WO2021232549A1 - 防雷绝缘子的耐受特性测试方法、测试电路和设计方法 - Google Patents

防雷绝缘子的耐受特性测试方法、测试电路和设计方法 Download PDF

Info

Publication number
WO2021232549A1
WO2021232549A1 PCT/CN2020/100066 CN2020100066W WO2021232549A1 WO 2021232549 A1 WO2021232549 A1 WO 2021232549A1 CN 2020100066 W CN2020100066 W CN 2020100066W WO 2021232549 A1 WO2021232549 A1 WO 2021232549A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning protection
entire
protection insulator
impulse current
insulator
Prior art date
Application number
PCT/CN2020/100066
Other languages
English (en)
French (fr)
Inventor
陆佳政
胡建平
谢鹏康
方针
李波
Original Assignee
湖南省湘电试研技术有限公司
国网湖南省电力有限公司防灾减灾中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南省湘电试研技术有限公司, 国网湖南省电力有限公司防灾减灾中心 filed Critical 湖南省湘电试研技术有限公司
Publication of WO2021232549A1 publication Critical patent/WO2021232549A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Definitions

  • the present disclosure relates to the technical field of electrical equipment testing, and in particular to a test method, test circuit, and design method for withstand characteristics of lightning protection insulators.
  • lightning protection insulators can currently be used to protect against lightning strikes and icing disasters, which are mainly absorbed and discharged by the zinc oxide resistors set in the lightning protection section of the lightning protection insulators The lightning current energy limits the lightning overvoltage to prevent the transmission line from tripping.
  • the impulse current test of the existing lightning protection equipment is mainly carried out on the lightning protection equipment proportional unit or the monolithic zinc oxide resistor lightning protection element, and the test result is multiplied by the proportional coefficient to simulate the whole The energy tolerance and thermal stress tolerance characteristics of the lightning protection equipment under the impact of lightning current.
  • theoretical analysis and field operation results show that: during the impulse current test of a monolithic zinc oxide resistor, the resistor is directly exposed to the air environment, and the entire lightning protection device has been sealed and encapsulated in series with multiple resistors. The energy and pressure generated by the large current impact cannot be released quickly, resulting in the impact current withstand capability of the entire lightning protection equipment is smaller than that of the monolithic resistors. Therefore, the monolithic zinc oxide resistors and proportions in the existing lightning protection equipment test methods The impulse current withstand characteristics of the unit can not simulate the actual situation of the entire lightning protection insulator being directly struck by lightning current under the operating conditions.
  • the technical problem to be solved by the present disclosure is to solve the problem that the impulse current withstand characteristics of the monolithic zinc oxide resistor and the proportional unit in the existing lightning protection equipment test method cannot simulate the actual situation of the entire lightning protection insulator being directly struck by the lightning current under the operating conditions problem.
  • embodiments of the present disclosure provide a test method for withstand characteristics of lightning protection insulators, including:
  • Step S1 Obtain the impulse current flowing through the entire lightning protection insulator under the first impulse current wave and the residual voltage at both ends of the entire lightning protection insulator, and flow through the entire lightning protection insulator according to the first impulse current wave Obtain the impact energy absorbed by the entire lightning protection insulator from the impulse current and the residual voltage; acquire the impulse current flowing through the entire lightning protection insulator and the corresponding thermal stress under the second impulse current wave;
  • Step S2 Obtain the power frequency reference voltage and the leakage current of the entire lightning protection insulator corresponding to the first impulse current wave and the second impulse current wave;
  • Step S3 Obtain the power frequency reference voltage change rate of the entire lightning protection insulator before and after the impulse current test according to the power frequency reference voltage, and compare the acquired leakage current with the entire lightning protection insulator before the impulse current is applied Corresponding leakage current;
  • Step S4 Adjust the inrush current applied to the entire lightning protection insulator according to the comparison result of the power frequency reference voltage change rate and the leakage current;
  • Steps S1 to S4 are cyclically executed until it is obtained that the power frequency reference voltage change rate is less than or equal to the set rate of change, and the leakage current is less than or equal to the set leakage current of the entire lightning protection insulator corresponding to the impact energy Maximum tolerance and maximum thermal stress tolerance.
  • the first impulse current wave is a 2.6/50 ⁇ s impulse current wave
  • the second impulse current is a 4.0/10 ⁇ s impulse current wave.
  • obtaining the impact energy absorbed by the entire lightning protection insulator according to the impulse current flowing through the entire lightning protection insulator under the first impulse current wave and the residual voltage includes:
  • W is the entire branch of the entire impact energy absorption branched lightning insulator
  • I 0 is the amplitude of the first impulse current wave
  • k is the waveform correction coefficient
  • ⁇ 1 is the wave front attenuation coefficient
  • is the wave tail attenuation coefficient
  • is the nonlinear coefficient of the entire zinc oxide resistor for lightning protection insulators.
  • F entire branch of the branched entire lightning insulator corresponding thermal stress E is the entire branch lightning insulator modulus of elasticity of the zinc oxide varistor
  • [alpha] is a linear thermal expansion coefficient of the zinc oxide varistor
  • is the Poisson's ratio of the zinc oxide resistor
  • T max and T min are respectively the maximum temperature and the minimum temperature of the zinc oxide resistor after the second impulse current wave is applied.
  • the power frequency reference voltage change rate of the entire lightning protection insulator before and after the impulse current test satisfies the following formula:
  • ⁇ U is the power frequency reference voltage change rate of the entire lightning protection insulator before and after the impulse current test
  • U 0 and U 1mA are the power frequency reference voltages before and after the test of the entire lightning protection insulator impulse current, respectively.
  • adjusting the inrush current applied to the entire lightning protection insulator according to the power frequency reference voltage change rate and the leakage current comparison result includes:
  • the change rate of the power frequency reference voltage is less than or equal to the set rate of change, and the leakage current is less than or equal to the set leakage current, it is determined that the entire lightning protection insulator has passed the impact energy and thermal stress corresponding to the current applied impulse current Test, and increase the impulse current applied to the entire lightning protection insulator by a set ratio;
  • the change rate of the power frequency reference voltage is greater than the set rate of change, or the leakage current is greater than the set leakage current, it is determined that the entire lightning protection insulator has not passed the impact energy and thermal stress tests corresponding to the current applied impulse current , And reduce the impulse current applied to the entire lightning protection insulator by a set ratio.
  • a design method for lightning protection insulators including:
  • the quantity and specifications of the entire zinc oxide resistors for lightning protection insulators are designed.
  • the number and specifications of the zinc oxide resistors for the entire lightning protection insulator are designed, including:
  • W monolithic is the maximum impact energy of a monolithic zinc oxide resistor that can withstand the first impulse current wave
  • W entire is the impact energy absorbed by the entire lightning protection insulator
  • N 0 is the entire The number of the zinc oxide resistors used before the lightning protection insulator test
  • the total number of zinc oxide resistors for lightning protection insulators meets the following calculation formula:
  • N is the number of the entire zinc oxide resistors for lightning protection insulators
  • W 0 is the impact energy of the single zinc oxide resistors corresponding to the first impulse current wave
  • S is the area parameter included in the specification and size of the entire zinc oxide resistor for lightning protection insulator
  • S 0 is the area of the zinc oxide resistor used before the entire lightning protection insulator is tested
  • F 0 is the single
  • the zinc oxide resistor chip corresponds to the thermal stress of the second impulse current wave.
  • a test circuit for withstand characteristics of lightning protection insulators including:
  • An impulse current wave output circuit connected to the entire lightning protection insulator, and used to apply a first impulse current wave and a second impulse current wave to the entire lightning protection insulator;
  • a power frequency voltage output circuit connected to the entire lightning protection insulator, and used to apply a power frequency voltage to the entire lightning protection insulator;
  • the parameter test circuit is used to test the impulse current flowing through the entire lightning protection insulator under the first impulse current wave and the second impulse current wave, the residual voltage at both ends of the entire lightning protection insulator, and the power frequency
  • the power frequency reference voltage and the leakage current of the entire lightning protection insulator corresponding to the first impulse current wave and the second impulse current wave under the voltage test;
  • the calculation and analysis device is connected to the parameter test circuit, and is used to perform the lightning protection insulator withstand characteristic test method as described in the first aspect.
  • the impulse current wave output circuit includes a charging transformer, a silicon rectifier stack, a protection resistor, a ball gap, a capacitor bank, a wave tail impedance, a wave-modulating inductor, and a wave-modulating resistor;
  • the power frequency voltage output circuit includes a power frequency test transformer, a power frequency protection impedance and a vacuum switch;
  • the parameter test circuit includes a resistance voltage divider, a current transformer, and a resistance-capacitance voltage divider, and the resistance voltage divider is used to test the entire protection under the first impulse current wave and the second impulse current wave.
  • the charging voltage of the lightning insulator, the current transformer is used to test the inrush current flowing through the entire lightning protection insulator under the first and second inrush current waves, and the resistance-capacitance divider is used for testing The residual voltage at both ends of the entire lightning protection insulator under the first impulse current wave and the second impulse current wave, and the power frequency reference voltage and leakage current of the entire lightning protection insulator under the power frequency voltage test;
  • An explosion-proof device is arranged outside the entire lightning protection insulator, and the explosion-proof device is used to block the fragments when the entire lightning protection insulator bursts.
  • the method for testing the withstand characteristics of lightning protection insulators carries out an impulse high-current test on the entire lightning protection insulator, and obtains the impact energy and thermal stress tolerance capability of the entire lightning protection insulator under operating conditions when it is directly struck by lightning current.
  • the real data which truly simulates the response characteristics of the entire lightning protection insulator under high-current direct lightning strikes under operating conditions, provides safe and reliable technical support for the design of lightning protection equipment for transmission lines, and helps to improve the safety and reliability of on-site operation sex.
  • FIG. 1 is a schematic flowchart of a method for testing the withstand characteristics of lightning protection insulators according to an embodiment of the present disclosure
  • FIG. 2 shows the current and residual voltage waveforms of the entire 10kV lightning protection insulator provided by an embodiment of the disclosure under the action of a 2.6/50 ⁇ s lightning current;
  • FIG. 3 shows the current and residual voltage waveforms of the entire 10kV lightning protection insulator provided by the embodiment of the disclosure under the action of a 4.0/10 ⁇ s impulse high current;
  • FIG. 4 is a schematic structural diagram of a test circuit for withstand characteristics of a lightning protection insulator provided by an embodiment of the disclosure
  • FIG. 5 is a schematic flowchart of a design method for lightning protection insulators according to an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of a specific flow of a method for designing a lightning protection insulator provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic flowchart of a method for testing the withstand characteristics of a lightning protection insulator provided by an embodiment of the disclosure.
  • the test method for the withstand characteristics of lightning protection insulators can be applied to scenarios where the entire lightning protection insulator needs to be tested for the impact withstand characteristics, and the test method for the withstand characteristics of the lightning protection insulators can be implemented by software and/or hardware.
  • the test methods for withstand characteristics of lightning protection insulators include:
  • the first impulse current wave and the second impulse current wave are respectively applied to the entire lightning protection insulator, and the impulse current flowing through the entire lightning protection insulator under different impulse currents and the residual voltage at both ends of the entire lightning protection insulator are obtained, and according to The impulse current and residual voltage obtain the impulse energy absorbed by the entire lightning protection insulator and the corresponding thermal stress.
  • the first impulse current wave can be set to 2.6/50 ⁇ s impulse current wave
  • the second impulse current wave is 4.0/10 ⁇ s impulse current wave.
  • the impact test device can generate 2ms square wave current and 8/20 ⁇ s. Nominal discharge current and 4/10 ⁇ s surge current.
  • the existing lightning monitoring results show that the current waveform flowing through the lightning protection equipment when the operating transmission line is directly struck by lightning is mainly 2.6/50 ⁇ s instead of 8/20 ⁇ s impulse current wave, and is limited by the output capacity of the test equipment and manufacturing technology.
  • the existing lightning protection equipment impulse current test is mainly carried out on the lightning protection equipment proportional unit or the monolithic zinc oxide resistor lightning protection element, and the test waveforms are also based on the easily generated 4/10 ⁇ s and 8/20 ⁇ s impulse current waves.
  • the first impulse current wave is set to 2.6/50 ⁇ s impulse current wave
  • the second impulse current is 4.0/10 ⁇ s impulse current wave, that is, the impulse current impulse energy tolerance test adopts 2.6/ which is the same waveform as the actual lightning current in nature.
  • the 50 ⁇ s impulse current wave can truly simulate the response characteristics of a large-current direct lightning strike under operating conditions, which is beneficial to improve the safety and reliability of on-site operation.
  • a 2.6/50 ⁇ s lightning current is first generated and applied to the 10kV whole lightning protection insulator sample, 10KV is the rated voltage of the whole lightning protection insulator, and the first impulse current wave is obtained, for example, the 2.6/50 ⁇ s impulse current wave flows through
  • the inrush current of the entire lightning protection insulator and the residual voltage at both ends of the entire lightning protection insulator, the obtained lightning current and its residual voltage waveform are shown in Figure 2.
  • the abscissa in Figure 2 is time t, and the unit is 10 -4 s.
  • the left ordinate is the current I
  • the unit is KA
  • the right ordinate is the voltage V
  • the unit is KV
  • curve a represents the impulse current flowing through the entire lightning insulator under the 2.6/50 ⁇ s impulse current wave
  • curve b represents 2.6/50 ⁇ s The residual voltage at both ends of the entire lightning protection insulator under the impulse current wave.
  • the abscissa in Figure 3 is time t, and the unit is 10 -6 s, the left ordinate is the current I, the unit is KA, the right ordinate is the voltage V, the unit is KV, the curve c represents the impulse current flowing through the entire lightning protection insulator under the 4.0/10 ⁇ s impulse current wave, and the curve d represents 4.0 The residual voltage at both ends of the entire lightning protection insulator under /10 ⁇ s impulse current wave.
  • obtaining the impact energy absorbed by the entire lightning protection insulator according to the impulse current and residual voltage flowing through the entire lightning protection insulator under the first impulse current wave including obtaining the impact energy absorbed by the entire lightning protection insulator according to the following formula:
  • the first impulse current wave is applied to the entire lightning protection insulator, and the shock energy absorbed by the entire lightning protection insulator is obtained according to the following formula.
  • W is the entire branch entire impact energy absorption branched lightning insulator
  • I 0 is the amplitude of the first impulse current wave
  • k is the waveform correction coefficient
  • ⁇ 1 is the wave front attenuation coefficient
  • is the wave tail attenuation coefficient
  • c is a constant
  • is The nonlinear coefficient of the entire zinc oxide resistor for lightning protection insulators.
  • a second impulse current wave is applied to the entire lightning protection insulator, and the thermal stress corresponding to the entire lightning protection insulator is obtained according to the following formula.
  • F is an integer corresponding to the thermal stress branched lightning insulator entire branch
  • E is branched entire lightning insulator modulus of elasticity of the zinc oxide varistor
  • is zinc oxide varistor linear thermal expansion coefficient
  • is a zinc oxide varistor
  • T max and T min are respectively the maximum temperature and the minimum temperature of the zinc oxide resistor after the second impulse current wave is applied.
  • the technical parameters of the entire lightning protection insulator and its zinc oxide resistors to be tested can be obtained first.
  • the technical parameters are specific It can include the entire lightning protection insulator AC 1mA reference voltage U 0 , leakage current I leakage and volt-ampere characteristic curve, zinc oxide resistor model, structure size, quantity N 0 , elastic modulus, thermal expansion coefficient and Poisson’s ratio, and 2.6/ 50 ⁇ s impulse current wave withstand value I 2.6/50 and corresponding energy W 0 , 4/10 ⁇ s impulse large current withstand value I 4.0/10 and corresponding thermal stress F 0 .
  • the technical parameters of the entire 10kV lightning protection insulator to be tested are shown in Table 1, and the technical parameters of the zinc oxide resistors of the 10kV entire lightning protection insulator to be tested are shown in Table 2.
  • Q is the amount of impulse current charge absorbed by the entire lightning protection insulator when the impulse current waveform is 2.6/50 ⁇ s
  • Q can be used as an auxiliary judgment parameter for the withstand characteristics of the entire lightning protection insulator
  • u(t), i(t ) Are the numerical expressions of the impulse current and residual voltage waveform respectively, and the impulse current i(t) adopts a double exponential function
  • T max and T min are the maximum and minimum values of the resistor temperature after the impulse current measured by an infrared thermometer.
  • the residual voltage of 10kV lightning protection insulators under the action of 2.6/50 ⁇ s lightning current can be obtained according to the numerical expression of the volt-ampere characteristic curve in Table 1.
  • the 4 in the following formula is the number of zinc oxide resistors for the entire lightning protection insulator test sample ,
  • the numerical expression of the residual voltage waveform under the first impulse current wave satisfies the following calculation formula:
  • a program can be written in MATLAB software, and the amount of charge absorbed by the entire 10kV lightning protection insulator under the action of a 2.6/50 ⁇ s lightning current of 17.7kA can be calculated as:
  • the absorbed shock current energy is:
  • the power frequency voltage is applied to the entire lightning protection insulator to obtain the power frequency reference voltage and leakage current of the entire lightning protection insulator corresponding to different impulse current waves.
  • the power frequency voltage is applied to the entire 10kV lightning protection insulator.
  • the power frequency reference voltage change rate of the entire lightning protection insulator before and after the impulse current test satisfies the following formula:
  • ⁇ U is the power frequency reference voltage change rate of the entire lightning protection insulator before and after the impulse current test
  • U 0 and U 1mA are the power frequency reference voltages before and after the test of the entire lightning protection insulator impulse current test, as shown in Table 1.
  • U 0 is equal to 21.5kV.
  • the power frequency 1mA reference voltage change rate of the entire 10kV lightning protection insulator before and after the 2.6/50 ⁇ s lightning current and 4.0/10 ⁇ s impulse high current test satisfies the following calculation formulas:
  • step S1 to step S4 are cyclically executed until it is obtained that the power frequency reference voltage change rate is less than or equal to the set rate of change, and the leakage current is less than or equal to the set leakage current. Value and the maximum value of thermal stress tolerance.
  • step S1 adjust the impulse current applied to the entire lightning protection insulator according to the comparison result of the power frequency reference voltage change rate and the leakage current, and a new whole lightning protection insulator of the same model and the same technical parameters can be selected, and step S1 is repeated. Go to step S4, until it is obtained that the power frequency 1mA reference voltage change rate is not greater than the set change rate, such as 5%, and the leakage current is less than or equal to the set leakage current, such as the maximum value of the 50 ⁇ A lightning protection insulator withstand impulse current and Corresponds to impact energy and thermal stress.
  • adjusting the impulse current applied to the entire lightning protection insulator according to the power frequency reference voltage change rate and the leakage current comparison result includes: if the power frequency reference voltage change rate is less than or equal to the set rate of change, the leakage current is less than or equal to the set rate Leakage current, it is determined that the entire lightning protection insulator has passed the impact energy and thermal stress test corresponding to the current impulse current applied, and the impulse current applied to the entire lightning protection insulator is increased by the set ratio; if the power frequency reference voltage change rate If the rate of change is greater than the set rate, or the leakage current is greater than the set leakage current, it is determined that the entire lightning protection insulator has failed the impact energy and thermal stress test corresponding to the current impulse current applied, and the impulse current applied to the entire lightning protection insulator Decrease the setting ratio, and the setting ratio may be, for example, 5%.
  • the power frequency reference voltage change rate ⁇ U is less than or equal to 5% and the leakage current I 1mA is less than or equal to 50 ⁇ A, it is considered that the lightning protection insulator has passed the impact energy or thermal stress test corresponding to the current impulse current I 0. If I 0 is not the maximum withstand impulse current of the lightning protection insulator at this time, the impulse current applied to the entire lightning protection insulator is increased by 5%. If ⁇ U is greater than 5% or I 1mA is greater than 50 ⁇ A, it is considered that the lightning protection insulator has not passed the impact energy or thermal stress test corresponding to the current impulse current I 0 , and the impulse current applied to the entire lightning protection insulator is reduced by 5%.
  • ⁇ U (2.6/50) and ⁇ U (4.0/10) are both less than 5 %, and I (2.6/50)1mA ⁇ I (4.0/10)1mA ⁇ 50 ⁇ A, so it can be determined that the entire 10kV lightning protection insulator has passed the 17.7kA 2.6/50 ⁇ s lightning current impulse energy test, and also passed 91.7kA 4.0/10 ⁇ s impact high current thermal stress test.
  • step S1 to step S4 are repeatedly executed.
  • insulator 10kV withstand lightning branched entire lightning current maximum value of 2.6 / 50 ⁇ s is 17.7kA
  • the corresponding branched entire impact energy W 48.60kJ
  • the maximum tolerated 4.0 / 10 ⁇ s or shock is 91.7kA
  • the maximum thermal stress tolerance is 8.2MPa.
  • the embodiment of the present disclosure carries out a large-impact current test on the entire lightning protection insulator, and obtains real data on the impact energy and thermal stress tolerance of the entire lightning protection insulator under operating conditions when it is directly struck by a lightning current, which truly simulates the entire lightning protection insulator.
  • the response characteristics of lightning protection insulators under operating conditions when subjected to direct lightning strikes with large currents provide safe and reliable technical support for the design of lightning protection equipment for transmission lines, which is beneficial to improve the safety and reliability of on-site operation.
  • the embodiment of the present disclosure also provides a test circuit for the withstand characteristic of the lightning protection insulator.
  • 4 is a schematic structural diagram of a test circuit for withstand characteristics of a lightning protection insulator provided by an embodiment of the disclosure.
  • the test circuit for the withstand characteristics of lightning protection insulators includes an impulse current wave output circuit 1, a power frequency voltage output circuit 2, a parameter test circuit 4, and a calculation and analysis device 5, an impulse current wave output circuit 1 and a power frequency voltage.
  • the output circuit 2 is connected to the entire lightning protection insulator 32, the impulse current wave output circuit 1 is used to apply the first impulse current wave and the second impulse current wave to the entire lightning protection insulator 32, and the power frequency voltage output circuit 2 is used to Power frequency voltage is applied to the entire lightning protection insulator 32, and the parameter test circuit 4 is used to test the impulse current flowing through the entire lightning protection insulator 32 under the first and second impulse current waves and the residuals at both ends of the entire lightning protection insulator 32. Under the power frequency voltage test, the entire lightning protection insulator 32 corresponds to the power frequency reference voltage and leakage current of the first impulse current wave and the second impulse current wave.
  • the calculation and analysis device 5 is connected to the parameter test circuit 4, and the calculation and analysis device 5 is used to perform the test method for the withstand characteristics of lightning protection insulators as described in the above-mentioned embodiments. Therefore, the test for the withstand characteristics of lightning protection insulators provided by the embodiments of the present disclosure is The circuit has the beneficial effects of the above-mentioned embodiments, and will not be repeated here.
  • the impulse current wave output circuit 1 includes a charging transformer 11, a silicon rectifier stack 12, a protection resistor 13, a ball gap 15, a capacitor bank 14, a wave tail impedance 16, a wave modulating inductor 17, and a wave modulating inductor.
  • power frequency voltage output circuit 2 includes power frequency test transformer 21, power frequency protection impedance 22 and vacuum switch 23;
  • parameter test circuit 4 includes resistance voltage divider 41, current transformer 42 and resistance-capacitance voltage divider 43, resistance The voltage divider 41 is used to test the charging voltage of the entire lightning protection insulator 32 under the first impulse current wave and the second impulse current wave, and the current transformer 42 is used to test the first impulse current wave and the second impulse current wave.
  • the surge current of the lightning protection insulator 32, the resistance-capacitance voltage divider 43 is used to test the residual voltage at both ends of the whole lightning protection insulator 32 under the first and second surge current waves, and the whole protection under the power frequency voltage test.
  • a test circuit for impulse withstand characteristics of the entire lightning protection insulator can be built in the high-voltage test hall, that is, the entire lightning protection insulator impulse current test platform can be built.
  • the test circuit for the withstand characteristics of lightning protection insulators consists of an impulse current wave output circuit 1, a power frequency voltage output circuit 2, a sample holder 3 and a measurement system.
  • the sample holder 3 is used to place the entire lightning protection insulator sample and measurement system.
  • the impulse current wave output circuit 1 is used to generate 4/10 ⁇ s impulse high current and 2.6/50 ⁇ s lightning current.
  • the impulse current wave output circuit 1 consists of a charging transformer 11, a silicon rectifier stack 12, a protective resistor 13, a capacitor bank 14, a ball gap 15, Wave tail impedance 16, wave-modulating inductor 17 and wave-modulating resistor 18 are composed of charging transformer 11, silicon rectifier stack 12, protection resistor 13, and capacitor bank 14 are connected in turn by high-voltage wires to charge the capacitor 14 group, the capacitor bank 14 , The wave tail impedance 16, the wave modulating inductor 17, and the wave modulating resistor 18 are connected in sequence and then connected to the high voltage end of the test sample support 3.
  • the current waveform applied to the sample is 4/10 ⁇ s or 2.6/50 ⁇ s impulse current wave, and the charging voltage of the capacitor bank 14 can be adjusted to adjust the impulse current.
  • the amplitude is 4/10 ⁇ s or 2.6/50 ⁇ s impulse current wave, and the charging voltage of the capacitor bank 14 can be adjusted to adjust the impulse current. The amplitude.
  • the power frequency voltage output circuit 2 is composed of a power frequency test transformer 21, a power frequency protection impedance 22 and a vacuum switch 23, which are connected in sequence and used to output power frequency voltage to the entire lightning protection insulator 32 in the test product support 3.
  • An explosion-proof device such as an explosion-proof box 31, is arranged outside the entire lightning protection insulator 32, that is, outside the sample support 3, and the explosion-proof device is used to block the fragments of the entire lightning protection insulator sample 32 when it bursts to prevent personnel or equipment from being injured.
  • the measurement system consists of a resistance voltage divider 41, a current transformer 42, a resistance-capacitance voltage divider 43 and a calculation and analysis device 5.
  • the resistance voltage divider 41 is used to test the amplitude and waveform of the charging voltage and current mutual inductance during the impulse current test.
  • the device 42 is used to test the amplitude and waveform of the current of the sample, and the resistance-capacitance divider 43 is used to test the amplitude and waveform of the residual voltage of the sample, as well as the 1mA reference voltage and leakage current during the power frequency voltage test.
  • the test method and circuit for the withstand characteristics of lightning protection insulators provided by the embodiments of the present disclosure are easy to implement, have strong operability, and can be adjusted by adjusting the values of the tail impedance 16, the wave modulating inductance 17, and the wave modulating resistor 18, or adjusting the capacitor bank 14 charging voltage, so that the withstand characteristic test circuit of lightning protection insulators is suitable for the impulse current impact energy and thermal stress tests of the entire lightning protection equipment of various voltage levels, as well as the design of zinc oxide resistors.
  • FIG. 5 is a schematic flowchart of a method for designing a lightning protection insulator provided by the embodiment of the disclosure.
  • the design method for lightning protection insulators can be applied to scenarios where the entire lightning protection insulator needs to be designed, and the design method for lightning protection insulators can be implemented by software and/or hardware.
  • the design methods of lightning protection insulators include:
  • the maximum value of impact energy tolerance and the maximum value of thermal stress tolerance are obtained.
  • the power frequency reference voltage change rate is less than or equal to the set change.
  • the maximum impact energy tolerance of the entire lightning protection insulator whose leakage current is less than or equal to the set leakage current is 48.60kJ, and the maximum thermal stress tolerance is 8.2MPa.
  • design the quantity and specifications of the entire zinc oxide resistors for lightning protection insulators including:
  • W monolithic is the maximum impact energy of a single zinc oxide resistor that can withstand the first impulse current wave
  • W entire is the impact energy absorbed by the entire lightning protection insulator
  • N 0 is used before the entire lightning protection insulator test.
  • N is the number of zinc oxide resistors for the entire lightning protection insulator
  • W 0 is the impact energy of the single zinc oxide resistor corresponding to the first impulse current wave
  • N 0 is the number of zinc oxide resistors used in the entire lightning protection insulator before the test
  • W 0 is the 2.6/50 ⁇ s impulse current wave energy of the monolithic zinc oxide resistors.
  • N 0 is equal to 4
  • W 0 Equal to 13.78
  • the number N of zinc oxide resistors required for the entire 10kV lightning protection insulator is redesigned as:
  • S is the area parameter included in the specification and size of the entire zinc oxide resistor for lightning protection insulators
  • S 0 is the area of the zinc oxide resistor before the entire lightning protection insulator is tested
  • F 0 is the monolithic zinc oxide resistor.
  • the sheet corresponds to the thermal stress of the second impulse current wave.
  • S 0 is the area of the zinc oxide resistor before the lightning protection insulator test
  • F 0 is the 4/10 ⁇ s impulse current wave thermal stress tolerance value of the monolithic resistor.
  • the structural size of the zinc resistor is ⁇ (32 ⁇ 60) ⁇ 24mm.
  • the zinc oxide resistor is a ring structure, where 60mm is the outer diameter of the zinc oxide resistor, 32mm is the inner diameter of the zinc oxide resistor, and 24mm is the zinc oxide resistor
  • the thickness of the sheet, F 0 is equal to 9.2
  • the area S 0 of the zinc oxide resistor sheet before the lightning protection insulator test is The outer diameter of r is equal to 6 cm, and the inner diameter of r is equal to 3.2 cm.
  • the specifications and dimensions of zinc oxide resistors are used for the entire 10kV lightning protection insulator. The specifications here mainly refer to the area S of the surface of the zinc oxide resistor ring. S is redesigned as:
  • the area of the zinc oxide resistors has increased by 12.2%, which can be achieved mainly by increasing the outer diameter of the zinc oxide resistors. Therefore, considering the impact current energy and thermal stress tolerance characteristics of the entire 10kV lightning protection insulator, the number of zinc oxide resistors has been adjusted from 4 to 5, and the structural size of the resistors has been adjusted from ⁇ (32 ⁇ 60) ⁇ 24mm to ⁇ (32 ⁇ 64) ⁇ 24mm, corresponding to the structure size ⁇ (32 ⁇ 64) ⁇ 24mm, the area S of the zinc oxide resistor is equal to 24.12cm 2 .
  • FIG. 6 is a schematic diagram of a specific process of a design method for a whole lightning protection insulator provided by an embodiment of the disclosure.
  • the design method of the entire lightning protection insulator can also be applied to scenarios where the entire lightning protection insulator needs to be designed.
  • the design method of the entire lightning protection insulator includes:
  • the test platform is composed of an impulse current wave output circuit 1, a power frequency voltage output circuit 2, a sample holder 3, a parameter test circuit 4, and a calculation analysis device 5.
  • the 10kV lightning protection insulator sample to be tested is fixed in the impulse current test platform sample support explosion-proof box 31, and the wave tail impedance, wave modulation inductance and resistance values corresponding to the impulse current waveform are set.
  • the 2.6/50 ⁇ s current waveform is used to test the impact current energy tolerance
  • the 4.0/10 ⁇ s current waveform is used to test the thermal stress tolerance.
  • the wave tail impedance When carrying out the 2.6/50 ⁇ s lightning current tolerance test on the sample, set the wave tail impedance to 0.398 kilohms, the modulating inductance to 10.0 ⁇ H, and the modulating resistance to 8.7 ohms; when carrying out 4.0/10 ⁇ s impulse high current tolerance to the sample In the ability test, the wave tail impedance is 1.59 kilohms, the wave modulating inductance is 9.0 ⁇ H, and the wave modulating resistance is 2.1 ohms.
  • the working power of the charging transformer is switched on, the charging voltage is controlled through a resistor divider, the ball gap distance is adjusted to trigger the discharge of the capacitor bank, and an impulse current I 0 is generated and applied to the entire lightning protection insulator sample.
  • the working power of the charging transformer 11 is turned on, the charging voltage of the capacitor bank 14 is adjusted, and the ball gap 15 is triggered to discharge.
  • the current and its residual voltage waveform are shown in Figure 2.
  • Adjust the circuit impedance parameters of the impulse current test platform re-select a 10kV lightning protection insulator sample and fix it on the sample holder, and carry out the 4.0/10 ⁇ s impulse high current withstand capability test, and the impulse current and residual voltage waveforms obtained are shown in Figure 3. Show.
  • the waveform and amplitude of the impulse current and residual voltage flowing through the lightning protection insulator are read and recorded, and the impulse current, impact energy and thermal stress absorbed by the entire lightning protection insulator are calculated.
  • the amplitude of the 2.6/50 ⁇ s lightning current applied to the 10kV lightning protection insulator is 17.7kA
  • the double exponential function is used to fit it
  • the numerical expression of i(t) is obtained as:
  • the absorbed shock current shock energy is:
  • the power frequency voltage output device of the impulse current wave test device platform is used to apply a power frequency voltage to the lightning protection insulator, and the entire lightning protection insulator power frequency 1mA reference voltage U 1mA is tested , And the leakage current I 1mA at 0.75 times the power frequency reference voltage.
  • the power frequency voltage output device of the impulse current wave test device platform is used to apply power frequency voltage to the 10kV lightning protection insulator.
  • S308 Determine whether ⁇ U is less than or equal to 5% and the leakage current is less than or equal to 50 ⁇ A. If yes, go to step 309; if not, go to step 303 via condition A.
  • condition A is that the inrush current wave I 0 is reduced by 5%, and the lightning protection insulator of the same model as in step 302 is rearranged.
  • condition B is that the surge current wave I 0 is increased by 5%, and the lightning protection insulator of the same model as in step (2) is rearranged.
  • step 302 change the amplitude of the impulse current applied to the entire lightning protection insulator, select a new lightning protection insulator of the same model and technical parameters as in step 302, and repeat steps 303 to 309 until the satisfaction is obtained.
  • the power frequency 1mA reference voltage change rate is not more than 5% and the leakage current is less than or equal to 50 ⁇ A.
  • the entire lightning protection insulator can withstand the maximum impact current and the corresponding impact energy and thermal stress.
  • the number and specifications of the zinc oxide resistors used by the entire lightning protection insulator are redesigned according to the maximum impact current energy and thermal stress resistance of the entire lightning protection insulator.
  • the embodiments of the present disclosure solve the problem of the prior art that does not discuss how the results of the impulse current withstand test are applied to the design of lightning protection equipment, and there are certain limitations, resulting in a relatively low failure rate of the existing lightning protection equipment in the field operation.
  • the high problem provides a solution for the design of the number and size of the zinc oxide resistors of the entire lightning protection insulator considering the influence of the molding process.
  • the embodiment of the present disclosure builds a whole lightning protection insulator impulse current test platform, obtains the technical parameters of the lightning protection insulator to be tested and its zinc oxide resistors, and sets the wave tail impedance, wave modulation inductance and resistance values corresponding to the impulse current waveform.
  • the impulse current wave of 2.6/50 ⁇ s or 4.0/10 ⁇ s is applied to the whole test piece of lightning protection insulator, and the charge amount, impact energy and thermal stress absorbed by the whole lightning protection insulator are calculated, and the whole set of impulse current is applied for a period of time.
  • the present disclosure carries out an impact high current test on the entire lightning protection insulator, and obtains real data on the impact energy and thermal stress tolerance of the entire lightning protection insulator under operating conditions when it is directly struck by a lightning current.
  • the response characteristics when subjected to direct lightning strikes with large currents under operating conditions provide safe and reliable technical support for the design of lightning protection equipment for transmission lines, which is conducive to improving the safety and reliability of on-site operation and has strong industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Insulators (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种防雷绝缘子的耐受特性测试方法、测试电路和设计方法,测试方法包括获取第一冲击电流波下整支防雷绝缘子(32)吸收的冲击能量;获取第二冲击电流波下的冲击电流和对应的热应力;分别获取对应第一和第二冲击电流波的工频参考电压和泄漏电流;根据工频参考电压变化率和泄漏电流比较结果调节施加于整支防雷绝缘子(32)的冲击电流;循环执行上述步骤,直至获取工频参考电压变化率均小于等于设定变化率,且泄漏电流均小于等于设定泄漏电流的整支防雷绝缘子(32)对应的冲击能量耐受最大值和热应力耐受最大值。通过本方案,真实模拟了整支防雷绝缘子(32)遭受大电流直击雷时的响应特性。

Description

防雷绝缘子的耐受特性测试方法、测试电路和设计方法
本公开要求于2020年5月21日提交中国专利局、申请号为202010433590.2、发明名称为“防雷绝缘子的耐受特性测试方法、测试电路和设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电器设备测试技术领域,尤其涉及一种防雷绝缘子的耐受特性测试方法、测试电路和设计方法。
背景技术
随着经济的发展,近年来我国电网建设速度逐步加快,因传输距离远以及跨越范围广,输电线路经常要穿越一些地形复杂的高海拔山区,导致夏季雷害、冬季覆冰问题严重,雷击和覆冰闪络引起的跳闸停电、设备损坏等事故也时有发生。为提升输电线路抵抗雷击和覆冰灾害的能力,目前可采用防雷绝缘子进行雷击和覆冰灾害的防护,其主要是通过设置套装在防雷绝缘子防雷段的氧化锌电阻片吸收和泄放雷电流能量,限制雷电过电压来防止输电线路跳闸。
受试验设备输出能力与制造技术的限制,现有防雷设备冲击电流试验主要在防雷设备比例单元或单片氧化锌电阻片防雷元件上进行,并将试验结果乘以比例系数来模拟整支防雷设备在雷电流冲击下的能量耐受和热应力耐受特性。但理论分析和现场运行结果表明:单片氧化锌电阻片冲击电流试验时,电阻片直接暴露于空气环境中,而整支防雷设备成型时已将多个串联电阻片密闭和封装,其遭受大电流冲击产生的能量和压力无法得到快速释放,导致整支防雷设备的冲击电流耐受能力比单片电阻片要小,因此现有防雷设备试验方法中单片氧化锌电阻片和比例单元的冲击电流耐受特性并不能模拟整支防雷绝缘子运行条件下遭受雷电流直击的实际情况。
发明内容
本公开要解决的技术问题是解决现有的防雷设备试验方法中单片氧化锌电阻片和比例单元的冲击电流耐受特性无法模拟整支防雷绝缘子运行条件下遭受雷电流直击的实际情况问题。
为了解决上述技术问题,第一方面,本公开实施例提供了一种防雷绝缘子的耐受特性测试方法,包括:
步骤S1、获取第一冲击电流波下流经整支防雷绝缘子的冲击电流和所述整支防雷绝缘子两端的残压,并根据所述第一冲击电流波下流经所述整支防雷绝缘子的冲击电流和所述残压获取所述整支防雷绝缘子吸收的冲击能量;获取第二冲击电流波下流经所述整支防雷绝缘子的冲击电流和对应的热应力;
步骤S2、分别获取所述整支防雷绝缘子对应所述第一冲击电流波和所述第二冲击电流波的工频参考电压和泄漏电流;
步骤S3、根据所述工频参考电压获取所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,并比较获取的所述泄漏电流与施加冲击电流前所述整支防雷绝缘子对应的泄漏电流;
步骤S4、根据所述工频参考电压变化率和泄漏电流比较结果调节施加于所述整支防雷绝缘子的冲击电流;
循环执行步骤S1至步骤S4,直至获取所述工频参考电压变化率均小于等于设定变化率,且所述泄漏电流均小于等于设定泄漏电流的所述整支防雷绝缘子对应的冲击能量耐受最大值和热应力耐受最大值。
可选地,所述第一冲击电流波为2.6/50μs冲击电流波,所述第二冲电流为4.0/10μs冲击电流波。
可选地,根据所述第一冲击电流波下流经所述整支防雷绝缘子的冲击电流和所述残压获取所述整支防雷绝缘子吸收的冲击能量,包括:
根据下述公式获取所述整支防雷绝缘子吸收的冲击能量:
Figure PCTCN2020100066-appb-000001
其中,W 整支为所述整支防雷绝缘子吸收的冲击能量,u(t)为所述第一冲击电流波下所述残压的波形数值表达式且满足u(t)=ci λ(t),i(t)为所述第一冲击电流波的波形数值表达式且满足
Figure PCTCN2020100066-appb-000002
T为所述第一冲击电流波的持续时间,I 0为所述第一冲击电流波的幅值,k为波形校正系数,α 1为波前衰减系数,β分别为波尾衰减系数,c为常数,λ为所述整支防雷绝缘子用氧化锌电阻片的非线性系数。
可选地,根据下述公式获取所述第二冲击电流波下所述整支防雷绝缘子对应的热应力:
Figure PCTCN2020100066-appb-000003
其中,F 整支为所述整支防雷绝缘子对应的热应力,E为所述整支防雷绝缘子用氧化锌电阻片的弹性模量、α为所述氧化锌电阻片的线性热膨胀系数,μ为所述氧化锌电阻片的泊松比,T max和T min分别为所述第二冲击电流波作用后所述氧化锌电阻片的温度最大值和温度最小值。
可选地,所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率满足下述公式:
Figure PCTCN2020100066-appb-000004
其中,ΔU为所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,U 0和U 1mA分别为所述整支防雷绝缘子冲击电流测试前和测试后的工频参考电压。
可选地,根据所述工频参考电压变化率和泄漏电流比较结果调节施加于所述整支防雷绝缘子的冲击电流,包括:
若所述工频参考电压变化率小于等于设定变化率,所述泄漏电流小于等于设定泄漏电流,则判定所述整支防雷绝缘子通过了当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于所述整支防雷绝缘子的冲击电流增加设定比例;
若所述工频参考电压变化率大于设定变化率,或所述泄漏电流大于设定泄漏电流,则判定所述整支防雷绝缘子未通过当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于所述整支防雷绝缘子的冲击电流减小设定比例。
第二方面,还提供了一种防雷绝缘子的设计方法,包括:
根据如第一方面所述的防雷绝缘子的耐受特性测试方法获取所述冲击能量耐受最大值和所述热应力耐受最大值;
根据所述冲击能量耐受最大值和所述热应力耐受最大值设计所述整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸。
可选地,根据所述冲击能量耐受最大值和所述热应力耐受最大值设计所述整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸,包括:
获取所述整支防雷绝缘子中单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值;其中,单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值满足下述计算公式:
Figure PCTCN2020100066-appb-000005
其中,W 单片为单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值,W 整支为所述整支防雷绝缘子吸收的冲击能量,N 0为所述整支防雷绝缘子测试前采用的所述氧化锌电阻片的数量;
所述整支防雷绝缘子用氧化锌电阻片的数量满足下述计算公式:
Figure PCTCN2020100066-appb-000006
其中,N为所述整支防雷绝缘子用氧化锌电阻片的数量,W 0为单片氧化锌电阻片对应所述第一冲击电流波的冲击能量;
所述整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数满足下述计算公式:
Figure PCTCN2020100066-appb-000007
其中,S为所述整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数,S 0为所述整支防雷绝缘子测试前采用的氧化锌电阻片的面积,F 0为单片氧化锌电阻片对应所述第二冲击电流波的热应力。
第三方面,还提供了一种防雷绝缘子的耐受特性测试电路,包括:
冲击电流波输出电路,与所述整支防雷绝缘子连接,用于向所述整支防雷绝缘子施加第一冲击电流波和第二冲击电流波;
工频电压输出电路,与所述整支防雷绝缘子连接,用于向所述整支防雷绝缘子施加工频电压;
参数测试电路,用于测试所述第一冲击电流波和所述第二冲击电流波下流经所述整支防雷绝缘子的冲击电流和所述整支防雷绝缘子两端的残压,以及工频电压测试下所述整支防雷绝缘子对应所述第一冲击电流波和所述第二冲击电流波的工频参考电压和泄漏电流;
计算分析装置,与所述参数测试电路连接,用于执行如第一方面所述的防雷绝缘子的耐受特性测试方法。
可选地,所述冲击电流波输出电路包括充电变压器、整流硅堆、保护电阻、球隙、电容器组、波尾阻抗、调波电感和调波电阻;
所述工频电压输出电路包括工频测试变压器、工频保护阻抗和真空开关;
所述参数测试电路包括电阻分压器、电流互感器和阻容分压器,所述电阻分压器用于测试所述第一冲击电流波和所述第二冲击电流波下所述整支防雷绝缘子的充电电压,所述电流互感器用于测试所述第一冲击电流波和所述第二冲击电流波下流经所述整支防雷绝缘子的冲击电流,所述阻容分压器用于测试所述第一冲击电流波和所述第二冲击电流波下所述整支防雷绝缘子两端的残压,以及工频电压测试下所述整支防雷绝缘子的工频参考电压和泄漏电流;
所述整支防雷绝缘子外设置有防爆装置,所述防爆装置用于阻挡所述整支防雷绝缘子炸裂时的碎片。
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的防雷绝缘子的耐受特性测试方法对整支防雷绝缘子开展冲击大电流试验,获得整支防雷绝缘子在运行条件下遭受雷电流直击时冲击能量以及热应力耐受能力的真实数据,真实模拟了整支防雷绝缘子在运行条件下遭受大电流直击雷时的响应特性,为输电线路防雷设备设计提供了安全、可靠的技术支撑,有利于提高现场运行的安全可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种防雷绝缘子的耐受特性测试方法的流程示意图;
图2为本公开实施例提供的10kV整支防雷绝缘子在2.6/50μs雷电流作用下的电流和残压波形;
图3为本公开实施例提供的10kV整支防雷绝缘子在4.0/10μs冲击大电流作用下的电流和残压波形;
图4为本公开实施例提供的一种防雷绝缘子的耐受特性测试电路的结构示意图;
图5为本公开实施例提供的一种防雷绝缘子的设计方法的流程示意图;
图6为本公开实施例提供的一种防雷绝缘子的设计方法的具体流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为本公开实施例提供的一种防雷绝缘子的耐受特性测试方法的流程示意图。防雷绝缘子的耐受特性测试方法可以应用在需要对整支防雷绝缘子进行冲击耐受特性测试的场景,该防雷绝缘子的耐受特性测试方法可以采用软件和/或硬件的方式来实现。如图1所示,防雷绝缘子的耐受特性测试方法包括:
S1、获取第一冲击电流波下流经整支防雷绝缘子的冲击电流和整支防雷绝缘子两端的残压,并根据第一冲击电流波下流经整支防雷绝缘子的冲击电流和残压获取整支防雷绝缘子吸收的冲击能量;获取第二冲击电流波下流经整支防雷绝缘子的冲击电流和对应的热应力。
具体地,向整支防雷绝缘子分别施加第一冲击电流波和第二冲击电流波,获取不同冲击电流下流经整支防雷绝缘子的冲击电流和整支防雷绝缘子两端的残压,并根据冲击电流和残压获取整支防雷绝缘子吸收的冲击能量和对应的热应力。
示例性地,可以设置第一冲击电流波为2.6/50μs冲击电流波,第二冲电流为4.0/10μs冲击电流波。目前为了模拟防雷设备在雷电流冲击下的响应特性,国内外电器产品检测机构和生产厂家建设了可输出不同电流波形的冲击试验装置,冲击试验装置例如可以产生2ms方波电流、8/20μs标称放电电流和4/10μs冲击大电流。但是现有雷电监测结果表明,运行输电线路遭受雷电直击时流过防雷设备的电流波形以2.6/50μs为主,而非8/20μs冲击电流波,且受试验设备输出能力与制造技术的限制,现有防雷设备冲击电流试验主要在防雷设备比例单元或单片氧化锌电阻片防雷元件上进行,试验波形也以容易产生的4/10μs和8/20μs冲击电流波为主。
本公开实施例设置第一冲击电流波为2.6/50μs冲击电流波,第二冲电流为4.0/10μs冲击电流波,即冲击电流冲击能量耐受试验时采用与自然界实际雷电流相同波形的2.6/50μs冲击电流波,可以真实模拟运行条件下遭受大电流直击雷时的响应特性,有利于提高现场运行安全可靠性。
具体地,首先产生2.6/50μs雷电流并施加在10kV整支防雷绝缘子试品上,10KV为整支防雷绝缘子的额定电压,获取第一冲击电流波,例如2.6/50μs冲击电流波下流经整支防雷绝缘子的冲击电流和整支防雷绝缘子两端的残压,得到的雷电流及其残压波形如图2所示,图2中横坐标为时间t,单位为10 -4s,左侧纵坐标为电流I,单位为KA,右侧纵坐标为电压V,单位为KV,曲线a代表2.6/50μs冲击电流波下流经整支防雷绝缘子的冲击电流,曲线b代表2.6/50μs冲击电流波下整支防雷绝缘子两端的残压。
然后重新选取一支10kV整支防雷绝缘子样品,产生4.0/10μs冲击电流波并施加在重新选取的10kV整支防雷绝缘子试品上,获取第二冲击电流波,例如4.0/10μs冲击电流波下流经整支防雷绝缘子的冲击电流和整支防雷绝缘子两端的残压,得到的雷电流及其残压波形如图3所示,图3中横坐标为时间t,单位为10 -6s,左侧纵坐标为电流I,单位为KA,右侧纵坐标为电压V,单位为KV,曲线c代表4.0/10μs冲击电流波下流经整支防雷绝缘子的冲击电流,曲线d代表4.0/10μs冲击电流波下整支防雷绝缘子两端的残压。
可选地,根据第一冲击电流波下流经整支防雷绝缘子的冲击电流和残压获取整支防雷绝缘子吸收的冲击能量,包括根据下述公式获取整支防雷绝缘子吸收的冲击能量:
Figure PCTCN2020100066-appb-000008
向整支防雷绝缘子施加第一冲击电流波,根据下述公式获取整支防雷绝缘子吸收的冲击能量。其中,W 整支为整支防雷绝缘子吸收的冲击能量,u(t)为第一冲击电流波下残压的波形数值表达式且满足u(t)=ci λ(t),i(t)为第一冲击电流波的波形数值表达式且满足
Figure PCTCN2020100066-appb-000009
T为第一冲击电流波的持续时间。u(t)和i(t)中,I 0为第一冲击电流波的幅值,k为波形校正系数,α 1为波前衰减系数,β为波尾衰减系数,c为常数,λ为整支防雷绝缘子用氧化锌电阻片的非线性系数。
可选地,根据下述公式获取整支防雷绝缘子对应的热应力:
Figure PCTCN2020100066-appb-000010
向整支防雷绝缘子施加第二冲击电流波,根据下述公式获取整支防雷绝缘子对应的热应力。其中,F 为整支防雷绝缘子对应的热应力,E为整支防雷绝缘子用氧化锌电阻片的弹性模量、α为氧化锌电阻片的线性热膨胀系数,μ为氧化锌电阻片的泊松比,T max和T min分别为第二冲击电流波作用后氧化锌电阻片的温度最大值和温度最小值。
具体地,在根据冲击电流和残压获取整支防雷绝缘子吸收的冲击能量和对应的热应力之前,可以先获取待试验的整支防雷绝缘子及其氧化锌电阻片技术参数,技术参数具体可以包括整支防雷绝缘子交流1mA参考电压U 0、泄漏电流I 泄漏和伏安特性曲线,氧化锌电阻片型号、结构尺寸、数量N 0、弹性模量、热膨胀系数和泊松比,以及2.6/50μs冲击电流波耐受值I 2.6/50和对应的能量W 0,4/10μs冲击大电流耐受值I 4.0/10和对应的热应力F 0。待试验的10kV整支防雷绝缘子的技术参数如表1所示,待试验的10kV整支防雷绝缘子的氧化锌电阻片的技术参数如表2所示。
表1 10kV防雷绝缘子技术参数
Figure PCTCN2020100066-appb-000011
表2 10kV防雷绝缘子用氧化锌电阻片技术参数
Figure PCTCN2020100066-appb-000012
具体地,根据图2和图3所示的不同冲击电流波下流经整支防雷绝缘子的冲击电流和整支防雷绝缘子两端的残压的波形和幅值,计算整支防雷绝缘子对应的冲击电流电荷量、冲击能量和热应力。
当冲击电流波形为2.6/50μs时,分别计算整支防雷绝缘子吸收的冲击电流电荷量和冲击能量:
Figure PCTCN2020100066-appb-000013
其中,Q为当冲击电流波形为2.6/50μs时,整支防雷绝缘子吸收的冲击电流电荷量,Q可以作为整支防雷绝缘子耐受特性的辅助判断参数,u(t)、i(t)分别为冲击电流、残压波形的数值表达式,冲击电流i(t)采用双指数函数,
Figure PCTCN2020100066-appb-000014
u(t)可以根据表1所示的氧化锌电阻片伏安特性曲线得到, u(t)=ci λ(t)。当冲击电流波形为4.0/10μs时,获取的整支防雷绝缘子对应的热应力,T max、T min为采用红外测温仪测得的冲击电流作用后电阻片温度的最大值和最小值,
根据图2所示的波形可知,施加在10kV整支防雷绝缘子上的2.6/50μs雷电流幅值为17.7kA,采用双指数函数对其进行拟合,得到i(t)的数值表达式为:
Figure PCTCN2020100066-appb-000015
2.6/50μs雷电流作用下的10kV防雷绝缘子残压可根据表1中伏安特性曲线数值表达式得到,下述公式中的4即为整支防雷绝缘子试品用氧化锌电阻片的数量,第一冲击电流波下残压的波形数值表达式满足如下计算公式:
Figure PCTCN2020100066-appb-000016
示例性地,可以在MATLAB软件中编写程序,可以计算得到10kV整支防雷绝缘子在17.7kA的2.6/50μs雷电流作用下吸收的电荷量为:
Figure PCTCN2020100066-appb-000017
吸收的冲击电流能量为:
Figure PCTCN2020100066-appb-000018
10kV整支防雷绝缘子在91.7kA的4.0/10μs冲击大电流后,红外测温仪测得的内部电阻片温度T max=54.6℃、T min=47.1℃,结合表2所示的氧化锌电阻片技术参数,计算得到10kV防雷绝缘子的热应力为:
Figure PCTCN2020100066-appb-000019
S2、分别获取整支防雷绝缘子对应第一冲击电流波和第二冲击电流波的工频参考电压和泄漏电流。
具体地,在向整支防雷绝缘子施加对应的冲击电流波后,向整支防雷绝缘子施加工频电压,获取整支防雷绝缘子对应不同冲击电流波的工频参考电压和泄漏电流。具体地,在2.6/50μs雷电流施加一段时间后(该时间小于100ms,为控制工频电压输入的开关断开和闭合所需时间),向10kV整支防雷绝缘子施加工频电压。当测得的工频电流为1mA时,记录此时的工频参考电压U (2.6/50)1mA=21.3kV,降低施加在整支防雷绝缘子上的工频电压为0.75倍的U (2.6/50)1mA,即降低施加在整支防雷绝缘子上的工频参考电压为15.98kV,此时测得泄漏电流I (2.6/50)1mA=5.0μA。同理,同样在4/10μs雷电流施加一段时间后,向10kV整支防雷绝缘子施加工频电压,当测得的工频电流为1mA时,记录此时的工频参考电压U (4.0/10)1mA=21.1kV,降低施加在整支防雷绝缘子上的工频电压为0.75倍的U (4.0/10)1mA,此时测得泄漏电流I (4.0/10)1mA=6.0μA。
S3、根据工频参考电压获取整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,并比较获取的泄漏电流与施加冲击电流前整支防雷绝缘子对应的泄漏电流。
可选地,整支防雷绝缘子冲击电流测试前后的工频参考电压变化率满足下述公式:
Figure PCTCN2020100066-appb-000020
其中,ΔU为整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,U 0和U 1mA分别为整支防雷绝缘子冲击电流测试前和测试后的工频参考电压,由表1可知U 0等于21.5kV。
具体地,10kV整支防雷绝缘子在2.6/50μs雷电流、4.0/10μs冲击大电流试验前后的工频1mA参考电压变化率、分别满足如下计算公式:
Figure PCTCN2020100066-appb-000021
Figure PCTCN2020100066-appb-000022
比较获取的泄漏电流与施加冲击电流前整支防雷绝缘子对应的泄漏电流,由表1可知,施加冲击电流前整支防雷绝缘子对应的泄漏电流I 泄漏等于3.0μA,将冲击电流试验前后泄漏电流进行比较可知:I (2.6/50)1mA=5.0μA≥I 泄漏=3.0μA;I (4.0/10)1mA=6.0μA≥I 泄漏=3.0μA。
S4、根据工频参考电压变化率和泄漏电流比较结果调节施加于整支防雷绝缘子的冲击电流。
S5、获取工频参考电压变化率均小于等于设定变化率,且泄漏电流均小于等于设定泄漏电流的整支防雷绝缘子对应的冲击能量耐受最大值和热应力耐受最大值。
具体地,循环执行步骤S1至步骤S4,直至获取工频参考电压变化率均小于等于设定变化率,且泄漏电流均小于等于设定泄漏电流的整支防雷绝缘子对应的冲击能量耐受最大值和热应力耐受最大值。
具体地,根据工频参考电压变化率和泄漏电流比较结果调节施加于整支防雷绝缘子的冲击电流,可以选取一支新的相同型号、相同技术参数的整支防雷绝缘子,重复执行步骤S1至步骤S4,直至获得到满足工频1mA参考电压变化率不大于设定变化率,例如5%,泄漏电流小于等于设定泄漏电流,例如50μA的整支防雷绝缘子耐受冲击电流最大值及对应冲击能量和热应力。
可选地,根据工频参考电压变化率和泄漏电流比较结果调节施加于整支防雷绝缘子的冲击电流,包括:若工频参考电压变化率小于等于设定变化率,泄漏电流小于等于设定泄漏电流,则判定整支防雷绝缘子通过了当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于整支防雷绝缘子的冲击电流增加设定比例;若工频参考电压变化率大于设定变化率,或泄漏电流大于设定泄漏电流,则判定整支防雷绝缘子未通过当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于整支防雷绝缘子的冲击电流减小设定比例,设定比例例如可以为5%。
示例性地,可以设置如果工频参考电压变化率ΔU小于等于5%且泄漏电流I 1mA小于等于50μA,则认为防雷绝缘子通过了当前所施加冲击电流I 0对应的冲击能量或热应力测试,若此时I 0不是防雷绝缘子最大耐受冲击电流,将施加于整支防雷绝缘子的冲击电流增加5%。如果ΔU大于5%或I 1mA大于50μA,则认为防雷绝缘子没有通过当前所施加冲击电流I 0对应的冲击能量或热应力测试,将施加于整支防雷绝缘子的冲击电流减小5%。
例如,根据上述ΔU(2.6/50)和ΔU(4.0/10)的计算结果可知:10kV整支防雷绝缘子在冲击电流试验后,ΔU(2.6/50)和ΔU(4.0/10)都小于5%,且I (2.6/50)1mA<I (4.0/10)1mA<50μA,因此可以判定10kV整支防雷绝缘子通过了17.7kA的2.6/50μs雷电流冲击能量测试,同时也通过了91.7kA的4.0/10μs冲击大电流热应力测试。
然后选取两支新的相同型号、相同技术参数的10kV整支防雷绝缘子,将施加于整支防雷绝缘子的冲击电流增加5%,即新施加的冲击电流等于I 0(2.6/50)=17.7×1.05=18.6kA,I 0(4.0/10)=91.7×1.05=96.3kA,然后重复执行步骤S1至步骤S4。通过测试可知:当I 0(2.6/50)=18.6kA施加在10kV整支防雷绝缘子上时,冲击电流试验平台测量系统可以测得冲击电流和残压波形,但工频1mA参考电压测试U (2.6/50)1mA=20.3kV,I (2.6/50)1mA=63μA,计算得到ΔU(2.6/50)=5.58%大于5%且I (2.6/50)1mA大于50μA,所以10kV整支防雷绝缘子没有通过18.6kA的2.6/50μs雷电流冲击能量测试。当I 0(4.0/10)=96.3kA施加在10kV整支防雷绝缘子上时, 防雷绝缘子外绝缘伞裙表面出现破裂,冲击电流试验平台测量系统没有测到冲击电流和残压波形,工频1mA参考电压U (2.6/50)1mA=5.7kV、I (2.6/50)1mA=143μA,所以10kV防雷绝缘子没有通过96.3kA的4.0/10μs冲击大电流热应力测试。
因此,可以认为10kV整支防雷绝缘子耐受2.6/50μs雷电流的最大值为17.7kA,对应的冲击能量W =48.60kJ,耐受4.0/10μs冲击大电流的最大值为91.7kA,对应的热应力F 整支=8.2MPa,即获得工频参考电压变化率小于等于设定变化率,泄漏电流小于等于设定泄漏电流的整支防雷绝缘子对应的冲击能量耐受最大值为48.60kJ,热应力耐受最大值为8.2MPa。
这样,本公开实施例对整支防雷绝缘子开展冲击大电流试验,获得整支防雷绝缘子在运行条件下遭受雷电流直击时冲击能量以及热应力耐受能力的真实数据,真实模拟了整支防雷绝缘子在运行条件下遭受大电流直击雷时的响应特性,为输电线路防雷设备设计提供了安全、可靠的技术支撑,有利于提高现场运行的安全可靠性。
本公开实施例还提供了一种防雷绝缘子的耐受特性测试电路。图4为本公开实施例提供的一种防雷绝缘子的耐受特性测试电路的结构示意图。如图4所示,防雷绝缘子的耐受特性测试电路包括冲击电流波输出电路1、工频电压输出电路2、参数测试电路4和计算分析装置5,冲击电流波输出电路1和工频电压输出电路2均与整支防雷绝缘子32连接,冲击电流波输出电路1用于向整支防雷绝缘子32施加第一冲击电流波和第二冲击电流波,工频电压输出电路2用于向整支防雷绝缘子32施加工频电压,参数测试电路4用于测试第一冲击电流波和第二冲击电流波下流经整支防雷绝缘子32的冲击电流和整支防雷绝缘子32两端的残压,以及工频电压测试下整支防雷绝缘子32对应第一冲击电流波和第二冲击电流波的工频参考电压和泄漏电流。计算分析装置5与参数测试电路4连接,计算分析装置5用于执行如上述实施例所述的防雷绝缘子的耐受特性测试方法,因此本公开实施例提供的防雷绝缘子的耐受特性测试电路具备上述实施例的有益效果,这里不再赘述。
可选地,如图4所示,冲击电流波输出电路1包括充电变压器11、整流硅堆12、保护电阻13、球隙15、电容器组14、波尾阻抗16、调波电感17和调波电阻18;工频电压输出电路2包括工频测试变压器21、工频保护阻抗22和真空开关23;参数测试电路4包括电阻分压器41、电流互感器42和阻容分压器43,电阻分压器41用于测试第一冲击电流波和第二冲击电流波下整支防雷绝缘子32的充电电压,电流互感器42用于测试第一冲击电流波和第二冲击电流波下流经整支防雷绝缘子32的冲击电流,阻容分压器43用于测试第一冲击电流波和第二冲击电流波下整支防雷绝缘子32两端的残压,以及工频电压测试下整支防雷绝缘子32的工频参考电压和泄漏电流;整支防雷绝缘子32外设置有防爆装置31,防爆装置31用于阻挡整支防雷绝缘子32炸裂时的碎片。
具体地,可以参照图4在高压试验大厅搭建整支防雷绝缘子的冲击耐受特性测试电路,即搭建整支防雷绝缘子冲击电流试验平台。防雷绝缘子的耐受特性测试电路由冲击电流波输出电路1、工频电压输出电路2、试品支架3和测量系统组成,试品支架3用于放置整支防雷绝缘子试品,测量系统包括参数测试电路4和计算分析装置5。冲击电流波输出电路1用于产生4/10μs冲击大电流和2.6/50μs雷电流,冲击电流波输出电路1由充电变压器11、整流硅堆12、保护电阻13、电容器组14、球隙15、波尾阻抗16、调波电感17和调波电阻18组成,其中充电变压器11、整流硅堆12、保护电阻13、电容器组14通过高压导线依次相连,用于给电容器14组充电,电容器组14、波尾阻抗16、调波电感17和调波电阻18依次连接后与试品支架3的高压端相连。通过改变波尾阻抗16、调波电感17和调波电阻18的数值使施加在试品上的电流波形为4/10μs或2.6/50μs冲击电流波,改变电容器组14的充电电压可以调节冲击电流的幅值。
工频电压输出电路2由工频试验变压器21、工频保护阻抗22和真空开关23组成,依次连接后用于给试品支架3中的整支防雷绝缘子32输出工频电压。整支防雷绝缘子32外,即试品支架3外设置有防爆装置,例如防爆箱31,防爆装置用于阻挡整支防雷绝缘子试品32炸裂时的碎片,防止伤及人员或设备。测量系统由电阻分压器41、电流互感器42、阻容分压器43和计算分析装置5组成,电阻分压器41用于测试冲击电流试验时的充电电压的幅值和波形、电流互感器42用于测试试品电流的幅值和波形、阻容分压器43用于测试试品残压的幅值和波形,以及工频电压试验时1mA参考电压和泄漏电流。
本公开实施例提供的防雷绝缘子的耐受特性测试方法和电路容易实现,可操作性强,且可以通过调整波尾阻抗16、调波电感17和调波电阻18的数值,或者调整电容器组14的充电电压,以使防雷绝缘子的耐受特性测试电路适用于各种电压等级的整支防雷设备冲击电流冲击能量和热应力试验,以及氧化锌电阻片的设计。
本公开实施例还提供了一种防雷绝缘子的设计方法,图5为本公开实施例提供的一种防雷绝缘子的设计方法的流程示意图。防雷绝缘子的设计方法可以应用在需要对整支防雷绝缘子进行设计的场景,该防雷绝缘子的设计方法可以采用软件和/或硬件的方式来实现。如图5所示,防雷绝缘子的设计方法包括:
S201、获取冲击能量耐受最大值和热应力耐受最大值。
具体地,根据上述实施例的防雷绝缘子的耐受特性测试方法获取冲击能量耐受最大值和热应力耐受最大值,根据上述实施例例如可以得到工频参考电压变化率小于等于设定变化率,泄漏电流小于等于设定泄漏电流的整支防雷绝缘子对应的冲击能量耐受最大值为48.60kJ,热应力耐受最大值为8.2MPa。
S202、根据冲击能量耐受最大值和热应力耐受最大值设计整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸。
可选地,根据冲击能量最大值和热应力耐受最大值设计整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸,包括:
获取整支防雷绝缘子中单片氧化锌电阻片耐受第一冲击电流波的冲击能量最大值;其中,单片氧化锌电阻片耐受第一冲击电流波的冲击能量最大值满足下述计算公式:
Figure PCTCN2020100066-appb-000023
其中,W 单片为单片氧化锌电阻片耐受第一冲击电流波的冲击能量最大值,W 整支为整支防雷绝缘子吸收的冲击能量,N 0为整支防雷绝缘子测试前采用的氧化锌电阻片的数量;
整支防雷绝缘子用氧化锌电阻片的数量满足下述计算公式:
Figure PCTCN2020100066-appb-000024
其中,N为整支防雷绝缘子用氧化锌电阻片的数量,W 0为单片氧化锌电阻片对应第一冲击电流波的冲击能量;
具体地,N 0为整支防雷绝缘子试验前采用氧化锌电阻片的数量,W 0为单片氧化锌电阻片2.6/50μs冲击电流波能量,根据表2可以获得N 0等于4,W 0等于13.78,根据10kV整支防雷绝缘子耐受冲击电流波能量对其采用的氧化锌电阻片数量进行重新设计,计算10kV整支防雷绝缘子单片氧化锌电阻片耐受2.6/50μs冲击电流波的最大值W 单片
Figure PCTCN2020100066-appb-000025
对10kV整支防雷绝缘子所需氧化锌电阻片数量N重新设计为:
Figure PCTCN2020100066-appb-000026
整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数满足下述计算公式:
Figure PCTCN2020100066-appb-000027
其中,S为整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数,S 0为整支防雷绝缘子测试前采用的氧化锌电阻片的面积,F 0为单片氧化锌电阻片对应第二冲击电流波的热应力。
具体地,S 0为防雷绝缘子试验前采用氧化锌电阻片的面积,F 0为单片电阻片4/10μs冲击电流波热应力耐受值,根据表2可以获得防雷绝缘子试验前采用氧化锌电阻片的结构尺寸为Ф(32×60)×24mm,氧化锌电阻片为圆环结构,其中60mm为氧化锌电阻片的外径,32mm为氧化锌电阻片的内径,24mm为氧化锌电阻片的厚度,F 0等于9.2,防雷绝缘子试验前采用氧化锌电阻片的面积S 0则为
Figure PCTCN2020100066-appb-000028
r 外径等于6cm,r 内径等于3.2cm。对10kV整支防雷绝缘子采用氧化锌电阻片的规格尺寸,这里的规格尺寸主要是指氧化锌电阻片圆环表面的面积S,S重新设计为:
Figure PCTCN2020100066-appb-000029
由此可知,氧化锌电阻片面积增加了12.2%,可以主要通过增加氧化锌电阻片外径方式实现。因此,考虑10kV整支防雷绝缘子冲击电流能量和热应力耐受特性,其氧化锌电阻片数量由原先4片调整为5片,电阻片结构尺寸由Ф(32×60)×24mm调整为Ф(32×64)×24mm,对应结构尺寸Ф(32×64)×24mm,氧化锌电阻片的面积S等于24.12cm 2
图6为本公开实施例提供的一种整支防雷绝缘子的设计方法的具体流程示意图。该整支防雷绝缘子的设计方法同样可以应用在需要对整支防雷绝缘子进行设计的场景。如图6所示,整支防雷绝缘子的设计方法包括:
S301、在高压试验大厅搭建整支防雷绝缘子冲击电流试验平台。
具体地,如图4所示,该试验平台由冲击电流波输出电路1、工频电压输出电路2、试品支架3、参数测试电路4和计算分析装置5组成。
S302、获取待试验的整支防雷绝缘子及其氧化锌电阻片技术参数。
具体地,整支防雷绝缘子及其氧化锌电阻片技术参数分别如上述表1和表2所示。
S303、固定待测试防雷绝缘子样品,根据冲击电流波形设置试验回路波尾阻抗、调波电感和电阻数值。
具体地,如图4所示,将待测试的10kV防雷绝缘子样品固定于冲击电流试验平台试品支架防爆箱31内,设置好与冲击电流波形对应的波尾阻抗、调波电感和电阻数值,测试冲击电流能量耐受能力时采用2.6/50μs电流波形,测试热应力耐受能力采用4.0/10μs电流波形。当对样品开展2.6/50μs雷电流耐受能力测试时,设置波尾阻抗为0.398千欧、调波电感为10.0μH,调波电阻为8.7欧姆;当对样品开展4.0/10μs冲击大电流耐受能力测试时,波尾阻抗为1.59千欧、调波电感为9.0μH,调波电阻为2.1欧姆。
S304、接通试验装置工作电源,产生2.6/50μs或4.0/10μs冲击电流I 0并输出至整支防雷绝缘子试品上。
具体地,接通充电变压器工作电源,通过电阻分压器控制充电电压,调节球隙距离以触发电容器组放电,产生冲击电流I 0并施加在整支防雷绝缘子试品上。如图4所示,接通充电变压器11工作电源,调节电容器组14充电电压,触发球隙15放电,首先产生2.6/50μs雷电流并施加在10kV整支防雷绝缘子试品上,得到的雷电流及其残压波形如图2所示。调整冲击电流试验平台回路阻抗参数,重新选取一支10kV防雷绝缘子样品固定于试品支架上,开展4.0/10μs冲击大电流耐受能力测试,得到的冲击电流、残压波形和如图3所示。
S305、记录流经防雷绝缘子冲击电流、残压波形和幅值参数,计算整支防雷绝缘子吸收的冲击电流电荷量、冲击能量和热应力。
具体地,读取和记录流经防雷绝缘子的冲击电流、残压的波形和幅值,计算整支防雷绝缘子吸收的冲击电流、冲击能量和热应力。根据附图2波形可知,施加在10kV防雷绝缘子上的2.6/50μs雷电流幅值为17.7kA,采用双指数函数对其进行拟合,得到i(t)的数值表达式为:
Figure PCTCN2020100066-appb-000030
2.6/50μs雷电流作用下的10kV防雷绝缘子残压可根据表1中伏安特性曲线数值表达式得到,即:
Figure PCTCN2020100066-appb-000031
在MATLAB软件中编写程序,计算得到10kV整支防雷绝缘子在17.7kA的2.6/50μs雷电流作用下吸收的电荷量为:
Figure PCTCN2020100066-appb-000032
吸收的冲击电流冲击能量为:
Figure PCTCN2020100066-appb-000033
10kV整支防雷绝缘子在91.7kA的4.0/10μs冲击大电流后,红外测温仪测得的内部电阻片温度T max=54.6℃、T min=47.1℃,结合表2氧化锌电阻片技术参数,计算得到10kV防雷绝缘子的热应力为:
Figure PCTCN2020100066-appb-000034
S306、冲击电流施加一段时间内,测试整支防雷绝缘子工频1mA参考电压、泄漏电流。
具体地,在冲击电流波施加一段时间内(小于100ms),通过冲击电流波试验装置平台工频电压输出装置给防雷绝缘子施加工频电压,测试整支防雷绝缘子工频1mA参考电压U 1mA,以及在0.75倍工频参考电压下的泄漏电流I 1mA。在2.6/50μs雷电流施加一段时间后(小于100ms),通过冲击电流波试验装置平台工频电压输出装置给10kV防雷绝缘子施加工频电压,当测量系统电流互感器42测得的工频电流为1mA时,记录此工频电压U (2.6/50)1mA=21.3kV;降低施加在防雷绝缘子上的工频电压为0.75倍U (2.6/50)1mA(15.98kV),测得泄漏电流I (2.6/50)1mA=5.0μA。同理可得U (4.0/10)1mA=21.1kV、I (4.0/10)1mA=6.0μA。
S307、计算冲击电流试验前后工频1mA参考电压变化率ΔU。
具体地,计算10kV整支防雷绝缘子在2.6/50μs雷电流、4.0/10μs冲击大电流试验前后的工频1mA参考电压变化率ΔU分别为:
Figure PCTCN2020100066-appb-000035
Figure PCTCN2020100066-appb-000036
S308、判断ΔU是否小于等于5%且泄漏电流是否小于等于50μA。若是,执行步骤309;若否,经条件A执行步骤303。
具体地,条件A为冲击电流波I 0减小5%,重新布置与步骤302同型号的防雷绝缘子。计算整支防雷绝缘子冲击电流试验前后的工频1mA参考电压变化率ΔU,同时将I 1mA与施加冲击电流前的数值I 泄漏进行比较。
S309、判断I 0是否为防雷绝缘子最大耐受冲击电流。若是,执行步骤310;若否,经条件B执行步骤303。
具体地,条件B为冲击电流波I 0增加5%,重新布置与步骤(2)同型号的防雷绝缘子。
S310、获得满足要求的整支防雷绝缘子2.6/50μs、4.0/10μs冲击电流最大值及对应冲击能量和热应力。
具体地,根据计算和比较结果改变施加于整支防雷绝缘子的冲击电流幅值,选取一支新的与步骤302相同型号、技术参数的防雷绝缘子,重复步骤303至步骤309,直到获得满足工频1mA参考电压变化率不大于5%且泄漏电流小于等于50μA的整支防雷绝缘子耐受冲击电流最大值及对应冲击能量和热应力。
S311、对整支防雷绝缘子采用的氧化锌电阻片数量和规格尺寸进行重新设计。
具体地,根据整支防雷绝缘子耐受冲击电流能量和热应力最大值对其采用的氧化锌电阻片数量和规格尺寸进行重新设计。
这样,本公开实施例解决了现有技术存在的未对冲击电流耐受试验结果如何应用于防雷设备设计进行论述,存在一定局限性,导致现有防雷设备在现场运行中故障率仍较高的问题,为考虑成型工艺影响的整支防雷绝缘子氧化锌电阻片数量和规格尺寸设计提供了解决方案。
本公开实施例通过搭建整支防雷绝缘子冲击电流试验平台,获取待试验防雷绝缘子及其氧化锌电阻片技术参数,设置与冲击电流波形对应的波尾阻抗、调波电感和电阻数值,将2.6/50μs或4.0/10μs冲击电流波施加在整支防雷绝缘子试品上,计算整支防雷绝缘子吸收的冲击电流电荷量、冲击能量和热应力,冲击电流施加一段时间内,测试整支防雷绝缘子工频1mA参考电压U 1mA、泄漏电流I 1mA,计算防雷绝缘子冲击电流试验前后的工频1mA参考电压变化率ΔU,根据ΔU和I 1mA的大小改变施加于整支防雷绝缘子的冲击电流幅值,获得满足要求的整支防雷绝缘子2.6/50μs、4.0/10μs冲击电流最大值及对应冲击能量和热应力,对整支防雷绝缘子采用的氧化锌电阻片数量和规格尺寸进行重新设计。可以对整支防雷绝缘子开展2.6/50μs雷电流、4/10μs冲击大电流试验,获得运行条件下遭受雷电流直击时冲击能量、热应力耐受能力的真实数据,模拟在运行条件下遭受大电流直击雷的冲击能量耐受和热应力特性,为防雷绝缘子及氧化锌电阻片设计提供支撑,提升现场运行安全和可靠性。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开对整支防雷绝缘子开展冲击大电流试验,获得整支防雷绝缘子在运行条件下遭受雷电流直击时冲击能量以及热应力耐受能力的真实数据,真实模拟了整支防雷绝缘子在运行条件下遭受大电流直击雷时的响应特性,为输电线路防雷设备设计提供了安全、可靠的技术支撑,有利于提高现场运行的安全可靠性,具有很强的工业实用性。

Claims (10)

  1. 一种防雷绝缘子的耐受特性测试方法,其特征在于,包括:
    步骤S1、获取第一冲击电流波下流经整支防雷绝缘子的冲击电流和所述整支防雷绝缘子两端的残压,并根据所述第一冲击电流波下流经所述整支防雷绝缘子的冲击电流和所述残压获取所述整支防雷绝缘子吸收的冲击能量;获取第二冲击电流波下流经所述整支防雷绝缘子的冲击电流和对应的热应力;
    步骤S2、分别获取所述整支防雷绝缘子对应所述第一冲击电流波和所述第二冲击电流波的工频参考电压和泄漏电流;
    步骤S3、根据所述工频参考电压获取所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,并比较获取的所述泄漏电流与施加冲击电流前所述整支防雷绝缘子对应的泄漏电流;
    步骤S4、根据所述工频参考电压变化率和泄漏电流比较结果调节施加于所述整支防雷绝缘子的冲击电流;
    循环执行步骤S1至步骤S4,直至获取所述工频参考电压变化率均小于等于设定变化率,且所述泄漏电流均小于等于设定泄漏电流的所述整支防雷绝缘子对应的冲击能量耐受最大值和热应力耐受最大值。
  2. 根据权利要求1所述的防雷绝缘子的耐受特性测试方法,其特征在于,所述第一冲击电流波为2.6/50μs冲击电流波,所述第二冲击电流波为4.0/10μs冲击电流波。
  3. 根据权利要求1或2所述的防雷绝缘子的耐受特性测试方法,其特征在于,根据所述第一冲击电流波下流经所述整支防雷绝缘子的冲击电流和所述残压获取所述整支防雷绝缘子吸收的冲击能量,包括:
    根据下述公式获取所述整支防雷绝缘子吸收的冲击能量:
    Figure PCTCN2020100066-appb-100001
    其中,W 整支为所述整支防雷绝缘子吸收的冲击能量,u(t)为所述第一冲击电流波下所述残压的波形数值表达式且满足u(t)=ci λ(t),i(t)为所述第一冲击电流波的波形数值表达式且满足
    Figure PCTCN2020100066-appb-100002
    T为所述第一冲击电流波的持续时间,I 0为所述第一冲击电流波的幅值,k为波形校正系数,α 1为波前衰减系数,β分别为波尾衰减系数,c为常数,λ为所述整支防雷绝缘子用氧化锌电阻片的非线性系数。
  4. 根据权利要求1或2所述的防雷绝缘子的耐受特性测试方法,其特征在于,根据下述公式获取所述第二冲击电流波下所述整支防雷绝缘子对应的热应力:
    Figure PCTCN2020100066-appb-100003
    其中,F 整支为所述整支防雷绝缘子对应的热应力,E为所述整支防雷绝缘子用氧化锌电阻片的弹性模量、α为所述氧化锌电阻片的线性热膨胀系数,μ为所述氧化锌电阻片的泊松比,T max和T min分别为所述第二冲击电流波作用后所述氧化锌电阻片的温度最大值和温度最小值。
  5. 根据权利要求1或2所述的防雷绝缘子的耐受特性测试方法,其特征在于,所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率满足下述公式:
    Figure PCTCN2020100066-appb-100004
    其中,ΔU为所述整支防雷绝缘子冲击电流测试前后的工频参考电压变化率,U 0和U 1mA分别为所述整支防雷绝缘子冲击电流测试前和测试后的工频参考电压。
  6. 根据权利要求1或2所述的防雷绝缘子的耐受特性测试方法,其特征在于,根据所述工频参考电压变化率和泄漏电流比较结果调节施加于所述整支防雷绝缘子的冲击电流,包括:
    若所述工频参考电压变化率小于等于设定变化率,所述泄漏电流小于等于设定泄漏电流,则判定所述整支防雷绝缘子通过了当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于所述整支防雷绝缘子的冲击电流增加设定比例;
    若所述工频参考电压变化率大于设定变化率,或所述泄漏电流大于设定泄漏电流,则判定所述整支防雷绝缘子未通过当前所施加冲击电流对应的冲击能量和热应力测试,并将施加于所述整支防雷绝缘子的冲击电流减小设定比例。
  7. 一种防雷绝缘子的设计方法,其特征在于,包括:
    根据如权利要求1-6任一项所述的防雷绝缘子的耐受特性测试方法获取所述冲击能量耐受最大值和所述热应力耐受最大值;
    根据所述冲击能量耐受最大值和所述热应力耐受最大值设计所述整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸。
  8. 根据权利要求7所述的防雷绝缘子的设计方法,其特征在于,根据所述冲击能量耐受最大值和所述热应力耐受最大值设计所述整支防雷绝缘子用氧化锌电阻片的数量和规格尺寸,包括:
    获取所述整支防雷绝缘子中单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值;其中,单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值满足下述计算公式:
    Figure PCTCN2020100066-appb-100005
    其中,W 单片为单片氧化锌电阻片耐受所述第一冲击电流波的冲击能量最大值,W 整支为所述整支防雷绝缘子吸收的冲击能量,N 0为所述整支防雷绝缘子测试前采用的所述氧化锌电阻片的数量;
    所述整支防雷绝缘子用氧化锌电阻片的数量满足下述计算公式:
    Figure PCTCN2020100066-appb-100006
    其中,N为所述整支防雷绝缘子用氧化锌电阻片的数量,W 0为单片氧化锌电阻片对应所述第一冲击电流波的冲击能量;
    所述整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数满足下述计算公式:
    Figure PCTCN2020100066-appb-100007
    其中,S为所述整支防雷绝缘子用氧化锌电阻片的规格尺寸所包含的面积参数,S 0为所述整支防雷绝缘子测试前采用的氧化锌电阻片的面积,F 0为单片氧化锌电阻片对应所述第二冲击电流波的热应力。
  9. 一种防雷绝缘子的耐受特性测试电路,其特征在于,包括:
    冲击电流波输出电路,与所述整支防雷绝缘子连接,用于向所述整支防雷绝缘子施加第一冲击电流波和第二冲击电流波;
    工频电压输出电路,与所述整支防雷绝缘子连接,用于向所述整支防雷绝缘子施加工频电压;
    参数测试电路,用于测试所述第一冲击电流波和所述第二冲击电流波下流经所述整支防雷绝缘子的冲击电流波和所述整支防雷绝缘子两端的残压,以及工频电压测试下所述整支防雷绝缘子对应所述第一冲击电流波和所述第二冲击电流波的工频参考电压和泄漏电流;
    计算分析装置,与所述参数测试电路连接,用于执行如权利要求1-6任一项所述的防雷绝缘子的耐受特性测试方法。
  10. 根据权利要求9所述的防雷绝缘子的耐受特性测试电路,其特征在于,所述冲击电流波输出电路包括充电变压器、整流硅堆、保护电阻、球隙、电容器组、波尾阻抗、调波电感和调波电阻;
    所述工频电压输出电路包括工频测试变压器、工频保护阻抗和真空开关;
    所述参数测试电路包括电阻分压器、电流互感器和阻容分压器,所述电阻分压器用于测试所述第一冲击电流波和所述第二冲击电流波下所述整支防雷绝缘子的充电电压,所述电流互感器用于测试所述第一冲击电流波和所述第二冲击电流波下流经所述整支防雷绝缘子的冲击电流,所述阻容分压器用于测试所述第一冲击电流波和所述第二冲击电流波下所述整支防雷绝缘子两端的残压,以及工频电压测试下所述整支防雷绝缘子的工频参考电压和泄漏电流;
    所述整支防雷绝缘子外设置有防爆装置,所述防爆装置用于阻挡所述整支防雷绝缘子炸裂时的碎片。
PCT/CN2020/100066 2020-05-21 2020-07-03 防雷绝缘子的耐受特性测试方法、测试电路和设计方法 WO2021232549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010433590.2A CN111352011B (zh) 2020-05-21 2020-05-21 防雷绝缘子的耐受特性测试方法、测试电路和设计方法
CN202010433590.2 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021232549A1 true WO2021232549A1 (zh) 2021-11-25

Family

ID=71193396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100066 WO2021232549A1 (zh) 2020-05-21 2020-07-03 防雷绝缘子的耐受特性测试方法、测试电路和设计方法

Country Status (2)

Country Link
CN (1) CN111352011B (zh)
WO (1) WO2021232549A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102152A (zh) * 2022-06-13 2022-09-23 国网江苏省电力有限公司苏州供电分公司 一种基于雷电预警的直流系统响应方法及系统
CN115236460A (zh) * 2022-06-15 2022-10-25 国网湖南省电力有限公司 多重雷击测试装置
CN115236461A (zh) * 2022-06-15 2022-10-25 国网湖南省电力有限公司 用于确定电阻片耐受度的方法、存储介质及处理器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352011B (zh) * 2020-05-21 2020-10-27 湖南省湘电试研技术有限公司 防雷绝缘子的耐受特性测试方法、测试电路和设计方法
CN111722065B (zh) * 2020-05-21 2021-08-31 中国南方电网有限责任公司超高压输电公司检修试验中心 一种直流转换开关避雷器电阻片极限能量耐受试验方法
CN113314282B (zh) * 2021-04-27 2022-10-28 国网湖南省电力有限公司 整只通流性能100kA以上的防雷装置加工方法及防雷装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351433A (ja) * 2005-06-17 2006-12-28 Chugoku Electric Power Co Inc:The 送電線路閃絡装置
CN203909217U (zh) * 2014-01-26 2014-10-29 国家电网公司 悬式绝缘子交流耐压测试架
CN204101715U (zh) * 2014-10-13 2015-01-14 国家电网公司 一种避雷器计数器测试仪校准装置
CN204989374U (zh) * 2015-09-06 2016-01-20 国网天津市电力公司 一种绝缘子泄漏电流监测装置
CN110007175A (zh) * 2019-04-17 2019-07-12 北京电子工程总体研究所 一种测试装置
CN111352011A (zh) * 2020-05-21 2020-06-30 湖南省湘电试研技术有限公司 防雷绝缘子的耐受特性测试方法、测试电路和设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087155B2 (ja) * 1994-03-04 2000-09-11 日新電機株式会社 漏れ電流検出センサ
CN101285867B (zh) * 2008-06-11 2010-09-29 重庆大学 电气绝缘电热老化试验设备
CN102426324A (zh) * 2011-08-24 2012-04-25 中国科学院等离子体物理研究所 一种用于检验超导电气部件绝缘低温性能的测试装置
CN202794367U (zh) * 2012-07-12 2013-03-13 重庆市电力公司永川供电局 交联聚乙烯电缆附件的电热老化试验装置
CN103558522A (zh) * 2013-11-02 2014-02-05 国家电网公司 冲击电压下变压器局部放电检测方法
CN103675623B (zh) * 2013-12-07 2016-04-06 西安交通大学 一种冲击电压下gis局部放电检测方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351433A (ja) * 2005-06-17 2006-12-28 Chugoku Electric Power Co Inc:The 送電線路閃絡装置
CN203909217U (zh) * 2014-01-26 2014-10-29 国家电网公司 悬式绝缘子交流耐压测试架
CN204101715U (zh) * 2014-10-13 2015-01-14 国家电网公司 一种避雷器计数器测试仪校准装置
CN204989374U (zh) * 2015-09-06 2016-01-20 国网天津市电力公司 一种绝缘子泄漏电流监测装置
CN110007175A (zh) * 2019-04-17 2019-07-12 北京电子工程总体研究所 一种测试装置
CN111352011A (zh) * 2020-05-21 2020-06-30 湖南省湘电试研技术有限公司 防雷绝缘子的耐受特性测试方法、测试电路和设计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102152A (zh) * 2022-06-13 2022-09-23 国网江苏省电力有限公司苏州供电分公司 一种基于雷电预警的直流系统响应方法及系统
CN115102152B (zh) * 2022-06-13 2024-01-23 国网江苏省电力有限公司苏州供电分公司 一种基于雷电预警的直流系统响应方法及系统
CN115236460A (zh) * 2022-06-15 2022-10-25 国网湖南省电力有限公司 多重雷击测试装置
CN115236461A (zh) * 2022-06-15 2022-10-25 国网湖南省电力有限公司 用于确定电阻片耐受度的方法、存储介质及处理器
CN115236461B (zh) * 2022-06-15 2024-08-30 国网湖南省电力有限公司 用于确定电阻片耐受度的方法、存储介质及处理器

Also Published As

Publication number Publication date
CN111352011A (zh) 2020-06-30
CN111352011B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2021232549A1 (zh) 防雷绝缘子的耐受特性测试方法、测试电路和设计方法
CN101598757B (zh) 一种可控金属氧化物避雷器残压试验回路和方法
CN110618356B (zh) 一种直流转换开关避雷器长时间电压耐受试验装置及方法
Tsovilis et al. Modeling the transient behavior of surge protective devices connected to the DC side of electric vehicle charging stations
Nigol Methods for analyzing the performance of gapless metal oxide surge arresters
US6957117B2 (en) Portable protective air gap tool and method
CN109799413A (zh) 一种配电网单相接地电流与电弧自熄弧时间模拟试验方法
Sakshaug Influence of rate-of-rise on distribution arrester protective characteristics
CN103124063B (zh) 一种压比可变的避雷器过压保护装置和实现方法
Siegert et al. Selection of varistor for surge protection purposes based on their voltage-current characteristic
Allen et al. Modeling of current-limiting surge arresters
Mardira et al. A simplified lightning model for metal oxide surge arrester
Haddad et al. Current disparity in multi-column surge arresters
Zhang et al. Study on impulse aging characteristics of ZnO varistor based on equivalent repeated charge transfer capability
Urukundu et al. Interpretation of IS/IEC and IEEE Standards for Dielectric Type Testing of Instrument Transformers
CN213275837U (zh) 一种高电压大电流三重雷击试验装置
CN209784494U (zh) 一种感性电流输出装置和隔离开关感性电流开合试验装置
CN112763900B (zh) 一种混合式直流断路器耗能支路mov状态测量电路及方法
Chen et al. Operation safety analysis of CMOA controllable switch under lightning intrusion wave in UHV AC substation
Wei et al. Experimental study on consistency of surge test between using gas arrestors and capacitors
Wen-Rong et al. Research on impulse impedance measurement for grounding device of transmission tower
Sun et al. Research on Aging Characteristics of Arrester under High Frequent Overvoltage
Mardira et al. Modern electrical diagnostics for metal oxide surge arresters
Cao et al. Research and application of an improved method for testing MOA without removing the lead conductor
Chen et al. Research on measuring and controllable method of UHV AC power electronic CMOA by BOD self triggered mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936954

Country of ref document: EP

Kind code of ref document: A1