WO2021232900A1 - Method and system for adjusting display brightness of an electronic device - Google Patents

Method and system for adjusting display brightness of an electronic device Download PDF

Info

Publication number
WO2021232900A1
WO2021232900A1 PCT/CN2021/080067 CN2021080067W WO2021232900A1 WO 2021232900 A1 WO2021232900 A1 WO 2021232900A1 CN 2021080067 W CN2021080067 W CN 2021080067W WO 2021232900 A1 WO2021232900 A1 WO 2021232900A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
parameter
display brightness
electronic device
processing unit
Prior art date
Application number
PCT/CN2021/080067
Other languages
French (fr)
Inventor
Nitin SETIA
Kaushal Prakash SHARMA
Shobhit Singh
Digvijay Pandey
ABDUSSAMAD, Md
Mandapati SIVA SATVIK
Gupta SUNIL KUMAR
Tiwari VIPIN
Posham RAMESH NAIDU
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2021232900A1 publication Critical patent/WO2021232900A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention generally relates to the field of display brightness of electronic devices and more particularly to a method and system for adjusting display brightness of an electronic device.
  • various options are provided to the users of the electronic devices to manually or automatically adjust the brightness levels.
  • the brightness levels can be adjusted manually or automatically based on the surrounding lightening conditions of the electronic devices.
  • an object of the present disclosure is to provide a novel method and system for adjusting display brightness of an electronic device. It is another object of the invention to use the camera of an electronic device to calculate the required screen brightness for said electronic device. Also, the object of the present invention is to take multiple environment illumination into consideration, to determine safe brightness level and less stress level to human eyes. One of the object of the present invention is to identify and vary the brightness as per the user of each electronic device. It is also an object of the present invention to eliminate the hardware cost relating to the ambient light sensor in an electronic camera device. Yet another object of the present invention is to provide extra space on the electronic camera device, where the ambient light sensor is placed. Also, another object of the present invention is to remove the unnecessary circuitry relating to the ambient light sensor. One more object of the present invention is to optimize power consumption. Yet another object of the present invention is to allow the users to decide their personal range of display brightness value for comfortable and safe vision.
  • the present disclosure provides a method and system for adjusting display brightness of an electronic device.
  • One aspect of the present invention relates to a method for adjusting display brightness of an electronic device.
  • the method comprising initiating, via a processing unit, at least one camera of the electronic device, wherein said camera is initiated after a fixed interval of time. Thereafter the method encompasses receiving, via a receiver unit, at least one real time parameter from said at least one camera.
  • the method further comprises determining, via said processing unit, at least one combined light parameter based on said received at least one real time parameter.
  • the method encompasses mapping, via said processing unit, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera.
  • the method then leads to calculating, via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping.
  • the method encompasses adjusting, via the processing unit, said display brightness of the electronic device based on said calculated final display brightness value.
  • the system comprises a processing unit, configured to initiate, at least one camera of the electronic device, wherein said camera is initiated after a fixed interval of time.
  • the system thereafter comprises a receiver unit, configured to receive, at least one real time parameter from said at least one camera.
  • the processing unit is configured to determine, at least one combined light parameter based on said received at least one real time parameter.
  • the processing unit is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera.
  • the system comprises a brightness calculator unit, configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping. Thereafter the processing unit is further configured to adjust, said display brightness of the electronic device based on said calculated final display brightness value.
  • the electronic device comprises at least one camera, configured to receive at least one camera preview.
  • the electronic device further comprises a system configured to initiate, said at least one camera, wherein said camera is initiated after a fixed interval of time.
  • the system further configured to receive, at least one real time parameter from said at least one camera. Thereafter the system is configured to determine, at least one combined light parameter based on said received at least one real time parameter.
  • the system further configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. Further the system is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping. Thereafter, the system is configured to adjust, said display brightness of the electronic device based on said calculated final display brightness value.
  • FIG. 1 illustrates a block diagram of the system [100] connected to an electronic device [102] , for adjusting display brightness of said electronic device [102] , in accordance with exemplary embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary method [200] for adjusting display brightness of an electronic device [102] , in accordance with exemplary embodiment of the present disclosure.
  • the adjustment of the brightness of the electronic devices is generally based on the details obtained by the ambient light sensor implemented in said electronic devices. Also, as there are number of other sensing units implemented in these electronic devices for various purposes, each of which can be used in place of, or to assist the other implemented sensing units to perform certain tasks.
  • the present invention provides the users, a solution relating to the adjustment of the display brightness of an electronic device.
  • the present invention makes the use of one or more cameras of the electronic device to calculate the display brightness value of said electronic device.
  • the present invention also eliminates the use of ambient light sensor to calculate brightness value by using the camera of the electronic devices.
  • the invention provides a method and system for adjusting display brightness of an electronic device comprising at least one camera. Further in order to adjust the display brightness the present invention encompasses initiating, via a processing unit, said at least one camera, wherein said camera is initiated after a fixed interval of time. The present invention thereafter comprises receiving, via a receiver unit, at least one real time parameter from said at least one camera. The processing unit of the current invention thereafter configured to determine at least one combined light parameter using said received at least one real time parameter. Also, the present invention encompasses mapping, via said processing unit, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera.
  • the present invention then calculates via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping.
  • the present invention also encompasses storing said final display brightness value at a storage unit.
  • the current invention thereafter encompasses adjusting, via the processing unit, said display brightness of the electronic device based on said calculated final display brightness value.
  • an “electronic device” may be any electrical, electronic, electromechanical and computing device or equipment, having one or more camera units installed on it.
  • the electronic device may include, but is not limited to, a mobile phone, smart phone, laptop, a general-purpose computer, desktop, personal digital assistant, tablet computer, wearable device or any other computing device which is capable of implementing the features of the present invention and is obvious to a person skilled in the art.
  • a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions.
  • a processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc.
  • the processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
  • a “receiving unit” may be a part of a transceiver unit or a unique receiver unit configured to receive one or more data from various units/modules of the electronic device and/or the system to implement the features of the present invention.
  • a “storage unit” refers to a machine or computer-readable medium including any mechanism for storing information in a form readable by a computer or similar machine.
  • a computer-readable medium includes read-only memory ( “ROM” ) , random access memory ( “RAM” ) , magnetic disk storage media, optical storage media, flash memory devices or other types of machine-accessible storage media.
  • a “camera” may include one or more camera units installed on any electronic device.
  • a “brightness calculator unit” may be an intelligent unit having a computing capability and/or any other such similar unit configured to implement the features of the present invention and is obvious to a person skilled in the art.
  • FIG. 1 illustrates a system [100] for adjusting a display brightness of an electronic device [102] , wherein the electronic device [102] comprising at least one camera [102A1] , [102A2] , [102A3] across [102AN] (Collectively referred to as camera/s [102A] ) . Further the system [100] comprises at least one processing unit [104] , at least one receiving unit [106] , at least one brightness calculator unit [108] and at least one storage unit [110] , wherein all the components are assumed to be connected to each other unless otherwise indicated below. Also, in Fig.
  • the at least one processing unit [104] of the system [100] is configured to initiate, the at least one camera [102A] of the electronic device [102] , wherein said camera [102A] is initiated after a fixed interval of time.
  • the camera [102A] will be initiated by the processing unit [104] after each 2 seconds when the lighting conditions are poor and in one other example the camera [102A] will be initiated by the processing unit [104] after each 4 seconds when the lighting conditions are good.
  • the processing unit [104] is further configured to initiate the at least one camera [102A] by initiating a subset of modules of said at least one camera [102A] .
  • a camera [102A] of an electronic device comprises a number of modules and these modules relates to some specific operations/tasks. Further some of the modules are related to capture the color details of an object to be captured and some other modules are related to capture the lighting conditions of the environment.
  • the processing unit [104] is configured to initiate only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
  • the receiving unit [106] of the present invention is connected to the processing unit [104] , wherein the receiving unit [106] is configured to receive, at least one real time parameter from said at least one camera [102A] .
  • the real time parameters includes but not limited to lighting parameters and are based on various environmental conditions. The real time parameters will be different under different environmental conditions such as low light environment, bright light environment etc.
  • the receiving unit [106] also receives luminosity of environment along with the at least one real time parameter.
  • the processing unit [104] is configured to determine, at least one combined light parameter based on said received at least one real time parameter.
  • the one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain.
  • the luminance parameters are based on one or more objects and scenes detected by the camera [102A] and are directly proportional to environment light.
  • the luminance parameters are further based on a field of view parameter, metering type and face etc.
  • the processing unit is also configured to provide an average metering type.
  • the processing unit is configured to compensates said impact by average metering such that each portion of the field of view have equal weightage.
  • the exposure time is the time duration for which the camera [102A] is initiated to receive at least one real time parameter, also the exposure time is inversely proportional to environment light.
  • the gain is the amplification of one or more signals in the camera [102A] with respect to light, to get clearer image of an object in the surrounding environment to further receive at least one real time parameter from said image.
  • the gain is also inversely proportional to environment light.
  • the determination of the at least one combined light parameter is based on a maximum field of view parameter.
  • the maximum range of the field of view of the camera [102A] is considered as the maximum field of view parameter, which further provides the best image quality to determine said at least one combined light parameter.
  • the luminance parameters and the gain is also based on the maximum field of view parameter.
  • the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
  • the processing unit [104] is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Further the said mapping is shown as below:
  • Camera LUX parameter C 0 * (1/X) 0 + C 1 * (1/X) 1 + C 2 * (1/X) 2 + C 3 * (1/X) 3 + C 4 * (1/X) 4 + Constant
  • the processing unit [104] is further configured to map, said at least one combined light parameter to at least one camera LUX parameter based on at least one pre-collected data.
  • the pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments.
  • the pre-collected data is stored at the storage unit [110] and is accessed by the processing unit [104] from said storage unit [110] to perform said mapping. In an instance, for said mapping in a particular environment condition, the processing unit [104] may select the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions.
  • the at least one brightness calculator unit [108] is connected to said processing unit [104] and the receiving unit [106] .
  • the brightness calculator unit [108] is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter.
  • the processing unit [104] is further configured to adjust, said display brightness value of the electronic device [102] based on said calculated final display brightness value. For instance, the processing unit [104] will take appropriate action to increase or decrease the display brightness value of the electronic device [102] to adjust the display brightness value of the electronic device [102] according to said final display brightness value.
  • the at least one storage unit [110] connected to said brightness calculator unit [108] is configured to store said final display brightness value.
  • processing unit [104] is further configured to adjust said final display brightness value on the basis of a received user input.
  • the user may access the final display brightness value from the stored final display brightness values and may further increase or decrease via processing unit [104] said final display brightness value according to the personal user specific requirement.
  • FIG. 2 an exemplary method flow diagram [200] , depicting method of adjusting display brightness of an electronic device [102] comprising at least one camera [102A] , in accordance with exemplary embodiment of the present disclosure is shown. As shown in Fig. 2, the method begins at step [202] .
  • the method comprises initiating, via a processing unit [104] , said at least one camera [102A] , wherein said camera [102A] is initiated after a fixed interval of time.
  • the method [200] of the present invention initiates the camera [102A] of the electronic device [102] , after each 3 seconds when the lighting conditions are poor and in one other instance the camera [102A] will be initiated by after each 4 seconds when the lighting conditions are good.
  • the frequency of the initiation of the camera [102A] is dependent on the lighting condition of the surrounding environment on said camera [102A] . Further, said frequency will be high (i.e. the camera will be initiated frequently) in low lighting conditions and the frequency will be comparatively low in high lighting conditions.
  • the time duration for which said camera is initiated is may be a pre-defined fixed time duration and in other instance said time duration may be dependent on the lighting condition of the surrounding environment of said camera [102A] , such that in poor lighting conditions the camera may be initiated for comparatively more time duration as compared to the better lighting conditions.
  • a camera [102A] of an electronic device [102] comprises a number of modules and these modules relates to some specific operations/tasks. Further some of the modules are related to capture the color details of an object to be captured and some other modules are related to capture the lighting conditions of the environment.
  • the method encompasses initiating only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
  • the method encompasses, receiving, via a receiver unit [106] , at least one real time parameter from said at least one camera [102A] .
  • the real time parameters includes but not limited to lighting parameters and are based on various environmental conditions. The real time parameters will be different under different environmental conditions such as low light environment, bright light environment etc.
  • the method [200] of the present invention also encompasses receiving luminosity of environment along with the at least one real time parameter.
  • the method encompasses, determining, via said processing unit [104] , at least one combined light parameter based on said received at least one real time parameter.
  • the one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain.
  • the luminance parameters are based on one or more objects and scenes detected by the camera [102A] and are directly proportional to environment light.
  • the luminance parameters are further based on a field of view parameter, metering type and face etc. Further, the method also encompasses providing an average metering type.
  • the method comprises compensating said impact by average metering such that each portion of the field of view have equal weightage.
  • the exposure time is the time duration for which the camera [102A] is initiated to receive at least one real time parameter, also the exposure time is inversely proportional to environment light.
  • the gain is the amplification of one or more signals in the camera [102A] with respect to light. The gain is applied to get clearer image of an object in the surrounding environment of the camera [102A] to further receive at least one real time parameter from said image. The gain is also inversely proportional to environment light.
  • the method comprises determining said at least one combined light parameter based on a maximum field of view parameter.
  • the maximum range of the field of view of the camera [102A] is considered as the maximum field of view parameter, which further provides the best image quality to determine said at least one combined light parameter.
  • the luminance parameters and the gain is also based on the maximum field of view parameter.
  • the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
  • the method comprises, mapping, via said processing unit [104] , said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Further the said mapping is shown as below:
  • Camera LUX parameter C 0 * (1/X) 0 + C 1 * (1/X) 1 + C 2 * (1/X) 2 + C 3 * (1/X) 3 + C 4 * (1/X) 4 + Constant
  • the method further comprises, mapping of said at least one combined light parameter to at least one camera LUX parameter, based on at least one pre-collected data.
  • the pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments.
  • the method encompasses storing of the pre-collected data at a storage unit [110] .
  • the method also comprising accessing of said stored at least one pre-collected data, by the processing unit [104] from said storage unit [110] to perform said mapping.
  • the method may comprises selecting the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions as that of the combined light parameters.
  • the method then leads to step [212] , at step [212] the method encompasses calculating, via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter. Further at step [214] , the method comprises adjusting, via the processing unit [104] , said display brightness of the electronic device [102] based on said calculated final display brightness value. For instance, method via the processing unit [104] will take appropriate action to increase or decrease the display brightness value of the electronic device [102] to adjust the display brightness value of the electronic device [102] according to said final display brightness value. Further, the method also encompasses storing said final display brightness value at the storage unit [110] .
  • the method thereafter encompasses further adjusting via the processing unit [104] , said final display brightness value on the basis of a received user input.
  • the user may access the final display brightness value from the stored final display brightness values and may further increase or decrease via the processing unit [104] said final display brightness value according to the personal user specific requirement.
  • the method After successful adjustment of the display brightness of the electronic device [102] , the method further terminates at step [216] .
  • the one more aspect of the present invention relates to an electronic device [102] for adjusting display brightness of said electronic device.
  • the electronic device [102] comprises at least one camera [102A] and at least one system [100] .
  • the at least one camera [102A] of the electronic device [102] is configured to receive at least one camera preview.
  • the camera preview is further comprises a field of view parameter, wherein in order to implement the features of the present invention said field of view parameter is taken as the maximum field of view parameter.
  • the system [100] connected to the at least one camera [102A] and is configured to initiate, said at least one camera [102A] , wherein said camera [102A] is initiated after a fixed interval of time.
  • said fixed interval of time is fixed for similar environment conditions and also may vary for different environment conditions. For instance, camera [102A] will be initiated by the system [100] after each 2 seconds when the lighting conditions are poor and in one other example the camera [102A] will be initiated by the system [100] after each 4 seconds when the lighting conditions are good.
  • the system [100] is further configured to initiate the at least one camera [102A] by initiating a subset of modules of said at least one camera [102A] .
  • the system [100] is configured to initiate only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
  • the system [100] also is configured to receive, at least one real time parameter from said at least one camera [102A] .
  • the real time parameters includes but not limited to lighting parameters and are based on various environmental conditions.
  • the system [100] also configured to receives luminosity of environment along with the at least one real time parameter.
  • the system [100] configured to determine, at least one combined light parameter based on said received at least one real time parameter.
  • the one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain.
  • the determination of the at least one combined light parameter is based on the maximum field of view parameter to obtain the best image quality to determine said at least one combined light parameter.
  • the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
  • the system [100] is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Also, the system [100] is further configured to map, said at least one combined light parameter to at least one camera LUX parameter on the basis of at least one pre-collected data.
  • the pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments.
  • the pre-collected data is stored at the storage unit [110] of the system [100] and is accessed by the processing unit [104] of the system [100] to perform said mapping. In an instance, for said mapping in a particular environment condition, the system [100] may select the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions.
  • system [100] is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter.
  • the system [100] also further configured to adjust, said display brightness value of the electronic device [102] on the basis of said calculated final display brightness value. Thereafter the system [100] stores said final display brightness value at the storage unit [110] .
  • system is also configured to adjust said final display brightness value on the basis of a received user input.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

The invention provides methods and system for adjusting display brightness of an electronic device comprising at least one camera. The method encompasses initiating, said at least one camera, wherein said camera is initiated after a fixed interval of time. Further the method comprising, receiving, at least one real time parameter from said at least one camera. The method then determines, at least one combined light parameter based on said received at least one real time parameter. Next, the method encompasses mapping, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. Further the method calculates a final display brightness value, wherein said final value is calculated based on said mapping. Thereafter the method encompasses adjusting, said display brightness of the electronic device based on said calculated final display brightness value.

Description

METHOD AND SYSTEM FOR ADJUSTING DISPLAY BRIGHTNESS OF AN ELECTRONIC DEVICE
FIELD OF INVENTION
The present invention generally relates to the field of display brightness of electronic devices and more particularly to a method and system for adjusting display brightness of an electronic device.
BACKGROUND
This section is intended to provide information relating to field of the invention and thus any approach or functionality described below should not be assumed to be qualified as prior art merely by its inclusion in this section.
The use of electronic devices has been increased to a great extent over the past few years. With the increasing use of these electronic devices, the exposure of the users to the display of such electronic device is also increased, which further leads to a detrimental impact on the vision of the user. Further to control the brightness of the display of any electronic device different brightness adjustment settings are provided in the electronic devices.
For instance, in order to control the brightness levels, various options are provided to the users of the electronic devices to manually or automatically adjust the brightness levels. The brightness levels can be adjusted manually or automatically based on the surrounding lightening conditions of the electronic devices.
Further, although the existing technologies have provided various solutions to adjust the brightness of electronic device/sin best possible way, but these currently known solutions have many limitations and therefore there is a need for improvement in this area of technology.
SUMMARY
This section is provided to introduce certain objects and aspects of the present disclosure in a simplified form that are further described below in the detailed description. This summary is not intended to identify the key features or the scope of the claimed subject matter.
In order to overcome at least a few problems associated with the known solutions as provided in the previous section, an object of the present disclosure is to provide a novel method and system for adjusting display brightness of an electronic device. It is another object of the invention to use the camera of an electronic device to calculate the required screen brightness for said electronic device. Also, the object of the present invention is to take multiple environment illumination into consideration, to determine safe brightness level and less stress level to human eyes. One of the object of the present invention is to identify and vary the brightness as per the user of each electronic device. It is also an object of the present invention to eliminate the hardware cost relating to the ambient light sensor in an electronic camera device. Yet another object of the present invention is to provide extra space on the electronic camera device, where the ambient light sensor is placed. Also, another object of the present invention is to remove the unnecessary circuitry relating to the ambient light sensor. One more object of the present invention is to optimize power consumption. Yet another object of the present invention is to allow the users to decide their personal range of display brightness value for comfortable and safe vision.
In order to achieve the afore-mentioned objectives, the present disclosure provides a method and system for adjusting display brightness of an electronic device.
One aspect of the present invention relates to a method for adjusting display brightness of an electronic device. The method comprising initiating, via a processing unit, at least one camera of the electronic device, wherein said camera is initiated after a fixed interval of time. Thereafter the method encompasses receiving,  via a receiver unit, at least one real time parameter from said at least one camera. The method further comprises determining, via said processing unit, at least one combined light parameter based on said received at least one real time parameter. Further the method encompasses mapping, via said processing unit, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. The method then leads to calculating, via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping. Further the method encompasses adjusting, via the processing unit, said display brightness of the electronic device based on said calculated final display brightness value.
Another aspect of the present invention relates to a system for adjusting display brightness of an electronic device. The system comprises a processing unit, configured to initiate, at least one camera of the electronic device, wherein said camera is initiated after a fixed interval of time. The system thereafter comprises a receiver unit, configured to receive, at least one real time parameter from said at least one camera. Further the processing unit is configured to determine, at least one combined light parameter based on said received at least one real time parameter. Also, the processing unit is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. Further, the system comprises a brightness calculator unit, configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping. Thereafter the processing unit is further configured to adjust, said display brightness of the electronic device based on said calculated final display brightness value.
Yet another aspect of the present invention relates to an electronic device for adjusting display brightness of said electronic device. The electronic device comprises at least one camera, configured to receive at least one camera preview. The electronic device further comprises a system configured to initiate, said at least one camera, wherein said camera is initiated after a fixed interval of time. The system further configured to receive, at least one real time parameter from said at least one camera. Thereafter the system is configured to  determine, at least one combined light parameter based on said received at least one real time parameter. The system further configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. Further the system is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping. Thereafter, the system is configured to adjust, said display brightness of the electronic device based on said calculated final display brightness value.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein, and constitute a part of this disclosure, illustrate exemplary embodiments of the disclosed methods and systems in which like reference numerals refer to the same parts throughout the different drawings. Components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Some drawings may indicate the components using block diagrams and may not represent the internal circuitry of each component. It will be appreciated by those skilled in the art that disclosure of such drawings includes disclosure of electrical components, electronic components or circuitry commonly used to implement such components.
FIG. 1 illustrates a block diagram of the system [100] connected to an electronic device [102] , for adjusting display brightness of said electronic device [102] , in accordance with exemplary embodiment of the present disclosure.
FIG. 2 illustrates an exemplary method [200] for adjusting display brightness of an electronic device [102] , in accordance with exemplary embodiment of the present disclosure.
The foregoing shall be more apparent from the following more detailed description of the disclosure.
DETAILED DESCRIPTION
In the following description, for the purposes of explanation, various specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. It will be apparent, however, that embodiments of the present invention may be practiced without these specific details. Several features described hereafter can each be used independently of one another or with any combination of other features. An individual feature may not address any of the problems discussed above or might address only some of the problems discussed above. Some of the problems discussed above might not be fully addressed by any of the features described herein.
As it is important to adjust the display brightness of the electronic devices, a number of solutions have been developed over a period of time. The adjustment of the brightness of the electronic devices is generally based on the details obtained by the ambient light sensor implemented in said electronic devices. Also, as there are number of other sensing units implemented in these electronic devices for various purposes, each of which can be used in place of, or to assist the other implemented sensing units to perform certain tasks.
However, the electronic devices equipped with dedicated hardware sensing units for some particular tasks (such as ambient light sensors for adjustment of display brightness etc. ) along with the other hardware sensing units which can be used in place of such said dedicated hardware sensing units, leads to an additional hardware cost and space management issues.
Further, to deal with such problem a number of prior art solutions have been provided time to time but these prior art solutions are limited to various hardware calibrations and are fixed.
Therefore, it is apparent from the aforementioned problems and limitations, that there exists a need to provide a brightness management solution irrespective of a particular dedicated ambient light sensor to determine an optimum brightness value for the users of the electronic devices.
The present invention provides the users, a solution relating to the adjustment of the display brightness of an electronic device. The present invention makes the use of one or more cameras of the electronic device to calculate the display brightness value of said electronic device. The present invention also eliminates the use of ambient light sensor to calculate brightness value by using the camera of the electronic devices.
More specifically, the invention provides a method and system for adjusting display brightness of an electronic device comprising at least one camera. Further in order to adjust the display brightness the present invention encompasses initiating, via a processing unit, said at least one camera, wherein said camera is initiated after a fixed interval of time. The present invention thereafter comprises receiving, via a receiver unit, at least one real time parameter from said at least one camera. The processing unit of the current invention thereafter configured to determine at least one combined light parameter using said received at least one real time parameter. Also, the present invention encompasses mapping, via said processing unit, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera. The present invention then calculates via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping. The present invention also encompasses storing said final display brightness value at a storage unit. Also, the current invention thereafter encompasses adjusting, via the processing unit, said display brightness of the electronic device based on said calculated final display brightness value.
As used herein, an “electronic device” , “electronic camera device” , “user device” , “smart device” , and/or “multiple camera device” may be any electrical, electronic, electromechanical and computing device or equipment, having one or more camera units installed on it. The electronic device may include, but is not limited to, a mobile phone, smart phone, laptop, a general-purpose computer, desktop, personal digital assistant, tablet computer, wearable device or any other computing device which is capable of implementing the features of the present invention and is obvious to a person skilled in the art.
As used herein, a “processing unit” or “processor” includes one or more processors, wherein processor refers to any logic circuitry for processing instructions. A processor may be a general-purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits, Field Programmable Gate Array circuits, any other type of integrated circuits, etc. The processor may perform signal coding data processing, input/output processing, and/or any other functionality that enables the working of the system according to the present disclosure. More specifically, the processor or processing unit is a hardware processor.
As used herein, a “receiving unit” may be a part of a transceiver unit or a unique receiver unit configured to receive one or more data from various units/modules of the electronic device and/or the system to implement the features of the present invention.
As used herein, a “storage unit” refers to a machine or computer-readable medium including any mechanism for storing information in a form readable by a computer or similar machine. For example, a computer-readable medium includes read-only memory ( “ROM” ) , random access memory ( “RAM” ) , magnetic disk storage media, optical storage media, flash memory devices or other types of machine-accessible storage media.
As used herein, a “camera” , may include one or more camera units installed on any electronic device.
As used herein, a “brightness calculator unit” may be an intelligent unit having a computing capability and/or any other such similar unit configured to implement the features of the present invention and is obvious to a person skilled in the art.
The invention is further explained in detail below with reference now to the diagrams.
FIG. 1 illustrates a system [100] for adjusting a display brightness of an electronic device [102] , wherein the electronic device [102] comprising at least one camera [102A1] , [102A2] , [102A3] ….. [102AN] (Collectively referred to as camera/s [102A] ) . Further the system [100] comprises at least one processing unit [104] , at least one receiving unit [106] , at least one brightness calculator unit [108] and at least one storage unit [110] , wherein all the components are assumed to be connected to each other unless otherwise indicated below. Also, in Fig. 1 only few units are shown, however the system [100] may comprise multiple such units or the system may comprise any such numbers of said units, obvious to a person skilled in the art to implement the features of the present invention. Also, there may be one or more subunits of the units shown in Fig. 1 and the same is not shown in the Fig. 1 for the purpose of clarity.
The at least one processing unit [104] of the system [100] is configured to initiate, the at least one camera [102A] of the electronic device [102] , wherein said camera [102A] is initiated after a fixed interval of time. For example the camera [102A] will be initiated by the processing unit [104] after each 2 seconds when the lighting conditions are poor and in one other example the camera [102A] will be initiated by the processing unit [104] after each 4 seconds when the lighting conditions are good.
Also, the processing unit [104] is further configured to initiate the at least one camera [102A] by initiating a subset of modules of said at least one camera [102A] . For instance, a camera [102A] of an electronic device comprises a number of modules and these modules relates to some specific operations/tasks. Further some of the modules are related to capture the color details of an object to be captured and some other modules are related to capture the lighting conditions of the environment. The processing unit [104] is configured to initiate only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
The receiving unit [106] of the present invention is connected to the processing unit [104] , wherein the receiving unit [106] is configured to receive, at least one real time parameter from said at least one camera [102A] . The real time parameters includes but not limited to lighting parameters and are based on various environmental conditions. The real time parameters will be different under different environmental conditions such as low light environment, bright light environment etc. The receiving unit [106] also receives luminosity of environment along with the at least one real time parameter.
Thereafter, the processing unit [104] is configured to determine, at least one combined light parameter based on said received at least one real time parameter. The one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain. The luminance parameters are based on one or more objects and scenes detected by the camera [102A] and are directly proportional to environment light. The luminance parameters are further based on a field of view parameter, metering type and face etc. Further, the processing unit is also configured to provide an average metering type. For instance, when a camera [102A] is pointing to a user’s face, the face will impact the environment light values, but to get accurate environment light value, the processing unit is configured to compensates said impact by average metering such that each portion of the field of view have equal weightage.
Further, the exposure time is the time duration for which the camera [102A] is initiated to receive at least one real time parameter, also the exposure time is inversely proportional to environment light. The gain is the amplification of one or more signals in the camera [102A] with respect to light, to get clearer image of an object in the surrounding environment to further receive at least one real time parameter from said image. The gain is also inversely proportional to environment light.
Also, the determination of the at least one combined light parameter is based on a maximum field of view parameter. The maximum range of the field of view of the camera [102A] is considered as the maximum field of view parameter, which further provides the best image quality to determine said at least one combined  light parameter. Also, the luminance parameters and the gain is also based on the maximum field of view parameter.
Further the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
Thereafter, the processing unit [104] is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Further the said mapping is shown as below:
Camera LUX parameter = C 0* (1/X)  0 + C 1* (1/X)  1 + C 2* (1/X)  2 + C 3* (1/X)  3+ C 4* (1/X)  4 + Constant
[X = Combined light parameter, C n  = Coefficients of polynomial]
Also, the processing unit [104] is further configured to map, said at least one combined light parameter to at least one camera LUX parameter based on at least one pre-collected data. The pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments. The pre-collected data is stored at the storage unit [110] and is accessed by the processing unit [104] from said storage unit [110] to perform said mapping. In an instance, for said mapping in a particular environment condition, the processing unit [104] may select the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions.
Further, the at least one brightness calculator unit [108] is connected to said processing unit [104] and the receiving unit [106] . The brightness calculator unit [108] is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter.
Thereafter, the processing unit [104] is further configured to adjust, said display brightness value of the electronic device [102] based on said calculated final display brightness value. For instance, the processing unit [104] will take appropriate action to increase or decrease the display brightness value of the electronic device [102] to adjust the display brightness value of the electronic device [102] according to said final display brightness value.
Further, the at least one storage unit [110] connected to said brightness calculator unit [108] , is configured to store said final display brightness value.
Thereafter, the processing unit [104] is further configured to adjust said final display brightness value on the basis of a received user input. For instance, the user may access the final display brightness value from the stored final display brightness values and may further increase or decrease via processing unit [104] said final display brightness value according to the personal user specific requirement.
Referring to Fig. 2, an exemplary method flow diagram [200] , depicting method of adjusting display brightness of an electronic device [102] comprising at least one camera [102A] , in accordance with exemplary embodiment of the present disclosure is shown. As shown in Fig. 2, the method begins at step [202] .
At step [204] , the method comprises initiating, via a processing unit [104] , said at least one camera [102A] , wherein said camera [102A] is initiated after a fixed interval of time. For instance the method [200] of the present invention initiates the camera [102A] of the electronic device [102] , after each 3 seconds when the lighting conditions are poor and in one other instance the camera [102A] will be initiated by after each 4 seconds when the lighting conditions are good. The frequency of the initiation of the camera [102A] is dependent on the lighting condition of the surrounding environment on said camera [102A] . Further, said frequency will be high (i.e. the camera will be initiated frequently) in low lighting conditions and the  frequency will be comparatively low in high lighting conditions. Also, in an instance the time duration for which said camera is initiated is may be a pre-defined fixed time duration and in other instance said time duration may be dependent on the lighting condition of the surrounding environment of said camera [102A] , such that in poor lighting conditions the camera may be initiated for comparatively more time duration as compared to the better lighting conditions.
Also, further the initiating of said at least one camera [102A] further comprising initiating a subset of modules of said at least one camera [102A] . For instance, a camera [102A] of an electronic device [102] comprises a number of modules and these modules relates to some specific operations/tasks. Further some of the modules are related to capture the color details of an object to be captured and some other modules are related to capture the lighting conditions of the environment. The method encompasses initiating only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
Next, at step [206] , the method encompasses, receiving, via a receiver unit [106] , at least one real time parameter from said at least one camera [102A] . The real time parameters includes but not limited to lighting parameters and are based on various environmental conditions. The real time parameters will be different under different environmental conditions such as low light environment, bright light environment etc. The method [200] of the present invention also encompasses receiving luminosity of environment along with the at least one real time parameter.
Next, at step [208] , the method encompasses, determining, via said processing unit [104] , at least one combined light parameter based on said received at least one real time parameter. The one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain. The luminance parameters are based on one or more objects and scenes detected by the camera [102A] and are  directly proportional to environment light. The luminance parameters are further based on a field of view parameter, metering type and face etc. Further, the method also encompasses providing an average metering type. For instance, when a camera [102A] is pointing to a user’s face, the face will impact the environment light values, but to get accurate environment light value, the method comprises compensating said impact by average metering such that each portion of the field of view have equal weightage.
Further, the exposure time is the time duration for which the camera [102A] is initiated to receive at least one real time parameter, also the exposure time is inversely proportional to environment light. The gain is the amplification of one or more signals in the camera [102A] with respect to light. The gain is applied to get clearer image of an object in the surrounding environment of the camera [102A] to further receive at least one real time parameter from said image. The gain is also inversely proportional to environment light.
Also, the method comprises determining said at least one combined light parameter based on a maximum field of view parameter. The maximum range of the field of view of the camera [102A] is considered as the maximum field of view parameter, which further provides the best image quality to determine said at least one combined light parameter. Also, the luminance parameters and the gain is also based on the maximum field of view parameter.
Further the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
Thereafter, at step [210] , the method comprises, mapping, via said processing unit [104] , said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Further the said mapping is shown as below:
Camera LUX parameter = C 0* (1/X)  0 + C 1* (1/X)  1 + C 2* (1/X)  2 + C 3* (1/X)  3+ C 4* (1/X)  4 + Constant
[X = Combined light parameter, C n  = Coefficients of polynomial]
Also, the method further comprises, mapping of said at least one combined light parameter to at least one camera LUX parameter, based on at least one pre-collected data. The pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments. The method encompasses storing of the pre-collected data at a storage unit [110] . The method also comprising accessing of said stored at least one pre-collected data, by the processing unit [104] from said storage unit [110] to perform said mapping. In an instance, for said mapping in a particular environment condition, the method may comprises selecting the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions as that of the combined light parameters.
The method then leads to step [212] , at step [212] the method encompasses calculating, via a brightness calculator unit, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter. Further at step [214] , the method comprises adjusting, via the processing unit [104] , said display brightness of the electronic device [102] based on said calculated final display brightness value. For instance, method via the processing unit [104] will take appropriate action to increase or decrease the display brightness value of the electronic device [102] to adjust the display brightness value of the electronic device [102] according to said final display brightness value. Further, the method also encompasses storing said final display brightness value at the storage unit [110] .
The method thereafter encompasses further adjusting via the processing unit [104] , said final display brightness value on the basis of a received user input. For instance, the user may access the final display brightness value from the stored final display brightness values and may further increase or decrease via the processing unit [104] said final display brightness value according to the personal user specific requirement.
After successful adjustment of the display brightness of the electronic device [102] , the method further terminates at step [216] .
Furthermore, the one more aspect of the present invention relates to an electronic device [102] for adjusting display brightness of said electronic device. The electronic device [102] comprises at least one camera [102A] and at least one system [100] . The at least one camera [102A] of the electronic device [102] is configured to receive at least one camera preview. The camera preview is further comprises a field of view parameter, wherein in order to implement the features of the present invention said field of view parameter is taken as the maximum field of view parameter.
The system [100] connected to the at least one camera [102A] and is configured to initiate, said at least one camera [102A] , wherein said camera [102A] is initiated after a fixed interval of time. Further said fixed interval of time is fixed for similar environment conditions and also may vary for different environment conditions. For instance, camera [102A] will be initiated by the system [100] after each 2 seconds when the lighting conditions are poor and in one other example the camera [102A] will be initiated by the system [100] after each 4 seconds when the lighting conditions are good.
The system [100] is further configured to initiate the at least one camera [102A] by initiating a subset of modules of said at least one camera [102A] . The system [100] is configured to initiate only the required modules depending on the environmental conditions in order to reduce the power consumption and to enhance the processing speed by avoiding unnecessary initiation of multiple unrequired camera modules of the camera [102A] .
The system [100] also is configured to receive, at least one real time parameter from said at least one camera [102A] . The real time parameters includes but not limited to lighting parameters and are based on various  environmental conditions. The system [100] also configured to receives luminosity of environment along with the at least one real time parameter.
Further the system [100] configured to determine, at least one combined light parameter based on said received at least one real time parameter. The one or more combined light parameters are further based on one or more luminance parameters, exposure time and gain. Also, the determination of the at least one combined light parameter is based on the maximum field of view parameter to obtain the best image quality to determine said at least one combined light parameter. Further the combined light parameters are also based on a positive correlativity between the at least one real time parameter and the environmental luminosity.
Thereafter the system [100] is configured to map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera [102A] . Also, the system [100] is further configured to map, said at least one combined light parameter to at least one camera LUX parameter on the basis of at least one pre-collected data. The pre-collected data includes but not limited to a plurality of light parameters pre-collected in different lighting environments. The pre-collected data is stored at the storage unit [110] of the system [100] and is accessed by the processing unit [104] of the system [100] to perform said mapping. In an instance, for said mapping in a particular environment condition, the system [100] may select the one or more combined light parameters on the basis of said stored pre-collected data relating to similar environment conditions.
Further the system [100] is configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping of said at least one combined light parameter to at least one camera LUX parameter. The system [100] also further configured to adjust, said display brightness value of the electronic device [102] on the basis of said calculated final display brightness value. Thereafter the system [100] stores said final display brightness value at the storage unit [110] .
Furthermore, the system is also configured to adjust said final display brightness value on the basis of a received user input.
While considerable emphasis has been placed herein on the disclosed embodiments, it will be appreciated that many embodiments can be made and that many changes can be made to the embodiments without departing from the principles of the present invention. These and other changes in the embodiments of the present invention will be apparent to those skilled in the art, whereby it is to be understood that the foregoing descriptive matter to be implemented is illustrative and non-limiting.

Claims (15)

  1. A method [200] of adjusting display brightness of an electronic device [102] comprising at least one camera [102A] , the method [200] comprising:
    - initiating, via a processing unit [104] , said at least one camera, wherein said camera is initiated after a fixed interval of time;
    - receiving, via a receiver unit [106] , at least one real time parameter from said at least one camera;
    - determining, via said processing unit [104] , at least one combined light parameter based on said received at least one real time parameter;
    - mapping, via said processing unit [104] , said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera;
    - calculating, via a brightness calculator unit [108] , a final display brightness value, wherein said final value is calculated based on said mapping; and
    - adjusting, via a processing unit [104] , said display brightness of the electronic device based on said calculated final display brightness value.
  2. The method as claimed in claim 1 wherein the method further comprising further adjusting said final display brightness value on the basis of a received user input.
  3. The method as claimed in claim 1 wherein determining, via said processing unit [104] , said at least one combined light parameter based on said received at least one real time parameter is further based on a maximum field of view parameter.
  4. The method as claimed in claim 1 wherein the mapping of said at least one combined light parameter to at least one camera LUX parameter is further based on at least one pre-collected data.
  5. The method as claimed in claim 4 wherein the pre-collected data comprising a plurality of light parameters collected in different lighting environments.
  6. The method as claimed in claim 1 wherein the initiating said at least one camera further comprising initiating a subset of modules of said at least one camera.
  7. The method as claimed in claim 1 wherein the method further comprises storing said final display brightness value at a storage unit [110] .
  8. A system [100] of adjusting display brightness of an electronic device [102] comprising at least one camera [102A] , the system [100] comprising:
    - a processing unit [104] , configured to initiate, said at least one camera, wherein said camera is initiated after a fixed interval of time;
    - a receiver unit [106] , configured to receive, at least one real time parameter from said at least one camera;
    wherein said processing unit [104] , further configured to:
    determine, at least one combined light parameter based on said received at least one real time parameter, and
    map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera;
    - a brightness calculator unit [108] , configured to calculate, a final display brightness value, wherein said final value is calculated based on said mapping; and
    wherein the processing unit [104] , further configured to adjust, said display brightness of the electronic device based on said calculated final display brightness value.
  9. The system as claimed in claim 8 wherein the processing unit [104] is further configured to adjust said final display brightness value on the basis of a received user input.
  10. The system as claimed in claim 8 wherein the processing unit [104] is further configured to determine said at least one combined light parameter, based on a maximum field of view parameter.
  11. The system as claimed in claim 8 wherein the processing unit [104] is further configured to map said at least one combined light parameter to at least one camera LUX parameter, based on at least one pre-collected data.
  12. The system as claimed in claim 11 wherein the pre-collected data comprises a plurality of light parameters collected in different lighting environments.
  13. The system as claimed in claim 8 wherein the processing unit [104] configured to initiate the at least one camera is further configured to initiate a subset of modules of said at least one camera.
  14. The system as claimed in claim 8 wherein the system further comprises a storage unit [110] configured to store said final display brightness value.
  15. An electronic device [102] for adjusting display brightness of said electronic device [102] , the electronic device comprising:
    - at least one camera [102A] , configured to receive at least one camera preview;
    - a system [100] , configured to initiate, said at least one camera, wherein said camera is initiated after a fixed interval of time; and
    wherein the system [100] further configured to:
    receive, at least one real time parameter from said at least one camera,
    determine, at least one combined light parameter based on said received at least one real time parameter,
    map, said at least one combined light parameter to at least one camera LUX parameter associated with said at least one camera,
    calculate, a final display brightness value, wherein said final value is calculated based on said mapping, and
    adjust, said display brightness of the electronic device based on said calculated final display brightness value.
PCT/CN2021/080067 2020-05-22 2021-03-10 Method and system for adjusting display brightness of an electronic device WO2021232900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202041021642 2020-05-22
IN202041021642 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021232900A1 true WO2021232900A1 (en) 2021-11-25

Family

ID=78709148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080067 WO2021232900A1 (en) 2020-05-22 2021-03-10 Method and system for adjusting display brightness of an electronic device

Country Status (1)

Country Link
WO (1) WO2021232900A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460355A (en) * 2022-08-31 2022-12-09 青岛海信移动通信技术股份有限公司 Image acquisition method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046728A1 (en) * 2000-10-31 2005-03-03 Schinner Charles E. Illuminated display and method of using same
CN1808561A (en) * 2005-01-19 2006-07-26 乐金电子(惠州)有限公司 Image brightness control apparatus for mobile display
CN1959795A (en) * 2005-10-31 2007-05-09 金宝电子工业股份有限公司 Control system of display device, and method
US20070103601A1 (en) * 2005-11-07 2007-05-10 Kawasaki Microelectronics, Inc. Image data processing apparatus and method of processing image data
US20090231364A1 (en) * 2008-03-14 2009-09-17 Hon Hai Precision Industry Co., Ltd. Display system capable of auto-regulating brightness and brightness auto-regulating method thereof
CN103902031A (en) * 2012-12-27 2014-07-02 鸿富锦精密工业(深圳)有限公司 Electronic device and specific parameter adjusting method thereof
CN105845101A (en) * 2016-03-25 2016-08-10 乐视控股(北京)有限公司 Method and apparatus for adjusting display brightness of device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046728A1 (en) * 2000-10-31 2005-03-03 Schinner Charles E. Illuminated display and method of using same
CN1808561A (en) * 2005-01-19 2006-07-26 乐金电子(惠州)有限公司 Image brightness control apparatus for mobile display
CN1959795A (en) * 2005-10-31 2007-05-09 金宝电子工业股份有限公司 Control system of display device, and method
US20070103601A1 (en) * 2005-11-07 2007-05-10 Kawasaki Microelectronics, Inc. Image data processing apparatus and method of processing image data
US20090231364A1 (en) * 2008-03-14 2009-09-17 Hon Hai Precision Industry Co., Ltd. Display system capable of auto-regulating brightness and brightness auto-regulating method thereof
CN103902031A (en) * 2012-12-27 2014-07-02 鸿富锦精密工业(深圳)有限公司 Electronic device and specific parameter adjusting method thereof
CN105845101A (en) * 2016-03-25 2016-08-10 乐视控股(北京)有限公司 Method and apparatus for adjusting display brightness of device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115460355A (en) * 2022-08-31 2022-12-09 青岛海信移动通信技术股份有限公司 Image acquisition method and device
CN115460355B (en) * 2022-08-31 2024-03-29 青岛海信移动通信技术有限公司 Image acquisition method and device

Similar Documents

Publication Publication Date Title
US10659700B2 (en) Mobile terminal and method for filling light for same
EP3429188B1 (en) Regulation method, terminal equipment and non-transitory computer-readable storage medium for automatic exposure control of region of interest
US9247153B2 (en) Image processing apparatus, method and imaging apparatus
CN110211549B (en) Screen brightness adjustment method and device, terminal and storage medium
US9762878B2 (en) Auto white balance using infrared and/or ultraviolet signals
CN109194882A (en) Image processing method, device, electronic equipment and storage medium
US9743009B2 (en) Image processing method and image processing device
CN113192470B (en) Screen adjusting method and device, storage medium and electronic equipment
KR20160038460A (en) Electronic device and control method of the same
US9508136B2 (en) Image fusing method
WO2021232900A1 (en) Method and system for adjusting display brightness of an electronic device
CN111741228B (en) Exposure adjusting method and device for panoramic image
US20200312272A1 (en) Display device
US11258954B2 (en) Image processing method and apparatus, and electronic device and storage medium
US8090253B2 (en) Photographing control method and apparatus using strobe
US9800793B2 (en) Method for generating target gain value of wide dynamic range operation
CN109308874B (en) Display screen brightness adjusting method and device
US10733706B2 (en) Mobile device, and image processing method for mobile device
CN113808045B (en) Image brightness adjusting method and device
CN113422893B (en) Image acquisition method and device, storage medium and mobile terminal
US20230410706A1 (en) Method for image rendering, terminal device and non-transitory computer-readable storage medium
US20210158775A1 (en) Display panel, and method and device for driving display panel
US12028659B2 (en) Information handling system camera visual image color tuning based on sensed ambient light color
US20240031542A1 (en) Information handling system camera visual image color tuning based on sensed ambient light color
TWI819672B (en) Method for determining ambient light luminance, host, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809113

Country of ref document: EP

Kind code of ref document: A1