WO2021230223A1 - Sleep-waking determination system, sleep-waking determination device, and program - Google Patents

Sleep-waking determination system, sleep-waking determination device, and program Download PDF

Info

Publication number
WO2021230223A1
WO2021230223A1 PCT/JP2021/017807 JP2021017807W WO2021230223A1 WO 2021230223 A1 WO2021230223 A1 WO 2021230223A1 JP 2021017807 W JP2021017807 W JP 2021017807W WO 2021230223 A1 WO2021230223 A1 WO 2021230223A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep
feature amount
determination
awakening
subject
Prior art date
Application number
PCT/JP2021/017807
Other languages
French (fr)
Japanese (ja)
Inventor
泰己 上田
晃士 大出
蕭逸 史
健太郎 三井
真知子 香取
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2022521920A priority Critical patent/JPWO2021230223A1/ja
Publication of WO2021230223A1 publication Critical patent/WO2021230223A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to a sleep / wake determination system, a sleep / wake determination device, and a program.
  • Dyssomnia has been shown to be closely related to mental illnesses such as depression and lifestyle-related diseases such as obesity, and the importance of healthy sleep is recognized. It has become clear that the amount of sleep required to lead a healthy life varies greatly among individuals, and for this reason, there is an increasing need to measure the sleep state of an individual easily and accurately. For example, to determine if you have sleep apnea, you need to know the length of the apnea episode in your sleep state, and it is important to make a rigorous determination of whether you are in a sleep state or a wakeful state. Is. Highly accurate determination of sleep-wakefulness can be performed based on electroencephalogram EMG.
  • Patent Document 1 describes estimating a sleep state based on a feature amount extracted from measurement data of respiratory movement and body movement measured by using a wearable sensor.
  • Patent Document 2 describes that a sleep state is determined by using a body motion signal in a respiratory motion detected by a body motion detection sensor.
  • the present invention has been made in view of the circumstances described above, and one of the objects of the present invention is to perform a sleep / wake determination with high accuracy and robustness using respiratory data.
  • the sleep / awakening determination system is attached to a subject and has a breathing data acquisition device that acquires the breathing time series data of the subject, and a sleep / awakening that makes a sleep / awakening determination using the breathing time series data.
  • the sleep / wake determination device includes a determination device, and the sleep / wake determination device is extracted from the breathing time series data by using a feature amount acquisition unit that extracts one or more feature amounts used for sleep / wake determination and a machine learning model. It is provided with a sleep-wake-up determination unit that performs sleep-wake-up determination based on the feature amount.
  • the sleep / awakening determination device is a sleep / awakening determination device that determines sleep / awakening, and sleeps from the breathing time series data of the subject acquired by the breathing data acquisition device attached to the subject. It is provided with a feature amount acquisition unit that extracts one or more feature amounts used for awakening determination, and a sleep / awakening determination unit that performs sleep / awakening determination based on the extracted feature amounts using a machine learning model. ..
  • the program according to the embodiment of the present invention has one or more features in which a computer for determining sleep / wakefulness is used for sleep / wakefulness determination from the respiratory time series data of the subject acquired by a respiratory data acquisition device attached to the subject. It functions as a feature amount acquisition unit for extracting a quantity and a sleep / wakefulness determination unit for performing a sleep / wakefulness determination based on the extracted feature amount using a machine learning model.
  • the flowchart of the procedure for acquiring the feature amount of the frequency domain corresponding to the respiratory rate of the subject which concerns on embodiment of this invention.
  • FIG. 1 is a diagram showing a configuration of a sleep / wake determination system 1 according to the present embodiment.
  • the sleep / wake determination system 1 includes a sleep / wake determination device 10 and a respiratory data acquisition device 20.
  • the sleep / wake determination device 10 and the respiratory data acquisition device 20 are connected via the communication network N.
  • the communication network N may be, for example, any of the Internet, LAN, leased line, telephone line, mobile communication network, Bluetooth (registered trademark), WiFi (Wireless Fidelity), other communication lines, and combinations thereof. , Wired or wireless.
  • data and the like may be exchanged between the sleep / wake determination device 10 and the respiratory data acquisition device 20 using a physical medium without going through the communication network N.
  • the measurement data acquired by the breathing data acquisition device 20 may be stored in a recording medium such as a USB memory or a flash card, and the stored data may be read by the sleep / wake determination device 10.
  • the sleep / wake determination device 10 makes a sleep / wake determination using the subject's breathing data (breathing time series data) measured by the breathing data acquisition device 20.
  • the sleep / wake determination device 10 is a general-purpose computer, and may be composed of one computer or a plurality of computers distributed on the communication network N.
  • the sleep / wake determination device 10 includes a control device 11 (feature amount acquisition unit, sleep / wake determination unit) and a storage device 12.
  • the control device 11 includes, as hardware, a CPU, a memory such as a ROM or RAM, an input interface, an output interface, a communication interface, and a bus connecting them.
  • the control device 11 realizes various functions by the CPU executing a program stored in a ROM or the like.
  • the storage device 12 is a hard disk drive or the like, and stores various programs as well as respiratory data measured by the respiratory data acquisition device 20.
  • the respiratory data such as respiratory data may be stored in a storage device provided in the respiratory data acquisition device 20.
  • the breathing data acquisition device 20 is a device for acquiring breathing data of a subject, and is a device for measuring breathing and respiratory effort such as a sleep evaluation device used in a sleep disorder test. Specifically, as shown in FIG. 2, the time-series changes in the movement of the respiratory muscles are measured by the belt B1 attached to the abdomen of the subject and the belt B2 (inductance type respiratory plethysmography band, etc.) attached to the chest. ..
  • the breathing data data on the movement of the chest and abdominal muscles (breathing effort) performed for breathing is used. It should be noted that, for reasons such as sleep apnea, even if breathing efforts are made, breathing may not actually be performed smoothly.
  • the respiration data the airflow and temperature data measured via the airflow sensor S1 attached to the nose of the subject and the airflow sensor S2 attached to the mouth may be used. The measured data may be recorded in the data recording device R.
  • FIG. 3 is a flowchart showing the overall flow of the sleep / wake determination process by the sleep / wake determination system 1 according to the present embodiment.
  • the respiratory data of the subject is measured by the respiratory data acquisition device 20 (step S101). The measurement is performed throughout a certain period of time (for example, all night).
  • the sleep / wake determination device 10 preprocesses the measured respiratory data (step S102). Specifically, the respiratory data measured over a fixed time is divided into epochs in a fixed time unit (for example, 30 seconds).
  • the sleep / wake determination device 10 acquires the feature amount used for the sleep / wake determination from the respiratory data (step S103).
  • 13 types of feature quantities are used. These features can be divided into three groups: a feature amount in the time domain, a feature amount in the frequency domain, and a feature amount in the frequency domain according to the respiratory rate of the subject. Details of each feature will be described later.
  • the feature amount used for determining sleep / wakefulness is not limited to that given in this embodiment, and may be any feature amount that can be extracted from the respiratory data.
  • the sleep / wake determination device 10 makes a sleep / wake determination using a machine learning model based on the extracted features (step S104).
  • a machine learning model logistic regression, random forest, XGBoost, multi-layer perceptron and the like can be used.
  • the feature amount extracted from the respiratory data collected by using the sleep / wake determination device 10 can be used as input data for training.
  • the correct answer data (determination result of sleep or awakening) for the input data for example, the result determined by the electroencephalogram electromyogram can be used.
  • the machine learning model is an algorithm for sleep / wake determination generated in advance using machine learning, and when actually performing sleep / wake determination, the trained model is mounted on the sleep / wake determination device 10. There is.
  • the feature amount used in the present embodiment can be divided into three groups: a feature amount in the time domain, a feature amount in the frequency domain, and a feature amount in the frequency domain according to the respiratory rate of the subject. Each will be described below.
  • Time domain features are associated with information such as the subject's respiratory amplitude.
  • the feature amount in the time domain the average, the variance, the maximum value of the absolute value, and the number of zero crossings in one epoch of the respiratory data are used. In this embodiment, all of these values may be used as feature quantities, or some of them may be used.
  • Frequency domain features are associated with information such as the subject's respiratory rate.
  • the feature quantities in the frequency domain include spectral entropy, spectral center of gravity, spectral flux, spectral roll-off, power in an ultra-low frequency band (for example, 0 to 0.06 Hz), and low frequency band (for example, 0 to 0.06 Hz) in one epoch of respiratory data.
  • Power in the middle frequency band for example, 0.15 to 0.5Hz
  • power in the middle frequency band for example, 0.15 to 0.5Hz
  • the peak frequency and peak in the middle frequency band Use power at frequency.
  • spectral entropy, spectral centroid, spectral flux, and spectral roll-off are each defined by the following equations.
  • Z F (k) is a series obtained by normalizing the absolute value of the series X F (k) obtained by fast Fourier transforming the time series X T (k) of the kth epoch into the range [0,1]. ..
  • the threshold used to calculate the spectral roll-off leave-one-out cross-validation was performed using values of 0.50, 0.55, ..., and 0.95, respectively, and the accuracy of sleep-wake determination was the highest. Although 0.95 is adopted, the threshold value can be set to any value.
  • the spectral entropy, spectral center of gravity, spectral flux, and spectral roll-off are also mentioned in the document "Gu et al.," Intelligent sleep stage mining service with smartphones. "10.1145/2632048.2632084".
  • the power in the ultra-low frequency band for example, 0 to 0.06 Hz
  • the power in the low frequency band for example, 0.06 to 0.15 Hz
  • the power in the middle frequency band for example, 0.15 to 0.5 Hz
  • the peak frequency in the middle frequency band for example, 0.15 to 0.5 Hz
  • the power at the peak frequency is also mentioned in the document “Tataraidze et al.," Bioradiolocation-based sleep stage classification. "10.1109 / EMBC.2016.7591321.”.
  • the sleep / wakefulness determination was performed using 13 feature quantities including the above-mentioned feature quantities in the four time domains and the feature quantities in the nine frequency regions.
  • FIG. 4 is a diagram illustrating the correct answer rate when the sleep / wake determination is performed using the 13 feature quantities.
  • the judgment is made by the model that has been machine-learned by XGBoost.
  • the horizontal axis of the graphs (1) to (3) in FIG. 4 indicates each feature amount.
  • the graph of (1) shows the weight of each feature amount in XGBoost.
  • the graph of (2) shows the accuracy rate when the judgment is made with 12 feature quantities other than the feature quantity on the horizontal axis.
  • the graph of (3) shows the accuracy rate when the judgment is made only by the feature amount on the horizontal axis.
  • the left end of the horizontal axis shows the correct answer rate when the judgment is made using all 13 feature quantities.
  • a correct answer rate of 90% was obtained.
  • a correct answer rate of 65% or more is obtained.
  • FIG. 5 is a diagram showing the correct answer rate when a judgment is made using any four of the 13 feature quantities.
  • 18 patterns in which the correct answer rate is 90% or more out of all the combinations (715 patterns) in which 4 are selected from the 13 feature quantities are shown.
  • the features marked with " ⁇ " in the matrix shown at the bottom of the graph are the features included in the four. From the example of FIG. 5, it can be seen that the combinations that obtain a high accuracy rate tend to include power (low frequency) and roll-off.
  • the feature amount in the frequency domain corresponding to the respiratory rate of the subject is a power spectrum around the peak frequency (corresponding to the respiratory rate of the subject) in the epoch determined that the subject is sleeping.
  • logistic regression that does not require parameter search and can be calculated at high speed is used as a classifier.
  • the respiration data of one subject is set as verification data, and the respiration data of a plurality of other subjects is set as training data (step S201).
  • learning of the classifier is performed using the feature amount in the frequency domain corresponding to the respiratory rate of each subject (step S202).
  • the logarithm is taken after adding 1 to
  • the classifier determines whether or not it is sleeping based on the above features, and if it is actually sleeping data, the correct answer is taken.
  • the process proceeds to step S203, and the learned classifier is used to determine sleep / wakefulness for the verification data.
  • ipeak arg max fai is set as the peak frequency for the subject to be verified, and 19 points from fipeak-9 to fipeak + 9 are extracted for all epochs of the verification data.
  • the extracted value is used as the feature amount of the verification data (step S205).
  • steps S201 to S202 It is not necessary to perform the learning step of the classifier in steps S201 to S202 every time, and normally, the process of steps S203 to S205 is performed on the subject data for which the sleep / wake determination is to be performed, using the trained classifier. Is executed, and the feature amount of the frequency domain corresponding to the respiratory rate of the subject is acquired.
  • the breathing data is acquired by the breathing data acquisition device 20 attached to the subject, and the sleep awakening is determined based on the feature amount extracted from the breathing data.
  • sleep / wake determination can be performed with high accuracy and robustness using data acquired by a device that can be easily used even at home.
  • the breathing data acquisition device 20 can acquire accurate data even in an environment where there are people sleeping nearby, such as a family member, unlike a sheet-type sensor that is laid on a bed and used. Therefore, it is also suitable for screening for sleep apnea syndrome at home.
  • the feature amount in the time domain and the feature amount in the frequency domain of the respiratory data are used as the feature amount, it is possible to make a highly accurate judgment using the feature amount that can be easily extracted from the respiratory data.
  • the feature amount in the frequency domain corresponding to the respiratory rate of the subject is used as the feature amount, it is possible to perform highly accurate sleep / wake determination according to the characteristics of the individual subject.
  • the present invention is not limited to the above-described embodiment, and can be carried out in various other forms within a range that does not deviate from the gist of the present invention.
  • the above embodiments are merely examples in all respects and are not to be construed in a limited manner.
  • the above-mentioned processing steps can be arbitrarily changed in order or executed in parallel within a range that does not cause a contradiction in the processing contents.

Abstract

This sleep-waking determination system comprises: a respiration data acquisition device that is worn by a subject and that acquires respiration time series data regarding the subject; and a sleep-waking determination device that performs sleep-waking determination using the respiration time series data. The sleep-waking determination device comprises a feature amount acquisition unit for extracting at least one feature amount for use in sleep-waking determination from the respiration time series data and a sleep-waking determination unit that performs sleep-waking determination based on the extracted feature amount using a machine learning model.

Description

睡眠覚醒判定システム、睡眠覚醒判定装置、およびプログラムSleep-wake determination system, sleep-wake determination device, and program 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年5月11日に出願された日本特許出願番号2020-083064に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-083064 filed on May 11, 2020, and the contents of the description are incorporated herein by reference.
 本発明は、睡眠覚醒判定システム、睡眠覚醒判定装置、およびプログラムに関する。 The present invention relates to a sleep / wake determination system, a sleep / wake determination device, and a program.
 睡眠異常は、うつ病などの精神疾患や、肥満などの生活習慣病との密接な関わりが示されており、健全な睡眠の重要性が認識されている。健全な生活を送る上で必要な睡眠量は個人差が大きいことが明らかとなっており、このため個人の睡眠状態を簡便かつ正確に測定する必要性が高まっている。例えば、睡眠時無呼吸症候群であるか否かの判断には、睡眠状態における無呼吸エピソードの長さを知る必要があり、睡眠状態にあるか覚醒状態にあるかを厳密に判断することが重要である。
 精度の高い睡眠覚醒状態の判定は脳波筋電図に基づいて行うことができる。しかし、脳波筋電図の測定は、複数の電極の装着など熟練者による補助が必要なため、在宅での測定には向かなかった。一方、脳波筋電図を用いずに睡眠覚醒状態を判定する方法が提案されている。例えば、特許文献1には、ウェアラブルセンサを用いて計測される呼吸運動や体動の計測データから抽出される特徴量に基づいて、睡眠状態を推定することが記載されている。また、特許文献2には、体動検知センサーによって検知される呼吸動作における体動信号を用いて、睡眠状態を判定することが記載されている。
Dyssomnia has been shown to be closely related to mental illnesses such as depression and lifestyle-related diseases such as obesity, and the importance of healthy sleep is recognized. It has become clear that the amount of sleep required to lead a healthy life varies greatly among individuals, and for this reason, there is an increasing need to measure the sleep state of an individual easily and accurately. For example, to determine if you have sleep apnea, you need to know the length of the apnea episode in your sleep state, and it is important to make a rigorous determination of whether you are in a sleep state or a wakeful state. Is.
Highly accurate determination of sleep-wakefulness can be performed based on electroencephalogram EMG. However, the measurement of EEG EMG was not suitable for measurement at home because it requires assistance by a skilled person such as wearing multiple electrodes. On the other hand, a method for determining the sleep-wakefulness state without using an electroencephalogram EMG has been proposed. For example, Patent Document 1 describes estimating a sleep state based on a feature amount extracted from measurement data of respiratory movement and body movement measured by using a wearable sensor. Further, Patent Document 2 describes that a sleep state is determined by using a body motion signal in a respiratory motion detected by a body motion detection sensor.
特開2017-169884号公報Japanese Unexamined Patent Publication No. 2017-169884 特開2009-172197号公報Japanese Unexamined Patent Publication No. 2009-172197
 しかし、従来の方法では、被験者の呼吸動作に基づくデータを用いて、十分に高精度で頑健な睡眠覚醒判定を行うことはできなかった。 However, with the conventional method, it was not possible to make a sufficiently accurate and robust sleep / wake determination using data based on the respiratory movements of the subject.
 本発明は、以上説明した事情を鑑みてなされたものであり、呼吸データを用いて高精度かつ頑健に睡眠覚醒判定を行うことを目的の一つとする。 The present invention has been made in view of the circumstances described above, and one of the objects of the present invention is to perform a sleep / wake determination with high accuracy and robustness using respiratory data.
 本発明の一実施形態に係る睡眠覚醒判定システムは、被験者に装着され、当該被験者の呼吸時系列データを取得する呼吸データ取得装置と、前記呼吸時系列データを用いて睡眠覚醒判定を行う睡眠覚醒判定装置と、を備え、前記睡眠覚醒判定装置は、前記呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部と、を備えたものである。 The sleep / awakening determination system according to the embodiment of the present invention is attached to a subject and has a breathing data acquisition device that acquires the breathing time series data of the subject, and a sleep / awakening that makes a sleep / awakening determination using the breathing time series data. The sleep / wake determination device includes a determination device, and the sleep / wake determination device is extracted from the breathing time series data by using a feature amount acquisition unit that extracts one or more feature amounts used for sleep / wake determination and a machine learning model. It is provided with a sleep-wake-up determination unit that performs sleep-wake-up determination based on the feature amount.
 本発明の一実施形態に係る睡眠覚醒判定装置は、睡眠覚醒判定を行う睡眠覚醒判定装置であって、被験者に装着された呼吸データ取得装置によって取得した、当該被験者の呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部と、を備えたものである。 The sleep / awakening determination device according to the embodiment of the present invention is a sleep / awakening determination device that determines sleep / awakening, and sleeps from the breathing time series data of the subject acquired by the breathing data acquisition device attached to the subject. It is provided with a feature amount acquisition unit that extracts one or more feature amounts used for awakening determination, and a sleep / awakening determination unit that performs sleep / awakening determination based on the extracted feature amounts using a machine learning model. ..
 本発明の一実施形態に係るプログラムは、睡眠覚醒判定を行うコンピュータを、被験者に装着された呼吸データ取得装置によって取得した、当該被験者の呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部として、機能させるものである。 The program according to the embodiment of the present invention has one or more features in which a computer for determining sleep / wakefulness is used for sleep / wakefulness determination from the respiratory time series data of the subject acquired by a respiratory data acquisition device attached to the subject. It functions as a feature amount acquisition unit for extracting a quantity and a sleep / wakefulness determination unit for performing a sleep / wakefulness determination based on the extracted feature amount using a machine learning model.
 本発明によれば、呼吸データを用いて高精度かつ頑健に睡眠覚醒判定を行うことができる。 According to the present invention, it is possible to perform sleep / wake determination with high accuracy and robustness using respiratory data.
本発明の実施形態に係る睡眠覚醒判定システム1の構成を示す図。The figure which shows the structure of the sleep awakening determination system 1 which concerns on embodiment of this invention. 本発明の実施形態に係る呼吸データ取得装置20を例示する図。The figure which illustrates the breathing data acquisition apparatus 20 which concerns on embodiment of this invention. 本発明の実施形態に係る睡眠覚醒判定処理の全体の流れを示すフローチャート。The flowchart which shows the whole flow of the sleep awakening determination process which concerns on embodiment of this invention. 本発明の実施形態に係る13の特徴量を用いて睡眠覚醒判定を行った場合の正解率を例示する図。The figure which exemplifies the correct answer rate at the time of making the sleep awakening determination using the 13 feature quantities which concerns on embodiment of this invention. 本発明の実施形態に係る13の特徴量のうちのいずれか4つの特徴量を用いて睡眠覚醒判定を行った場合の正解率を例示する図。The figure which exemplifies the correct answer rate at the time of making the sleep awakening determination using any 4 feature amounts of 13 feature amounts which concerns on embodiment of this invention. 本発明の実施形態に係る被験者の呼吸数に応じた周波数領域の特徴量を取得する手順のフローチャート。The flowchart of the procedure for acquiring the feature amount of the frequency domain corresponding to the respiratory rate of the subject which concerns on embodiment of this invention.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same elements are designated by the same reference numerals, and duplicate description will be omitted.
実施の形態
 図1は、本実施形態に係る睡眠覚醒判定システム1の構成を示す図である。図1に示すように、睡眠覚醒判定システム1は、睡眠覚醒判定装置10と、呼吸データ取得装置20を含んでいる。睡眠覚醒判定装置10と呼吸データ取得装置20は、通信ネットワークNを介して接続される。通信ネットワークNは、例えば、インターネット、LAN、専用線、電話回線、移動体通信網、ブルートゥース(登録商標)、WiFi(Wireless Fidelity)、その他の通信回線、それらの組み合わせ等のいずれであってもよく、有線であるか無線であるかを問わない。なお、睡眠覚醒判定装置10と呼吸データ取得装置20との間では、通信ネットワークNを介さずに、物理的な媒体を使用してデータ等の授受を行うようにしてもよい。例えば、呼吸データ取得装置20で取得した測定データをUSBメモリやフラッシュカード等の記録媒体に保存し、保存したデータを睡眠覚醒判定装置10に読み取らせるようにしてもよい。
Embodiment FIG. 1 is a diagram showing a configuration of a sleep / wake determination system 1 according to the present embodiment. As shown in FIG. 1, the sleep / wake determination system 1 includes a sleep / wake determination device 10 and a respiratory data acquisition device 20. The sleep / wake determination device 10 and the respiratory data acquisition device 20 are connected via the communication network N. The communication network N may be, for example, any of the Internet, LAN, leased line, telephone line, mobile communication network, Bluetooth (registered trademark), WiFi (Wireless Fidelity), other communication lines, and combinations thereof. , Wired or wireless. Note that data and the like may be exchanged between the sleep / wake determination device 10 and the respiratory data acquisition device 20 using a physical medium without going through the communication network N. For example, the measurement data acquired by the breathing data acquisition device 20 may be stored in a recording medium such as a USB memory or a flash card, and the stored data may be read by the sleep / wake determination device 10.
 睡眠覚醒判定装置10は、呼吸データ取得装置20によって測定される被験者の呼吸データ(呼吸時系列データ)を用いて、睡眠覚醒判定を行う。睡眠覚醒判定装置10は汎用的なコンピュータであり、1台のコンピュータで構成されていてもよいし、通信ネットワークN上に分散する複数のコンピュータから構成されてもよい。睡眠覚醒判定装置10は、制御装置11(特徴量取得部、睡眠覚醒判定部)と、記憶装置12を備えている。制御装置11は、ハードウェアとして、CPU、ROMやRAM等のメモリ、入力インタフェース、出力インタフェース、通信インタフェース及びこれらを結ぶバス等を備えている。制御装置11は、CPUがROM等に格納されたプログラムを実行することにより各種機能を実現する。記憶装置12は、ハードディスクドライブ等であり、各種プログラムの他、呼吸データ取得装置20によって計測された呼吸データ等が記憶される。なお、呼吸デー呼吸データ等は、呼吸データ取得装置20に備えられた記憶装置に記憶するようにしてもよい。 The sleep / wake determination device 10 makes a sleep / wake determination using the subject's breathing data (breathing time series data) measured by the breathing data acquisition device 20. The sleep / wake determination device 10 is a general-purpose computer, and may be composed of one computer or a plurality of computers distributed on the communication network N. The sleep / wake determination device 10 includes a control device 11 (feature amount acquisition unit, sleep / wake determination unit) and a storage device 12. The control device 11 includes, as hardware, a CPU, a memory such as a ROM or RAM, an input interface, an output interface, a communication interface, and a bus connecting them. The control device 11 realizes various functions by the CPU executing a program stored in a ROM or the like. The storage device 12 is a hard disk drive or the like, and stores various programs as well as respiratory data measured by the respiratory data acquisition device 20. The respiratory data such as respiratory data may be stored in a storage device provided in the respiratory data acquisition device 20.
 呼吸データ取得装置20は、被験者の呼吸データを取得する装置であり、睡眠障害の検査において用いられる睡眠評価装置のような呼吸および呼吸努力の計測装置である。具体的には、図2に示すように、被験者の腹部に装着されたベルトB1や胸部に装着されたベルトB2(インダクタンス式呼吸プレチスモグラフィバンド等)によって呼吸筋の運動の時系列変化を測定する。本実施形態では、呼吸データとして、呼吸のために行われる胸腹の筋肉の動き(呼吸努力)に関するデータを用いる。なお、睡眠時無呼吸などの理由によって、呼吸努力が行われていても、実際には呼吸がスムーズに行われていない場合もある。また、呼吸データとして、被験者の鼻に装着された気流センサーS1や口に装着された気流センサーS2を介して計測される気流や温度のデータを利用してもよい。測定されたデータは、データ記録装置Rに記録されるようにしてもよい。 The breathing data acquisition device 20 is a device for acquiring breathing data of a subject, and is a device for measuring breathing and respiratory effort such as a sleep evaluation device used in a sleep disorder test. Specifically, as shown in FIG. 2, the time-series changes in the movement of the respiratory muscles are measured by the belt B1 attached to the abdomen of the subject and the belt B2 (inductance type respiratory plethysmography band, etc.) attached to the chest. .. In this embodiment, as the breathing data, data on the movement of the chest and abdominal muscles (breathing effort) performed for breathing is used. It should be noted that, for reasons such as sleep apnea, even if breathing efforts are made, breathing may not actually be performed smoothly. Further, as the respiration data, the airflow and temperature data measured via the airflow sensor S1 attached to the nose of the subject and the airflow sensor S2 attached to the mouth may be used. The measured data may be recorded in the data recording device R.
 図3は、本実施形態に係る睡眠覚醒判定システム1による睡眠覚醒判定処理の全体の流れを示すフローチャートである。図3に示すように、まず、呼吸データ取得装置20による被験者の呼吸データの計測を行う(ステップS101)。計測は、一定時間(例えば終夜)通して行われる。次に、睡眠覚醒判定装置10において、計測された呼吸データの前処理を行う(ステップS102)。具体的には、一定時間に亘って計測された呼吸データを、一定の時間単位(例えば30秒)のエポックに分割する。 FIG. 3 is a flowchart showing the overall flow of the sleep / wake determination process by the sleep / wake determination system 1 according to the present embodiment. As shown in FIG. 3, first, the respiratory data of the subject is measured by the respiratory data acquisition device 20 (step S101). The measurement is performed throughout a certain period of time (for example, all night). Next, the sleep / wake determination device 10 preprocesses the measured respiratory data (step S102). Specifically, the respiratory data measured over a fixed time is divided into epochs in a fixed time unit (for example, 30 seconds).
 次に、睡眠覚醒判定装置10は、呼吸データから睡眠覚醒判定に用いる特徴量を取得する(ステップS103)。本実施形態では、13種類の特徴量を用いる。これらの特徴は、時間領域の特徴量、周波数領域の特徴量、および被験者の呼吸数に応じた周波数領域の特徴量の3グループに区分することができる。それぞれの特徴量の詳細については後述する。なお、睡眠覚醒判定に用いる特徴量は、本実施形態で挙げるものに限られず、呼吸データから抽出できる特徴量であればよい。 Next, the sleep / wake determination device 10 acquires the feature amount used for the sleep / wake determination from the respiratory data (step S103). In this embodiment, 13 types of feature quantities are used. These features can be divided into three groups: a feature amount in the time domain, a feature amount in the frequency domain, and a feature amount in the frequency domain according to the respiratory rate of the subject. Details of each feature will be described later. The feature amount used for determining sleep / wakefulness is not limited to that given in this embodiment, and may be any feature amount that can be extracted from the respiratory data.
 次に、睡眠覚醒判定装置10は、抽出した特徴量に基づき、機械学習モデルを用いて睡眠覚醒判定を行う(ステップS104)。機械学習のアルゴリズムとしては、ロジスティック回帰、ランダムフォレスト、XGBoost、多層パーセプトロン等を用いることができる。機械学習モデルの作成には、睡眠覚醒判定装置10を用いて収集した呼吸データから抽出した特徴量を訓練用の入力データとして用いることができる。また、入力データに対する正解データ(睡眠か覚醒かの判定結果)は、例えば脳波筋電図によって判定された結果を用いることができる。なお、機械学習モデルはあらかじめ機械学習を用いて生成された睡眠覚醒判定のためのアルゴリズムであり、実際に睡眠覚醒判定を行う際には、学習済のモデルが睡眠覚醒判定装置10に実装されている。 Next, the sleep / wake determination device 10 makes a sleep / wake determination using a machine learning model based on the extracted features (step S104). As the machine learning algorithm, logistic regression, random forest, XGBoost, multi-layer perceptron and the like can be used. In creating the machine learning model, the feature amount extracted from the respiratory data collected by using the sleep / wake determination device 10 can be used as input data for training. Further, as the correct answer data (determination result of sleep or awakening) for the input data, for example, the result determined by the electroencephalogram electromyogram can be used. The machine learning model is an algorithm for sleep / wake determination generated in advance using machine learning, and when actually performing sleep / wake determination, the trained model is mounted on the sleep / wake determination device 10. There is.
 次に、睡眠覚醒判定に用いる特徴量について詳細に説明する。本実施形態で用いる特徴量は、時間領域の特徴量、周波数領域の特徴量、被験者の呼吸数に応じた周波数領域の特徴量の3つのグループに分けることができる。以下、それぞれについて説明する。 Next, the feature amount used for sleep / wake determination will be described in detail. The feature amount used in the present embodiment can be divided into three groups: a feature amount in the time domain, a feature amount in the frequency domain, and a feature amount in the frequency domain according to the respiratory rate of the subject. Each will be described below.
(時間領域の特徴量)
 時間領域の特徴量は、被験者の呼吸の振幅などの情報と関連する。本実施形態では、時間領域の特徴量として、呼吸データの1エポックにおける平均、分散、絶対値の最大値、ゼロ交差回数を用いる。本実施形態では、これらの値全てを特徴量として用いてもよいし、このうちのいくつかを用いてもよい。
(Features in the time domain)
Time domain features are associated with information such as the subject's respiratory amplitude. In the present embodiment, as the feature amount in the time domain, the average, the variance, the maximum value of the absolute value, and the number of zero crossings in one epoch of the respiratory data are used. In this embodiment, all of these values may be used as feature quantities, or some of them may be used.
(周波数領域の特徴量)
 周波数領域の特徴量は、被験者の呼吸数などの情報と関連する。本実施形態では、周波数領域の特徴量として、呼吸データの1エポックにおけるスペクトルエントロピー、スペクトル重心、スペクトルフラックス、スペクトルロールオフ、超低周波数帯域(例えば0~0.06Hz)のパワー、低周波数帯域(例えば0.06~0.15Hz)のパワー、中周波数帯域(例えば0.15~0.5Hz)のパワー、さらに、中周波数帯域には呼吸に由来する周波数成分が多く観察されることから、中周波数帯域のピーク周波数とピーク周波数でのパワーを用いる。
(Frequency domain features)
Frequency domain features are associated with information such as the subject's respiratory rate. In the present embodiment, the feature quantities in the frequency domain include spectral entropy, spectral center of gravity, spectral flux, spectral roll-off, power in an ultra-low frequency band (for example, 0 to 0.06 Hz), and low frequency band (for example, 0 to 0.06 Hz) in one epoch of respiratory data. Power in the middle frequency band (for example, 0.15 to 0.5Hz), power in the middle frequency band (for example, 0.15 to 0.5Hz), and since many frequency components derived from respiration are observed in the middle frequency band, the peak frequency and peak in the middle frequency band. Use power at frequency.
 このうち、スペクトルエントロピー、スペクトル重心、スペクトルフラックス、スペクトルロールオフについては、それぞれ下記の式で定義される。ここで、ZF (k) は、第kエポックの時系列XT (k)を高速フーリエ変換した系列XF (k)の絶対値を[0,1]の範囲に正規化した系列である。 Of these, spectral entropy, spectral centroid, spectral flux, and spectral roll-off are each defined by the following equations. Here, Z F (k) is a series obtained by normalizing the absolute value of the series X F (k) obtained by fast Fourier transforming the time series X T (k) of the kth epoch into the range [0,1]. ..
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 スペクトルロールオフの計算に用いた閾値(threshold)については、0.50, 0.55, ..., 0.95の値を用いてそれぞれleave-one-out交差検証を行い、睡眠覚醒判定の精度が最も高くなった0.95を採用したが、閾値は任意の値に設定することができる。 For the threshold used to calculate the spectral roll-off, leave-one-out cross-validation was performed using values of 0.50, 0.55, ..., and 0.95, respectively, and the accuracy of sleep-wake determination was the highest. Although 0.95 is adopted, the threshold value can be set to any value.
 なお、スペクトルエントロピー、スペクトル重心、スペクトルフラックス、スペクトルロールオフについては、文献「Gu et al., “Intelligent sleep stage mining service with smartphones.” 10.1145/2632048.2632084」でも言及されている。また、超低周波数帯域(例えば0~0.06Hz)のパワー、低周波数帯域(例えば0.06~0.15Hz)のパワー、中周波数帯域(例えば0.15~0.5Hz)のパワー、及び、中周波数帯域のピーク周波数とピーク周波数でのパワーについては、文献「Tataraidze et al., “Bioradiolocation-based sleep stage classification.” 10.1109/EMBC.2016.7591321.」でも言及されている。 The spectral entropy, spectral center of gravity, spectral flux, and spectral roll-off are also mentioned in the document "Gu et al.," Intelligent sleep stage mining service with smartphones. "10.1145/2632048.2632084". In addition, the power in the ultra-low frequency band (for example, 0 to 0.06 Hz), the power in the low frequency band (for example, 0.06 to 0.15 Hz), the power in the middle frequency band (for example, 0.15 to 0.5 Hz), and the peak frequency in the middle frequency band. And the power at the peak frequency is also mentioned in the document "Tataraidze et al.," Bioradiolocation-based sleep stage classification. "10.1109 / EMBC.2016.7591321.".
 本実施形態では、上記の4つの時間領域の特徴量と9つの周波数領域の特徴量を併せた13の特徴量を用いて睡眠覚醒判定を行った。図4は、13の特徴量を用いて睡眠覚醒判定を行った場合の正解率を例示する図である。 In the present embodiment, the sleep / wakefulness determination was performed using 13 feature quantities including the above-mentioned feature quantities in the four time domains and the feature quantities in the nine frequency regions. FIG. 4 is a diagram illustrating the correct answer rate when the sleep / wake determination is performed using the 13 feature quantities.
 図4の例では、XGBoostによって機械学習を行ったモデルによって判定を行っている。図4の(1)~(3)のグラフの横軸は、各特徴量を示している。(1)のグラフは、XGBoostにおける各特徴量の重み(Weight)を示している。(2)のグラフは、横軸の特徴量以外の12の特徴量で判断を行った場合の正解率(Accuracy)を示している。(3)のグラフは、横軸の特徴量のみで判断を行った場合の正解率(Accuracy)を示している。なお、(2)と(3)のグラフにおいて、横軸の左端は、13の特徴量全てを用いて判断を行った場合の正解率を示している。図4の(2)から明らかなように、13の特徴量からいずれか1つの特徴量を外した場合には、90%の正解率が得られた。また、1つの特徴量のみを用いて判定を行った場合にも、図4の(2)から明らかなように、65%以上の正解率が得られている。 In the example of FIG. 4, the judgment is made by the model that has been machine-learned by XGBoost. The horizontal axis of the graphs (1) to (3) in FIG. 4 indicates each feature amount. The graph of (1) shows the weight of each feature amount in XGBoost. The graph of (2) shows the accuracy rate when the judgment is made with 12 feature quantities other than the feature quantity on the horizontal axis. The graph of (3) shows the accuracy rate when the judgment is made only by the feature amount on the horizontal axis. In the graphs (2) and (3), the left end of the horizontal axis shows the correct answer rate when the judgment is made using all 13 feature quantities. As is clear from (2) of FIG. 4, when any one of the feature amounts was removed from the 13 feature amounts, a correct answer rate of 90% was obtained. Further, even when the judgment is performed using only one feature amount, as is clear from (2) of FIG. 4, a correct answer rate of 65% or more is obtained.
 さらに図5は、13の特徴量のうちのいずれか4つの特徴量を用いて判断を行った場合の正解率を示す図である。図5の例では、13の特徴量から4つを選ぶ全ての組み合わせ(715パターン)のうち、正解率が90%以上となった18パターンを示している。グラフの下に示すマトリックスで「○」が付いている特徴量が、4つの中に含まれる特徴量である。図5の例からは、高い正解率が得られる組み合わせには、パワー(低周波数)やロールオフがよく含まれる傾向が見られることが分かる。 Further, FIG. 5 is a diagram showing the correct answer rate when a judgment is made using any four of the 13 feature quantities. In the example of FIG. 5, 18 patterns in which the correct answer rate is 90% or more out of all the combinations (715 patterns) in which 4 are selected from the 13 feature quantities are shown. The features marked with "○" in the matrix shown at the bottom of the graph are the features included in the four. From the example of FIG. 5, it can be seen that the combinations that obtain a high accuracy rate tend to include power (low frequency) and roll-off.
(被験者の呼吸数に応じた周波数領域の特徴量)
 被験者の呼吸数に応じた周波数領域の特徴量は、被験者が睡眠中であると判定されたエポックにおけるピーク周波数(被験者の呼吸数に対応)の周辺のパワースペクトルである。本実施形態では、被験者が睡眠中か否かの判定は、機械学習済みの分類器を用いて行う。本実施形態では、一例として、パラメータ探索が不要でかつ高速に計算可能なロジスティック回帰を分類器として利用する。
(Characteristics in the frequency domain according to the respiratory rate of the subject)
The feature amount in the frequency domain corresponding to the respiratory rate of the subject is a power spectrum around the peak frequency (corresponding to the respiratory rate of the subject) in the epoch determined that the subject is sleeping. In the present embodiment, it is determined whether or not the subject is sleeping by using a machine-learned classifier. In this embodiment, as an example, logistic regression that does not require parameter search and can be calculated at high speed is used as a classifier.
 図6のフローチャートを用いて、被験者の呼吸データから、被験者の呼吸数に応じた周波数領域の特徴量を取得する手順を説明する。 Using the flowchart of FIG. 6, a procedure for acquiring a feature amount in the frequency domain according to the respiratory rate of the subject from the respiratory data of the subject will be described.
 まず、一人の被験者(被験者A)の呼吸データを検証用データに、その他の複数の被験者の呼吸データを訓練用データに設定する(ステップS201)。次に、訓練用データに対して、各被験者の呼吸数に応じた周波数領域の特徴量を利用して分類器の学習を行う(ステップS202)。 First, the respiration data of one subject (subject A) is set as verification data, and the respiration data of a plurality of other subjects is set as training data (step S201). Next, for the training data, learning of the classifier is performed using the feature amount in the frequency domain corresponding to the respiratory rate of each subject (step S202).
 被験者の呼吸数に応じた周波数領域の特徴量について説明する。呼吸データは、エポックに分割し(図3ステップS102)、それぞれのエポックのデータに、前後一定時間分のデータを加える。これは、高速フーリエ変換の周波数分解能を高くするためである。例えば、1エポック30秒のデータに対して、前後15秒分のデータを追加し、60秒のデータXT=(X1, X2, ..., XN)とする。ここでNは、例えば呼吸データのサンプリング周波数が32Hzとすると、N=32×60=1920となる。 The feature amount in the frequency domain according to the respiratory rate of the subject will be described. The respiratory data is divided into epochs (step S102 in FIG. 3), and data for a certain period of time before and after is added to the data of each epoch. This is to increase the frequency resolution of the fast Fourier transform. For example, to the data of 1 epoch 30 seconds, the data of 15 seconds before and after is added, and the data of 60 seconds X T = (X 1 , X 2 , ..., X N ). Here, N is N = 32 × 60 = 1920, for example, assuming that the sampling frequency of the respiratory data is 32 Hz.
 次に、XTから直流成分を除くため、X1, X2, ..., XN の平均XaをXTの全成分から引いた値XaT =(X1-Xa, X2-Xa, ..., XN-Xa) を求める。さらに、XaTと同じ長さのハニング窓W=(W1,W2,...,WN) を用意し、XaTとWの要素ごとの積
Figure JPOXMLDOC01-appb-M000002
を求める。
Figure JPOXMLDOC01-appb-M000003
は窓関数を掛けた時系列であり、これを高速フーリエ変換して得られる系列
Figure JPOXMLDOC01-appb-M000004
は、周波数間隔32/1920=1/60Hz、最大周波数16Hzの周波数系列となる。
Then, since the X T excluding the DC component, X 1, X 2, ..., value average Xa of the X N was subtracted from all the components of X T Xa T = (X 1 -Xa, X 2 -Xa , ..., X N- Xa). Furthermore, Hanning window of the same length as Xa T W = (W1, W2 , ..., WN) prepared, the product of each element of Xa T and W
Figure JPOXMLDOC01-appb-M000002
Ask for.
Figure JPOXMLDOC01-appb-M000003
Is a time series multiplied by a window function, and a series obtained by performing a fast Fourier transform on this.
Figure JPOXMLDOC01-appb-M000004
Is a frequency series with a frequency interval of 32/1920 = 1 / 60Hz and a maximum frequency of 16Hz.
 上記のXFのうち、呼吸努力のスペクトルが顕著に含まれる範囲(例えば、0Hz~1Hz)の中から60点X F1, X F2..., X F60を取り、fi=log(1+|XFi|2),i=1,2,...,60を、被験者の呼吸数に応じた周波数領域の特徴量とする。なお、パワースペクトル|XFi|2の値が0となったときの計算の不安定性を避けるため、|XFi|2に1を加えてから対数を取っている。 Of the above X F , take 60 points X F1 , X F2 ..., X F60 from the range where the spectrum of respiratory effort is significantly included (for example, 0Hz to 1Hz), and f i = log (1+). | X Fi | 2), i = 1,2, ..., 60 are the features of the frequency domain according to the respiratory rate of the subject. In order to avoid the instability of the calculation when the value of the power spectrum | X Fi | 2 becomes 0, the logarithm is taken after adding 1 to | X Fi | 2.
 分類器は、上記の特徴量に基づいて睡眠中か否かの判定を行い、実際に睡眠中のデータであった場合に正解とする。以上の手順により、分類器の学習が完了したら、ステップS203に進み、学習済の分類器を用いて検証用データに対する睡眠覚醒の判定を行う。 The classifier determines whether or not it is sleeping based on the above features, and if it is actually sleeping data, the correct answer is taken. When the learning of the classifier is completed by the above procedure, the process proceeds to step S203, and the learned classifier is used to determine sleep / wakefulness for the verification data.
 次に、検証用データのエポックのうち、学習済の分類器によって睡眠と判定されたエポックのみを集め、60次元の特徴量f1,..., f60の各成分のエポック間平均fa1,...,fa60 を計算する(ステップS204)。 Next, among the epochs of the verification data, only the epochs judged to be sleep by the trained classifier are collected, and the average fa1, ... ., fa60 is calculated (step S204).
 次に、ipeak= arg max fai を検証すべき被験者に対するピーク周波数とし、検証用データのすべてのエポックに対してfipeak-9からfipeak+9までの19点を抽出する。抽出した値を検証用データの特徴量とする(ステップS205)。 Next, ipeak = arg max fai is set as the peak frequency for the subject to be verified, and 19 points from fipeak-9 to fipeak + 9 are extracted for all epochs of the verification data. The extracted value is used as the feature amount of the verification data (step S205).
 以上の手順によって、被験者の呼吸データから、19次元の特徴量を取得する。なお、ピーク周波数の前後から何点までを含めるかについては、前から取る点の数m、後ろから取る点の数nをそれぞれ変えながらパラメータ探索を行い、最も分類性能の高い値としてm=n=9を選択しているが、含める点の数は9に限られない。 By the above procedure, 19-dimensional features are acquired from the respiratory data of the subject. As for how many points to include from before and after the peak frequency, parameter search is performed while changing the number m of points taken from the front and the number n of points taken from the back, and m = n as the value with the highest classification performance. = 9 is selected, but the number of points to be included is not limited to 9.
 上記のステップS201~S202の分類器の学習工程については毎回行う必要はなく、通常は、睡眠覚醒判定を行いたい被験者データに対して、学習済みの分類器を用いて、ステップS203~S205の処理を実行し、被験者の呼吸数に応じた周波数領域の特徴量を取得する。 It is not necessary to perform the learning step of the classifier in steps S201 to S202 every time, and normally, the process of steps S203 to S205 is performed on the subject data for which the sleep / wake determination is to be performed, using the trained classifier. Is executed, and the feature amount of the frequency domain corresponding to the respiratory rate of the subject is acquired.
 以上のように、本実施形態によれば、被験者に装着された呼吸データ取得装置20によって呼吸データを取得し、呼吸データから抽出した特徴量に基づいて、睡眠覚醒の判定を行うようにした。これにより、家庭などでも手軽に使うことができる装置によって取得したデータを用いて、高精度かつ頑健に睡眠覚醒判定を行うことができる。呼吸データ取得装置20は、ベッドに敷いて使用するシート型のセンサーなどとは異なり、家族など近くで寝ている人がいる環境でも正確なデータを取得することができる。したがって、在宅での睡眠時無呼吸症候群のスクリーニングにも適している。 As described above, according to the present embodiment, the breathing data is acquired by the breathing data acquisition device 20 attached to the subject, and the sleep awakening is determined based on the feature amount extracted from the breathing data. As a result, sleep / wake determination can be performed with high accuracy and robustness using data acquired by a device that can be easily used even at home. The breathing data acquisition device 20 can acquire accurate data even in an environment where there are people sleeping nearby, such as a family member, unlike a sheet-type sensor that is laid on a bed and used. Therefore, it is also suitable for screening for sleep apnea syndrome at home.
 また、特徴量として、呼吸データの時間領域の特徴量や周波数領域の特徴量を用いるようにしたので、呼吸データから容易に抽出できる特徴量を用いて精度の高い判定を行うことができる。 In addition, since the feature amount in the time domain and the feature amount in the frequency domain of the respiratory data are used as the feature amount, it is possible to make a highly accurate judgment using the feature amount that can be easily extracted from the respiratory data.
 また、特徴量として、被験者の呼吸数に応じた周波数領域の特徴量を用いるようにしたので、被験者個人の特性に対応した精度の高い睡眠覚醒判定を行うことができる。 In addition, since the feature amount in the frequency domain corresponding to the respiratory rate of the subject is used as the feature amount, it is possible to perform highly accurate sleep / wake determination according to the characteristics of the individual subject.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、他の様々な形で実施することができる。このため、上記実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈されるものではない。例えば、上述した各処理ステップは処理内容に矛盾を生じない範囲で任意に順番を変更し、または並列に実行することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be carried out in various other forms within a range that does not deviate from the gist of the present invention. For this reason, the above embodiments are merely examples in all respects and are not to be construed in a limited manner. For example, the above-mentioned processing steps can be arbitrarily changed in order or executed in parallel within a range that does not cause a contradiction in the processing contents.
1…睡眠覚醒判定システム
10…睡眠覚醒判定装置
11…制御装置
12…記憶装置
20…呼吸データ取得装置
N…通信ネットワーク
1 ... Sleep awakening determination system 10 ... Sleep awakening determination device 11 ... Control device 12 ... Storage device 20 ... Respiratory data acquisition device N ... Communication network

Claims (7)

  1.  被験者に装着され、当該被験者の呼吸時系列データを取得する呼吸データ取得装置と、
     前記呼吸時系列データを用いて睡眠覚醒判定を行う睡眠覚醒判定装置と、を備え、
     前記睡眠覚醒判定装置は、
     前記呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、
    機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部と、を備えた睡眠覚醒判定システム。
    A respiratory data acquisition device that is attached to the subject and acquires the respiratory time series data of the subject,
    A sleep / awakening determination device that determines sleep / awakening using the respiratory time series data is provided.
    The sleep / wake determination device is
    A feature amount acquisition unit that extracts one or more feature amounts used for sleep / wake determination from the respiratory time series data, and a feature amount acquisition unit.
    A sleep / awakening determination system including a sleep / awakening determination unit that determines sleep / awakening based on the extracted feature amount using a machine learning model.
  2.  前記特徴量取得部は、
     前記呼吸時系列データから、呼吸の振幅に関連する時間領域の特徴量、呼吸数に関連する周波数領域の特徴量、および前記被験者の呼吸数に応じた周波数領域の特徴量のうちの少なくとも1つの特徴量を抽出する、請求項1に記載の睡眠覚醒判定システム。
    The feature amount acquisition unit is
    From the breathing time series data, at least one of the feature amount in the time domain related to the respiratory amplitude, the feature amount in the frequency domain related to the respiratory rate, and the feature amount in the frequency domain corresponding to the respiratory rate of the subject. The sleep-wake determination system according to claim 1, which extracts a feature amount.
  3.  前記時間領域の特徴量は、睡眠覚醒判定を行う1エポックあたりの時間における、平均、 分散、絶対値の最大値、およびゼロ交差回数のうちの少なくとも1つを含む、請求項2に記載の睡眠覚醒判定システム。 The sleep according to claim 2, wherein the feature amount in the time domain includes at least one of the average, the variance, the maximum value of the absolute value, and the number of zero crossings in the time per epoch for determining sleep / wakefulness. Awakening judgment system.
  4.  前記周波数領域の特徴量は、スペクトルエントロピー、スペクトル重心、スペクトルフラックス、スペクトルロールオフ、所定の周波数帯域のパワー、所定の周波数帯域のピーク周波数、および前記ピーク周波数でのパワーのうちの少なくとも1つを含む、請求項2に記載の睡眠覚醒判定システム。 The feature amount in the frequency domain includes at least one of spectral entropy, spectral centroid, spectral flux, spectral roll-off, power in a predetermined frequency band, peak frequency in a predetermined frequency band, and power at the peak frequency. 2. The sleep / wake determination system according to claim 2.
  5.  前記被験者の呼吸数に応じた周波数領域の特徴量は、前記被験者が睡眠中であると判定されたエポックにおけるピーク周波数の周辺のパワースペクトルを含む、請求項2に記載の睡眠覚醒判定システム。 The sleep-wake determination system according to claim 2, wherein the feature amount in the frequency domain corresponding to the respiratory rate of the subject includes a power spectrum around the peak frequency in the epoch determined that the subject is sleeping.
  6.  睡眠覚醒判定を行う睡眠覚醒判定装置であって、
     被験者に装着された呼吸データ取得装置によって取得した、当該被験者の呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、
     機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部と、を備えた睡眠覚醒判定装置。
    It is a sleep / awakening determination device that determines sleep / awakening.
    A feature amount acquisition unit that extracts one or more feature amounts used for sleep / wake determination from the breathing time series data of the subject acquired by the respiratory data acquisition device attached to the subject, and a feature amount acquisition unit.
    A sleep / awakening determination device including a sleep / awakening determination unit that determines sleep / awakening based on the extracted feature amount using a machine learning model.
  7.  睡眠覚醒判定を行うコンピュータを、
     被験者に装着された呼吸データ取得装置によって取得した、当該被験者の呼吸時系列データから、睡眠覚醒判定に用いる1以上の特徴量を抽出する特徴量取得部と、
     機械学習モデルを利用して、抽出した前記特徴量に基づく睡眠覚醒判定を行う睡眠覚醒判定部として、機能させるプログラム。
    A computer that makes sleep / wake judgments,
    A feature amount acquisition unit that extracts one or more feature amounts used for sleep / wake determination from the breathing time series data of the subject acquired by the respiratory data acquisition device attached to the subject, and a feature amount acquisition unit.
    A program that uses a machine learning model to function as a sleep / awakening determination unit that determines sleep / awakening based on the extracted features.
PCT/JP2021/017807 2020-05-11 2021-05-11 Sleep-waking determination system, sleep-waking determination device, and program WO2021230223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022521920A JPWO2021230223A1 (en) 2020-05-11 2021-05-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083064 2020-05-11
JP2020083064 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230223A1 true WO2021230223A1 (en) 2021-11-18

Family

ID=78525892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017807 WO2021230223A1 (en) 2020-05-11 2021-05-11 Sleep-waking determination system, sleep-waking determination device, and program

Country Status (2)

Country Link
JP (1) JPWO2021230223A1 (en)
WO (1) WO2021230223A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073237A (en) * 2012-10-04 2014-04-24 Toyota Motor Corp Sleep monitoring system
JP2016047305A (en) * 2015-11-30 2016-04-07 株式会社豊田中央研究所 Consciousness state estimation device and program
JP2017537710A (en) * 2014-12-11 2017-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for determining spectral boundaries of sleep stage classification
WO2020071374A1 (en) * 2018-10-02 2020-04-09 コニカミノルタ株式会社 Condition monitoring device and condition monitoring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073237A (en) * 2012-10-04 2014-04-24 Toyota Motor Corp Sleep monitoring system
JP2017537710A (en) * 2014-12-11 2017-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for determining spectral boundaries of sleep stage classification
JP2016047305A (en) * 2015-11-30 2016-04-07 株式会社豊田中央研究所 Consciousness state estimation device and program
WO2020071374A1 (en) * 2018-10-02 2020-04-09 コニカミノルタ株式会社 Condition monitoring device and condition monitoring method

Also Published As

Publication number Publication date
JPWO2021230223A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
Mendonça et al. A review of approaches for sleep quality analysis
US10321871B2 (en) Determining sleep stages and sleep events using sensor data
Oung et al. Technologies for assessment of motor disorders in Parkinson’s disease: a review
Yu et al. WiFi-sleep: Sleep stage monitoring using commodity Wi-Fi devices
US9833184B2 (en) Identification of emotional states using physiological responses
US9386951B2 (en) Method and apparatus for monitoring sleep apnea severity
JP2017500927A (en) Sleep monitoring device
WO2012140537A1 (en) Stress-measuring device and method
WO2019187099A1 (en) Bodily function independence assistance device and method therefor
US10791985B2 (en) Cardio-kinetic cross-spectral density for assessment of sleep physiology
VISHWAKARMA et al. Detection of sleep apnea through heart rate signal using Convolutional Neural Network.
Walsh et al. Noncontact pressure-based sleep/wake discrimination
Qatmh et al. Sleep apnea detection based on ECG signals using discrete wavelet transform and artificial neural network
JP6304050B2 (en) Biological state estimation device
Dong et al. Analyzing breathing signals and swallow sequence locality for solid food intake monitoring
WO2018178569A1 (en) System for determining a set of at least one cardio-respiratory descriptor of an individual during sleep
WO2021230223A1 (en) Sleep-waking determination system, sleep-waking determination device, and program
Pärkkä Analysis of personal health monitoring data for physical activity recognition and assessment of energy expenditure, mental load and stress
JP2019097829A (en) Abnormality notification device and program
Akhter et al. Detection of REM/NREM snores in obstructive sleep apnoea patients using a machine learning technique
JP7301275B2 (en) Sleep state estimation system
Schipper et al. A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep
EP3967225A1 (en) Respiratory cessation detection system, method, computing device, and storage medium
Adami et al. Gaussian model for movement detection during Sleep
TWI750531B (en) Detection device and detection method for apnea based on chest respiratory signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803244

Country of ref document: EP

Kind code of ref document: A1