
下面结合附图和实施例描述本申请实施例提供的光传输设备。
图2为本申请实施例提供的一种光传输设备200的结构示意图。光传输设备200包括:支路板201、电交叉板202、主用线路板(203A、203B和203C)、备用线路板203D、第一合分波板204和光放大板205。光传输设备200中,备用线路板的数量N少于主用线路板的数量M。M和N均为正整数,N大于或等于1。支路板201的总数量与主用线路板的总数量可以相同,也可以不同。图2中以3个支路板201、3个主用线路板和1个备用线路板为示例。在其他的示例中,还可设置其他数量的主用线路板和备用线路板,例如100个主用线路板和10个备用线路板。
支路板201的第一端口用于传输客户业务数据。此处传输可以包括发送和/或接收。例如,支路板201在第一传输方向负责接收来自客户侧的客户业务数据,在第二传输方向负责向客户侧发送客户业务数据。并且第一传输方向和第二传输方向的传输动作可以根据实际业务需求同时进行。
如图2所示,支路板201、所有主用线路板203A-203C及备用线路板203D均与电交叉板202电连接。主用线路板203A-203C、备用线路板203D及光放大板205均与第一合分波板204光连接。
在图2的示例中,每个支路板对应一个不同的主用线路板203A、203B或203C。在第一传输方向,每个支路板201处理后的信号经过电交叉板202的调度,发送给支路板201对应的主用线路板。在第二传输方向,主用线路板203A-203C处理后的信号经过电交叉板202的调度,发送给对应的支路板201。
第一合分波板204在第一传输方向提供合波功能,在第二传输方向提供分波功能。当所有主用线路板203A-203C在第一传输方向均工作时,第一合分波板204即用于将主用线路板203A-203C提供的光波合波后发送给光放大板205。当所有主用线路板203A-203C在第二传输方向均工作时,第一合分波板204即用于将来自光放大板205的光波分波至主用线路板203A-203C。
光放大板205在第一传输方向和第二传输方向据提供放大光功率的功能。将光传输设备200作为本端光传输设备,光放大板205的第二端口是光放大板205上与对端光传输设备建立光连接的端口,该第二端口用于传输承载了客户业务数据的光信号。此处传输可以包括发送和/或接收。
在一种可能的实现方式中,光放大板205包括第一OA和第二OA,其中第一OA工作于第一传输方向,第二OA工作于第二传输方向。在另一种可能的实现方式中,光放大板205包括多级OA,多级OA用于对光放大板205接收的光信号逐级放大。
本申请实施例中预设了启用备用线路板203D的触发条件,即第一预设条件。作为示例,第一预设条件包括:至少一个主用线路板故障或光传输设备200接收到线路板切换指令。下面对两种启用备用线路板的触发场景具体说明。在下述场景中,假设从主用线路板203C切换为备用线路板203D工作。
1)触发场景:主用线路板故障。
假设主用线路板203A和203B正常工作,主用线路板203C出现故障,备用线路板203D处于空闲状态。根据以上描述可确定,光传输设备200满足第一预设条件。为了使光传输设备200正常工作,不受故障的主用线路板203C的影响,需要使备用线路板203D替代故障的主用线路板203C工作。
在满足第一预设条件的前提下,光传输设备200的电交叉板202用于将故障的主用线路板203C应处理的客户业务数据交给备用线路板203D处理。此处,主用线路板203C应处理的客户业务数据,具体是指在主用线路板203C正常状态下应当发给主用线路板203C的信号中承载的客户业务数据。
以第一传输方向为例,在一种可能的实现方式中,确定满足第一预设条件之前,电交叉板202可以将任意一个主用线路板203A、203B或203C应处理的客户业务数据复制一份发送给备用线路板203D。如果预先复制并发送的恰好是主用线路板203C应处理的客户业务数据,则在主用线路板203C故障时,光传输设备200可以直接启用该备用线路板203D。如果预先复制并发送的不是主用线路板203C应处理的客户业务数据,则在确定满足主用线路板203C故障时,需要电交叉板202将主用线路板203C应处理的客户业务数据临时调度给备用线路板203D。
在另一种可能的实现方式中,电交叉板202也可以不执行预先的复制操作。电交叉板202在确定某一主用线路板故障时,再将该故障的主用线路板应处理的客户业务数据临时调度给备用线路板203D。
在第二传输方向的复制或调度操作与第一传输方向相似,此处不再赘述。
2)触发场景:主动切换线路板。
实际应用中,光传输设备200外部的控制器可能根据各个线路板的信号处理情况或基于对光传输设备的工作可持续性的要求,在无线路板故障的情况下生成线路板切换指令,将该指令发送给光传输设备200以主动切换工作的线路板。在一种可能的实现方式中,线路板切换指令中可以携带被切换的线路板的标识和切换后的线路板的标识。接收到线路板切换指令后,光传输设备200将主用线路板203C的工作切换给备用线路板203D执行。
本申请实施例中,电交叉板202将主用线路板203C应处理的客户业务数据的复制或调度给备用线路板203D的操作,可以理解为:变更支路板201与线路板原本的对应关系。在本实例场景中,即是将与支路板201原本对应的主用线路板203C变更为对应备用线路板203D。
在以上实施例中,光传输设备中可以启用备用线路板来替代主用线路板的功能。从而,实现对该光传输设备的冗余保护。由于备用线路板的数量少于主用线路板的数量,即该光传输设备中线路板不是1:1双份配置的,备用线路板可以由多个主用线路板共享其备用功能。例如,若光传输设备中设置1个备用线路板,即实现1个备用线路板对M个主用线路板的冗余保护;若备用线路板的数量N大于1,即实现N个备用线路板对M个主用线路板的冗余保护。相比于现有方案,本实施例提供的光传输设备节省了线路板的配置数量,能够降低设备成本。
光传输设备中合分波板通常与多个线路板光连接。如图2所示的光传输设备200中,第一合分波板204连接主用线路板203A-203C。实际应用中,一个合分波板可能连接数十 个甚至上百个线路板。合分波板的工作性能影响整个光传输设备的工作可靠性。与线路板类似地,合分波板也可能发生故障。当某一合分波板故障时,若无其他单板替代其功能,则与该合分波板相关的所有业务均会受到影响。由于合分波板与线路板具有绑定关系,因此当需要对合分波板进行冗余保护时,通常还要成倍数地增加一系列的线路板。例如,第一合分波板用于与10个线路板光连接,如果以第二合分波板对第一合分波板进行冗余保护,往往需要配套增加10个与该第二合分波板光连接的线路板。
为了提升光传输设备的工作可靠性,同时,在前述实施例的基础上,本申请进一步提供了另一种光传输设备。通过在线路板上设置光连接元件,解除合分波板与线路板之间的固有绑定关系。进而,在冗余保护合分波板时无需配套增加大量线路板。
图3为该光传输设备400的结构示意图。相比于图2所示的光传输设备200,该光传输设备400还进一步包括第二合分波板401。如图3所示,
光传输设备400包括一个第一合分波板204和一个第二合分波板401。实际应用中,还可以设置其他数量的第一合分波板204和第二合分波板401,例如设置5个第一合分波板204和3个第二合分波板401。本申请实施例中,第一合分波板204的数量大于或等于第二合分波板401的数量。本实施例提供的光传输设备400中,将第一合分波板204作为主用,将第二合分波板401作为备用。
在光传输设备400中,第二合分波板401与第一合分波板204的功能相同。本申请实施例中预设了启用第二合分波板401的触发条件,即第二预设条件。实际应用中,光传输设备400可以在多种触发场景下启用第二合分波板401,因此,根据不同的触发场景设置了该第二预设条件。作为示例,第二预设条件包括:至少一个第一合分波板故障,或光传输设备400接收到合分波板切换指令。
所有线路板203A-203D以及光放大板205均包括光连接元件。当光传输设备400不满足第二预设条件时,光连接元件用于建立其所在的单板与第一合分波板204的光通路。当光传输设备400满足第二预设条件时,光连接元件用于建立其所在的单板与第二合分波板401的光通路。具体而言,在光传输设备400满足第二预设条件的前提下,主用线路板203A、203B或203C的光连接元件用于建立该主用线路板与第二合分波板401的光通路,备用线路板203D的光连接元件用于建立备用线路板203D与第二合分波板401的光通路,光放大板205的光连接元件用于建立光放大板205与第二合分波板401的光通路。
下面对两种启用第二合分波板401的触发场景具体说明。在下述场景中,假设从第一合分波板204切换为第二合分波板401工作。
1)触发场景:第一合分波板故障。
在该触发场景下,第二预设条件包括:至少一个第一合分波板204故障。该场景中第二合分波板402处于空闲状态。根据以上描述可知,光传输设备400满足第二预设条件。为了使光传输设备400正常工作,不受故障的第一合分波板204的影响,需要使用第二合分波板402替代故障的第一合分波板204工作。
由于第二合分波板401与第一合分波板204具备相同的功能,因此第一合分波板204与第二合分波板401共同的上下游单板(光放大板205和工作的线路板203A-203C)的光连接元件建立其所在的单板与第二合分波板401的光通路之后,第二合分波板401可以顺 利启用,替代故障的第一合分波板204的功能。
具体而言,在第一传输方向,第二合分波板402接收工作的线路板203A-203C的光波,合波后发送给光放大板205;在第二传输方向,第二合分波板402接收来自光放大板205的光波,分波后分别发送给主用线路板203A-203C。
2)触发场景:主动切换合分波板。
在该触发场景下,第二预设条件包括:光传输设备400接收到外部控制器发送的合分波板切换指令。
在一种可能的实现方式中,合分波板切换指令中可以携带被切换的合分波板的标识和切换后的合分波板的标识。接收到合分波板切换指令后,光传输设备400将第一合分波板204的工作切换给第二合分波板401执行,第一合分波板204停用。
本申请实施例中,光连接元件建立其所在的单板与第二合分波板402的光通路,可以理解为:变更光连接元件所在的单板与合分波板的对应关系。在本实例场景中,即是将与单板(线路板203A-203D或光放大板205)原本对应的第一合分波板201变更为对应第二合分波板401。
在以上实施例中,当光传输设备400满足第二预设条件(例如第一合分波板故障)时,以第一合分波板204上下游的单板包括的光连接元件建立该单板与第二合分波板401的光通路,光传输设备400可以启用第二合分波板401来替代第一合分波板204的功能。从而,实现对该光传输设备400的合分波板的冗余保护。如此,即便第一合分波板204故障也不会影响光传输设备400,光传输设备400可以正常工作。可见,第二合分波板401及其上下游的单板的光连接元件解除了线路板与合分波板的绑定关系,解除了光放大板与合分波板的绑定关系,进而以较低的冗余保护成本实现对合分波板的冗余保护,提升了光传输设备400工作的可靠性。
光连接元件可以包括两个子连接元件,其中第一子连接元件用于当光传输设备400在第一传输方向满足第二预设条件时,建立光连接元件所在的单板与第二合分波板401的光通路;第二子连接元件用于当光传输设备400在第二传输方向满足第二预设条件时,建立光连接元件所在的单板与第二合分波板401的光通路。
在实际应用中,如果光传输设备400仅在第一传输方向满足第二预设条件,则可以仅通过第一子连接元件建立与第二合分波板401的光通路,以实现第一传输方向的正常光传输。第二子连接元件仍与第一合分波板204连通。
类似地,如果光传输设备400仅在第二传输方向满足第二预设条件,则可以仅通过第二子连接元件建立与第二合分波板401的光通路,以实现第二传输方向的正常光传输。第一子连接元件仍与第一合分波板204连通。
如果光传输设备400在第一传输方向和第二传输方向均满足第二预设条件,则第一子连接元件和第二子连接元件均与第二合分波板401连通。即,第一合分波板204在第一传输方向和在第二传输方向的功能均被第二合分波板401替代。
线路板的光连接元件,其中第一子连接元件可以为光选择元件或分光元件,第二子连接元件可以为光选择元件。线路板的光连接元件采用光选择元件作为第一子连接元件,实现光信号的选发,即选择发送到第二合分波板401;采用分光元件作为第一子连接元件, 实现光信号的双发,即分别发送给第一合分波板204和第二合分波板401;采用光选择元件作为第二子连接元件,实现光信号的选收,即选择从第二合分波板401接收光信号。
图4以主用线路板203A为示例,展示采用光选择元件和分光元件作为第一子连接元件建立与第二合分波板402的光通路的示意图。图4中,主用线路板203A与第二合分波板401之间的实线连接线表示采用光选择元件作为第一子连接元件建立的光通路。而当采用分光元件作为第一子连接元件时,图4的实线连接线和虚线连接线均表示连通的光路。当线路板采用光选择元件作为第二子连接元件时,光选择元件建立与第二合分波板402的光通路的示意图可以参照图4的实线连接线。
光放大板205包括的光连接元件,其中第一子连接元件可以为光选择元件,第二子连接元件可以为光选择元件或分光元件。光放大板205的光连接元件采用光选择元件作为第一子连接元件,实现光信号的选收,即选择从第二合分波板401接收光信号;采用光选择元件作为第二自连接元件,实现光信号的选发,即选择发送到第二合分波板401;采用分光元件作为第二子连接元件,实现光信号的双发,即分别发送给第一合分波板204和第二合分波板401;采用光选择元件作为第二子连接元件,实现光信号的选收。
图5以光放大板205为示例,展示采用光选择元件和分光元件作为第二子连接元件建立与第二合分波板402的光通路的示意图。在图5中,光放大板205与第二合分波板401之间的实线连接线表示采用光选择元件作为第二子连接元件建立的光通路。而当采用分光元件作为第二子连接元件时,图5的实线连接线和虚线连接线均表示连通的光路。当光放大板205采用光选择元件作为第一子连接元件时,光选择元件建立与第二合分波板402的光通路的示意图可以参照图5。
结合图4的实线连接线及虚线连接线和图5的实线连接线及虚线连接线可知,当分光元件提供双发功能时,分光元件的两个输出端分别连接第一合分波板204和第二合分波板401。当分光元件有光信号输入时,分光元件将光信号沿着两条光路分光后,分别提供给第一合分波板204和第二合分波板401。由于分光元件具有分光功能,因此分光元件沿着单条光路输出的光信号相比于分光元件的输入端的光信号,功率有所下降。因此,在本端光传输设备与对端光传输设备的传输距离较短时,适合在本端光传输设备的光连接元件中采用分光元件实现双发功能。
结合图4的实线连接线和图5的实线连接线可知,当光选择元件提供选发或选收功能时,光信号仅经过该光选择元件连通的一个合分波板。因此,光信号的功率不会分给其他的合分波板,即沿着光选择元件输出的光信号相比于光选择元件的输入端的光信号,功率不会发生明显变化。在本端光传输设备与对端光传输设备的传输距离较长时,适合在本端光传输设备的光连接元件中采用光选择元件实现选发或选收功能。
在图4和图5中示意的光选择元件为光开关,利用光开关从空间光路的维度实现光路选择。在该实现方式中,每一个工作的线路板对应一种不同的光波长。例如,主用线路板203A对应第一波长,主用线路板203B对应第二波长,主用线路板203C对应第三波长。
此外,在实际应用中,光传输设备400的每个线路板还可以为集成度较高的线路板,其包括多个子模块,每个子模块对应多种不同的光波长。类似地,每个光放大板205也可以为集成度较高的光放大板,其包括多个子模块,每个子模块对应多种不同的光波长。在 该实现方式中,可以采用波长选择元件作为光选择元件。利用波长选择元件从光波长的维度实现对光的选择。以线路板的波长选择元件为例,在第一传输方向上,当第二预设条件满足时,线路板的波长选择元件建立与第二合分波板401的光通路,将第一波长的光发送给第二合分波板401。
假如图3所示的光传输设备400既满足第一预设条件又满足第二预设条件,则备用线路板203D和第二合分波板401均启用。作为一示例场景,主用线路板203C和第一合分波板204均发生故障。图6为光传输设备400启用备用线路板203D和第一合分波板401的示意图。如图6所示,主用线路板203C的工作由备用线路板203D替代,第一合分波板204的工作由第二合分波板401替代。
在一种可能的实现方式中,光传输设备200和400还可以进一步包括第一控制器。下面以光传输设备400为例,描述第一控制器的实现方式和功能。
光传输设备400中,各个单板(例如支路板201、电交叉板202、线路板203A-203D、第一合分波板204、第二合分波板401和光放大板205)均可以与第一控制器电连接。此处,电连接可以为有线连接或无线连接。各个与第一控制器电连接的单板与第一控制器之间可以相互通信。
对于每个单板,其可以实现故障自检测,也可以由该单板上下游的单板实现故障检测。
例如,线路板203A-203D可以在故障自检测后将故障检测结果反馈给第一控制器,也可以由电交叉板202或工作的合分波板(第一合分波板204或第二合分波板401)对线路板进行故障检测后将故障检测结果反馈给第一控制器。如果故障检测结果指示某一线路板出现故障,则该光传输设备400满足第一预设条件。第一控制器可以用于控制切换电交叉板202和工作的合分波板(例如第一合分波板204)的调度,例如将故障的主用线路板203C应处理的客户业务数据调度给空闲的备用线路板203D,将第一合分波板204应调度给主用线路板203C的光信号调度给备用线路板203D。
例如,第一合分波板204可以在故障自检测后将故障检测结果反馈给第一控制器,也可以由光放大板205或工作的线路板对第一合分波板进行故障检测后将故障检测结果反馈给第一控制器。如果故障检测结果指示第一合分波板出现故障,则该光传输设备400满足第二预设条件。第一控制器可以用于控制线路板203A-203D中工作的线路板以及光放大板205均与第二合分波板401建立光通路。
第一控制器可以在接收到故障检测结果的情况下,通过向相应的单板发送控制指令以启用备用线路板203D或第二合分波板401。另外,第一控制器还可以在接收到设备外部的控制器发送的线路板切换指令或合分波板切换指令后,再控制设备内部的单板启用切换后的线路板或合分波板。如果光传输设备400还包括输入模块(例如触控屏或键盘),且输入模块与第一控制器电连接,则输入模块可以响应于用户的操作向第一控制器发送线路板切换指令或合分波板切换指令。
在光传输设备200和光传输设备400中,第一合分波板204可以采用波长选择开关(Wavelength Selective Switch,WSS)实现,或者采用合波器和分波器的方式来实现。第二合分波板401的实现方式与第一合分波板204的实现方式类似,此处不再赘述。
需要说明的是,在光传输设备400中,备用线路板是可选的。
在以上实施例中,支路板和线路板的业务由电交叉板进行调度。在一种可能的实现方式中,光传输设备包括支线路合一板。通过在该光传输设备中设置备用的合分波板也可以提升设备工作的稳定性。下面结合附图和实施例进行说明。
图7为本申请实施例提供的又一种光传输设备900的结构示意图。该光传输设备900包括:支线路合一板901A-901C、第一合分波板204、第二合分波板401和光放大板205。图7中仅示意了3个支线路合一板,1个第一合分波板204和1个第二合分波板401。实际应用中,可以根据需求设置其他数量的各单板。例如设置20个支线路合一板,5个第一合分波板204和3个第二合分波板401。本申请实施例中,第一合分波板204的数量大于或等于第二合分波板401的数量。
支线路合一板901A-901C的第一端口用于传输客户业务数据;支线路合一板901A-901C和光放大板均205包括光连接元件。
当光传输设备900满足第二预设条件时,光连接元件用于建立与第二合分波板401的光通路。第二预设条件已在前文介绍,请参照前文。
在该实施例中,即便第一合分波板204故障,设备900也不会受到影响。因此,提升了光传输设备900工作的稳定性。若第二合分波板401的数量少于第一合分波板204的数量,则一个第二合分波板401可以由多个第一合分波板204共享其备份功能,节省了对光传输设备900的冗余保护成本。第二合分波板401及其上下游的单板的光连接元件解除了支线路合一板与合分波板的绑定关系,解除了光放大板与合分波板的绑定关系,进而以较低的冗余保护成本实现对合分波板的冗余保护,提升了光传输设备900工作的可靠性。
在图5的实施例中,对光放大板205包含的光连接元件的实现方式进行了详细的描述,本实施例不再赘述。下面介绍支线路合一板901A-901C上设置的光连接元件的实现方式。
以支线路合一板901A为例,其第一子连接元件可以为光选择元件或分光元件,第二子连接元件可以为光选择元件。采用光选择元件作为第一子连接元件,实现光信号的选发,即选择发送到第二合分波板401;采用分光元件作为第一子连接元件,光信号分别发送给第一合分波板204和第二合分波板401;采用光选择元件作为第二子连接元件,实现光信号的选收,即选择从第二合分波板401接收光信号。
光传输设备900的支线路合一板901A设置光连接元件的方式与光传输设备400的主用线路板203A设置光连接元件的方式基本相同,可以参见图4。
可选地,上述光传输设备900中还可以进一步包括:第二控制器。支线路合一板901A-901C、第一合分波板204、第二合分波板401和光放大板205均可以与该第二控制器电连接。当光传输设备900满足第二预设条件时,第二控制器用于控制各个工作的支线路合一板和光放大板205均与第二合分波板401建立光通路。第二控制器确定故障检测结果和控制单板的实现方式与第一控制器相似,可以参照前述实施例介绍的第一控制器。
对于任意一种前述的光传输设备200、400或900,设备所包含的各个单板可以分布在较小的空间范围内,形成一体式的光传输设备。例如,各个单板设置或集成在一个机房之内。此外,设备所包含的各个单板可以分布在较大的空间范围内,形成相互分立的多个子设备。例如,光传输设备200的支路板、电交叉板和合分波板设置在第一子设备上,光放大板设置在第二子设备上,第一子设备和第二子设备分别位于不同的机房。本申请实施例 中对于光传输设备的空间形态和单板的分布位置不加以限定。
基于图2和图3所示的光传输设备,本申请还进一步提供一种光传输系统。下面结合实施例和图1描述该系统的具体实现。
图1所示的光传输场景也展示了一个光传输系统,其包括光传输设备C1和光传输设备C2。C1和C2分别可以为图2和图3所示的光传输设备。
光传输设备C1的光放大板205的第二端口与光传输设备C2的光放大板205的第二端口光连接。具体地,两个第二端口可以通过光纤连接。光传输设备C1和C2之间的传输路径上还设置有至少一个光放站,则光传输设备C1的光放大板205的第二端口可以通过至少一个光放站连接光传输设备C2的光放大板205的第二端口。
由于前述实施例中对光传输设备C1的各类型在第一传输方向和第二传输方向的功能已经做了详细的描述,故在该系统的实施例中不再赘述。对于光传输设备C1,若满足第一预设条件,则将主用线路板切换为备用线路板,由备用线路板执行相应的工作。
该光传输系统中可以沿着可逆的两个方向进行光传输,光传输系统中光传输设备C2在信号处理过程中各单板的功能和启用备用线路板的实现方式均可以参照以上描述。
以上实施例提供的光传输系统中,由于光传输设备C1和C2的备用线路板可以与上下游单板(合分波板和电交叉板)建立连接,因此当任意一个光传输设备满足第一预设条件时,通过电交叉板对主用线路板应处理的客户业务数据的复制或调度操作,该光传输设备可以启用备用线路板来替代主用线路板的功能。从而,实现对该光传输系统的冗余保护。由于备用线路板的数量少于主用线路板的数量,备用线路板可以由其所属的光传输设备的多个主用线路板共享其备用功能,实现节约设备成本。
若系统中光传输设备C1和C2为图3所示的光传输设备,或为图7所示的光传输设备,则该系统的光传输设备C1和C2进行光传输时,还可以当满足第二预设条件时,采用第二合分波板401来替代第一合分波板204工作。通过光传输设备的第二合分波板401,提升了光传输系统工作的可靠性。
基于图2和图3所示的光传输设备,本申请还提供一种光传输方法。下面结合实施例以本端光传输设备为描述主体,对该方法的具体实现进行说明。本申请实施例提供的光传输方法,包括:当光传输设备满足第一预设条件时,通过该光传输设备的电交叉板202将主用线路板应处理的客户业务数据复制或调度给所述备用线路板302,并以所述第一合分波板配合该备用线路板进行合波和分波。
在该方法实施例中,假设第一合分波板正常工作。
作为一示例,若主用线路板203C故障,则通过电交叉板202将主用线路板203C应处理的客户业务数据调度给备用线路板203D。作为另一示例,若光传输设备接收到的线路板切换指令指示从主用线路板203C切换为备用线路板203D,则通过电交叉板202将主用线路板203C应处理的客户业务数据调度给备用线路板203D。
为便于理解本申请实施例提供的光传输方法,下面从两个传输方向分别描述光传输设备满足第一预设条件时,该光传输设备执行的操作。
在第一传输方向上,以支路板201接收客户业务数据;通过电交叉板202将(故障的或需要切换的)主用线路板应处理的客户业务数据复制或调度给备用线路板203D;由备用 线路板203D对该客户业务数据进行电光转换;由第一合分波板204接收该备用线路板203D提供的光信号以进行合波;通过光放大板205将合波后的光信号放大后传输给对端传输设备;光信号承载了客户业务数据。
在第二传输方向上,通过光放大板205接收对端设备的光信号并放大;由第一合分波板204将放大的光信号分波提供给对应的线路板,对应的线路板包括该备用线路板203D;该备用线路板203D对接收的光信号进行光电转换再提供给电交叉板202;通过电交叉板202的调度将该备用线路板203D处理得到的客户业务数据以支路板201的第一端口发送给客户侧。
在应用上述方法的光传输设备200或400中,由于备用线路板的数量少于主用线路板的数量,即该光传输设备中线路板不是1:1双份配置的,备用线路板可以由多个主用线路板共享其备用功能,因此能够节约冗余保护的成本。
对于图3所示的光传输设备400,本申请进一步提供了一种光传输方法,以提升光传输设备400工作的可靠性。如图3所示的光传输设备400,在包括第一合分波板204的基础上还包括第二合分波板401。光传输方法包括:
当光传输设备400满足第二预设条件时,建立主用线路板和备用线路板中工作的线路板与第二合分波板401的光通路,并建立光放大板205与第二合分波板401的光通路。
对于图7所示的光传输设备,本申请进一步提供了一种光传输方法,以提升光传输设备900工作的可靠性。如图7所示的光传输设备,在包括第一合分波板204的基础上还包括第二合分波板401。光传输方法包括:
当光传输设备900满足第二预设条件时,建立支线路合一板与第二合分波板401的光通路,并建立光放大板205与第二合分波板401的光通路。
通过执行上述操作,将图3和图7光传输设备中第一合分波板204的工作切换给第二合分波板401。因此,即便第一合分波板204发生故障,光传输设备也可以启用第二合分波板401执行光信号的处理和传输,从而该光传输设备正常工作。可见,图3和图7所示的光传输设备工作可靠性提高。
应当理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一个”或其类似表达,是指这些中的任意组合,包括单个或复数个的任意组合。例如,a,b或c中的至少一个,可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种光传输设备,其特征在于,包括:支路板、电交叉板、主用线路板、备用线路板、第一合分波板和光放大板;所述备用线路板的数量少于所述主用线路板的数量;
    所述支路板的第一端口用于传输客户业务数据,所述支路板、所述主用线路板及所述备用线路板均与所述电交叉板电连接;所述主用线路板、所述备用线路板及所述光放大板均与所述第一合分波板光连接;所述光放大板的第二端口用于传输承载了所述客户业务数据的光信号;
    当满足第一预设条件时,所述电交叉板用于将所述主用线路板应处理的客户业务数据复制或调度给所述备用线路板,所述第一合分波板用于配合该备用线路板进行合波和分波。
  2. 根据权利要求1所述的光传输设备,其特征在于,还包括:第二合分波板;
    所述主用线路板、所述备用线路板和所述光放大板均包括光连接元件;
    当满足第二预设条件时,所述主用线路板的光连接元件用于建立所述主用线路板与所述第二合分波板的光通路,所述备用线路板的光连接元件用于建立所述备用线路板与所述第二合分波板的光通路,所述光放大板的光连接元件用于建立所述光放大板与所述第二合分波板的光通路。
  3. 根据权利要求2所述的光传输设备,其特征在于,所述光连接元件包括光选择元件和/或分光元件;所述分光元件的两个输出端分别连接所述第一合分波板和所述第二合分波板。
  4. 根据权利要求3所述的光传输设备,其特征在于,所述光选择元件为光开关或波长选择元件。
  5. 根据权利要求2所述的光传输设备,其特征在于,还包括:第一控制器;所述主用线路板、所述备用线路板、所述第一合分波板和所述光放大板均与所述第一控制器电连接;
    当满足所述第二预设条件时,所述第一控制器用于控制所述主用线路板和所述备用线路板中工作的线路板以及所述光放大板均与所述第二合分波板建立光通路。
  6. 根据权利要求1所述的光传输设备,其特征在于,所述第一预设条件包括:至少一个主用线路板故障或所述光传输设备接收到线路板切换指令。
  7. 根据权利要求2所述的光传输设备,其特征在于,所述第二预设条件包括:至少一个第一合分波板故障或所述光传输设备接收到合分波板切换指令。
  8. 根据权利要求1所述的光传输设备,其特征在于,所述第一合分波板包括:波长选择开关WSS;或者,所述第一合分波板包括:合波器MUX和分波器DEMUX。
  9. 一种光传输系统,其特征在于,包括:第一光传输设备和第二光传输设备;其中所述第一光传输设备为权利要求1-8任一项所述的光传输设备;所述第一光传输设备的光放大板的第二端口与所述第二光传输设备光连接;
    在第一传输方向上,所述第一光传输设备用于接收客户业务数据,并对所述客户业务数据进行处理,将处理后的承载了所述客户业务数据的光信号通过所述光放大板的第二端口发送给所述第二光传输设备;当满足第一预设条件时,所述第一光传输设备启用备用线路板;
    在第二传输方向上,所述第一光传输设备用于通过所述光放大板的第二端口接收所述第二光传输设备的光信号,并对所述光信号进行处理,转化为客户业务数据发送给客户侧;当满足所述第一预设条件时,所述第一光传输设备启用所述备用线路板。
  10. 根据权利要求9所述的系统,其特征在于,所述第一光传输设备的光放大板的第二端口与所述光传输设备通过光纤连接,或者通过至少一个光放站连接。
  11. 一种光传输方法,其特征在于,应用于权利要求1-8任一项所述的光传输设备,所述方法包括:
    当满足所述第一预设条件时,通过所述电交叉板将所述主用线路板应处理的客户业务数据复制或调度给所述备用线路板,并以所述第一合分波板配合该备用线路板进行合波和分波。
  12. 根据权利要求11所述的方法,其特征在于,所述通过所述电交叉板将所述主用线路板应处理的客户业务数据复制或调度给所述备用线路板,并以所述第一合分波板配合该备用线路板进行合波和分波,具体包括:
    在第一传输方向上,以所述支路板接收客户业务数据;通过所述电交叉板将所述主用线路板应处理的客户业务数据复制或调度给所述备用线路板;由所述备用线路板对该客户业务数据进行电光转换;由所述第一合分波板接收该备用线路板提供的光信号以进行合波;通过所述光放大板将合波后的光信号放大后传输给对端传输设备;所述光信号承载了所述客户业务数据;
    在第二传输方向上,通过所述光放大板接收所述对端设备的光信号并放大;由所述第一合分波板将放大的光信号分波提供给对应的线路板,所述对应的线路板包括该备用线路板;该备用线路板对接收的光信号进行光电转换再提供给所述电交叉板;通过所述电交叉板的调度将该备用线路板处理得到的客户业务数据以支路板的第一端口发送给客户侧。
  13. 根据权利要求11或12所述的方法,其特征在于,若所述光传输设备还包括第二合分波板,则所述方法还包括:
    当满足所述第二预设条件时,通过所述主用线路板和所述备用线路板包括的光连接元件,建立所述主用线路板和所述备用线路板中工作的线路板与所述第二合分波板的光通路,并通过所述光放大板包括的光连接元件建立所述光放大板与所述第二合分波板的光通路。
PCT/CN2021/093267 2020-05-20 2021-05-12 一种光传输设备、系统及光传输方法 WO2021233174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21808530.6A EP4145846A4 (en) 2020-05-20 2021-05-12 OPTICAL TRANSMISSION DEVICE, SYSTEM AND METHOD
US17/990,342 US20230080248A1 (en) 2020-05-20 2022-11-18 Optical Transmission Device, System, and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010430503.8A CN113709601B (zh) 2020-05-20 2020-05-20 一种光传输设备、系统及光传输方法
CN202010430503.8 2020-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/990,342 Continuation US20230080248A1 (en) 2020-05-20 2022-11-18 Optical Transmission Device, System, and Method

Publications (1)

Publication Number Publication Date
WO2021233174A1 true WO2021233174A1 (zh) 2021-11-25

Family

ID=78645615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093267 WO2021233174A1 (zh) 2020-05-20 2021-05-12 一种光传输设备、系统及光传输方法

Country Status (4)

Country Link
US (1) US20230080248A1 (zh)
EP (1) EP4145846A4 (zh)
CN (1) CN113709601B (zh)
WO (1) WO2021233174A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184573A (zh) * 2021-11-27 2023-05-30 华为技术有限公司 光交叉装置和光交叉设备
CN116366157A (zh) * 2021-12-27 2023-06-30 华为技术有限公司 光通信设备和光通信系统
CN117353806A (zh) * 2022-06-29 2024-01-05 中兴通讯股份有限公司 主干光路保护方法和系统、光矩阵设备、电子设备、介质
CN115208460B (zh) * 2022-07-29 2024-05-28 广东三德信息通讯科技有限公司 一种光连接热备保护装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208510A1 (en) * 2002-03-18 2004-10-21 Katsuichi Ohara Optical transmission equipment
CN1921357A (zh) * 2006-09-21 2007-02-28 杭州华为三康技术有限公司 一种全光纤保护装置及其方法
CN102652399A (zh) * 2010-09-10 2012-08-29 华为技术有限公司 光接口线路板的冗余备份方法、系统及光接口线路板
CN109151830A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种频谱整理的方法、装置、设备和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906997B1 (en) * 2000-09-08 2005-06-14 Fujitsu Limited Protection method and system for equipment in a network element
CN105099506A (zh) * 2015-08-21 2015-11-25 江阴长仪集团有限公司 一种电能表rs485通信故障检测自愈的装置及方法
CN105721045B (zh) * 2016-01-19 2018-08-21 华为技术有限公司 一种保护倒换的方法和节点
CN108092734B (zh) * 2017-11-13 2019-08-16 广州供电局有限公司 电力数据传输设备、系统及检测方法
CN107846247B (zh) * 2017-11-14 2019-08-06 烽火通信科技股份有限公司 一种保护倒换系统及方法
US10187063B1 (en) * 2017-11-29 2019-01-22 Arm Limited Sequential logic device with single-phase clock operation
CN208508943U (zh) * 2018-06-13 2019-02-15 中国移动通信集团广东有限公司 一种光纤线路监测系统
CN110708254B (zh) * 2018-07-09 2023-04-18 华为技术有限公司 一种业务处理方法、控制设备及存储介质
CN109361453A (zh) * 2018-10-15 2019-02-19 江西山水光电科技股份有限公司 一种otn传送网设备中的主备倒换电路及倒换方法
CN109542693A (zh) * 2018-11-27 2019-03-29 郑州云海信息技术有限公司 一种基于bios芯片备用功能的电路系统及其设计方法
CN111082890B (zh) * 2019-11-11 2021-07-27 国家电网有限公司 基于otn富余波的olp通道保护切换方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208510A1 (en) * 2002-03-18 2004-10-21 Katsuichi Ohara Optical transmission equipment
CN1921357A (zh) * 2006-09-21 2007-02-28 杭州华为三康技术有限公司 一种全光纤保护装置及其方法
CN102652399A (zh) * 2010-09-10 2012-08-29 华为技术有限公司 光接口线路板的冗余备份方法、系统及光接口线路板
CN109151830A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种频谱整理的方法、装置、设备和系统

Also Published As

Publication number Publication date
US20230080248A1 (en) 2023-03-16
CN113709601A (zh) 2021-11-26
CN113709601B (zh) 2022-10-28
EP4145846A1 (en) 2023-03-08
EP4145846A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2021233174A1 (zh) 一种光传输设备、系统及光传输方法
JP3068018B2 (ja) 光波長分割多重リングシステム
CN101167274B (zh) 基于波长保护的无源光网络系统及其保护备份方法
EP1825627A1 (en) Method and apparatus for protecting optical signals within a wavelength division multiplexed environment
EP2493096B1 (en) Method, system and device for single-fiber bidirectional ring network protection
US20060250681A1 (en) Inter-network optical fiber sharing system
JPWO2004107626A1 (ja) 光波長多重アクセスシステム
KR20050017702A (ko) 절체형 미디어 변환기와 그를 포함하는 상하향 동일파장의 링형 wdm pon 시스템
WO2008019608A1 (fr) Procédé, système et appareil pour protéger une transmission à multiplexage par répartition en longueur d'onde
JP2006287936A (ja) 光ネットワーク、光ネットワークのプロテクション方法及びノード
US10498479B2 (en) Reconfigurable add/drop multiplexing in optical networks
US7146102B2 (en) Optical cross-connect device
US20080292310A1 (en) Method, Apparatus And System For Optical Channel Group Shared Protection
US6185021B1 (en) Cross-connecting optical translator array
JP5029068B2 (ja) 無線基地局
US7302180B2 (en) Dual homing for DWDM networks in fiber rings
JP2000078080A (ja) 光スイッチング装置
KR20100040532A (ko) 파장 분할 다중화 시스템에서 광 회선 분배 장치 및 방법
US20020105693A1 (en) Optical transmission unit and system
CN110113258B (zh) 一种利用控制面链路自动保护数据面链路的方法和系统
WO2023061297A1 (zh) 一种波分复用设备及光信号处理方法
CN110582033A (zh) 智能定义光隧道网络系统与网络系统控制方法
JPWO2015129290A1 (ja) 波長冗長装置及び波長冗長方法
US6922530B1 (en) Method and apparatus for optical channel switching in an optical add/drop multiplexer
EP3582416B1 (en) Intelligence - defined optical tunnel network system and network system control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021808530

Country of ref document: EP

Effective date: 20221201

NENP Non-entry into the national phase

Ref country code: DE