WO2021232365A1 - Uplink configuration for communication of signals based on multiple antenna panels - Google Patents

Uplink configuration for communication of signals based on multiple antenna panels Download PDF

Info

Publication number
WO2021232365A1
WO2021232365A1 PCT/CN2020/091607 CN2020091607W WO2021232365A1 WO 2021232365 A1 WO2021232365 A1 WO 2021232365A1 CN 2020091607 W CN2020091607 W CN 2020091607W WO 2021232365 A1 WO2021232365 A1 WO 2021232365A1
Authority
WO
WIPO (PCT)
Prior art keywords
rbs
subset
communication signal
code
transmit
Prior art date
Application number
PCT/CN2020/091607
Other languages
French (fr)
Inventor
Fang Yuan
Wooseok Nam
Mostafa KHOSHNEVISAN
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/091607 priority Critical patent/WO2021232365A1/en
Priority to PCT/CN2021/094280 priority patent/WO2021233275A1/en
Publication of WO2021232365A1 publication Critical patent/WO2021232365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure is directed to wireless communication systems and methods.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • LTE long term evolution
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmW) bands.
  • GHz gigahertz
  • mmW millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • a UE may include an antenna panel that may be oriented to different spatial directions based on different antenna configurations.
  • Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension.
  • a method of wireless communication includes receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; partitioning the plurality of RBs into at least a first subset and a second subset; transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • an apparatus includes: a transceiver configured to: receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; transmit a first communication signal using a first antenna panel in a first subset of the plurality of RBs; and transmit a second communication signal using a second antenna panel in a second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel; and a processor configured to: partition the plurality of RBs into at least the first subset and the second subset.
  • FDRA frequency-domain resource allocation
  • RBs resource blocks
  • a computer-readable medium having program code recorded thereon, the program code including: code for causing a user equipment (UE) to receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; code for causing the UE to partition the plurality of RBs into at least a first subset and a second subset; code for causing the UE to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and code for causing the UE to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • RBs resource blocks
  • an apparatus includes means for receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; means for partitioning the plurality of RBs into at least a first subset and a second subset; means for transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and means for transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • RBs resource blocks
  • a method of wireless communication includes transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • an apparatus includes: a transceiver configured to: transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; receive a first communication signal in the first subset of the plurality of RBs, wherein the first communication signal is based on a first antenna panel of the UE; and receive a second communication signal in the second subset of the plurality of RBs, wherein the second communication signal is based on a second antenna panel of the UE, and the second antennal panel is different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • UE user equipment
  • a computer-readable medium having program code recorded thereon, the program code including: code for causing a base station (BS) to transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; code for causing the BS to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and code for causing the BS to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • BS base station
  • FDRA frequency-domain resource allocation
  • UE user equipment
  • an apparatus includes means for transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; means for receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and means for receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • FDRA frequency-domain resource allocation
  • FIG. 1 illustrates a wireless communication network in accordance with one or more aspects of the present disclosure.
  • FIG. 2 is a timing diagram illustrating a transmission frame structure in accordance with some aspects of the present disclosure.
  • FIG. 3 illustrates a group-based frequency-domain resource allocation (FDRA) communication scheme in accordance with one or more aspects of the present disclosure.
  • FDRA frequency-domain resource allocation
  • FIG. 4 illustrates a half-based FDRA communication scheme in accordance with one or more aspects of the present disclosure.
  • FIG. 5 illustrates a flow diagram of a method for partitioning an FDRA in accordance with one or more aspects of the present disclosure.
  • FIG. 6 illustrates a block diagram of an example base station (BS) in accordance with one or more aspects of the present disclosure.
  • FIG. 7 illustrates a block diagram of an example user equipment (UE) in accordance with one or more aspects of the present disclosure.
  • UE user equipment
  • FIG. 8 illustrates an example downlink control information (DCI) configuration in accordance with one or more aspects of the present disclosure.
  • DCI downlink control information
  • FIG. 9 illustrates an FDRA communication scheme in accordance with one or more aspects of the present disclosure.
  • FIG. 10 illustrates an FDRA communication scheme in accordance with one or more aspects of the present disclosure.
  • FIG. 11 illustrates a flow diagram of a communication method for communicating communication signals using multiple panels in accordance with one or more aspects of the present disclosure.
  • FIG. 12 illustrates a flow diagram of a communication method for receiving communication signals from a UE based on multiple panels of the UE in accordance with one or more aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an Ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 milliseconds (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmW) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmW millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing (SCS) , may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • SCS may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • SCS may occur with 30 kHz over 80/100 MHz BW.
  • the SCS may occur with 60 kHz over a 160 MHz BW.
  • the SCS may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • a BS may transmit a DCI indicating a frequency-domain resource allocation (FDRA) that indicates a plurality of resource blocks (RBs) .
  • the UE may receive the FDRA indicating the plurality of RBs and may partition the plurality of RBs into at least a first subset of the plurality of RBs and a second subset of the plurality of RBs. Accordingly, the UE may partition the FDRA into two subsets of RBs.
  • the UE may include multiple antenna panels and may apply beamforming techniques to communicate with one or more wireless communication devices. Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension.
  • the present disclosure provides techniques for communicating UL communication signals based on multiple antenna panels.
  • the UE may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs and transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, where the second antennal panel is different from the first antenna panel.
  • the UE may transmit a communication signal using the second antenna panel. Accordingly, multiple panel transmissions may improve reliability of transmission and solve the aforementioned blockage issue. Additionally or alternatively, frequency division multiplexed (FDM) antenna panels may reduce inter-panel interference because different antenna panels may use different orthogonal frequency resources. Additionally or alternatively, the DCI indicating the FDRA may save DCI overhead because the DCI indicates a single FDRA rather than two FDRAs. The UE is able to partition the single FDRA into a first FDRA partition and a second FDRA partition.
  • FDM frequency division multiplexed
  • the UE may transmit a first communication signal using the first antenna panel in the first FDRA partition and transmit a second communication signal using the second antenna panel in the second FDRA partition.
  • UL uplink
  • FIG. 1 illustrates a wireless communication network 100 in accordance with one or more aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or UL, desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as vehicle-to-vehicle (V2V) communications among the UEs 115i-115k, vehicle-to-everything (V2X) communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the SCS between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands.
  • the SCS and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and UL transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes an UL subframe in an UL frequency band and a DL subframe in a DL frequency band.
  • a subframe may also be referred to as a slot.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate an UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • An UL-centric subframe may include a longer duration for UL communication than for DL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining minimum system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a PDSCH.
  • SSBs synchronization signal block
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB, which may be transmitted in the physical broadcast channel (PBCH) .
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI, OSI, and/or one or more system information blocks (SIBs) .
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for PDCCH monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • SIB1 may contain cell access parameters and scheduling information for other SIBs.
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105. After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) .
  • DCI DL control information
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit an UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to an UL scheduling grant.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
  • BS 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a BS 105 or a UE 115) and a receiving device (e.g., a BS 105 or a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MUMIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MUMIMO multiple-user MIMO
  • each of a BS 105 and/or a UE 115 may have one or more antenna panels (may also referred to as a panel or an antenna array) and may apply beamforming techniques to communicate with each other.
  • Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension.
  • the UE 115 may form beams in an array of angular directions by weighting signal phases and amplitudes at the antenna elements.
  • the UE 115 may set the antenna panel of the UE 115 to different orientations and at each orientation, the UE 115 may sweep different beams (also referred to as a beam sweep operation) and may determine a gain (e.g., a signal strength) , such as a reference signal receive power (RSRP) and/or signal-to-interference-and-noise ratio (SINR) value, for that orientation.
  • a gain e.g., a signal strength
  • RSRP reference signal receive power
  • SINR signal-to-interference-and-noise ratio
  • An antenna panel may have a set of different beams (e.g., beams oriented in different directions) which may be used for the previously described beam sweep operation.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a BS 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the transmitting device and/or the receiving the device may perform analog beam forming and/or digital beamforming to shape and/or steer an antenna beam.
  • a network may operate over a licensed frequency band, a shared frequency band, and/or an unlicensed frequency band, for example, at about 3.5 gigahertz (GHz) , sub-6 GHz or higher frequencies in the mmW band.
  • the network 100 may partition a frequency band into multiple channels, each occupying about 20 megahertz (MHz) .
  • FIG. 2 is a timing diagram illustrating a transmission frame structure 200 in accordance with some aspects of the present disclosure.
  • the transmission frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the transmission frame structure 200.
  • the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units.
  • the transmission frame structure 200 includes a radio frame 201.
  • the duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds.
  • the radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
  • Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time.
  • the number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel bandwidth, the subcarrier spacing (SCS) , and/or the CP mode.
  • One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission.
  • the REs are grouped into physical resource blocks (PRBs) .
  • Each PRB may include twelve subcarriers, and a BW part may include a group of continuous PRBs.
  • a resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
  • a resource block group (RBG) may include one or more RBs and may also be referred to as a subband.
  • the BS may schedule UE at a frequency-granularity of an RB 210 (e.g., including about 12 subcarriers 204) .
  • a BS may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208.
  • Each slot 202 may be time-partitioned into K number of mini-slots 208.
  • Each mini-slot 208 may include one or more symbols 206.
  • the mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206. In some aspects, a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206.
  • a BS 105 may transmit a DCI indicating a frequency-domain resource allocation (FDRA) to the UE 115, the FDRA indicating a plurality of RBs.
  • the DCI may indicate an UL scheduling grant that indicates the FDRA.
  • the UE 115 may receive the DCI and accordingly receive the FDRA indicating the plurality of RBs.
  • the UE 115 may partition the plurality of RBs into a first subset of RBs and a second subset of RBs.
  • the UE 115 may include multiple antenna panels and may communicate wireless communication signals via the multiple antenna panels.
  • the first subset of RBs may be associated with a first antenna panel (e.g., antenna panel 0) and the second subset of RBs may be associated with a second antenna panel (e.g., antenna panel 1) .
  • the UE 115 may be described as partitioning the plurality of RBs into two subsets, it should be understood that in other examples the UE 115 may partition the plurality of RBs into more than two subsets (e.g., three subsets of RBs, four subsets of RBs, five subsets of RBs, or more) .
  • Each of the first subset of RBs and the second subset of RBs may be associated with a particular antenna panel of the multiple antenna panels.
  • the UE 115 may use the first and second antenna panels for transmission of UL communication signals based on the partitioning of the plurality of RBs. For example, the UE 115 may transmit a first communication using the first antenna panel in the first subset of the plurality of RBs and may transmit a second communication using the second antenna panel in the second subset of the plurality of RBs.
  • the first and second communication signals may be UL communication signals.
  • the UE 115 may partition the plurality of RBs in various ways. In some aspects, the UE 115 may partition the plurality of RBs in accordance with a group-based partitioning scheme specifying a group value. In some aspects, the UE 115 may partition the plurality of RBs in accordance with a half-based partitioning scheme. Each of these partitioning schemes will be described in further detail below in relation to, for example, aspects of FIGs. 3 and 4.
  • FIG. 3 illustrates a group-based FDRA communication scheme 300 in accordance with one or more aspects of the present disclosure.
  • the FDRA communication scheme 300 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications.
  • the x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
  • a BS 105 may transmit a DCI indicating an FDRA 302 to a UE 115, the FDRA 302 indicating a plurality of RBs 304.
  • the example illustrates the FDRA 302 indicating ten RBs 304, it should be understood that the FDRA 302 may indicate any positive number of RBs.
  • the UE 115 may receive the DCI and accordingly receive the FDRA 302 indicating the plurality of RBs 304.
  • the UE 115 may partition the plurality of RBs 304 into a first subset of RBs and a second subset of RBs, the first subset of RBs being associated with antenna panel 0 and the second subset of RBs being associated with antenna panel 1.
  • the antenna panel 0 is different from the antenna panel 1, and each antenna panel is shown using a different pattern in FIG. 3.
  • the BS 105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE 115.
  • the UE 115 may receive the RRC configuration from the BS 105 and determine the partitioning of the plurality of RBs 304 based on the RRC configuration.
  • the RRC configuration may indicate a number of RBs (e.g., contiguous RBs) , and the UE 115 may partition the plurality of RBs 304 such that the first and second subsets of the plurality of RBs may be interleaved in the FDRA 302 based on the number of RBs.
  • the number of RBs indicated in the RRC configuration may also be referred to as a group value.
  • the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme specifying a group value.
  • the group value may be configurable and/or may be in units of RBs (e.g., PRB, RBG, etc. ) .
  • the group value may be, for example, any power of two (e.g., one, two, four, eight, etc. ) .
  • the group value may be any suitable value (e.g., one, two, three, four, five, etc. ) .
  • the first subset of the plurality of RBs 304 and the second subset of the plurality of RBs 304 may be interleaved in the FDRA 302 based on the group value.
  • the UE 115 may partition the plurality of RBs 304 such that the first subset corresponds to every even “group value” of units in the FDRA 302 and the second subset corresponds to every odd “group value” of units in the FDRA 302. If the group value does not divide evenly into the total number of RBs included in the plurality of RBs 304, the UE 115 may partition the FDRA such that a remainder of the RBs is included in the applicable subset.
  • the group value is two
  • the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme 310 with the group value of two.
  • the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of two RBs 312, a third group of two RBs 316, and a fifth group of two RBs 320, and the second subset of the plurality of RBs 304 includes a second group of two RBs 314 and a fourth group of two RBs 318.
  • the first group of two RBs 312, third group of two RBs 316, and the fifth group of two RBs 320 are interleaved between the second group of two RBs 314 and the fourth group of two RBs 318.
  • the UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of two RBs 312, the third group of two RBs 316, and/or the fifth group of two RBs 320) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of two RBs 314 and/or the fourth group of two RBs 318) .
  • the group value is four
  • the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme 330 with the group value of four.
  • the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of four RBs 332 and a third group of the two remaining RBs 336, and the second subset of the plurality of RBs 304 includes a second group of four RBs 334.
  • the first group of four RBs and the third group of two RBs 336 are interleaved between the second group of four RBs 334.
  • the UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of four RBs 332 and/or the third group of two RBs 336) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of four RBs 334) .
  • the UE 115 may perform similar actions to those discussed above in relation to group value of eight, sixteen, etc.
  • FIG. 4 illustrates a half-based FDRA communication scheme 400 in accordance with one or more aspects of the present disclosure.
  • the FDRA communication scheme 400 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications.
  • the x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
  • the FDRA 302, the plurality of RBs 304, the antenna panel 0, and the antenna panel 1 in FIG. 4 are discussed in relation to FIG. 3.
  • the UE 115 may receive the FDRA 302 indicating the plurality of RBs 304.
  • the UE 115 may partition the plurality of RBs 304 into a first subset of RBs and a second subset of RBs, the first subset of RBs being associated with antenna panel 0 and the second subset of RBs being associated with antenna panel 1.
  • the antenna panel 0 is different from the antenna panel 1, and each antenna panel is shown using a different pattern.
  • the UE 115 may partition the plurality of RBs 304 in accordance with a half-based partitioning scheme.
  • the UE 115 may partition the plurality of RBs 304 such that the first subset of RBs includes a first contiguous half of the plurality of RBs 304 and the second subset of RBs includes a second contiguous half of the plurality of RBs 304.
  • the first half of the plurality of RBs 304 may include the first group of five RBs 412
  • the second half of the plurality of RBs 304 may include the second group of five RBs 414.
  • the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of five RBs 412 and the second subset of the plurality of RBs 304 includes a second group of five RBs 414.
  • the BS 105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE 115.
  • the UE 115 may receive the RRC configuration from the BS 105 and determine the partitioning of the plurality of RBs 304 based on the RRC configuration.
  • the RRC configuration may indicate that the first subset of RBs includes a first contiguous half of the plurality of RBs 304 based on the RRC configuration and that the second subset of RBs includes a second contiguous half of the plurality of RBs 304 based on the RRC configuration.
  • the UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of five RBs 412) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of five RBs 414) .
  • the UE 105 may transmit using FDM in accordance with aspects of, for example, the group-based FDRA communication scheme 300 in FIG. 3 and/or the half-based FDRA communication scheme 400 in FIG. 4. Additionally or alternatively, the UE 105 may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs to a first transmission and reception point (TRP) and may transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs to a second TRP.
  • TRP transmission and reception point
  • the BS 105 may transmit an RRC configuration indicating to the UE how to partition the FDRA into the first and second subsets of the plurality of RBs.
  • the UE 115 may switch between FDRA partitioning schemes.
  • the partitioning scheme may be based on predefined partitions specifying that a first FDRA communication scheme (e.g., half-based FDRA communication scheme 400 in FIG. 4) should be applied to the FDRA if a total number of RBs indicated by the FDRA 302 satisfies a threshold and that a second FDRA communication scheme (e.g., group-based FDRA communication scheme 300 in FIG. 3) should be applied to the FDRA if a total number of RBs indicated by the FDRA 302 does not satisfy the threshold, as will be discussed in more detail below in FIG. 5.
  • a first FDRA communication scheme e.g., half-based FDRA communication scheme 400 in FIG. 4
  • a second FDRA communication scheme e.
  • FIG. 5 illustrates a flow diagram of a method 500 for partitioning an FDRA in accordance with one or more aspects of the present disclosure.
  • Blocks of the method 500 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device.
  • the wireless communication device is a UE (e.g., UE 115 and/or UE 700) that may utilize one or more components, such as the processor 702, the memory 704, the FDRA module 708, the communication module 709, the transceiver 710, and/or the antennas 716 to execute the blocks of the method 500.
  • the method 500 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG.
  • the method 500 includes a number of enumerated blocks, but aspects of the method 500 may include additional blocks before, after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 500 includes receiving an FDRA indicating a plurality of frequency-domain units.
  • the UE 115 e.g., FDRA module 708 may receive the FDRA indicating the plurality of frequency-domain units.
  • a frequency-domain unit may be, for example, a RB, a PRB, or a RBG.
  • the method 500 includes determining whether a total number of frequency-domain units indicated by the FDRA satisfies a threshold.
  • the UE 115 e.g., FDRA module 708 may determine whether the total number of frequency-domain units indicated by the FDRA satisfies the threshold. In some instances, the total number of frequency-domain units satisfies the threshold if the total number of frequency-domain units is less than the threshold. In some instances, the total number of frequency-domain units satisfies the threshold if the total number of frequency-domain units is less than or equal to the threshold. If the total number of frequency-domain units satisfies the threshold, the process flow may proceed from block 504 to block 506. In contrast, if the total number of frequency-domain units indicated by the FDRA does not satisfy the threshold, the process flow may proceed from block 504 to block 508.
  • the method 500 includes partitioning the plurality of frequency-domain units in accordance with a half-based FDRA communication scheme.
  • the UE 115 may partition the plurality of frequency-domain units in accordance with the half-based FDRA communication scheme 400 as discussed in relation to, for example, aspects of FIG. 4.
  • the method 500 includes partitioning the plurality of frequency-domain units in accordance with a group-based FDRA communication scheme.
  • the UE 115 may partition the plurality of frequency-domain units in accordance with the group-based FDRA communication scheme 300 as discussed in relation to, for example, aspects of FIG. 3.
  • the process flow may proceed from block 504 to block 508, and if the total number of frequency-domain units indicated by the FDRA does not satisfy the threshold, the process flow may proceed from block 504 to block 506.
  • FIG. 6 illustrates a block diagram of an example BS 600 in accordance with one or more aspects of the present disclosure.
  • the BS 600 may be a BS 105 as discussed above in relation to FIG. 1.
  • the BS 600 may include a processor 602, a memory 604, an FDRA module 608, a communication module 609, a transceiver 610 including a modem subsystem 612 and radio frequency (RF) unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • RF radio frequency
  • the processor 602 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 604 includes a non-transitory computer-readable medium.
  • the memory 604 may store, or have recorded thereon, instructions 606.
  • the instructions 606 may include instructions that, when executed by the processor 602, cause the processor 602 to perform the operations described herein with reference to the BSs (e.g., BS 105) in connection with aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 8, 9, 10, and/or 12. Instructions 606 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 602) to control or command the wireless communication device to do so.
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • instructions and code may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the FDRA module 608 and/or the communication module 609 may be implemented via hardware, software, or combinations thereof.
  • the FDRA module 608 and/or the communication module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602.
  • the FDRA module 608 and/or the communication module 609 can be integrated within the modem subsystem 612.
  • the FDRA module 608 and/or the communication module 609 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 612.
  • the FDRA module 608 and/or the communication module 609 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 8, 9, 10, and/or 12.
  • the FDRA module 608 may be configured to transmit an FDRA indicating a plurality of RBs to a user equipment (UE) .
  • the communication module 609 may be configured to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE.
  • the communication module 609 may be configured to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • the transceiver 610 may include the modem subsystem 612 and the RF unit 614.
  • the transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UE 115, another BS, and/or another core network element.
  • the modem subsystem 612 may be configured to modulate and/or encode the data from the memory 604, the FDRA module 608 and/or the communication module 609 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 614 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., a DCI indicating an FDRA, a DCI indicating at least two different TCI states, a DCI indicating at least two different SRIs, a DCI indicating at least two different RVs, an FDRA indicating a plurality of RBs, an RRC message indicating a configuration for a first subset of the plurality of RBs and a second subset of the plurality of RBs, etc.
  • modulated/encoded data e.g., a DCI indicating an FDRA, a DCI indicating at least two different TCI states, a DCI indicating at least two different SRIs, a DCI indicating at least two different RVs, an FDRA indicating a plurality of RBs, an RRC message indicating a configuration for a first subset of the plurality of
  • the RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and/or the RF unit 614 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to one or more aspects of the present disclosure.
  • the antennas 616 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 610.
  • the transceiver 610 may provide the demodulated and decoded data (e.g., one or more communication signals in a first subset of the plurality of RBs associated with a first antenna panel of the UE, one or more communication signals in a second subset of the plurality of RBs associated with a second antenna panel of the UE, etc. ) to the FDRA module 608 and/or the communication module 609 for processing.
  • the antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 614 may configure the antennas 616.
  • the transceiver 610 may coordinate with the FDRA module 609 to transmit an FDRA indicating a plurality of RBs.
  • the transceiver 610 may coordinate with the communication module 609 to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE.
  • the transceiver 610 may coordinate with the communication module 609 to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • the BS 600 can include multiple transceivers 610 implementing different RATs (e.g., NR and LTE) .
  • the BS 600 can include a single transceiver 610 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 610 can include various components, where different combinations of components can implement different RATs.
  • FIG. 7 illustrates a block diagram of an example UE 700 in accordance with one or more aspects of the present disclosure.
  • the UE 700 may be a UE 115 as discussed above in FIG. 1.
  • the UE 700 may include a processor 702, a memory 704, an FDRA module 708, a communication module 709, a transceiver 710 including a modem subsystem 712 and an RF unit 714, and one or more antennas 716. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 702 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 704 includes a non-transitory computer-readable medium.
  • the memory 704 may store, or have recorded thereon, instructions 706.
  • the instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGs.
  • Instructions 706 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 702) to control or command the wireless communication device to do so.
  • the instructions 706 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 6.
  • the FDRA module 708 and/or the communication module 709 may be implemented via hardware, software, or combinations thereof.
  • the FDRA module 708 and/or the communication module 709 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702.
  • the FDRA module 708 and/or the communication module 709 can be integrated within the modem subsystem 712.
  • the FDRA module 708 and/or the communication module 709 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 712.
  • the FDRA module 708 and/or the communication module 709 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 5, 8, 9, 10, and/or 11.
  • the FDRA module 708 may be configured to receive an FDRA indicating a plurality of RBs.
  • the FDRA module 708 may be configured to partition the plurality of RBs into at least a first subset and a second subset.
  • the communication module 709 may be configured to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs.
  • the communication module 709 may be configured to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel
  • the transceiver 710 may include the modem subsystem 712 and the RF unit 714.
  • the transceiver 710 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and/or another core network element.
  • the modem subsystem 712 may be configured to modulate and/or encode the data from the memory 704, the FDRA module 708 and/or the communication module 709 according to an MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc.
  • the RF unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., one or more communication signals in a first subset of the plurality of RBs associated with a first antenna panel of the UE, one or more communication signals in a second subset of the plurality of RBs associated with a second antenna panel of the UE, etc.
  • modulated/encoded data e.g., one or more communication signals in a first subset of the plurality of RBs associated with a first antenna panel of the UE, one or more communication signals in a second subset of the plurality of RBs associated with a second antenna panel of the UE, etc.
  • the RF unit 714 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 712 and/or the RF unit 714 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 714 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 716 for transmission to one or more other devices.
  • the antennas 716 may further receive data messages transmitted from other devices.
  • the antennas 716 may provide the received data messages for processing and/or demodulation at the transceiver 710.
  • the transceiver 710 may provide the demodulated and decoded data (e.g., a DCI indicating an FDRA, a DCI indicating at least two different TCI states, a DCI indicating at least two different SRIs, a DCI indicating at least two different RVs, an FDRA indicating a plurality of RBs, an RRC message indicating a configuration for a first subset of the plurality of RBs and a second subset of the plurality of RBs, etc. ) to the FDRA module 708 and/or the communication module 709 for processing.
  • the antennas 716 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 714 may configure the antennas 716.
  • the transceiver 710 may coordinate with the FDRA module 708 to receive the FDRA indicating the plurality of RBs.
  • the transceiver 710 may coordinate with the processor 702 to partition the plurality of RBs into at least a first subset and a second subset of the plurality or RBs.
  • the transceiver 710 may coordinate with the communication module 709 to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs.
  • the transceiver 710 may coordinate with the communication module 709 to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  • the UE 700 can include multiple transceivers 710 implementing different RATs (e.g., NR and LTE) .
  • the UE 700 can include a single transceiver 710 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 710 can include various components, where different combinations of components can implement different RATs.
  • FIG. 8 illustrates an example DCI configuration 800 in accordance with one or more aspects of the present disclosure.
  • the DCI configuration 800 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications.
  • the BS 105 may transmit to a UE 115, a DCI 802 indicating one or more UL transmission parameters for a PUSCH.
  • the DCI 802 may be an UL scheduling grant.
  • the DCI configuration 800 may include an UL TCI state field 810, an SRI field 812, and an RV field 814.
  • the UL TCI state field 810 may indicate a first UL TCI state and a second UL TCI state, each UL TCI state corresponding to a certain beam direction associated with a particular antenna panel.
  • the precoder indication may be an SRI field 812.
  • the SRI field 812 may indicate a first SRI and a second SRI.
  • Each SRI may be associated with one or more SRS resources where the UE 115 transmitted each SRS using a certain precoder associated with a particular antenna panel.
  • the UE 115 may transmit the scheduled UL communications signals using the particular antenna panel with precoders associated with the indicated SRI.
  • the SRI field 812 is provided as an example of a precoder indication in FIG. 8, in some aspects, the precoder indication in codebook-based MIMO transmission may be a transmit precoding matrix index (TPMI) field.
  • the precoder indication may indicate a first TPMI and a second TPMI, and UE 115 may transmit the scheduled UL transmission using a particular antenna panel with precoders associated with the indicated TPMI.
  • the RV field 814 may indicate a first RV and a second RV, each RV indicating a version of redundancy for channel coding associated with a particular antenna panel.
  • the BS 105 may configure one or more of the UL TCI state field 810, the SRI field 812, and/or the RV field 814 via RRC signaling to be mapped to a pair of values with UL TCI states, SRI states, and/or RV states, respectively.
  • a DCI may include one or more of the UL TCI state field 810, the SRI field 812, and/or the RV field 814.
  • the BS 105 may store DCI including two bits in the UL TCI state field 810 for one or more UL communications signals, where the two bits may indicate one of four states. For example, “00” may indicate a first UL TCI state and a second UL TCI state, “01” may indicate a third UL TCI state and a fourth UL TCI state, “10” may indicate a fifth UL TCI state and a sixth UL TCI state, and/or “11” may indicate a seventh UL TCI state and an eighth UL TCI state.
  • the UL TCI states indicated in the UL TCI state field 810 may be associated with the antenna panel 0 and/or the antenna panel 1.
  • Each UL TCI state may refer to a reference signal, such as a channel state information reference signal (CSI-RS) , a synchronization signal block (SSB) , a sounding reference signal (SRS) , etc.
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • SRS sounding reference signal
  • the UE 115 may map the first UL TCI state to the first subset of the plurality of RBs and may map the second UL TCI state to the second subset of the plurality of RBs, as indicated by the “00” in the UL TCI state field 810.
  • the mapping may refer to associating a beam direction referenced by the first UL TCI state with the first subset of the plurality of RBs and configuring the first antenna panel to transmit in the beam direction.
  • the mapping may refer to associating a beam direction referenced by the second UL TCI state with the second subset of the plurality of RBs and configuring the second antenna panel to transmit in the beam direction.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first UL TCI state and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second UL TCI state, the first antenna panel being different from the second antenna panel.
  • the UE 115 may map the first UL TCI state to the second subset of the plurality of RBs and map the second UL TCI state to the first subset of the plurality of RBs, which may be indicated by the UL TCI state field 810.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second UL TCI state and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first UL TCI state, the first antenna panel being different from the second antenna panel.
  • the BS 105 may configure the UE 115 with SRS resources for transmitting SRSs (e.g., a first SRS resource and a second SRS resource) .
  • SRS resources e.g., a first SRS resource and a second SRS resource
  • An SRI indicated in the DCI may indicate in the SRI if the UE 115 should transmit the PUSCH using the same configuration as the first SRS resource or the second SRS resource.
  • the BS 105 may store DCI including two bits in the SRI field 812 for one or more UL communications signals, where the two bits may indicate one of four states.
  • “00” may indicate a first SRI and a second SRI
  • “01” may indicate a third SRI and a fourth SRI
  • “10” may indicate a fifth SRI and a sixth SRI
  • “11” may indicate a seventh SRI and an eighth SRI.
  • the SRIs indicated in the SRI field 812 may be associated with the antenna panel 0 and/or the antenna panel 1. If the SRI field 812 includes “00, ” the UE may determine that the first subset of the plurality of RBs is associated with the first SRI and may determine that the second subset of the plurality of RBs is associated with second SRI.
  • the UE 115 may map the first SRI to the first subset of the plurality of RBs and may map the second SRI to the second subset of the plurality of RBs, as indicated by the “00” in the SRI field 812.
  • the mapping may refer to associating a precoder or a beam direction used for transmitting an SRS in a resource reference by the first SRI with the first subset of the plurality of RBs and transmitting an UL communication signal using the same precoder and transmitting using the first antenna panel.
  • the mapping may refer to associating a precoder or a beam direction used for transmitting an SRS in a resource reference by the second SRI with the second subset of the plurality of RBs and transmitting an UL communication signal using the same precoder and transmitting using the second antenna panel.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first SRI and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second SRI, the first antenna panel being different from the second antenna panel.
  • the UE 115 may map the first SRI to the second subset of the plurality of RBs and map the second SRI to the first subset of the plurality of RBs, which may be indicated by the SRI field 812.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second SRI and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first SRI, the first antenna panel being different from the second antenna panel.
  • the BS 105 may store DCI including two bits in the RV field 814 for one or more UL communications signals, where the two bits may indicate one of four states. For example, “00” may indicate a first RV and a second RV, “01” may indicate a third RV and a fourth RV, “10” may indicate a fifth RV and a sixth RV, and/or “11” may indicate a seventh RV and an eighth RV.
  • the RVs indicated in the RV field 814 may be associated with the antenna panel 0 and/or the antenna panel 1. If the RV field 814 includes “00, ” the UE may determine that the first subset of the plurality of RBs is associated with the first RV and may determine that the second subset of the plurality of RBs is associated with second RV.
  • the UE 115 may map the first RV to the first subset of the plurality of RBs and may map the second RV to the second subset of the plurality of RBs, as indicated by “00” in the RV field 814.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first RV and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second RV, the first antenna panel being different from the second antenna panel.
  • the first UL communication signal may include a first transport block (TB) generated based on the first RV
  • the second UL communication signal may include a second TB generated based on the second RV.
  • the UE 115 may map the first RV to the second subset of the plurality of RBs and map the second RV to the first subset of the plurality of RBs.
  • the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second RV and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first RV, the first antenna panel being different from the second antenna panel.
  • the first UL communication signal may include a first TB generated based on the second RV
  • the second UL communication signal may include a second TB generated based on the first RV.
  • the second RV is indicated by an offset of the first RV.
  • the DCI may indicate only the first RV, and the UE may derive the second RV based on the first RV and the offset.
  • the UE may perform similar actions to those described above to map an RV to a particular subset of the plurality of RBs and to transmit the one or more UL communication signals.
  • a DCI is described as including two bits in the one or more UL transmission parameters for a PUSCH (e.g., the UL TCI state field 810, the SRI field 812, and/or the RV field 814) , it should be understood that this is not intended to be limiting. In other examples, the DCI may include more than two bits and/or other values (e.g., characters) to indicate a state.
  • the UE 115 may map one or more RVs to one or more codewords.
  • a codeword is a TB with error coding (e.g., based on channel coding such as a forward error correction (FEC) ) , and the UE 115 may transmit the encoded TB to a BS 105.
  • the UE 115 may transmit an UL communication based on one or more codeword-mapping schemes.
  • An RV may refer to a coded version of the TB. For instance, an RV value of 1 and an RV value of 2 may reference different coded versions of the TB.
  • Each antenna panel of the UE 115 may be associated with one or more of the codeword-mapping schemes discussed below.
  • each codeword may carry a single TB.
  • the UE 115 may apply a single RV (e.g., first RV) to the codeword carrying the single TB and may map the codeword to both of the first subset of the plurality of RBs and the second subset of the plurality of RBs. Additionally, the UE 115 may transmit a first portion of the codeword in the first subset of the plurality of RBs and transmit a second portion of the codeword in the second subset of the plurality of RBs. In other words, a first portion of the codeword may be carried in the first subset, and a second portion of the codeword may be carried in the second subset.
  • a first codeword may carry a first TB
  • a second codeword may carry a second TB.
  • the first and second codewords may correspond to the same TB, and the UE 115 may apply different RVs to the first and second codewords.
  • the UE 115 may apply a first RV to the first codeword carrying the first TB and may map the first codeword to the first subset of the plurality of RBs.
  • the UE 115 may apply a second RV to the second codeword carrying the second TB and may map the second codeword to the second subset of the plurality of RBs.
  • the UE 115 may transmit the first codeword in the first subset of the plurality of RBs and transmit the second codeword in the second subset of the plurality of RBs.
  • the first TB may be carried in the first subset
  • the second TB may be carried in the second subset.
  • FIG. 9 illustrates an FDRA communication scheme 900 in accordance with one or more aspects of the present disclosure.
  • the FDRA communication scheme 900 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications.
  • the x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
  • a BS 105 may transmit a DCI indicating an FDRA 902 to a UE 115, the FDRA 902 indicating a plurality of RBs 904.
  • the DCI may also indicate one or more UL transmission parameters for a PUSCH.
  • Transmission parameters for PUSCH may include UL TCI states (e.g., a first TCI state and a second TCI state) , SRIs (e.g., a first SRI and a second SRI) , and/or RVs (e.g., a first RV and a second RV) .
  • the UE 115 may receive the DCI and accordingly receive the FDRA 902 indicating the plurality of RBs 904 and the one or more UL transmission parameters for a PUSCH.
  • the resources allocated in the FDRA 902 may be noncontiguous resources.
  • the plurality of RBs 904 may include RB 904a, 904b, 904c, 904d, and 904e, and the RBs 904b and 904c may be noncontiguous resources.
  • the UE 115 may partition the plurality of RBs 904 in accordance with a group-based partitioning scheme specifying a group value of one. For example, the UE 115 may partition the plurality of RBs 904 such that the first subset of the plurality of RBs 904 includes a first group of one RB 910a, a third group of one RB 910c, and a fourth group of one RB 910e and the second subset of the plurality of RBs 904 includes a second group of one RB 910b and a third group of one RB 910d.
  • the UE 115 may determine that the first UL TCI state is associated with the first subset of RBs and that the second UL TCI state is associated with the second subset of RBs. The UE 115 may accordingly map the first UL TCI state to the first subset of the plurality of RBs and map the second UL TCI state to the second subset of the plurality of RBs.
  • the first and second UL TCI states are different and may be shown using a different pattern in FIG. 9.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first UL TCI state and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second UL TCI state.
  • the UE 115 may determine that the first SRI is associated with the first subset of RBs and that the second SRI is associated with the second subset of RBs. The UE 115 may accordingly map the first SRI to the first subset of the plurality of RBs and map the second SRI to the second subset of the plurality of RBs.
  • the first and second SRIs are different and may be shown using a different pattern in FIG. 9.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the precoders indicated by the first SRI and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the precoders indicated by the second SRI.
  • the UE 115 may determine that the first RV is associated with the first subset of RBs and that the second RV is associated with the second subset of RBs. The UE 115 may accordingly map the first RV to the first subset of the plurality of RBs and map the second RV to the second subset of the plurality of RBs.
  • the first and second RVs are different and may be shown using a different pattern in FIG. 9.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second RV.
  • FIG. 10 illustrates an FDRA communication scheme 1000 in accordance with one or more aspects of the present disclosure.
  • the FDRA communication scheme 1000 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications.
  • the x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
  • a BS 105 may transmit a DCI indicating an FDRA 1002 to a UE 115, the FDRA 1002 indicating a plurality of RBs 1004.
  • the DCI may also indicate one or more UL transmission parameters for a PUSCH.
  • Transmission parameters for PUSCH may include UL TCI states (e.g., a first TCI state and a second TCI state) , SRIs (e.g., a first SRI and a second SRI) , and/or RVs (e.g., a first RV and a second RV) .
  • the UE 115 may receive the DCI and accordingly receive the FDRA 1002 indicating the plurality of RBs 1004 and the one or more UL transmission parameters for a PUSCH.
  • the resources allocated in the FDRA 1002 may be contiguous resources.
  • the UE 115 may partition the plurality of RBs 1004 in accordance with a half-based partitioning scheme. For example, the UE 115 may partition the plurality of RBs 1004 such that the first subset of the plurality of RBs 1004 includes a first contiguous half of the plurality of RBs 1004 and the second subset of the plurality of RBs 1004 includes a second contiguous half of the plurality of RBs 1004.
  • the first contiguous half of the plurality of RBs 1004 includes RBs 1010a, 1010b, and 1010c
  • the second contiguous half of the plurality of RBs 1004 includes RBs 1010d, 1010e, and 1010f.
  • the UE 115 may determine that the first UL TCI state is associated with the first subset of RBs and that the second UL TCI state is associated with the second subset of RBs. The UE 115 may accordingly map the first UL TCI state to the first subset of the plurality of RBs and map the second UL TCI state to the second subset of the plurality of RBs.
  • the first and second UL TCI states are different and may be shown using a different pattern in FIG. 10.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the precoders indicated by the first UL TCI state and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the precoders indicated by the second UL TCI state.
  • the UE 115 may determine that the first SRI is associated with the first subset of RBs and that the second SRI is associated with the second subset of RBs. The UE 115 may accordingly map the first SRI to the first subset of the plurality of RBs and map the second SRI to the second subset of the plurality of RBs.
  • the first and second SRIs are different and may be shown using a different pattern in FIG. 10.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first SRI and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second SRI.
  • the UE 115 may determine that the first RV is associated with the first subset of RBs and that the second RV is associated with the second subset of RBs. The UE 115 may accordingly map the first RV to the first subset of the plurality of RBs and map the second RV to the second subset of the plurality of RBs.
  • the first and second RVs are different and may be shown using a different pattern in FIG. 10.
  • the UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second RV.
  • the UE 105 may transmit using FDM in accordance with aspects of, for example, the FDRA communication scheme 900 in FIG. 9 and/or the FDRA communication scheme 1000 in FIG. 10. Additionally or alternatively, the UE 105 may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs to a first TRP and may transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs to a second TRP.
  • the first antenna panel may be associated with, for example, a first TCI state, a first SRI, and/or a first RV
  • the second antenna panel may be associated with, for example, a second TCI state, a second SRI, and/or a second RV.
  • the UE 115 may use a combination of the techniques provided above for transmitting an UL communication signal in relation to, for example, aspects of FIGs. 1-12.
  • the UE 115 may transmit a first UL communication signal using one of a first antenna panel or a second antenna panel in the first subset of the plurality of RBs based on a first UL TCI state, a first SRI, and/or a first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on a second UL TCI state, a second SRI, and/or a second RV.
  • a DCI may indicate an FDRA indicating the plurality of RBs.
  • the DCI may further indicate the first and the second UL TCI state, the first and the second SRIs, and/or the first and the second RVs.
  • FIG. 11 illustrates a flow diagram of a communication method 1100 for communicating communication signals using multiple panels in accordance with one or more aspects of the present disclosure.
  • Blocks of the method 1100 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device.
  • the wireless communication device is a UE (e.g., UE 115 and/or UE 700) that may utilize one or more components, such as the processor 702, the memory 704, the FDRA module 708, the communication module 709, the transceiver 710, and/or the antennas 716 to execute the blocks of the method 1100.
  • the method 1100 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG.
  • the method 1100 includes a number of enumerated blocks, but aspects of the method 1100 may include additional blocks before, after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 1100 includes receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) .
  • FDRA frequency-domain resource allocation
  • the UE 115 receives the FDRA indicating the plurality of RBs.
  • the UE 115 may receive DCI indicating the FDRA from a BS 105.
  • the plurality of RBs may be a plurality of PRBs or a plurality of RBGs.
  • the UE 115 may receive an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from BS 105. In some instances, the UE 115 may determine that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration and determine that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration. In some instances, RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs. In an example, the RRC configuration indicates a number of contiguous RBs, and the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs.
  • the method 1100 includes partitioning the plurality of RBs into at least a first subset and a second subset.
  • the UE 115 may partition the plurality of RBs into at least the first subset and the second subset.
  • the UE 115 may partition the plurality of RBs based on, for example, the group-based FDRA communication scheme 300 in FIG. 3 and/or the half-based FDRA communication scheme 400 in FIG. 4.
  • the method 1100 includes transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs.
  • the UE 115 transmits the first communication signal using the first antenna panel in the first subset of the plurality of RBs.
  • the UE 115 may include the first antenna panel.
  • the first communication signal may be an UL communication signal.
  • the method 1100 includes transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  • the UE 115 transmits the second communication signal using the second antenna panel in the second subset of the plurality of RBs.
  • the UE 115 may include the second antenna panel.
  • the second communication signal may be an UL communication signal.
  • the UE 115 may determine whether the plurality of RBs satisfies a threshold number of RBs.
  • the UE 115 may determine that the first subset includes a first contiguous half of the plurality of RBs and that the second subset includes a second contiguous half of the plurality of RBs in response to a determination that the RBs satisfies the threshold number of RBs.
  • the UE 115 may determine a number of contiguous RBs, where the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs in response to a determination that the RBs does not satisfy the threshold number of RBs.
  • the plurality of RBs may satisfy the threshold number of RBs if a number of RBs included in the plurality of RBs is less than (and/or or equal to) the threshold number of RBs.
  • the UE receives DCI indicating a first UL TCI state and a second UL TCI state for one or more UL communications signals.
  • the UE 115 may map the first UL TCI state to the first subset of the plurality of RBs and may map the second UL TCI state to the second subset of the plurality of RBs.
  • the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state and may transmit the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  • the UE 115 may map the first UL TCI state to the second subset of the plurality of RBs and may map the second UL TCI state to the first subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state and may transmit the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  • the UE 115 receives DCI indicating a first SRI and a second SRI for one or more UL communications signals.
  • the UE 115 may map the first SRI to the first subset of the plurality of RBs and may map the second SRI to the second subset of the plurality of RBs.
  • the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first SRI and may transmit the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  • the UE 115 may map the first SRI to the second subset of the plurality of RBs and may map the second SRI to the first subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second SRI and may transmit the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  • the UE 115 receives DCI indicating a first RV and a second RV for one or more UL communications signals.
  • the UE 115 may map the first RV to the first subset of the plurality of RBs and may map the second RV to the second subset of the plurality of RBs.
  • the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first RV and may transmit the second communication signal in the second subset of the plurality of RBs based on the second RV.
  • the UE 115 may map the first RV to the second subset of the plurality of RBs and may map the second RV to the first subset of the plurality of RBs.
  • the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second RV and may transmit the second communication signal in the second subset of the plurality of RBs based on the first RV.
  • the second RV is indicated by an offset of the first RV.
  • the UE 115 may apply the first RV to a codeword carrying a single TB, and the UE 115 may map the codeword to the first and second subsets.
  • the UE 115 may transmit the first communication signal by transmitting a first portion of the codeword in the first subset of the plurality of RBs and may transmit the second communication signal by transmitting a second portion of the codeword in the second subset of the plurality of RBs.
  • the UE 115 may apply the first RV to a first codeword carrying a first TB and apply the second RV to a second codeword carrying a second TB.
  • the UE 115 may map the first codeword to the first subset of the plurality of RBs and transmit the first communication signal by transmitting the first codeword in the first subset of the plurality of RBs.
  • the UE 115 may map the second codeword to the second subset of the plurality of RBs and transmit the second communication signal by transmitting the second codeword in the second subset of the plurality of RBs.
  • FIG. 12 illustrates a flow diagram of a communication method 1200 for receiving communication signals from a UE based on multiple panels of the UE in accordance with one or more aspects of the present disclosure.
  • Blocks of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device.
  • the wireless communication device is a BS (e.g., BSs 105 and/or BS 600) that may utilize one or more components, such as the processor 602, the memory 604, the FDRA module 608, the communication module 609, the transceiver 610, and/or the antennas 616 to execute the blocks of the method 1200.
  • the method 1200 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG. 3, the half-based FDRA communication scheme 400 in FIG. 4, the method 500 in FIG. 5, the example DCI configuration 800 in FIG. 8, the FDRA communication scheme 900 in FIG. 9, and/or the FDRA communication scheme 1000 in FIG. 10.
  • the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 1200 includes transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) .
  • FDRA frequency-domain resource allocation
  • the BS 105 transmits the FDRA indicating the plurality of RBs to the UE 115.
  • the BS 105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE.
  • the BS 105 may transmit a DCI to the UE, the DCI indicating the FDRA.
  • the method 1200 includes receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE.
  • the BS 105 receives the first communication signal in the first subset of the plurality of RBs, the first communication signal being based on the first antenna panel of the UE.
  • the method 1200 includes receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • the BS 105 receives a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  • the DCI indicates a first TCI state a second UL TCI state for one or more UL communications signals.
  • the BS 105 may receive the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state and may receive the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  • the BS 105 may receive the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state and may receive the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  • the DCI indicates a first SRI and a second SRI for one or more UL communications signals.
  • the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first SRI and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  • the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second SRI and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  • the DCI indicates a first RV and a second RV for one or more UL communications signals.
  • the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first RV and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second RV.
  • the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second RV and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first RV.
  • the BS 105 receives the first communication signal by receiving a first portion of a codeword in the first subset of the plurality of RBs and receives the second communication signal by receiving a second portion of the codeword in the second subset of the plurality of RBs. In some instances, the BS 105 receives the first communication signal by receiving a first codeword in the first subset of the plurality of RBs and receives the second communication signal by receiving a second codeword in the second subset of the plurality of RBs.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. Due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Abstract

Wireless communications systems and methods related to communications in a network are provided. A user equipment (UE) may receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) and partition the plurality of RBs into at least a first subset and a second subset. The UE may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs. The UE may transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs. The second antennal panel may be different from the first antenna panel.

Description

UPLINK CONFIGURATION FOR COMMUNICATION OF SIGNALS BASED ON MULTIPLE ANTENNA PANELS
Inventors: Fang Yuan, Wooseok Nam, Mostafa Khoshnevisan, and Tao Luo
TECHNICAL FIELD
The present disclosure is directed to wireless communication systems and methods.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology. For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmW) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
A UE may include an antenna panel that may be oriented to different spatial directions based on different antenna configurations. Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method of wireless communication includes receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; partitioning the plurality of RBs into at least a first subset and a second subset; transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
In an additional aspect of the disclosure, an apparatus includes: a transceiver configured to: receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; transmit a first communication signal using a first antenna panel in a first subset of the plurality of RBs; and transmit a second communication signal using a second antenna panel in a second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel; and a processor configured to: partition the plurality of RBs into at least the first subset and the second subset.
In an additional aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including: code for causing a user equipment (UE) to receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; code for causing the UE to partition the plurality of RBs into at least a first subset and a second subset; code for causing the UE to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and code for causing the UE to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
In an additional aspect of the disclosure, an apparatus includes means for receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ; means for partitioning the plurality of RBs into at least a first subset and a second subset; means for transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and means for transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
In an aspect of the disclosure, a method of wireless communication includes transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
In an additional aspect of the disclosure, an apparatus includes: a transceiver configured to: transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; receive a first communication signal in the first subset of the plurality of RBs, wherein the first communication signal is based on a first antenna panel of the UE; and receive a second communication signal in the second subset of the plurality of RBs, wherein the second communication signal is based on a second antenna panel of the UE, and the second antennal panel is different from the first antenna panel.
In an additional aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including: code for causing a base station (BS) to transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; code for causing the BS to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and code for causing the BS to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
In an additional aspect of the disclosure, an apparatus includes means for transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ; means for receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and means for receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
Other aspects, features, and embodiments of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present disclosure in conjunction with the accompanying figures. While features of the present disclosure may be discussed relative to certain embodiments and figures below, all embodiments of the present disclosure can include one or more of the advantageous  features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the disclosure discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network in accordance with one or more aspects of the present disclosure.
FIG. 2 is a timing diagram illustrating a transmission frame structure in accordance with some aspects of the present disclosure.
FIG. 3 illustrates a group-based frequency-domain resource allocation (FDRA) communication scheme in accordance with one or more aspects of the present disclosure.
FIG. 4 illustrates a half-based FDRA communication scheme in accordance with one or more aspects of the present disclosure.
FIG. 5 illustrates a flow diagram of a method for partitioning an FDRA in accordance with one or more aspects of the present disclosure.
FIG. 6 illustrates a block diagram of an example base station (BS) in accordance with one or more aspects of the present disclosure.
FIG. 7 illustrates a block diagram of an example user equipment (UE) in accordance with one or more aspects of the present disclosure.
FIG. 8 illustrates an example downlink control information (DCI) configuration in accordance with one or more aspects of the present disclosure.
FIG. 9 illustrates an FDRA communication scheme in accordance with one or more aspects of the present disclosure.
FIG. 10 illustrates an FDRA communication scheme in accordance with one or more aspects of the present disclosure.
FIG. 11 illustrates a flow diagram of a communication method for communicating communication signals using multiple panels in accordance with one or more aspects of the present disclosure.
FIG. 12 illustrates a flow diagram of a communication method for receiving communication signals from a UE based on multiple panels of the UE in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various instances, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an Ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 milliseconds (ms) ) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmW) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing (SCS) , may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, SCS may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, SCS may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the SCS may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmW components at a TDD of 28 GHz, the SCS may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated  subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects or examples set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may include at least one element of a claim.
In some aspects, a BS may transmit a DCI indicating a frequency-domain resource allocation (FDRA) that indicates a plurality of resource blocks (RBs) . The UE may receive the FDRA indicating the plurality of RBs and may partition the plurality of RBs into at least a first subset of the plurality of RBs and a second subset of the plurality of RBs. Accordingly, the UE may partition the FDRA into two subsets of RBs. The UE may include multiple antenna panels and may apply beamforming techniques to communicate with one or more wireless communication devices. Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension.
The present disclosure provides techniques for communicating UL communication signals based on multiple antenna panels. For example, the UE may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs and transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, where the second antennal panel is different from the first antenna panel.
Aspects of the present disclosure can provide several benefits. For example, if the UE includes a first antenna panel and a second antenna panel and the first antenna panel is blocked, the UE may transmit a communication signal using the second antenna panel. Accordingly, multiple panel transmissions may improve reliability of transmission and solve the aforementioned blockage issue. Additionally or alternatively, frequency division multiplexed (FDM) antenna panels may  reduce inter-panel interference because different antenna panels may use different orthogonal frequency resources. Additionally or alternatively, the DCI indicating the FDRA may save DCI overhead because the DCI indicates a single FDRA rather than two FDRAs. The UE is able to partition the single FDRA into a first FDRA partition and a second FDRA partition. The UE may transmit a first communication signal using the first antenna panel in the first FDRA partition and transmit a second communication signal using the second antenna panel in the second FDRA partition. Mechanisms for communicating uplink (UL) communication signals based on multiple antenna panels are described in greater detail herein.
FIG. 1 illustrates a wireless communication network 100 in accordance with one or more aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
A BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or UL, desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through  backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-step-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as vehicle-to-vehicle (V2V) communications among the UEs 115i-115k, vehicle-to-everything (V2X) communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the SCS between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other instances, the SCS and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and UL transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes an UL subframe in an UL frequency band and a DL subframe in a DL frequency band. A subframe may also be referred to as a slot. In a TDD mode, UL and DL transmissions occur at  different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate an UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. An UL-centric subframe may include a longer duration for UL communication than for DL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining minimum system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a PDSCH.
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB, which may be transmitted in the physical broadcast channel (PBCH) . The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI, OSI, and/or one or more system information blocks (SIBs) . The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for PDCCH monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS. In some aspects, SIB1 may contain cell access parameters and scheduling information for other SIBs.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit an UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to an UL scheduling grant. In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
In some examples, BS 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, MIMO communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a BS 105 or a UE 115) and a receiving device (e.g., a BS 105 or a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to  the same receiving device, and multiple-user MIMO (MUMIMO) where multiple spatial layers are transmitted to multiple devices.
In some aspects, each of a BS 105 and/or a UE 115 may have one or more antenna panels (may also referred to as a panel or an antenna array) and may apply beamforming techniques to communicate with each other. Each antenna panel may include a plurality of antenna ports or elements in a vertical dimension and/or a plurality of antenna ports or elements in a horizontal dimension. The UE 115 may form beams in an array of angular directions by weighting signal phases and amplitudes at the antenna elements. The UE 115 may set the antenna panel of the UE 115 to different orientations and at each orientation, the UE 115 may sweep different beams (also referred to as a beam sweep operation) and may determine a gain (e.g., a signal strength) , such as a reference signal receive power (RSRP) and/or signal-to-interference-and-noise ratio (SINR) value, for that orientation. An antenna panel may have a set of different beams (e.g., beams oriented in different directions) which may be used for the previously described beam sweep operation.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a BS 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) . In general , the transmitting device and/or the receiving the device may perform analog beam forming and/or digital beamforming to shape and/or steer an antenna beam.
A network may operate over a licensed frequency band, a shared frequency band, and/or an unlicensed frequency band, for example, at about 3.5 gigahertz (GHz) , sub-6 GHz or higher frequencies in the mmW band. The network 100 may partition a frequency band into multiple channels, each occupying about 20 megahertz (MHz) .
FIG. 2 is a timing diagram illustrating a transmission frame structure 200 in accordance with some aspects of the present disclosure. The transmission frame structure 200 may be employed by  BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the transmission frame structure 200. In FIG. 2, the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units. The transmission frame structure 200 includes a radio frame 201. The duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds. The radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time. The number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel bandwidth, the subcarrier spacing (SCS) , and/or the CP mode. One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission. The REs are grouped into physical resource blocks (PRBs) . Each PRB may include twelve subcarriers, and a BW part may include a group of continuous PRBs.
A resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time. A resource block group (RBG) may include one or more RBs and may also be referred to as a subband. In some examples, the BS may schedule UE at a frequency-granularity of an RB 210 (e.g., including about 12 subcarriers 204) .
In an example, a BS (e.g., BS 105 in FIG. 1) may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208. Each slot 202 may be time-partitioned into K number of mini-slots 208. Each mini-slot 208 may include one or more symbols 206. The mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206. In some aspects, a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206.
In some aspects, a BS 105 may transmit a DCI indicating a frequency-domain resource allocation (FDRA) to the UE 115, the FDRA indicating a plurality of RBs. In an example, the DCI may indicate an UL scheduling grant that indicates the FDRA. The UE 115 may receive the DCI and accordingly receive the FDRA indicating the plurality of RBs. The UE 115 may partition the plurality of RBs into a first subset of RBs and a second subset of RBs. As discussed above, the UE 115 may include multiple antenna panels and may communicate wireless communication signals via the multiple antenna panels. For example, the first subset of RBs may be associated with a first antenna panel (e.g., antenna panel 0) and the second subset of RBs may be associated with a second  antenna panel (e.g., antenna panel 1) . Although the UE 115 may be described as partitioning the plurality of RBs into two subsets, it should be understood that in other examples the UE 115 may partition the plurality of RBs into more than two subsets (e.g., three subsets of RBs, four subsets of RBs, five subsets of RBs, or more) .
Each of the first subset of RBs and the second subset of RBs may be associated with a particular antenna panel of the multiple antenna panels. The UE 115 may use the first and second antenna panels for transmission of UL communication signals based on the partitioning of the plurality of RBs. For example, the UE 115 may transmit a first communication using the first antenna panel in the first subset of the plurality of RBs and may transmit a second communication using the second antenna panel in the second subset of the plurality of RBs. The first and second communication signals may be UL communication signals.
The UE 115 may partition the plurality of RBs in various ways. In some aspects, the UE 115 may partition the plurality of RBs in accordance with a group-based partitioning scheme specifying a group value. In some aspects, the UE 115 may partition the plurality of RBs in accordance with a half-based partitioning scheme. Each of these partitioning schemes will be described in further detail below in relation to, for example, aspects of FIGs. 3 and 4.
FIG. 3 illustrates a group-based FDRA communication scheme 300 in accordance with one or more aspects of the present disclosure. The FDRA communication scheme 300 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications. The x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
Referring to FIG. 3, a BS 105 may transmit a DCI indicating an FDRA 302 to a UE 115, the FDRA 302 indicating a plurality of RBs 304. Although the example illustrates the FDRA 302 indicating ten RBs 304, it should be understood that the FDRA 302 may indicate any positive number of RBs.
The UE 115 may receive the DCI and accordingly receive the FDRA 302 indicating the plurality of RBs 304. The UE 115 may partition the plurality of RBs 304 into a first subset of RBs and a second subset of RBs, the first subset of RBs being associated with antenna panel 0 and the second subset of RBs being associated with antenna panel 1. The antenna panel 0 is different from the antenna panel 1, and each antenna panel is shown using a different pattern in FIG. 3.
Additionally, the BS 105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE 115. The UE 115 may receive the RRC configuration from the BS 105 and determine the partitioning of the plurality of RBs 304 based on the RRC configuration. In some aspects, the RRC configuration may indicate a  number of RBs (e.g., contiguous RBs) , and the UE 115 may partition the plurality of RBs 304 such that the first and second subsets of the plurality of RBs may be interleaved in the FDRA 302 based on the number of RBs. The number of RBs indicated in the RRC configuration may also be referred to as a group value.
In some aspects, the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme specifying a group value. The group value may be configurable and/or may be in units of RBs (e.g., PRB, RBG, etc. ) . The group value may be, for example, any power of two (e.g., one, two, four, eight, etc. ) . In general, the group value may be any suitable value (e.g., one, two, three, four, five, etc. ) . In the group-based partitioning scheme, the first subset of the plurality of RBs 304 and the second subset of the plurality of RBs 304 may be interleaved in the FDRA 302 based on the group value. For example, the UE 115 may partition the plurality of RBs 304 such that the first subset corresponds to every even “group value” of units in the FDRA 302 and the second subset corresponds to every odd “group value” of units in the FDRA 302. If the group value does not divide evenly into the total number of RBs included in the plurality of RBs 304, the UE 115 may partition the FDRA such that a remainder of the RBs is included in the applicable subset.
In some instances, the group value is two, and the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme 310 with the group value of two. For example, the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of two RBs 312, a third group of two RBs 316, and a fifth group of two RBs 320, and the second subset of the plurality of RBs 304 includes a second group of two RBs 314 and a fourth group of two RBs 318. The first group of two RBs 312, third group of two RBs 316, and the fifth group of two RBs 320 are interleaved between the second group of two RBs 314 and the fourth group of two RBs 318. The UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of two RBs 312, the third group of two RBs 316, and/or the fifth group of two RBs 320) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of two RBs 314 and/or the fourth group of two RBs 318) .
In some instances, the group value is four, and the UE 115 may partition the plurality of RBs 304 in accordance with a group-based partitioning scheme 330 with the group value of four. For example, the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of four RBs 332 and a third group of the two remaining RBs 336, and the second subset of the plurality of RBs 304 includes a second group of four RBs 334. The first group of four RBs and the third group of two RBs 336 are interleaved between the  second group of four RBs 334. The UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of four RBs 332 and/or the third group of two RBs 336) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of four RBs 334) .
The UE 115 may perform similar actions to those discussed above in relation to group value of eight, sixteen, etc.
FIG. 4 illustrates a half-based FDRA communication scheme 400 in accordance with one or more aspects of the present disclosure. The FDRA communication scheme 400 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications. The x-axis represents time in some constant units, and the y-axis represents frequency in some constant units. For brevity and simplicity, the FDRA 302, the plurality of RBs 304, the antenna panel 0, and the antenna panel 1 in FIG. 4 are discussed in relation to FIG. 3.
Referring to FIG. 4, the UE 115 may receive the FDRA 302 indicating the plurality of RBs 304. The UE 115 may partition the plurality of RBs 304 into a first subset of RBs and a second subset of RBs, the first subset of RBs being associated with antenna panel 0 and the second subset of RBs being associated with antenna panel 1. The antenna panel 0 is different from the antenna panel 1, and each antenna panel is shown using a different pattern.
In the example illustrated in FIG. 4, the UE 115 may partition the plurality of RBs 304 in accordance with a half-based partitioning scheme. In the half-based partitioning scheme, the UE 115 may partition the plurality of RBs 304 such that the first subset of RBs includes a first contiguous half of the plurality of RBs 304 and the second subset of RBs includes a second contiguous half of the plurality of RBs 304. The first half of the plurality of RBs 304 may include the first group of five RBs 412, and the second half of the plurality of RBs 304 may include the second group of five RBs 414. Accordingly, the UE 115 may partition the plurality of RBs 304 such that the first subset of the plurality of RBs 304 includes a first group of five RBs 412 and the second subset of the plurality of RBs 304 includes a second group of five RBs 414. If a total number of RBs included in the plurality of RBs 304 is an odd number, the UE 115 may partition the FDRA such that a first number of RBs 304 is included in the first subset and a second number of RBs 304 is included in the second subset, where the first number of RBs 304 = ceiling operation (total number of RBs/2) and the second number of RBs 304 = floor operation (total number of RBs/2) .
In some aspects, the BS 105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE 115. The UE 115 may  receive the RRC configuration from the BS 105 and determine the partitioning of the plurality of RBs 304 based on the RRC configuration. In some aspects, the RRC configuration may indicate that the first subset of RBs includes a first contiguous half of the plurality of RBs 304 based on the RRC configuration and that the second subset of RBs includes a second contiguous half of the plurality of RBs 304 based on the RRC configuration.
The UE 115 may transmit a first communication signal using antenna panel 0 in the first set of the plurality of RBs 304 (e.g., the first group of five RBs 412) and may transmit a second communication signal using antenna panel 1 in the second set of the plurality of RBs 304 (e.g., the second group of five RBs 414) .
In some aspects, the UE 105 may transmit using FDM in accordance with aspects of, for example, the group-based FDRA communication scheme 300 in FIG. 3 and/or the half-based FDRA communication scheme 400 in FIG. 4. Additionally or alternatively, the UE 105 may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs to a first transmission and reception point (TRP) and may transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs to a second TRP.
In some aspects, the BS 105 may transmit an RRC configuration indicating to the UE how to partition the FDRA into the first and second subsets of the plurality of RBs. In some instances, the UE 115 may switch between FDRA partitioning schemes. For example, the partitioning scheme may be based on predefined partitions specifying that a first FDRA communication scheme (e.g., half-based FDRA communication scheme 400 in FIG. 4) should be applied to the FDRA if a total number of RBs indicated by the FDRA 302 satisfies a threshold and that a second FDRA communication scheme (e.g., group-based FDRA communication scheme 300 in FIG. 3) should be applied to the FDRA if a total number of RBs indicated by the FDRA 302 does not satisfy the threshold, as will be discussed in more detail below in FIG. 5.
FIG. 5 illustrates a flow diagram of a method 500 for partitioning an FDRA in accordance with one or more aspects of the present disclosure. Blocks of the method 500 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device. In some aspects, the wireless communication device is a UE (e.g., UE 115 and/or UE 700) that may utilize one or more components, such as the processor 702, the memory 704, the FDRA module 708, the communication module 709, the transceiver 710, and/or the antennas 716 to execute the blocks of the method 500. The method 500 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG. 3 and/or the half-based FDRA communication scheme 400 in FIG. 4. As illustrated, the method 500 includes a number of enumerated blocks, but aspects of the method 500 may include additional blocks before,  after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 502, the method 500 includes receiving an FDRA indicating a plurality of frequency-domain units. In an example, the UE 115 (e.g., FDRA module 708) may receive the FDRA indicating the plurality of frequency-domain units. A frequency-domain unit may be, for example, a RB, a PRB, or a RBG.
At block 504, the method 500 includes determining whether a total number of frequency-domain units indicated by the FDRA satisfies a threshold. In an example, the UE 115 (e.g., FDRA module 708) may determine whether the total number of frequency-domain units indicated by the FDRA satisfies the threshold. In some instances, the total number of frequency-domain units satisfies the threshold if the total number of frequency-domain units is less than the threshold. In some instances, the total number of frequency-domain units satisfies the threshold if the total number of frequency-domain units is less than or equal to the threshold. If the total number of frequency-domain units satisfies the threshold, the process flow may proceed from block 504 to block 506. In contrast, if the total number of frequency-domain units indicated by the FDRA does not satisfy the threshold, the process flow may proceed from block 504 to block 508.
At block 506, the method 500 includes partitioning the plurality of frequency-domain units in accordance with a half-based FDRA communication scheme. In an example, the UE 115 may partition the plurality of frequency-domain units in accordance with the half-based FDRA communication scheme 400 as discussed in relation to, for example, aspects of FIG. 4.
At block 508, the method 500 includes partitioning the plurality of frequency-domain units in accordance with a group-based FDRA communication scheme. In an example, the UE 115 may partition the plurality of frequency-domain units in accordance with the group-based FDRA communication scheme 300 as discussed in relation to, for example, aspects of FIG. 3.
It should be understood that in other examples, if the total number of frequency-domain units satisfies the threshold, the process flow may proceed from block 504 to block 508, and if the total number of frequency-domain units indicated by the FDRA does not satisfy the threshold, the process flow may proceed from block 504 to block 506.
FIG. 6 illustrates a block diagram of an example BS 600 in accordance with one or more aspects of the present disclosure. The BS 600 may be a BS 105 as discussed above in relation to FIG. 1. As shown, the BS 600 may include a processor 602, a memory 604, an FDRA module 608, a communication module 609, a transceiver 610 including a modem subsystem 612 and radio frequency (RF) unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 602 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 604 includes a non-transitory computer-readable medium. The memory 604 may store, or have recorded thereon, instructions 606. The instructions 606 may include instructions that, when executed by the processor 602, cause the processor 602 to perform the operations described herein with reference to the BSs (e.g., BS 105) in connection with aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 8, 9, 10, and/or 12. Instructions 606 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 602) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The FDRA module 608 and/or the communication module 609 may be implemented via hardware, software, or combinations thereof. For example, the FDRA module 608 and/or the communication module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602. In some instances, the FDRA module 608 and/or the communication module 609 can be integrated within the modem subsystem 612. For example, the FDRA module 608 and/or the communication module 609 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 612.
The FDRA module 608 and/or the communication module 609 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 8, 9, 10, and/or 12. In some aspects, the FDRA module 608 may be configured to transmit an FDRA indicating a plurality of RBs to a user equipment (UE) . In some aspects, the communication module 609 may be configured to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE. The communication module 609 may be configured to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
As shown, the transceiver 610 may include the modem subsystem 612 and the RF unit 614. The transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UE 115, another BS, and/or another core network element. The modem subsystem 612 may be configured to modulate and/or encode the data from the memory 604, the FDRA module 608 and/or the communication module 609 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc. The RF unit 614 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., a DCI indicating an FDRA, a DCI indicating at least two different TCI states, a DCI indicating at least two different SRIs, a DCI indicating at least two different RVs, an FDRA indicating a plurality of RBs, an RRC message indicating a configuration for a first subset of the plurality of RBs and a second subset of the plurality of RBs, etc. ) from the modem subsystem 612 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and/or the RF unit 614 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to one or more aspects of the present disclosure. The antennas 616 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 610. The transceiver 610 may  provide the demodulated and decoded data (e.g., one or more communication signals in a first subset of the plurality of RBs associated with a first antenna panel of the UE, one or more communication signals in a second subset of the plurality of RBs associated with a second antenna panel of the UE, etc. ) to the FDRA module 608 and/or the communication module 609 for processing. The antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 614 may configure the antennas 616.
In some aspects, the transceiver 610 may coordinate with the FDRA module 609 to transmit an FDRA indicating a plurality of RBs. The transceiver 610 may coordinate with the communication module 609 to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE. The transceiver 610 may coordinate with the communication module 609 to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
In an aspect, the BS 600 can include multiple transceivers 610 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 600 can include a single transceiver 610 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 610 can include various components, where different combinations of components can implement different RATs.
FIG. 7 illustrates a block diagram of an example UE 700 in accordance with one or more aspects of the present disclosure. The UE 700 may be a UE 115 as discussed above in FIG. 1. As shown, the UE 700 may include a processor 702, a memory 704, an FDRA module 708, a communication module 709, a transceiver 710 including a modem subsystem 712 and an RF unit 714, and one or more antennas 716. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 702 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 702 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 704 may include a cache memory (e.g., a cache memory of the processor 702) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 704 includes  a non-transitory computer-readable medium. The memory 704 may store, or have recorded thereon, instructions 706. The instructions 706 may include instructions that, when executed by the processor 702, cause the processor 702 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 5, 8, 9, 10, and/or 11. Instructions 706 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 702) to control or command the wireless communication device to do so. The instructions 706 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 6.
The FDRA module 708 and/or the communication module 709 may be implemented via hardware, software, or combinations thereof. For example, the FDRA module 708 and/or the communication module 709 may be implemented as a processor, circuit, and/or instructions 706 stored in the memory 704 and executed by the processor 702. In some instances, the FDRA module 708 and/or the communication module 709 can be integrated within the modem subsystem 712. For example, the FDRA module 708 and/or the communication module 709 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 712.
The FDRA module 708 and/or the communication module 709 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1, 2, 3, 4, 5, 8, 9, 10, and/or 11. In some aspects, the FDRA module 708 may be configured to receive an FDRA indicating a plurality of RBs. The FDRA module 708 may be configured to partition the plurality of RBs into at least a first subset and a second subset.
In some aspects, the communication module 709 may be configured to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs. The communication module 709 may be configured to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel
As shown, the transceiver 710 may include the modem subsystem 712 and the RF unit 714. The transceiver 710 can be configured to communicate bi-directionally with other devices, such as the BSs 105 and/or another core network element. The modem subsystem 712 may be configured to modulate and/or encode the data from the memory 704, the FDRA module 708 and/or the communication module 709 according to an MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a polar coding scheme, a digital beamforming scheme, etc.  The RF unit 714 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., one or more communication signals in a first subset of the plurality of RBs associated with a first antenna panel of the UE, one or more communication signals in a second subset of the plurality of RBs associated with a second antenna panel of the UE, etc. ) from the modem subsystem 712 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 714 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 710, the modem subsystem 712 and/or the RF unit 714 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 714 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 716 for transmission to one or more other devices. The antennas 716 may further receive data messages transmitted from other devices. The antennas 716 may provide the received data messages for processing and/or demodulation at the transceiver 710. The transceiver 710 may provide the demodulated and decoded data (e.g., a DCI indicating an FDRA, a DCI indicating at least two different TCI states, a DCI indicating at least two different SRIs, a DCI indicating at least two different RVs, an FDRA indicating a plurality of RBs, an RRC message indicating a configuration for a first subset of the plurality of RBs and a second subset of the plurality of RBs, etc. ) to the FDRA module 708 and/or the communication module 709 for processing. The antennas 716 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 714 may configure the antennas 716.
In some aspects, the transceiver 710 may coordinate with the FDRA module 708 to receive the FDRA indicating the plurality of RBs. The transceiver 710 may coordinate with the processor 702 to partition the plurality of RBs into at least a first subset and a second subset of the plurality or RBs. In some aspects, the transceiver 710 may coordinate with the communication module 709 to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs. In some aspects, the transceiver 710 may coordinate with the communication module 709 to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
In some aspects, the UE 700 can include multiple transceivers 710 implementing different RATs (e.g., NR and LTE) . In an aspect, the UE 700 can include a single transceiver 710 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 710 can include various components, where different combinations of components can implement different RATs.
FIG. 8 illustrates an example DCI configuration 800 in accordance with one or more aspects of the present disclosure. The DCI configuration 800 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications. For example, the BS 105 may transmit to a UE 115, a DCI 802 indicating one or more UL transmission parameters for a PUSCH. For instance, the DCI 802 may be an UL scheduling grant.
The DCI configuration 800 may include an UL TCI state field 810, an SRI field 812, and an RV field 814. The UL TCI state field 810 may indicate a first UL TCI state and a second UL TCI state, each UL TCI state corresponding to a certain beam direction associated with a particular antenna panel. In non-codebook based MIMO transmission, the precoder indication may be an SRI field 812. The SRI field 812 may indicate a first SRI and a second SRI. Each SRI may be associated with one or more SRS resources where the UE 115 transmitted each SRS using a certain precoder associated with a particular antenna panel. The UE 115 may transmit the scheduled UL communications signals using the particular antenna panel with precoders associated with the indicated SRI. Although the SRI field 812 is provided as an example of a precoder indication in FIG. 8, in some aspects, the precoder indication in codebook-based MIMO transmission may be a transmit precoding matrix index (TPMI) field. The precoder indication may indicate a first TPMI and a second TPMI, and UE 115 may transmit the scheduled UL transmission using a particular antenna panel with precoders associated with the indicated TPMI.
The RV field 814 may indicate a first RV and a second RV, each RV indicating a version of redundancy for channel coding associated with a particular antenna panel. In some aspects, the BS 105 may configure one or more of the UL TCI state field 810, the SRI field 812, and/or the RV field 814 via RRC signaling to be mapped to a pair of values with UL TCI states, SRI states, and/or RV states, respectively. It should be understood that a DCI may include one or more of the UL TCI state field 810, the SRI field 812, and/or the RV field 814. In some instances, the BS 105 may store DCI including two bits in the UL TCI state field 810 for one or more UL communications signals, where the two bits may indicate one of four states. For example, “00” may indicate a first UL TCI state and a second UL TCI state, “01” may indicate a third UL TCI state and a fourth UL TCI state, “10” may indicate a fifth UL TCI state and a sixth UL TCI state, and/or “11” may indicate a seventh UL TCI state and an eighth UL TCI state. The UL TCI states indicated in the UL TCI state field 810 may be associated with the antenna panel 0 and/or the antenna panel 1. If the UL TCI state field 810 includes “00, ” the UE may determine that the first subset of the plurality of RBs is associated with the first UL TCI state and may determine that the second subset of the plurality of RBs is associated with second UL TCI state. Each UL TCI state may refer to a reference signal,  such as a channel state information reference signal (CSI-RS) , a synchronization signal block (SSB) , a sounding reference signal (SRS) , etc.
In an example, the UE 115 may map the first UL TCI state to the first subset of the plurality of RBs and may map the second UL TCI state to the second subset of the plurality of RBs, as indicated by the “00” in the UL TCI state field 810. For instance, the mapping may refer to associating a beam direction referenced by the first UL TCI state with the first subset of the plurality of RBs and configuring the first antenna panel to transmit in the beam direction. Similarly, the mapping may refer to associating a beam direction referenced by the second UL TCI state with the second subset of the plurality of RBs and configuring the second antenna panel to transmit in the beam direction.
The UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first UL TCI state and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second UL TCI state, the first antenna panel being different from the second antenna panel. In another example, the UE 115 may map the first UL TCI state to the second subset of the plurality of RBs and map the second UL TCI state to the first subset of the plurality of RBs, which may be indicated by the UL TCI state field 810. In this example, the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second UL TCI state and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first UL TCI state, the first antenna panel being different from the second antenna panel.
The BS 105 may configure the UE 115 with SRS resources for transmitting SRSs (e.g., a first SRS resource and a second SRS resource) . An SRI indicated in the DCI may indicate in the SRI if the UE 115 should transmit the PUSCH using the same configuration as the first SRS resource or the second SRS resource. In some instances, the BS 105 may store DCI including two bits in the SRI field 812 for one or more UL communications signals, where the two bits may indicate one of four states. For example, “00” may indicate a first SRI and a second SRI, “01” may indicate a third SRI and a fourth SRI, “10” may indicate a fifth SRI and a sixth SRI, and/or “11” may indicate a seventh SRI and an eighth SRI. The SRIs indicated in the SRI field 812 may be associated with the antenna panel 0 and/or the antenna panel 1. If the SRI field 812 includes “00, ” the UE may determine that the first subset of the plurality of RBs is associated with the first SRI and may determine that the second subset of the plurality of RBs is associated with second SRI.
In an example, the UE 115 may map the first SRI to the first subset of the plurality of RBs and may map the second SRI to the second subset of the plurality of RBs, as indicated by the “00”  in the SRI field 812. For instance, the mapping may refer to associating a precoder or a beam direction used for transmitting an SRS in a resource reference by the first SRI with the first subset of the plurality of RBs and transmitting an UL communication signal using the same precoder and transmitting using the first antenna panel. Similarly, the mapping may refer to associating a precoder or a beam direction used for transmitting an SRS in a resource reference by the second SRI with the second subset of the plurality of RBs and transmitting an UL communication signal using the same precoder and transmitting using the second antenna panel.
The UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first SRI and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second SRI, the first antenna panel being different from the second antenna panel. In another example, the UE 115 may map the first SRI to the second subset of the plurality of RBs and map the second SRI to the first subset of the plurality of RBs, which may be indicated by the SRI field 812. In this example, the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second SRI and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first SRI, the first antenna panel being different from the second antenna panel.
In some instances, the BS 105 may store DCI including two bits in the RV field 814 for one or more UL communications signals, where the two bits may indicate one of four states. For example, “00” may indicate a first RV and a second RV, “01” may indicate a third RV and a fourth RV, “10” may indicate a fifth RV and a sixth RV, and/or “11” may indicate a seventh RV and an eighth RV. The RVs indicated in the RV field 814 may be associated with the antenna panel 0 and/or the antenna panel 1. If the RV field 814 includes “00, ” the UE may determine that the first subset of the plurality of RBs is associated with the first RV and may determine that the second subset of the plurality of RBs is associated with second RV.
In an example, the UE 115 may map the first RV to the first subset of the plurality of RBs and may map the second RV to the second subset of the plurality of RBs, as indicated by “00” in the RV field 814. In this example, the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the first RV and transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the second RV, the first antenna panel being different from the second antenna panel. The first UL communication signal may include a first transport block (TB) generated based on the first RV, and the second UL communication signal may include a second TB generated based on the second RV.
In another example, the UE 115 may map the first RV to the second subset of the plurality of RBs and map the second RV to the first subset of the plurality of RBs. In this example, the UE 115 may transmit a first UL communication signal using a first antenna panel in the first subset of the plurality of RBs based on the second RV and may transmit a second UL communication signal using a second antenna panel in the second subset of the plurality of RBs based on the first RV, the first antenna panel being different from the second antenna panel. The first UL communication signal may include a first TB generated based on the second RV, and the second UL communication signal may include a second TB generated based on the first RV.
In some instances, the second RV is indicated by an offset of the first RV. For example, “00” may indicate a first RV and an offset of the first RV (e.g., first RV + offset = second RV) , “01” may indicate a third RV and an offset of the third RV (e.g., third RV + offset = fourth RV) , “10” may indicate a fifth RV and an offset of the fifth RV (e.g., fifth RV + offset = sixth RV) , and/or “11” may indicate a seventh RV and an offset of the seventh RV (e.g., seventh RV + offset = eighth RV) . In an example, one RV offset between the second RV and the first RV may be configured by RRC signaling. In an example, the DCI may indicate only the first RV, and the UE may derive the second RV based on the first RV and the offset. The UE may perform similar actions to those described above to map an RV to a particular subset of the plurality of RBs and to transmit the one or more UL communication signals.
Although a DCI is described as including two bits in the one or more UL transmission parameters for a PUSCH (e.g., the UL TCI state field 810, the SRI field 812, and/or the RV field 814) , it should be understood that this is not intended to be limiting. In other examples, the DCI may include more than two bits and/or other values (e.g., characters) to indicate a state.
In some aspects, the UE 115 may map one or more RVs to one or more codewords. A codeword is a TB with error coding (e.g., based on channel coding such as a forward error correction (FEC) ) , and the UE 115 may transmit the encoded TB to a BS 105. The UE 115 may transmit an UL communication based on one or more codeword-mapping schemes. An RV may refer to a coded version of the TB. For instance, an RV value of 1 and an RV value of 2 may reference different coded versions of the TB. Each antenna panel of the UE 115 may be associated with one or more of the codeword-mapping schemes discussed below.
In some instances, each codeword may carry a single TB. The UE 115 may apply a single RV (e.g., first RV) to the codeword carrying the single TB and may map the codeword to both of the first subset of the plurality of RBs and the second subset of the plurality of RBs. Additionally, the UE 115 may transmit a first portion of the codeword in the first subset of the plurality of RBs and transmit a second portion of the codeword in the second subset of the plurality of RBs. In other  words, a first portion of the codeword may be carried in the first subset, and a second portion of the codeword may be carried in the second subset.
In some instances, a first codeword may carry a first TB, and a second codeword may carry a second TB. The first and second codewords may correspond to the same TB, and the UE 115 may apply different RVs to the first and second codewords. The UE 115 may apply a first RV to the first codeword carrying the first TB and may map the first codeword to the first subset of the plurality of RBs. The UE 115 may apply a second RV to the second codeword carrying the second TB and may map the second codeword to the second subset of the plurality of RBs. Additionally, the UE 115 may transmit the first codeword in the first subset of the plurality of RBs and transmit the second codeword in the second subset of the plurality of RBs. In other words, the first TB may be carried in the first subset, and the second TB may be carried in the second subset.
FIG. 9 illustrates an FDRA communication scheme 900 in accordance with one or more aspects of the present disclosure. The FDRA communication scheme 900 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications. The x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
Referring to FIG. 9, a BS 105 may transmit a DCI indicating an FDRA 902 to a UE 115, the FDRA 902 indicating a plurality of RBs 904. The DCI may also indicate one or more UL transmission parameters for a PUSCH. Transmission parameters for PUSCH may include UL TCI states (e.g., a first TCI state and a second TCI state) , SRIs (e.g., a first SRI and a second SRI) , and/or RVs (e.g., a first RV and a second RV) . The UE 115 may receive the DCI and accordingly receive the FDRA 902 indicating the plurality of RBs 904 and the one or more UL transmission parameters for a PUSCH. In the example illustrated in FIG. 9, the resources allocated in the FDRA 902 may be noncontiguous resources. For example, the plurality of RBs 904 may include  RB  904a, 904b, 904c, 904d, and 904e, and the  RBs  904b and 904c may be noncontiguous resources.
The UE 115 may partition the plurality of RBs 904 in accordance with a group-based partitioning scheme specifying a group value of one. For example, the UE 115 may partition the plurality of RBs 904 such that the first subset of the plurality of RBs 904 includes a first group of one RB 910a, a third group of one RB 910c, and a fourth group of one RB 910e and the second subset of the plurality of RBs 904 includes a second group of one RB 910b and a third group of one RB 910d.
In some instances, if the DCI indicates a first UL TCI state and a second UL TCI state, the UE 115 may determine that the first UL TCI state is associated with the first subset of RBs and that the second UL TCI state is associated with the second subset of RBs. The UE 115 may accordingly map the first UL TCI state to the first subset of the plurality of RBs and map the second UL TCI  state to the second subset of the plurality of RBs. The first and second UL TCI states are different and may be shown using a different pattern in FIG. 9. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first UL TCI state and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second UL TCI state.
In some instances, if the DCI indicates a first SRI and a second SRI, the UE 115 may determine that the first SRI is associated with the first subset of RBs and that the second SRI is associated with the second subset of RBs. The UE 115 may accordingly map the first SRI to the first subset of the plurality of RBs and map the second SRI to the second subset of the plurality of RBs. The first and second SRIs are different and may be shown using a different pattern in FIG. 9. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the precoders indicated by the first SRI and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the precoders indicated by the second SRI.
In some instances, if the DCI indicates a first RV and a second RV, the UE 115 may determine that the first RV is associated with the first subset of RBs and that the second RV is associated with the second subset of RBs. The UE 115 may accordingly map the first RV to the first subset of the plurality of RBs and map the second RV to the second subset of the plurality of RBs. The first and second RVs are different and may be shown using a different pattern in FIG. 9. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second RV.
FIG. 10 illustrates an FDRA communication scheme 1000 in accordance with one or more aspects of the present disclosure. The FDRA communication scheme 1000 may be employed by the BS 105 and the UE 115 in a network such as the network 100 for communications. The x-axis represents time in some constant units, and the y-axis represents frequency in some constant units.
Referring to FIG. 10, a BS 105 may transmit a DCI indicating an FDRA 1002 to a UE 115, the FDRA 1002 indicating a plurality of RBs 1004. The DCI may also indicate one or more UL transmission parameters for a PUSCH. Transmission parameters for PUSCH may include UL TCI states (e.g., a first TCI state and a second TCI state) , SRIs (e.g., a first SRI and a second SRI) , and/or RVs (e.g., a first RV and a second RV) . The UE 115 may receive the DCI and accordingly  receive the FDRA 1002 indicating the plurality of RBs 1004 and the one or more UL transmission parameters for a PUSCH. In the example illustrated in FIG. 10, the resources allocated in the FDRA 1002 may be contiguous resources.
The UE 115 may partition the plurality of RBs 1004 in accordance with a half-based partitioning scheme. For example, the UE 115 may partition the plurality of RBs 1004 such that the first subset of the plurality of RBs 1004 includes a first contiguous half of the plurality of RBs 1004 and the second subset of the plurality of RBs 1004 includes a second contiguous half of the plurality of RBs 1004. The first contiguous half of the plurality of RBs 1004 includes  RBs  1010a, 1010b, and 1010c, and the second contiguous half of the plurality of RBs 1004 includes  RBs  1010d, 1010e, and 1010f.
In some instances, if the DCI indicates a first UL TCI state and a second UL TCI state, the UE 115 may determine that the first UL TCI state is associated with the first subset of RBs and that the second UL TCI state is associated with the second subset of RBs. The UE 115 may accordingly map the first UL TCI state to the first subset of the plurality of RBs and map the second UL TCI state to the second subset of the plurality of RBs. The first and second UL TCI states are different and may be shown using a different pattern in FIG. 10. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the precoders indicated by the first UL TCI state and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the precoders indicated by the second UL TCI state.
In some instances, if the DCI indicates a first SRI and a second SRI, the UE 115 may determine that the first SRI is associated with the first subset of RBs and that the second SRI is associated with the second subset of RBs. The UE 115 may accordingly map the first SRI to the first subset of the plurality of RBs and map the second SRI to the second subset of the plurality of RBs. The first and second SRIs are different and may be shown using a different pattern in FIG. 10. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first SRI and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second SRI.
In some instances, if the DCI indicates a first RV and a second RV, the UE 115 may determine that the first RV is associated with the first subset of RBs and that the second RV is associated with the second subset of RBs. The UE 115 may accordingly map the first RV to the first subset of the plurality of RBs and map the second RV to the second subset of the plurality of  RBs. The first and second RVs are different and may be shown using a different pattern in FIG. 10. The UE 115 may transmit a first UL communication signal using one of the first antenna panel or the second antenna panel in the first subset of the plurality of RBs based on the first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on the second RV.
In some aspects, the UE 105 may transmit using FDM in accordance with aspects of, for example, the FDRA communication scheme 900 in FIG. 9 and/or the FDRA communication scheme 1000 in FIG. 10. Additionally or alternatively, the UE 105 may transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs to a first TRP and may transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs to a second TRP. The first antenna panel may be associated with, for example, a first TCI state, a first SRI, and/or a first RV, and the second antenna panel may be associated with, for example, a second TCI state, a second SRI, and/or a second RV.
The UE 115 may use a combination of the techniques provided above for transmitting an UL communication signal in relation to, for example, aspects of FIGs. 1-12. For example, the UE 115 may transmit a first UL communication signal using one of a first antenna panel or a second antenna panel in the first subset of the plurality of RBs based on a first UL TCI state, a first SRI, and/or a first RV and may transmit a second UL communication signal using the other of the first antenna panel or the second antenna panel in the second subset of the plurality of RBs based on a second UL TCI state, a second SRI, and/or a second RV. A DCI may indicate an FDRA indicating the plurality of RBs. The DCI may further indicate the first and the second UL TCI state, the first and the second SRIs, and/or the first and the second RVs.
FIG. 11 illustrates a flow diagram of a communication method 1100 for communicating communication signals using multiple panels in accordance with one or more aspects of the present disclosure. Blocks of the method 1100 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device. In some aspects, the wireless communication device is a UE (e.g., UE 115 and/or UE 700) that may utilize one or more components, such as the processor 702, the memory 704, the FDRA module 708, the communication module 709, the transceiver 710, and/or the antennas 716 to execute the blocks of the method 1100. The method 1100 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG. 3, the half-based FDRA communication scheme 400 in FIG. 4, the method 500 in FIG. 5, the example DCI configuration 800 in FIG. 8, the FDRA communication scheme 900 in FIG. 9, and/or the FDRA communication scheme 1000 in FIG. 10. As illustrated, the method 1100 includes a number of enumerated blocks, but aspects of the method 1100 may  include additional blocks before, after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1110, the method 1100 includes receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) . In some examples, the UE 115 receives the FDRA indicating the plurality of RBs. The UE 115 may receive DCI indicating the FDRA from a BS 105. In some examples, the plurality of RBs may be a plurality of PRBs or a plurality of RBGs.
In some aspects, the UE 115 may receive an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from BS 105. In some instances, the UE 115 may determine that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration and determine that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration. In some instances, RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs. In an example, the RRC configuration indicates a number of contiguous RBs, and the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs.
At block 1120, the method 1100 includes partitioning the plurality of RBs into at least a first subset and a second subset. In an example, the UE 115 may partition the plurality of RBs into at least the first subset and the second subset. The UE 115 may partition the plurality of RBs based on, for example, the group-based FDRA communication scheme 300 in FIG. 3 and/or the half-based FDRA communication scheme 400 in FIG. 4.
At block 1130, the method 1100 includes transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs. In an example, the UE 115 transmits the first communication signal using the first antenna panel in the first subset of the plurality of RBs. The UE 115 may include the first antenna panel. The first communication signal may be an UL communication signal.
At block 1140, the method 1100 includes transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel. In an example, the UE 115 transmits the second communication signal using the second antenna panel in the second subset of the plurality of RBs. The UE 115 may include the second antenna panel. The second communication signal may be an UL communication signal.
In some aspects, the UE 115 may determine whether the plurality of RBs satisfies a threshold number of RBs. The UE 115 may determine that the first subset includes a first contiguous half of the plurality of RBs and that the second subset includes a second contiguous half  of the plurality of RBs in response to a determination that the RBs satisfies the threshold number of RBs. The UE 115 may determine a number of contiguous RBs, where the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs in response to a determination that the RBs does not satisfy the threshold number of RBs. In some instances, the plurality of RBs may satisfy the threshold number of RBs if a number of RBs included in the plurality of RBs is less than (and/or or equal to) the threshold number of RBs.
In some aspects, the UE receives DCI indicating a first UL TCI state and a second UL TCI state for one or more UL communications signals. In an example, the UE 115 may map the first UL TCI state to the first subset of the plurality of RBs and may map the second UL TCI state to the second subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state and may transmit the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state. In another example, the UE 115 may map the first UL TCI state to the second subset of the plurality of RBs and may map the second UL TCI state to the first subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state and may transmit the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
In some aspects, the UE 115 receives DCI indicating a first SRI and a second SRI for one or more UL communications signals. In an example, the UE 115 may map the first SRI to the first subset of the plurality of RBs and may map the second SRI to the second subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first SRI and may transmit the second communication signal in the second subset of the plurality of RBs based on the second SRI. In another example, the UE 115 may map the first SRI to the second subset of the plurality of RBs and may map the second SRI to the first subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second SRI and may transmit the second communication signal in the second subset of the plurality of RBs based on the first SRI.
In some aspects, the UE 115 receives DCI indicating a first RV and a second RV for one or more UL communications signals. In an example, the UE 115 may map the first RV to the first subset of the plurality of RBs and may map the second RV to the second subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the first RV and may transmit the second communication signal in the second subset of the plurality of RBs based on the second RV. In another example, the UE 115  may map the first RV to the second subset of the plurality of RBs and may map the second RV to the first subset of the plurality of RBs. In this example, the UE 115 may transmit the first communication signal in the first subset of the plurality of RBs based on the second RV and may transmit the second communication signal in the second subset of the plurality of RBs based on the first RV. In some instances, the second RV is indicated by an offset of the first RV.
In some aspects, the UE 115 may apply the first RV to a codeword carrying a single TB, and the UE 115 may map the codeword to the first and second subsets. The UE 115 may transmit the first communication signal by transmitting a first portion of the codeword in the first subset of the plurality of RBs and may transmit the second communication signal by transmitting a second portion of the codeword in the second subset of the plurality of RBs. In some aspects, the UE 115 may apply the first RV to a first codeword carrying a first TB and apply the second RV to a second codeword carrying a second TB. The UE 115 may map the first codeword to the first subset of the plurality of RBs and transmit the first communication signal by transmitting the first codeword in the first subset of the plurality of RBs. The UE 115 may map the second codeword to the second subset of the plurality of RBs and transmit the second communication signal by transmitting the second codeword in the second subset of the plurality of RBs.
FIG. 12 illustrates a flow diagram of a communication method 1200 for receiving communication signals from a UE based on multiple panels of the UE in accordance with one or more aspects of the present disclosure. Blocks of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device. In some aspects, the wireless communication device is a BS (e.g., BSs 105 and/or BS 600) that may utilize one or more components, such as the processor 602, the memory 604, the FDRA module 608, the communication module 609, the transceiver 610, and/or the antennas 616 to execute the blocks of the method 1200. The method 1200 may employ similar mechanisms as in the group-based FDRA communication scheme 300 in FIG. 3, the half-based FDRA communication scheme 400 in FIG. 4, the method 500 in FIG. 5, the example DCI configuration 800 in FIG. 8, the FDRA communication scheme 900 in FIG. 9, and/or the FDRA communication scheme 1000 in FIG. 10. As illustrated, the method 1200 includes a number of enumerated blocks, but aspects of the method 1200 may include additional blocks before, after, and/or in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1210, the method 1200 includes transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) . In an example, the BS 105 transmits the FDRA indicating the plurality of RBs to the UE 115. The BS  105 may transmit an RRC configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE. The BS 105 may transmit a DCI to the UE, the DCI indicating the FDRA.
At block 1220, the method 1200 includes receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE. In an example, the BS 105 receives the first communication signal in the first subset of the plurality of RBs, the first communication signal being based on the first antenna panel of the UE.
At block 1230, the method 1200 includes receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel. In an example, the BS 105 receives a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
In some aspects, the DCI indicates a first TCI state a second UL TCI state for one or more UL communications signals. In an example, the BS 105 may receive the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state and may receive the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state. In another example, the BS 105 may receive the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state and may receive the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
In some aspects, the DCI indicates a first SRI and a second SRI for one or more UL communications signals. In an example, the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first SRI and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second SRI. In another example, the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second SRI and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first SRI.
In some aspects, the DCI indicates a first RV and a second RV for one or more UL communications signals. In an example, the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the first  RV and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the second RV. In another example, the BS 105 receives the first communication signal by receiving the first communication signal in the first subset of the plurality of RBs based on the second RV and receives the second communication signal by receiving the second communication signal in the second subset of the plurality of RBs based on the first RV.
In some instances, the BS 105 receives the first communication signal by receiving a first portion of a codeword in the first subset of the plurality of RBs and receives the second communication signal by receiving a second portion of the codeword in the second subset of the plurality of RBs. In some instances, the BS 105 receives the first communication signal by receiving a first codeword in the first subset of the plurality of RBs and receives the second communication signal by receiving a second codeword in the second subset of the plurality of RBs.
Information and signals may be represented using any of a variety of different technologies and techniques. In some aspects, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. Due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at  different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular aspects illustrated and described herein, as they are merely by way of some examples thereof. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (76)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ;
    partitioning the plurality of RBs into at least a first subset and a second subset;
    transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and
    transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  2. The method of claim 1 performed by the UE, further comprising:
    receiving a radio resource control (RRC) configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from a base station (BS) .
  3. The method of claim 2 performed by the UE, further comprising:
    determining that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration; and
    determining that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration.
  4. The method of claim 2 performed by the UE, wherein the RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs.
  5. The method of claim 1 performed by the UE, further comprising:
    determining whether the plurality of RBs satisfies a threshold number of RBs;
    determining that the first subset includes a first contiguous half of the plurality of RBs and that the second subset includes a second contiguous half of the plurality of RBs in response to a determination that the RBs satisfies the threshold number of RBs; and
    determining a number of contiguous RBs, wherein the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs in response to a determination that the RBs does not satisfy the threshold number of RBs.
  6. The method of claim 5 performed by the UE, wherein the plurality of RBs satisfies the threshold number of RBs if a number of RBs included in the plurality of RBs is less than the threshold number of RBs.
  7. The method of claim 1 performed by the UE, further comprising:
    receiving a downlink control information (DCI) from a BS, the DCI indicating the FDRA.
  8. The method of claim 7, wherein the DCI indicates a first uplink (UL) transmission control indicator (TCI) state and a second UL TCI state for one or more UL communications signals.
  9. The method of claim 8 performed by the UE,
    mapping the first UL TCI state to the first subset of the plurality of RBs; and
    mapping the second UL TCI state to the second subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  10. The method of claim 8 performed by the UE,
    mapping the first UL TCI state to the second subset of the plurality of RBs; and
    mapping the second UL TCI state to the first subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  11. The method of claim 7, wherein the DCI indicates a first sounding reference signal resource indicator (SRI) and a second SRI for one or more UL communications signals.
  12. The method of claim 11 performed by the UE,
    mapping the first SRI to the first subset of the plurality of RBs; and
    mapping the second SRI to the second subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the first SRI, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  13. The method of claim 11 performed by the UE,
    mapping the first SRI to the second subset of the plurality of RBs; and
    mapping the second SRI to the first subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the second SRI, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  14. The method of claim 7, wherein the DCI indicates a first redundancy version (RV) and a second RV for one or more UL communications signals.
  15. The method of claim 14 performed by the UE,
    mapping the first RV to the first subset of the plurality of RBs; and
    mapping the second RV to the second subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the first RV, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the second RV.
  16. The method of claim 14 performed by the UE,
    mapping the first RV to the second subset of the plurality of RBs; and
    mapping the second RV to the first subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first communication signal in the first subset of the plurality of RBs based on the second RV, and wherein transmitting the second communication signal includes transmitting the second communication signal in the second subset of the plurality of RBs based on the first RV.
  17. The method of claim 14, wherein the second RV is indicated by an offset of the first RV.
  18. The method of claim 1 performed by the UE, further comprising:
    applying a first RV to a codeword carrying a single transport block (TB) , the codeword being mapped to the first and second subsets, wherein transmitting the first communication signal includes transmitting a first portion of the codeword in the first subset of the plurality of RBs, and wherein transmitting the second communication signal includes transmitting a second portion of the codeword in the second subset of the plurality of RBs.
  19. The method of claim 1 performed by the UE, further comprising:
    applying a first RV to a first codeword carrying a first TB, the first codeword being mapped to the first subset of the plurality of RBs, wherein transmitting the first communication signal includes transmitting the first codeword in the first subset of the plurality of RBs; and
    applying a second RV to a second codeword carrying a second TB, the second codeword being mapped to the second subset of the plurality of RBs, wherein transmitting the second communication signal includes transmitting the second codeword in the second subset of the plurality of RBs.
  20. The method of claim 1, wherein an RB of the plurality of RBs includes a physical RB (PRB) .
  21. The method of claim 1, wherein an RB of the plurality of RBs includes a resource block group (RBG) .
  22. The method of claim 1, wherein the UE includes the first and second antenna panels.
  23. An apparatus, comprising:
    a transceiver configured to:
    receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ;
    transmit a first communication signal using a first antenna panel in a first subset of the plurality of RBs; and
    transmit a second communication signal using a second antenna panel in a second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel; and
    a processor configured to:
    partition the plurality of RBs into at least the first subset and the second subset.
  24. The apparatus of claim 23, wherein the transceiver is configured to:
    receive a radio resource control (RRC) configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from a base station (BS) .
  25. The apparatus of claim 24, wherein the processor is configured to:
    determine that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration; and
    determine that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration.
  26. The apparatus of claim 24, wherein the RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs.
  27. The apparatus of claim 23, wherein the processor is configured to:
    determine whether the plurality of RBs satisfies a threshold number of RBs;
    determine that the first subset includes a first contiguous half of the plurality of RBs and that the second subset includes a second contiguous half of the plurality of RBs in response to a determination that the RBs satisfies the threshold number of RBs; and
    determine a number of contiguous RBs, wherein the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs in response to a determination that the RBs does not satisfy the threshold number of RBs.
  28. The apparatus of claim 27, wherein the plurality of RBs satisfies the threshold number of RBs if a number of RBs included in the plurality of RBs is less than the threshold number of RBs.
  29. The apparatus of claim 23, wherein the transceiver is configured to:
    receive a downlink control information (DCI) from a BS, the DCI indicating the FDRA.
  30. The apparatus of claim 29, wherein the DCI indicates a first uplink (UL) transmission control indicator (TCI) state and a second UL TCI state for one or more UL communications signals.
  31. The apparatus of claim 30,
    wherein the processor is configured to:
    map the first UL TCI state to the first subset of the plurality of RBs; and
    map the second UL TCI state to the second subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  32. The apparatus of claim 30,
    wherein the processor is configured to:
    map the first UL TCI state to the second subset of the plurality of RBs; and
    map the second UL TCI state to the first subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  33. The apparatus of claim 29, wherein the DCI indicates a first sounding reference signal resource indicator (SRI) and a second SRI for one or more UL communications signals.
  34. The apparatus of claim 33,
    wherein the processor is configured to:
    map the first SRI to the first subset of the plurality of RBs; and
    map the second SRI to the second subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the first SRI; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  35. The apparatus of claim 33,
    wherein the processor is configured to:
    map the first SRI to the second subset of the plurality of RBs; and
    map the second SRI to the first subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the second SRI; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  36. The apparatus of claim 29, wherein the DCI indicates a first redundancy version (RV) and a second RV for one or more UL communications signals.
  37. The apparatus of claim 36,
    wherein the processor is configured to:
    map the first RV to the first subset of the plurality of RBs; and
    map the second RV to the second subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the first RV; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the second RV.
  38. The apparatus of claim 36,
    wherein the processor is configured to:
    map the first RV to the second subset of the plurality of RBs; and
    map the second RV to the first subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first communication signal in the first subset of the plurality of RBs based on the second RV; and
    transmit the second communication signal in the second subset of the plurality of RBs based on the first RV.
  39. The apparatus of claim 36, wherein the second RV is indicated by an offset of the first RV.
  40. The apparatus of claim 23,
    wherein the processor is configured to apply a first RV to a codeword carrying a single transport block (TB) , and the codeword is mapped to the first and second subsets; and
    wherein the transceiver is configured to:
    transmit a first portion of the codeword in the first subset of the plurality of RBs; and
    transmit a second portion of the codeword in the second subset of the plurality of RBs.
  41. The apparatus of claim 23,
    wherein the processor is configured to:
    apply a first RV to a first codeword carrying a first TB, wherein the first codeword is mapped to the first subset of the plurality of RBs; and
    apply a second RV to a second codeword carrying a second TB, wherein the second codeword is mapped to the second subset of the plurality of RBs; and
    wherein the transceiver is configured to:
    transmit the first codeword in the first subset of the plurality of RBs; and
    transmit the second codeword in the second subset of the plurality of RBs.
  42. The apparatus of claim 23, wherein an RB of the plurality of RBs includes a physical RB (PRB) .
  43. The apparatus of claim 23, wherein an RB of the plurality of RBs includes a resource block group (RBG) .
  44. The apparatus of claim 23, wherein the UE includes the first and second antenna panels.
  45. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to receive a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ;
    code for causing the UE to partition the plurality of RBs into at least a first subset and a second subset;
    code for causing the UE to transmit a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and
    code for causing the UE to transmit a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  46. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a radio resource control (RRC) configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from a base station (BS) .
  47. The computer-readable medium of claim 46, the program code further comprising:
    code for causing the UE to determine that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration; and
    code for causing the UE to determine that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration.
  48. The computer-readable medium of claim 46, wherein the RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs.
  49. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to determine whether the plurality of RBs satisfies a threshold number of RBs;
    code for causing the UE to determine that the first subset includes a first contiguous half of the plurality of RBs and that the second subset includes a second contiguous half of the plurality of RBs in response to a determination that the RBs satisfies the threshold number of RBs; and
    code for causing the UE to determine a number of contiguous RBs, wherein the first and second subsets are interleaved in the FDRA based on the number of contiguous RBs in response to a determination that the RBs does not satisfy the threshold number of RBs.
  50. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a downlink control information (DCI) from a BS, the DCI indicating the FDRA and indicating a first uplink (UL) transmission control indicator (TCI) state and a second UL TCI state for one or more UL communications signals;
    code for causing the UE to map the first UL TCI state to the first subset of the plurality of RBs; and
    code for causing the UE to map the second UL TCI state to the second subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  51. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a DCI from a BS, the DCI indicating the FDRA and indicating a first TCI state and a second UL TCI state for one or more UL communications signals;
    code for causing the UE to map the first UL TCI state to the second subset of the plurality of RBs; and
    code for causing the UE to map the second UL TCI state to the first subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  52. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a DCI from a BS, the DCI indicating the FDRA and indicating a first SRI and a second SRI for one or more UL communications signals;
    code for causing the UE to map the first SRI to the first subset of the plurality of RBs; and
    code for causing the UE to map the second SRI to the second subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the first SRI, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  53. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a DCI from a BS, the DCI indicating the FDRA and indicating a first SRI and a second SRI for one or more UL communications signals;
    code for causing the UE to map the first SRI to the second subset of the plurality of RBs; and
    code for causing the UE to map the second SRI to the first subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the second SRI, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  54. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to receive a DCI from a BS, the DCI indicating the FDRA and indicating a first RV and a second RV for one or more UL communications signals.
  55. The computer-readable medium of claim 54, the program code further comprising:
    code for causing the UE to map the first RV to the first subset of the plurality of RBs; and
    code for causing the UE to map the second RV to the second subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the first RV, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the second RV.
  56. The computer-readable medium of claim 54, the program code further comprising:
    code for causing the UE to map the first RV to the second subset of the plurality of RBs; and
    code for causing the UE to map the second RV to the first subset of the plurality of RBs, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit the first communication signal in the first subset of the plurality of RBs based on the second RV, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit the second communication signal in the second subset of the plurality of RBs based on the first RV.
  57. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to apply a first RV to a codeword carrying a single transport block (TB) , the codeword being mapped to the first and second subsets, wherein the code for causing the UE to transmit the first communication signal includes code for causing the UE to transmit a first portion of the codeword in the first subset of the plurality of RBs, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE to transmit a second portion of the codeword in the second subset of the plurality of RBs.
  58. The computer-readable medium of claim 45, the program code further comprising:
    code for causing the UE to apply a first RV to a first codeword carrying a first TB, the first codeword being mapped to the first subset of the plurality of RBs; and
    code for causing the UE to apply a second RV to a second codeword carrying a second TB, the second codeword being mapped to the second subset of the plurality of RBs,
    wherein the code for causing the UE transmit the first communication signal includes code for causing the UE transmit the first codeword in the first subset of the plurality of RBs, and wherein the code for causing the UE to transmit the second communication signal includes code for causing the UE transmit the second codeword in the second subset of the plurality of RBs.
  59. An apparatus, comprising:
    means for receiving a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) ;
    means for partitioning the plurality of RBs into at least a first subset and a second subset;
    means for transmitting a first communication signal using a first antenna panel in the first subset of the plurality of RBs; and
    means for transmitting a second communication signal using a second antenna panel in the second subset of the plurality of RBs, the second antennal panel being different from the first antenna panel.
  60. The apparatus of claim 59, further comprising:
    means for receiving a radio resource control (RRC) configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs from a base station (BS) .
  61. The apparatus of claim 60, further comprising:
    means for determining that the first subset includes a first contiguous half of the plurality of RBs based on the RRC configuration; and
    means for determining that the second subset includes a second contiguous half of the plurality of RBs based on the RRC configuration.
  62. The apparatus of claim 60, wherein the RRC configuration indicates a number of RBs, and the first and second subsets are interleaved in the FDRA based on the number of RBs.
  63. A method of wireless communication performed by a base station (BS) , comprising:
    transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ;
    receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and
    receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  64. The method of claim 63 performed by the BS, further comprising:
    transmitting a radio resource control (RRC) configuration for the first subset of the plurality of RBs and the second subset of the plurality of RBs to the UE.
  65. The method of claim 63 performed by the BS, further comprising:
    transmitting a downlink control information (DCI) to the UE, the DCI indicating the FDRA.
  66. The method of claim 65, wherein the DCI indicates a first uplink (UL) transmission control indicator (TCI) state and a second UL TCI state for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the first UL TCI state, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the second UL TCI state.
  67. The method of claim 65, wherein the DCI indicates a first UL TCI state and a second UL TCI state for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the second UL TCI state, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the first UL TCI state.
  68. The method of claim 65, wherein the DCI indicates a first sounding reference signal resource indicator (SRI) and a second SRI for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the first SRI, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the second SRI.
  69. The method of claim 65, DCI indicates a first SRI and a second SRI for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the second SRI, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the first SRI.
  70. The method of claim 65, wherein the DCI indicates a first redundancy version (RV) and a second RV for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the first RV, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the second RV.
  71. The method of claim 65, wherein DCI indicates a first SRI and a second SRI for one or more UL communications signals, wherein receiving the first communication signal includes receiving the first communication signal in the first subset of the plurality of RBs based on the second RV, and wherein receiving the second communication signal includes receiving the second communication signal in the second subset of the plurality of RBs based on the first RV.
  72. The method of claim 63, wherein receiving the first communication signal includes receiving a first portion of a codeword in the first subset of the plurality of RBs, and wherein receiving the second communication signal includes receiving a second portion of the codeword in the second subset of the plurality of RBs.
  73. The method of claim 63, wherein receiving the first communication signal includes receiving a first codeword in the first subset of the plurality of RBs, and wherein receiving the second communication signal includes receiving a second codeword in the second subset of the plurality of RBs.
  74. An apparatus, comprising:
    a transceiver configured to:
    transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ;
    receive a first communication signal in the first subset of the plurality of RBs, wherein the first communication signal is based on a first antenna panel of the UE; and
    receive a second communication signal in the second subset of the plurality of RBs, wherein the second communication signal is based on a second antenna panel of the UE, and the second antennal panel is different from the first antenna panel.
  75. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a base station (BS) to transmit a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ;
    code for causing the BS to receive a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and
    code for causing the BS to receive a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
  76. An apparatus, comprising:
    means for transmitting a frequency-domain resource allocation (FDRA) indicating a plurality of resource blocks (RBs) to a user equipment (UE) ;
    means for receiving a first communication signal in the first subset of the plurality of RBs, the first communication signal being based on a first antenna panel of the UE; and
    means for receiving a second communication signal in the second subset of the plurality of RBs, the second communication signal being based on a second antenna panel of the UE, and the second antennal panel being different from the first antenna panel.
PCT/CN2020/091607 2020-05-21 2020-05-21 Uplink configuration for communication of signals based on multiple antenna panels WO2021232365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/091607 WO2021232365A1 (en) 2020-05-21 2020-05-21 Uplink configuration for communication of signals based on multiple antenna panels
PCT/CN2021/094280 WO2021233275A1 (en) 2020-05-21 2021-05-18 Uplink configuration for communication of signals based on multiple antenna panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091607 WO2021232365A1 (en) 2020-05-21 2020-05-21 Uplink configuration for communication of signals based on multiple antenna panels

Publications (1)

Publication Number Publication Date
WO2021232365A1 true WO2021232365A1 (en) 2021-11-25

Family

ID=78708087

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/091607 WO2021232365A1 (en) 2020-05-21 2020-05-21 Uplink configuration for communication of signals based on multiple antenna panels
PCT/CN2021/094280 WO2021233275A1 (en) 2020-05-21 2021-05-18 Uplink configuration for communication of signals based on multiple antenna panels

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094280 WO2021233275A1 (en) 2020-05-21 2021-05-18 Uplink configuration for communication of signals based on multiple antenna panels

Country Status (1)

Country Link
WO (2) WO2021232365A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233352A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
US20190387547A1 (en) * 2018-06-15 2019-12-19 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in heterogeneous network
US20200100277A1 (en) * 2018-09-24 2020-03-26 Qualcomm Incorporated Pdcch signaling for multi-trp with disjoint resource blocks
US20200107353A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for communicating user data via a physical shared channel
CN111108795A (en) * 2017-09-11 2020-05-05 苹果公司 Apparatus and method for uplink control signaling in multi-transmission receiving point operation for new radio and demodulation reference signal design

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867175B2 (en) * 2014-12-03 2018-01-09 Qualcomm Incorporated Transmit antenna diversity scheme
CN108112075B (en) * 2017-05-05 2023-05-02 中兴通讯股份有限公司 Method for determining uplink transmission parameters and method for sending configuration information
US10999803B2 (en) * 2017-08-16 2021-05-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and terminal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108795A (en) * 2017-09-11 2020-05-05 苹果公司 Apparatus and method for uplink control signaling in multi-transmission receiving point operation for new radio and demodulation reference signal design
WO2019233352A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
US20190387547A1 (en) * 2018-06-15 2019-12-19 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in heterogeneous network
US20200100277A1 (en) * 2018-09-24 2020-03-26 Qualcomm Incorporated Pdcch signaling for multi-trp with disjoint resource blocks
US20200107353A1 (en) * 2018-09-28 2020-04-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for communicating user data via a physical shared channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Additional evaluation results on different multi-TRP schemes for reliable PDSCH transmission in URLLC", 3GPP DRAFT; R1-1905514 ADDITIONAL EVALUATION RESULTS ON DIFFERENT MULTI-TRP SCHEMES FOR RELIABLE PDSCH TRANSMISSION IN U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ;, vol. RAN WG1, no. Xian, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051704445 *

Also Published As

Publication number Publication date
WO2021233275A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US20210105724A1 (en) User equipment (ue) capability signaling for maximum power support
US11394434B2 (en) Subband precoding configuration based on a transmit power parameter for uplink communications
US20210266831A1 (en) Update of physical downlink control channel (pdcch) parameters
US20210307063A1 (en) Hierarchical sensing in a wireless communications system
WO2021096999A1 (en) Qcl determination for a-csi-rs in full duplex systems
US20230199755A1 (en) Ul tdm carrier aggregation
WO2021179248A1 (en) Dynamic sounding reference signal (srs) resource allocation
CN117643151A (en) Rules for overlapping signals with full duplex capability
US11924863B2 (en) Subband precoding signaling in a wireless communications network
WO2021151231A1 (en) Frequency selective precoder indication
WO2021138796A1 (en) Downlink control information size and buffering limits for combination dci
WO2023059417A1 (en) Channel state information collection in physical sidelink channels
WO2021109060A1 (en) Control resource set (coreset) design for subbands in a multi-carrier system
WO2021233275A1 (en) Uplink configuration for communication of signals based on multiple antenna panels
EP4062568B1 (en) Transmission of uplink control information (uci) based on one or more codebooks
US20230189159A1 (en) Power control parameter configurations for physical uplink shared channels in the presence of spatial division multiplexing
WO2024011485A1 (en) Transmission configuration indicators for multiple transmission-reception points communications
WO2022178829A1 (en) Indication of a beam direction associated with a beam application time
US20220369301A1 (en) Common beam direction indication for single-target and multi-target communications
WO2022061730A1 (en) Sounding reference signal (srs) uplink power control with partial frequency sounding
WO2022217529A1 (en) Air to ground signaling enhancement for cross-waveform interference measurement and reporting
US20220295466A1 (en) Common pathloss reference signal for spatial domain multiplexing sharing a common antenna panel
WO2022077449A1 (en) Long physical uplink control channel (pucch) format for multi-slot transmissions
TW202224475A (en) Uplink allocation in wireless communication systems
WO2021097354A1 (en) Transmission of uplink control information (uci) based on priority rules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936647

Country of ref document: EP

Kind code of ref document: A1