WO2021230274A1 - Liquid composition for functional enhancement of cells - Google Patents

Liquid composition for functional enhancement of cells Download PDF

Info

Publication number
WO2021230274A1
WO2021230274A1 PCT/JP2021/017995 JP2021017995W WO2021230274A1 WO 2021230274 A1 WO2021230274 A1 WO 2021230274A1 JP 2021017995 W JP2021017995 W JP 2021017995W WO 2021230274 A1 WO2021230274 A1 WO 2021230274A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
cells
liquid composition
divalent metal
medium
Prior art date
Application number
PCT/JP2021/017995
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 木田
達朗 金木
大輔 畑中
寿人 林
志保 阿武
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022521953A priority Critical patent/JPWO2021230274A1/ja
Publication of WO2021230274A1 publication Critical patent/WO2021230274A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a liquid composition for promoting cell function, which improves cell function by suspending and statically culturing cells in a liquid composition, and a method for promoting cell function using the same.
  • organ regeneration means using pluripotent stem cells such as iPS cells and ES cells is being enthusiastically studied.
  • ES cells the establishment of ES cells involves ethical issues, and iPS cells are recognized as having problems of canceration risk and length of culture period. Therefore, means using somatic stem cells such as mesenchymal stem cells and nerve stem cells having a relatively low risk of canceration, progenitor cells such as progenitor adipocytes and progenitor myocardial cells having a relatively short differentiation induction period, or chondrocytes. Possibility is also being explored in parallel.
  • mesenchymal stem cells can be relatively easily proliferated in a petri dish by monolayer culture (also referred to as two-dimensional (2D) culture or the like).
  • the 2D culture method using Chare may reduce the undifferentiated ability and proliferative ability of mesenchymal stem cells with subculture, and in addition, migration ability and anti-homing effect.
  • the functions of mesenchymal stem cells such as inflammatory effects, may decline. Therefore, in the 2D culture method, which is an existing method, it is necessary to take measures such as limiting the number of passages at the time of culturing from the viewpoint of producing high-quality cells, and this restriction is applied to cells using the 2D culture method. This is a problem when culturing in a large amount, and there is a concern that the mass-produced cells maintain uniform quality.
  • Patent Document 1 it has been reported that the expression of markers supporting pluripotency is improved by forming cell clusters of somatic stem cells and performing suspension culture.
  • Patent Document 1 the formation of a cell mass is an indispensable technique, and there is no description about the culture in the state of a single cell (single cell) that does not form the cell mass. Since it is not technically easy to form a cell mass of uniform size and the effect of the cell mass is in the research stage, it is common to administer a single cell in the current cellular medicine. In that case, it is necessary to make the cell mass into a single cell again, which may complicate the process.
  • the shape of mesenchymal stem cells by the 2D culture method is a spindle system adhered to the plastic surface, which is significantly different from the cell shape that originally exists in the living body. Furthermore, in the 2D culture method, since the cells are treated with an enzyme such as trypsin, it is considered that the cells that have been singled and frozen after the trypsin treatment have a reduced function of adhesion factors and the like due to the cell surface.
  • the primary cultured cells used for cell therapy include not only the above-mentioned stem cells but also finally differentiated cells such as hepatic parenchymal cells. Since these hepatic parenchymal cells do not proliferate by the 2D culture method and cause a rapid decrease in function and survival even when adhered to a plate, they are currently used immediately after thawing of frozen hepatic parenchymal cells. At that time, it is suggested that not only the viability immediately after thawing but also the cell function, especially the adhesion factor on the cell surface, is lost by the enzymatic treatment such as collagenase used when isolating the liver parenchymal cells from the liver. Has been done. In fact, many donor-derived hepatic parenchymal cells prepared by collagenase treatment have reduced adhesion to collagen-coated plates.
  • Polysaccharides such as deacylated gellan gum (DAG) form a three-dimensional network (atypical structure) in water by assembling via metal cations (for example, divalent metal cations such as calcium ions).
  • metal cations for example, divalent metal cations such as calcium ions.
  • DAG deacylated gellan gum
  • the cells in the medium are trapped in this three-dimensional network and do not sink, so that the cells are uniformly suspended in a floating state without requiring shaking or rotation operations. It is possible to culture (suspended static culture) while still dispersed in the culture medium.
  • the medium composition containing the three-dimensional network is also excellent in operability in subculture and the like. It has been reported that there is (Patent Document 2).
  • An object of the present invention is to provide a method for improving the quality of cells.
  • the present inventors cultivate mesenchymal stem cells in a single cell state in a liquid medium composition containing deacylated gellan gum and sodium alginate without forming cell clumps. By doing so, it was found that the undifferentiated state of mesenchymal stem cells, the expression level of genes involved in migration, and the secretion amount of specific cytokines can be increased. In addition, the present inventors have found that hepatocyte adhesion can be increased by culturing hepatocytes in the liquid medium composition. The present inventors have completed the present invention by further studying based on such findings.
  • the present invention is as follows: [1] A liquid composition comprising a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • the liquid composition is for promoting cell function.
  • the concentration of the deacylated gellan gum or its salt in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the free form of the deacylated gellan gum, and the concentration of the acidic polysaccharide or its salt thereof.
  • the concentration is 0.004 to 0.2 (w / v)% in terms of free form, and the mass ratio of the acidic polysaccharide or its salt to deacylated gellan gum or a salt thereof is 1 or more in terms of free form.
  • the liquid composition according to the above. [3] The liquid composition according to [1] or [2], wherein the acidic polysaccharide is any one selected from the group consisting of alginic acid, pectin and pectic acid. [4] The liquid composition according to [3], wherein the acidic polysaccharide is alginic acid. [5] The liquid composition according to any one of [1] to [4], further containing a metal cation.
  • the cells are mesenchymal stem cells, and the promoted cell function is at least one selected from the group consisting of undifferentiated state, migratory ability, and secretory component secretory ability, [1] to The liquid composition according to any one of [6].
  • Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1).
  • ENA-78 epidermal-derived neutrophil-activating peptide 78
  • bFGF Basic fibroblast growth factor
  • IL-6 Interleukin-6
  • IL-8 Interleukin-8
  • VEGF Vascular endothelial growth factor
  • D Vascular endothelial growth factor-D
  • TIMP Tissue inhibitors of matrix metalloproteinase
  • PDGF Plateelet-Derived Growth Factor
  • TGF- ⁇ transforming growth factor- ⁇
  • the concentration of the deacylated gellan gum or a salt thereof in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the deacylated gellan gum in a free form, and the concentration of the acidic polysaccharide or a salt thereof is 0.002 to 0.1 (w / v)%.
  • the concentration is 0.004 to 0.2 (w / v)% in terms of free form, and the mass ratio of the acidic polysaccharide or its salt to deacylated gellan gum or a salt thereof is 1 or more in terms of free form.
  • the cells are mesenchymal stem cells, and the promoted cellular function is at least one selected from the group consisting of undifferentiated maintenance state, migratory ability, and secretory component secretory ability, [11] to The method described in any of [16]. [18] The method according to [17], wherein the promoted cellular function is the secretory capacity of secretory components.
  • Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1).
  • ENA-78 epidermal-derived neutrophil-activating peptide 78
  • bFGF Basic fibroblast growth factor
  • IL-6 Interleukin-6
  • IL-8 Interleukin-8
  • VEGF Vascular endothelial growth factor
  • D Vascular endothelial growth factor-D
  • TIMP Tissue inhibitors of matrix metalloproteinase
  • PDGF Plateelet-Derived Growth Factor
  • TGF- ⁇ transforming growth factor- ⁇
  • the function of mesenchymal stem cells eg, undifferentiated state, migration ability, secretory component
  • mesenchymal stem cells decreased due to improvement of adhesiveness (or engraftment rate) at the time of hepatocyte transplantation and repeated passages in 2D culture. It can promote (secretory capacity) and improve its quality.
  • Liquid Composition The present invention comprises a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • a liquid composition wherein the liquid composition is for promoting cell function, provides a liquid composition (hereinafter, may be referred to as "the liquid composition of the present invention").
  • the cell in the present invention is the most basic unit constituting an animal or a plant, and has a cytoplasm and various organelles inside the cell membrane as its elements.
  • the nucleus containing DNA may or may not be contained inside the cell.
  • the animal-derived cells in the present invention include germ cells such as sperm and eggs, somatic cells constituting the living body, stem cells, precursor cells, cancer cells separated from the living body, and immortalization ability obtained from the living body. Includes cells (cell lines) that are stably maintained in vitro, cells that have been isolated from the living body and artificially modified, and cells that have been separated from the living body and artificially exchanged nuclei.
  • somatic cells constituting the living body are not limited to the following, but are not limited to, fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monospheres, and bones.
  • Cells bone marrow cells, pericutaneous cells, dendritic cells, keratinocytes, fat cells, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatic parenchymal cells, cartilage cells, oval cells, nervous system cells, Glia cells, neurons, oligodendrocytes, microglia, stellate glue cells, heart cells, esophageal cells, muscle cells (eg, smooth muscle cells or skeletal muscle cells), pancreatic beta cells, melanin cells, hematopoietic precursor cells, and simplex. Includes nuclear cells and the like.
  • the somatic cells include, for example, skin, kidney, spleen, adrenal, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thoracic gland, muscle, connective tissue, bone, cartilage, blood vessel. Includes cells taken from any tissue such as tissue, blood, heart, eye, brain or nerve tissue.
  • Stem cells are cells that have the ability to replicate themselves and differentiate into other multi-lineage cells, including, but not limited to, embryonic stem cells (ES cells).
  • Embryonic tumor cells Embryonic tumor cells, embryonic germ stem cells, artificial pluripotent stem cells (iPS cells), nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, Includes hair follicle stem cells and the like.
  • Progenitor cells are cells in the process of differentiating from the stem cells into specific somatic cells or germ cells.
  • Cancer cells are cells that are derived from somatic cells and have acquired infinite proliferative capacity.
  • a cell line is a cell that has acquired infinite proliferative capacity by artificial manipulation in vitro, and examples thereof are, but are not limited to, CHO (Chinese hamster ovary cell line), HCT116.
  • Huh7, HEK293 human fetal kidney cell
  • HeLa human uterine cancer cell line
  • HepG2 human liver cancer cell line
  • UT7 / TPO human leukemia cell line
  • MDCK, MDBK, BHK, C-33A, HT- 29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five®, Vero, etc. are included.
  • the cells to be cultured in the liquid composition of the present invention can be arbitrarily selected from the cells described above.
  • Cells can be harvested directly from animals or plants.
  • Cells may be harvested after being induced, grown or transformed from an animal or plant by subjecting them to a particular treatment. At this time, the treatment may be in vivo or in vitro.
  • animals include fish, amphibians, reptiles, birds, pancrustaceans, hexapods, mammals and the like.
  • mammals include, but are not limited to, rats, mice, rabbits, guinea pigs, squirrel monkeys, hamsters, voles, platypus, dolphins, whales, dogs, cats, goats, cows, horses, sheep, pigs, and elephants.
  • the plant is not particularly limited as long as the collected cells or tissues can be cultured in liquid.
  • plants that produce crude drugs eg, saponin, alkaloids, berberine, scoporin, plant sterol, etc.
  • plants that produce crude drugs eg, saponin, alkaloids, berberine, scoporin, plant sterol, etc.
  • medicated carrots nichinichisou, hyos, coptis, belladonna, etc.
  • pigments and polysaccharides used as raw materials for cosmetics and foods.
  • Examples include plants that produce the body (eg, anthocyanin, safflower pigment, madonna pigment, saffron pigment, flavones, etc.) (eg, blueberries, red flowers, Coptis chinensis, saffron, etc.), or plants that produce the drug substance. , Not limited to them.
  • the cells can be mesenchymal stem cells or hepatocytes.
  • the mesenchymal stem cell is a somatic stem cell having self-renewal ability and pluripotency to differentiate into a plurality of mesenchymal cells.
  • the tissue from which the mesenchymal stem cells to which the liquid composition of the present invention is applied is not particularly limited, and may be any of bone marrow, fat, umbilical cord and the like.
  • the liquid composition of the present invention contains deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • the liquid composition of the present invention comprises deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. Allows mesenchymal stem cells to be cultured in a floating state (preferably in a floating stationary state).
  • Floating in the present invention means that cells do not adhere to the culture vessel (non-adhesive). Further, in the present invention, when culturing cells in a liquid composition, the cells do not involve external pressure or vibration on the liquid composition, or shaking, rotation operation, etc. of the liquid composition.
  • a state in which cells are uniformly dispersed and in a floating state is called “floating static culture”, and culturing cells in this state is called “floating static culture”.
  • the period that can be suspended in "floating static” is 5 minutes or more (eg, at least 5 to 60 minutes), 1 hour or more (eg, 1 hour to 24 hours), 24 hours or more (eg, 1). Sun-21 days), 48 hours or more, 7 days or more, etc., but not limited to these periods as long as the floating state is maintained.
  • the liquid composition of the present invention is capable of floating and standing cells at at least one point in a temperature range (for example, 0 to 37 ° C.) at which cells can be cultured in a non-frozen state.
  • the liquid composition of the present invention preferably has at least one point in the temperature range of 1 to 30 ° C., more preferably at least one point in the temperature range of 15 to 30 ° C., and more preferably at least one point in the temperature range of 22 to 28 ° C. At least one point, more preferably at least one point in the temperature range of 24 to 26 ° C., most preferably at least 25 ° C., allows suspension of cells.
  • Whether or not floating still is possible is determined, for example, by uniformly dispersing the cells to be cultured at a concentration of 2 ⁇ 10 4 cells / ml in the liquid composition to be evaluated and 10 ml in a 15 ml conical tube. Inject the cells and allow them to stand at the desired temperature (eg, 25 ° C, 37 ° C) for at least 5 minutes (eg, 1 hour or longer, 24 hours or longer, 48 hours or longer, 7 days or longer), and the cells are suspended. Can be evaluated by observing whether or not is maintained. If more than 70% of all cells are suspended, it can be concluded that the suspended state was maintained. Instead of cells, polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) may be used for evaluation.
  • the liquid composition of the present invention contains deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • the liquid composition of the present invention comprises deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. Allows the cells to be cultured while maintaining good viability.
  • the liquid composition of the present invention is a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or an acidic polysaccharide thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • a salt By containing a salt, it has a property (effect of maintaining the floating state of cells and tissues) that enables culture in a floating state of cells (preferably floating and standing).
  • Deacylated gellan gum is a linear polymer composed of four sugars: 1-3-linked glucose, 1-4-linked glucuronic acid, 1-4-linked glucose, and 1-4-linked rhamnose. It is a polysaccharide and is a polysaccharide represented by the following general formula (I) (where R 1 and R 2 are both hydrogen atoms and n is an integer of 2 or more). However, R 1 may contain a glyceryl group and R 2 may contain an acetyl group, but the content of the acetyl group and the glyceryl group is preferably 10% or less, more preferably 1% or less.
  • Deacylated gellan gum is obtained by culturing gellan gum-producing microorganisms in a fermentation medium and subjecting the mucosal substances produced outside the cells to alkaline treatment to remove glyceryl groups and acetyl groups bound to 1-3 bound glucose residues. It can be produced by recovering it after acylation, drying it, crushing it, and then making it into a powder.
  • the purification method include liquid-liquid extraction, fractional precipitation, crystallization, various ion exchange chromatography, gel filtration chromatography using Cefadex LH-20, adsorption chromatography with activated charcoal, silica gel, etc., or thin layer chromatography.
  • Purification can be performed by removing impurities by adsorbing and desorbing an active substance by chromatography, high-speed liquid chromatography using a reverse-phase column, or the like by combining them alone or in any order and using them repeatedly.
  • microorganisms producing gellan gum include, but are not limited to, Sphingomonas elodea and microorganisms in which the genes of the microorganisms are modified.
  • Deacylated gellan gum can also be phosphorylated.
  • the phosphorylation can be performed by a known method.
  • the hydroxyl group corresponding to R 1 and / or R 2 of the compound represented by the general formula (I) is a C 1-3 alkoxy group, a C 1-3 alkylsulfonyl group, a monosaccharide residue such as glucose or fructose, sucrose, or lactose.
  • Derivatives of deacylated gellan gum substituted with oligosaccharide residues such as glycine and amino acid residues such as glycine and arginine can also be used in the present invention.
  • Deacylated gellan gum can also be crosslinked using a crosslinker such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC).
  • Salts include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium, barium and magnesium; salts such as aluminum, zinc, copper and iron; ammonium salts; tetraethylammonium, tetrabutylammonium and methyl.
  • Tertiary ammonium salts such as tributylammonium, cetyltrimethylammonium, benzylmethylhexyldecylammonium, choline; salts with organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumin, prokine, chloroprocine; glycine , Salts with amino acids such as ammonium, valine; etc.
  • organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumin, prokine, chloroprocine
  • glycine Salts with amino acids such as ammonium, valine; etc.
  • the weight average molecular weight of the deacylated gellan gum or a salt thereof is preferably 10,000 to 50,000,000, more preferably 100,000 to 20,000,000, and further preferably 1,000,000 to 10,000,000.
  • the molecular weight can be measured in terms of pullulan by gel permeation chromatography (GPC).
  • deacylated gellan gum or a salt thereof for example, "KELCOGEL (registered trademark of CP-Kelco) CG-LA” manufactured by Sansho Co., Ltd. and “Kelcogel (CP)” manufactured by Saneigen FFI Co., Ltd. ⁇ Kelco's registered trademark) ”etc. can be used.
  • a divalent metal cation eg, calcium ion, magnesium ion, barium ion, copper ion, iron ion, zinc ion, tin ion, lead ion, etc., preferably calcium ion
  • the acidic polysaccharide or a salt thereof that can be cross-linked via ions include alginic acid (including oligoarginic acid (also referred to as “arginate oligosaccharide”)), pectin, pectinic acid, and salts thereof. It can be, preferably an arginic acid (including oligoarginic acid) or a salt thereof.
  • Alginic acid is a polysaccharide having a structure in which both uronic acids, ⁇ 1-4 bound L-glucuronic acid and ⁇ 1-4 bound D-mannuronic acid, are linearly polymerized.
  • Alginic acid or a salt thereof can be extracted and purified from brown algae represented by kelp and wakame seaweed by performing an ion exchange reaction with the carboxyl group of alginic acid. Since alginic acid in the algae forms an insoluble salt with polyvalent cations such as calcium ions, it is extracted to the outside of the algae by ion-exchange with Na to obtain water-soluble sodium alginate. Further, by adding an acid to an aqueous solution of sodium alginate, insoluble alginic acid is coagulated and precipitated, and by isolating the coagulated and precipitated alginic acid, purified alginic acid can be obtained.
  • Salts include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium, barium and magnesium; salts such as aluminum, zinc, copper and iron; ammonium salts; tetraethylammonium, tetrabutylammonium and methyl.
  • Tertiary ammonium salts such as tributylammonium, cetyltrimethylammonium, benzylmethylhexyldecylammonium, choline; salts with organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumin, prokine, chloroprocine; glycine , Salts with amino acids such as ammonium, valine; etc.
  • sodium alginate is preferably used from the viewpoint of solubility in water.
  • the weight average molecular weight of alginic acid or a salt thereof is, for example, 300 to 5,000,000, preferably 300 to 1,000,000, more preferably 300 to 500,000, still more preferably 300 to 100,000, and most preferably 300 to 10,000.
  • the molecular weight can be measured in terms of pullulan by gel permeation chromatography (GPC).
  • alginic acid including oligo alginic acid
  • commercially available products such as the following products can also be used.
  • Deacylated gellan gum and acidic polysaccharides that maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions are tautomers produced by intra-ring or extra-ring isomerization. It may be present in the form of geometric isomers, tautomers or mixtures of geometric isomers, or mixtures thereof. Acidic polysaccharides that maintain a random coil state in deacylated gellan gum and divalent metal cation media and can be crosslinked via divalent metal ions have asymmetric centers, whether or not they result from isomerization. In some cases, they may be present in the form of split optical isomers or mixtures containing them in any proportion.
  • Deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are metal cations in the liquid composition (eg, a salt thereof).
  • Divalent metal cations such as calcium ions
  • polysaccharides form microgels via metal cations (for example, JP-A-2004-129596), and the amorphous structure also includes the microgel as one embodiment.
  • Deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are aggregated via a metal cation.
  • a film-like structure can be mentioned.
  • the deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are used.
  • the liquid composition of the present invention contains a three-dimensional network (atypical structure) formed by aggregating through metal cations (eg, divalent metal cations such as calcium ions).
  • metal cations eg, divalent metal cations such as calcium ions.
  • the cells can be cultured (suspended static culture) while being uniformly dispersed in a suspended state.
  • the liquid composition of the present invention preferably contains the three-dimensional network (atypical structure) in a uniformly dispersed manner.
  • the formation of the three-dimensional network is not particularly limited as long as the liquid composition of the present invention is a plastic fluid and has fluidity.
  • the viscosity of the liquid composition does not exceed 10000 mPa ⁇ s.
  • the viscosity of the liquid composition is 5000 mPa ⁇ s or less, preferably 1000 mPa ⁇ s or less, and more preferably 100 mPa ⁇ s or less at 25 ° C.
  • the viscosity of the liquid composition can be measured, for example, by the method described in Examples described later. Specifically, E-type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-22 type viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34'x R24, rotation speed 100 rpm) under 25 ° C conditions. Can be measured using.
  • E-type viscometer manufactured by Toki Sangyo Co., Ltd., TV-22 type viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34'x R24, rotation speed 100 rpm
  • the liquid composition of the present invention is other than "deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion".
  • the polysaccharide is preferably an acidic polysaccharide having an anionic functional group.
  • the acidic polysaccharide is not particularly limited as long as it has an anionic functional group in its structure, but is, for example, a polysaccharide having uronic acid (for example, glucuronic acid, isulonic acid, galacturonic acid, mannuronic acid) in its structure.
  • hyaluronic acid native gellan gum, lambzan gum, daiyutan gum, xanthan gum, carrageenan, zantan gum, hexuronic acid, fucoidan, pectin, pectinic acid, pectinic acid, heparan sulfate, heparan, heparitin sulfate, keratosulfate, chondroitin sulfate.
  • Dermatan sulfate, ramnan sulfate or salts thereof.
  • the concentration of the deacylated gellan gum or a salt thereof in the liquid composition of the present invention is, for example, 0.002 to 0.1 (w / v)%, preferably 0.002 to 0.009 (w / v). %, More preferably 0.003 to 0.009 (w / v)%, and even more preferably 0.0033 to 0.0066 (w / v)%.
  • Concentration of an acidic polysaccharide eg, arginic acid or a salt thereof that can maintain a random coil state in a divalent metal cation medium in the liquid composition of the present invention and can be crosslinked via a divalent metal ion (free form equivalent).
  • v)% more preferably 0.0066 to 0.0133 (w / v)%.
  • the concentration of deacylated gellan gum or a salt thereof is preferably 0.002 (w / v)% or more, preferably 0.003 (w / v)% or more, from the viewpoint of ensuring a sufficient action of suspending cells.
  • this concentration is too high, the floating action may become stronger and the cell recovery rate may decrease, or the handleability of the medium itself may decrease. Therefore, 0.1 (w / v)% or less, preferably 0.009 ( It is preferably w / v)% or less.
  • the concentration of an acidic polysaccharide (eg, alginic acid) or a salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion maintains the floating state of the cell by shearing force.
  • an acidic polysaccharide eg, alginic acid
  • a salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion maintains the floating state of the cell by shearing force.
  • the concentration should be 0.2 (w / v)% or less, preferably 0.02 (w / v)% or less, and more preferably 0.015 (w / v)% or less. Is preferable.
  • the mass ratio of alginic acid) or its salt (in terms of free form) is based on deacylated gellan gum or 1 part by mass of its salt from the viewpoint of achieving the property of rapidly eliminating the effect of maintaining the floating state of cells by shearing force.
  • an acidic polysaccharide eg, alginic acid
  • a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • an acidic polysaccharide eg, alginic acid
  • the salt thereof may be, for example, 1 to 4 parts by mass, preferably 1 to 3 parts by mass, and more preferably 1 to 2 parts by mass.
  • the compound concentration in the liquid composition can be calculated by the following formula.
  • the liquid composition of the present invention is an acidic polysaccharide that can maintain a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and can be crosslinked via a divalent metal ion.
  • the inclusion of alginic acid) or a salt thereof has the effect of maintaining good viability of cultured cells.
  • the liquid composition of the present invention is an acidic polysaccharide that can maintain a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and can be crosslinked via a divalent metal ion.
  • alginic acid or a salt thereof, it has the effect of maintaining the floating state of cells.
  • the liquid composition of the present invention maintains a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and is an acidic polysaccharide that can be crosslinked via a divalent metal ion (eg,). , Alginic acid) or a salt thereof, the effect of maintaining the floating state of cells is rapidly lost by the shearing force such as pipetting and filter filtration (against the shearing force of the effect of maintaining the floating state of cells). Vulnerability) is also provided.
  • a divalent metal ion eg, Alginic acid
  • the liquid composition of the present invention is a deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • the salt contains a three-dimensional network (atypical structure) formed by aggregating through metal cations (eg, divalent metal cations such as calcium ions), which has the effect of maintaining the floating state of cells.
  • an acidic polysaccharide eg, alginic acid
  • a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion
  • the three-dimensional network can be formed. It becomes vulnerable to a chelating agent or a shearing force, and the shearing force such as pipetting or filter filtration easily destroys this three-dimensional network, and the effect of maintaining the floating state of cells is rapidly lost.
  • Deacylated gellan gum has a relatively linear structural unit, and multiple deacylated gellan gum chains are bundled in a liquid composition to form a tight and stable three-dimensional network.
  • this three-dimensional network is not easily destroyed by a chelating agent, pipetting, filter filtration, etc., it contains both ⁇ 1-4 bound L-glucuronic acid and ⁇ 1-4 bound D-mannuronic acid.
  • an acidic polysaccharide eg, arginic acid
  • a salt thereof which can maintain a random coil state in a divalent metal cation medium having a relatively bulky structure and can be crosslinked via a divalent metal ion
  • alginic acid or a salt thereof aggregates via a metal cation in a liquid composition (eg, a divalent metal cation such as calcium ion) to form a three-dimensional network (atypical structure).
  • the liquid composition of the present invention contains metal cations such as divalent metal cations (calcium ion, magnesium ion, zinc ion, iron ion, copper ion and the like), preferably calcium ion.
  • the metal cation can be used in combination of two or more, for example, calcium ion and magnesium ion, calcium ion and zinc ion, calcium ion and iron ion, calcium ion and copper ion. Those skilled in the art can appropriately determine the combination.
  • the metal cation concentration in the liquid composition of the present invention is 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM, but is not limited thereto.
  • Destruction of the three-dimensional network due to shearing force such as pipetting and filter filtration is a reversible reaction. Fragments of a three-dimensional network (atypical structure) destroyed by shear forces reassemble via metal cations (eg, divalent metal cations such as calcium ions), resulting in a three-dimensional network (non-atypical). This is because the standard structure) is regenerated.
  • metal cations eg, divalent metal cations such as calcium ions
  • the liquid composition of the present invention contains a medium used for cell culture.
  • the liquid composition of the present invention is acidic that can maintain a random coil state in a medium used for cell culture, deacylated gellan gum or a salt thereof, and a divalent metal cation medium, and can be cross-linked via divalent metal ions. It can be prepared by mixing with a polysaccharide (eg, alginic acid) or a salt thereof.
  • components that can be added to the medium in cell culture can be further added.
  • components that can be added to the medium in cell culture can be further added.
  • Various amino acids agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices and various cell adhesion molecules.
  • cytokine added to the liquid composition of the present invention examples include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), and interleukin-4 ( IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 ( IL-9), interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 ( IL-14), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon- ⁇ (IFN- ⁇ ), interferon- ⁇ (IFN-) ⁇ ), interferon- ⁇ (IFN- ⁇ ), granulocyte colony stimulator (G-CSF), monocytic colony stimulator (M-CSF), granulocyte-macrophage colony stimulator (GM-C
  • the hormones added to the liquid composition of the present invention include melatonin, serotonin, tyrosin, triiodotyronin, epinephrine, norepinephrine, dopamine, anti-Mullerian hormone, adiponectin, adrenal cortex stimulating hormone, angiotensinogen and angiotensin.
  • Growth factors added to the liquid composition of the present invention include transforming growth factor- ⁇ (TGF- ⁇ ), transforming growth factor- ⁇ (TGF- ⁇ ), macrophage inflammatory protein-1 ⁇ (MIP-1 ⁇ ), Epithelial cell growth factor (EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8) , 9), Nerve Cell Growth Factor (NGF), Hepatocyte Growth Factor (HGF), Leukemia Inhibitor (LIF), Prosthesis Nexin I, Prosthesis Nexin II, Thrombotic Growth Factor (PDGF), Cholinergic Differentiation Factor (CDF), chemokine, Notch ligand (such as Delta1), Wnt protein, angiopoetin-like protein 2, 3, 5 or 7 (Angpt 2, 3, 5, 7), insulin-like growth factor (IGF), insulin-like growth factor-binding protein (IGFBP), Pleiotrophin, etc., but are not limited to these.
  • TGF- ⁇ transforming
  • cytokines and growth factors include IL-6 / soluble IL-6 receptor complex or Hyper IL-6 (a fusion protein of IL-6 and a soluble IL-6 receptor).
  • Examples of various extracellular matrices and various cell adhesion molecules include collagen I to XIX, fibronectin, vitronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, etc.
  • antibiotics added to the liquid composition of the present invention include sulfa preparations, penicillin, pheneticillin, methicillin, oxacillin, chloroxacillin, dicloxacillin, flucloxacillin, naphthicillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin.
  • Piperacillin azurocillin, mexulocillin, mesylinum, andinocillin, cephalosporins and their derivatives, oxophosphate, amoxicillin, temafloxacin, nalidixic acid, pyromidic acid, cyprofloxane, synoxacin, norfloxacin, perfloxacin, rosaxacin, offloxin Sulbactam, clavulinic acid, ⁇ -bromopenicillic acid, ⁇ -chloropenicillic acid, 6-acetylmethylene-penicillin acid, cephalosporin, sultamipicillin, adinocillin and sulbactam formaldehyde / food rate esters, tazobactam, aztreonum, sulfazetin, isosul Examples include phasetin, nocardicin, m-carboxyphenol, methyl phenylacedo
  • the liquid composition of the present invention contains a metal cation (for example, a divalent metal cation (calcion ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion).
  • a metal cation for example, a divalent metal cation (calcion ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion).
  • a metal cation for example, a divalent metal cation (calcion ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion.
  • a metal cation for example, a divalent metal cation (calcion ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion.
  • metal cations eg, divalent metal cations such as calcium ions
  • the concentration of metal cations (preferably calcium ions) in the liquid composition is acidic that can maintain a random coil state in deacylated gellan gum or a salt thereof, and a divalent metal cation medium and can be crosslinked via divalent metal ions.
  • the concentration is not particularly limited as long as the concentration of the polysaccharide (eg, alginic acid) or a salt thereof is sufficient to aggregate via the metal cation and form a three-dimensional network (atypical structure), but the present invention is not particularly limited.
  • An acidic polysaccharide (eg, alginic acid) that can be crosslinked via metal ions or a salt thereof may be mixed, and then a separately prepared aqueous solution containing the metal cation may be added to the mixed solution.
  • the liquid composition of the present invention may contain various components having a cell life-prolonging effect when culturing cells.
  • the components include saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols), hydrophilic polymers (eg, eg). Polyvinylpyrrolidone), chelating agents (eg, EDTA), sugar alcohols (eg, mannitol, sorbitol), glycerol and the like, but are not limited thereto.
  • the liquid composition of the present invention comprises saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols).
  • saccharides excluding polysaccharides
  • antioxidants eg, SOD, vitamin E, glutathione, polyphenols.
  • the liquid composition of the present invention comprises saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols).
  • saccharides excluding polysaccharides
  • antioxidants eg, SOD, vitamin E, glutathione, polyphenols.
  • Hydrophilic polymers eg, polyvinylpyrrolidone
  • chelating agents eg, EDTA
  • sugar alcohols eg, mannitol, sorbitol
  • glycerol do not contain at least one compound selected from the group.
  • the liquid composition of the present invention does not have to contain a cryoprotectant.
  • cryoprotectant include DMSO, glycerol, ethylene glycol, trimethylene glycol, methanol, dimethylacetamide, polyethylene glycol, polyvinylpyrrolidone, hydroxyethyl starch, dextran, albumin and the like.
  • the liquid composition of the invention is selected from the group consisting of DMSO, glycerol, ethylene glycol, trimethylene glycol, methanol, dimethylacetamide, polyethylene glycol, polyvinylpyrrolidone, hydroxyethyl starch, dextran, and albumin at least. Does not contain one compound.
  • Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are added to the above liquid medium.
  • an acidic polysaccharide eg, alginic acid
  • an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions For example, alginic acid) or a salt thereof is dissolved or dispersed (this is referred to as a medium additive).
  • the media additives to be included may be prepared separately and each may be added to the liquid medium, deacylated gellan gum or a salt thereof, and maintain a random coil state in a divalent metal cation medium and divalent. Maintain a random coil state in medium additives (ie, deacylated gellan gum or its salts, and divalent metal cation media) containing both acidic polysaccharides (eg, alginic acid) that can be crosslinked via metal ions or salts thereof. , And an acidic polysaccharide (eg, a mixture of alginic acid) or a salt thereof that can be crosslinked via a divalent metal ion may be prepared and added to the liquid medium.
  • medium additives ie, deacylated gellan gum or its salts, and divalent metal cation media
  • deacylated gellan gum or a salt thereof and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • a mixture of salts is prepared and added to the liquid medium.
  • suitable solvents used for the preparation of the medium additive include water, physiological saline, aqueous solvents such as PBS, dimethylsulfoxide (DMSO), methanol, ethanol, butanol, propanol, glycerin, propylene glycol, butylene.
  • aqueous solvents such as PBS, dimethylsulfoxide (DMSO), methanol, ethanol, butanol, propanol, glycerin, propylene glycol, butylene.
  • DMSO dimethylsulfoxide
  • methanol ethanol
  • ethanol ethanol
  • butanol propanol
  • glycerin propylene glycol
  • propylene glycol butylene.
  • hydrophilic solvents such as various alcohols such as glycol.
  • deacylated gellan gum or a salt thereof in the medium additive and an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions or
  • concentration of the salt is preferably, for example, 10 to 500 times, preferably about 25 to 100 times, the final concentration in the liquid composition of the present invention described in detail above.
  • the sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, high-pressure steam sterilization (autoclave sterilization), and filter sterilization.
  • the material of the filter part when performing filter sterilization is not particularly limited, but for example, glass fiber, nylon, PES (polyether sulfone), hydrophilic PVDF (polyvinylidene fluoride), cellulose. Examples thereof include mixed esters, cellulose acetate, polytetrafluoroethylene and the like.
  • the size of the pores of the filter is not particularly limited, but is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m, and most preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • These sterilization treatments are deacylated gellan gum or salts thereof, and acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions. May be carried out in a solid state or in a solution state.
  • the temperature in the high-pressure steam sterilization treatment is usually 105 to 135 ° C, preferably 115 ° C to 130 ° C, and more preferably 118 to 123 ° C (eg, 121 ⁇ 1 ° C).
  • the pressure during the sterilization process is usually 0.12 to 0.32 MPa, preferably 0.17 to 0.27 MPa, more preferably 0.19 to 0.23 MPa (eg, 0.21 ⁇ 0.1 MPa).
  • the sterilization treatment time is usually 1 to 60 minutes, preferably 5 to 45 minutes, more preferably 15 to 25 minutes (eg, 20 ⁇ 1 minute).
  • the combination of high-pressure steam sterilization treatment conditions is for example, 105-135 ° C, 0.12-0.32 MPa, 1-60 minutes; Preferably, it is 115 ° C. to 130 ° C., 0.17 to 0.27 MPa, 5 to 45 minutes; More preferably, it is 118 to 123 ° C. (eg, 121 ⁇ 1 ° C.), 0.19 to 0.23 MPa (eg, 0.21 ⁇ 0.1 MPa), 15 to 25 minutes (eg, 20 ⁇ 1 minute).
  • arginic acid or a salt thereof is aggregated via a metal cation (for example, a divalent metal cation such as calcium ion) to form a three-dimensional network (atypical structure), and the liquid of the present invention is formed.
  • the composition can be obtained.
  • the medium is usually deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • Deacylated gellan gum or salts thereof, and divalent metal cation media contain sufficient concentrations of metal cations (eg, calcium ions) to aggregate and form a three-dimensional network (atypical structure).
  • the liquid composition of the present invention is simply added to a liquid medium with a solution or dispersion of an acidic polysaccharide (eg, arginic acid) or a salt thereof that can maintain a random coil state and can be crosslinked via divalent metal ions. Can be obtained.
  • the medium additive of the present invention deacylated gellan gum or a salt thereof, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion (eg, alginic acid).
  • the medium may be added to a solution or dispersion of a salt thereof.
  • the liquid compositions of the invention are deacylated gellan gums or salts thereof, and acidic polysaccharides that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions (eg, arginic acid).
  • a salt thereof and a medium component can be prepared by mixing them in an aqueous solvent (for example, water containing ion-exchanged water, ultrapure water, or the like).
  • an aqueous solvent for example, water containing ion-exchanged water, ultrapure water, or the like.
  • a liquid medium and a medium additive solution
  • deacylated gellan gum or a salt thereof is mixed in the liquid medium
  • a random coil state is maintained in a divalent metal cation medium.
  • a solid (powder, etc.) of an acidic polysaccharide (eg, alginic acid) or a salt thereof that can be crosslinked via divalent metal ions (3) Mix the powder medium with the medium additive (solution), ( 4) Of acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in powdered media and deacylated gellan gum or salts thereof, and can be crosslinked via divalent metal ions. Examples include, but are not limited to, mixing a solid (powder or the like) with an aqueous solvent.
  • deacylated gellan gum or salts thereof in liquid compositions and acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions.
  • the aspect of (1) is preferable in order to prevent non-uniformity.
  • Deacylated gellan gum or a salt thereof and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion as a solvent (eg, water).
  • a solvent eg, water
  • Aqueous solvents such as liquid media
  • deacylated gellan gum or salts thereof and acidic polysaccharides capable of maintaining a random coil state in a divalent metal cation medium and cross-linking via divalent metal ions.
  • the heating temperature examples include 80 ° C. to 130 ° C., preferably 100 ° C. to 125 ° C. (eg, 121 ° C.) for heat sterilization.
  • an acidic polysaccharide eg, alginic acid
  • a salt thereof that can maintain a random coil state in the obtained deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion.
  • metal cations eg, divalent metal cations such as calcium ions
  • Acidic polysaccharides eg, arginic acid
  • metal cations eg, divalent metal cations such as calcium ions.
  • a three-dimensional network is formed, and the liquid composition of the present invention can be obtained.
  • deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are described above.
  • a metal cation eg, a divalent metal cation such as calcium ion
  • a solvent containing a metal cation eg, a divalent metal cation such as calcium ion
  • heating eg, 80 ° C to 130 ° C, preferably 100 ° C to 125
  • Deacylated gellan gum or a salt thereof, and a random coil state in a divalent metal cation medium are also maintained by cooling the resulting solution to room temperature at ° C (eg, 121 ° C), and the divalent metal.
  • a three-dimensional network (atypical structure) by assembling acidic polysaccharides (eg, alginic acid) or salts thereof that can be crosslinked via ions via metal cations (eg, divalent metal cations such as calcium ions). Body) is formed.
  • acidic polysaccharides eg, alginic acid
  • metal cations eg, divalent metal cations such as calcium ions.
  • deacylated gellan gum or a salt thereof Since deacylated gellan gum or a salt thereof has a relatively linear structural unit, it is difficult to dissolve because a plurality of sugar chains are bundled when added to a solvent (eg, water).
  • a solvent eg, water
  • an acidic polysaccharide eg, arginic acid
  • a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion is added thereto, ⁇ 1-4 bonded L- Since it has a relatively bulky structure due to the inclusion of both uronic acid of glucuronic acid and ⁇ 1-4 bound D-mannuronic acid, the bundling of deacylated gellan gum or a salt thereof is suppressed and it dissolves relatively easily. It will be like.
  • an acidic polysaccharide eg, alginic acid
  • a salt thereof that can maintain a random coil state in a deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion should be heated. It can be dissolved in a solvent (eg, an aqueous solvent such as water, liquid medium, etc.) at a relatively low temperature (eg, 0 to 37 ° C, preferably 10 to 30 ° C).
  • a solvent eg, an aqueous solvent such as water, liquid medium, etc.
  • the method for producing the liquid composition of the present invention is exemplified, but the present invention is not limited thereto.
  • an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion can be dissolved (eg, alginic acid).
  • stir at 5 to 60 ° C., preferably 5 to 40 ° C., more preferably 10 to 30 ° C. to dissolve until a transparent state is obtained.
  • the sterilized aqueous solution is added to the medium and mixed so as to be uniform with the medium.
  • the method for mixing the aqueous solution and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, a mechanical stirrer, a homomixer, and a homogenizer.
  • Deacylated gellan gum or a salt thereof and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are uniformly contained in a liquid medium.
  • a liquid medium is placed in a conical tube, and the stirring state is maintained by vortexing, etc.
  • An aqueous solution of an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state and can be crosslinked via divalent metal ions may be vigorously flushed into the liquid medium.
  • the random coil state is maintained in the deacylated gellan gum or its salt, and the divalent metal cation medium, and cross-linking is performed via the divalent metal ion.
  • a three-dimensional network formed by assembling acidic polysaccharides (eg, alginic acid) or salts thereof via metal cations (eg, divalent metal cations such as calcium ions).
  • the liquid composition of the present invention which is uniformly dispersed, can be easily prepared.
  • the liquid composition of the present invention may be filtered through a filter.
  • the size of the pores of the filter used in the filtration treatment is 5 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 70 ⁇ m, and more preferably 10 ⁇ m to 70 ⁇ m.
  • cell function means a function possessed by a cell.
  • Cellular functions include, but are not limited to, proliferative, adhesive, differentiating, maintaining undifferentiated state, controlling differentiating state, secretory component secretory ability, and the like.
  • the liquid composition of the present invention can be applied to mesenchymal stem cells.
  • mesenchymal stem cells are known to have various functions, by culturing mesenchymal stem cells in the liquid composition of the present invention, the undifferentiated state, migration ability, and secretion of mesenchymal stem cells The amount of factor secretion can be promoted.
  • promoting the undifferentiated state of mesenchymal stem cells means that the mesenchymal stem cells shift to a more preferable state as an undifferentiated state and the differentiation of the cells is suppressed. means. More specifically, it means that, for example, the transcription amount of an undifferentiated marker such as OCT4 or NANOG gene in mesenchymal stem cells is higher than the transcription amount before application of the liquid composition of the present invention.
  • the rate of increase in the transcription amount of the OCT4 gene or NANOG gene is usually 10% or more.
  • the migration ability of the mesenchymal stem cells can be promoted.
  • the promotion of migration ability of mesenchymal stem cells can be confirmed by determining the increase of factors involved in the migration of mesenchymal stem cells by using a known method or the like. Examples of such factors include, but are not limited to, the transcription levels of the CXCR4 gene, MMP2 gene, VCAM-1 gene, Integrin ⁇ 4 gene, Integrin ⁇ 1 gene, and the like.
  • the amount of secreted factors secreted by the mesenchymal stem cells can be promoted.
  • "promoting the amount of secretory factor secreted by mesenchymal stem cells” means increasing the ability of mesenchymal stem cells to produce secretory factors and increasing the amount of the factor secreted extracellularly. Means that.
  • the amount of secretory component increased by the application of the liquid composition of the present invention is at least 120% or more, at least 130% or more, at least, as compared with the amount of secretory component secreted as a control.
  • the production / secretion amount of secretory components increases by 600% or more, at least 700% or more, at least 800% or more, at least 900% or more, and at least 1000% or more.
  • a known method such as an ELISA (Enzyme-Linked ImmunoSorbent Assay) method or a flow cytometer method can be used.
  • TSG-6 TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), and MCP-1 (Monocyte Chemotactic Protein-1).
  • ENA-78 epidermal-derived neurophil-activating peptide 78
  • bFGF Basic fibroblast growth factor
  • IL-6 Interleukin-6
  • IL-8 Interleukin-8
  • VEGF Vascular endothelial growth factor
  • VEGF-D Vascular endothelial growth factor-D
  • TIMP Tissue inhibitors of matrix metalloproteinase
  • PDGF Plateelet-Derived Growth Factor
  • TGF- ⁇ transforming growth factor- ⁇
  • HGF Hepatocyte growth factor
  • the medium composition of the present invention can be applied to hepatocytes.
  • the medium composition of the present invention By applying the medium composition of the present invention to hepatocytes, the cell adhesion ability of the cells can be promoted.
  • the liquid composition of the present invention can be suitably used for the preparation of hepatocytes for transplantation.
  • the present invention also provides a method for promoting cell function (hereinafter, may be referred to as "method of the present invention"), which comprises culturing cells in the liquid composition of the present invention. ..
  • the method of the present invention is achieved by culturing or storing cells in the liquid composition of the present invention described above.
  • the liquid composition, cell type, etc. in the method of the present invention are the same as those described in "1. Liquid composition”.
  • cell culture can be performed by suspension culture (preferably suspension static culture).
  • cells are seeded and cultured in a single cell state.
  • cells can be cultured without forming spheres.
  • a medium composition was prepared using a medium preparation kit (Nissan Chemical FCeM (registered trademark) -series Preparation Kit). Human prepared by adding MSC Nutristem (registered trademark) XF Supplement Mix (05-200-1U, manufactured by Biological Industries) to MSC Nutristem (registered trademark) XF Basal Medium (05-200-1A, manufactured by Biological Industries). 49.5 mL of Xenofree medium for mesenchymal stem cells was dispensed into the 50 mL conical tube attached to the above kit, and the adapter cap, which is a component of the kit, was attached.
  • a medium preparation kit Nasan Chemical FCeM (registered trademark) -series Preparation Kit). Human prepared by adding MSC Nutristem (registered trademark) XF Supplement Mix (05-200-1U, manufactured by Biological Industries) to MSC Nutristem (registered trademark) XF Basal Medium (05-200-1A, manufactured by Biological Industries).
  • the tip of the disposable syringe filled with 0.5 mL of the polysaccharide mixture obtained in Test Example 1 is fitted into the cylindrical part of the adapter cap to connect, and the plunger of the syringe is manually pressed to vigorously press the polysaccharide mixture in the syringe.
  • RNA extraction solution After 6 days, transfer from 1.5 mL tube to 15 mL tube and add 20% (v / v) of chelating agent (mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)). After addition, the mixture was centrifuged at 300 ⁇ g for 5 minutes, and then the culture supernatant was removed. Subsequently, 350 ⁇ L (RNeasy mini kit (manufactured by QIAGEN, # 74106)) of the RLT solution was added to prepare an RNA extraction solution.
  • RNeasy mini kit manufactured by QIAGEN, # 74106
  • RNA extraction solutions were obtained from human umbilical cord-derived mesenchymal stem cells that were two-dimensionally cultured for 3 days using a 10 cm culture dish in the presence of 5% CO 2 at 37 ° C. After adding 350 ⁇ L of 70% ethanol to the RNA extraction solution, the mixture was added to an RNeasy spin column and centrifuged at 8000 ⁇ g for 15 seconds. Subsequently, 700 ⁇ L of RW1 solution was added to the RNeasy spin column, and the mixture was centrifuged at 8000 ⁇ g for 15 seconds. Subsequently, 500 ⁇ L of RPE solution was added and centrifuged at 8000 ⁇ g for 15 seconds.
  • RNA was synthesized from the obtained RNA using the PrimeScript RT reagent Kit (Perfect Real Time) (# RR037A, manufactured by Takara Bio Inc.). Real-time PCR was performed using the synthesized cDNA, Premix EX Taq (Perfect Real Time) (manufactured by Takara Bio Inc., # RR039A), and Taq man Probe (manufactured by Applied Bio Systems).
  • Hs04260367_gH was used for OCT4, Hs04399610_g1 for NANOG, Hs00607978_s1 for CXCR4, and Hs99999905_m1 for GAPDH.
  • the instrument used was a real-time PCR7500. In the analysis, the relative value obtained by correcting the value of each target gene with the value of GAPDH was calculated and compared.
  • OCT4 showing undifferentiated characteristics of human umbilical cord-derived mesenchymal stem cells that were statically suspended and stored in the ALG / DAG combination medium composition was more undifferentiated than human umbilical cord-derived mesenchymal stem cells that were cultured at midnight or two-dimensionally.
  • TSG-6 production of human umbilical cord-derived mesenchymal stem cells statically stored in a 3D floating state in the ALG / DAG combination medium composition
  • Human umbilical cord-derived mesenchymal stem cells (C-12971, Takara Bio) was inoculated to the ALG / DAG mixed medium composition prepared in Test Example 2 to 100,000 cells / ml, added to a 1.5 mL tube, and allowed to stand at room temperature for 7 days.
  • Xenofree medium for human mesenchymal stem cells (Sample 2) was added to a 15 mL tube and added to the wells of a 24-well flat-bottomed ultra-low adhesion surface microplate (# 3473, manufactured by Corning).
  • human umbilical cord-derived mesenchymal stem cells two-dimensionally cultured in the presence of 5% CO 2 at 37 ° C using a 10 cm culture dish were used as a xenofree medium for human mesenchymal stem cells at 60000 sells / mL.
  • Example 4 Seed in sample 3) or Xenofree medium for human mesenchymal stem cells (Sample 4) containing TNF- ⁇ (# 210-TA, manufactured by R & D Systems) with a final concentration of 20 ng / mL, and 24-well flat-bottomed ultra-low adhesion surface micro Added to the plate.
  • the plates were cultured in a CO 2 incubator (37 ° C, 5% CO 2 ) in a static state and continued for 1 day. On day 1, cells and medium were transferred from each well to a 15 mL tube, centrifuged at 300 xg for 3 minutes, and then the culture supernatant was collected.
  • TSG-6 antibody (# sc-65886, # sc-65886) diluted to 10 ⁇ g / mL with 0.2 M carbonate-bicarbonate buffer (pH 9.2) on Maxisorp flat bottom (# 44-2404-21, manufactured by Thermo Fisher Scientific). (Santacruz) was added at 50 ⁇ L / well and allowed to stand at 4 ° C. for 24 hours. After 24 hours, add Tween-20 (# P7949, manufactured by Sigma-Aldrich) to D-PBS (-) (# 043-29791, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to a final concentration of 0.05% (v / v).
  • PBST solution After adding 300 ⁇ L of the solution added to (hereinafter referred to as PBST solution), the solution was removed. This operation was repeated 3 times. 100 ⁇ L of a PBST solution containing 5% of BSA (# A2153, manufactured by Sigma-Aldrich) was added, and the mixture was allowed to stand at room temperature for 30 minutes. After discarding the solution, 300 ⁇ L of PBST solution was added and removed. This operation was repeated 3 times. Subsequently, 50 ⁇ L of TSG-6 (# 2104-TS, manufactured by R & D Systems) prepared for the calibration curve and an evaluation sample were added to each well, and the mixture was allowed to stand at room temperature for 2 hours. After discarding the solution, 300 ⁇ L of PBST solution was added and removed.
  • TSG-6 # 2104-TS, manufactured by R & D Systems
  • TSG-6 concentration contained in each sample was calculated by 4-parameter logistic regression of the calibration curve. In order to calculate the amount of secretion per cell number, the relative value obtained by dividing the calculated amount of TSG-6 by the luminescence intensity was calculated.
  • the human umbilical cord-derived mesenchymal stem cells statically suspended and cultured in the ALG / DAG combination medium composition per cell at the time of TNF- ⁇ treatment than the two-dimensionally cultured human umbilical cord-derived mesenchymal stem cells.
  • the results showed that the amount of TSG-6 produced was high.
  • Table 2 shows the relative values of each sample.
  • E-Cadherin Peptide Coat Plate E-Cadherin peptide (MAPTrix®-E, manufactured by Kollodis BIOSCIENCES, # 167021, # 167061) was diluted with sterile water to 0.2 mg / mL, respectively, and a 96-well cell culture plate was used. 100 ⁇ L was added to (Corning, # 3585) and stored in a refrigerator for a whole day and night. Only sterile water was added to the peptide-free wells. The peptide solution was removed before use, washed with D-PBS (-), and then used.
  • MATrix®-E manufactured by Kollodis BIOSCIENCES, # 167021, # 167061
  • Cell pellets in the other tube were suspended in 5 ml of ALG / DAG mixed medium composition (culture method of the present invention) and seeded on a 6-well ultra-low adhesion plate (Corning, # 3471) at 5 mL / well. Preculture was performed for 2 hours under 5% CO 2 at 37 ° C. After 2 hours, transfer from the well to a 15 mL tube and add a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) to 10% (v / v).
  • a chelating agent a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)
  • the control culture method was used for 2 hours after seeding, whereas the culture method of the present invention was pre-cultured with the ALG / DAG mixed medium composition and then seeded for 2 hours.
  • Add 100 ⁇ L of reagent Cell Titer-Glo® Luminescent Cell Viability Assay, manufactured by Promega
  • suspend allow to stand at room temperature for about 10 minutes, and then use FlexStation 3 (Molecular Devices) to emit light intensity (RLU value).
  • RLU value Light intensity
  • E-Cadherin Peptide Coat Plate E-Cadherin peptide (MAPTrix®-E, Kollodis BIOSCIENCES, # 167021) was diluted with sterile water to 0.2 mg / mL, respectively, and a 96-well cell culture plate (Corning) was used. 100 ⁇ L was added to # 3585) and stored in a refrigerator for a whole day and night. Only sterile water was added to the peptide-free wells. The peptide solution was removed before use, washed with D-PBS (-), and then used.
  • Culture method and control culture method of the present invention One frozen (about 5 million cells /) human primary hepatocytes (manufactured by Xeno Tech) was mixed, suspended in HBM medium, and evenly placed in two tubes. Dispense. The cells were then centrifuged at 50 xg for 3 minutes and the cell pellet in one tube was suspended in 2.5 ml of HBM medium (control culture method). The control culture method was to inoculate a 96-well cell culture plate (Corning, # 3585), an E-Cadherin peptide-coated plate and a Type I collagen-coated plate (IWAKI, # 4860-010) at 100 ⁇ L / well at 37 ° C. Culture was continued for 2 hours under 5% CO 2.
  • Cell pellets in the other tube were suspended in 5 ml of ALG / DAG mixed medium composition (culture method of the present invention) and seeded on a 6-well ultra-low adhesion plate (Corning, # 3471) at 5 mL / well. Preculture was performed for 2 hours under 5% CO 2 at 37 ° C. After 2 hours, transfer from the well to a 15 mL tube and add a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) to 10% (v / v).
  • a chelating agent a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)
  • the remaining cells in the well were further collected with D-PBS (-), and finally 5 times the amount of D-PBS (-) was added, and then centrifuged at 50 ⁇ g for 3 minutes, and then the culture supernatant was prepared. Excluded.
  • Precultured cell pellets were suspended in 2.5 ml of HBM medium and 100 ⁇ L in 96-well plates (Corning, # 3585), E-Cadherin peptide coated plates and Type I collagen coated plates (IWAKI, # 4860-010). Seed in / wells and added cultures for an additional 2 hours under 37 ° C. 5% CO 2.
  • the control culture method was used for 2 hours after seeding, whereas the culture method of the present invention was used for 2 hours after pre-culturing with the ALG / DAG mixed medium composition.
  • a medium composition was prepared using a medium preparation kit (Nissan Chemical FCeM (registered trademark) -series Preparation Kit).
  • StemFit registered trademark
  • For Mesenchymal Stem Cell manufactured by Ajinomoto Co., Inc. was dispensed at 49.2 mL into the 50 mL conical tube attached to the above kit, and the adapter cap, which is a component of the kit, was attached.
  • the tip of the disposable syringe filled with 0.8 mL of the polysaccharide mixture obtained in Test Example 1 is fitted into the cylindrical portion of the adapter cap to connect, and the plunger of the syringe is manually pressed to vigorously press the polysaccharide mixture in the syringe.
  • Test Example 8 Surface marker expression analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D floating state in an ALG / DAG combination medium composition
  • Human umbilical cord-derived mesenchymal stem cells C-12971, Takara Bio Co., Ltd.
  • ALG / DAG combination medium composition final concentration 0.016%) prepared in Test Example 7 so as to be 100,000 cells / mL, and 2 mL is stem full (registered trademark) 15 mL centrifuge tube (MS-90150, It was sown in Sumitomo Bakelite Co., Ltd.). After sowing, the centrifuge tube was sealed and stored at room temperature for 7 days.
  • a chelating agent a mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)
  • a cell suspension of a 15 mL centrifuge tube After addition, the mixture was centrifuged at 300 ⁇ g for 5 minutes, and then the culture supernatant was removed.
  • BV650 Mouse Anti-Human CD105 563466, manufactured by BD Biosciences
  • BV421 Mouse Anti-Human CD73 562430, manufactured by BD Biosciences
  • APC Mouse Anti-Human CD90 559869, manufactured by BD Biosciences
  • PE Mouse Anti-Human CD34 555822, manufactured by BD Biosciences
  • FITC Anti-CD11b antibody [M1 / 70] (ab24874, manufactured by Abcam) were added. Incubated for 30 minutes at room temperature and in the dark.
  • Negative controls include BV650 Mouse IgG1, k Isotype Control (563231, BD Biosciences), BV421 Mouse IgG1, k Isotype Control (562438, BD Biosciences), APC Mouse IgG1, ⁇ Isotype Control (555751, BD Biosciences).
  • PE Mouse IgG1, ⁇ Isotype Control 555749, manufactured by BD Biosciences
  • FITC Rat IgG2b kappa monoclonal [eB149 / 10H5] --Isotype control (ab136125, manufactured by Abcam) were used.
  • the stained cells were washed twice with SM buffer and then measured with FACSLSRFortessaX-20 (manufactured by BD Biosciences).
  • the cells obtained by adding a chelating agent in the same manner as above and centrifuging were subjected to StemFit (registered trademark) For Mesenchymal Stem Cell (manufactured by Ajinomoto Co., Inc.).
  • the cells were turbid and seeded on a 6-well plate so as to have 1 ⁇ 10 5 cells / well, and then re-seeded into a flat culture and cultured at 37 ° C. in a 5% CO 2 environment.
  • the cells were detached into single cells using a Detach kit (D13101, manufactured by Takara Bio Inc.), and then FACS measurement was performed in the same manner as above.
  • Test Example 9 Surface marker expression analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D floating state in an ALG / DAG combination medium composition
  • Human umbilical cord-derived mesenchymal stem cells C-12971, Takara Bio Co., Ltd.
  • ALG / DAG combination medium composition final concentration 0.016%) prepared in Test Example 7 to 100,000 cells / mL, and 2 mL is stem full (registered trademark) 15 mL centrifuge tube (MS-90150, It was sown in Sumitomo Bakelite Co., Ltd.). After sowing, the centrifuge tube was sealed and stored at room temperature for 7 days.
  • a chelating agent a mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)
  • a cell suspension of a 15 mL centrifuge tube After addition to (v / v), the mixture was centrifuged at 300 ⁇ g for 5 minutes, and the culture supernatant was removed.
  • SM buffer 2% FBS / PBS
  • BV421 Mouse Anti-Human CD271 562562, manufactured by BD Biosciences
  • BV421 Mouse IgG1, k Isotype Control 562438, manufactured by BD Biosciences
  • a liquid medium composition having a final polysaccharide concentration of 0.015% (w / v) was prepared by injecting the liquid into a container and instantly mixing it with the medium.
  • RNA extraction solution After 4 or 7 days, transfer the cell suspension to a 15 mL centrifuge tube and add 20% (v) of a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)). After addition to / v), the mixture was centrifuged at 300 ⁇ g for 5 minutes, and then the culture supernatant was removed. Subsequently, 350 ⁇ L (RNeasy mini kit (manufactured by QIAGEN, # 74106)) of the RLT solution was added to prepare an RNA extraction solution.
  • a chelating agent a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)
  • human umbilical mesenchymal stem cells were suspended in StemFit® For Mesenchymal Stem Cell medium and coated with iMatrix-511 silk (892 021, manufactured by Matrixome) to 0.5 ⁇ g / cm 2.
  • the cells were seeded on a 6-well plate at 50,000 cells / well and cultured in a plane at 37 ° C. in a 5% CO 2 environment, and the cells were subcultured using a Detach kit (D13101, manufactured by Takara Bio) on the 4th day of the culture.
  • the cells were added to the RNeasy spin column and centrifuged at 8000 ⁇ g for 15 seconds. Subsequently, 700 ⁇ L of RW1 solution was added to the RNeasy spin column, and the mixture was centrifuged at 8000 ⁇ g for 15 seconds. Subsequently, 500 ⁇ L of RPE solution was added and centrifuged at 8000 ⁇ g for 15 seconds. Further, 500 ⁇ L of RPE solution was added, and the mixture was centrifuged at 8000 ⁇ g for 2 minutes. An RNase-free solution was added to the RNA present in the RNeasy spin column and eluted.
  • cDNA was synthesized from the obtained RNA using the PrimeScript RT reagent Kit (Perfect Real Time) (# RR037A, manufactured by Takara Bio Inc.).
  • Real-time PCR was performed using the synthesized cDNA, Premix EX Taq (Perfect Real Time) (manufactured by Takara Bio Inc., # RR039A), and Taq man Probe (manufactured by Applied Bio Systems).
  • Taq man Probe manufactured by Applied Bio Systems
  • Hs04260367_gH was used for OCT4, Hs04399610_g1 for NANOG, and Hs99999905_m1 for GAPDH.
  • the instrument used was a real-time PCR7500. In the analysis, the relative value obtained by correcting the value of each target gene with the value of GAPDH was calculated and compared.
  • Table 9 shows the relative values of OCT4 gene expression
  • Table 10 shows the relative values of NANOG gene expression.
  • the adhesive ability of hepatocytes can be improved, and the function of mesenchymal stem cells, which has been deteriorated due to repeated passages in 2D culture, can be improved.
  • the present invention can achieve improvement in engraftment rate at the time of hepatocyte transplantation and quality adjustment or quality improvement in mass production of mesenchymal stem cells. Therefore, the present invention is very useful in the field of regenerative medicine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a liquid composition that is for functional enhancement of cells, and that contains: deacylated gellan gum or a salt thereof; and an acidic polysaccharide or a salt thereof that maintains a random coil state in a divalent metal cation medium and that can undergo crosslinking by means of divalent metal ions.

Description

細胞の機能促進用液体組成物Liquid composition for promoting cell function
 本発明は、液体組成物中で細胞を浮遊静置培養することにより、細胞機能を向上させる、細胞の機能促進用液体組成物およびこれを用いた細胞機能の促進方法に関する。 The present invention relates to a liquid composition for promoting cell function, which improves cell function by suspending and statically culturing cells in a liquid composition, and a method for promoting cell function using the same.
 再生医療の分野では、iPS細胞やES細胞等の多能性幹細胞を用いての臓器再生手段の構築が鋭意検討されている。しかし、ES細胞の樹立には倫理的な問題を伴い、また、iPS細胞は癌化リスクや培養期間の長さが問題として認識されている。そのため、癌化リスクが比較的低い間葉系幹細胞や神経幹細胞などの体性幹細胞、分化誘導期間が比較的短い前駆脂肪細胞や前駆心筋細胞などの前駆細胞、または軟骨細胞などを用いた手段の可能性も並行して模索されている。 In the field of regenerative medicine, the construction of organ regeneration means using pluripotent stem cells such as iPS cells and ES cells is being enthusiastically studied. However, the establishment of ES cells involves ethical issues, and iPS cells are recognized as having problems of canceration risk and length of culture period. Therefore, means using somatic stem cells such as mesenchymal stem cells and nerve stem cells having a relatively low risk of canceration, progenitor cells such as progenitor adipocytes and progenitor myocardial cells having a relatively short differentiation induction period, or chondrocytes. Possibility is also being explored in parallel.
 体性幹細胞等を用いた治療手段には、高品質な当該細胞が大量に必要となるため、効率よく高品質な細胞を調製し得る培養方法が求められている。例えば、間葉系幹細胞は、シャーレ中で単層培養(2次元(2D)培養等とも称される)により比較的容易に増殖させることができることが知られている。 Since a large amount of high-quality cells are required for therapeutic means using somatic stem cells or the like, a culture method capable of efficiently preparing high-quality cells is required. For example, it is known that mesenchymal stem cells can be relatively easily proliferated in a petri dish by monolayer culture (also referred to as two-dimensional (2D) culture or the like).
 しかし、最近の報告では、シャーレによる2D培養法は、継代培養に伴い間葉系幹細胞の未分化能や増殖能を低下させる可能性があり、加えて、ホーミング作用を含んだ遊走能や抗炎症作用等の、間葉系幹細胞が有する機能の低下も危惧されている。従って、既存法である2D培養法は、高品質な細胞の生産という観点において、培養時の継代数を制限する等の措置をとる必要があり、この制約は、2D培養方法を用いて細胞を大量に培養する場合の問題点であり、大量生産した当該細胞は均質な品質を維持しているかが懸念される。この点に関して、体性幹細胞の細胞塊を形成させ、浮遊培養を行うことで多能性を支持するマーカー発現が向上することが報告されている(特許文献1)。しかしながら、細胞塊の形成が必須の技術であり、該細胞塊を形成させない単一細胞(シングルセル)の状態での培養に関しては記載がない。均一なサイズの細胞塊を形成させることは技術的に容易ではなく、細胞塊の効果に関しては研究段階であることから、現在の細胞性医薬品においては単一細胞を投与することが一般的であり、その場合、細胞塊をもう一度シングルセルにする必要があり工程が煩雑となることが考えられる。また2D培養法による間葉系幹細胞の形はプラスティック表面に接着したスピンドル系であり、本来の生体内に存在する細胞形状とは大きく異なっている。さらに2D培養法ではトリプシン等による酵素処理のため、トリプシン処理後にシングル化され凍結した細胞は、細胞表面による接着因子等の機能が低下している可能性が考えられる。 However, in recent reports, the 2D culture method using Chare may reduce the undifferentiated ability and proliferative ability of mesenchymal stem cells with subculture, and in addition, migration ability and anti-homing effect. There is also concern that the functions of mesenchymal stem cells, such as inflammatory effects, may decline. Therefore, in the 2D culture method, which is an existing method, it is necessary to take measures such as limiting the number of passages at the time of culturing from the viewpoint of producing high-quality cells, and this restriction is applied to cells using the 2D culture method. This is a problem when culturing in a large amount, and there is a concern that the mass-produced cells maintain uniform quality. In this regard, it has been reported that the expression of markers supporting pluripotency is improved by forming cell clusters of somatic stem cells and performing suspension culture (Patent Document 1). However, the formation of a cell mass is an indispensable technique, and there is no description about the culture in the state of a single cell (single cell) that does not form the cell mass. Since it is not technically easy to form a cell mass of uniform size and the effect of the cell mass is in the research stage, it is common to administer a single cell in the current cellular medicine. In that case, it is necessary to make the cell mass into a single cell again, which may complicate the process. In addition, the shape of mesenchymal stem cells by the 2D culture method is a spindle system adhered to the plastic surface, which is significantly different from the cell shape that originally exists in the living body. Furthermore, in the 2D culture method, since the cells are treated with an enzyme such as trypsin, it is considered that the cells that have been singled and frozen after the trypsin treatment have a reduced function of adhesion factors and the like due to the cell surface.
 一方、細胞治療に用いられる初代培養細胞には先述した幹細胞だけでなく、最終分化した細胞、例えば肝実質細胞なども含まれる。この肝実質細胞は2D培養法では増殖せず、プレートに接着させた場合においても急激な機能低下および生存低下を招くことから、現状は凍結肝実質細胞を融解した直後に使用している。その際に融解直後の生存性だけでなく、肝臓から肝実質細胞を単離する際に使用したコラゲナーゼ等の酵素処理により、細胞機能、特に細胞表面の接着因子等が消失していることが示唆されている。実際、コラゲナーゼ処理により調製された多くのドナー由来肝実質細胞は、コラーゲンコートしたプレートへの接着性が低下している。 On the other hand, the primary cultured cells used for cell therapy include not only the above-mentioned stem cells but also finally differentiated cells such as hepatic parenchymal cells. Since these hepatic parenchymal cells do not proliferate by the 2D culture method and cause a rapid decrease in function and survival even when adhered to a plate, they are currently used immediately after thawing of frozen hepatic parenchymal cells. At that time, it is suggested that not only the viability immediately after thawing but also the cell function, especially the adhesion factor on the cell surface, is lost by the enzymatic treatment such as collagenase used when isolating the liver parenchymal cells from the liver. Has been done. In fact, many donor-derived hepatic parenchymal cells prepared by collagenase treatment have reduced adhesion to collagen-coated plates.
 脱アシル化ジェランガム(DAG)等の多糖類は、金属カチオン(例えばカルシウムイオン等の二価金属カチオン)を介して集合することにより、水中で三次元ネットワーク(不定型な構造体)を形成する。この三次元ネットワークを含む液体培地中で細胞を培養すると、培地中の細胞は、この三次元ネットワークにトラップされ、沈まないため、振とう、回転操作等を要することなく、細胞を浮遊状態で均一に分散させたまま、培養する(浮遊静置培養する)ことが可能となる。また、液体培地の粘度を実質的に高めることなく、上述の三次元ネットワークを形成することが可能なため、該三次元ネットワークを含む培地組成物は、継代培養等における操作性にも優れていることが報告されている(特許文献2)。 Polysaccharides such as deacylated gellan gum (DAG) form a three-dimensional network (atypical structure) in water by assembling via metal cations (for example, divalent metal cations such as calcium ions). When cells are cultured in a liquid medium containing this three-dimensional network, the cells in the medium are trapped in this three-dimensional network and do not sink, so that the cells are uniformly suspended in a floating state without requiring shaking or rotation operations. It is possible to culture (suspended static culture) while still dispersed in the culture medium. Further, since the above-mentioned three-dimensional network can be formed without substantially increasing the viscosity of the liquid medium, the medium composition containing the three-dimensional network is also excellent in operability in subculture and the like. It has been reported that there is (Patent Document 2).
特開2018-23401号公報Japanese Unexamined Patent Publication No. 2018-23401 国際公開第2014/017513号公報International Publication No. 2014/017513
 本発明は、細胞の品質を向上させる方法の提供を目的とする。 An object of the present invention is to provide a method for improving the quality of cells.
 本発明者らは、上記課題を解決すべく鋭意検討したところ、脱アシル化ジェランガム及びアルギン酸ナトリウムを含む液体培地組成物中で細胞塊を形成させることなくシングルセルの状態で間葉系幹細胞を培養することによって、間葉系幹細胞の未分化性や遊走に関わる遺伝子の発現量、及び、特定のサイトカインの分泌量を増加させることができることを見出した。また、本発明者らは、当該液体培地組成物中で肝細胞を培養することによって、肝細胞の接着性を増加させることができることを見出した。本発明者らは、かかる知見に基づいてさらに検討を進めることによって本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors cultivate mesenchymal stem cells in a single cell state in a liquid medium composition containing deacylated gellan gum and sodium alginate without forming cell clumps. By doing so, it was found that the undifferentiated state of mesenchymal stem cells, the expression level of genes involved in migration, and the secretion amount of specific cytokines can be increased. In addition, the present inventors have found that hepatocyte adhesion can be increased by culturing hepatocytes in the liquid medium composition. The present inventors have completed the present invention by further studying based on such findings.
 すなわち、本発明は、以下のとおりである:
[1]脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む、液体組成物であって、該液体組成物が、細胞機能の促進用である、液体組成物。
[2]該液体組成物中の脱アシル化ジェランガム又はその塩の濃度が、フリー体の脱アシル化ジェランガム換算で、0.002~0.1 (w/v)%であり、該酸性多糖類又はその塩の濃度が、フリー体換算で、0.004~0.2 (w/v)%であり、脱アシル化ジェランガム又はその塩に対する該酸性多糖類又はその塩の質量比が、フリー体換算で、1以上である、[1]記載の液体組成物。
[3]該酸性多糖類が、アルギン酸、ペクチン及びペクチン酸からなる群から選択されるいずれかである、[1]又は[2]記載の液体組成物。
[4]該酸性多糖類が、アルギン酸である、[3]記載の液体組成物。
[5]さらに、金属カチオンを含有する、[1]~[4]のいずれか記載の液体組成物。
[6]該金属カチオンが、カルシウムイオンである、[5]記載の液体組成物。
[7]細胞が間葉系幹細胞であり、促進される細胞機能が、未分化維持状態、遊走能、及び分泌因子の分泌能からなる群から選択される少なくとも1つである、[1]~[6]のいずれか記載の液体組成物。
[8]促進される細胞機能が分泌因子の分泌能である、[7]記載の液体組成物。
[9]分泌因子が、TSG-6 (TNF-stimulated gene 6 protein)、STC-1 (Stanniocalcin-1)、ANG (Angiogenin)、EGF (Epidermal Growth Factor)、MCP-1 (Monocyte Chemotactic Protein-1)、ENA-78 (epithelial-derived neutrophil-activating peptide 78)、bFGF (Basic fibroblast growth factor)、IL-6 (Interleukin-6)、IL-8 (Interleukin-8)、VEGF (Vascular endothelial growth factor)、VEGF-D (Vascular endothelial growth factor-D)、TIMP (Tissue inhibitors of matrix metalloproteinase)、PDGF (Platelet-Derived Growth Factor)、及びTGF-β (transforming growth factor-β)からなる群から選択される少なくとも1つである、[8]記載の液体組成物。
[10]細胞が、肝細胞であり、促進される細胞機能が細胞接着能である、[1]~[6]のいずれか記載の液体組成物。
[11]脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む液体組成物中で細胞を培養することを含む、細胞機能を促進させる方法。
[12]該液体組成物中の脱アシル化ジェランガム又はその塩の濃度が、フリー体の脱アシル化ジェランガム換算で、0.002~0.1 (w/v)%であり、該酸性多糖類又はその塩の濃度が、フリー体換算で、0.004~0.2 (w/v)%であり、脱アシル化ジェランガム又はその塩に対する該酸性多糖類又はその塩の質量比が、フリー体換算で、1以上である、[11]記載の方法。
[13]該酸性多糖類が、アルギン酸、ペクチン及びペクチン酸からなる群から選択されるいずれかである、[11]又は[12]記載の方法。
[14]該酸性多糖類が、アルギン酸である、[13]記載の方法。
[15]さらに、金属カチオンを含有する、[11]~[14]のいずれか記載の方法。
[16]該金属カチオンが、カルシウムイオンである、[15]記載の方法。
[17]細胞が間葉系幹細胞であり、促進される細胞機能が、未分化維持状態、遊走能、及び分泌因子の分泌能からなる群から選択される少なくとも1つである、[11]~[16]のいずれか記載の方法。
[18]促進される細胞機能が分泌因子の分泌能である、[17]記載の方法。
[19]分泌因子が、TSG-6 (TNF-stimulated gene 6 protein)、STC-1 (Stanniocalcin-1)、ANG (Angiogenin)、EGF (Epidermal Growth Factor)、MCP-1 (Monocyte Chemotactic Protein-1)、ENA-78 (epithelial-derived neutrophil-activating peptide 78)、bFGF (Basic fibroblast growth factor)、IL-6 (Interleukin-6)、IL-8 (Interleukin-8)、VEGF (Vascular endothelial growth factor)、VEGF-D (Vascular endothelial growth factor-D)、TIMP (Tissue inhibitors of matrix metalloproteinase)、PDGF (Platelet-Derived Growth Factor)、及びTGF-β (transforming growth factor-β)からなる群から選択される少なくとも1つである、[18]記載の方法。
[20]細胞が、肝細胞であり、促進される細胞機能が細胞接着能である、[11]~[16]のいずれか記載の方法。
That is, the present invention is as follows:
[1] A liquid composition comprising a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. The liquid composition is for promoting cell function.
[2] The concentration of the deacylated gellan gum or its salt in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the free form of the deacylated gellan gum, and the concentration of the acidic polysaccharide or its salt thereof. The concentration is 0.004 to 0.2 (w / v)% in terms of free form, and the mass ratio of the acidic polysaccharide or its salt to deacylated gellan gum or a salt thereof is 1 or more in terms of free form. [1] The liquid composition according to the above.
[3] The liquid composition according to [1] or [2], wherein the acidic polysaccharide is any one selected from the group consisting of alginic acid, pectin and pectic acid.
[4] The liquid composition according to [3], wherein the acidic polysaccharide is alginic acid.
[5] The liquid composition according to any one of [1] to [4], further containing a metal cation.
[6] The liquid composition according to [5], wherein the metal cation is a calcium ion.
[7] The cells are mesenchymal stem cells, and the promoted cell function is at least one selected from the group consisting of undifferentiated state, migratory ability, and secretory component secretory ability, [1] to The liquid composition according to any one of [6].
[8] The liquid composition according to [7], wherein the promoted cellular function is the secretory capacity of a secretory component.
[9] Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1). , ENA-78 (epithelial-derived neutrophil-activating peptide 78), bFGF (Basic fibroblast growth factor), IL-6 (Interleukin-6), IL-8 (Interleukin-8), VEGF (Vascular endothelial growth factor), VEGF -At least one selected from the group consisting of D (Vascular endothelial growth factor-D), TIMP (Tissue inhibitors of matrix metalloproteinase), PDGF (Platelet-Derived Growth Factor), and TGF-β (transforming growth factor-β) The liquid composition according to [8].
[10] The liquid composition according to any one of [1] to [6], wherein the cells are hepatocytes and the cell function promoted is cell adhesion ability.
[11] Cells in a liquid composition comprising deacylated gellan gum or a salt thereof, and an acidic polysaccharide or salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. A method of promoting cell function, including culturing.
[12] The concentration of the deacylated gellan gum or a salt thereof in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the deacylated gellan gum in a free form, and the concentration of the acidic polysaccharide or a salt thereof is 0.002 to 0.1 (w / v)%. The concentration is 0.004 to 0.2 (w / v)% in terms of free form, and the mass ratio of the acidic polysaccharide or its salt to deacylated gellan gum or a salt thereof is 1 or more in terms of free form. [11] The method described.
[13] The method according to [11] or [12], wherein the acidic polysaccharide is any one selected from the group consisting of alginic acid, pectin and pectic acid.
[14] The method according to [13], wherein the acidic polysaccharide is alginic acid.
[15] The method according to any one of [11] to [14], further containing a metal cation.
[16] The method according to [15], wherein the metal cation is a calcium ion.
[17] The cells are mesenchymal stem cells, and the promoted cellular function is at least one selected from the group consisting of undifferentiated maintenance state, migratory ability, and secretory component secretory ability, [11] to The method described in any of [16].
[18] The method according to [17], wherein the promoted cellular function is the secretory capacity of secretory components.
[19] Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1). , ENA-78 (epithelial-derived neutrophil-activating peptide 78), bFGF (Basic fibroblast growth factor), IL-6 (Interleukin-6), IL-8 (Interleukin-8), VEGF (Vascular endothelial growth factor), VEGF -At least one selected from the group consisting of D (Vascular endothelial growth factor-D), TIMP (Tissue inhibitors of matrix metalloproteinase), PDGF (Platelet-Derived Growth Factor), and TGF-β (transforming growth factor-β) The method described in [18].
[20] The method according to any one of [11] to [16], wherein the cell is a hepatocyte and the promoted cell function is cell adhesion ability.
 本発明により、細胞の特定の機能を促進することができる。例えば、肝細胞移植時の接着性(又は生着率)の向上や2D培養での継代を重ねたこと等により低下した間葉系幹細胞の機能(例、未分化状態、遊走能、分泌因子の分泌能)を促進させ、その品質を改善させることができる。 According to the present invention, it is possible to promote a specific function of a cell. For example, the function of mesenchymal stem cells (eg, undifferentiated state, migration ability, secretory component) decreased due to improvement of adhesiveness (or engraftment rate) at the time of hepatocyte transplantation and repeated passages in 2D culture. It can promote (secretory capacity) and improve its quality.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
1.液体組成物
 本発明は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む、液体組成物であって、該液体組成物が、細胞機能の促進用である、液体組成物(以下、「本発明の液体組成物」と称することがある)を提供する。
1. Liquid Composition The present invention comprises a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. , A liquid composition, wherein the liquid composition is for promoting cell function, provides a liquid composition (hereinafter, may be referred to as "the liquid composition of the present invention").
 本発明における細胞とは、動物或いは植物を構成する最も基本的な単位であり、その要素として細胞膜の内部に細胞質と各種の細胞小器官をもつものである。この際、DNAを内包する核は、細胞内部に含まれても含まれなくてもよい。例えば、本発明における動物由来の細胞には、精子や卵子などの生殖細胞、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離された癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変が成された細胞、生体から分離され人為的に核が交換された細胞等が含まれる。生体を構成する体細胞の例としては、以下に限定されるものではないが、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(たとえば、平滑筋細胞または骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、及び単核細胞等が含まれる。当該体細胞は、例えば皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳または神経組織などの任意の組織から採取される細胞が含まれる。幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、その例としては、以下に限定されるものではないが、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞などが含まれる。前駆細胞とは、前記幹細胞から特定の体細胞や生殖細胞に分化する途中の段階にある細胞である。癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞であり、その例としては、以下に限定されるものではないが、CHO(チャイニーズハムスター卵巣細胞株)、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five(登録商標)、Vero等が含まれる。 The cell in the present invention is the most basic unit constituting an animal or a plant, and has a cytoplasm and various organelles inside the cell membrane as its elements. At this time, the nucleus containing DNA may or may not be contained inside the cell. For example, the animal-derived cells in the present invention include germ cells such as sperm and eggs, somatic cells constituting the living body, stem cells, precursor cells, cancer cells separated from the living body, and immortalization ability obtained from the living body. Includes cells (cell lines) that are stably maintained in vitro, cells that have been isolated from the living body and artificially modified, and cells that have been separated from the living body and artificially exchanged nuclei. Examples of somatic cells constituting the living body are not limited to the following, but are not limited to, fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monospheres, and bones. Cells, bone marrow cells, pericutaneous cells, dendritic cells, keratinocytes, fat cells, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatic parenchymal cells, cartilage cells, oval cells, nervous system cells, Glia cells, neurons, oligodendrocytes, microglia, stellate glue cells, heart cells, esophageal cells, muscle cells (eg, smooth muscle cells or skeletal muscle cells), pancreatic beta cells, melanin cells, hematopoietic precursor cells, and simplex. Includes nuclear cells and the like. The somatic cells include, for example, skin, kidney, spleen, adrenal, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thoracic gland, muscle, connective tissue, bone, cartilage, blood vessel. Includes cells taken from any tissue such as tissue, blood, heart, eye, brain or nerve tissue. Stem cells are cells that have the ability to replicate themselves and differentiate into other multi-lineage cells, including, but not limited to, embryonic stem cells (ES cells). , Embryonic tumor cells, embryonic germ stem cells, artificial pluripotent stem cells (iPS cells), nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, Includes hair follicle stem cells and the like. Progenitor cells are cells in the process of differentiating from the stem cells into specific somatic cells or germ cells. Cancer cells are cells that are derived from somatic cells and have acquired infinite proliferative capacity. A cell line is a cell that has acquired infinite proliferative capacity by artificial manipulation in vitro, and examples thereof are, but are not limited to, CHO (Chinese hamster ovary cell line), HCT116. , Huh7, HEK293 (human fetal kidney cell), HeLa (human uterine cancer cell line), HepG2 (human liver cancer cell line), UT7 / TPO (human leukemia cell line), MDCK, MDBK, BHK, C-33A, HT- 29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five®, Vero, etc. are included.
 本発明の液体組成物中で培養する細胞は、前記に記載した細胞から任意に選択することができる。細胞は、動物又は植物より直接採取することができる。細胞は、特定の処理を施すことにより動物又は植物から誘導させたり、成長させたり、または形質転換させた後に採取してもよい。この際、当該処理は生体内であっても生体外であってもよい。動物としては、例えば魚類、両生類、爬虫類、鳥類、汎甲殻類、六脚類、哺乳類等が挙げられる。哺乳動物の例としては、限定されるものではないが、ラット、マウス、ウサギ、モルモット、リス、ハムスター、ハタネズミ、カモノハシ、イルカ、クジラ、イヌ、ネコ、ヤギ、ウシ、ウマ、ヒツジ、ブタ、ゾウ、コモンマーモセット、リスザル、アカゲザル、チンパンジーおよびヒトが挙げられる。植物としては、採取した細胞又は組織が液体培養可能なものであれば、特に限定はない。例えば、生薬類(例えば、サポニン、アルカロイド類、ベルベリン、スコポリン、植物ステロール等)を生産する植物(例えば、薬用人参、ニチニチソウ、ヒヨス、オウレン、ベラドンナ等)や、化粧品・食品原料となる色素や多糖体(例えば、アントシアニン、ベニバナ色素、アカネ色素、サフラン色素、フラボン類等)を生産する植物(例えば、ブルーベリー、紅花、セイヨウアカネ、サフラン等)、或いは医薬品原体を生産する植物などがあげられるが、それらに限定されない。好ましい一態様において、細胞は間葉系幹細胞又は肝細胞であり得る。 The cells to be cultured in the liquid composition of the present invention can be arbitrarily selected from the cells described above. Cells can be harvested directly from animals or plants. Cells may be harvested after being induced, grown or transformed from an animal or plant by subjecting them to a particular treatment. At this time, the treatment may be in vivo or in vitro. Examples of animals include fish, amphibians, reptiles, birds, pancrustaceans, hexapods, mammals and the like. Examples of mammals include, but are not limited to, rats, mice, rabbits, guinea pigs, squirrel monkeys, hamsters, voles, platypus, dolphins, whales, dogs, cats, goats, cows, horses, sheep, pigs, and elephants. , Common marmosets, squirrel monkeys, voles, chimpanzees and humans. The plant is not particularly limited as long as the collected cells or tissues can be cultured in liquid. For example, plants that produce crude drugs (eg, saponin, alkaloids, berberine, scoporin, plant sterol, etc.) (eg, medicated carrots, nichinichisou, hyos, coptis, belladonna, etc.), pigments and polysaccharides used as raw materials for cosmetics and foods. Examples include plants that produce the body (eg, anthocyanin, safflower pigment, madonna pigment, saffron pigment, flavones, etc.) (eg, blueberries, red flowers, Coptis chinensis, saffron, etc.), or plants that produce the drug substance. , Not limited to them. In a preferred embodiment, the cells can be mesenchymal stem cells or hepatocytes.
 本明細書において、間葉系幹細胞とは、自己複製能と複数の間葉系細胞へと分化する多分化能を有する体性幹細胞である。本発明の液体組成物を適用する間葉系幹細胞の由来する組織は特に限定されず、骨髄、脂肪、臍帯等のいずれであってもよい。 In the present specification, the mesenchymal stem cell is a somatic stem cell having self-renewal ability and pluripotency to differentiate into a plurality of mesenchymal cells. The tissue from which the mesenchymal stem cells to which the liquid composition of the present invention is applied is not particularly limited, and may be any of bone marrow, fat, umbilical cord and the like.
 本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む。 The liquid composition of the present invention contains deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
 本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含むことにより、間葉系幹細胞を浮遊状態(好ましくは、浮遊静置状態)で培養できる。 The liquid composition of the present invention comprises deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. Allows mesenchymal stem cells to be cultured in a floating state (preferably in a floating stationary state).
 本発明における「浮遊」とは、培養容器に対して細胞が接着しない状態(非接着)であることをいう。さらに、本発明において、液体組成物中で細胞を培養する際、液体組成物に対する外部からの圧力や振動、或いは当該液体組成物の振とう、回転操作等を伴わずに細胞が当該液体組成物中で均一に分散し尚且つ浮遊状態にある状態を「浮遊静置」といい、当該状態で細胞を培養することを「浮遊静置培養」という。また、「浮遊静置」において浮遊させることのできる期間としては、5分以上(例、少なくとも5~60分)、1時間以上(例、1時間~24時間)、24時間以上(例、1日~21日)、48時間以上、7日以上等が含まれるが、浮遊状態を保つ限りこれらの期間に限定されない。 "Floating" in the present invention means that cells do not adhere to the culture vessel (non-adhesive). Further, in the present invention, when culturing cells in a liquid composition, the cells do not involve external pressure or vibration on the liquid composition, or shaking, rotation operation, etc. of the liquid composition. A state in which cells are uniformly dispersed and in a floating state is called "floating static culture", and culturing cells in this state is called "floating static culture". In addition, the period that can be suspended in "floating static" is 5 minutes or more (eg, at least 5 to 60 minutes), 1 hour or more (eg, 1 hour to 24 hours), 24 hours or more (eg, 1). Sun-21 days), 48 hours or more, 7 days or more, etc., but not limited to these periods as long as the floating state is maintained.
 好ましい態様において、本発明の液体組成物は、細胞の非凍結状態での培養が可能な温度範囲(例えば、0~37℃)の少なくとも1点において、細胞の浮遊静置が可能である。本発明の液体組成物は、好ましくは1~30℃の温度範囲の少なくとも1点、より好ましくは15~30℃の温度範囲の少なくとも1点、更に好ましくは22~28℃の温度範囲の少なくとも1点、より更に好ましくは24~26℃の温度範囲の少なくとも1点、最も好ましくは少なくとも25℃において、細胞の浮遊静置が可能である。 In a preferred embodiment, the liquid composition of the present invention is capable of floating and standing cells at at least one point in a temperature range (for example, 0 to 37 ° C.) at which cells can be cultured in a non-frozen state. The liquid composition of the present invention preferably has at least one point in the temperature range of 1 to 30 ° C., more preferably at least one point in the temperature range of 15 to 30 ° C., and more preferably at least one point in the temperature range of 22 to 28 ° C. At least one point, more preferably at least one point in the temperature range of 24 to 26 ° C., most preferably at least 25 ° C., allows suspension of cells.
 浮遊静置が可能か否かは、例えば、培養対象の細胞を、2×104cells/mlの濃度で、評価対象の液体組成物中に均一に分散させ、15 mlコニカルチューブ中に10 ml注入し、少なくとも5分以上(例、1時間以上、24時間以上、48時間以上、7日以上)、所望の温度(例、25℃、37℃)にて静置し、当該細胞の浮遊状態が維持されるか否かを観察することにより、評価することができる。全細胞のうちの70%以上が浮遊状態の場合、浮遊状態が維持されたと結論できる。細胞に代えて、ポリスチレンビーズ(Size 500-600 μm、Polysciences Inc.製)に代替して評価してもよい。 Whether or not floating still is possible is determined, for example, by uniformly dispersing the cells to be cultured at a concentration of 2 × 10 4 cells / ml in the liquid composition to be evaluated and 10 ml in a 15 ml conical tube. Inject the cells and allow them to stand at the desired temperature (eg, 25 ° C, 37 ° C) for at least 5 minutes (eg, 1 hour or longer, 24 hours or longer, 48 hours or longer, 7 days or longer), and the cells are suspended. Can be evaluated by observing whether or not is maintained. If more than 70% of all cells are suspended, it can be concluded that the suspended state was maintained. Instead of cells, polystyrene beads (Size 500-600 μm, manufactured by Polysciences Inc.) may be used for evaluation.
 本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む。本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含むことにより、良好な生存性を維持しながら、細胞を培養することができる。好ましい態様において、本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含むことにより、細胞の浮遊状態での培養(好ましくは、浮遊静置)を可能にする特性(細胞や組織の浮遊状態を維持する効果)を備える。 The liquid composition of the present invention contains deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. The liquid composition of the present invention comprises deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. Allows the cells to be cultured while maintaining good viability. In a preferred embodiment, the liquid composition of the present invention is a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or an acidic polysaccharide thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. By containing a salt, it has a property (effect of maintaining the floating state of cells and tissues) that enables culture in a floating state of cells (preferably floating and standing).
 脱アシル化ジェランガムは、1-3結合したグルコース、1-4結合したグルクロン酸、1-4結合したグルコース及び1-4結合したラムノースの4分子の糖を構成単位とする直鎖状の高分子多糖類であり、以下の一般式(I)(ここで、R1、R2が共に水素原子であり、nは2以上の整数である)で表わされる多糖類である。ただし、R1がグリセリル基を、R2がアセチル基を含んでいてもよいが、アセチル基及びグリセリル基の含有量は、好ましくは10%以下であり、より好ましくは1%以下である。 Deacylated gellan gum is a linear polymer composed of four sugars: 1-3-linked glucose, 1-4-linked glucuronic acid, 1-4-linked glucose, and 1-4-linked rhamnose. It is a polysaccharide and is a polysaccharide represented by the following general formula (I) (where R 1 and R 2 are both hydrogen atoms and n is an integer of 2 or more). However, R 1 may contain a glyceryl group and R 2 may contain an acetyl group, but the content of the acetyl group and the glyceryl group is preferably 10% or less, more preferably 1% or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 脱アシル化ジェランガムは、発酵培地でジェランガム生産微生物を培養し、菌体外に生産された粘膜物をアルカリ処理に付し、1-3結合したグルコース残基に結合したグリセリル基とアセチル基を脱アシル化した後に回収し、乾燥、粉砕等の工程後、粉末状にすることにより、製造することが出来る。精製方法としては、例えば、液-液抽出、分別沈澱、結晶化、各種のイオン交換クロマトグラフィー、セファデックスLH-20等を用いたゲル濾過クロマトグラフィー、活性炭、シリカゲル等による吸着クロマトグラフィーもしくは薄層クロマトグラフィーによる活性物質の吸脱着処理、あるいは逆相カラムを用いた高速液体クロマトグラフィー等を単独あるいは任意の順序に組み合わせ、また反復して用いることにより、不純物を除き精製することができる。ジェランガムの生産微生物の例としては、これに限定されるものではないが、スフィンゴモナス・エロディア(Sphingomonas elodea)及び当該微生物の遺伝子を改変した微生物が挙げられる。 Deacylated gellan gum is obtained by culturing gellan gum-producing microorganisms in a fermentation medium and subjecting the mucosal substances produced outside the cells to alkaline treatment to remove glyceryl groups and acetyl groups bound to 1-3 bound glucose residues. It can be produced by recovering it after acylation, drying it, crushing it, and then making it into a powder. Examples of the purification method include liquid-liquid extraction, fractional precipitation, crystallization, various ion exchange chromatography, gel filtration chromatography using Cefadex LH-20, adsorption chromatography with activated charcoal, silica gel, etc., or thin layer chromatography. Purification can be performed by removing impurities by adsorbing and desorbing an active substance by chromatography, high-speed liquid chromatography using a reverse-phase column, or the like by combining them alone or in any order and using them repeatedly. Examples of microorganisms producing gellan gum include, but are not limited to, Sphingomonas elodea and microorganisms in which the genes of the microorganisms are modified.
 脱アシル化ジェランガムはリン酸化したものを使用することもできる。当該リン酸化は公知の手法で行うことができる。 Deacylated gellan gum can also be phosphorylated. The phosphorylation can be performed by a known method.
 一般式(I)で表される化合物のR1及び/又はR2に当たる水酸基を、C1-3アルコキシ基、C1-3アルキルスルホニル基、グルコースあるいはフルクトースなどの単糖残基、スクロース、ラクトースなどのオリゴ糖残基、グリシン、アルギニンなどのアミノ酸残基などに置換した脱アシル化ジェランガムの誘導体も本発明に使用できる。また、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等のクロスリンカーを用いて脱アシル化ジェランガムを架橋することもできる。 The hydroxyl group corresponding to R 1 and / or R 2 of the compound represented by the general formula (I) is a C 1-3 alkoxy group, a C 1-3 alkylsulfonyl group, a monosaccharide residue such as glucose or fructose, sucrose, or lactose. Derivatives of deacylated gellan gum substituted with oligosaccharide residues such as glycine and amino acid residues such as glycine and arginine can also be used in the present invention. Deacylated gellan gum can also be crosslinked using a crosslinker such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC).
 塩としては、リチウム、ナトリウム、カリウムといったアルカリ金属の塩;カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩;アルミニウム、亜鉛、銅、鉄等の塩;アンモニウム塩;テトラエチルアンモニウム、テトラブチルアンモニウム、メチルトリブチルアンモニウム、セチルトリメチルアンモニウム、ベンジルメチルヘキシルデシルアンモニウム、コリン等の四級アンモニウム塩;ピリジン、トリエチルアミン、ジイソプロピルアミン、エタノールアミン、ジオラミン、トロメタミン、メグルミン、プロカイン、クロロプロカイン等の有機アミンとの塩;グリシン、アラニン、バリン等のアミノ酸との塩;等が挙げられる。 Salts include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium, barium and magnesium; salts such as aluminum, zinc, copper and iron; ammonium salts; tetraethylammonium, tetrabutylammonium and methyl. Tertiary ammonium salts such as tributylammonium, cetyltrimethylammonium, benzylmethylhexyldecylammonium, choline; salts with organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumin, prokine, chloroprocine; glycine , Salts with amino acids such as ammonium, valine; etc.
 脱アシル化ジェランガム又はその塩の重量平均分子量は、好ましくは10,000乃至50,000,000であり、より好ましくは100,000乃至20,000,000、更に好ましくは1,000,000乃至10,000,000である。例えば、当該分子量は、ゲル浸透クロマトグラフィー(GPC)によるプルラン換算で測定できる。 The weight average molecular weight of the deacylated gellan gum or a salt thereof is preferably 10,000 to 50,000,000, more preferably 100,000 to 20,000,000, and further preferably 1,000,000 to 10,000,000. For example, the molecular weight can be measured in terms of pullulan by gel permeation chromatography (GPC).
 脱アシル化ジェランガム又はその塩として、市販の製品、例えば、三晶株式会社製「KELCOGEL(シーピー・ケルコ社の登録商標)CG-LA」、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)」等を使用することができる。 Commercially available products such as deacylated gellan gum or a salt thereof, for example, "KELCOGEL (registered trademark of CP-Kelco) CG-LA" manufactured by Sansho Co., Ltd. and "Kelcogel (CP)" manufactured by Saneigen FFI Co., Ltd.・ Kelco's registered trademark) ”etc. can be used.
 二価金属カチオン(例、カルシウムイオン、マグネシウムイオン、バリウムイオン、銅イオン、鉄イオン、亜鉛イオン、スズイオン、鉛イオン等、好ましくはカルシウムイオン)媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩としては、アルギン酸(オリゴアルギン酸(「アルギン酸オリゴ糖」とも称されることがある)を含む)、ペクチン、ペクチン酸、それらの塩等を挙げることができ、好ましくは、アルギン酸(オリゴアルギン酸を含む)又はその塩である。 A divalent metal cation (eg, calcium ion, magnesium ion, barium ion, copper ion, iron ion, zinc ion, tin ion, lead ion, etc., preferably calcium ion) that maintains a random coil state in the medium and is a divalent metal. Examples of the acidic polysaccharide or a salt thereof that can be cross-linked via ions include alginic acid (including oligoarginic acid (also referred to as “arginate oligosaccharide”)), pectin, pectinic acid, and salts thereof. It can be, preferably an arginic acid (including oligoarginic acid) or a salt thereof.
 アルギン酸は、α1-4結合したL-グルクロン酸とβ1-4結合したD-マンヌロン酸の両方のウロン酸が直鎖重合した構造を有する多糖類である。 Alginic acid is a polysaccharide having a structure in which both uronic acids, α1-4 bound L-glucuronic acid and β1-4 bound D-mannuronic acid, are linearly polymerized.
 アルギン酸又はその塩は、コンブやワカメに代表される褐藻類から、アルギン酸が有するカルボキシル基に対するイオン交換反応を行うことにより、抽出、精製することが出来る。藻体中のアルギン酸はカルシウムイオンなどの多価カチオンと不溶性の塩を作っているので、これをNaとイオン交換させ水溶性のアルギン酸ナトリウムとすることで、藻体外へ抽出する。更に、アルギン酸ナトリウムの水溶液に対して酸を加えることにより、不溶性のアルギン酸を凝固析出させ、凝固析出したアルギン酸を単離することにより、精製されたアルギン酸を得ることができる。 Alginic acid or a salt thereof can be extracted and purified from brown algae represented by kelp and wakame seaweed by performing an ion exchange reaction with the carboxyl group of alginic acid. Since alginic acid in the algae forms an insoluble salt with polyvalent cations such as calcium ions, it is extracted to the outside of the algae by ion-exchange with Na to obtain water-soluble sodium alginate. Further, by adding an acid to an aqueous solution of sodium alginate, insoluble alginic acid is coagulated and precipitated, and by isolating the coagulated and precipitated alginic acid, purified alginic acid can be obtained.
 塩としては、リチウム、ナトリウム、カリウムといったアルカリ金属の塩;カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩;アルミニウム、亜鉛、銅、鉄等の塩;アンモニウム塩;テトラエチルアンモニウム、テトラブチルアンモニウム、メチルトリブチルアンモニウム、セチルトリメチルアンモニウム、ベンジルメチルヘキシルデシルアンモニウム、コリン等の四級アンモニウム塩;ピリジン、トリエチルアミン、ジイソプロピルアミン、エタノールアミン、ジオラミン、トロメタミン、メグルミン、プロカイン、クロロプロカイン等の有機アミンとの塩;グリシン、アラニン、バリン等のアミノ酸との塩;等が挙げられる。本発明においては、水への溶解性の観点から、アルギン酸ナトリウムが好適に使用される。 Salts include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium, barium and magnesium; salts such as aluminum, zinc, copper and iron; ammonium salts; tetraethylammonium, tetrabutylammonium and methyl. Tertiary ammonium salts such as tributylammonium, cetyltrimethylammonium, benzylmethylhexyldecylammonium, choline; salts with organic amines such as pyridine, triethylamine, diisopropylamine, ethanolamine, diolamine, tromethamine, meglumin, prokine, chloroprocine; glycine , Salts with amino acids such as ammonium, valine; etc. In the present invention, sodium alginate is preferably used from the viewpoint of solubility in water.
 アルギン酸又はその塩の重量平均分子量は、例えば300乃至5,000,000であり、好ましくは300乃至1,000,000、より好ましくは300乃至500,000、更に好ましくは300乃至100,000、最も好ましくは300乃至10,000である。例えば、当該分子量は、ゲル浸透クロマトグラフィー(GPC)によるプルラン換算で測定できる。 The weight average molecular weight of alginic acid or a salt thereof is, for example, 300 to 5,000,000, preferably 300 to 1,000,000, more preferably 300 to 500,000, still more preferably 300 to 100,000, and most preferably 300 to 10,000. For example, the molecular weight can be measured in terms of pullulan by gel permeation chromatography (GPC).
 アルギン酸(オリゴアルギン酸を含む)又はその塩として、市販の製品、例えば、以下の製品を使用することもできる。
株式会社キミカ:
 キミカアルギンシリーズ IL-2、IL-6、I-1、I-3、I-5、I-8、ULV-L3、ULV-L5、ULV-1、ULV-3、ULV-5、ULV-20、ULV-L3G、IL-6G、I-1G、I-3G、IL-6M、BL-2、BL-6、B-1、B-3、B-5、B-8、SKAT-ONE、SKAT-ULV
 アルギテックスシリーズ LL、L、M、H
キッコーマンバイオケミファ株式会社:
 ダックアルギンNSPH2R、NSPHR、NSPMR、NSPLR、NSPLLR
三晶株式会社:
 スコーギン、サンアルギン
北海道三井化学株式会社:
 アルギン酸オリゴ糖 ALGIN
As alginic acid (including oligo alginic acid) or a salt thereof, commercially available products such as the following products can also be used.
Kimika Co., Ltd .:
Kimika Argin Series IL-2, IL-6, I-1, I-3, I-5, I-8, ULV-L3, ULV-L5, ULV-1, ULV-3, ULV-5, ULV-20 , ULV-L3G, IL-6G, I-1G, I-3G, IL-6M, BL-2, BL-6, B-1, B-3, B-5, B-8, SKAT-ONE, SKAT -ULV
Argitex Series LL, L, M, H
Kikkoman Biochemifa Co., Ltd .:
Duck Argin NSPH2R, NSPHR, NSPMR, NSPLR, NSPLLR
Sansho Co., Ltd .:
Skogin, San Argin Hokkaido Mitsui Chemicals, Inc .:
Alginate oligosaccharide ALGIN
 脱アシル化ジェランガム、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類は、環内或いは環外異性化により生成する互変異性体、幾何異性体、互変異性体若しくは幾何異性体の混合物、又はそれらの混合物の形で存在してもよい。脱アシル化ジェランガム及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類は、異性化により生じるか否かに拘わらず、不斉中心を有する場合は、分割された光学異性体或いはそれらを任意の比率で含む混合物の形で存在してよい。 Deacylated gellan gum and acidic polysaccharides that maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions are tautomers produced by intra-ring or extra-ring isomerization. It may be present in the form of geometric isomers, tautomers or mixtures of geometric isomers, or mixtures thereof. Acidic polysaccharides that maintain a random coil state in deacylated gellan gum and divalent metal cation media and can be crosslinked via divalent metal ions have asymmetric centers, whether or not they result from isomerization. In some cases, they may be present in the form of split optical isomers or mixtures containing them in any proportion.
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩は、液体組成物中の金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合し、三次元のネットワーク(不定型な構造体)を形成する。多糖類が金属カチオンを介してマイクロゲルを形成することは公知であり(例えば、特開2004-129596号公報)、前記不定型な構造体には、一態様として当該マイクロゲルも包含される。脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩が金属カチオンを介して集合したものとしては、その一態様としてフイルム状の構造体が挙げられる。本発明の液体組成物は、この脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合することにより形成された、三次元のネットワーク(不定型な構造体)を含む。本発明の液体組成物中に、細胞を懸濁し培養すると、液体組成物中に懸濁された細胞は、この三次元ネットワークにトラップされ、沈降しないため、振とう、回転操作等を要することなく、細胞を浮遊状態で均一に分散させたまま、培養する(浮遊静置培養する)ことが可能となる。本発明の液体組成物は、好ましくは、前記三次元のネットワーク(不定型な構造体)を均一に分散された態様で含む。 Deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion, are metal cations in the liquid composition (eg, a salt thereof). , Divalent metal cations such as calcium ions) to form a three-dimensional network (atypical structure). It is known that polysaccharides form microgels via metal cations (for example, JP-A-2004-129596), and the amorphous structure also includes the microgel as one embodiment. Deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are aggregated via a metal cation. As one aspect thereof, a film-like structure can be mentioned. In the liquid composition of the present invention, the deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are used. It contains a three-dimensional network (atypical structure) formed by aggregating through metal cations (eg, divalent metal cations such as calcium ions). When cells are suspended and cultured in the liquid composition of the present invention, the cells suspended in the liquid composition are trapped in this three-dimensional network and do not settle, so that shaking, rotation operation, etc. are not required. , The cells can be cultured (suspended static culture) while being uniformly dispersed in a suspended state. The liquid composition of the present invention preferably contains the three-dimensional network (atypical structure) in a uniformly dispersed manner.
 好ましい態様において、上記三次元のネットワーク(不定型な構造体)の形成は、本発明の液体組成物は、塑性流体であって、流動性があれば、特に限定されない。特に、液体組成物の粘度が10000 mPa・sを上回らないことを意味する。この際の当該液体組成物の粘度は、25℃において、5000 mPa・s以下であり、好ましくは1000 mPa・s以下であり、より好ましくは100 mPa・s以下である。 In a preferred embodiment, the formation of the three-dimensional network (atypical structure) is not particularly limited as long as the liquid composition of the present invention is a plastic fluid and has fluidity. In particular, it means that the viscosity of the liquid composition does not exceed 10000 mPa · s. At this time, the viscosity of the liquid composition is 5000 mPa · s or less, preferably 1000 mPa · s or less, and more preferably 100 mPa · s or less at 25 ° C.
 液体組成物の粘度は、例えば後述の実施例に記載の方法で測定することができる。具体的には25℃条件下でE型粘度計(東機産業株式会社製、TV-22型粘度計、機種:TVE-22L、コーンロータ:標準ロータ 1°34’×R24、回転数100rpm)を用いて測定することができる。 The viscosity of the liquid composition can be measured, for example, by the method described in Examples described later. Specifically, E-type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-22 type viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34'x R24, rotation speed 100 rpm) under 25 ° C conditions. Can be measured using.
 本発明の液体組成物は、「脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩」以外の多糖類又はその塩を含んでいてもよい。該多糖類は、好ましくはアニオン性の官能基を有する酸性多糖類である。酸性多糖類とは、その構造中にアニオン性の官能基を有すれば特に制限されないが、例えば、ウロン酸(例えば、グルクロン酸、イズロン酸、ガラクツロン酸、マンヌロン酸)を有する多糖類、構造中の一部に硫酸基又はリン酸基を有する多糖類、或いはその両方の構造を持つ多糖類であって、天然から得られる多糖類のみならず、微生物により産生された多糖類、遺伝子工学的に産生された多糖類、或いは酵素を用いて人工的に合成された多糖類も含まれる。より具体的には、ヒアルロン酸、ネイティブジェランガム、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸、又はそれらの塩が例示される。 The liquid composition of the present invention is other than "deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion". May contain a polysaccharide thereof or a salt thereof. The polysaccharide is preferably an acidic polysaccharide having an anionic functional group. The acidic polysaccharide is not particularly limited as long as it has an anionic functional group in its structure, but is, for example, a polysaccharide having uronic acid (for example, glucuronic acid, isulonic acid, galacturonic acid, mannuronic acid) in its structure. Polysaccharides having a sulfate group or a uronic acid group as part of the above, or polysaccharides having both structures, not only naturally obtained polysaccharides, but also polysaccharides produced by microorganisms, genetically engineered. It also includes the produced polysaccharides or the polysaccharides artificially synthesized using enzymes. More specifically, hyaluronic acid, native gellan gum, lambzan gum, daiyutan gum, xanthan gum, carrageenan, zantan gum, hexuronic acid, fucoidan, pectin, pectinic acid, pectinic acid, heparan sulfate, heparan, heparitin sulfate, keratosulfate, chondroitin sulfate. , Dermatan sulfate, ramnan sulfate, or salts thereof.
 本発明の液体組成物中の脱アシル化ジェランガム又はその塩の濃度(フリー体の脱アシル化ジェランガム換算)は、例えば0.002~0.1 (w/v)%、好ましくは0.002~0.009 (w/v)%、より好ましくは0.003~0.009 (w/v)%、より更に好ましくは0.0033~0.0066 (w/v)%である。 The concentration of the deacylated gellan gum or a salt thereof in the liquid composition of the present invention (equivalent to deacylated gellan gum in a free form) is, for example, 0.002 to 0.1 (w / v)%, preferably 0.002 to 0.009 (w / v). %, More preferably 0.003 to 0.009 (w / v)%, and even more preferably 0.0033 to 0.0066 (w / v)%.
 本発明の液体組成物中の二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の濃度(フリー体換算)は、例えば、0.004~0.2 (w/v)%、好ましくは0.004~0.02 (w/v)%、より好ましくは0.004~0.015 (w/v)%であり、更に好ましくは0.005~0.015 (w/v)% 、より更に好ましくは0.0066~0.0133 (w/v)%である。 Concentration of an acidic polysaccharide (eg, arginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium in the liquid composition of the present invention and can be crosslinked via a divalent metal ion (free form equivalent). Is, for example, 0.004 to 0.2 (w / v)%, preferably 0.004 to 0.02 (w / v)%, more preferably 0.004 to 0.015 (w / v)%, and even more preferably 0.005 to 0.015 (w /). v)%, more preferably 0.0066 to 0.0133 (w / v)%.
 脱アシル化ジェランガム又はその塩の濃度は、細胞を浮遊させる十分な作用を確保する観点から、0.002 (w/v)%以上、好ましくは0.003 (w/v)%以上とすることが好ましい。一方、この濃度が高すぎると、浮遊作用が強くなることにより細胞回収率が低下したり、培地自体の取扱い性が低下するおそれがあるので、0.1 (w/v)%以下、好ましくは0.009 (w/v)%以下とすることが好ましい。二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の濃度は、せん断力によって、細胞の浮遊状態を維持する効果を速やかに消失する特性(細胞の浮遊状態を維持する効果のせん断力に対する脆弱性)を確保する観点から、0.004 (w/v)%以上、好ましくは、0.005 (w/v)%以上とすることが好ましい。一方、この濃度が高すぎるとゲル化する恐れがあるので、0.2 (w/v)%以下、好ましくは0.02 (w/v)%以下、より好ましくは0.015(w/v)%以下とすることが好ましい。 The concentration of deacylated gellan gum or a salt thereof is preferably 0.002 (w / v)% or more, preferably 0.003 (w / v)% or more, from the viewpoint of ensuring a sufficient action of suspending cells. On the other hand, if this concentration is too high, the floating action may become stronger and the cell recovery rate may decrease, or the handleability of the medium itself may decrease. Therefore, 0.1 (w / v)% or less, preferably 0.009 ( It is preferably w / v)% or less. The concentration of an acidic polysaccharide (eg, alginic acid) or a salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion maintains the floating state of the cell by shearing force. From the viewpoint of ensuring the property of rapidly eliminating the effect (vulnerability to the shear force of the effect of maintaining the floating state of cells), 0.004 (w / v)% or more, preferably 0.005 (w / v)% or more. It is preferable to do so. On the other hand, if this concentration is too high, gelation may occur, so the concentration should be 0.2 (w / v)% or less, preferably 0.02 (w / v)% or less, and more preferably 0.015 (w / v)% or less. Is preferable.
 本発明の液体組成物中に含まれる、脱アシル化ジェランガム又はその塩と、二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の質量比(フリー体換算)は、せん断力によって、細胞の浮遊状態を維持する効果を速やかに消失する特性を達成する観点から、脱アシル化ジェランガム又はその塩1質量部に対して、二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を1質量部以上、好ましくは2質量部以上とする。一態様において、脱アシル化ジェランガム又はその塩 1質量部に対して、二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を例えば1~4質量部、好ましくは1~3質量部、より好ましくは1~2質量部とする。 Deacylated gellan gum or a salt thereof contained in the liquid composition of the present invention and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion (eg,). The mass ratio of alginic acid) or its salt (in terms of free form) is based on deacylated gellan gum or 1 part by mass of its salt from the viewpoint of achieving the property of rapidly eliminating the effect of maintaining the floating state of cells by shearing force. On the other hand, 1 part by mass or more, preferably 2 parts by mass or more of an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. And. In one embodiment, an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion with respect to 1 part by mass of deacylated gellan gum or a salt thereof. Alternatively, the salt thereof may be, for example, 1 to 4 parts by mass, preferably 1 to 3 parts by mass, and more preferably 1 to 2 parts by mass.
 尚、液体組成物中の化合物濃度は、以下の式で算出できる。 The compound concentration in the liquid composition can be calculated by the following formula.
 濃度[(w/v)%]=化合物の質量(g)/液体組成物の容量(ml)×100 Concentration [(w / v)%] = mass of compound (g) / volume of liquid composition (ml) x 100
 本発明の液体組成物は、上記の含有量で脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を含むことにより、培養された細胞の良好な生存性を維持する効果を奏する。本発明の液体組成物は、上記の含有量で脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を含むことにより、細胞の浮遊状態を維持する効果を奏する。 The liquid composition of the present invention is an acidic polysaccharide that can maintain a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and can be crosslinked via a divalent metal ion. For example, the inclusion of alginic acid) or a salt thereof has the effect of maintaining good viability of cultured cells. The liquid composition of the present invention is an acidic polysaccharide that can maintain a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and can be crosslinked via a divalent metal ion. For example, by containing alginic acid) or a salt thereof, it has the effect of maintaining the floating state of cells.
 本発明の液体組成物は上記の含有量で脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を含むことにより、細胞の浮遊状態を維持する効果が、ピペッティングやフィルター濾過等のせん断力により速やかに喪失するという特性(細胞の浮遊状態を維持する効果のせん断力に対する脆弱性)をも備える。 The liquid composition of the present invention maintains a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium at the above content, and is an acidic polysaccharide that can be crosslinked via a divalent metal ion (eg,). , Alginic acid) or a salt thereof, the effect of maintaining the floating state of cells is rapidly lost by the shearing force such as pipetting and filter filtration (against the shearing force of the effect of maintaining the floating state of cells). Vulnerability) is also provided.
 本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合して形成した、三次元のネットワーク(不定型な構造体)を含み、これが細胞の浮遊状態を維持する効果を生じるが、二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が含まれることにより、三次元ネットワークが、キレート剤又はせん断力に対して脆弱となり、ピペッティングやフィルター濾過等のせん断力により、この三次元ネットワークが容易に破壊され、細胞の浮遊状態を維持する効果が速やかに喪失する。脱アシル化ジェランガムは、比較的直線的な構造の構成単位を有し、液体組成物中で複数の脱アシル化ジェランガム鎖がバンドル化することにより、タイトで安定な三次元ネットワークを形成するため、キレート剤やピペッティングやフィルター濾過等ではこの三次元ネットワークが破壊され難いのに対して、α1-4結合したL-グルクロン酸とβ1-4結合したD-マンヌロン酸の両方のウロン酸を含むことにより比較的嵩高い構造を有する二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を液体組成物中に添加すると、脱アシル化ジェランガムのバンドル化が抑制されることにより、三次元ネットワークがピペッティングやフィルター濾過等のせん断力に対して脆弱になると考えられるが、この理論に特に束縛されるものではない。 The liquid composition of the present invention is a deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. The salt contains a three-dimensional network (atypical structure) formed by aggregating through metal cations (eg, divalent metal cations such as calcium ions), which has the effect of maintaining the floating state of cells. However, by containing an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion, the three-dimensional network can be formed. It becomes vulnerable to a chelating agent or a shearing force, and the shearing force such as pipetting or filter filtration easily destroys this three-dimensional network, and the effect of maintaining the floating state of cells is rapidly lost. Deacylated gellan gum has a relatively linear structural unit, and multiple deacylated gellan gum chains are bundled in a liquid composition to form a tight and stable three-dimensional network. While this three-dimensional network is not easily destroyed by a chelating agent, pipetting, filter filtration, etc., it contains both α1-4 bound L-glucuronic acid and β1-4 bound D-mannuronic acid. Add an acidic polysaccharide (eg, arginic acid) or a salt thereof, which can maintain a random coil state in a divalent metal cation medium having a relatively bulky structure and can be crosslinked via a divalent metal ion, to the liquid composition. Then, it is considered that the three-dimensional network becomes vulnerable to shearing forces such as pipetting and filter filtration by suppressing the bundling of deacylated gellan gum, but this theory is not particularly bound.
 上述のように、本発明の液体組成物においては、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、液体組成物中の金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合し、三次元のネットワーク(不定型な構造体)を形成するため、本発明の液体組成物は、金属カチオン、例えば二価の金属カチオン(カルシウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオンおよび銅イオン等)、好ましくはカルシウムイオンを含有する。当該金属カチオンは、例えばカルシウムイオンとマグネシウムイオン、カルシウムイオンと亜鉛イオン、カルシウムイオンと鉄イオン、カルシウムイオンと銅イオンのように、2種類以上を組み合わせて使用することができる。当業者は適宜その組み合わせを決定することができる。本発明の液体組成物中の金属カチオン濃度は0.1 mM乃至300 mMで、好ましくは、0.5 mM乃至100 mMであるが、これらに限定されない。 As described above, in the liquid composition of the present invention, deacylated gellan gum or a salt thereof, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. (Eg, alginic acid) or a salt thereof aggregates via a metal cation in a liquid composition (eg, a divalent metal cation such as calcium ion) to form a three-dimensional network (atypical structure). , The liquid composition of the present invention contains metal cations such as divalent metal cations (calcium ion, magnesium ion, zinc ion, iron ion, copper ion and the like), preferably calcium ion. The metal cation can be used in combination of two or more, for example, calcium ion and magnesium ion, calcium ion and zinc ion, calcium ion and iron ion, calcium ion and copper ion. Those skilled in the art can appropriately determine the combination. The metal cation concentration in the liquid composition of the present invention is 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM, but is not limited thereto.
 ピペッティングやフィルター濾過等のせん断力による、三次元ネットワークの破壊(細胞や組織の浮遊状態を維持する特性の喪失)は、可逆的な反応である。せん断力により破壊された三次元のネットワーク(不定型な構造体)の断片が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して再度集合することにより、三次元のネットワーク(不定型な構造体)が再生されるからである。 Destruction of the three-dimensional network (loss of the property of maintaining the floating state of cells and tissues) due to shearing force such as pipetting and filter filtration is a reversible reaction. Fragments of a three-dimensional network (atypical structure) destroyed by shear forces reassemble via metal cations (eg, divalent metal cations such as calcium ions), resulting in a three-dimensional network (non-atypical). This is because the standard structure) is regenerated.
 本発明の液体組成物は、細胞培養に用いられる培地を含む。本発明の液体組成物は、細胞培養に用いられる培地と、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩とを混合することにより調製することができる。 The liquid composition of the present invention contains a medium used for cell culture. The liquid composition of the present invention is acidic that can maintain a random coil state in a medium used for cell culture, deacylated gellan gum or a salt thereof, and a divalent metal cation medium, and can be cross-linked via divalent metal ions. It can be prepared by mixing with a polysaccharide (eg, alginic acid) or a salt thereof.
 本発明の液体組成物には、細胞培養において培地に添加され得る成分をさらに添加することもできる。例えば、ウシ胎児血清、ヒト血清、ウマ血清、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、エタノールアミン、亜セレン酸ナトリウム、モノチオグリセロール、2-メルカプトエタノール、ウシ血清アルブミン、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、寒天、アガロース、コラーゲン、メチルセルロース、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックスや各種細胞接着分子などが挙げられる。本発明の液体組成物に添加されるサイトカインとしては、例えばインターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-18(IL-18)、インターロイキン-21(IL-21)、インターフェロン-α(IFN-α)、インターフェロン-β(IFN-β)、インターフェロン-γ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、単球コロニー刺激因子(M-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、幹細胞因子(SCF)、flk2/flt3リガンド(FL)、白血病細胞阻害因子(LIF)、オンコスタチンM(OM)、エリスロポエチン(EPO)、トロンボポエチン(TPO)などが挙げられるが、これらに限られるわけではない。 In the liquid composition of the present invention, components that can be added to the medium in cell culture can be further added. For example, fetal bovine serum, human serum, horse serum, insulin, transferrin, lactoferrin, cholesterol, ethanolamine, sodium selenate, monothioglycerol, 2-mercaptoethanol, bovine serum albumin, sodium pyruvate, polyethylene glycol, various vitamins. , Various amino acids, agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices and various cell adhesion molecules. Examples of the cytokine added to the liquid composition of the present invention include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), and interleukin-4 ( IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 ( IL-9), interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 ( IL-14), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon-α (IFN-α), interferon-β (IFN-) β), interferon-γ (IFN-γ), granulocyte colony stimulator (G-CSF), monocytic colony stimulator (M-CSF), granulocyte-macrophage colony stimulator (GM-CSF), stem cell factor ( SCF), flk2 / flt3 ligand (FL), leukemia cell inhibitor (LIF), oncostatin M (OM), erythropoetin (EPO), thrombopoetin (TPO), etc., but are not limited to these.
 本発明の液体組成物に添加されるホルモンとしては、メラトニン、セロトニン、チロキシン、トリヨードチロニン、エピネフリン、ノルエピネフリン、ドーパミン、抗ミュラー管ホルモン、アディポネクチン、副腎皮質刺激ホルモン、アンギオテンシノゲン及びアンギオテンシン、抗利尿ホルモン、心房ナトリウム利尿性ペプチド、カルシトニン、コレシストキニン、コルチコトロピン放出ホルモン、エリスロポイエチン、卵胞刺激ホルモン、ガストリン、グレリン、グルカゴン、ゴナドトロピン放出ホルモン、成長ホルモン放出ホルモン、ヒト絨毛性ゴナドトロピン、ヒト胎盤性ラクトーゲン、成長ホルモン、インヒビン、インスリン、インスリン様成長因子、レプチン、黄体形成ホルモン、メラニン細胞刺激ホルモン、オキシトシン、副甲状腺ホルモン、プロラクチン、セクレチン、ソマトスタチン、トロンボポイエチン、甲状腺刺激ホルモン、チロトロピン放出ホルモン、コルチゾール、アルドステロン、テストステロン、デヒドロエピアンドロステロン、アンドロステンジオン、ジヒドロテストステロン、エストラジオール、エストロン、エストリオール、プロゲステロン、カルシトリオール、カルシジオール、プロスタグランジン、ロイコトリエン、プロスタサイクリン、トロンボキサン、プロラクチン放出ホルモン、リポトロピン、脳ナトリウム利尿ペプチド、神経ペプチドY、ヒスタミン、エンドセリン、膵臓ポリペプチド、レニン、及びエンケファリンが挙げられるが、これらに限られるわけではない。 The hormones added to the liquid composition of the present invention include melatonin, serotonin, tyrosin, triiodotyronin, epinephrine, norepinephrine, dopamine, anti-Mullerian hormone, adiponectin, adrenal cortex stimulating hormone, angiotensinogen and angiotensin. Antidiuretic hormone, atrial sodium diuretic peptide, calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicular stimulating hormone, gastrin, grelin, glucagon, gonadotropin-releasing hormone, growth hormone-releasing hormone, human chorionic gonadotropin, human placenta Sex lactogen, growth hormone, inhibin, insulin, insulin-like growth factor, leptin, luteinizing hormone, melanin cell stimulating hormone, oxytocin, parathyroid hormone, prolactin, secretin, somatostatin, thrombopoietin, thyroid stimulating hormone, tyrotropin-releasing hormone, Cortisol, aldosterone, testosterone, dehydroepiandrosterone, androstendione, dihydrotestosterone, estradiol, estron, estriol, progesterone, calcitriol, calcidiol, prostaglandin, leukotriene, prostacycline, thromboxane, prolactin-releasing hormone, lipotropin , Brain sodium diuretic peptide, hormonal peptide Y, histamine, endoserin, pancreatic polypeptide, renin, and enchefalin, but are not limited to these.
 本発明の液体組成物に添加される増殖因子としては、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、マクロファージ炎症蛋白質-1α(MIP-1α)、上皮細胞増殖因子(EGF)、線維芽細胞増殖因子-1、2、3、4、5、6、7、8、又は9(FGF-1、2、3、4、5、6、7、8、9)、神経細胞増殖因子(NGF)、肝細胞増殖因子(HGF)、白血病阻止因子(LIF)、プロテアーゼネキシンI、プロテアーゼネキシンII、血小板由来成長因子(PDGF)、コリン作動性分化因子(CDF)、ケモカイン、Notchリガンド(Delta1など)、Wnt蛋白質、アンジオポエチン様蛋白質2、3、5または7(Angpt2、3、5、7)、インスリン様成長因子(IGF)、インスリン様成長因子結合蛋白質(IGFBP)、プレイオトロフィン(Pleiotrophin)などが挙げられるが、これらに限られるわけではない。 Growth factors added to the liquid composition of the present invention include transforming growth factor-α (TGF-α), transforming growth factor-β (TGF-β), macrophage inflammatory protein-1α (MIP-1α), Epithelial cell growth factor (EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8) , 9), Nerve Cell Growth Factor (NGF), Hepatocyte Growth Factor (HGF), Leukemia Inhibitor (LIF), Prosthesis Nexin I, Prosthesis Nexin II, Thrombotic Growth Factor (PDGF), Cholinergic Differentiation Factor (CDF), chemokine, Notch ligand (such as Delta1), Wnt protein, angiopoetin-like protein 2, 3, 5 or 7 (Angpt 2, 3, 5, 7), insulin-like growth factor (IGF), insulin-like growth factor-binding protein (IGFBP), Pleiotrophin, etc., but are not limited to these.
 また、遺伝子組替え技術によりこれらのサイトカインや増殖因子のアミノ酸配列を人為的に改変させたものも添加させることもできる。その例としては、IL-6/可溶性IL-6受容体複合体あるいはHyper IL-6(IL-6と可溶性IL-6受容体との融合タンパク質)などが挙げられる。 It is also possible to add artificially modified amino acid sequences of these cytokines and growth factors by gene recombination technology. Examples thereof include IL-6 / soluble IL-6 receptor complex or Hyper IL-6 (a fusion protein of IL-6 and a soluble IL-6 receptor).
 各種細胞外マトリックスや各種細胞接着分子の例としては、コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン、トロンボスポンジン、フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、ヒアルロン酸、アルギン酸ゲル、各種ハイドロゲル、さらにこれらの切断断片などが挙げられる。 Examples of various extracellular matrices and various cell adhesion molecules include collagen I to XIX, fibronectin, vitronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, etc. Various elastin, various proteoglycans, various cadoherin, desmocholine, desmograin, various integrins, E-selectin, P-selectin, L-selectin, immunoglobulin superfamily, Matrigel, poly-D-lysine, poly-L-lysine, chitin, Examples thereof include chitosan, cepharose, hyaluronic acid, alginate gel, various hydrogels, and cut fragments thereof.
 本発明の液体組成物に添加される抗生物質の例としては、サルファ製剤、ペニシリン、フェネチシリン、メチシリン、オキサシリン、クロキサシリン、ジクロキサシリン、フルクロキサシリン、ナフシリン、アンピシリン、ペニシリン、アモキシシリン、シクラシリン、カルベニシリン、チカルシリン、ピペラシリン、アズロシリン、メクズロシリン、メシリナム、アンジノシリン、セファロスポリン及びその誘導体、オキソリン酸、アミフロキサシン、テマフロキサシン、ナリジクス酸、ピロミド酸、シプロフロキサン、シノキサシン、ノルフロキサシン、パーフロキサシン、ロザキサシン、オフロキサシン、エノキサシン、ピペミド酸、スルバクタム、クラブリン酸、β-ブロモペニシラン酸、β-クロロペニシラン酸、6-アセチルメチレン-ペニシラン酸、セフォキサゾール、スルタンピシリン、アディノシリン及びスルバクタムのホルムアルデヒド・フードラートエステル、タゾバクタム、アズトレオナム、スルファゼチン、イソスルファゼチン、ノカルディシン、m-カルボキシフェノール、フェニルアセトアミドホスホン酸メチル、クロルテトラサイクリン、オキシテトラサイクリン、テトラサイクリン、デメクロサイクリン、ドキシサイクリン、メタサイクリン、並びにミノサイクリンが挙げられる。 Examples of antibiotics added to the liquid composition of the present invention include sulfa preparations, penicillin, pheneticillin, methicillin, oxacillin, chloroxacillin, dicloxacillin, flucloxacillin, naphthicillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin. , Piperacillin, azurocillin, mexulocillin, mesylinum, andinocillin, cephalosporins and their derivatives, oxophosphate, amoxicillin, temafloxacin, nalidixic acid, pyromidic acid, cyprofloxane, synoxacin, norfloxacin, perfloxacin, rosaxacin, offloxin Sulbactam, clavulinic acid, β-bromopenicillic acid, β-chloropenicillic acid, 6-acetylmethylene-penicillin acid, cephalosporin, sultamipicillin, adinocillin and sulbactam formaldehyde / food rate esters, tazobactam, aztreonum, sulfazetin, isosul Examples include phasetin, nocardicin, m-carboxyphenol, methyl phenylacetamide phosphonate, chlortetracycline, oxytetracycline, tetracycline, demeclocycline, doxicillin, metacycline, and minocycline.
 好ましい態様において、本発明の液体組成物は、金属カチオン(例えば二価の金属カチオン(カルシウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオンおよび銅イオン等)、好ましくはカルシウムイオン)を含有する。脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩は、金属カチオンを含有する液体組成物と混合した際に、液体組成物中の金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合し、三次元のネットワーク(不定型な構造体)を形成する。液体組成物中の金属カチオン(好ましくはカルシウムイオン)濃度は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、該金属カチオンを介して集合し、三次元のネットワーク(不定型な構造体)を形成するのに十分な濃度であれば、特に限定されないが、例えば、0.1 mM乃至300 mMで、好ましくは、0.5 mM乃至100 mMである。当該金属カチオンを含む液体組成物と、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩とを混合してもよいし、当該金属カチオンを含まない液体組成物と、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩とを混合し、その後、別途調製しておいた当該金属カチオンを含む水溶液を、混合液に添加してもよい。 In a preferred embodiment, the liquid composition of the present invention contains a metal cation (for example, a divalent metal cation (calcion ion, magnesium ion, zinc ion, iron ion, copper ion, etc.), preferably calcium ion). Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion contain a metal cation. When mixed with the liquid composition, it aggregates via metal cations (eg, divalent metal cations such as calcium ions) in the liquid composition to form a three-dimensional network (atypical structure). The concentration of metal cations (preferably calcium ions) in the liquid composition is acidic that can maintain a random coil state in deacylated gellan gum or a salt thereof, and a divalent metal cation medium and can be crosslinked via divalent metal ions. The concentration is not particularly limited as long as the concentration of the polysaccharide (eg, alginic acid) or a salt thereof is sufficient to aggregate via the metal cation and form a three-dimensional network (atypical structure), but the present invention is not particularly limited. , 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM. A liquid composition containing the metal cation, a deacylated gellan gum or a salt thereof, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion (eg, alginic acid). ) Or a salt thereof, or a liquid composition free of the metal cation, a deacylated gellan gum or a salt thereof, and a divalent metal cation medium that maintains a random coil state and is divalent. An acidic polysaccharide (eg, alginic acid) that can be crosslinked via metal ions or a salt thereof may be mixed, and then a separately prepared aqueous solution containing the metal cation may be added to the mixed solution.
 本発明の液体組成物は、上述の組成に加えて、細胞の培養の際に、細胞延命効果がある各種成分が含まれていてもよい。該成分としては、糖類(但し、多糖類を除く)(例、単糖類(グルコース等)、二糖類)、抗酸化剤(例、SOD、ビタミンE、グルタチオン、ポリフェノール)、親水性ポリマー(例、ポリビニルピロリドン)、キレート剤(例、EDTA)、糖アルコール(例、マンニトール、ソルビトール)、グリセロール等を挙げることができるが、これらに限定されない。一態様において、本発明の液体組成物は、糖類(但し、多糖類を除く)(例、単糖類(グルコース等)、二糖類)、抗酸化剤(例、SOD、ビタミンE、グルタチオン、ポリフェノール)、親水性ポリマー(例、ポリビニルピロリドン)、キレート剤(例、EDTA)、糖アルコール(例、マンニトール、ソルビトール)、及びグリセロールからなる群から選択される少なくとも1つの化合物を含有する。 In addition to the above composition, the liquid composition of the present invention may contain various components having a cell life-prolonging effect when culturing cells. The components include saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols), hydrophilic polymers (eg, eg). Polyvinylpyrrolidone), chelating agents (eg, EDTA), sugar alcohols (eg, mannitol, sorbitol), glycerol and the like, but are not limited thereto. In one embodiment, the liquid composition of the present invention comprises saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols). Contains at least one compound selected from the group consisting of hydrophilic polymers (eg, polyvinylpyrrolidone), chelating agents (eg, EDTA), sugar alcohols (eg, mannitol, sorbitol), and glycerol.
 一態様において、本発明の液体組成物は、糖類(但し、多糖類を除く)(例、単糖類(グルコース等)、二糖類)、抗酸化剤(例、SOD、ビタミンE、グルタチオン、ポリフェノール)、親水性ポリマー(例、ポリビニルピロリドン)、キレート剤(例、EDTA)、糖アルコール(例、マンニトール、ソルビトール)、及びグリセロールからなる群から選択される少なくとも1つの化合物を含有しない。 In one embodiment, the liquid composition of the present invention comprises saccharides (excluding polysaccharides) (eg, monosaccharides (glucose, etc.), disaccharides), antioxidants (eg, SOD, vitamin E, glutathione, polyphenols). , Hydrophilic polymers (eg, polyvinylpyrrolidone), chelating agents (eg, EDTA), sugar alcohols (eg, mannitol, sorbitol), and glycerol, do not contain at least one compound selected from the group.
 一態様において、本発明の液体組成物は、凍結保護剤を含まなくてもよい。凍結保護剤としては、DMSO、グリセロール、エチレングリコール、トリメチレングリコール、メタノール、ジメチルアセトアミド、ポリエチレングリコール、ポリビニルピロリドン、ヒドロキシエチルスターチ、デキストラン、アルブミン等を挙げることができる。一態様において、本発明の液体組成物は、DMSO、グリセロール、エチレングリコール、トリメチレングリコール、メタノール、ジメチルアセトアミド、ポリエチレングリコール、ポリビニルピロリドン、ヒドロキシエチルスターチ、デキストラン、及びアルブミンからなる群から選択される少なくとも1つの化合物を含有しない。 In one embodiment, the liquid composition of the present invention does not have to contain a cryoprotectant. Examples of the cryoprotectant include DMSO, glycerol, ethylene glycol, trimethylene glycol, methanol, dimethylacetamide, polyethylene glycol, polyvinylpyrrolidone, hydroxyethyl starch, dextran, albumin and the like. In one embodiment, the liquid composition of the invention is selected from the group consisting of DMSO, glycerol, ethylene glycol, trimethylene glycol, methanol, dimethylacetamide, polyethylene glycol, polyvinylpyrrolidone, hydroxyethyl starch, dextran, and albumin at least. Does not contain one compound.
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を上記の液体培地に添加する場合には、まず適切な溶媒にて、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を溶解または分散させる(これを、培地添加剤とする。)。その後、液体組成物中の最終的な脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の濃度が、上に詳述した濃度となるように、当該培地添加剤を液体培地中に添加すれば良い。脱アシル化ジェランガム又はその塩を含む培地添加剤と、二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を含む培地添加剤を別々に調製し、それぞれを、液体培地中に添加してもよいし、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の両方を含む培地添加剤(即ち、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の混合物)を調製し、これを液体培地中に添加してもよい。好ましくは、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の両方を含む培地添加剤(即ち、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の混合物)を調製し、これを液体培地中に添加する。 Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are added to the above liquid medium. When added, first in a suitable solvent, deacylated gellan gum or a salt thereof, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions ( For example, alginic acid) or a salt thereof is dissolved or dispersed (this is referred to as a medium additive). The final deacylated gellan gum or salt thereof in the liquid composition, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions (eg, alginic acid). ) Or the salt thereof may be added to the liquid medium so that the concentration thereof becomes the concentration detailed above. A medium additive containing deacylated gellan gum or a salt thereof and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. The media additives to be included may be prepared separately and each may be added to the liquid medium, deacylated gellan gum or a salt thereof, and maintain a random coil state in a divalent metal cation medium and divalent. Maintain a random coil state in medium additives (ie, deacylated gellan gum or its salts, and divalent metal cation media) containing both acidic polysaccharides (eg, alginic acid) that can be crosslinked via metal ions or salts thereof. , And an acidic polysaccharide (eg, a mixture of alginic acid) or a salt thereof that can be crosslinked via a divalent metal ion may be prepared and added to the liquid medium. Preferably, deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. A medium additive containing (ie, deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion or the like. A mixture of salts) is prepared and added to the liquid medium.
 ここで、培地添加剤の調製に用いる適切な溶媒の例としては、水、生理食塩水、PBS等の水性溶媒、ジメチルスルホキシド(DMSO)、メタノール、エタノール、ブタノール、プロパノール、グリセリン、プロピレングリコール、ブチレングリコール等の各種アルコールなどの親水性溶媒が挙げられるが、これらに限られるわけではない。この際、培地添加剤中の脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の濃度は、上に詳述した本発明の液体組成物中の最終濃度の例えば10~500倍、好ましくは25~100倍程度の濃度とすることが望ましい。 Here, examples of suitable solvents used for the preparation of the medium additive include water, physiological saline, aqueous solvents such as PBS, dimethylsulfoxide (DMSO), methanol, ethanol, butanol, propanol, glycerin, propylene glycol, butylene. Examples include, but are not limited to, hydrophilic solvents such as various alcohols such as glycol. At this time, deacylated gellan gum or a salt thereof in the medium additive, and an acidic polysaccharide (eg, alginic acid) that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions or The concentration of the salt is preferably, for example, 10 to 500 times, preferably about 25 to 100 times, the final concentration in the liquid composition of the present invention described in detail above.
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、高圧蒸気滅菌(オートクレーブ滅菌)、フィルター滅菌等が挙げられる。フィルター滅菌(以下、ろ過滅菌という場合もある)を行う際のフィルター部分の材質は特に制限されないが、例えば、グラスファイバー、ナイロン、PES(ポリエーテルスルホン)、親水性PVDF(ポリフッ化ビニリデン)、セルロース混合エステル、セルロースアセテート、ポリテトラフルオロエチレン等が挙げられる。フィルターの細孔の大きさは特に制限されないが、好ましくは、0.1 μm乃至10 μm、より好ましくは、0.1 μm乃至1 μm、最も好ましくは、0.1 μm乃至0.5 μmである。これらの滅菌処理は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が固体の状態で行っても、溶液の状態で行ってもよい。 Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion, if necessary. It may be sterilized. The sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, high-pressure steam sterilization (autoclave sterilization), and filter sterilization. The material of the filter part when performing filter sterilization (hereinafter, also referred to as filtration sterilization) is not particularly limited, but for example, glass fiber, nylon, PES (polyether sulfone), hydrophilic PVDF (polyvinylidene fluoride), cellulose. Examples thereof include mixed esters, cellulose acetate, polytetrafluoroethylene and the like. The size of the pores of the filter is not particularly limited, but is preferably 0.1 μm to 10 μm, more preferably 0.1 μm to 1 μm, and most preferably 0.1 μm to 0.5 μm. These sterilization treatments are deacylated gellan gum or salts thereof, and acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions. May be carried out in a solid state or in a solution state.
 高圧蒸気滅菌処理における温度は、通常105~135℃、好ましくは、115℃~130℃、より好ましくは118~123℃(例、121±1℃)である。滅菌処理時の圧力は、通常0.12~0.32 MPa、好ましくは、0.17~0.27 MPa、より好ましくは、0.19~0.23 MPa(例、0.21±0.1 MPa)である。滅菌処理時間は、通常1~60分、好ましくは5~45分、より好ましくは15~25分(例、20±1分)である。 The temperature in the high-pressure steam sterilization treatment is usually 105 to 135 ° C, preferably 115 ° C to 130 ° C, and more preferably 118 to 123 ° C (eg, 121 ± 1 ° C). The pressure during the sterilization process is usually 0.12 to 0.32 MPa, preferably 0.17 to 0.27 MPa, more preferably 0.19 to 0.23 MPa (eg, 0.21 ± 0.1 MPa). The sterilization treatment time is usually 1 to 60 minutes, preferably 5 to 45 minutes, more preferably 15 to 25 minutes (eg, 20 ± 1 minute).
 高圧蒸気滅菌処理条件の組み合わせは、
例えば、105~135℃、0.12~0.32 MPa、1~60分であり;
好ましくは、115℃~130℃、0.17~0.27 MPa、5~45分であり;
より好ましくは、118~123℃(例、121±1℃)、0.19~0.23 MPa(例、0.21±0.1MPa)、15~25分(例、20±1分)である。
The combination of high-pressure steam sterilization treatment conditions is
For example, 105-135 ° C, 0.12-0.32 MPa, 1-60 minutes;
Preferably, it is 115 ° C. to 130 ° C., 0.17 to 0.27 MPa, 5 to 45 minutes;
More preferably, it is 118 to 123 ° C. (eg, 121 ± 1 ° C.), 0.19 to 0.23 MPa (eg, 0.21 ± 0.1 MPa), 15 to 25 minutes (eg, 20 ± 1 minute).
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の溶液又は分散液を液体培地に添加することにより、液体培地中で、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合することにより、三次元のネットワーク(不定型な構造体)が形成され、本発明の液体組成物を得ることができる。培地には通常、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が集合し、三次元のネットワーク(不定型な構造体)を形成するのに十分な濃度の金属カチオン(例えば、カルシウムイオン)が含まれるので、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の溶液又は分散液を液体培地に添加するのみで、本発明の液体組成物を得ることができる。あるいは、本発明の培地添加剤(脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の溶液又は分散液)に培地を添加してもよい。さらに、本発明の液体組成物は、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩と培地成分(粉末培地や濃縮培地)とを、水性溶媒(例えばイオン交換水や超純水等を含む水)中で混合して調製することもできる。混合の態様としては、(1)液体培地と培地添加剤(溶液)とを混合する、(2)液体培地に脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の固体(粉末等)を添加する、(3)培地添加剤(溶液)に粉末培地を混合する、(4)粉末培地及び脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の固体(粉末等)を水性溶媒と混合する、等が挙げられるが、これらに限定されない。液体組成物における脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の分布が不均一になるのを防ぐために、(1)の態様が好ましい。 A solution or dispersion of deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. An acidic polysaccharide that can be added to a liquid medium to maintain a random coil state in a deacylated gellan gum or a salt thereof, and a divalent metal cation medium, and to be crosslinked via a divalent metal ion (a deacylated gellan gum or a salt thereof). For example, arginic acid) or a salt thereof is aggregated via a metal cation (for example, a divalent metal cation such as calcium ion) to form a three-dimensional network (atypical structure), and the liquid of the present invention is formed. The composition can be obtained. The medium is usually deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion. Deacylated gellan gum or salts thereof, and divalent metal cation media, as they contain sufficient concentrations of metal cations (eg, calcium ions) to aggregate and form a three-dimensional network (atypical structure). The liquid composition of the present invention is simply added to a liquid medium with a solution or dispersion of an acidic polysaccharide (eg, arginic acid) or a salt thereof that can maintain a random coil state and can be crosslinked via divalent metal ions. Can be obtained. Alternatively, the medium additive of the present invention (deacylated gellan gum or a salt thereof, and an acidic polysaccharide that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion (eg, alginic acid). Alternatively, the medium may be added to a solution or dispersion of a salt thereof. In addition, the liquid compositions of the invention are deacylated gellan gums or salts thereof, and acidic polysaccharides that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions (eg, arginic acid). ) Or a salt thereof and a medium component (powdered medium or concentrated medium) can be prepared by mixing them in an aqueous solvent (for example, water containing ion-exchanged water, ultrapure water, or the like). In the mixing mode, (1) a liquid medium and a medium additive (solution) are mixed, (2) deacylated gellan gum or a salt thereof is mixed in the liquid medium, and a random coil state is maintained in a divalent metal cation medium. And add a solid (powder, etc.) of an acidic polysaccharide (eg, alginic acid) or a salt thereof that can be crosslinked via divalent metal ions, (3) Mix the powder medium with the medium additive (solution), ( 4) Of acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in powdered media and deacylated gellan gum or salts thereof, and can be crosslinked via divalent metal ions. Examples include, but are not limited to, mixing a solid (powder or the like) with an aqueous solvent. Distribution of deacylated gellan gum or salts thereof in liquid compositions, and acidic polysaccharides (eg, alginic acid) or salts thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via divalent metal ions. The aspect of (1) is preferable in order to prevent non-uniformity.
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を溶媒(例、水、液体培地等の水性溶媒)へ溶解する、または、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩、並びに粉末培地を溶媒へ溶解する際、溶解促進のため、当該混合液を加熱してもよい。加熱する温度としては、例えば80℃~130℃、好ましくは加熱滅菌されるような100℃~125℃(例、121℃)が挙げられる。加熱後、得られた脱アシル化ジェランガム又はその塩及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の溶液を室温まで冷却する。当該溶液に、上述の金属カチオン(例、カルシウムイオン等の二価金属カチオン)を添加することにより(例えば、当該溶液を液体培地へ添加することにより)、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合することにより、三次元のネットワーク(不定型な構造体)が形成され、本発明の液体組成物を得ることができる。或いは、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を、上述の金属カチオン(例、カルシウムイオン等の二価金属カチオン)を含む溶媒(例、水、液体培地等の水性溶媒)へ溶解する際に、加熱(例えば80℃~130℃、好ましくは100℃~125℃(例、121℃))し、得られた溶液を室温まで冷却することによっても、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合することにより、三次元のネットワーク(不定型な構造体)が形成される。 Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion as a solvent (eg, water). , Aqueous solvents such as liquid media), or deacylated gellan gum or salts thereof, and acidic polysaccharides capable of maintaining a random coil state in a divalent metal cation medium and cross-linking via divalent metal ions. When dissolving (eg, alginic acid) or a salt thereof, and a powder medium in a solvent, the mixed solution may be heated to promote the dissolution. Examples of the heating temperature include 80 ° C. to 130 ° C., preferably 100 ° C. to 125 ° C. (eg, 121 ° C.) for heat sterilization. After heating, an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in the obtained deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion. Cool the solution to room temperature. By adding the above-mentioned metal cations (eg, divalent metal cations such as calcium ions) to the solution (eg, by adding the solution to a liquid medium), deacylated gellan gum or a salt thereof, and two. Acidic polysaccharides (eg, arginic acid) or salts thereof that can maintain a random coil state in a valent metal cation medium and can be crosslinked via divalent metal ions are metal cations (eg, divalent metal cations such as calcium ions). By assembling through the above, a three-dimensional network (atypical structure) is formed, and the liquid composition of the present invention can be obtained. Alternatively, deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are described above. When dissolved in a solvent containing a metal cation (eg, a divalent metal cation such as calcium ion) (eg, an aqueous solvent such as water, liquid medium), heating (eg, 80 ° C to 130 ° C, preferably 100 ° C to 125). Deacylated gellan gum or a salt thereof, and a random coil state in a divalent metal cation medium are also maintained by cooling the resulting solution to room temperature at ° C (eg, 121 ° C), and the divalent metal. A three-dimensional network (atypical structure) by assembling acidic polysaccharides (eg, alginic acid) or salts thereof that can be crosslinked via ions via metal cations (eg, divalent metal cations such as calcium ions). Body) is formed.
 尚、脱アシル化ジェランガム又はその塩は、比較的直線的な構造の構成単位を有するため、溶媒(例、水)中に添加した際に、複数の糖鎖がバンドル化するため、溶解しにくいが、ここに二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を加えると、α1-4結合したL-グルクロン酸とβ1-4結合したD-マンヌロン酸の両方のウロン酸を含むことにより比較的嵩高い構造を有するため、脱アシル化ジェランガム又はその塩のバンドル化が抑制され、比較的容易に溶解するようになる。従って、脱アシル化ジェランガム又はその塩及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩は、加熱することなく、比較的低温(例えば0~37℃、好ましくは、10~30℃)で溶媒(例、水、液体培地等の水性溶媒)へ溶解することができる。 Since deacylated gellan gum or a salt thereof has a relatively linear structural unit, it is difficult to dissolve because a plurality of sugar chains are bundled when added to a solvent (eg, water). However, when an acidic polysaccharide (eg, arginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion is added thereto, α1-4 bonded L- Since it has a relatively bulky structure due to the inclusion of both uronic acid of glucuronic acid and β1-4 bound D-mannuronic acid, the bundling of deacylated gellan gum or a salt thereof is suppressed and it dissolves relatively easily. It will be like. Therefore, an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion should be heated. It can be dissolved in a solvent (eg, an aqueous solvent such as water, liquid medium, etc.) at a relatively low temperature (eg, 0 to 37 ° C, preferably 10 to 30 ° C).
 本発明の液体組成物の製造方法を例示するが、これによって限定されるものではない。 The method for producing the liquid composition of the present invention is exemplified, but the present invention is not limited thereto.
 脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩をイオン交換水あるいは超純水に添加する。そして、脱アシル化ジェランガム又はその塩及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩を溶解できる温度(例えば、5~60℃、好ましくは5~40℃、さらに好ましくは10~30℃)で撹拌して透明な状態になるまで溶解させる。 Deacylated gellan gum or a salt thereof, and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion in ion-exchanged water or ultrapure water. Add to pure water. Then, a temperature at which an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a deacylated gellan gum or a salt thereof and a divalent metal cation medium and can be crosslinked via a divalent metal ion can be dissolved (eg, alginic acid). For example, stir at 5 to 60 ° C., preferably 5 to 40 ° C., more preferably 10 to 30 ° C.) to dissolve until a transparent state is obtained.
 溶解後、必要に応じて撹拌しながら放冷し、滅菌(例えば、121℃にて20分でのオートクレーブ滅菌、フィルター濾過)を行う。任意の培地を撹拌(例えば、ホモミキサー等)しながら、当該培地に前記滅菌後の水溶液を添加し、当該培地と均一になるように混合する。本水溶液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネティックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。 After dissolution, allow to cool with stirring as necessary, and sterilize (for example, autoclave sterilization at 121 ° C for 20 minutes, filter filtration). While stirring (for example, a homomixer, etc.) any medium, the sterilized aqueous solution is added to the medium and mixed so as to be uniform with the medium. The method for mixing the aqueous solution and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, a mechanical stirrer, a homomixer, and a homogenizer.
 脱アシル化ジェランガム又はその塩及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、均一に液体培地中に分散するように、例えば、コニカルチューブ内に液体培地を入れ、ボルテックス等により撹拌状態を維持し、そこへシリンジ針を装着したシリンジから、脱アシル化ジェランガム又はその塩及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩の水溶液を勢いよく液体培地中にフラッシュしてもよい。培地作成キット(日産化学 FCeMTM-series Preparation Kit)を用いることにより、脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類(例、アルギン酸)又はその塩が、金属カチオン(例えば、カルシウムイオン等の二価金属カチオン)を介して集合することにより形成された三次元のネットワーク(不定型な構造体)が、均一に分散された、本発明の液体組成物を容易に調製することができる。 Deacylated gellan gum or a salt thereof and an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion are uniformly contained in a liquid medium. In a conical tube, for example, a liquid medium is placed in a conical tube, and the stirring state is maintained by vortexing, etc. An aqueous solution of an acidic polysaccharide (eg, alginic acid) or a salt thereof that can maintain a random coil state and can be crosslinked via divalent metal ions may be vigorously flushed into the liquid medium. By using the media preparation kit (Nissan Chemical FCeM TM -series Preparation Kit), the random coil state is maintained in the deacylated gellan gum or its salt, and the divalent metal cation medium, and cross-linking is performed via the divalent metal ion. A three-dimensional network (atypical structure) formed by assembling acidic polysaccharides (eg, alginic acid) or salts thereof via metal cations (eg, divalent metal cations such as calcium ions). , The liquid composition of the present invention, which is uniformly dispersed, can be easily prepared.
 混合後に、本発明の液体組成物をフィルターにてろ過してもよい。ろ過処理をする際に用いるフィルターの細孔の大きさは、5μm乃至100μm、好ましくは5μm乃至70μm、より好ましくは10μm乃至70μmである。 After mixing, the liquid composition of the present invention may be filtered through a filter. The size of the pores of the filter used in the filtration treatment is 5 μm to 100 μm, preferably 5 μm to 70 μm, and more preferably 10 μm to 70 μm.
 本明細書において、「細胞機能」とは、細胞が有する機能を意味する。細胞機能には、例えば、増殖能、接着能、分化能、未分化状態の維持、分化状態の制御、分泌因子の分泌能等が挙げられるが、これらに限定されない。 In the present specification, "cell function" means a function possessed by a cell. Cellular functions include, but are not limited to, proliferative, adhesive, differentiating, maintaining undifferentiated state, controlling differentiating state, secretory component secretory ability, and the like.
 一態様において、本発明の液体組成物は間葉系幹細胞に適用され得る。間葉系幹細胞は様々な機能を有することが知られているが、本発明の液体組成物中において間葉系幹細胞を培養することにより、間葉系幹細胞の未分化状態、遊走能、及び分泌因子の分泌量を促進することができる。 In one embodiment, the liquid composition of the present invention can be applied to mesenchymal stem cells. Although mesenchymal stem cells are known to have various functions, by culturing mesenchymal stem cells in the liquid composition of the present invention, the undifferentiated state, migration ability, and secretion of mesenchymal stem cells The amount of factor secretion can be promoted.
 本明細書において、「間葉系幹細胞の未分化状態を促進する」とは、間葉系幹細胞が未分化状態としてより好ましい状態へ移行し、該細胞の分化が抑制される状態となることを意味する。より具体的には、例えば、間葉系幹細胞におけるOCT4又はNANOG遺伝子等の未分化マーカーの転写量が本発明の液体組成物の適用前の転写量と比較して高まることを意味する。本発明の一態様において、OCT4遺伝子又はNANOG遺伝子の転写量を間葉系幹細胞の未分化状態の促進の指標とした場合、OCT4遺伝子又はNANOG遺伝子の転写量の増加の割合は、通常10%以上、好ましくは、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、100%以上、110%以上、120%以上、130%以上、140%以上、150%以上、160%以上、170%以上、180%以上、190%以上、200%以上、210%以上、220%以上、230%以上、240%以上、250%以上、260%以上、270%以上、280%以上、290%以上、又は300%以上であり得るが、これらに限定されない。 In the present specification, "promoting the undifferentiated state of mesenchymal stem cells" means that the mesenchymal stem cells shift to a more preferable state as an undifferentiated state and the differentiation of the cells is suppressed. means. More specifically, it means that, for example, the transcription amount of an undifferentiated marker such as OCT4 or NANOG gene in mesenchymal stem cells is higher than the transcription amount before application of the liquid composition of the present invention. In one embodiment of the present invention, when the transcription amount of the OCT4 gene or NANOG gene is used as an index for promoting the undifferentiated state of mesenchymal stem cells, the rate of increase in the transcription amount of the OCT4 gene or NANOG gene is usually 10% or more. , Preferably 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 100% or more, 110% or more, 120% or more, 130% 140% or more, 150% or more, 160% or more, 170% or more, 180% or more, 190% or more, 200% or more, 210% or more, 220% or more, 230% or more, 240% or more, 250% or more, It can be, but is not limited to, 260% or more, 270% or more, 280% or more, 290% or more, or 300% or more.
 また、本発明の液体組成物中において間葉系幹細胞を培養又は保管することにより、間葉系幹細胞の遊走能を促進することができる。間葉系幹細胞の遊走能の促進は、間葉系幹細胞の遊走に関与する因子の増加を公知の方法を用いて決定すること等により確認することができる。かかる因子の例としては、CXCR4遺伝子、MMP2遺伝子、VCAM-1遺伝子、Integrinα4遺伝子、Integrinβ1遺伝子の転写量等が挙げられるが、これに限定されない。 Further, by culturing or storing the mesenchymal stem cells in the liquid composition of the present invention, the migration ability of the mesenchymal stem cells can be promoted. The promotion of migration ability of mesenchymal stem cells can be confirmed by determining the increase of factors involved in the migration of mesenchymal stem cells by using a known method or the like. Examples of such factors include, but are not limited to, the transcription levels of the CXCR4 gene, MMP2 gene, VCAM-1 gene, Integrinα4 gene, Integrinβ1 gene, and the like.
 また、本発明の液体組成物中において間葉系幹細胞を培養することにより、間葉系幹細胞が分泌する因子の分泌量を促進させることができる。本発明の液体組成物において「間葉系幹細胞の分泌因子の分泌量を促進する」とは、間葉系幹細胞の分泌因子の産生能力を高め、該因子の細胞外への分泌量を増加させることを意味する。尚、本明細書において、本発明の液体組成物の適用により増加する分泌因子の量は、対照となる所定の分泌因子の分泌量と比較して、少なくとも120%以上、少なくとも130%以上、少なくとも140%以上、少なくとも150%以上、少なくとも160%以上、少なくとも170%以上、少なくとも180%以上、少なくとも190%以上、少なくとも200%以上、少なくとも300%以上、少なくとも400%以上、少なくとも500%以上、少なくとも600%以上、少なくとも700%以上、少なくとも800%以上、少なくとも900%以上、少なくとも1000%以上、分泌因子の産生・分泌量が増大することを意味する。分泌される因子の測定は、例えば因子がタンパク質である場合には、ELISA(Enzyme-Linked ImmunoSorbent Assay)法やフローサイトメーター法などの自体公知の方法を用いることができる。 Further, by culturing the mesenchymal stem cells in the liquid composition of the present invention, the amount of secreted factors secreted by the mesenchymal stem cells can be promoted. In the liquid composition of the present invention, "promoting the amount of secretory factor secreted by mesenchymal stem cells" means increasing the ability of mesenchymal stem cells to produce secretory factors and increasing the amount of the factor secreted extracellularly. Means that. In the present specification, the amount of secretory component increased by the application of the liquid composition of the present invention is at least 120% or more, at least 130% or more, at least, as compared with the amount of secretory component secreted as a control. 140% or more, at least 150% or more, at least 160% or more, at least 170% or more, at least 180% or more, at least 190% or more, at least 200% or more, at least 300% or more, at least 400% or more, at least 500% or more, at least It means that the production / secretion amount of secretory components increases by 600% or more, at least 700% or more, at least 800% or more, at least 900% or more, and at least 1000% or more. For the measurement of the secreted factor, for example, when the factor is a protein, a known method such as an ELISA (Enzyme-Linked ImmunoSorbent Assay) method or a flow cytometer method can be used.
 かかる分泌因子としては、例えば、TSG-6 (TNF-stimulated gene 6 protein)、STC-1 (Stanniocalcin-1)、ANG (Angiogenin)、EGF (Epidermal Growth Factor)、MCP-1 (Monocyte Chemotactic Protein-1)、ENA-78 (epithelial-derived neutrophil-activating peptide 78)、bFGF (Basic fibroblast growth factor)、IL-6 (Interleukin-6)、IL-8 (Interleukin-8)、VEGF (Vascular endothelial growth factor)、VEGF-D (Vascular endothelial growth factor-D)、TIMP (Tissue inhibitors of matrix metalloproteinase)、PDGF(Platelet-Derived Growth Factor)、TGF-β(transforming growth factor-β)、HGF(Hepatocyte growth factor)及び、PGE2(Prostaglandin E2)等が挙げられるが、これらに限定されない。 Examples of such secretory factors include TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), and MCP-1 (Monocyte Chemotactic Protein-1). ), ENA-78 (epithelial-derived neurophil-activating peptide 78), bFGF (Basic fibroblast growth factor), IL-6 (Interleukin-6), IL-8 (Interleukin-8), VEGF (Vascular endothelial growth factor), VEGF-D (Vascular endothelial growth factor-D), TIMP (Tissue inhibitors of matrix metalloproteinase), PDGF (Platelet-Derived Growth Factor), TGF-β (transforming growth factor-β), HGF (Hepatocyte growth factor) (Prostaglandin E2), etc., but are not limited to these.
 別の一態様において、本発明の培地組成物は肝細胞に適用され得る。本発明の培地組成物を肝細胞に適用することにより、該細胞の細胞接着能を促進することができる。この側面において、本発明の液体組成物は、移植用の肝細胞の調製に好適に使用され得る。 In another embodiment, the medium composition of the present invention can be applied to hepatocytes. By applying the medium composition of the present invention to hepatocytes, the cell adhesion ability of the cells can be promoted. In this aspect, the liquid composition of the present invention can be suitably used for the preparation of hepatocytes for transplantation.
2.細胞の機能促進方法
 本発明はまた、本発明の液体組成物中で細胞を培養することを含む、細胞機能を促進させる方法(以下、「本発明の方法」と称することがある)を提供する。
2. Methods for Promoting Cell Function The present invention also provides a method for promoting cell function (hereinafter, may be referred to as "method of the present invention"), which comprises culturing cells in the liquid composition of the present invention. ..
 本発明の方法は、上述の本発明の液体組成物中で細胞を培養又は保管することにより達成される。本発明の方法における液体組成物や細胞種等は、「1.液体組成物」において説明したものと同様である。 The method of the present invention is achieved by culturing or storing cells in the liquid composition of the present invention described above. The liquid composition, cell type, etc. in the method of the present invention are the same as those described in "1. Liquid composition".
 本発明の方法の一態様において、細胞の培養は、浮遊培養(好ましくは浮遊静置培養)により行われ得る。 In one aspect of the method of the present invention, cell culture can be performed by suspension culture (preferably suspension static culture).
 本発明の好ましい一態様において、細胞はシングルセルの状態で播種され、培養される。換言すれば、本発明の好ましい一態様において、細胞は、スフェアを形成しない状態で培養され得る。 In a preferred embodiment of the present invention, cells are seeded and cultured in a single cell state. In other words, in a preferred embodiment of the invention, cells can be cultured without forming spheres.
 以下に本発明の液体組成物の実施例を具体的に述べることで、本発明をさらに詳しく説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail by specifically describing examples of the liquid composition of the present invention, but the present invention is not limited thereto.
[試験例1]多糖混合水溶液の作製
 0.67質量部のアルギン酸ナトリウム(ALG)(キミカアルギンIL-2、株式会社キミカ製)および0.33質量部の脱アシル化ジェランガム(DAG)(KELCOGEL CG-LA、三晶株式会社製)を、99質量部の精製水を入れたガラス製培地ビンに加え、攪拌により溶解後、0.22μm滅菌フィルター(Corningフィルターシステム430767、コーニング社製)に通液させることで、計1質量%濃度の多糖混合水溶液を作製した。
[Test Example 1] Preparation of a polysaccharide mixed aqueous solution 0.67 parts by mass of sodium alginate (ALG) (Kimika Argin IL-2, manufactured by Kimika Co., Ltd.) and 0.33 parts by mass of deacylated gellan gum (DAG) (KELCOGEL CG-LA, tricrystal) (Manufactured by Co., Ltd.) is added to a glass medium bottle containing 99 parts by mass of purified water, dissolved by stirring, and then passed through a 0.22 μm sterile filter (Corning filter system 430767, manufactured by Corning) for a total of 1 A polysaccharide mixed aqueous solution having a mass% concentration was prepared.
[試験例2]ALG/DAG配合培地組成物の作製
 培地作製キット(日産化学 FCeM(登録商標)-series Preparation Kit)を使用し、培地組成物の作製を行った。MSC Nutristem(登録商標)XF Basal Medium(05-200-1A、Biological Industries社製)にMSC Nutristem(登録商標) XF Supplement Mix(05-200-1U、Biological Industries社製)を添加して調製したヒト間葉系幹細胞用ゼノフリー培地を、上述キット付属の50mLコニカルチューブに49.5mL分注し、キットの構成品であるアダプターキャップを装着した。試験例1で得た多糖混合液を0.5mL充填したディスポーザブルシリンジの先端部をアダプターキャップの円筒部に嵌め込んで接続し、シリンジのプランジャーを人力で押圧し、勢い良くシリンジ内の多糖混合液を容器内へと射出して培地と瞬時に混合させることで、多糖終濃度0.01%(w/v)の液体培地組成物(以下、ALG/DAG配合培地組成物と表記)を作製した。
[Test Example 2] Preparation of ALG / DAG-blended medium composition A medium composition was prepared using a medium preparation kit (Nissan Chemical FCeM (registered trademark) -series Preparation Kit). Human prepared by adding MSC Nutristem (registered trademark) XF Supplement Mix (05-200-1U, manufactured by Biological Industries) to MSC Nutristem (registered trademark) XF Basal Medium (05-200-1A, manufactured by Biological Industries). 49.5 mL of Xenofree medium for mesenchymal stem cells was dispensed into the 50 mL conical tube attached to the above kit, and the adapter cap, which is a component of the kit, was attached. The tip of the disposable syringe filled with 0.5 mL of the polysaccharide mixture obtained in Test Example 1 is fitted into the cylindrical part of the adapter cap to connect, and the plunger of the syringe is manually pressed to vigorously press the polysaccharide mixture in the syringe. Was injected into a container and instantly mixed with the medium to prepare a liquid medium composition having a final polysaccharide concentration of 0.01% (w / v) (hereinafter referred to as ALG / DAG mixed medium composition).
[試験例3]ALG/DAG配合培地組成物中で3D浮遊状態にて静置培養したヒト臍帯由来間葉系幹細胞の遺伝子発現解析
 ヒト臍帯由来間葉系幹細胞(C-12971、タカラバイオ社製)を、試験例2で調製したALG/DAG配合培地組成物に100000細胞/mLとなるように播種した後、1.5mLチューブに添加し、室温にて6日間静置保管した。播種時に用いたヒト臍帯由来間葉系幹細胞にRLT溶液を350μL(RNeasy mini kit(QIAGEN社製、#74106))を添加し、RNA抽出溶液を予め得た。6日後に1.5mLチューブから15mLチューブに移し、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を20%(v/v)となるように添加後、300×gで5分間遠心分離したのち培養上清を除いた。続いて、RLT溶液を350μL(RNeasy mini kit(QIAGEN社製、#74106))を添加し、RNA抽出溶液とした。また比較対象として、37℃、5%CO2存在下で10cm培養皿を用いて3日間2次元培養したヒト臍帯由来間葉系幹細胞からRNA抽出溶液を得た。RNA抽出溶液に70%エタノールを350μL加えた後、RNeasyスピンカラムに添加し、8000×gで15秒間遠心分離した。続いて、RNeasyスピンカラムに700μLのRW1溶液を添加し、8000×gで15秒間遠心分離した。続いて、500μLのRPE溶液を添加し、8000×gで15秒間遠心分離した。さらに500μLのRPE溶液を添加し、8000×gで2分間遠心分離した。RNeasyスピンカラム中に存在するRNAにRNaseフリー溶液を添加し、溶出させた。次に、得られたRNAからPrimeScript RT reagent Kit(Perfect Real Time)(タカラバイオ社製、#RR037A)を用いてcDNAを合成した。合成したcDNAとPremix EX Taq(Perfect Real Time)(タカラバイオ社製、#RR039A)、Taq man Probe(Applied Bio Systems社製)を用いてリアルタイムPCRを行った。Taq man Probe(Applied Bio Systems社製)としては、OCT4はHs04260367_gH、NANOGはHs04399610_g1、CXCR4はHs00607978_s1、GAPDHはHs99999905_m1を用いた。機器はリアルタイムPCR7500を使用した。解析は各目的遺伝子の値をGAPDHの値で補正した相対値を算出し、比較した。
[Test Example 3] Gene expression analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D floating state in an ALG / DAG combination medium composition Human umbilical cord-derived mesenchymal stem cells (C-12971, manufactured by Takara Bio Co., Ltd.) ) Was seeded in the ALG / DAG mixed medium composition prepared in Test Example 2 to 100,000 cells / mL, added to a 1.5 mL tube, and left to stand at room temperature for 6 days. 350 μL (RNeasy mini kit (QIAGEN, # 74106)) of RLT solution was added to human umbilical cord-derived mesenchymal stem cells used at the time of seeding to obtain an RNA extraction solution in advance. After 6 days, transfer from 1.5 mL tube to 15 mL tube and add 20% (v / v) of chelating agent (mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)). After addition, the mixture was centrifuged at 300 × g for 5 minutes, and then the culture supernatant was removed. Subsequently, 350 μL (RNeasy mini kit (manufactured by QIAGEN, # 74106)) of the RLT solution was added to prepare an RNA extraction solution. For comparison, RNA extraction solutions were obtained from human umbilical cord-derived mesenchymal stem cells that were two-dimensionally cultured for 3 days using a 10 cm culture dish in the presence of 5% CO 2 at 37 ° C. After adding 350 μL of 70% ethanol to the RNA extraction solution, the mixture was added to an RNeasy spin column and centrifuged at 8000 × g for 15 seconds. Subsequently, 700 μL of RW1 solution was added to the RNeasy spin column, and the mixture was centrifuged at 8000 × g for 15 seconds. Subsequently, 500 μL of RPE solution was added and centrifuged at 8000 × g for 15 seconds. Further, 500 μL of RPE solution was added, and the mixture was centrifuged at 8000 × g for 2 minutes. An RNase-free solution was added to the RNA present in the RNeasy spin column and eluted. Next, cDNA was synthesized from the obtained RNA using the PrimeScript RT reagent Kit (Perfect Real Time) (# RR037A, manufactured by Takara Bio Inc.). Real-time PCR was performed using the synthesized cDNA, Premix EX Taq (Perfect Real Time) (manufactured by Takara Bio Inc., # RR039A), and Taq man Probe (manufactured by Applied Bio Systems). As Taq man Probe (manufactured by Applied Bio Systems), Hs04260367_gH was used for OCT4, Hs04399610_g1 for NANOG, Hs00607978_s1 for CXCR4, and Hs99999905_m1 for GAPDH. The instrument used was a real-time PCR7500. In the analysis, the relative value obtained by correcting the value of each target gene with the value of GAPDH was calculated and compared.
 その結果、ALG/DAG配合培地組成物中で静置浮遊保管したヒト臍帯由来間葉系幹細胞の方が、day0時や2次元培養したヒト臍帯由来間葉系幹細胞よりも未分化性を示すOCT4、NANOG遺伝子やホーミングに関わるCXCR4遺伝子の相対的な発現量の上昇が認められた。各遺伝子発現の相対値を表1に示す。 As a result, OCT4 showing undifferentiated characteristics of human umbilical cord-derived mesenchymal stem cells that were statically suspended and stored in the ALG / DAG combination medium composition was more undifferentiated than human umbilical cord-derived mesenchymal stem cells that were cultured at midnight or two-dimensionally. , The relative increase in the expression level of the NANOG gene and the CXCR4 gene involved in homing was observed. Table 1 shows the relative values of each gene expression.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[試験例4]ALG/DAG配合培地組成物中で3D浮遊状態にて静置保管したヒト臍帯由来間葉系幹細胞のTSG-6産生量
 ヒト臍帯由来間葉系幹細胞(C-12971、タカラバイオ社製)を、試験例2で調製したALG/DAG配合培地組成物に100000細胞/mlとなるように播種した後、1.5mLチューブに添加し、室温にて7日間静置した。6日後に1.5mLチューブから15mLチューブに移し、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を20%(v/v)となるように添加後、300×gで5分間遠心分離したのち培養上清を除いた。培養上清を除いた後、60000sells/mLとなるようにヒト間葉系幹細胞用ゼノフリー培地(サンプル1)もしくは終濃度20ng/mLのTNF-α(#210-TA、R&Dシステムズ社製)を含むヒト間葉系幹細胞用ゼノフリー培地(サンプル2)を15mLチューブに添加し、24ウェル平底超低接着表面マイクロプレート(#3473、コーニング社製)のウェルに添加した。また、比較対象として、37℃、5%CO2存在下で10cm培養皿を用いて2次元培養したヒト臍帯由来間葉系幹細胞を60000sells/mLとなるようにヒト間葉系幹細胞用ゼノフリー培地(サンプル3)もしくは終濃度20ng/mLのTNF-α(#210-TA、R&Dシステムズ社製)を含むヒト間葉系幹細胞用ゼノフリー培地(サンプル4)に播種し、24ウェル平底超低接着表面マイクロプレートに添加した。プレートはCO2インキュベーター(37℃、5%CO2)内にて静置状態で培養し、1日間継続した。1日目にそれぞれのウェルから、細胞及び培地を15mLチューブに移し、300×gで3分間遠心分離したのち培養上清を回収した。この際に細胞数の評価を行うために、ATP試薬1mL(CellTiter-Glo(登録商標) Luminescent Cell Viability Assay、 Promega社製)を培養上清回収後の各サンプルに添加して懸濁させ、10分間室温で静置した後、Enspire(Perkin Elmer社製)にて発光強度(RLU値)を測定し、培地のみの発光値を差し引くことで生細胞の数を測定した。続いて、回収した培養上清中に含まれるTSG-6に関して、ELISAを用いて定量を行った。Maxisorp flat bottom(#44-2404-21、サーモフィッシャーサイエンティフィック社製)に0.2M炭酸―重炭酸緩衝液(pH9.2)で10μg/mLに希釈したTSG-6抗体(#sc-65886、Santacruz社製)を50μL/ウェルで添加し、4℃で24時間静置した。24時間後、D-PBS(-)(#043-29791、富士フイルム和光純薬社製)にTween-20(#P7949、シグマアルドリッチ社製)を終濃度0.05%(v/v)となるように添加した溶液(以下、PBST溶液と表記)を300μL添加後、除去した。本操作を3回繰り返した。BSA(#A2153、シグマアルドリッチ社製)を5%含有させたPBST溶液を100μL添加し、室温で30分間静置した。溶液を廃棄後、300μLのPBST溶液を添加、除去した。本操作を3回繰り返した。続いて、検量線用に調製したTSG-6(#2104-TS、R&D Systems社製)及び評価サンプルを50μL各ウェルに添加し、室温で2時間静置した。溶液を廃棄後、300μLのPBST溶液を添加し、除去した。本操作を3回繰り返した。PBSTで5μg/mLに希釈したBiotinylated anti human TSG-6抗体(#BAF2104、R&D Systems社製)の溶液を50μL添加し、室温で120分間静置した。溶液を廃棄後、300μLのPBST溶液を添加し、除去した。本操作を3回繰り返した。PBST溶液で200ng/mLに希釈したStreptavidin-HRP(#ab7403、Abcam社製)の溶液を50μL添加し、室温で30分間静置した。溶液を廃棄後、300μLのPBST溶液を添加し、除去した。本操作を3回繰り返した。100μLのsubstrate solution(#52-00-03、KPL社製)を添加し、15分間室温で静置した。最後に100μLのstop solution(#50-85-06、KPL社製)を添加し、450nmの吸光度を測定した。各サンプル中に含まれるTSG-6濃度は検量線の4パラメーターロジスティック回帰より算出した。細胞数あたりの分泌量を算出するために、算出されたTSG-6量を発光強度で除した相対値を算出した。
[Test Example 4] TSG-6 production of human umbilical cord-derived mesenchymal stem cells statically stored in a 3D floating state in the ALG / DAG combination medium composition Human umbilical cord-derived mesenchymal stem cells (C-12971, Takara Bio) Was inoculated to the ALG / DAG mixed medium composition prepared in Test Example 2 to 100,000 cells / ml, added to a 1.5 mL tube, and allowed to stand at room temperature for 7 days. After 6 days, transfer from 1.5 mL tube to 15 mL tube and add 20% (v / v) of chelating agent (mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)). After addition, the mixture was centrifuged at 300 × g for 5 minutes, and then the culture supernatant was removed. After removing the culture supernatant, it contains Xenofree medium for human mesenchymal stem cells (Sample 1) or TNF-α (# 210-TA, manufactured by R & D Systems) with a final concentration of 20 ng / mL so that it becomes 60000 sells / mL. Xenofree medium for human mesenchymal stem cells (Sample 2) was added to a 15 mL tube and added to the wells of a 24-well flat-bottomed ultra-low adhesion surface microplate (# 3473, manufactured by Corning). For comparison, human umbilical cord-derived mesenchymal stem cells two-dimensionally cultured in the presence of 5% CO 2 at 37 ° C using a 10 cm culture dish were used as a xenofree medium for human mesenchymal stem cells at 60000 sells / mL. Seed in sample 3) or Xenofree medium for human mesenchymal stem cells (Sample 4) containing TNF-α (# 210-TA, manufactured by R & D Systems) with a final concentration of 20 ng / mL, and 24-well flat-bottomed ultra-low adhesion surface micro Added to the plate. The plates were cultured in a CO 2 incubator (37 ° C, 5% CO 2 ) in a static state and continued for 1 day. On day 1, cells and medium were transferred from each well to a 15 mL tube, centrifuged at 300 xg for 3 minutes, and then the culture supernatant was collected. At this time, in order to evaluate the number of cells, 1 mL of ATP reagent (CellTiter-Glo (registered trademark) Luminescent Cell Viability Assay, manufactured by Promega) was added to each sample after collection of the culture supernatant and suspended. After allowing to stand at room temperature for a minute, the luminescence intensity (RLU value) was measured with Enspire (manufactured by Perkin Elmer), and the number of living cells was measured by subtracting the luminescence value of the medium alone. Subsequently, TSG-6 contained in the collected culture supernatant was quantified using ELISA. TSG-6 antibody (# sc-65886, # sc-65886) diluted to 10 μg / mL with 0.2 M carbonate-bicarbonate buffer (pH 9.2) on Maxisorp flat bottom (# 44-2404-21, manufactured by Thermo Fisher Scientific). (Santacruz) was added at 50 μL / well and allowed to stand at 4 ° C. for 24 hours. After 24 hours, add Tween-20 (# P7949, manufactured by Sigma-Aldrich) to D-PBS (-) (# 043-29791, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to a final concentration of 0.05% (v / v). After adding 300 μL of the solution added to (hereinafter referred to as PBST solution), the solution was removed. This operation was repeated 3 times. 100 μL of a PBST solution containing 5% of BSA (# A2153, manufactured by Sigma-Aldrich) was added, and the mixture was allowed to stand at room temperature for 30 minutes. After discarding the solution, 300 μL of PBST solution was added and removed. This operation was repeated 3 times. Subsequently, 50 μL of TSG-6 (# 2104-TS, manufactured by R & D Systems) prepared for the calibration curve and an evaluation sample were added to each well, and the mixture was allowed to stand at room temperature for 2 hours. After discarding the solution, 300 μL of PBST solution was added and removed. This operation was repeated 3 times. 50 μL of a solution of Biotinylated anti-human TSG-6 antibody (# BAF2104, manufactured by R & D Systems) diluted to 5 μg / mL with PBST was added, and the mixture was allowed to stand at room temperature for 120 minutes. After discarding the solution, 300 μL of PBST solution was added and removed. This operation was repeated 3 times. 50 μL of a solution of Streptavidin-HRP (# ab7403, manufactured by Abcam) diluted to 200 ng / mL with PBST solution was added, and the mixture was allowed to stand at room temperature for 30 minutes. After discarding the solution, 300 μL of PBST solution was added and removed. This operation was repeated 3 times. 100 μL of substrate solution (# 52-00-03, manufactured by KPL) was added, and the mixture was allowed to stand at room temperature for 15 minutes. Finally, 100 μL of stop solution (# 50-85-06, manufactured by KPL) was added, and the absorbance at 450 nm was measured. The TSG-6 concentration contained in each sample was calculated by 4-parameter logistic regression of the calibration curve. In order to calculate the amount of secretion per cell number, the relative value obtained by dividing the calculated amount of TSG-6 by the luminescence intensity was calculated.
 その結果、ALG/DAG配合培地組成物中で静置浮遊培養したヒト臍帯由来間葉系幹細胞の方が、2次元培養したヒト臍帯由来間葉系幹細胞よりもTNF-α処置時の細胞当たりのTSG-6産生量が多い結果が得られた。各サンプルの相対値を表2に示す。 As a result, the human umbilical cord-derived mesenchymal stem cells statically suspended and cultured in the ALG / DAG combination medium composition per cell at the time of TNF-α treatment than the two-dimensionally cultured human umbilical cord-derived mesenchymal stem cells. The results showed that the amount of TSG-6 produced was high. Table 2 shows the relative values of each sample.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[試験例5]ALG/DAG配合培地組成物中で3D浮遊状態にて培養したカニクイザル由来初代肝細胞のE-Cadherin接着性の促進 [Test Example 5] Promotion of E-Cadherin adhesion of primary hepatocytes derived from cynomolgus monkeys cultured in a 3D suspension in an ALG / DAG combination medium composition
E-Cadherinペプチドコートプレートの調製
 E-Cadherinペプチド(MAPTrix(登録商標)-E、Kollodis BIOSCIENCES社製、#167021、#167061)をそれぞれ滅菌水で0.2mg/mLに希釈し、96ウェル細胞培養プレート(Corning社製, #3585)に100μL添加し、冷蔵下で一昼夜保管した。ペプチド未使用のウェルは滅菌水のみ添加した。使用前にペプチド液を除去し、D-PBS(-)で洗浄後使用した。
Preparation of E-Cadherin Peptide Coat Plate E-Cadherin peptide (MAPTrix®-E, manufactured by Kollodis BIOSCIENCES, # 167021, # 167061) was diluted with sterile water to 0.2 mg / mL, respectively, and a 96-well cell culture plate was used. 100 μL was added to (Corning, # 3585) and stored in a refrigerator for a whole day and night. Only sterile water was added to the peptide-free wells. The peptide solution was removed before use, washed with D-PBS (-), and then used.
本発明の培養法および対照培養法
 凍結されていた2本(100万個~500万個/本)のカニクイザル初代肝細胞(株式会社イナリサーチ社製)を混合しHBM培地に懸濁し、2本のチューブに均等に分注する。その後50xgで3分間遠心し、一方のチューブでの細胞ペレットはHBM培地2.5ml(対照培養法)に懸濁した。対照培養法は96ウェル細胞培養プレート(Corning社製, #3585)およびそれぞれのE-Cadherinペプチドコーティングプレートに100μL/ウェルで播種し、37℃5%CO2下で2時間培養を継続した。
Culture method and control culture method of the present invention Two frozen cynomolgus monkey primary hepatocytes (manufactured by Ina Research Co., Ltd.) were mixed and suspended in HBM medium, and two cells were used. Dispense evenly into the tubes. The cells were then centrifuged at 50 xg for 3 minutes and the cell pellet in one tube was suspended in 2.5 ml of HBM medium (control culture method). In the control culture method, 96-well cell culture plates (Corning, # 3585) and each E-Cadherin peptide-coated plate were seeded at 100 μL / well, and culture was continued for 2 hours at 37 ° C. and 5% CO 2.
 もう一方のチューブでの細胞ペレットはALG/DAG配合培地組成物5ml(本発明の培養法)に懸濁し、6ウェル超低接着プレート(Corning社製, #3471)に5mL/ウェルで播種し、37℃5%CO2下で2時間事前培養を実施した。2時間後にウェルから15mLチューブに移し、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を10%(v/v)となるように添加後、さらにD-PBS(-)でウェル内の残存細胞を回収し最終的にD-PBS(-)を5倍量添加した後、50×gで3分間遠心分離したのち培養上清を除いた。事前培養した細胞ペレットはHBM培地2.5mlに懸濁し、96ウェル細胞培養プレート(Corning社製, #3585)およびそれぞれのE-Cadherinペプチドコーティングプレートに100μL/ウェルで播種し、37℃5%CO下でさらに2時間培養を追加した。 Cell pellets in the other tube were suspended in 5 ml of ALG / DAG mixed medium composition (culture method of the present invention) and seeded on a 6-well ultra-low adhesion plate (Corning, # 3471) at 5 mL / well. Preculture was performed for 2 hours under 5% CO 2 at 37 ° C. After 2 hours, transfer from the well to a 15 mL tube and add a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) to 10% (v / v). After the addition, the remaining cells in the well were further collected with D-PBS (-), and finally 5 times the amount of D-PBS (-) was added, and then centrifuged at 50 × g for 3 minutes, and then the culture supernatant was prepared. Excluded. Precultured cell pellet was suspended in 2.5 ml of HBM medium and seeded on 96-well cell culture plates (Corning, # 3585) and each E-Cadherin peptide coated plate at 100 μL / well at 37 ° C. 5% CO 2 A further 2 hour culture was added below.
播種の総細胞数測定
 対照培養法は播種後2時間の培養液に対し、本発明の培養法はALG/DAG配合培地組成物でプレ培養した後播種して2時間の培養液に対し、ATP試薬100μL(CellTiter-Glo(登録商標)Luminescent Cell Viability Assay,Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで生細胞の数を測定した。
Measurement of total cell count of seeding The control culture method was used for 2 hours after seeding, whereas the culture method of the present invention was pre-cultured with the ALG / DAG mixed medium composition and then seeded for 2 hours. Add 100 μL of reagent (Cell Titer-Glo® Luminescent Cell Viability Assay, manufactured by Promega), suspend, allow to stand at room temperature for about 10 minutes, and then use FlexStation 3 (Molecular Devices) to emit light intensity (RLU value). ) Was measured, and the number of living cells was measured by subtracting the luminescence plate of the medium only.
接着細胞数の測定
 96ウェル細胞培養プレート(E-Cadherinペプチド未処理)およびそれぞれのE-Cadherinペプチドコーティングプレートに播種したウェルから培養上清を除去し、HBM培地200μLを添加し培地を除去するリンス工程を2回繰り返した後、接着のため残存した細胞に対しHBM培地100μLとATP試薬100μLを添加し懸濁させ、約10分間室温で静置した後、FlexStation3にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで接着細胞の数を測定した。接着率は各条件での接着細胞数(RLU値)をそれぞれの培養法における総細胞数(RLU値)で割り算することで求めた。
Measurement of Adhesive Cell Numbers Remove the culture supernatant from the wells seeded on 96-well cell culture plates (untreated with E-Cadherin peptide) and each E-Cadherin peptide-coated plate, add 200 μL of HBM medium, and remove the medium. After repeating the process twice, 100 μL of HBM medium and 100 μL of ATP reagent were added to the cells remaining for adhesion and suspended, and the cells were allowed to stand at room temperature for about 10 minutes, and then the emission intensity (RLU value) was measured with FlexStation 3. The number of adherent cells was measured by subtracting the luminescence field of the medium only. The adhesion rate was obtained by dividing the number of adherent cells (RLU value) under each condition by the total number of cells (RLU value) in each culture method.
 その結果、ALG/DAG配合培地組成物でプレ培養することにより、明らかなカニクイザル初代肝細胞のE-Cadherinペプチドをコーティングしたプレートへの接着改善効果を認めた。接着率の結果を表3に示す。 As a result, by pre-culturing with the ALG / DAG combination medium composition, a clear effect of improving the adhesion of cynomolgus monkey primary hepatocytes to the plate coated with the E-Cadherin peptide was observed. The results of the adhesion rate are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[試験例6]ALG/DAG配合培地組成物中で3D浮遊培養したヒト由来初代肝細胞のE-Cadherinへの接着性の促進 [Test Example 6] Promotion of adhesion of human-derived primary hepatocytes cultured in 3D suspension in ALG / DAG combination medium composition to E-Cadherin
E-Cadherinペプチドコートプレートの調製
 E-Cadherinペプチド(MAPTrix(登録商標)-E、Kollodis BIOSCIENCES社製,#167021)をそれぞれ滅菌水で0.2mg/mLに希釈し、96ウェル細胞培養プレート(Corning社製, #3585)に100μL添加し、冷蔵下で一昼夜保管した。ペプチド未使用のウェルは滅菌水のみ添加した。使用前にペプチド液を除去し、D-PBS(-)で洗浄後使用した。
Preparation of E-Cadherin Peptide Coat Plate E-Cadherin peptide (MAPTrix®-E, Kollodis BIOSCIENCES, # 167021) was diluted with sterile water to 0.2 mg / mL, respectively, and a 96-well cell culture plate (Corning) was used. 100 μL was added to # 3585) and stored in a refrigerator for a whole day and night. Only sterile water was added to the peptide-free wells. The peptide solution was removed before use, washed with D-PBS (-), and then used.
本発明の培養法および対照培養法
 凍結されていた1本(約500万個/本)のヒト初代肝細胞(Xeno Tech社製)を混合しHBM培地に懸濁し、2本のチューブに均等に分注する。その後50xgで3分間遠心し、一方のチューブでの細胞ペレットはHBM培地2.5ml(対照培養法)に懸濁した。対照培養法は96ウェル細胞培養プレート(Corning社製, #3585)、E-CadherinペプチドコーティングプレートおよびType I collagenコーティングプレート(IWAKI社製,#4860-010)に100μL/ウェルで播種し、37℃5%CO2下で2時間培養を継続した。
Culture method and control culture method of the present invention One frozen (about 5 million cells /) human primary hepatocytes (manufactured by Xeno Tech) was mixed, suspended in HBM medium, and evenly placed in two tubes. Dispense. The cells were then centrifuged at 50 xg for 3 minutes and the cell pellet in one tube was suspended in 2.5 ml of HBM medium (control culture method). The control culture method was to inoculate a 96-well cell culture plate (Corning, # 3585), an E-Cadherin peptide-coated plate and a Type I collagen-coated plate (IWAKI, # 4860-010) at 100 μL / well at 37 ° C. Culture was continued for 2 hours under 5% CO 2.
 もう一方のチューブでの細胞ペレットはALG/DAG配合培地組成物5ml(本発明の培養法)に懸濁し、6ウェル超低接着プレート(Corning社製, #3471)に5mL/ウェルで播種し、37℃5%CO2下で2時間事前培養を実施した。2時間後にウェルから15mLチューブに移し、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を10%(v/v)となるように添加後、さらにD-PBS(-)でウェル内の残存細胞を回収し最終的にD-PBS(-)を5倍量添加した後、50×gで3分間遠心分離したのち培養上清を除いた。事前培養した細胞ペレットはHBM培地2.5mlに懸濁し、96ウェルプレート(Corning社製, #3585)、E-CadherinペプチドコーティングプレートおよびType I collagenコーティングプレート(IWAKI社製,#4860-010)に100μL/ウェルで播種し、37℃5%CO2下でさらに2時間培養を追加した。 Cell pellets in the other tube were suspended in 5 ml of ALG / DAG mixed medium composition (culture method of the present invention) and seeded on a 6-well ultra-low adhesion plate (Corning, # 3471) at 5 mL / well. Preculture was performed for 2 hours under 5% CO 2 at 37 ° C. After 2 hours, transfer from the well to a 15 mL tube and add a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) to 10% (v / v). After the addition, the remaining cells in the well were further collected with D-PBS (-), and finally 5 times the amount of D-PBS (-) was added, and then centrifuged at 50 × g for 3 minutes, and then the culture supernatant was prepared. Excluded. Precultured cell pellets were suspended in 2.5 ml of HBM medium and 100 μL in 96-well plates (Corning, # 3585), E-Cadherin peptide coated plates and Type I collagen coated plates (IWAKI, # 4860-010). Seed in / wells and added cultures for an additional 2 hours under 37 ° C. 5% CO 2.
播種の総細胞数測定
 対照培養法は播種して2時間の培養液に対し、本発明の培養法はALG/DAG配合培地組成物でプレ培養した後播種して2時間の培養液に対し、ATP試薬100μL(CellTiter-GloTMLuminescent Cell Viability Assay, Promega社製)を添加し懸濁させ、約10分間室温で静置した後、FlexStation3(Molecular Devices社製)にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで生細胞の数を測定した。
Measurement of total cell count of seeding The control culture method was used for 2 hours after seeding, whereas the culture method of the present invention was used for 2 hours after pre-culturing with the ALG / DAG mixed medium composition. Add 100 μL of ATP reagent (CellTiter-Glo TM Luminescent Cell Viability Assay, manufactured by Promega), suspend, allow to stand at room temperature for about 10 minutes, and then adjust the emission intensity (RLU value) with FlexStation 3 (Molecular Devices). The number of living cells was measured by subtracting the luminescence column of the medium only.
接着細胞数の測定
 96ウェルプレート(E-Cadherinペプチド未処理)、E-CadherinペプチドコーティングプレートおよびType I collagenコーティングプレートに播種したウェルから培養上清を除去し、HBM培地200μLを添加し培地を除去するリンス工程を2回繰り返した後、接着のため残存した細胞に対しHBM培地100μLとATP試薬100μLを添加し懸濁させ、約10分間室温で静置した後、FlexStation3にて発光強度(RLU値)を測定し、培地のみの発光置を差し引くことで接着細胞の数を測定した。接着率は各条件での接着細胞数(RLU値)をそれぞれの培養法における総細胞数(RLU値)で割り算することで求めた。
Measurement of Adherent Cell Numbers Remove the culture supernatant from the wells seeded on 96-well plates (untreated with E-Cadherin peptide), E-Cadherin peptide-coated plates and Type I collagen-coated plates, add 200 μL of HBM medium, and remove the medium. After repeating the rinsing step twice, 100 μL of HBM medium and 100 μL of ATP reagent were added to the cells remaining for adhesion and suspended, and the cells were allowed to stand at room temperature for about 10 minutes, and then the emission intensity (RLU value) was set on FlexStation 3. ) Was measured, and the number of adherent cells was measured by subtracting the luminescence plate of the medium only. The adhesion rate was obtained by dividing the number of adherent cells (RLU value) under each condition by the total number of cells (RLU value) in each culture method.
 その結果、ALG/DAG配合培地組成物でプレ培養することにより、明らかなヒト初代肝細胞のE-Cadherinペプチドをコーティングしたプレートや型コラーゲンプレートへの接着改善効果を認めた。E-Cadherinペプチドへの接着率の結果を表4に、Type I collagenコーティングプレートを表5に示す。 As a result, by pre-culturing with the ALG / DAG combination medium composition, a clear effect of improving adhesion of human primary hepatocytes to E-Cadherin peptide-coated plates and type collagen plates was observed. Table 4 shows the results of the adhesion to the E-Cadherin peptide, and Table 5 shows the Type I collagen coated plate.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[試験例7]ALG/DAG配合培地組成物の作製
 培地作製キット (日産化学FCeM(登録商標)-series Preparation Kit)を使用し、培地組成物の作製を行った。StemFit(登録商標) For Mesenchymal Stem Cell(味の素社製)を、上述キット付属の50mLコニカルチューブに49.2mL分注し、キットの構成品であるアダプターキャップを装着した。試験例1で得た多糖混合液を0.8mL充填したディスポーザブルシリンジの先端部をアダプターキャップの円筒部に嵌め込んで接続し、シリンジのプランジャーを人力で押圧し、勢い良くシリンジ内の多糖混合液を容器内へと射出して培地と瞬時に混合させることで、多糖終濃度0.016%(w/v)の液体培地組成物(以下、ALG/DAG配合培地組成物と表記)を作製した。
[Test Example 7] Preparation of ALG / DAG-blended medium composition A medium composition was prepared using a medium preparation kit (Nissan Chemical FCeM (registered trademark) -series Preparation Kit). StemFit (registered trademark) For Mesenchymal Stem Cell (manufactured by Ajinomoto Co., Inc.) was dispensed at 49.2 mL into the 50 mL conical tube attached to the above kit, and the adapter cap, which is a component of the kit, was attached. The tip of the disposable syringe filled with 0.8 mL of the polysaccharide mixture obtained in Test Example 1 is fitted into the cylindrical portion of the adapter cap to connect, and the plunger of the syringe is manually pressed to vigorously press the polysaccharide mixture in the syringe. Was injected into a container and instantly mixed with the medium to prepare a liquid medium composition having a final polysaccharide concentration of 0.016% (w / v) (hereinafter referred to as ALG / DAG mixed medium composition).
[試験例8]ALG/DAG配合培地組成物中で3D浮遊状態にて静置培養したヒト臍帯由来間葉系幹細胞の表面マーカー発現解析
 ヒト臍帯由来間葉系幹細胞(C-12971、タカラバイオ社製)を、試験例7で調製したALG/DAG配合培地組成物(終濃度0.016%)に100000細胞/mLとなるように懸濁し、2mLをステムフル(登録商標)15mL遠沈管(MS-90150、住友ベークライト社製)に播種した。播種後、遠沈管を密閉し、室温で7日間静置保管した。7日後に15mL遠沈管の細胞懸濁液に、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を20%(v/v)となるように添加後、300×gで5分間遠心分離したのち培養上清を除いた。得られた細胞をSM buffer(2% FBS/PBS)で洗浄した後、BV650 Mouse Anti-Human CD105 (563466、BD Biosciences社製)、BV421 Mouse Anti-Human CD73 (562430、BD Biosciences社製)、APC Mouse Anti-Human CD90 (559869、BD Biosciences社製)、PE Mouse Anti-Human CD34 (555822、BD Biosciences社製)、FITC Anti-CD11b 抗体 [M1/70] (ab24874、アブカム社製) をそれぞれ添加し、室温、遮光下で30分間インキュベートした。陰性対照には、BV650 Mouse IgG1, k Isotype Control (563231、BD Biosciences社製)、BV421 Mouse IgG1, k Isotype Control (562438、BD Biosciences社製)、APC Mouse IgG1, κ Isotype Control (555751、BD Biosciences社製)、PE Mouse IgG1, κ Isotype Control (555749、BD Biosciences社製)、FITC Rat IgG2b, kappa monoclonal [eB149/10H5] - Isotype control (ab136125、アブカム社製) をそれぞれ用いた。染色後の細胞をSM bufferにて2回洗浄した後、FACSLSRFortessaX-20 (BD Biosciences社製) にて測定した。
[Test Example 8] Surface marker expression analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D floating state in an ALG / DAG combination medium composition Human umbilical cord-derived mesenchymal stem cells (C-12971, Takara Bio Co., Ltd.) Is suspended in the ALG / DAG combination medium composition (final concentration 0.016%) prepared in Test Example 7 so as to be 100,000 cells / mL, and 2 mL is stem full (registered trademark) 15 mL centrifuge tube (MS-90150, It was sown in Sumitomo Bakelite Co., Ltd.). After sowing, the centrifuge tube was sealed and stored at room temperature for 7 days. After 7 days, add 20% (v / v) of a chelating agent (a mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) to a cell suspension of a 15 mL centrifuge tube. After addition, the mixture was centrifuged at 300 × g for 5 minutes, and then the culture supernatant was removed. After washing the obtained cells with SM buffer (2% FBS / PBS), BV650 Mouse Anti-Human CD105 (563466, manufactured by BD Biosciences), BV421 Mouse Anti-Human CD73 (562430, manufactured by BD Biosciences), APC Mouse Anti-Human CD90 (559869, manufactured by BD Biosciences), PE Mouse Anti-Human CD34 (555822, manufactured by BD Biosciences), and FITC Anti-CD11b antibody [M1 / 70] (ab24874, manufactured by Abcam) were added. Incubated for 30 minutes at room temperature and in the dark. Negative controls include BV650 Mouse IgG1, k Isotype Control (563231, BD Biosciences), BV421 Mouse IgG1, k Isotype Control (562438, BD Biosciences), APC Mouse IgG1, κ Isotype Control (555751, BD Biosciences). , PE Mouse IgG1, κ Isotype Control (555749, manufactured by BD Biosciences), FITC Rat IgG2b, kappa monoclonal [eB149 / 10H5] --Isotype control (ab136125, manufactured by Abcam) were used. The stained cells were washed twice with SM buffer and then measured with FACSLSRFortessaX-20 (manufactured by BD Biosciences).
 また、ALG/DAG配合培地組成物にて培養7日後に、上記と同様にしてキレート剤を添加し遠心後に得られた細胞を、StemFit(登録商標) For Mesenchymal Stem Cell (味の素社製) に懸濁し、1×10cells/wellとなるように6ウェルプレートに播種することで平面培養へ再播種し37℃、5%CO2環境下にて培養した。3日後に細胞をDetach kit (D13101、タカラバイオ社製) を用いてシングルセルに剥離した後、上記と同様にしてFACS測定を実施した。 In addition, after 7 days of culturing in the ALG / DAG mixed medium composition, the cells obtained by adding a chelating agent in the same manner as above and centrifuging were subjected to StemFit (registered trademark) For Mesenchymal Stem Cell (manufactured by Ajinomoto Co., Inc.). The cells were turbid and seeded on a 6-well plate so as to have 1 × 10 5 cells / well, and then re-seeded into a flat culture and cultured at 37 ° C. in a 5% CO 2 environment. After 3 days, the cells were detached into single cells using a Detach kit (D13101, manufactured by Takara Bio Inc.), and then FACS measurement was performed in the same manner as above.
 その結果、ALG/DAG配合培地組成物で7日間静置浮遊保管したヒト臍帯由来間葉系幹細胞は、MSCであることを示す陽性マーカーの発現を維持し、陰性マーカーの発現増加は認められなかったことから、MSCの性質を維持していることが明らかとなった。また、本培養法にて培養後の細胞を平面培養に再播種したところ、細胞は正常に接着した形態を示し、MSCマーカー発現も問題なく維持されていた。各マーカーの陽性細胞の割合を表6に示す。 As a result, human umbilical cord-derived mesenchymal stem cells that had been stood and suspended for 7 days in the ALG / DAG combination medium composition maintained the expression of a positive marker indicating MSC, and no increase in the expression of a negative marker was observed. From this, it became clear that the properties of MSC were maintained. In addition, when the cells after culturing by this culture method were re-seeded in a planar culture, the cells showed a normally adhered morphology, and the expression of MSC markers was maintained without any problem. Table 6 shows the percentage of positive cells for each marker.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[試験例9]ALG/DAG配合培地組成物中で3D浮遊状態にて静置培養したヒト臍帯由来間葉系幹細胞の表面マーカー発現解析
 ヒト臍帯由来間葉系幹細胞(C-12971、タカラバイオ社製)を、試験例7で調製したALG/DAG配合培地組成物(終濃度0.016%)に100000細胞/mLとなるように懸濁し、2mLをステムフル(登録商標) 15mL遠沈管 (MS-90150、住友ベークライト社製) に播種した。播種後、遠沈管を密閉し、室温で7日間静置保管した。3、7、11、15日後に15mL遠沈管の細胞懸濁液に、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を20%(v/v)となるように添加後、300×gで5分間遠心分離したのち培養上清を除いた。得られた細胞をSM buffer (2% FBS/PBS) で洗浄した後、BV421 Mouse Anti-Human CD271 (562562、BD Biosciences社製)またはBV421 Mouse IgG1, k Isotype Control (562438、BD Biosciences社製)をそれぞれ添加し、室温、遮光下で30分間インキュベートした。染色後の細胞をSM bufferにて2回洗浄した後、FACSLSRFortessaX-20 (BD Biosciences社製) にて測定した。
[Test Example 9] Surface marker expression analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D floating state in an ALG / DAG combination medium composition Human umbilical cord-derived mesenchymal stem cells (C-12971, Takara Bio Co., Ltd.) Is suspended in the ALG / DAG combination medium composition (final concentration 0.016%) prepared in Test Example 7 to 100,000 cells / mL, and 2 mL is stem full (registered trademark) 15 mL centrifuge tube (MS-90150, It was sown in Sumitomo Bakelite Co., Ltd.). After sowing, the centrifuge tube was sealed and stored at room temperature for 7 days. After 3, 7, 11 and 15 days, 20% of a chelating agent (a mixed aqueous solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)) was added to a cell suspension of a 15 mL centrifuge tube. After addition to (v / v), the mixture was centrifuged at 300 × g for 5 minutes, and the culture supernatant was removed. After washing the obtained cells with SM buffer (2% FBS / PBS), use BV421 Mouse Anti-Human CD271 (562562, manufactured by BD Biosciences) or BV421 Mouse IgG1, k Isotype Control (562438, manufactured by BD Biosciences). Each was added and incubated at room temperature and in the dark for 30 minutes. The stained cells were washed twice with SM buffer and then measured with FACSLSRFortessaX-20 (manufactured by BD Biosciences).
 その結果、平面培養した本試験で使用のヒト臍帯由来間葉系幹細胞にはCD271の発現が認められなかったが、ALG/DAG配合培地組成物で静置浮遊保管したヒト臍帯由来間葉系幹細胞は、7日目まで陽性細胞の割合が増加し、その後も陽性細胞の割合が維持されていた。各マーカーの陽性細胞の割合を表7に示す。 As a result, no expression of CD271 was observed in the human umbilical cord-derived mesenchymal stem cells used in this test cultured in a plane, but the human umbilical cord-derived mesenchymal stem cells that were statically suspended and stored in the ALG / DAG combination medium composition. The proportion of positive cells increased until the 7th day, and the proportion of positive cells was maintained thereafter. The percentage of positive cells for each marker is shown in Table 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[試験例10]添加剤の調製 [Test Example 10] Preparation of additives
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[試験例12]多糖類配合培地組成物の作製
 培地作製キット(日産化学 FCeM(登録商標)-series Preparation Kit) を使用し、培地組成物の作製を行った。StemFit(登録商標) For Mesenchymal Stem Cell(味の素社製)を、上述キット付属の50mLコニカルチューブに39.4mL分注し、キットの構成品であるアダプターキャップを装着した。試験例11で得た各多糖混合液を0.6mL充填したディスポーザブルシリンジの先端部をアダプターキャップの円筒部に嵌め込んで接続し、シリンジのプランジャーを人力で押圧し、勢い良くシリンジ内の多糖混合液を容器内へと射出して培地と瞬時に混合させることで、多糖終濃度0.015%(w/v)の液体培地組成物を作製した。
[Test Example 12] Preparation of polysaccharide-containing medium composition A medium composition was prepared using a medium preparation kit (Nissan Chemical FCeM (registered trademark) -series Preparation Kit). StemFit (registered trademark) For Mesenchymal Stem Cell (manufactured by Ajinomoto Co., Inc.) was dispensed in 39.4 mL into the 50 mL conical tube attached to the above kit, and the adapter cap, which is a component of the kit, was attached. The tip of the disposable syringe filled with 0.6 mL of each polysaccharide mixture obtained in Test Example 11 is fitted into the cylindrical portion of the adapter cap to connect, and the plunger of the syringe is manually pressed to vigorously mix the polysaccharide in the syringe. A liquid medium composition having a final polysaccharide concentration of 0.015% (w / v) was prepared by injecting the liquid into a container and instantly mixing it with the medium.
[試験例13]多糖類配合培地組成物中で3D浮遊状態にて静置培養したヒト臍帯由来間葉系幹細胞の遺伝子解析
 ヒト臍帯由来間葉系幹細胞(C-12971、タカラバイオ社製)を、試験例12で調製した各培地組成物(添加剤終濃度0.015%)に100000細胞/mLとなるように懸濁し、2mLを超低接着6ウェルプレート(3471、Corning社製)に播種し、室温で静置した。4または7日後に、細胞懸濁液を15mL遠沈管に移し、キレート剤(EDTA-2Na 0.033%(w/v)及びクエン酸ナトリウム 0.007%(w/v)の混合水溶液)を20%(v/v)となるように添加後、300×gで5分間遠心分離したのち培養上清を除いた。続いて、RLT溶液を350μL(RNeasy mini kit(QIAGEN社製、#74106))を添加し、RNA抽出溶液とした。比較対象として、ヒト臍帯由来間葉系幹細胞をStemFit(登録商標) For Mesenchymal Stem Cell培地に懸濁し、0.5μg/cm2となるようにiMatrix-511 silk (892 021、マトリクソーム社製)をコーティングした6ウェルプレートに50000細胞/ウェルで播種して37℃、5%CO2環境下で平面培養し、培養4日目に細胞をDetach kit(D13101、タカラバイオ社製)を用いて継代した。培養4または7日目にこれらの細胞からRNA抽出溶液を得たRNA抽出溶液に70%エタノールを350μL加えた後、RNeasyスピンカラムに添加し、8000×gで15秒間遠心分離した。続いて、RNeasyスピンカラムに700μLのRW1溶液を添加し、8000×gで15秒間遠心分離した。続いて、500μLのRPE溶液を添加し、8000×gで15秒間遠心分離した。さらに500μLのRPE溶液を添加し、8000×gで2分間遠心分離した。RNeasyスピンカラム中に存在するRNAにRNaseフリー溶液を添加し、溶出させた。次に、得られたRNAからPrimeScript RT reagent Kit(Perfect Real Time)(タカラバイオ社製、#RR037A)を用いてcDNAを合成した。合成したcDNAとPremix EX Taq(Perfect Real Time)(タカラバイオ社製、#RR039A)、Taq man Probe(Applied Bio Systems社製)を用いてリアルタイムPCRを行った。Taq man Probe(Applied Bio Systems社製)としては、OCT4はHs04260367_gH、NANOGはHs04399610_g1、GAPDHはHs99999905_m1を用いた。機器はリアルタイムPCR7500を使用した。解析は各目的遺伝子の値をGAPDHの値で補正した相対値を算出し、比較した。
[Test Example 13] Gene analysis of human umbilical cord-derived mesenchymal stem cells statically cultured in a 3D suspension in a polysaccharide-containing medium composition Human umbilical cord-derived mesenchymal stem cells (C-12971, manufactured by Takara Bio Co., Ltd.) , Suspended to 100,000 cells / mL in each medium composition (final additive concentration 0.015%) prepared in Test Example 12, and seeded 2 mL on an ultra-low adhesion 6-well plate (3471, manufactured by Corning). The cells were allowed to stand at room temperature. After 4 or 7 days, transfer the cell suspension to a 15 mL centrifuge tube and add 20% (v) of a chelating agent (a mixed solution of EDTA-2Na 0.033% (w / v) and sodium citrate 0.007% (w / v)). After addition to / v), the mixture was centrifuged at 300 × g for 5 minutes, and then the culture supernatant was removed. Subsequently, 350 μL (RNeasy mini kit (manufactured by QIAGEN, # 74106)) of the RLT solution was added to prepare an RNA extraction solution. For comparison, human umbilical mesenchymal stem cells were suspended in StemFit® For Mesenchymal Stem Cell medium and coated with iMatrix-511 silk (892 021, manufactured by Matrixome) to 0.5 μg / cm 2. The cells were seeded on a 6-well plate at 50,000 cells / well and cultured in a plane at 37 ° C. in a 5% CO 2 environment, and the cells were subcultured using a Detach kit (D13101, manufactured by Takara Bio) on the 4th day of the culture. After adding 350 μL of 70% ethanol to the RNA extract solution obtained from these cells on the 4th or 7th day of culture, the cells were added to the RNeasy spin column and centrifuged at 8000 × g for 15 seconds. Subsequently, 700 μL of RW1 solution was added to the RNeasy spin column, and the mixture was centrifuged at 8000 × g for 15 seconds. Subsequently, 500 μL of RPE solution was added and centrifuged at 8000 × g for 15 seconds. Further, 500 μL of RPE solution was added, and the mixture was centrifuged at 8000 × g for 2 minutes. An RNase-free solution was added to the RNA present in the RNeasy spin column and eluted. Next, cDNA was synthesized from the obtained RNA using the PrimeScript RT reagent Kit (Perfect Real Time) (# RR037A, manufactured by Takara Bio Inc.). Real-time PCR was performed using the synthesized cDNA, Premix EX Taq (Perfect Real Time) (manufactured by Takara Bio Inc., # RR039A), and Taq man Probe (manufactured by Applied Bio Systems). As Taq man Probe (manufactured by Applied Bio Systems), Hs04260367_gH was used for OCT4, Hs04399610_g1 for NANOG, and Hs99999905_m1 for GAPDH. The instrument used was a real-time PCR7500. In the analysis, the relative value obtained by correcting the value of each target gene with the value of GAPDH was calculated and compared.
 その結果、今回評価したいずれの添加剤においても、未分化性を示すOCT4、NANOG遺伝子の相対的な発現量の上昇が認められた。OCT4遺伝子発現の相対値を表9に、NANOG遺伝子発現の相対値を表10にそれぞれ示す。 As a result, an increase in the relative expression levels of the undifferentiated OCT4 and NANOG genes was observed in all of the additives evaluated this time. Table 9 shows the relative values of OCT4 gene expression, and Table 10 shows the relative values of NANOG gene expression.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明によれば、例えば、肝細胞の接着能を向上させることができ、また、2D培養での継代を重ねたこと等により低下した間葉系幹細胞の機能を向上させることができる。換言すれば、本発明は、肝細胞移植時の生着率向上や間葉系幹細胞の大量生産における品質調整又は高品質化を達成できる。従って、本発明は再生医療の分野において非常に有益である。 According to the present invention, for example, the adhesive ability of hepatocytes can be improved, and the function of mesenchymal stem cells, which has been deteriorated due to repeated passages in 2D culture, can be improved. In other words, the present invention can achieve improvement in engraftment rate at the time of hepatocyte transplantation and quality adjustment or quality improvement in mass production of mesenchymal stem cells. Therefore, the present invention is very useful in the field of regenerative medicine.
 本出願は、日本で出願された特願2020-084151(出願日:2020年5月12日)を基礎としており、その内容は本明細書に全て包含されるものである。
 
This application is based on Japanese Patent Application No. 2020-084151 (Filing date: May 12, 2020), the contents of which are incorporated herein by reference in its entirety.

Claims (20)

  1.  脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む、液体組成物であって、
     該液体組成物が、細胞機能の促進用である、液体組成物。
    A liquid composition comprising deacylated gellan gum or a salt thereof, and an acidic polysaccharide or salt thereof that maintains a random coil state in a divalent metal cation medium and can be crosslinked via a divalent metal ion.
    A liquid composition in which the liquid composition is for promoting cell function.
  2.  該液体組成物中の脱アシル化ジェランガム又はその塩の濃度が、フリー体の脱アシル化ジェランガム換算で、0.002~0.1 (w/v)%であり、該酸性多糖類又はその塩の濃度が、フリー体換算で、0.004~0.2 (w/v)%であり、脱アシル化ジェランガム又はその塩に対する該酸性多糖類又はその塩の質量比が、フリー体換算で、1以上である、請求項1記載の液体組成物。 The concentration of the deacylated gellan gum or its salt in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the free form of the deacylated gellan gum, and the concentration of the acidic polysaccharide or its salt is Claim 1 that the mass ratio of the acidic polysaccharide or its salt to the deacylated gellan gum or its salt is 1 or more in terms of free form, which is 0.004 to 0.2 (w / v)% in terms of free form. The liquid composition described.
  3.  該酸性多糖類が、アルギン酸、ペクチン及びペクチン酸からなる群から選択されるいずれかである、請求項1又は2記載の液体組成物。 The liquid composition according to claim 1 or 2, wherein the acidic polysaccharide is any one selected from the group consisting of alginic acid, pectin and pectic acid.
  4.  該酸性多糖類が、アルギン酸である、請求項3記載の液体組成物。 The liquid composition according to claim 3, wherein the acidic polysaccharide is alginic acid.
  5.  さらに、金属カチオンを含有する、請求項1~4のいずれか一項記載の液体組成物。 The liquid composition according to any one of claims 1 to 4, further containing a metal cation.
  6.  該金属カチオンが、カルシウムイオンである、請求項5記載の液体組成物。 The liquid composition according to claim 5, wherein the metal cation is a calcium ion.
  7.  細胞が間葉系幹細胞であり、促進される細胞機能が、未分化維持状態、遊走能、及び分泌因子の分泌能からなる群から選択される少なくとも1つである、請求項1~6のいずれか一項記載の液体組成物。 13. The liquid composition according to item 1.
  8.  促進される細胞機能が分泌因子の分泌能である、請求項7記載の液体組成物。 The liquid composition according to claim 7, wherein the promoted cell function is the secretory ability of a secretory component.
  9.  分泌因子が、TSG-6 (TNF-stimulated gene 6 protein)、STC-1 (Stanniocalcin-1)、ANG (Angiogenin)、EGF (Epidermal Growth Factor)、MCP-1 (Monocyte Chemotactic Protein-1)、ENA-78 (epithelial-derived neutrophil-activating peptide 78)、bFGF (Basic fibroblast growth factor)、IL-6 (Interleukin-6)、IL-8 (Interleukin-8)、VEGF (Vascular endothelial growth factor)、VEGF-D (Vascular endothelial growth factor-D)、TIMP (Tissue inhibitors of matrix metalloproteinase)、PDGF (Platelet-Derived Growth Factor)、及びTGF-β (transforming growth factor-β)からなる群から選択される少なくとも1つである、請求項8記載の液体組成物。 Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1), ENA- 78 (epithelial-derived neurophil-activating peptide 78), bFGF (Basic fibroblast growth factor), IL-6 (Interleukin-6), IL-8 (Interleukin-8), VEGF (Vascular endothelial growth factor), VEGF-D ( Vascular endothelial growth factor-D), TIMP (Tissue inhibitors of matrix metalloproteinase), PDGF (Platelet-Derived Growth Factor), and TGF-β (transforming growth factor-β), which is at least one selected from the group. The liquid composition according to claim 8.
  10.  細胞が、肝細胞であり、促進される細胞機能が細胞接着能である、請求項1~6のいずれか一項記載の液体組成物。 The liquid composition according to any one of claims 1 to 6, wherein the cells are hepatocytes and the promoted cell function is cell adhesion ability.
  11.  脱アシル化ジェランガム又はその塩、及び二価金属カチオン媒体中でランダムコイル状態を維持し、かつ二価金属イオンを介して架橋できる酸性多糖類又はその塩を含む液体組成物中で細胞を培養することを含む、細胞機能を促進させる方法。 The cells are cultured in a liquid composition containing a deacylated gellan gum or a salt thereof, and an acidic polysaccharide or a salt thereof that can maintain a random coil state in a divalent metal cation medium and can be cross-linked via a divalent metal ion. A method of promoting cell function, including.
  12.  該液体組成物中の脱アシル化ジェランガム又はその塩の濃度が、フリー体の脱アシル化ジェランガム換算で、0.002~0.1 (w/v)%であり、該酸性多糖類又はその塩の濃度が、フリー体換算で、0.004~0.2 (w/v)%であり、脱アシル化ジェランガム又はその塩に対する該酸性多糖類又はその塩の質量比が、フリー体換算で、1以上である、請求項11記載の方法。 The concentration of the deacylated gellan gum or its salt in the liquid composition is 0.002 to 0.1 (w / v)% in terms of the free form of the deacylated gellan gum, and the concentration of the acidic polysaccharide or its salt is Claim 11 that the mass ratio of the acidic polysaccharide or its salt to the deacylated gellan gum or its salt is 1 or more in terms of free form, which is 0.004 to 0.2 (w / v)% in terms of free form. The method described.
  13.  該酸性多糖類が、アルギン酸、ペクチン及びペクチン酸からなる群から選択されるいずれかである、請求項11又は12記載の方法。 The method according to claim 11 or 12, wherein the acidic polysaccharide is any one selected from the group consisting of alginic acid, pectin and pectic acid.
  14.  該酸性多糖類が、アルギン酸である、請求項13記載の方法。 The method according to claim 13, wherein the acidic polysaccharide is alginic acid.
  15.  さらに、金属カチオンを含有する、請求項11~14のいずれか一項記載の方法。 The method according to any one of claims 11 to 14, further comprising a metal cation.
  16.  該金属カチオンが、カルシウムイオンである、請求項15記載の方法。 The method according to claim 15, wherein the metal cation is a calcium ion.
  17.  細胞が間葉系幹細胞であり、促進される細胞機能が、未分化維持状態、遊走能、及び分泌因子の分泌能からなる群から選択される少なくとも1つである、請求項11~16のいずれか一項記載の方法。 13. Or the method described in item 1.
  18.  促進される細胞機能が分泌因子の分泌能である、請求項17記載の方法。 The method according to claim 17, wherein the promoted cell function is the secretory ability of a secretory component.
  19.  分泌因子が、TSG-6 (TNF-stimulated gene 6 protein)、STC-1 (Stanniocalcin-1)、ANG (Angiogenin)、EGF (Epidermal Growth Factor)、MCP-1 (Monocyte Chemotactic Protein-1)、ENA-78 (epithelial-derived neutrophil-activating peptide 78)、bFGF (Basic fibroblast growth factor)、IL-6 (Interleukin-6)、IL-8 (Interleukin-8)、VEGF (Vascular endothelial growth factor)、VEGF-D (Vascular endothelial growth factor-D)、TIMP (Tissue inhibitors of matrix metalloproteinase)、PDGF (Platelet-Derived Growth Factor)、及びTGF-β (transforming growth factor-β)からなる群から選択される少なくとも1つである、請求項18記載の方法。 Secretory factors are TSG-6 (TNF-stimulated gene 6 protein), STC-1 (Stanniocalcin-1), ANG (Angiogenin), EGF (Epidermal Growth Factor), MCP-1 (Monocyte Chemotactic Protein-1), ENA- 78 (epithelial-derived neurophil-activating peptide 78), bFGF (Basic fibroblast growth factor), IL-6 (Interleukin-6), IL-8 (Interleukin-8), VEGF (Vascular endothelial growth factor), VEGF-D ( Vascular endothelial growth factor-D), TIMP (Tissue inhibitors of matrix metalloproteinase), PDGF (Platelet-Derived Growth Factor), and TGF-β (transforming growth factor-β), at least one selected from the group. The method of claim 18.
  20.  細胞が、肝細胞であり、促進される細胞機能が細胞接着能である、請求項11~16のいずれか一項記載の方法。
     
    The method according to any one of claims 11 to 16, wherein the cell is a hepatocyte and the promoted cell function is cell adhesion ability.
PCT/JP2021/017995 2020-05-12 2021-05-12 Liquid composition for functional enhancement of cells WO2021230274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022521953A JPWO2021230274A1 (en) 2020-05-12 2021-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084151 2020-05-12
JP2020-084151 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021230274A1 true WO2021230274A1 (en) 2021-11-18

Family

ID=78524608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017995 WO2021230274A1 (en) 2020-05-12 2021-05-12 Liquid composition for functional enhancement of cells

Country Status (3)

Country Link
JP (1) JPWO2021230274A1 (en)
TW (1) TW202208614A (en)
WO (1) WO2021230274A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
WO2019049985A1 (en) * 2017-09-08 2019-03-14 日産化学株式会社 Cell preservation material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
WO2019049985A1 (en) * 2017-09-08 2019-03-14 日産化学株式会社 Cell preservation material

Also Published As

Publication number Publication date
TW202208614A (en) 2022-03-01
JPWO2021230274A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
TWI708846B (en) Method for manufacture of a medium composition
JP6536411B2 (en) Medium composition
JP7415928B2 (en) Medium composition for suspension culture of adherent cells
JP7264198B2 (en) Suspension culture medium composition for easy cell recovery, and cell recovery method
US11252954B2 (en) Method for preserving a cell material in an unfrozen state
EP3192863B1 (en) Method for cell recovery
WO2021230274A1 (en) Liquid composition for functional enhancement of cells
WO2023063417A1 (en) Method for suspension culture of adherent cells with stirring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805238

Country of ref document: EP

Kind code of ref document: A1