WO2021232368A1 - 无线通信方法、装置、设备及存储介质 - Google Patents

无线通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021232368A1
WO2021232368A1 PCT/CN2020/091629 CN2020091629W WO2021232368A1 WO 2021232368 A1 WO2021232368 A1 WO 2021232368A1 CN 2020091629 W CN2020091629 W CN 2020091629W WO 2021232368 A1 WO2021232368 A1 WO 2021232368A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic tag
transmitter
signal
card reader
receiver
Prior art date
Application number
PCT/CN2020/091629
Other languages
English (en)
French (fr)
Inventor
邵帅
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/091629 priority Critical patent/WO2021232368A1/zh
Priority to CN202080099267.4A priority patent/CN115336186B/zh
Publication of WO2021232368A1 publication Critical patent/WO2021232368A1/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a wireless communication method, device, device, and storage medium.
  • the electronic tag tracking system is a system that uses radio communication technology to track and locate tags.
  • An electronic tag tracking system usually includes an electronic tag reading terminal (hereinafter referred to as a card reader) and an electronic tag to be tracked.
  • the electronic tag tracking system is mainly used for item tracking.
  • the electronic tag is placed on the tracked item, and a card reader is used to locate the location of the electronic tag to complete the item tracking.
  • the electronic label system can be applied to real-time positioning and tracking of goods in logistics.
  • commonly used electronic tags include electronic tags using passive radio frequency identification (Radio Frequency Identification, RFID) and Bluetooth wireless technologies.
  • RFID Radio Frequency Identification
  • a passive RFID is an electronic tag that does not require a power source. This type of tag relies on collecting radio frequency energy emitted by a card reader as an internal power supply.
  • Bluetooth-based electronic tags mainly use Bluetooth Low Energy (BLE) technology.
  • BLE technology is a low-power application in Bluetooth technology.
  • BLE can be reduced by adopting different channels, encoding and decoding. Chip power consumption.
  • the above-mentioned passive RFID requires a special card reader.
  • the general card reader is bulky and expensive, and is not suitable for consumer-level applications.
  • the Bluetooth-based electronic tag does not require a professional card reader, you can use mobile phones, etc.
  • the smart terminal performs reading, but a battery is required, and the battery life is only a certain period of time, which makes the electronic tag unable to be used for a long time.
  • the embodiments of the present application provide a wireless communication method, device, device, and storage medium, which are used to solve the current electronic tags for the consumer market (toC), and there is no electronic tag that is convenient to use and can work for a long time.
  • the embodiments of the present application may provide a communication method, which is applied to an electronic tag, the electronic tag includes a capacitor for storing radio frequency signal energy, and the method includes:
  • the embodiments of the present application may provide a wireless communication method, which is applied to a card reader, and the method includes:
  • embodiments of the present application may provide a wireless communication device, the wireless communication device including a capacitor for storing radio frequency signal energy, including:
  • Receiving module used to receive CW
  • the sending module is used to transmit data conforming to the BLE broadcast protocol to the card reader through the backscatter technology, and the data is used to locate the wireless communication device.
  • embodiments of the present application may provide a wireless communication device, including:
  • the receiving module is used to receive the data that conforms to the BLE broadcast protocol sent by the electronic tag;
  • the processing module is used to locate the electronic tag according to the data.
  • the embodiments of the present application may provide an electronic label, including:
  • the antenna is connected to the transmitter and the receiver respectively;
  • the processor is respectively connected with the transmitter, the receiver and the power management chip;
  • the power management chip is connected to the power supply module
  • the transmitter is used for transmitting signals
  • the receiver is used for receiving signals
  • the processor is used for signal processing
  • the power supply module is used for supplying power to the electronic tag device
  • the power management chip is used for Yu outputs corresponding voltages to the transmitter, the receiver, and the processor.
  • the electronic tag provided by this solution is used to implement the wireless communication method provided by any one of the foregoing first aspects.
  • embodiments of the present application may provide a terminal device, including:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the terminal device executes the wireless communication method provided in the second aspect.
  • the embodiments of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium.
  • the computer-executable instructions are executed by a processor, they are used to implement the Provide wireless communication method.
  • the embodiments of the present application may provide a computer-readable storage medium having a computer-executable instruction stored in the computer-readable storage medium, and when the computer-executable instruction is executed by a processor, it is used to implement the second aspect Provide wireless communication method.
  • an embodiment of the present application may provide a chip, including a processing module and a communication interface, where the processing module is configured to execute the wireless communication method provided in the first aspect.
  • an embodiment of the present application may provide a chip including: a processing module and a communication interface, and the processing module is configured to execute the wireless communication method provided in the second aspect.
  • the electronic tag after the electronic tag receives the continuous wave, it transmits data conforming to the BLE broadcast protocol to a card reader that can read the data through the backscattering technology. Make the card reader locate the electronic tag based on the data. Through this technology of collecting energy and then backscattering the continuous wave, energy consumption can be effectively reduced, and the data conforming to the BLE protocol can be received by various terminal devices. For consumers, it is convenient to use and can work for a long time, which improves the convenience of using electronic tags.
  • FIG. 1 is a schematic diagram of the principle of Embodiment 1 of an electronic tag provided by an embodiment of this application;
  • FIGS. 2a and 2b are schematic diagrams of an embodiment of a power supply module of an electronic tag provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the principle of Embodiment 2 of an electronic tag provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of the principle of Embodiment 3 of an electronic tag provided by an embodiment of this application;
  • FIG. 5 is a flowchart of Embodiment 1 of a wireless communication method provided by an embodiment of this application;
  • FIG. 6 is a schematic diagram of an example of a wireless communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another example of a wireless communication method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another example of a wireless communication method provided by an embodiment of this application.
  • FIG. 9 is a flowchart of Embodiment 2 of a wireless communication method provided by an embodiment of this application.
  • FIG. 10 is a flowchart of Embodiment 3 of a wireless communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of the principle of a transmitter of an electronic tag provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a transmitter wake-up signal provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of transmitter wake-up signal conversion provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of another transmitter of an electronic tag provided by an embodiment of this application.
  • 15 is a schematic diagram of the principle of the first receiver of the electronic tag provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of the principle of a second receiver of an electronic tag provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of the principle of a third receiver of an electronic tag provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of the principle of a fourth receiver of an electronic tag provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of a power supply module of an electronic tag provided by an embodiment of the application.
  • 20 is a schematic diagram of another power supply module of an electronic tag provided by an embodiment of the application.
  • FIG. 21 is a schematic structural diagram of Embodiment 1 of a wireless communication device according to an embodiment of this application.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a wireless communication device according to an embodiment of this application;
  • FIG. 23 is a schematic structural diagram of Embodiment 3 of a wireless communication device according to an embodiment of this application.
  • Embodiment 4 of a wireless communication device according to an embodiment of this application.
  • Embodiment 5 of a wireless communication device is a schematic structural diagram of Embodiment 5 of a wireless communication device according to an embodiment of this application.
  • FIG. 26 is a schematic structural diagram of a terminal device provided by this embodiment.
  • the electronic tag In the application process of the electronic tag, it forms an electronic tag system with the card reader, also known as the electronic tag tracking system.
  • the card reader communicates with the electronic tag wirelessly to obtain the information of the electronic tag.
  • the card reader has independent calculation and storage functions. It can calculate its position by obtaining the information of the electronic tag and store this information.
  • An electronic tag usually contains a tag processing chip, a tag antenna and other structures, and the structure of an electronic tag using different wireless transmission protocols will also be different.
  • Electronic tag tracking system is mainly used for item tracking.
  • the electronic tag is placed on the tracked item, and the card reader is used to locate the position of the electronic tag to complete the item tracking.
  • Electronic tags need to have the basic characteristics of wireless communication equipment, that is, reading and transmitting.
  • the problem to be solved urgently is the convenience of use. This includes the difficulty of obtaining the card reader (whether it needs to be purchased separately) and the service life of the electronic tag.
  • the present application provides an electronic tag and a wireless communication method, which can solve the convenience problem of the existing electronic tag.
  • the card reader can directly adopt the terminal device without special hardware, and can use the interrupt device to track while reducing energy consumption, increasing the convenience of users.
  • FIG 1 is a schematic diagram of the principle of Embodiment 1 of the electronic label provided by the embodiments of this application.
  • the electronic label includes at least the following parts:
  • the antenna can generally be connected to the transmitter and the receiver respectively, and the processor is connected to the transmitter, the receiver, and the power management chip to perform signal processing. And the overall control function.
  • the power management chip is connected to the power supply module.
  • the transmitter is used for transmitting signals
  • the receiver is used for receiving signals
  • the processor is used for signal processing
  • the power supply module is used for supplying power to the electronic tag device
  • the power management chip is used for Yu outputs corresponding voltages to the transmitter, the receiver, and the processor.
  • the antenna is responsible for the transmission and reception of wireless signals
  • the power management chip is responsible for processing the power input from the power supply module and outputting the required voltage to different modules.
  • the power supply module can be realized by a battery or a capacitor; wherein the battery includes a rechargeable battery or a disposable battery; and the capacitor is used to store the collected radio frequency signal energy.
  • the processor of the electronic label can be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, abbreviated as: DSP), application-specific integrated circuits ( English: Application Specific Integrated Circuit, referred to as ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc., which is not limited in this solution.
  • processor as the microprocessor as an example to introduce various implementations of the electronic tags provided in this application.
  • FIG. 2a and 2b are schematic diagrams of an embodiment of a power supply module of an electronic tag provided by an embodiment of the application; as shown in FIG. 2a, the power supply module in the above embodiment is realized by a battery. As shown in Figure 2b, in this solution, the power supply module in the above embodiment is implemented by a capacitor, and the capacitor replaces the battery. That is, in this solution, the electronic tag does not require a battery and relies on the collected radio frequency (RF) energy. Operation, to achieve "zero power consumption”.
  • the capacitor in this structure is used to temporarily store the RF energy collected by the electronic tag, thereby powering the entire electronic tag.
  • Fig. 3 is a schematic diagram of the principle of the second embodiment of the electronic tag provided by the embodiment of the application.
  • the electronic tag further includes: Single Pole Double Throw (SPDT) ) Switch; the transmitter and the receiver are connected to the antenna through the SPDT switch, and the processor controls the SPDT switch to switch the radio frequency path.
  • SPDT Single Pole Double Throw
  • the transmitter and receiver share an antenna.
  • the RF path is controlled by the SPDT switch, and the SPDT switch is controlled by the microprocessor to switch the RF path, and the electronic tag is selected for the receiving or transmitting process.
  • FIG. 4 is a schematic diagram of the principle of Embodiment 3 of the electronic tag provided by the embodiment of the application. As shown in FIG. 4, the difference from the embodiment shown in FIG. Different antennas are used in connection with the receiver. That is to say, the electronic tag uses two antennas, the transmitter and the receiver each use an antenna, so there is no need to switch to control the RF signal, and it can be transmitted or received through different antennas.
  • the wireless communication method in the application process of the electronic tag will be introduced below.
  • FIG. 5 is a flowchart of Embodiment 1 of the wireless communication method provided by the embodiments of the application.
  • the wireless communication method is applied between a card reader and an electronic tag.
  • Function a device that can calculate the location of an electronic tag through the information of the electronic tag, or a terminal device that can communicate through the Bluetooth protocol, such as smart phones, computers, smart wearable devices, etc.
  • the electronic tag may include a capacitor used to store the energy of the radio frequency signal, and the capacitor is also used to collect the energy of the radio frequency signal. Even when the electronic tag does not have a battery, it can be the processor therein , The receiver and transmitter provide a certain amount of working energy.
  • the wireless communication method specifically includes the following steps:
  • S101 Receive continuous wave (Continuous Wave, CW).
  • the interaction between the electronic tag and the card reader includes two modes, electronic tag receiving or transmitting.
  • the electronic tag In order to enable the terminal device (or other types of card readers) to track the electronic tag, the electronic tag needs to transmit signals or data.
  • the processor and transmitter of the electronic tag when the electronic tag is not transmitting or receiving, the processor and transmitter of the electronic tag are in a sleep state, and the receiver is in a power-off state. Before receiving the CW in this solution, the processor and the transmitter of the electronic tag are in a sleep state. After receiving the CW, the processor is first awakened, and the transmitter is further awakened to perform the following steps.
  • the electronic tag In the transmission process of the electronic tag, the electronic tag first needs to receive the CW.
  • the CW can be transmitted by a CW transmitter dedicated to transmitting continuous waves, or transmitted by a terminal device. This solution does not limit this solution.
  • S102 Transmit data conforming to the Bluetooth Low Energy (BLE) broadcast (Advertising) protocol to the card reader through the backscatter technology.
  • BLE Bluetooth Low Energy
  • the electronic tag After the electronic tag receives the CW, it sends data to the card reader (such as terminal equipment, etc.) through the backscatter technology.
  • the data can carry the identification information of the electronic tag, such as device identification, serial number, etc.
  • the ID can also be other types of information that can determine the identity of the electronic tag, and there is no restriction on this.
  • the electronic tag in order to be applicable to various types of terminal devices and other types of card readers, adopts the BLE protocol for encoding when sending data, for example, the BLE broadcast protocol.
  • This solution reduces the requirements for card readers, making it more convenient for users to use.
  • FIG. 6 is a schematic diagram of an example of a wireless communication method provided by an embodiment of the application; as shown in FIG. 6, the card reader is a user's terminal device, and the terminal device transmits CW when it needs to position and track the electronic tag. After receiving the CW, the electronic tag transmits data containing the identification information of the electronic tag in accordance with the BLE broadcast protocol to the card reader through the backscatter technology.
  • Fig. 7 is a schematic diagram of another example of the wireless communication method provided by the embodiment of the application; as shown in Fig. 7, the card reader is the user’s terminal device, and this embodiment adopts an independent CW transmitter.
  • the card reader terminal device
  • the CW transmitter is only responsible for transmitting continuous CW waves, and is not responsible for other data interactions.
  • the electronic tag uses the collected CW wave as a carrier wave, and then uses the backscatter technology to transmit data containing the identification information of the electronic tag to the card reader.
  • the card reader (such as a terminal device, etc.) obtains the data carrying the identification information of the electronic tag, it tracks and locates the electronic tag based on the identification information.
  • the terminal device can be a terminal that supports 4G LTE network, or a terminal that supports 5G or other new radio (New radio) NR network, and the modem chip in the terminal device has The function of transmitting CW wave is sufficient.
  • New radio new radio
  • the electronic tag after receiving the continuous wave, transmits data conforming to the BLE broadcast protocol to the card reader capable of reading the data through the backscattering technology, so that the card reader is based on the data pair Electronic tags are used for positioning.
  • the electronic tag After receiving the continuous wave, transmits data conforming to the BLE broadcast protocol to the card reader capable of reading the data through the backscattering technology, so that the card reader is based on the data pair Electronic tags are used for positioning.
  • FIG 8 is a schematic diagram of another example of the wireless communication method provided by an embodiment of the application;
  • Figures 5 to 7 above show the electronic tag transmission process, as shown in Figure 8, the electronic tag can also receive a card reader (such as a terminal Equipment).
  • the card reader can send its information to the electronic label, and the electronic label receives the card reader information sent by the card reader (such as terminal equipment).
  • the card reader information can carry the identification information of the card reader, or any other information that you want to send to Information of the electronic label.
  • the electronic tag proposed in this application the transmitter and the processor are in a sleep state when not transmitting or receiving on a daily basis ,
  • the receiver is in a power-down state when it is not receiving to reduce and reduce power consumption. Therefore, when the electronic tag is in the process of transmitting or receiving, it is necessary to wake up the transmitter and power on the receiver.
  • the following describes the process of waking up the transmitter and powering on the receiver.
  • FIG. 9 is a flowchart of Embodiment 2 of a wireless communication method provided by an embodiment of this application; as shown in FIG. 9, the process of waking up the transmitter by the electronic tag includes the following steps:
  • a card reader such as a terminal device
  • a CW transmitter dedicated to sending continuous waves sends CW to the electronic tag.
  • the transmitter and the processor are in a sleep state.
  • the processor of the electronic tag only leaves a logical port to detect the received voltage. Therefore, after receiving the CW sent by the card reader or CW transmitter, the RF energy needs to be converted into DC energy.
  • a certain energy threshold can be set, that is, the preset energy value in this step.
  • CW can be encoded in different encoding methods.
  • a simple ASK encoding can be used, such as transmitting CW waves to represent 1, and non-transmitting to represent 0.
  • the processor detects and transmits "1010" to represent the wake-up of the transmitter.
  • PIE encoding can also be used.
  • PI encoding does not have an absolute non-transmission state, that is, "1" and "0" are both composed of "transmit” and "non-transmit”, for example, the processor detects and transmits "1010" on behalf of Wake up the transmitter. This method avoids the problem of misidentification by the processor caused by long-term transmission of "0" signals.
  • FIG. 10 is a flowchart of Embodiment 3 of the wireless communication method provided by an embodiment of the application; as shown in FIG. 10, the process of powering on the receiver with the electronic tag includes the following steps:
  • S301 Receive a wake-up signal sent by the card reader.
  • the receiver is in a power-down state.
  • the card reader needs to send information to the electronic label, it can first send a wake-up signal to the electronic label, and for the electronic label, it receives the wake-up signal.
  • the wake-up signal can be a signal specifically used to wake up the electronic tag receiver, or it can be a signal that carries information sent by a card reader, such as card reader information, etc.
  • a card reader such as card reader information
  • the processor can wake up the receiver, that is, control the power management chip to power up the receiver and prepare to receive Work.
  • the receiver is in the power-down state.
  • the processor wakes up the receiver, that is, powers on the receiver.
  • the specific encoding value of the signal used to wake up the receiver can be set according to the actual situation, and there is no restriction on this.
  • the transmitter and the processor are in a sleep state, and wake up when transmission is needed, thereby reducing power consumption.
  • the power-down receiver is used to reduce the received power, reduce the power consumption of the electronic tag as a whole, and increase the service life of the electronic tag.
  • the electronic tag provided in this application uses backscatter technology to achieve interaction with the card reader. It can perform data interaction with the existing intelligent terminal equipment, and the intelligent terminal can locate the electronic tag without special hardware, thereby reducing the user's difficulty in using it.
  • FIG. 11 is a schematic diagram of the principle of a transmitter of an electronic tag provided by an embodiment of the application; as shown in FIG. 11, the transmitter includes a field effective transistor (FET) switch, a rectifier/detector, and an oscillator.
  • FET field effective transistor
  • the FET switch is used to change the antenna impedance matching.
  • the FET switch can switch the antenna between grounded and ungrounded states, that is, the FET switch controls the antenna connected to the transmitter to be grounded or ungrounded.
  • the oscillator is used to generate two frequencies: f1 and f2.
  • the above two frequencies f1 and f2 are used to generate "0" and "1" of the backscatter signal.
  • the rectifier/detector is used to wake up the transmitter or the receiver.
  • rectifier/detector is responsible for waking up the transmitter and receiver, so as to reduce the overall power consumption.
  • the rectifier/detector consists of a diode and a capacitor.
  • This structure can be used as a rectifier that converts alternating current into direct current (DC), or as a simple digital amplitude modulation (Amplitude shift keying, ASK) signal detector.
  • the transmitter CW signal needs to realize a certain ASK coding ability, so as to wake up each functional module in the electronic tag.
  • the value of the diode and capacitance of the rectifier can be flexibly changed depending on the actual selection.
  • the receiver in the electronic tag is in a power-down state, and the oscillator and microprocessor with the largest power consumption in the transmitter are in a sleep state.
  • the microprocessor only has one logic port to monitor the rectifier input voltage.
  • the card reader emits continuous wave CW
  • the rectifier of the electronic tag converts the CW wave RF energy into DC energy.
  • the limit value that is, the preset energy value in the embodiment of FIG. 9
  • the microprocessor is awakened and continues to monitor the CW signal.
  • CW wave realizes simple ASK coding. For example, transmitting CW wave represents 1, and non-transmitting represents 0. For example, transmitting "1010" represents waking up the transmitter. For example: FIG.
  • FIG. 12 is a schematic diagram of a transmitter wake-up signal provided by an embodiment of this application.
  • the transmitted signal is "1010" as shown in FIG. 12.
  • FIG. 12 is only an example.
  • the transmitted signal can also be of other types, and the specific signal and encoding method can be configured as required, for example, it can also be awakened by "0101", which is not limited in this solution.
  • the microprocessor After the microprocessor detects this signal, it wakes up the oscillator in the transmitter, and then performs the backscatter "transmission" work, that is, sends data conforming to the BLE broadcast protocol to the card reader through the backscatter technology.
  • the receiver is in a power-down state.
  • the microprocessor wakes up the receiver, that is, powers up the receiver, ready to receive work, and realizes the process of powering up the receiver as shown in Figure 10.
  • the card reader can transmit signals by using simple OOK (On-off keying code) as shown in Figure 12.
  • Transport is “1” and not “0".
  • Other encoding methods can also be used, such as Pulse Interval Encoding (PIE) encoding.
  • Figure 13 is a schematic diagram of the transmitter wake-up signal conversion provided by an embodiment of this application.
  • “Transmit” and “non-transmit” constitute, but are identified by the duration of the transmitted signal. This method avoids the misrecognition problem of the microprocessor caused by long-term transmission of "0" signals.
  • FIG. 14 is a schematic diagram of the principle of another transmitter of an electronic tag provided by an embodiment of the application.
  • the transmitter includes a tunnel diode, an oscillator, and a rectifier/detector; Wherein, the tunnel diode is used to control the antenna connected to the transmitter to be grounded or not, the oscillator is used to generate two oscillating frequencies, and the rectifier/detector is used to wake up the transmitter or the receiver machine.
  • the transmitter uses tunnel diodes to increase the transmission distance.
  • this structure eliminates the FET switch and uses a tunnel diode.
  • the oscillator and the frequency it generates are consistent with the scheme shown in Figure 11.
  • the function of the rectifier ⁇ detector is consistent with the scheme shown in Figure 11.
  • the receiver of the electronic tag is not often used.
  • the receiver In the Bluetooth transceiver, the receiver is working for a long time, actively searching for signals in the environment, which will increase the power consumption of the overall system and shorten the use time of electronic tags.
  • the receiver does not need to achieve extremely high sensitivity. Therefore, in an implementation provided by this application, the design target distance for the receiver is less than 10 meters, which can reduce The complexity of the receiver can not only save hardware costs, but also reduce power consumption.
  • the receiver in this proposal can be used to receive and process ASK, digital frequency shift keying (FSK), and Gaussian frequency shift keying (GFSK) signals. Because Bluetooth technology uses GFSK-based modulation, this receiver can receive Bluetooth signals.
  • ASK digital frequency shift keying
  • GFSK Gaussian frequency shift keying
  • FIG. 15 is a schematic diagram of the principle of the first receiver of the electronic tag provided by the embodiment of the application; as shown in FIG. 15, in an implementation of the electronic tag, the receiver includes: low noise amplifier, mixer, phase Variation, frequency generator, band pass filter and limiter;
  • the low noise amplifier is used to amplify the received radio frequency signal to obtain a high frequency radio frequency signal
  • the frequency generator is used to generate a local oscillator (LO) frequency and input it to the phase variator, and the phase variator converts the LO frequency into two output signals with a difference of 90 degrees;
  • the mixing The device is used to mix the high-frequency radio frequency signal with the two output signals respectively, convert them into a low-frequency signal and input the band-pass filter; the band-pass filter filters the low-frequency signal, and After filtering, it is converted into a digital signal with a change in amplitude by a limiter, and the digital signal is input to the processor.
  • the power switches of all active devices in the receiver are controlled by the microprocessor, that is, the microprocessor can control the receiver to "power down” or "power on”.
  • the low-noise amplifier is responsible for signal amplification.
  • the mixer is responsible for converting high frequency RF energy into low frequency IF.
  • the frequency generator is responsible for generating the LO frequency.
  • the phase changer is responsible for converting the LO frequency into two output signals with a difference of 90 degrees.
  • the band-pass filter is responsible for filtering the clutter, for example, allowing a signal with a bandwidth of 2MHz centered on the IF to pass.
  • the limiter is responsible for converting the frequency difference signal into an amplitude difference signal, that is, completing the conversion of frequency modulation (Frequency Modulation, FM) to amplitude modulation (Amplitude Modulation, AM). Since the converted signal has a low frequency and the characteristic value is amplitude change, this signal can be directly input to the microprocessor to realize digital domain demodulation.
  • FIG. 16 is a schematic diagram of the principle of the second receiver of the electronic tag provided by the embodiment of the application; as shown in FIG. 16, based on the above embodiment, the number of the band pass filter is two, and the limit is There are two amplitude limiters, and one limiter is connected to the output end of each band-pass filter;
  • the mixer mixes the high-frequency radio frequency signal with the two output signals to obtain two low-frequency signals, and inputs the two low-frequency signals to different band-pass filters;
  • the pass filter filters the input low-frequency signal, and after filtering, is converted into a digital signal with a varying amplitude through a connected limiter, and the digital signal is input to the processor.
  • the two IQs of the radio frequency after the mixer namely I (in phase) and Q (quadrature), pass through the filter and the limiter respectively, and the last two IQs are input to the microprocessor.
  • This kind of scheme can realize IQ balanced processing in the digital domain. It should be noted that the power control is not marked in the figure, but this structure is consistent with the power control structure shown in Figure 15, and the functions of other devices are similar.
  • FIG. 17 is a schematic diagram of the principle of the third receiver of the electronic tag provided by the embodiment of the application; as shown in FIG. 17, the receiver of the electronic tag in this solution includes: low noise amplifier, mixer, phase changer, frequency Generator, band-pass filter and analog-to-digital converter ADC;
  • the low noise amplifier is used to amplify the received radio frequency signal to obtain a high frequency radio frequency signal; the frequency generator is used to generate the local oscillator LO frequency and input it to the phase changer, and the phase changer converts the
  • the LO frequency is converted into two output signals with a difference of 90 degrees; the mixer is used to mix the high-frequency radio frequency signal with the two output signals respectively, convert them into a low-frequency signal and input the band-pass filter
  • the band-pass filter filters the low-frequency signal, and after the filtering is converted into a digital signal by the ADC, the digital signal is input to the processor.
  • the difference between the receiver structure provided in this embodiment and FIG. 15 is that an analog-to-digital converter is used instead of the limiter.
  • the analog-to-digital converter converts the analog signal into a digital signal, and the digital signal is input into the microprocessor to realize demodulation in the digital domain.
  • FIG. 18 is a schematic diagram of the principle of a fourth receiver of an electronic tag provided by an embodiment of this application; as shown in FIG. 18, on the basis of the foregoing embodiment, in a specific implementation manner, the band-pass filter The number is two, the number of ADCs is two, and the output terminal of each band-pass filter is connected to one ADC;
  • the mixer is used for mixing the high-frequency radio frequency signal with the two output signals to obtain two low-frequency signals, and inputting the two low-frequency signals into different band-pass filters respectively;
  • One of the band-pass filters filters the low-frequency signal, converts it into a digital signal through a connected ADC after filtering, and inputs the digital signal to the processor.
  • the two channels of IQ (I (in phase) and Q (quadrature)) after the radio frequency passes through the mixer are respectively passed through the filter and the ADC, and the last two channels of IQ are respectively input to the microprocessor.
  • This kind of scheme can realize IQ balanced processing in the digital domain. Note that the power control is not marked in the figure, but this structure is consistent with the power control structure of the receiver shown in Figure 17, and the functions of other devices are similar. In this structure, demodulation and IQ balance are all done in the digital domain.
  • FIG. 19 is a schematic diagram of the principle of a power supply module of an electronic tag provided in an embodiment of this application; in the foregoing embodiment, it is proposed that the power supply module of an electronic tag provided in this application can be implemented using collected RF energy.
  • the rectifier of the transmitter proposed in the foregoing embodiment has a detection function as well as an energy harvesting function. As shown in Figure 19, in this structure, the energy branch collected by the rectifier is input to the energy harvesting capacitor, and the energy harvesting capacitor is supplied by the power supply.
  • the management chip is controlled to realize the charging and discharging of the capacitor.
  • Fig. 20 is a schematic diagram of another power supply module of an electronic tag provided by an embodiment of the application; as shown in Fig. 20, the difference from the scheme shown in Fig. 19 above is that the rectifier ⁇ detector adopts the structure of a voltage doubler. Compared with the structure in Figure 19, this structure can double the voltage without affecting the functions of the rectifier, detector, and energy harvester. The device doubles the voltage of the energy harvesting capacitor, which is suitable for capacitors that require high voltage.
  • the electronic tags provided by any of the above schemes can use backscattering technology to reduce the transmission power, and then use the "power-down" receiver to reduce the received power, and reduce the system power consumption by controlling the transmitter and receiver to wake up when they are working. Thereby increasing the service life of the electronic tag. Even when the battery is completely discharged, the energy harvesting device can be used for data exchange. At the same time, the electronic tag adopts the Bluetooth communication standard, which is easy to cooperate with the smart terminal, reducing the difficulty of consumers.
  • FIG. 21 is a schematic structural diagram of Embodiment 1 of a wireless communication device according to an embodiment of the application. As shown in FIG. 21, the wireless communication device 10 includes:
  • the receiving module 11 is used to receive CW;
  • the sending module 12 is configured to transmit data conforming to the BLE broadcast protocol to the card reader through the backscatter technology, and the data is used to locate the wireless communication device.
  • the card reader includes a terminal device with a continuous wave transmitting function.
  • the receiving module 11 is specifically configured to:
  • the data includes identification information of the electronic tag.
  • FIG. 22 is a schematic structural diagram of Embodiment 2 of a wireless communication device according to an embodiment of the application. As shown in FIG. 22, based on the above-mentioned embodiment, the wireless communication device 10 further includes: a processing module 13 for:
  • the transmitter of the wireless communication device is awakened.
  • the sending module 12 is specifically configured to:
  • backscatter technology is used to transmit the data conforming to the Bluetooth low energy BLE broadcast protocol to the card reader.
  • the receiving module 11 is further configured to:
  • the receiving module 11 is further configured to:
  • the control module of the wireless communication device controls to power on the receiver of the electronic tag.
  • the wireless communication device 10 provided in any of the foregoing embodiments is used to implement the technical solution on the electronic tag side in any of the foregoing embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 23 is a schematic structural diagram of Embodiment 3 of a wireless communication device according to an embodiment of the application. As shown in FIG. 23, the wireless communication device 20 includes:
  • the receiving module 21 is used to receive data that conforms to the BLE broadcast protocol sent by the electronic tag;
  • the processing module 22 is configured to locate the electronic tag according to the data.
  • the wireless communication device 20 includes a terminal device having a function of transmitting a continuous wave CW.
  • the data includes identification information of the electronic tag.
  • FIG. 24 is a schematic structural diagram of Embodiment 4 of a wireless communication device according to an embodiment of this application. As shown in FIG. 24, the wireless communication device 20 further includes:
  • the first sending module 23 is configured to send a continuous wave CW to the electronic tag.
  • FIG. 25 is a schematic structural diagram of Embodiment 5 of a wireless communication device according to an embodiment of the application. As shown in FIG. 24, the wireless communication device 20 further includes:
  • the second sending module 24 is used to send card reader information to the electronic tag.
  • the second sending module 24 is further configured to:
  • a wake-up signal is sent to the electronic tag, and the wake-up signal is used to wake up the receiving function of the electronic tag.
  • the wireless communication device 20 provided in any of the foregoing embodiments is used to implement the technical solution on the card reader (for example, terminal device, etc.) side in any of the foregoing embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 26 is a schematic structural diagram of a terminal device provided by this embodiment. As shown in FIG. 26, the terminal device 100 includes:
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the technical solution on the terminal device side in the wireless communication method described in any of the foregoing embodiments.
  • FIG. 26 is a simple design of the terminal device.
  • the embodiment of the present application does not limit the number of processors and memories in the terminal device.
  • FIG. 26 only takes the number of 1 as an example for illustration.
  • the memory, the processor, and the interface may be connected through a bus, or may be connected in other ways.
  • the memory can be integrated inside the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the electronic components in the solution of the aforementioned wireless communication method.
  • the technical solution on the label side is provided.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, they are used to implement the aforementioned wireless communication method.
  • the present application also provides a chip, including: a processing module and a communication interface, the processing module is used to execute the technical solution on the electronic tag side in the solution of the aforementioned wireless communication method.
  • the present application also provides a chip, including: a processing module and a communication interface, the processing module is used to implement the technical solution on the card reader (for example, terminal device) side in the solution of the aforementioned wireless communication method.
  • the above-mentioned chip further includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing
  • a storage module such as a memory
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces.
  • the indirect coupling or communication connection of the modules may be in electrical, mechanical or other forms.
  • the processor can be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors or digital signal processors (English: Digital Signal Processor) , Abbreviation: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps in the method disclosed in this application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments may be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps of the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线通信方法、装置、设备及存储介质,电子标签在接收到连续波之后,通过反向散射技术,向能够读取数据的读卡器发射符合BLE广播协议的数据,以使读卡器基于该数据对电子标签进行定位,通过这种对连续波收集能量进行然后反向散射的技术,能够有效降低能耗,并且符合BLE协议的数据能够被各种终端设备接收,对于消费者来说,方便使用并且能够长久工作,提高电子标签的使用便利性。

Description

无线通信方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种无线通信方法、装置、设备及存储介质。
背景技术
电子标签追踪系统是利用无线电通信技术实现追踪、定位标签的系统。一个电子标签追踪系统通常包含电子标签读取的终端(以下简称读卡器),以及被追踪的电子标签。
电子标签追踪系统主要应用于物品追踪,在此系统内,电子标签被置于被追踪物品上,使用读卡器定位电子标签的位置从而完成物品追踪。电子标签系统可应用于物流中对货物的实时定位追踪。目前,常用的电子标签包括采用无源(Passive)射频识别(Radio Frequency Identification,RFID)和蓝牙两种无线技术的电子标签。具体的,无源RFID(Passive RFID)是一种不需要电源的电子标签,此种标签依靠收集读卡器发射的射频能量作为内部供电。基于蓝牙的电子标签,主要采用蓝牙低功耗(Bluetooth Low Energy,BLE)技术,BLE技术为蓝牙技术中低功耗的应用,相对传统的蓝牙技术,BLE可以通过采用不同的信道、编解码降低芯片功耗。然而,上述的无源RFID需要专门的读卡器,一般的读卡器体积大价格高,不适用于消费者级别的应用,基于蓝牙类型的电子标签虽然无需专业读卡器,可以利用手机等智能终端进行读取,但是需要电池,电池的寿命只有一定的时间,导致电子标签不能长时间的使用。
综上所述,对于消费者市场(toC)的电子标签,还没有即使用方便又能够长久工作的电子标签,亟待解决的问题是使用便利性的问题。
发明内容
本申请实施例提供一种无线通信方法、装置、设备及存储介质,用于解决目前对于消费者市场(toC)的电子标签,还没有即使用方便又能够长久工作的电子标签的问题。
第一方面,本申请实施例可提供一种通信方法,应用于电子标签,所述电子标签包括用于存储射频信号能量的电容,所述方法包括:
接收CW;
通过反向散射技术,向读卡器发射符合BLE广播协议的数据,所述数据用于对所述电子标签进行定位。
第二方面,本申请实施例可提供一种无线通信方法,应用于读卡器,所述方法包括:
接收电子标签发送的符合BLE广播协议的数据;
根据所述数据对所述电子标签进行定位。
第三方面,本申请实施例可提供一种无线通信装置,所述无线通信装置包括用于存储射频信号能量的电容,包括:
接收模块,用于接收CW;
发送模块,用于通过反向散射技术,向读卡器发射符合BLE广播协议的数据,所述数据用于对所述无线通信装置进行定位。
第四方面,本申请实施例可提供一种无线通信装置,包括:
接收模块,用于接收电子标签发送的符合BLE广播协议的数据;
处理模块,用于根据所述数据对所述电子标签进行定位。
第五方面,本申请实施例可提供一种电子标签,包括:
天线,发射机,接收机,处理器,电源管理芯片以及供电模块;
所述天线分别与所述发射机和所述接收机连接;
所述处理器分别与所述发射机,所述接收机以及所述电源管理芯片连接;
所述电源管理芯片与所述供电模块连接;
其中,所述发射机用于发射信号,所述接收机用于接收信号,所述处理器用于进行信号处理,所述供电模块用于为所述电子标签的器件供电,所述电源管理芯片用于向所述发射机,所述接收机以及所述处理器输出对应的电压。
该方案提供的电子标签,用于执行前述第一方面任一项提供的无线通信方法。
第六方面,本申请实施例可提供一种终端设备,包括:
处理器、存储器、接收器和发送器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述终端设备执行如第二方面提供的无线通信方法。
第七方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面提供的无线通信方法。
第八方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第二方面提供的无线通信方法。
第九方面,本申请实施例可提供一种芯片,包括:处理模块与通信接口,所述处理模块用于执行第一方面提供的无线通信方法。
第十方面,本申请实施例可提供一种芯片,包括:处理模块与通信接口,所述处理模块用于执行第二方面提供的无线通信方法。
本申请实施例提供的无线通信方法、装置、设备及存储介质,电子标签在接收到连续波之后,通过反向散射技术,向能够读取数据的读卡器发射符合BLE广播协议的数据,以使读卡器基于该数据对电子标签进行定位,通过这种对连续波收集能量进行然后反向散射的技术,能够有效降低能耗,并且符合BLE协议的数据能够被各种终端设备接收,对于消费者来说,方便使用并且能够长久工作,提高电子标签的使用便利性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子标签实施例一的原理示意图;
图2a和图2b为本申请实施例提供的电子标签的供电模块的实施例的示意图;
图3为本申请实施例提供的电子标签实施例二的原理示意图;
图4为本申请实施例提供的电子标签实施例三的原理示意图;
图5为本申请实施例提供的无线通信方法实施例一的流程图;
图6为本申请实施例提供的无线通信方法一实例的示意图;
图7为本申请实施例提供的无线通信方法另一实例的示意图;
图8为本申请实施例提供的无线通信方法又一实例的示意图;
图9为本申请实施例提供的无线通信方法实施例二的流程图;
图10为本申请实施例提供的无线通信方法实施例三的流程图;
图11为本申请实施例提供的电子标签的一种发射机的原理示意图;
图12为本申请实施例提供的发射机唤醒信号的示意图;
图13为本申请实施例提供的发射机唤醒信号转换的示意图;
图14为本申请实施例提供的电子标签的另一种发射机的原理示意图;
图15为本申请实施例提供的电子标签的第一种接收机的原理示意图;
图16为本申请实施例提供的电子标签的第二种接收机的原理示意图;
图17为本申请实施例提供的电子标签的第三种接收机的原理示意图;
图18为本申请实施例提供的电子标签的第四种接收机的原理示意图;
图19为本申请实施例提供的电子标签的一种供电模块的原理示意图;
图20为本申请实施例提供的电子标签的另一种供电模块的原理示意图;
图21为本申请实施例提供的无线通信装置实施例一的结构示意图;
图22为本申请实施例提供的无线通信装置实施例二的结构示意图;
图23为本申请实施例提供的无线通信装置实施例三的结构示意图;
图24为本申请实施例提供的无线通信装置实施例四的结构示意图;
图25为本申请实施例提供的无线通信装置实施例五的结构示意图;
图26为本实施例提供的终端设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
电子标签的应用过程中,与读卡器组成电子标签系统,也称为电子标签追踪系统。读卡器与电子标签进行无线通信从而获取电子标签的信息。读卡器具有独立的运算,存储功能,可以通过获取电子标签的信息计算其位置并存储此信息。电子标签通常含有标签处理芯片,标签天线等结构,采用不同无线传输协议的电子标签的结构也会有所不同。
电子标签追踪系统主要应用于物品追踪。在此系统内,电子标签被置于被追踪物品上,使用读卡器定位电子标签的位置从而完成物品追踪。电子标签需要具备无线通信设备的基本特性,即读取与发射。对于消费者市场(toC)的电子标签,亟待解决的问题是使用便利性的问题。这其中包含获取读卡器的难易程度(是否需要单独购买)以及电子标签的使用寿命。
针对上述问题,本申请提供一种电子标签以及无线通信方法,能够解决现有的电子标签的使用便利性问题,该方案的整体构思是电子标签通过反向散射技术降低发射机功率,在传输数据的过程中,采用复合BLE协议的编码方式,读卡器可以直接采用终端设备,无需特殊硬件,降低耗能的同时可以采用中断设备进行追踪,增加用户使用的便利性。
下面通过一些具体实现方式对本申请提供的电子标签和无线通信方法进行介绍。
图1为本申请实施例提供的电子标签实施例一的原理示意图,如图1所示,该电子标 签至少包括以下几个部分:
天线,发射机,接收机,处理器,电源管理芯片以及供电模块;
在电子标签的具体实现中,天线一般可分别与所述发射机和所述接收机连接,所述处理器分别与所述发射机,所述接收机以及所述电源管理芯片连接,进行信号处理和整体的控制功能。
所述电源管理芯片与所述供电模块连接。
其中,所述发射机用于发射信号,所述接收机用于接收信号,所述处理器用于进行信号处理,所述供电模块用于为所述电子标签的器件供电,所述电源管理芯片用于向所述发射机,所述接收机以及所述处理器输出对应的电压。
在该方案中应理解,天线负责无线信号的收发,电源管理芯片负责将供电模块的输入的电量进行处理,向不同的模块输出要求的电压。
该供电模块可以通过电池或者电容实现;其中,所述电池包括可充电电池或者一次性电池;所述电容用于存储收集到的射频信号能量。
电子标签的处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,对此本方案不做限制。
下面以处理器为微处理器作为举例,对本申请提供的电子标签的各种不同实现方式进行介绍。
图2a和图2b为本申请实施例提供的电子标签的供电模块的实施例的示意图;如图2a所示,通过电池实现上述实施例中的供电模块。如图2b,该方案中通过电容实现上述实施例中的供电模块,电容取代了电池,即在该方案中,该电子标签中不需要电池,依靠收集到的射频(Radio Frequency,RF)能量进行运转,实现了“零功耗”。该结构中的电容用于临时存储电子标签收集到的RF能量,从而为整个电子标签供电。
图3为本申请实施例提供的电子标签实施例二的原理示意图,如图3所示,在上述任一实施例的基础上,该电子标签还包括:单刀双掷(Single Pole Double Throw,SPDT)开关;所述发射机和所述接收机通过所述SPDT开关与所述天线连接,所述处理器控制所述SPDT开关实现射频通路切换。
在该方案中,发射机与接收机公用一天线。RF通路由SPDT开关控制,SPDT开关受微处理控制实现RF通路切换,选择电子标签进行接收或者发射过程。
图4为本申请实施例提供的电子标签实施例三的原理示意图,如图4所示,与图3所示实施例不同的是,该方案中,天线的数量为两个,所述发射机和所述接收机分别连接使用不同的天线。也就是说该电子标签采用两根天线,发射机和接收机各自使用一个天线,这样就不用开关来控制RF信号了,可通过不同的天线进行发射或者接收。
基于上述各个实施例提供的电子标签的结构原理,下面对电子标签的应用过程中的无线通信方法进行介绍。
图5为本申请实施例提供的无线通信方法实施例一的流程图,如图5所示,该无线通信方法应用在读卡器和电子标签之间,该读卡器可以是具有独立运算,存储功能,可通过电子标签的信息计算电子标签位置的设备,也可以是能够通过蓝牙协议进行通信的终端设备,例如:智能手机,电脑,智能可穿戴设备等,对此本方案不做限制。在该方案的实现中,应理解,电子标签可以包括用于存储射频信号能量的电容,该电容还用于收集射频信号的能量,即使在电子标签没有电池的时候,也能够为其中的处理器,接收机以及发射机提供一定的工作能量。该无线通信方法具体包括以下步骤:
S101:接收连续波(Continuous Wave,CW)。
在本步骤中,电子标签与读卡器之间的交互包括两种模式,电子标签接收或者发射。 为了使终端设备(也可以是其他类型的读卡器)能够对该电子标签进行追踪,该电子标签需要进行信号或者数据的发射。
在该方案的一种具体实现中,在电子标签不进行发射或者接收时候,电子标签的处理器和发射机处于睡眠状态,接收机处于掉电状态。在该方案中接收CW之前,电子标签的处理器和发射机处于睡眠状态,接收到CW之后首先唤醒处理器,进一步唤醒发射机执行下面的步骤。
在电子标签的发射过程中,首先电子标签需要接收CW,该CW可以是专用于发射连续波的CW发射器发射的,也可以是终端设备发射的对此本方案不做限制。
S102:通过反向散射技术,向读卡器发射符合蓝牙低功耗(Bluetooth Low Energy,BLE)广播(Advertising)协议的数据。
在本步骤中,电子标签接收到CW之后,通过反向散射技术,向读卡器(例如:终端设备等)发送数据,该数据中可以携带电子标签的标识信息,例如设备标识,编号等独特的ID,也可以是其他类型的能够确定电子标签身份的信息,对此不做限制。
在该方案的具体实现中,为了能够适用于各种类型的终端设备,以及其他类型的读卡器,因此电子标签在发送数据的时候采用BLE协议进行编码,例如:BLE广播协议。通过该方案降低对读卡器的要求,使得用户使用过程中更加便利。
举例来说,图6为本申请实施例提供的无线通信方法一实例的示意图;如图6所示,读卡器为用户的终端设备,终端设备需要对电子标签进行定位追踪时,发射CW。电子标签在接收到CW之后,通过反向散射技术,向读卡器发射符合BLE广播协议的包含电子标签的标识信息的数据。
图7为本申请实施例提供的无线通信方法另一实例的示意图;如图7所示,读卡器为用户的终端设备,此实施例为采用独立的CW发射机,在电子标签发射过程中,读卡器(终端设备)无需发射CW波,取而代之的是CW发射机。CW发射机只负责发射连续CW波,不负责其他数据交互。电子标签将收集到的CW波作为载波,再利用反向散射技术向读卡器发射包含电子标签标识信息的数据。
S103:根据数据对电子标签进行定位。
最后,读卡器(例如:终端设备等)在获取到携带了电子标签的标识信息的数据之后,基于该标识信息对电子标签进行追踪定位。
可选的,在上述实施例中,应理解终端设备可以是支持4G LTE网络的终端,也可以是支持5G或者其他新无线(New radio)NR网络的终端,终端设备中的调制解调芯片具备发射CW波的功能即可。
本实施例提供的无线通信方法,电子标签在接收到连续波之后,通过反向散射技术,向能够读取数据的读卡器发射符合BLE广播协议的数据,以使读卡器基于该数据对电子标签进行定位,通过这种对连续波收集能量进行然后反向散射的技术,能够有效降低能耗,并且符合BLE协议的数据能够被各种终端设备接收,对于消费者来说,方便使用并且能够长久工作,提高电子标签的使用便利性。
图8为本申请实施例提供的无线通信方法又一实例的示意图;上述图5至图7示出了电子标签发射过程,如图8所示,该电子标签还可以接收读卡器(例如终端设备)发送的信息。读卡器可以将其信息发送给电子标签,电子标签接收卡器(例如终端设备)发送的读卡器信息,该读卡器信息中可以携带读卡器的标识信息,或者其他任何想发送给电子标签的信息。
在上述实施例的基础上,在该方案的具体实现中,还需要进一步降低能耗,因此在本申请中提出的电子标签,在日常不进行发射或者接收时,发射机和处理器处于睡眠状态,接收机在不接收时候处于掉电状态,以减少和降低功耗。因此在电子标签在进行发射过程,或者接收过程时,需要对发射机进行唤醒,对接收机进行上电,下面介绍唤醒发射机以及 接收机上电的过程。
图9为本申请实施例提供的无线通信方法实施例二的流程图;如图9所示,电子标签唤醒发射机的过程包括以下步骤:
S201:将CW的能量转换为直流能量。
在本步骤中,在需要对电子标签进行追踪定位时,读卡器(例如:终端设备)或者专用于发送连续波的CW发射机向电子标签发送CW。电子标签在接收到CW之前,发射机和处理器均处于睡眠状态。电子标签的处理器只留一个逻辑端口检测接收到的电压。因此在接收到读卡器或者CW发射机发送的CW之后,需要将RF能量进行转化,转化成为直流能量。
S202:在直流能量大于预设能量值时,唤醒电子标签的处理器进行信号检测。
在本步骤中,为了避免误唤醒电子标签,可以设置一定的能量门限值,也就是本步骤中的预设能量值,处理器的逻辑端口检测到直流能量大于预设能量之后,处理器被唤醒并继续监听CW信号。
S203:当检测出接收到的CW为预设的发射信号时,唤醒电子标签的发射机。
在本步骤中,CW可以通过不同的编码方式进行编码。例如可以采用简单的ASK编码,如发射CW波代表1,不发射代表0,如处理器检测发射“1010”代表唤醒发射机。或者,还可以采用PIE编码,例如,PI编码方式不存在绝对的不发射状态,即“1”和“0”均由“发射”与“不发射”构成,如处理器检测发射“1010”代表唤醒发射机。此种方法避免了长期发射“0”信号造成的处理器误识别问题。
在该方案中,应理解,对于具体唤醒发射机的信号为1010,还是0101,或者别的数据,本方案不做限制,可以根据需要进行配置。
图10为本申请实施例提供的无线通信方法实施例三的流程图;如图10所示,电子标签为接收机上电的过程包括以下步骤:
S301:接收读卡器发送的唤醒信号。
在本步骤中,由于电子标签在不接收信息时候,接收机处于掉电状态。当读卡器需要向电子标发送信息时,可首先向电子标签发送唤醒信号,对于电子标签来说,则接收该唤醒信号。
可选的,在该方案中,唤醒信号可以是专门的用于唤醒电子标签接收机的信号,也可以是读卡器发送的携带信息的信号,例如:读卡器信息等,对此本方案不做限制。
S302:当检测出唤醒信号为预设的信号时,控制向电子标签的接收机上电。
在本步骤中,当电子标签检测到读卡器发送的编码信号为预设的用来唤醒接收机的信号时,处理器可以唤醒接收机,即控制电源管理芯片为接收机上电,准备进行接收工作。
例如,接收机处于掉电状态,当监测在读卡器发射的编码信号如“1111”后,处理器唤醒接收机,即给接收机上电。具体的用来唤醒接收机的信号的编码值可以根据实际情况进行设置,对此不做限制。
上述实施例提供的无线通信方法,发射机,处理器处于睡眠状态,在需要进行发射时唤醒,降低处功耗。采用掉电式接收机降低接收功率,从整体上降低电子标签的功耗,增长电子标签的使用寿命。
并且,本申请提供的电子标签,利用反向散射技术实现与读卡器之间的交互。可以与现有利用智能的终端设备进行数据交互,智能终端无需特殊硬件即可对电子标签进行定位,从而降低用户使用难度。
为了能够实现上述无线通信方法,结合前述图1至图10所示实施例,下面介绍几种电子标签的具体实现中,发射机,接收机以及能量收集装置的实现方案。
图11为本申请实施例提供的电子标签的一种发射机的原理示意图;如图11所示,发射机包含场效应三极管(Field effective transistor,FET)开关,整流器/检波器,振荡器。
FET开关用于改变天线阻抗匹配,在图11中FET开关可将天线切换于接地与不接地两种状态,也就是说FET开关控制与所述发射机连接的天线接地或者不接地。振荡器用于产生两种频率:f1和f2。
在该方案的一种具体实现中,上述振荡器产生的f1和f2两种频率之间可以满足如下关系:
370KHz<|f1-f2|<2MHz;
上述的这两种频率f1和f2用于产生反向散射信号的“0”和“1”。
在该方案的实现中,整流器/检波器用于唤醒所述发射机或者所述接收机。
整流器/检波器的使用为此提案一要点发明点。整流器/检波器负责唤醒发射机与接收机,从而实现整体功耗降低的作用。
如图11所示,整流器/检波器由一个二极管以及电容组成,此种结构既可以用作将交流电转化为直流电(Direct Current,DC)的整流器,也可以作为识别简单数字调幅(Amplitude shift keying,ASK)信号的检波器。在此种结构中,发射机CW信号需要实现一定ASK编码能力,从而唤醒电子标签中各功能模块。整流器的二极管,电容的取值视实际选取而灵活改变。
电子标签中接收机处于掉电状态,发射机中功耗最大的振荡器、微处理器处于睡眠状态。微处理器只留有一个逻辑端口监测整流器输入电压。在具体应用中,读卡器发出连续波CW,电子标签的整流器将CW波RF能量转化为DC能量,当DC能量高于限定值(也就是前述图9实施例中的预设能量值)时,微处理器被唤醒并继续监听CW信号。CW波实现简单的ASK编码,如发射CW波代表1,不发射代表0,如发射“1010”代表唤醒发射机。例如:图12为本申请实施例提供的发射机唤醒信号的示意图。发射信号如图12所示的“1010”,在该方案中,应理解,图12只是举例说明。发射信号还可以是别的类型,具体的信号和编码方式均可以根据需要进行配置,例如还可以通过“0101”唤醒,对此本方案不做限制。
在电子标签中,微处理器监测到此信号后,唤醒发射机中振荡器,进而进行反向散射“发射”工作,即通过反向散射技术,向读卡器发送符合BLE广播协议的数据。
与上述方案类似,接收机处于掉电状态。当监测在读卡器发射的编码信号如“1111”后,微处理器唤醒接收机,即给接收机上电,准备进行接收工作,实现图10所示的接收机上电的过程。
可选的,在另一种实现方案中,读卡器发射信号,可以采用如图12中简单的OOK(On-off keying开关键编码)“发射”为“1”不发射为“0”,也可以采用其他编码方式,如信号脉冲编码(Pulse Interval Encoding,PIE)编码。图13为本申请实施例提供的发射机唤醒信号转换的示意图,如图13所示,如图13所示,PIE编码方式不存在绝对的不发射状态,即“1”和“0”均由“发射”与“不发射”构成,而是通过发射信号的时长进行标识。此种方法避免了长期发射“0”信号造成的微处理器误识别问题。
图14为本申请实施例提供的电子标签的另一种发射机的原理示意图,如图14所示,该电子标签的实现中,发射机包括:隧道二极管,振荡器,以及整流器/检波器;其中,所述隧道二极管用于控制与所述发射机连接的天线接地或者不接地,所述振荡器用于产生两种震荡频率,所述整流器/检波器用于唤醒所述发射机或者所述接收机。
在该方案中,发射机采用隧道二极管以提升发射距离。相比于图11所示发射机,此结构省去了FET开关,采用了隧道二极管。其中振荡器,以及其所产生的频率与图11所示方案一致。整流器\检波器功能与图11所示方案一致。
电子标签在实际运用中,其接收机并不会经常被使用。在蓝牙收发机中,接收机长期处于工作状态,主动搜索环境中的信号,这会增大整体系统的功耗,缩短电子标签使用时 间。
由于反向散射距离较短(<10米),因此接收机不需要达到极高的灵敏度,因此本申请提供的一种实现方式中,对接收机的设计目标距离为小于10米,如此可降低接收机的复杂程度,不仅可以节省硬件成本,也可以降低使用功耗。
此提案中接收机可以用于接收处理ASK,数字调频(Frequency Shift keying,FSK),高斯数字调频(Gaussian Frequency shift keying,GFSK)信号。由于蓝牙技术使用基于GFSK的调制方式,此接收机可以接收蓝牙信号。
图15为本申请实施例提供的电子标签的第一种接收机的原理示意图;如图15所示,在该电子标签的一种实现中,接收机包括:低噪放,混频器,相位变化器,频率生成器,带通滤波器和限幅器;
所述低噪放用于将接收到的射频信号进行放大,得到高频射频信号;
所述频率生成器用于生成局部振荡器(local oscillator,LO)频率并输入所述相位变化器,所述相位变化器将所述LO频率转换为相差90度的两个输出信号;所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,转换为低频信号并输入所述带通滤波器;所述带通滤波器对所述低频信号进行滤波,并在滤波后通过限幅器转换为幅度变化的数字信号,将所述数字信号输入所述处理器。
接收机内所有有源器件的供电开关均受微处理器控制,即微处理器可控制给接收机“掉电”或“上电”。
此上述接收机的结构中,低噪放负责信号放大。混频器负责将高频RF能量转化为低频IF。频率生成器负责生成LO频率。相位变化器负责将LO频率转化为相差90度的两路输出信号。带通滤波器负责过滤杂波,例如,允许以IF为中心带宽为2MHz的信号通过。限幅器负责将频率差异信号转化为幅度差异信号,即完成频率调制(Frequency Modulation,FM)向幅度调制(Amplitude Modulation,AM)的转化。由于转化后的信号频率较低,特征值为幅度变化,此信号可被直接输入至微处理器,实现数字域解调。
图16为本申请实施例提供的电子标签的第二种接收机的原理示意图;如图16所示,在上述实施例的基础上,所述带通滤波器的数量为两个,所述限幅器的数量为两个,每个带通滤波器的输出端连接一个限幅器;
所述混频器将所述高频射频信号分别与所述两个输出信号进行混频,得到两个低频信号,并将所述两个低频信号分别输入不同的带通滤波器;每个带通滤波器对输入的低频信号进行滤波,并在滤波后通过连接的限幅器转换为幅度变化的数字信号,将所述数字信号输入所述处理器。
在该接收机的结构中,射频在经过混频器后的两路IQ,即I(in phase)和Q(quadrature)分别经过滤波器与限幅器,最后两路IQ分别输入至微处理器。此种方案可以在数字域实现IQ平衡处理。应注意电源控制并未在图中标出,但是此结构与图15所示的电源控制结构一致,其他各个器件的功能也类似。
图17为本申请实施例提供的电子标签的第三种接收机的原理示意图;如图17所示,该方案中电子标签的接收机包括:低噪放,混频器,相位变化器,频率生成器,带通滤波器和模数转换器ADC;
所述低噪放用于将接收到的射频信号进行放大,得到高频射频信号;所述频率生成器用于生成局部振荡器LO频率并输入所述相位变化器,所述相位变化器将所述LO频率转换为相差90度的两个输出信号;所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,转换为低频信号并输入所述带通滤波器;所述带通滤波器对所述低频信号进行滤波,并在滤波后通过所述ADC转换为数字信号,将所述数字信号输入所述处理器。
本实施例提供的接收机结构,与图15的区别为利用模数转化器代替限幅器。模数转 化器将模拟信号转化为数字信号,数字信号输入进微处理器,实现数字域解调。
图18为本申请实施例提供的电子标签的第四种接收机的原理示意图;如图18所示,在上述实施例的基础上,在一种具体实现方式中,所述带通滤波器的数量为两个,所述ADC的个数为两个,每个带通滤波器的输出端连接一个ADC;
所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,得到两个低频信号,并将所述两个低频信号分别输入不同的带通滤波器;每个所述带通滤波器对所述低频信号进行滤波,并在滤波后通过连接的ADC转换为数字信号,将所述数字信号输入所述处理器。
本方案提供的接收机结构中,射频在经过混频器后的两路IQ,即I(in phase)和Q(quadrature)分别经过滤波器与ADC,最后两路IQ分别输入至微处理器。此种方案可以在数字域实现IQ平衡处理。注意电源控制并未在图中标出,但是此结构与图17所示的接收机的电源控制结构一致,其他各个器件的功能也类似。在此种结构中,解调,IQ平衡均由数字域完成。
图19为本申请实施例提供的电子标签的一种供电模块的原理示意图;在前述实施例中提出,本申请提供的电子标签的供电模块可以利用收集到的RF能量实现。前述实施例中提出的发射机的整流器具有检波功能的同时,也具有能量收集功能,如图19所示,在该结构中,整流器收集到的能量分支输入到能量收集电容,能量收集电容由电源管理芯片控制,实现电容的充放电。
图20为本申请实施例提供的电子标签的另一种供电模块的原理示意图;如图20所示,与上述图19所示方案不同的是,整流器\检波器采用了电压加倍器的结构,对比图19中的结构,此结构可以将电压加倍且不影响整流器,检波器,能量收集器的功能。该装置将能量收集电容的电压升压一倍,适用于需求高电压的电容。
上述任一方案提供的电子标签,能够采用反向散射技术降低发射功率,再采用“掉电”式接收机降低接收功率,通过控制发射机和接收机在工作的时候再唤醒降低系统功耗,从而增长了电子标签的使用寿命。甚至在电池完全没电的情况下,也可采用能量收集装置进行数据交互。同时电子标签采用蓝牙通讯标准,易于和智能终端协同,降低消费者使用难度。
图21为本申请实施例提供的无线通信装置实施例一的结构示意图,如图21所示,该无线通信装置10,包括:
接收模块11,用于接收CW;
发送模块12,用于通过反向散射技术,向读卡器发射符合BLE广播协议的数据,所述数据用于对所述无线通信装置进行定位。
可选的,所述读卡器包括具有发射连续波功能的终端设备。
可选的,所述接收模块11具体用于:
接收所述读卡器发送的所述CW;
或者,
接收CW发射机发送的所述CW。
可选的,所述数据中包括所述电子标签的标识信息。
图22为本申请实施例提供的无线通信装置实施例二的结构示意图,如图22所示,在上述实施例的基础上,该无线通信装置10还包括:处理模块13,用于:
将所述CW的能量转换为直流能量;
在所述直流能量大于预设能量值时,唤醒所述无线通信装置的处理器进行信号检测;
当检测出接收到的CW为预设的发射信号时,唤醒所述无线通信装置的发射机。
可选的,所述发送模块12具体用于:
根据预先获取的读卡器信息,采用反向散射技术,向所述读卡器发射符合蓝牙低功耗 BLE广播协议的所述数据。
可选的,所述接收模块11还用于:
接收所述读卡器发送的读卡器信息。
可选的,所述接收模块11还用于:
接收所述读卡器发送的唤醒信号;
当检测出所述唤醒信号为预设的信号时,所述无线通信装置的控制模块控制向所述电子标签的接收机上电。
上述任一实施例提供的无线通信装置10,用于实现前述任一实施例中电子标签侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图23为本申请实施例提供的无线通信装置实施例三的结构示意图,如图23所示,该无线通信装置20,包括:
接收模块21,用于接收电子标签发送的符合BLE广播协议的数据;
处理模块22,用于根据所述数据对所述电子标签进行定位。
可选的,所述无线通信装置20包括具有发射连续波CW功能的终端设备。
可选的,所述数据中包括所述电子标签的标识信息。
图24为本申请实施例提供的无线通信装置实施例四的结构示意图,如图24所示,该无线通信装置20还包括:
第一发送模块23,用于向所述电子标签发送连续波CW。
图25为本申请实施例提供的无线通信装置实施例五的结构示意图,如图24所示,该无线通信装置20还包括:
第二发送模块24,用于向所述电子标签发送读卡器信息。
可选的,所述第二发送模块24还用于:
向所述电子标签发送唤醒信号,所述唤醒信号用于唤醒所述电子标签的接收功能。
上述任一实施例提供的无线通信装置20,用于实现前述任一实施例中读卡器(例如,终端设备等)侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图26为本实施例提供的终端设备的结构示意图。如图26所示,该终端设备100包括:
处理器、存储器、接收器和发送器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行前述任一实施例所述的无线通信方法中终端设备侧的技术方案。
图26为终端设备的一种简单设计,本申请实施例不限制终端设备中处理器和存储器的个数,图26仅以个数为1作为示例说明。
在上述图26所示的终端设备的一种具体实现中,存储器、处理器以及接口之间可以通过总线连接,也可以通过别的方式连接。可选的,存储器可以集成在处理器内部。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述无线通信方法的方案中电子标签侧的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述无线通信方法的方案中读卡器(例如:终端设备)侧的技术方案。
本申请还提供一种芯片,包括:处理模块与通信接口,所述处理模块用于执行前述无线通信方法的方案中电子标签侧的技术方案。
本申请还提供一种芯片,包括:处理模块与通信接口,所述处理模块用于实现前述无线通信方法的方案中读卡器(例如:终端设备)侧的技术方案。
进一步地,上述芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中电子标签或者读卡器的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述任一设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (23)

  1. 一种无线通信方法,其特征在于,应用于电子标签,所述电子标签包括用于存储射频信号能量的电容,所述方法包括:
    接收连续波CW;
    通过反向散射技术,向读卡器发射符合蓝牙低功耗BLE广播协议的数据,所述数据用于对所述电子标签进行定位。
  2. 根据权利要求1所述的方法,其特征在于,所述电子标签的接收机处于掉电状态,所述接收连续波CW之前,所述方法还包括:
    接收所述读卡器发送的唤醒信号;
    当检测出所述唤醒信号为预设的信号时,控制向所述电子标签的接收机上电。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通过反向散射技术,向读卡器发射符合蓝牙低功耗BLE广播协议的数据之前,所述电子标签的处理器和发射机处于睡眠状态,所述方法还包括:
    将所述CW的能量转换为直流能量;
    在所述直流能量大于预设能量值时,唤醒所述电子标签的处理器进行信号检测;
    当检测出接收到的CW为预设的发射信号时,唤醒所述电子标签的发射机。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述接收连续波CW,包括:
    接收所述读卡器发送的所述CW;
    或者,
    接收CW发射机发送的所述CW。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述通过反向散射技术,向读卡器发射符合蓝牙低功耗BLE广播协议的数据,包括:
    根据预先获取的读卡器信息,采用反向散射技术,向所述读卡器发射符合蓝牙低功耗BLE广播协议的所述数据。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    接收所述读卡器发送的读卡器信息。
  7. 一种无线通信装置,其特征在于,所述无线通信装置包括用于存储射频信号能量的电容,还包括:
    接收模块,用于接收连续波CW;
    发送模块,用于通过反向散射技术,向读卡器发射符合蓝牙低功耗BLE广播协议的数据,所述数据用于对所述无线通信装置进行定位。
  8. 根据权利要求7所述的装置,其特征在于,所述接收模块还用于:
    接收所述读卡器发送的唤醒信号;
    当检测出所述唤醒信号为预设的信号时,所述无线通信装置的控制模块控制接收机上电。
  9. 根据权利要求7或8所述的装置,其特征在于,所述无线通信装置还包括:处理模块,用于:
    将所述CW的能量转换为直流能量;
    在所述直流能量大于预设能量值时,唤醒所述无线通信装置的处理器进行信号检测;
    当检测出接收到的CW为预设的发射信号时,唤醒所述无线通信装置的发射机。
  10. 根据权利要求7至9任一项所述的装置,其特征在于,所述接收模块具体用于:
    接收所述读卡器发送的所述CW;
    或者,
    接收CW发射机发送的所述CW。
  11. 根据权利要求7至10任一项所述的装置,其特征在于,所述发送模块具体用于:
    根据预先获取的读卡器信息,采用反向散射技术,向所述读卡器发射符合蓝牙低功耗BLE广播协议的所述数据。
  12. 根据权利要求7至11任一项所述的装置,其特征在于,所述接收模块还用于:
    接收所述读卡器发送的读卡器信息。
  13. 一种电子标签,其特征在于,包括:
    天线,发射机,接收机,处理器,电源管理芯片以及供电模块;
    所述天线分别与所述发射机和所述接收机连接;
    所述处理器分别与所述发射机,所述接收机以及所述电源管理芯片连接;
    所述电源管理芯片与所述供电模块连接;
    其中,所述发射机用于发射信号,所述接收机用于接收信号,所述处理器用于进行信号处理,所述供电模块用于为所述电子标签的器件供电,所述电源管理芯片用于向所述发射机,所述接收机以及所述处理器输出对应的电压;
    所述供电模块包括电池或者电容;其中,所述电池包括可充电电池或者一次性电池;所述电容用于收集并存储射频信号能量。
  14. 根据权利要求13所述的电子标签,其特征在于,所述电子标签还包括:单刀双掷SPDT开关;所述发射机和所述接收机通过所述SPDT开关与所述天线连接,所述处理器控制所述SPDT开关实现射频通路切换。
  15. 根据权利要求13或14所述的电子标签,其特征在于,所述天线的数量为两个,所述发射机和所述接收机分别连接使用不同的天线。
  16. 根据权利要求13至15任一项所述的电子标签,其特征在于,所述发射机包括:场效应三极管FET开关,振荡器,以及整流器/检波器;
    其中,所述FET开关用于控制与所述发射机连接的天线接地或者不接地,所述振荡器用于产生两种震荡频率,所述整流器/检波器用于唤醒所述发射机或者所述接收机。
  17. 根据权利要求13至16任一项所述的电子标签,其特征在于,所述发射机包括:隧道二极管,振荡器,以及整流器/检波器;
    其中,所述隧道二极管用于控制与所述发射机连接的天线接地或者不接地,所述振荡器用于产生两种震荡频率,所述整流器/检波器用于唤醒所述发射机或者所述接收机。
  18. 根据权利要求13至17任一项所述的电子标签,其特征在于,所述接收机包括:低噪放,混频器,相位变化器,频率生成器,带通滤波器和限幅器;
    所述低噪放用于将接收到的射频信号进行放大,得到高频射频信号;
    所述频率生成器用于生成局部振荡器LO频率并输入所述相位变化器,所述相位变化器将所述LO频率转换为相差90度的两个输出信号;
    所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,转换为低频信号并输入所述带通滤波器;
    所述带通滤波器对所述低频信号进行滤波,并在滤波后通过限幅器转换为幅度变化的数字信号,将所述数字信号输入所述处理器。
  19. 根据权利要求18所述的电子标签,其特征在于,所述带通滤波器的数量为两个,所述限幅器的数量为两个,每个带通滤波器的输出端连接一个限幅器;
    所述混频器将所述高频射频信号分别与所述两个输出信号进行混频,得到两个低频信号,并将所述两个低频信号分别输入不同的带通滤波器;
    每个带通滤波器对输入的低频信号进行滤波,并在滤波后通过连接的限幅器转换为幅度变化的数字信号,将所述数字信号输入所述处理器。
  20. 根据权利要求13至17任一项所述的电子标签,其特征在于,所述接收机包括: 低噪放,混频器,相位变化器,频率生成器,带通滤波器和模数转换器ADC;
    所述低噪放用于将接收到的射频信号进行放大,得到高频射频信号;
    所述频率生成器用于生成局部振荡器LO频率并输入所述相位变化器,所述相位变化器将所述LO频率转换为相差90度的两个输出信号;
    所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,转换为低频信号并输入所述带通滤波器;
    所述带通滤波器对所述低频信号进行滤波,并在滤波后通过所述ADC转换为数字信号,将所述数字信号输入所述处理器。
  21. 根据权利要求20所述的电子标签,其特征在于,所述带通滤波器的数量为两个,所述ADC的个数为两个,每个带通滤波器的输出端连接一个ADC;
    所述混频器用于将所述高频射频信号的分别与所述两个输出信号进行混频,得到两个低频信号,并将所述两个低频信号分别输入不同的带通滤波器;
    每个所述带通滤波器对所述低频信号进行滤波,并在滤波后通过连接的ADC转换为数字信号,将所述数字信号输入所述处理器。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至6任一项所述的无线通信方法。
  23. 一种芯片,其特征在于,包括:处理模块与通信接口,所述处理模块用于执行权利要求1至6任一项所述的无线通信方法。
PCT/CN2020/091629 2020-05-21 2020-05-21 无线通信方法、装置、设备及存储介质 WO2021232368A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/091629 WO2021232368A1 (zh) 2020-05-21 2020-05-21 无线通信方法、装置、设备及存储介质
CN202080099267.4A CN115336186B (zh) 2020-05-21 2020-05-21 无线通信方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091629 WO2021232368A1 (zh) 2020-05-21 2020-05-21 无线通信方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021232368A1 true WO2021232368A1 (zh) 2021-11-25

Family

ID=78708980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091629 WO2021232368A1 (zh) 2020-05-21 2020-05-21 无线通信方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115336186B (zh)
WO (1) WO2021232368A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115878033A (zh) * 2022-11-30 2023-03-31 合肥腾芯微电子有限公司 一种固态硬盘及其映射表管理方法
WO2024113173A1 (zh) * 2022-11-29 2024-06-06 Oppo广东移动通信有限公司 定位方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804678A1 (en) * 2012-01-17 2014-11-26 Blast Motion Inc. Intelligent motion capture element
CN105320981A (zh) * 2014-07-07 2016-02-10 上海网频电子科技有限公司 一种蓝牙射频识别有源电子标签
CN206133594U (zh) * 2016-08-14 2017-04-26 武汉安图联新科技有限公司 一种带ble功能的rfid标签
EP3343449A1 (en) * 2016-12-30 2018-07-04 Capital One Services, LLC Dynamic transaction card protected by dropped card detection
CN110603574A (zh) * 2017-05-10 2019-12-20 穆尔布兰卡·凯撒·塞尔吉·曼果 通用票价支付和收费系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215976B2 (en) * 2001-11-30 2007-05-08 Symbol Technologies, Inc. RFID device, system and method of operation including a hybrid backscatter-based RFID tag protocol compatible with RFID, bluetooth and/or IEEE 802.11x infrastructure
CN103123703A (zh) * 2011-11-21 2013-05-29 周增涛 基于电子标签的位置追踪系统
US9754202B2 (en) * 2012-04-05 2017-09-05 Ricoh Co., Ltd. Low power radio frequency communication
US10079616B2 (en) * 2014-12-19 2018-09-18 University Of Washington Devices and methods for backscatter communication using one or more wireless communication protocols including bluetooth low energy examples
US10613213B2 (en) * 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804678A1 (en) * 2012-01-17 2014-11-26 Blast Motion Inc. Intelligent motion capture element
CN105320981A (zh) * 2014-07-07 2016-02-10 上海网频电子科技有限公司 一种蓝牙射频识别有源电子标签
CN206133594U (zh) * 2016-08-14 2017-04-26 武汉安图联新科技有限公司 一种带ble功能的rfid标签
EP3343449A1 (en) * 2016-12-30 2018-07-04 Capital One Services, LLC Dynamic transaction card protected by dropped card detection
CN110603574A (zh) * 2017-05-10 2019-12-20 穆尔布兰卡·凯撒·塞尔吉·曼果 通用票价支付和收费系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113173A1 (zh) * 2022-11-29 2024-06-06 Oppo广东移动通信有限公司 定位方法及设备
CN115878033A (zh) * 2022-11-30 2023-03-31 合肥腾芯微电子有限公司 一种固态硬盘及其映射表管理方法
CN115878033B (zh) * 2022-11-30 2023-09-15 合肥腾芯微电子有限公司 一种固态硬盘及其映射表管理方法

Also Published As

Publication number Publication date
CN115336186B (zh) 2023-08-29
CN115336186A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US10498569B2 (en) Systems and methods for backscatter communication
US9607186B2 (en) RF tag system which allows a scheduled start RF tag and a remote start RF tag to share the same frequency band
KR20190021281A (ko) Nfc 작동 모드와 uhf 작동 모드를 가지는 비접촉 집적 회로
WO2021232368A1 (zh) 无线通信方法、装置、设备及存储介质
CN102663456B (zh) 一种近距离有源射频识别系统
WO2021208104A1 (zh) 一种信息传输方法及电子标签、终端设备、存储介质
CN104361388A (zh) 一种超高频无线传感标签
JP2010530098A (ja) タッグデバイス、リーダーデバイス、rfidシステム
WO2023221313A1 (zh) 一种基于ble协议的无电池多模式收发机
CN112949809B (zh) Rfid电子标签及标签上电通信方法
CN207910774U (zh) 电力线载波与无线双模式通信模块
US9413431B2 (en) Transceiver
Köble et al. A narrow-band and ultra-low-power 433 MHz wake-up receiver
CN102324945A (zh) 一种具有地址过滤功能的无线唤醒电路
EP3996425A1 (en) Rf communication devices and operating methods
Bouraoui et al. Study on wake-up receiver design for IoT applications
CN218958911U (zh) 一款922.5mhz超高频收发装置
CN203133879U (zh) 一种无源无线通信的射频识别装置
CN116415614A (zh) 能降低标签单元功耗的频移反向散射标签系统
KR20210046112A (ko) 원거리 웨이크업을 수행하는 에너지 하베스팅 시스템, 장치 및 방법
US7760073B2 (en) RFID tag modification for full depth backscatter modulation
Qiwei Research and design on radio frequency identification reader
CN205139929U (zh) 一种基于rfid的电子社保卡识别系统
CN202693785U (zh) 定位系统及其主控设备和目标设备
CN215818632U (zh) 一种uwb高精度定位卡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936225

Country of ref document: EP

Kind code of ref document: A1