WO2021230001A1 - Information processing apparatus and information processing method - Google Patents

Information processing apparatus and information processing method Download PDF

Info

Publication number
WO2021230001A1
WO2021230001A1 PCT/JP2021/015660 JP2021015660W WO2021230001A1 WO 2021230001 A1 WO2021230001 A1 WO 2021230001A1 JP 2021015660 W JP2021015660 W JP 2021015660W WO 2021230001 A1 WO2021230001 A1 WO 2021230001A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolution
viewer
information
user
information processing
Prior art date
Application number
PCT/JP2021/015660
Other languages
French (fr)
Japanese (ja)
Inventor
卓己 津留
俊也 浜田
尚尊 小代
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021230001A1 publication Critical patent/WO2021230001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/462Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities

Definitions

  • This disclosure relates to an information processing device and an information processing method.
  • HD High Definition
  • 4K full HD
  • 8K 8K
  • Non-Patent Document 1 a method of constructing a three-dimensional space with a plurality of three-dimensional objects and distributing data related to these a plurality of objects.
  • the data distributed by this method includes data in which a scene in a three-dimensional space, for example, a scene description, is represented by a graph having a tree hierarchical structure called a scene graph, and the scene graph is represented in a binary format or a text format ().
  • a scene in a three-dimensional space for example, a scene description
  • a scene graph having a tree hierarchical structure called a scene graph
  • the scene graph is represented in a binary format or a text format ().
  • Non-Patent Document 1 Non-Patent Document 1
  • the amount of data to be delivered increases, the load on the communication network increases (that is, the bandwidth of the communication network is insufficient), and the viewer who enjoys the delivered content (that is, the viewer (that is, the bandwidth of the communication network is insufficient)).
  • the amount of money to be paid as communication costs will also increase.
  • an information processing device provided with an acquisition unit for acquiring video content data to be played back for the user in real time according to the visual acuity information of the user is provided.
  • an information processing method including acquiring video content data to be played back for the user in real time according to the visual acuity information of the user is provided.
  • a distribution technology using DASH Dynamic Adaptive Streaming over HTTP, ISO / IEC 23009-1
  • DASH Dynamic Adaptive Streaming over HTTP, ISO / IEC 23009-1
  • the distribution technology a plurality of stream variations of the same content but having different bit rates are prepared in advance in the distribution server, and the streams are switched according to the fluctuation of the communication network bandwidth.
  • the distribution technology for example, when the bandwidth of the communication network is insufficient, the distribution is switched to the distribution of a stream variation having a low bit rate. By doing so, it is possible to reduce the load on the communication network due to the increase in the amount of data to be delivered, but the image quality is deteriorated.
  • object data relating to each 3D object is displayed in order to display all objects (3D objects) existing in the 3D space even if the position of the viewer moves.
  • the object data is a combination of mesh data, which is the shape of a polyhedron of a three-dimensional object, and texture data, which is data to be attached to the surface, or Point Cloud (point cloud), which is a set of multiple points. Consists of data.
  • a scene description for displaying a three-dimensional object according to the viewpoint position of the viewer is also distributed.
  • the scene description not only defines the position and posture of the three-dimensional object in the three-dimensional space, but also provides a plurality of different LODs (Level Of Detail) according to the viewpoint position of the viewer for one three-dimensional object.
  • LOD defines, for example, the number of points (details) representing the same three-dimensional object in the case of a three-dimensional object represented by Point Cloud.
  • a three-dimensional object far from the viewer's viewpoint position makes the display small, and a three-dimensional object close to the viewer's viewpoint position makes the display large.
  • a three-dimensional object having a large display has a high LOD of its display
  • a three-dimensional object having a small display has a low LOD of its display.
  • the higher the LOD the larger the amount of data for the display.
  • a scene is represented by a graph with a tree hierarchical structure called a scene graph, and the scene graph is represented in binary format or text format.
  • the scene graph is spatial display control information based on the viewpoint position of the viewer, and the information regarding the display of the three-dimensional object at the viewpoint position is defined by defining the node as a constituent unit, and a plurality of nodes are hierarchically combined. It consists of.
  • the data of the scene description can conform to MPEG-4 Scene Description (ISO / IEC 14496-11).
  • the MPEG-4 Scene Description data is obtained by binarizing the scene graph in the format of BIFS (Binary Form at for Scenes). It is possible to convert this scene graph to BIFS with a fixed algorithm.
  • BIFS Binary Form at for Scenes
  • ISO base media file format it is possible to specify a scene for each time, and it is possible to express a moving object or the like.
  • the present inventors are diligently studying whether it is possible to avoid an increase in the amount of distribution data and an increase in the load on the communication network due to the high resolution in the distribution of video content. rice field. Then, while proceeding with such a study, the present inventors, in the above-mentioned distribution technology, the data of the video content to be distributed is the amount of data according to the resolution of the display device, the band that can be used in the communication network, and the like. I noticed that it has the resolution of, but the resolution does not correspond to the resolution of the eyes of the viewer who watches the video content.
  • the present inventors have noticed that there are cases where the data of the moving image content having an unnecessarily high resolution with respect to the resolution of the viewer's eyes is delivered. Then, based on the above viewpoint, the present inventors can avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. It came to create the embodiment independently.
  • FIGS. 1 and 2 are explanatory views for explaining an outline of the embodiment of the present disclosure
  • FIG. 1 is a diagram showing a positional relationship between a viewer and a display device as viewed from above
  • FIG. 2 is a diagram. Is a diagram showing the positional relationship between the viewer and the display device as viewed from the side.
  • the display unit information regarding the size of the display device, and the position information indicating the position of the viewer with respect to the display device Calculate the necessary and sufficient resolution (user resolution) for the viewer. Then, according to the embodiment of the present disclosure, by distributing the data of the video content according to the calculated resolution, the amount of the distributed data can be increased and the communication network can be increased while avoiding the viewer from feeling the deterioration of the image quality. It is possible to avoid an increase in load.
  • a method of calculating a resolution necessary and sufficient for the resolution of the viewer's eyes will be described based on the viewer's visual acuity and the distance between the viewer and the display device.
  • a unit called PPD Panels Per Degree
  • the human eye with a visual acuity of 1.0 is used.
  • the resolution is said to be 60 PPD. Since there are various theories about the specific value of the resolution of the human eye with a visual acuity of 1.0, in the following description, the resolution of the human eye with a visual acuity of 1.0 is expressed by a constant P. ..
  • the necessary and sufficient resolution for the human eye with a visual acuity of 1.0 can be satisfied by the presence of P (pixel) in the range of length X on the display device corresponding to one visual field range. Therefore, the width direction resolution (Width) and the height direction resolution (Height) of the display device for the viewers (viewers with "visual acuity") in the situations shown in FIGS. 1 and 2 are determined. , Can be expressed by the following mathematical formula (1).
  • the resolution in the width direction (Width) is 3819.62
  • the resolution in the height direction (Height) is 2148.54.
  • the resolution in the width direction (Width) is 1909.81
  • the resolution in the height direction (Height) is 1074.27.
  • the playback device has a resolution higher than the resolution calculated by using the mathematical formula (3) from a plurality of content data of the same content but different resolutions from the distribution server, and is the most among the content data in the distribution server.
  • Acquire content data with low resolution For example, the distribution server has SD (Standard definition) (720 x 480), HD (1280 x 720), full HD (1920 x 1080), 4K (3840 x 2160), and 8K (7680 x 4320) resolutions. It is assumed that the content data to be stored is stored.
  • 4K (3840 ⁇ 2160) content data may be selected for viewer A, and full HD (1920 ⁇ 1080) content data may be selected for viewer B. Will be.
  • FIG. 3 is an explanatory diagram for explaining an outline of the video content distribution system according to the first embodiment of the present disclosure.
  • the distribution system 1 distributes moving image content composed of two-dimensional video.
  • the video content distribution system 1 includes a content distribution server 10 that distributes content data of video content in response to a request from the playback device 30.
  • the distribution system 1 further includes a reproduction device 30 for reproducing the distributed moving image content, and a display device 20 for displaying the moving image content according to the control from the reproduction device 30.
  • the content distribution server 10 and the playback device 30 are connected to each other by a communication network 40.
  • the reproduction device 30 and the display device 20 may be separate devices as shown in FIG. 3, or may be an integrated device, and are not particularly limited.
  • the communication method used in the communication network 40 any method can be applied regardless of whether it is wired or wireless, but it is desirable to use a communication method capable of maintaining stable operation. The outline of each device included in the distribution system 1 will be described below.
  • the content distribution server 10 distributes the content data of the moving image content having a predetermined resolution to the reproduction device 30 in response to the request from the reproduction device 30. Further, the content distribution server 10 stores a plurality of content data of the same video content having different resolutions (for example, SD (720 ⁇ 480), HD (1280 ⁇ 720), full HD (1920 ⁇ 1080), 4K). (3840 x 2160), 8K (7680 x 4320)).
  • the display device 20 is a two-dimensional display such as a television, a tablet, and a smartphone.
  • the display device 20 incorporates a distance measuring device (for example, a ToF (Time of Flight) sensor) and a sensor (distance measuring unit) such as a camera, and is based on the sensing data of these sensors. It shall be possible to detect the relative position (position and distance) with the viewer.
  • the distance between the viewer and the display device 20 is assumed to be the distance from the viewer to the closest point on the display surface of the display device 20 as seen from the viewer.
  • the display device 20 has a built-in communication unit that wirelessly communicates with a communication device carried by the viewer, and is a relative position (position and distance) with the viewer based on the sensing data by the communication unit. May be detected.
  • the display device 20 is relative to the viewer based on the position information from the distance measuring device carried by the viewer (for example, a GNSS (Global Navigation Satellite System) signal receiver). The position (position and distance) may be detected.
  • GNSS Global Navigation Satellite System
  • the reproduction device 30 acquires the content data of the moving image content in real time from the content distribution server 10 according to the visual acuity information of the viewer, reproduces the acquired content data, and outputs the acquired content data to the display device 20.
  • the details of the reproduction device 30 will be described later.
  • the configuration of the distribution system 1 according to the present embodiment is not limited to such an example. That is, the configuration of the distribution system 1 according to the present embodiment can be flexibly modified according to the specifications and operation.
  • FIG. 4 is a block diagram showing a functional configuration example of the reproduction device 30 according to the present embodiment.
  • the reproduction device 30 mainly includes a display control unit 300, a main control unit 330, a storage unit 340, and a transmission / reception unit 350.
  • the main control unit 330 mainly includes a display control unit 300, a main control unit 330, a storage unit 340, and a transmission / reception unit 350.
  • the display control unit 300 is composed of, for example, a CPU (Central Processing Unit) (not shown), an MPU (Micro Processing Unit) (not shown), or the like, and uses programs and data stored in the storage unit 340 described later. , The process according to this embodiment is executed. Specifically, the display control unit 300 includes a position information acquisition unit 302, a calculation unit 304, and a comparison unit 306 for acquiring content data of video content from the content distribution server 10 according to the visual acuity information of the viewer. , Acquiring unit 308.
  • the display control unit 300 includes a processing unit 322, a decoding unit 324, and a display information generation unit 326 (in the present specification, these functional units are also referred to as a decoding block 320) that decode the acquired content data. Have.
  • the position information acquisition unit 302 acquires distance information (position information) for the viewer's display device 20 from the display device 20, for example, and outputs the distance information (position information) to the calculation unit 304, which will be described later.
  • the calculation unit 304 is output from the viewer's visual information (visual information), the size (width, height) information (display unit information) of the display device 20, and the position information acquisition unit 302, which are acquired in advance. Based on the distance information (distance to the display device 20 of the viewer), the resolution (user resolution) in the height direction and the width direction of the display device 20 for the viewer is calculated. Further, the calculation unit 304 outputs the calculated resolution to the comparison unit 306 described later.
  • the comparison unit 306 compares the resolution calculated by the calculation unit 304 with the resolution of the display device 20 acquired in advance, and outputs the comparison result to the acquisition unit 308 described later.
  • the acquisition unit 308 acquires content data having a resolution necessary and sufficient for the resolution of the viewer's eyes in real time based on the viewer's visual acuity (visual acuity information). Specifically, the acquisition unit 308 acquires content data having a resolution based on the comparison result with respect to the calculated resolution. When there are a plurality of viewers, in the present embodiment, the acquisition unit 308 acquires content data having a resolution based on the comparison result of the resolution comparison for each viewer by the comparison unit 306. Will be done. Then, the acquisition unit 308 outputs the acquired content data to the processing unit 322 of the decoding block 320.
  • the processing unit 322 is a functional unit that performs processing related to playback of video content, performs processing for switching acquisition content data (DASH), analyzes acquired content data, and decodes processing in the decoding unit 324, which will be described later. Can be converted to a file format that can be used. Further, the processing unit 322 outputs the processed content data to the decoding unit 324.
  • DASH acquisition content data
  • the processing unit 322 outputs the processed content data to the decoding unit 324.
  • the decoding unit 324 performs decoding processing (decoding) on the content data output from the processing unit 322, and outputs the decoded content data to the display information generation unit 326 described later.
  • the display information generation unit 326 processes the decoded content data output from the decoding unit 324, generates a display screen for display on the display device 20, and outputs the display screen to the display device 20.
  • the display information generation unit 326 may cut out (render) the image according to the viewpoint of the viewer.
  • the main control unit 330 has a functional configuration that comprehensively controls all the processing performed by the playback device 30, and is composed of, for example, a CPU (not shown), an MPU (not shown), and the like, and is stored in a storage unit 340 described later. Execute the process using the program or data.
  • the storage unit 340 is a functional unit that stores various types of information.
  • the storage unit 340 stores programs, content data, parameters, and the like used by each functional unit of the reproduction device 30.
  • the storage unit 360 is realized by, for example, a magnetic recording medium such as a hard disk (Hard Disk: HD), a non-volatile memory, or the like.
  • the transmission / reception unit 350 performs various communications with the content distribution server 10.
  • the transmission / reception unit 350 is a communication interface having a function of transmitting / receiving data, and is realized by, for example, a communication device (not shown) such as a communication antenna, a transmission / reception circuit, and a port.
  • the reproduction device 30 has an input unit (not shown), and acquires the visual acuity information of the viewer by receiving an input operation of the visual acuity information from the viewer to the input unit. Can be done.
  • the above configuration described with reference to FIG. 4 is merely an example, and the configuration of the reproduction device 30 according to the present embodiment is not limited to such an example. That is, the configuration of the reproduction device 30 according to the present embodiment can be flexibly modified according to the specifications and operation.
  • FIG. 5 is a diagram showing a flowchart of the information processing method according to the present embodiment.
  • the information processing method according to the present embodiment includes steps S101 to S110.
  • steps S101 to S110 are steps S101 to S110.
  • each step of the information processing method according to the present embodiment will be described.
  • the reproduction device 30 acquires information (display unit information) of the size (width, height) of the display device 20 (step S101).
  • the reproduction device 30 acquires the visual acuity information (visual acuity information) of the viewer by the input from the viewer (step S102).
  • the reproduction device 30 acquires information (distance information) of the distance to the display device 20 of the viewer from, for example, the display device 20 (step S103).
  • the distance information is acquired every time the position of the viewer moves, and the subsequent processing is performed.
  • the reproduction device 30 obtains the viewer's sight information, the size (width, height) information of the display device 20, and the distance information of the viewer with respect to the display device 20 acquired in steps S101 to S103. Based on (distance information), the resolution (user resolution) of the viewer in the height direction and the width direction of the display device 20 is calculated (step S105). Since the calculation method has already been described, the description thereof will be omitted here.
  • step S105 the playback device 30 determines whether or not the resolutions of all the viewers have been calculated.
  • the playback device 30 proceeds to step S106 when the resolution has been calculated for all the viewers (step S105: Yes), while the resolution has not been calculated for all the viewers. In that case (step S105: No), the process returns to step S102 described above. That is, in the present embodiment, the processes from step S102 to step S105 are repeated until the resolution is calculated for all the viewers.
  • the playback device 30 compares the viewer resolutions calculated so far for each of the height direction and the width direction of the display device 20, and specifies the highest resolution. In the present embodiment, when there are a plurality of viewers, it is possible to avoid causing all the viewers to feel the deterioration of the image quality by acquiring the content data based on the highest resolution. Further, the reproduction device 30 compares the specified resolution with the resolution of the display device 20 acquired in advance, and selects a lower resolution (step S106).
  • the playback device 30 acquires the content data corresponding to the resolution selected in step S106 described above (step S107). Next, the playback device 30 performs decoding processing on the content data acquired in step S107 described above (step S108). Further, the reproduction device 30 displays the moving image content by outputting the content data decoded in the above-mentioned step S108 to the display device 20 (step S109).
  • the playback device 30 determines whether or not processing has been performed up to the end of the stream (plurality of frames) included in the content data (step S109).
  • the reproduction device 30 ends the information processing according to the present embodiment.
  • the reproduction device 30 returns to the above-mentioned step S102. That is, in the present embodiment, the processing from step S102 to step S110 is repeatedly performed until the processing is completed up to the end of the stream.
  • the present embodiment it is possible to avoid acquiring the content data having a resolution unnecessary for the resolution of the viewer's eyes, and to acquire the content data necessary and sufficient for the resolution of the viewer's eyes. be able to. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
  • FIG. 6 is an explanatory diagram for explaining the outline of the present embodiment.
  • the resolution for the viewer is calculated based on the visual acuity (visual acuity information) of the viewer and the distance (distance information) to the display device 20 of the viewer, which will be described below.
  • the angle information indicating the angle of the viewer with respect to the display device 20 is used to more accurately calculate the resolution for the viewer. can do.
  • the calculation is performed in consideration of the above angle information, it is possible to calculate the resolution suitable for the viewer with high accuracy, so that the viewer feels the image quality deterioration more effectively. While avoiding this, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network.
  • FIG. 6 is an explanatory diagram for explaining the outline of the present embodiment, and the viewer displays the end of the display device 20 (the end portion of the display device 20 closest to the viewer) to the display device 20. It is a figure when the appearance of viewing from an oblique position with respect to the display surface of the viewer is seen from above the viewer.
  • the resolution of the human eye with a visual acuity of 1.0 is expressed by a constant P, and the necessary and sufficient resolution for the human eye with a visual acuity of 1.0 is P (1 degree in the visual field range). resolution) It shall be possible to satisfy by being present. Therefore, assuming a viewer (viewer with "visual acuity") in the situation shown in FIG. 6, P / 2 is set to a length X (m) corresponding to a viewing range of 0.5 degrees. (Pixel) It suffices if it exists. Therefore, the width direction resolution (Width) of the display device 20 which is necessary and sufficient for the viewer in FIG. 6 can be expressed by the following mathematical formula (4).
  • X is the distance L of the viewer to the end of the display device 20 (the end portion of the display device 20 closest to the viewer) and the angle ⁇ with respect to the end of the display device 20 of the viewer.
  • L is the distance L of the viewer to the end of the display device 20 (the end portion of the display device 20 closest to the viewer) and the angle ⁇ with respect to the end of the display device 20 of the viewer.
  • the height resolution (Height) of the display device 20 in the height direction which is necessary and sufficient for the viewer in FIG. 6, can be expressed by the following mathematical formula (7).
  • the angle of the viewer with respect to the end of the display device 20 (the portion of the end of the display device 20 closest to the viewer) in the height direction is defined as ⁇ (degree).
  • P 60PPD
  • the resolution in the width direction (Width) is 1880.94, and the resolution in the height direction (Height) is 1058.03.
  • the content distribution server 10 has SD (720 ⁇ 480), HD (1280 ⁇ 720), full HD (1920 ⁇ 1080), 4K (3840 ⁇ 2160), and 8K (7680 ⁇ 4320) resolutions. It is assumed that the content data with is stored. In such a case, in the present embodiment, the full HD content data having the lowest resolution satisfying the resolution of the viewer A calculated as described above is selected and distributed.
  • the resolution of the display device 20 is 8K (7680 ⁇ 4320), it is necessary and sufficient for the viewer A to have a resolution of full HD (1920 ⁇ 1080). , It is possible to avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. Further, in the present embodiment, since the resolution (full HD (1920 ⁇ 1080) in the above example) is calculated in consideration of the viewing angle information of the viewer, the resolution is calculated without considering the viewing angle.
  • the display device 20 incorporates a sensor (angle measuring unit) such as a distance measuring device or a camera, and displays the viewer based on these sensing data. It is assumed that the relative position and viewing angle with respect to the device 20 can also be detected.
  • the viewing angle of the viewer is assumed to be the angle of the viewer with respect to the closest end of the display surface of the display device 20 as seen from the viewer.
  • the position information acquisition unit 302 acquires not only the distance information of the viewer with respect to the display device 20 but also the relative position information and the viewing angle information from the display device 20, and outputs the information to the calculation unit 304 described later.
  • the calculation unit 304 is output from the viewer's visual information (visual information) acquired in advance, the size (width, height) information (display unit information) of the display device 20, and the position information acquisition unit 302. In addition to the distance information, the resolution (user resolution) in the height direction and the width direction of the display device 20 for the viewer is calculated based on the viewing angle with respect to the display device 20 of the viewer.
  • FIG. 7 is a diagram showing a flowchart of the information processing method according to the embodiment.
  • the information processing method according to the present embodiment includes steps S201 to S213. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned first embodiment will be described, and the points common to the first embodiment will be omitted.
  • steps S201 and S202 are the same as steps S101 and S102 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
  • the playback device 30 acquires information on the relative position of the viewer with respect to the display device 20 as well as information on the distance to the viewer's display device 20 from the display device 20 (step S203). Then, the reproduction device 30 determines whether or not the viewer exists so as to face the frame of the display surface of the display device 20 based on the relative position acquired in the above-mentioned step S203 (step S204). When the viewer is present so as to face the frame of the display surface of the display device 20 (step S204: Yes), the playback device 30 proceeds to step S205, while the viewer is on the display surface of the display device 20. If they do not exist so as to face each other in the frame (step S204: No), the process proceeds to step S206.
  • the playback device 30 sets the viewing angle to 0 degrees (step S205). Further, the playback device 30 acquires information on the viewing angle with respect to the viewer's display device 20 from the display device 20 (step S206).
  • the reproduction device 30 has acquired the viewer's sight information, the size (width, height) information of the display device 20, and the distance information (distance information) with respect to the viewer's display device 20 acquired from the above-mentioned steps S201 to S203. ), And based on the viewing angle set or acquired in steps S205 and S206, the resolution (user resolution) of the viewer in the height direction and the width direction of the display device 20 is calculated (step S207). Since the calculation method has already been described, the description thereof will be omitted here.
  • steps S209 to S213 are the same as steps S106 to S110 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
  • the resolution is calculated in consideration of the information of the viewing angle of the viewer, the viewing state of the viewer is more as compared with the case where the resolution is calculated without considering the viewing angle. It is possible to obtain a resolution that matches the above.
  • the moving image content delivered in the present embodiment is assumed to be 360-degree virtual space video data (three-dimensional space data) including all-sky video data and 6DoF content (three-dimensional space data).
  • the content data of these contents includes the scene description (three-dimensional space description data) that defines the configuration of the three-dimensional space and the object data that defines the three-dimensional object in the three-dimensional space. It shall be muted.
  • a three-dimensional object that is far from the viewer's viewpoint position makes its display smaller, and a three-dimensional object that is close to the viewer's viewpoint position is its display. Enlarge the display. Further, in the expression, a three-dimensional object having a large display has a high LOD of its display, and a three-dimensional object having a small display has a low LOD of its display. Then, by expressing the 3D object in the 3D space using the LOD defined in this way, the 3D object with a large display is reproduced with high resolution, and the 3D object with a small display is reproduced with low resolution.
  • a plurality of object data of the same 3D object having different LODs are prepared in advance in the content distribution server 10, and the viewpoint of the viewer and the 3D object in the virtual 3D space are prepared in advance.
  • the object data is switched so as to correspond to the LOD defined in the scene description according to the distance between the object and the object.
  • the resolution of the eyes of the viewer is determined based on the visual acuity information of the viewer and the distance information between the viewpoint of the viewer and the three-dimensional object in the virtual three-dimensional space. Calculate the necessary and sufficient LOD selection reference value. Then, the object data for displaying the three-dimensional object is selected based on the calculated LOD selection reference value. By doing so, it is possible to avoid acquiring the data of the three-dimensional object of LOD which is unnecessary for the resolution of the viewer's eyes. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
  • FIGS. 8 to 12. 8 to 12 are explanatory views for explaining the outline of the present embodiment.
  • FIG. 8 shows changes in the size of the displayed 3D object and the required LOD in accordance with the change in the viewpoint position of the viewer in the 3D virtual space in the present embodiment. It is a figure.
  • the display LOD of the displayed object 1 is high (for example, when the object 1 is represented by the Point Cloud, the number of points is large), and the object 1 is reproduced with high resolution.
  • the viewpoint of the viewer is at a medium distance from the object 1, the size of the displayed object 1 is medium. Therefore, the display LOD of the displayed object 1 is medium, and it is reproduced at a medium resolution.
  • the display LOD of the displayed object 1 becomes low, and it is reproduced at a low resolution.
  • a plurality of object data having different LODs are prepared in the content distribution server 10 for the same three-dimensional object.
  • the object to be referred to is linked to the LOD selection reference value, which is the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space.
  • the playback device 30a acquires object data of a three-dimensional object according to a table showing data reference information (for example, a reference URL (Uniform Resource Locator) or the like).
  • the table shown in FIG. 9 is set in consideration of the resolution of the display device 20, and if the resolution of the target display device 20 itself is different, the table will change accordingly.
  • the details required for displaying a three-dimensional object are limited by the resolution (number of pixels) of the display device 20 to be displayed before the displayed size. Therefore, in the present embodiment, the number of points (LOD) associated with the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space is displayed on the display device 20. It is required to satisfy the condition that it is sufficient for the number of pixels in.
  • the resolution of the display device 20 is 4K (3840 ⁇ 2160)
  • the density of points required to display the three-dimensional object is 1/4 of that when the resolution of the display device 20 is 8K (7680 ⁇ 4320). Therefore, when the resolution of the display device 20 is 4K (3840 ⁇ 2160), the density in one dimension along the 20 width direction or the height direction of the display device is 8K (7680 ⁇ 4320) for the display device 20. It is halved compared to the case of. For example, as shown in FIG. 10, if the resolution of the display device 20 is different, the number of points required for display on the 4K display device 20 is 8K even if the three-dimensional objects are displayed in the same size. It is 1/2 of the number of points required for display on the display device 20.
  • FIG. 11 it is assumed that the entire three-dimensional object having a height h is displayed on the 8K display device 20.
  • the viewer is located at a distance I in the virtual space so that the viewer's viewing range can include the entire 3D object, and the number of points in the height direction of the 3D object is determined.
  • the number of pixels in the height direction of the display device 20 is 4320, which is the same as the number of pixels. That is, since the number of points and the number of pixels are the same, it can be said that the display of the three-dimensional object has a sufficient point density for display on the 8K display device 20.
  • the viewer shall move to a position at a distance of I / 2 in the virtual space with respect to the 3D object.
  • half of the range of the three-dimensional object is displayed so as to occupy the height direction of the display surface of the display device 20.
  • the 3D object displayed with the same object data as the initial situation will have 2160 points in the height direction.
  • the number of points is insufficient compared to the number of pixels (4320) in the height direction of the display device. Therefore, under the condition of the distance of I / 2 on the virtual space, the three dimensions are met. The object cannot be properly displayed on the 8K display device 20.
  • the display device 20 has a resolution of 4K (3840 ⁇ 2160), the number of points and the number of pixels are the same. Therefore, under the condition of the distance of I / 2 on the virtual space, the three-dimensional object is 4K. It can be appropriately displayed on the display device 20.
  • the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space is also halved. That is, when the necessary and sufficient resolution of the display device calculated from the viewer's eyesight and distance when viewing on the 8K display device is 4K, the viewer in the virtual three-dimensional space, which is the selection reference value of LOD. It can be seen that the distance (LOD distance) between the viewpoint and the 3D object is half of the value defined in the original scene description.
  • the necessary and sufficient resolution for the viewer is calculated based on the viewer's visual acuity (visual acuity information) and the viewer's distance to the display device 20 (distance information).
  • the resolution can be considered to be the resolution of the display device 20 that is necessary and sufficient under a predetermined viewing situation.
  • the necessary and sufficient resolution for the viewer and the resolution of the display device 20 (display).
  • the relationship between the LOD selection reference value defined in the initial scene description and the LOD selection reference value necessary and sufficient for the actual viewer can be shown by the following formula (8).
  • the formula (8) uses the resolution in the width direction of the display device 20, in the present embodiment, the resolution in the height direction may be used instead of the resolution in the width direction.
  • the ratio of the new LOD selection reference value to the LOD selection reference value defined in the initial scene description between the viewer A and the viewer B with a visual acuity of 0.5 is as follows using the formula (8). Is calculated as follows. In the case of viewer A (visual acuity 1.0), 3819.62 / 7680 ⁇ 1/2, and in the case of viewer B (visual acuity 0.5), 1909.81 / 7680 ⁇ 1/4.
  • the new LOD selection reference values for viewer A and viewer B calculated based on such an idea are shown in a table as shown in FIG.
  • the new LOD selection reference value for the viewer A is shown as the case (1) replacement distance
  • the new LOD selection reference value for the viewer B is shown as the case (2) replacement distance.
  • the H-LOD object which is initially high LOD object data
  • the object data of the M-LOD which is the object data of the medium LOD
  • the object data of the M-LOD may be selected
  • L-LOD object data which is low LOD object data
  • the present embodiment it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
  • the details of the present embodiment will be sequentially described.
  • the display device 20 is not limited to a two-dimensional display such as a television, a tablet, and a smartphone, and is, for example, an AR (Augmented Reality) glass or HMD worn on the head of a viewer. It may be a wearable device such as (Head Mounted Display). These HMDs and the like may include a positioning sensor (not shown) and a motion sensor (not shown), and in this case, the position of the viewer, the direction and inclination of the body, the movement, the moving speed, and the like can be detected.
  • a positioning sensor not shown
  • a motion sensor not shown
  • FIG. 13 is a block diagram showing a functional configuration example of the reproduction device 30a according to the present embodiment. Since the reproduction device 30a according to the present embodiment is common to the first embodiment except for the following points, the description of the common points will be omitted here, and only the differences will be described.
  • the present embodiment is different from the first embodiment in that the display control unit 300 of the reproduction device 30a includes the LOD calculation unit (selection reference value calculation unit) 310.
  • the LOD calculation unit 310 is based on the viewer's visual acuity (visual acuity information) and the viewer's distance to the display device 20 (distance information), and based on the necessary and sufficient resolution (user resolution) for the viewer. Calculate a new LOD selection reference value for. Since the calculation method has been described above, the description thereof will be omitted here.
  • the acquisition unit 308 has object data (three-dimensional object in the moving image content) having a LOD necessary and sufficient for the resolution of the viewer's eyes based on the newly calculated LOD selection reference value. Content data for displaying)).
  • FIG. 14 is a diagram showing a flowchart of the information processing method according to the embodiment.
  • the distribution processing method according to the present embodiment includes steps S301 to S311. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned first embodiment will be described, and the points common to the first embodiment will be omitted.
  • steps S301 to S306 are the same as steps S101 to S106 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
  • the playback device 30a calculates a new LOD selection reference value for the viewer based on the resolution specified in step S306 described above (step S307). Since the calculation method has been described above, the description thereof will be omitted here. Then, the reproduction device 30a acquires the object data (content data) of the three-dimensional object having the LOD corresponding to the LOD selection reference value selected in step S307 described above (step S308).
  • steps S309 to S311 are the same as steps S108 to S110 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
  • the present embodiment it is possible to avoid acquiring the object data of the three-dimensional object of LOD which is unnecessary for the resolution of the eyes of the viewer. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
  • the viewing angle calculates the necessary and sufficient resolution (necessary and sufficient resolution).
  • the resolution in the width direction or the resolution in the height direction may be used, but in the present embodiment, the viewing angle ⁇ and the viewing angle are the necessary and sufficient resolutions. If ⁇ is different from each other, the calculated values will also change significantly, so the larger value of the resolution in the height direction and the resolution in the width direction will be used. Therefore, in the present embodiment, the relationship between the LOD selection reference value defined in the initial scene description and the LOD selection reference value necessary and sufficient for the actual viewer can be shown by the following mathematical formula (9).
  • FIG. 15 is a diagram showing a flowchart of the information processing method according to the embodiment.
  • the information processing method according to the present embodiment includes steps S401 to S414. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned second and third embodiments will be described, and the points common to the second and third embodiments will be omitted.
  • steps S401 to S409 are the same as steps S201 to S209 of the second embodiment shown in FIG. 7, the description thereof will be omitted here.
  • steps S410 to S414 are the same as steps S307 to S311 of the third embodiment shown in FIG. 14, the description thereof will be omitted here.
  • the LOD can be performed more accurately.
  • the selection reference value can be calculated. Therefore, according to the present embodiment, since the calculation is performed in consideration of the viewing angle, the LOD selection reference value suitable for the viewer can be calculated with high accuracy, so that the viewer can more effectively calculate. While avoiding the deterioration of image quality, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network.
  • each embodiment of the present disclosure it is possible to avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes, and the content necessary and sufficient for the resolution of the viewer's eyes. You can get the data. Therefore, according to each embodiment of the present disclosure, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. It should be noted that each embodiment of the present disclosure is not limited to application to the provision of entertainment services accompanied by video distribution, but can also be applied to education, medical support, and the like.
  • FIG. 16 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the playback device 30 and the like.
  • the computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by such a program.
  • the HDD 1400 is a recording medium for recording an information processing program according to the present disclosure, which is an example of program data 1450.
  • the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input / output device 1650 such as a keyboard, a mouse, and a microphone (microphone) via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600.
  • the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
  • the media includes, for example, an optical recording medium such as a DVD (Digital Versaille Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
  • an optical recording medium such as a DVD (Digital Versaille Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
  • the CPU 1100 of the computer 1000 realizes the functions of the display control unit 310 and the like by executing the program stored in the RAM 1200. Further, the processing program and the like according to the present disclosure are stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
  • the information processing device may be applied to a system including a plurality of devices, which is premised on connection to a network (or communication between each device), such as cloud computing. .. That is, the information processing device according to the present embodiment described above can be realized as an information processing system according to the present embodiment by, for example, a plurality of devices.
  • the above is an example of the hardware configuration of the playback device 30 and the like.
  • Each of the above-mentioned components may be configured by using general-purpose members, or may be configured by hardware specialized for the function of each component. Such a configuration may be appropriately modified depending on the technical level at the time of implementation.
  • FIG. 17 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technique according to the present disclosure can be applied.
  • FIG. 17 shows a surgeon (doctor) 5067 performing surgery on patient 5071 on patient bed 5069 using the endoscopic surgery system 5000.
  • the endoscopic surgery system 5000 includes an endoscope 5001, other surgical tools 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. It is composed of a cart 5037 and a cart 5037.
  • trocca 5025a to 5025d In endoscopic surgery, instead of cutting and opening the abdominal wall, multiple tubular laparotomy instruments called trocca 5025a to 5025d are punctured into the abdominal wall. Then, from the trocca 5025a to 5025d, the lens barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071.
  • other surgical tools 5017 a pneumoperitoneum tube 5019, an energy treatment tool 5021 and forceps 5023 are inserted into the body cavity of patient 5071.
  • the energy treatment tool 5021 is a treatment tool for incising and peeling a tissue, sealing a blood vessel, or the like by using a high frequency current or ultrasonic vibration.
  • the surgical tool 5017 shown in the illustration is merely an example, and as the surgical tool 5017, various surgical tools generally used in endoscopic surgery such as a sword and a retractor may be used.
  • the image of the surgical site in the body cavity of the patient 5071 taken by the endoscope 5001 is displayed on the display device 5041.
  • the surgeon 5067 performs a procedure such as excising the affected area by using the energy treatment tool 5021 or the forceps 5023 while viewing the image of the surgical site displayed on the display device 5041 in real time.
  • the pneumoperitoneum tube 5019, the energy treatment tool 5021, and the forceps 5023 are supported by the operator 5067, an assistant, or the like during the operation.
  • the support arm device 5027 includes an arm portion 5031 extending from the base portion 5029.
  • the arm portion 5031 is composed of joint portions 5033a, 5033b, 5033c, and links 5035a, 5035b, and is driven by control from the arm control device 5045.
  • the endoscope 5001 is supported by the arm portion 5031, and its position and posture are controlled. Thereby, the stable position fixing of the endoscope 5001 can be realized.
  • the endoscope 5001 is composed of a lens barrel 5003 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the base end of the lens barrel 5003.
  • the endoscope 5001 configured as a so-called rigid mirror having a rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having a flexible barrel 5003. May be good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 5003.
  • a light source device 5043 is connected to the endoscope 5001, and the light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5003, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 5071 through the lens.
  • the endoscope 5001 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image pickup element are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system.
  • the observation light is photoelectrically converted by the image pickup device, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 5039.
  • the camera head 5005 is equipped with a function of adjusting the magnification and the focal length by appropriately driving the optical system thereof.
  • the camera head 5005 may be provided with a plurality of image pickup elements.
  • a plurality of relay optical systems are provided inside the lens barrel 5003 in order to guide the observation light to each of the plurality of image pickup elements.
  • the CCU 5039 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 5001 and the display device 5041. Specifically, the CCU 5039 performs various image processing for displaying an image based on the image signal, such as a development process (demosaic process), on the image signal received from the camera head 5005. The CCU 5039 provides the image signal subjected to the image processing to the display device 5041. Further, the CCU 5039 transmits a control signal to the camera head 5005 and controls the driving thereof.
  • the control signal may include information about imaging conditions such as magnification and focal length.
  • the display device 5041 displays an image based on the image signal processed by the CCU 5039 under the control of the CCU 5039.
  • the endoscope 5001 is compatible with high-resolution shooting such as 4K (horizontal pixel number 3840 x vertical pixel number 2160) or 8K (horizontal pixel number 7680 x vertical pixel number 4320), and / or 3D display.
  • the display device 5041 a display device capable of displaying a high resolution and / or a device capable of displaying in 3D can be used.
  • a display device 5041 having a size of 55 inches or more is used for high-resolution shooting such as 4K or 8K, a further immersive feeling can be obtained.
  • a plurality of display devices 5041 having different resolutions and sizes may be provided depending on the application.
  • the light source device 5043 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light for photographing the surgical site to the endoscope 5001.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the arm control device 5045 is configured by a processor such as a CPU, and operates according to a predetermined program to control the drive of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
  • the input device 5047 is an input interface for the endoscopic surgery system 5000.
  • the user can input various information and input instructions to the endoscopic surgery system 5000 via the input device 5047.
  • the user inputs various information related to the surgery, such as physical information of the patient and information about the surgical procedure, via the input device 5047.
  • the user is instructed to drive the arm portion 5031 via the input device 5047, or is instructed to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5001. , Instructions to drive the energy treatment tool 5021, etc. are input.
  • the type of the input device 5047 is not limited, and the input device 5047 may be various known input devices.
  • the input device 5047 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057 and / or a lever and the like can be applied.
  • the touch panel may be provided on the display surface of the display device 5041.
  • the input device 5047 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), and various inputs are made according to the user's gesture and line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the gesture and the line of sight of the user detected from the image captured by the camera. Further, the input device 5047 includes a microphone capable of picking up the voice of the user, and various inputs are performed by voice via the microphone.
  • a glasses-type wearable device or an HMD Head Mounted Display
  • the input device 5047 is configured to be able to input various information in a non-contact manner, so that a user who belongs to a clean area (for example, an operator 5067) can operate a device belonging to the unclean area in a non-contact manner. Is possible. In addition, the user can operate the device without taking his / her hand off the surgical tool that he / she has, which improves the convenience of the user.
  • a clean area for example, an operator 5067
  • the treatment tool control device 5049 controls the drive of the energy treatment tool 5021 for cauterizing tissue, incising, sealing a blood vessel, or the like.
  • the pneumoperitoneum device 5051 gas in the body cavity of the patient 5071 via the pneumoperitoneum tube 5019 in order to inflate the body cavity of the patient 5071 for the purpose of securing the field of view by the endoscope 5001 and securing the work space of the operator. Is sent.
  • the recorder 5053 is a device capable of recording various information related to surgery.
  • the printer 5055 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
  • the support arm device 5027 includes a base portion 5029 which is a base, and an arm portion 5031 extending from the base portion 5029.
  • the arm portion 5031 is composed of a plurality of joint portions 5033a, 5033b, 5033c and a plurality of links 5035a, 5035b connected by the joint portions 5033b, but in FIG. 17, for the sake of simplicity.
  • the configuration of the arm portion 5031 is simplified and illustrated. Actually, the shapes, numbers and arrangements of the joint portions 5033a to 5033c and the links 5035a and 5035b, the direction of the rotation axis of the joint portions 5033a to 5033c, and the like are appropriately set so that the arm portion 5031 has a desired degree of freedom.
  • the arm portion 5031 may be preferably configured to have more than 6 degrees of freedom.
  • the endoscope 5001 can be freely moved within the movable range of the arm portion 5031, so that the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
  • Actuators are provided in the joint portions 5033a to 5033c, and the joint portions 5033a to 5033c are configured to be rotatable around a predetermined rotation axis by driving the actuator.
  • the arm control device 5045 By controlling the drive of the actuator by the arm control device 5045, the rotation angles of the joint portions 5033a to 5033c are controlled, and the drive of the arm portion 5031 is controlled. Thereby, control of the position and posture of the endoscope 5001 can be realized.
  • the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
  • the drive of the arm unit 5031 is appropriately controlled by the arm control device 5045 according to the operation input.
  • the position and orientation of the endoscope 5001 may be controlled.
  • the endoscope 5001 at the tip of the arm portion 5031 can be moved from an arbitrary position to an arbitrary position, and then fixedly supported at the position after the movement.
  • the arm portion 5031 may be operated by a so-called master slave method. In this case, the arm portion 5031 can be remotely controlled by the user via an input device 5047 installed at a location away from the operating room.
  • the arm control device 5045 When force control is applied, the arm control device 5045 receives an external force from the user, and the actuators of the joint portions 5033a to 5033c are arranged so that the arm portion 5031 moves smoothly according to the external force. So-called power assist control for driving may be performed.
  • the arm portion 5031 when the user moves the arm portion 5031 while directly touching the arm portion 5031, the arm portion 5031 can be moved with a relatively light force. Therefore, the endoscope 5001 can be moved more intuitively and with a simpler operation, and the convenience of the user can be improved.
  • the endoscope 5001 was supported by a doctor called a scopist.
  • the support arm device 5027 by using the support arm device 5027, the position of the endoscope 5001 can be more reliably fixed without human intervention, so that an image of the surgical site can be stably obtained. , It becomes possible to perform surgery smoothly.
  • the arm control device 5045 does not necessarily have to be provided on the cart 5037. Further, the arm control device 5045 does not necessarily have to be one device. For example, the arm control device 5045 may be provided in each of the joint portions 5033a to 5033c of the arm portion 5031 of the support arm device 5027, and the plurality of arm control devices 5045 cooperate with each other to drive the arm portion 5031. Control may be realized.
  • the light source device 5043 supplies the endoscope 5001 with irradiation light for photographing the surgical site.
  • the light source device 5043 is composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • the white light source is configured by the combination of the RGB laser light sources, the output intensity and the output timing of each color (each wavelength) can be controlled with high accuracy, so that the white balance of the captured image in the light source device 5043 can be controlled. Can be adjusted.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 5005 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image pickup device.
  • the drive of the light source device 5043 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 5005 in synchronization with the timing of the change of the light intensity to acquire an image in time division and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 5043 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface layer of the mucous membrane is irradiated with light in a narrower band than the irradiation light (that is, white light) during normal observation.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected.
  • An excitation light corresponding to the fluorescence wavelength of the reagent may be irradiated to obtain a fluorescence image.
  • the light source device 5043 may be configured to be capable of supplying narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 18 is a block diagram showing an example of the functional configuration of the camera head 5005 and CCU5039 shown in FIG.
  • the camera head 5005 has a lens unit 5007, an image pickup unit 5009, a drive unit 5011, a communication unit 5013, and a camera head control unit 5015 as its functions.
  • the CCU 5039 has a communication unit 5059, an image processing unit 5061, and a control unit 5063 as its functions.
  • the camera head 5005 and the CCU 5039 are bidirectionally connected by a transmission cable 5065 so as to be communicable.
  • the lens unit 5007 is an optical system provided at a connection portion with the lens barrel 5003.
  • the observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and incident on the lens unit 5007.
  • the lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the optical characteristics of the lens unit 5007 are adjusted so as to collect the observation light on the light receiving surface of the image pickup element of the image pickup unit 5009.
  • the zoom lens and the focus lens are configured so that their positions on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
  • the image pickup unit 5009 is composed of an image pickup element and is arranged after the lens unit 5007.
  • the observation light that has passed through the lens unit 5007 is focused on the light receiving surface of the image pickup device, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the image pickup unit 5009 is provided to the communication unit 5013.
  • CMOS Complementary Metal Oxide Semiconductor
  • image pickup device for example, an image pickup device capable of capturing a high-resolution image of 4K or higher may be used.
  • the image pickup elements constituting the image pickup unit 5009 are configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D display, respectively.
  • the 3D display enables the surgeon 5067 to more accurately grasp the depth of the living tissue in the surgical site.
  • the image pickup unit 5009 is composed of a multi-plate type, a plurality of lens units 5007 are also provided corresponding to each image pickup element.
  • the image pickup unit 5009 does not necessarily have to be provided on the camera head 5005.
  • the image pickup unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
  • the drive unit 5011 is composed of an actuator, and the zoom lens and the focus lens of the lens unit 5007 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 5015. As a result, the magnification and focus of the image captured by the image pickup unit 5009 can be adjusted as appropriate.
  • the communication unit 5013 is composed of a communication device for transmitting and receiving various information to and from the CCU 5039.
  • the communication unit 5013 transmits the image signal obtained from the image pickup unit 5009 as RAW data to the CCU 5039 via the transmission cable 5065.
  • the image signal is transmitted by optical communication.
  • the surgeon 5067 performs the surgery while observing the condition of the affected area with the captured image, so for safer and more reliable surgery, the moving image of the surgical site is displayed in real time as much as possible. This is because it is required.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an electric signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5039 via the transmission cable 5065.
  • the communication unit 5013 receives a control signal for controlling the drive of the camera head 5005 from the CCU 5039.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the communication unit 5013 provides the received control signal to the camera head control unit 5015.
  • the control signal from the CCU 5039 may also be transmitted by optical communication.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and then provided to the camera head control unit 5015.
  • the image pickup conditions such as the frame rate, the exposure value, the magnification, and the focal point are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5001.
  • the camera head control unit 5015 controls the drive of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the drive of the image pickup element of the image pickup unit 5009 based on the information to specify the frame rate of the image pickup image and / or the information to specify the exposure at the time of image pickup. Further, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the drive unit 5011 based on the information that the magnification and the focus of the captured image are specified.
  • the camera head control unit 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
  • the camera head 5005 can be made resistant to autoclave sterilization.
  • the communication unit 5059 is configured by a communication device for transmitting and receiving various information to and from the camera head 5005.
  • the communication unit 5059 receives an image signal transmitted from the camera head 5005 via the transmission cable 5065.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the communication unit 5059 provides the image processing unit 5061 with an image signal converted into an electric signal.
  • the communication unit 5059 transmits a control signal for controlling the drive of the camera head 5005 to the camera head 5005.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5061 performs various image processing on the image signal which is the RAW data transmitted from the camera head 5005.
  • the image processing includes, for example, development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise Reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Etc., various known signal processing is included. Further, the image processing unit 5061 performs detection processing on the image signal for performing AE, AF and AWB.
  • the image processing unit 5061 is composed of a processor such as a CPU or GPU, and the processor operates according to a predetermined program, so that the above-mentioned image processing and detection processing can be performed.
  • the image processing unit 5061 is composed of a plurality of GPUs, the image processing unit 5061 appropriately divides the information related to the image signal and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5063 performs various controls regarding the imaging of the surgical site by the endoscope 5001 and the display of the captured image. For example, the control unit 5063 generates a control signal for controlling the drive of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with an AE function, an AF function, and an AWB function, the control unit 5063 has an optimum exposure value, a focal length, and an optimum exposure value according to the result of detection processing by the image processing unit 5061. The white balance is calculated appropriately and a control signal is generated.
  • control unit 5063 causes the display device 5041 to display the image of the surgical unit based on the image signal processed by the image processing unit 5061.
  • the control unit 5063 recognizes various objects in the surgical unit image by using various image recognition techniques.
  • the control unit 5063 detects a surgical tool such as forceps, a specific biological part, bleeding, a mist when using the energy treatment tool 5021, etc. by detecting the shape, color, etc. of the edge of the object included in the surgical site image. Can be recognized.
  • the control unit 5063 uses the recognition result to superimpose and display various surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 5067, it becomes possible to proceed with the surgery more safely and surely.
  • the transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electric signal cable compatible with electric signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 5065, but the communication between the camera head 5005 and the CCU 5039 may be performed wirelessly.
  • the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5065 can be solved.
  • the above is an example of the endoscopic surgery system 5000 to which the technique according to the present disclosure can be applied.
  • the endoscopic surgery system 5000 has been described here as an example, the system to which the technique according to the present disclosure can be applied is not limited to such an example.
  • the technique according to the present disclosure may be applied to a flexible endoscopic system for examination or a microsurgery system.
  • each step in the information processing method of the embodiment of the present disclosure described above does not necessarily have to be processed in the order described.
  • each step may be processed in an appropriately reordered manner.
  • each step may be partially processed in parallel or individually instead of being processed in chronological order.
  • the processing of each step does not necessarily have to be processed according to the described method, and may be processed by another method, for example, by another functional unit.
  • An information processing device including an acquisition unit that acquires video content data to be played back to the user in real time according to the user's visual acuity information.
  • a calculation unit that calculates the user resolution for the user in real time based on the user's visual acuity information, the display unit information regarding the display unit that displays the moving image content, and the position information of the user with respect to the display unit.
  • the acquisition unit acquires the moving image content data based on the user resolution.
  • the information processing device includes information on the height and width of the display unit.
  • the calculation unit calculates the user resolution in the height direction and the user resolution in the width direction.
  • the information processing device (2) above.
  • a comparison unit for comparing the user resolution and the resolution of the display unit is provided.
  • the acquisition unit acquires the video content data based on the comparison result.
  • the acquisition unit acquires the video content data for reproducing an object in the virtual space in the video content based on the user resolution.
  • the information processing apparatus according to any one of (2) to (6) above.
  • a selection reference value calculation unit for newly calculating a selection reference value for selecting the moving image content data based on the user resolution.
  • the information processing device according to (7) above.
  • the information processing apparatus according to any one of (2) to (8) above, further comprising a position information acquisition unit for acquiring the position information.
  • the acquisition unit acquires the video content data to be reproduced for the plurality of users according to the visual acuity information of the plurality of users.
  • the information processing apparatus according to any one of (1) to (9) above.
  • (11) Further provided with a decoding unit for decoding the moving image content data.
  • the information processing apparatus according to any one of (1) to (9) above.
  • (12) The information processing apparatus according to any one of (2) to (9) above, further comprising the display unit.
  • Distribution system 10 Content distribution server 20 Display device 30, 30a Playback device 40 Communication network 300 Display control unit 302 Location information acquisition unit 304 Calculation unit 306 Comparison unit 308 Acquisition unit 310 LOD calculation unit 320 Decoding block 322 Processing unit 324 Decoding unit 326 Display information generation unit 330 Main control unit 340 Storage unit 350 Transmission / reception unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

Provided is an information processing apparatus (30) including an acquisition unit (308) for acquiring, in real time, video content data to be played back to a user according to information on the user's visual acuity.

Description

情報処理装置及び情報処理方法Information processing equipment and information processing method
 本開示は、情報処理装置及び情報処理方法に関する。 This disclosure relates to an information processing device and an information processing method.
 現在、様々な動画配信サービスが利用されており、またそれらを視聴するために使用する表示装置が、HD(High Definition)、フルHD、4K、そして8Kへと高解像化していくことに伴い、上記配信サービスで配信されるコンテンツ(例えば、2次元映像のコンテンツ)も高解像度化していくことが求められる。 Currently, various video distribution services are used, and as the display devices used for viewing them become higher resolution to HD (High Definition), full HD, 4K, and 8K. , Content distributed by the above distribution service (for example, content of two-dimensional video) is also required to have higher resolution.
 近年、全天周カメラ等により撮影された、全方位を見回すことが可能な全天周映像も配信されるようになってきている。加えて、最近では、視聴者が全方位見回し(視線方向を自由に選択)することができ、3次元空間中を自由に移動することができる(視点位置を自由に選択することができる)6DoF(Degree of Freedom)映像(6DoFコンテンツとも称する)を配信する技術の開発が進められている。このような6DoFコンテンツの配信においては、時刻毎に、視聴者の視点位置、視線方向及び視野角に応じて、1つもしくは複数の3次元オブジェクトで3次元空間を動的に再現する。 In recent years, all-sky images taken by all-sky cameras and the like that can look around in all directions have also been distributed. In addition, recently, viewers can look around in all directions (freely select the line-of-sight direction) and freely move in three-dimensional space (freely select the viewpoint position) 6DoF. (Degree of Freedom) Development of technology for distributing video (also referred to as 6DoF content) is underway. In the distribution of such 6DoF contents, the three-dimensional space is dynamically reproduced by one or a plurality of three-dimensional objects according to the viewpoint position, the line-of-sight direction, and the viewing angle of the viewer at each time.
 このような6DoFコンテンツの配信方法としては、例えば、3次元空間を複数の3次元オブジェクトで構成し、これら複数のオブジェクトに関するデータを配信する方法が提案されている。当該方法において配信されるデータは、例えばシーン記述という、3次元空間のシーンをシーングラフと呼ばれるツリー階層構造のグラフで表現し、そのシーングラフをバイナリ形式またはテキスト形式で表現したデータが含まれる(例えば、非特許文献1)。 As a method of distributing such 6DoF contents, for example, a method of constructing a three-dimensional space with a plurality of three-dimensional objects and distributing data related to these a plurality of objects has been proposed. The data distributed by this method includes data in which a scene in a three-dimensional space, for example, a scene description, is represented by a graph having a tree hierarchical structure called a scene graph, and the scene graph is represented in a binary format or a text format (). For example, Non-Patent Document 1).
 そして、配信されるコンテンツの高解像度化に伴って、配信されるデータ量が増加し、通信ネットワークへの負荷が高まる(すなわち、通信ネットワークの帯域不足)とともに、配信されたコンテンツを楽しむ視聴者(ユーザ)にとっても、通信費として支払う金額が増加することにもなる。 Then, as the resolution of the delivered content increases, the amount of data to be delivered increases, the load on the communication network increases (that is, the bandwidth of the communication network is insufficient), and the viewer who enjoys the delivered content (that is, the viewer (that is, the bandwidth of the communication network is insufficient)). For the user), the amount of money to be paid as communication costs will also increase.
 そこで、本開示では、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることが可能な、情報処理装置及び情報処理方法を提案する。 Therefore, in this disclosure, we propose an information processing device and an information processing method that can avoid an increase in the amount of distributed data and an increase in the load on a communication network while avoiding the viewer's feeling of deterioration in image quality.
 本開示によれば、ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得する取得部を備える、情報処理装置が提供される。 According to the present disclosure, an information processing device provided with an acquisition unit for acquiring video content data to be played back for the user in real time according to the visual acuity information of the user is provided.
 また、本開示によれば、ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得することを含む、情報処理方法が提供される。 Further, according to the present disclosure, an information processing method including acquiring video content data to be played back for the user in real time according to the visual acuity information of the user is provided.
本開示の実施形態の概要を説明するための説明図(その1)である。It is explanatory drawing (the 1) for demonstrating the outline of embodiment of this disclosure. 本開示の実施形態の概要を説明するための説明図(その2)である。It is explanatory drawing (the 2) for demonstrating the outline of embodiment of this disclosure. 本開示の第1の実施形態に係る動画コンテンツ配信システムの概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline of the moving image content distribution system which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施形態に係る再生装置の機能構成例を示すブロック図である。It is a block diagram which shows the functional composition example of the reproduction apparatus which concerns on 1st Embodiment of this disclosure. 同実施形態に係る情報処理方法のフローチャートを示した図である。It is a figure which showed the flowchart of the information processing method which concerns on the same embodiment. 本開示の第2の実施形態の概要を説明するための説明図である。It is explanatory drawing for demonstrating the outline of the 2nd Embodiment of this disclosure. 同実施形態に係る情報処理方法のフローチャートを示した図である。It is a figure which showed the flowchart of the information processing method which concerns on the same embodiment. 本開示の第3の実施形態の概要を説明するための説明図(その1)である。It is explanatory drawing (the 1) for demonstrating the outline of the 3rd Embodiment of this disclosure. 同実施形態の概要を説明するための説明図(その2)である。It is explanatory drawing (the 2) for demonstrating the outline of the embodiment. 同実施形態の概要を説明するための説明図(その3)である。It is explanatory drawing (the 3) for demonstrating the outline of the embodiment. 同実施形態の概要を説明するための説明図(その4)である。It is explanatory drawing (the 4) for demonstrating the outline of the embodiment. 同実施形態の概要を説明するための説明図(その5)である。It is explanatory drawing (the 5) for demonstrating the outline of the embodiment. 同実施形態に係る再生装置の機能構成例を示すブロック図である。It is a block diagram which shows the functional composition example of the reproduction apparatus which concerns on the same embodiment. 同実施形態に係る情報処理方法のフローチャートを示した図である。It is a figure which showed the flowchart of the information processing method which concerns on the same embodiment. 本開示の第4の実施形態に係る情報処理方法のフローチャートを示した図である。It is a figure which showed the flowchart of the information processing method which concerns on 4th Embodiment of this disclosure. 再生装置30等の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。It is a hardware block diagram which shows an example of the computer 1000 which realizes the function of the reproduction apparatus 30 and the like. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of the schematic structure of an endoscopic surgery system. 図17に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the camera head and CCU shown in FIG.
 以下に、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一又は類似の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、実質的に同一又は類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, and duplicate description will be omitted. Further, in the present specification and the drawings, a plurality of components having substantially the same or similar functional configurations may be distinguished by adding different alphabets after the same reference numerals. However, if it is not necessary to particularly distinguish each of the plurality of components having substantially the same or similar functional configurations, only the same reference numerals are given.
 なお、説明は以下の順序で行うものとする。
 1. 背景
 2. 本開示の実施形態の概要
 3. 第1の実施形態
    3.1 システム構成
    3.2 再生装置の構成
    3.3 情報処理方法
 4. 第2の実施形態
    4.1 第2の実施形態の概要
    4.2 システム構成
    4.3 再生装置の構成
    4.4 情報処理方法
 5. 第3の実施形態
    5.1 第3の実施形態の概要
    5.2 システム構成
    5.3 再生装置の構成
    5.4 情報処理方法
 6. 第4の実施形態
    6.1 第4の実施形態の概要
    6.2 システム構成及び再生装置の構成
    6.3 情報処理方法
 7. まとめ
 8. ハードウェア構成例
 9. 応用例
 10. 補足
The explanations will be given in the following order.
1. 1. Background 2. Overview of the embodiments of the present disclosure 3. First Embodiment 3.1 System configuration 3.2 Configuration of playback device 3.3 Information processing method 4. 2nd Embodiment 4.1 Outline of 2nd Embodiment 4.2 System configuration 4.3 Configuration of playback device 4.4 Information processing method 5. Third embodiment 5.1 Outline of the third embodiment 5.2 System configuration 5.3 Configuration of playback device 5.4 Information processing method 6. Fourth Embodiment 6.1 Outline of the Fourth Embodiment 6.2 System Configuration and Playback Device Configuration 6.3 Information Processing Method 7. Summary 8. Hardware configuration example 9. Application example 10. supplement
 <<1. 背景>>
 まずは、図1を参照して、本開示の背景について説明する。現在、様々な動画配信サービスが利用されており、またそれらを視聴するために使用する表示装置が、HD(High Definition)、フルHD、4K、そして8Kへと高解像化していくことに伴い、動画配信サービスで配信されるコンテンツも高解像度化していくことが求められる。そして、このようなコンテンツの高解像度化にともって、配信されるデータ量が増加し、通信ネットワークへの負荷が高まる(すなわち、通信ネットワークの帯域不足)とともに、配信されたコンテンツを楽しむ視聴者(ユーザ)にとっても、通信費として支払う金額が増加することにもなる。
<< 1. Background >>
First, the background of the present disclosure will be described with reference to FIG. Currently, various video distribution services are used, and as the display devices used for viewing them become higher resolution to HD (High Definition), full HD, 4K, and 8K. , Content distributed by video distribution services is also required to have higher resolution. As the resolution of such contents increases, the amount of data to be delivered increases, the load on the communication network increases (that is, the bandwidth of the communication network is insufficient), and the viewers who enjoy the delivered contents (that is, the viewers who enjoy the delivered contents). For the user), the amount of money to be paid as communication costs will also increase.
 そこで、2次元動画配信においては、DASH(Dynamic Adaptive Streaming over HTTP、ISO/IEC 23009-1)を利用する配信技術が知られている。当該配信技術では、配信サーバに、同一コンテンツの、ビットレートの異なる複数のストリームバリエーションを予め準備し、通信ネットワーク帯域の変動に応じてストリームを切り替える。詳細には、当該配信技術においては、例えば、通信ネットワークの帯域が不足している場合に、低ビットレートのストリームバリエーションの配信に切り替えることとなる。このようにすることにより、配信されるデータ量の増加による通信ネットワークへの負荷を低減することが可能となるが、画質劣化が生じることとなる。 Therefore, in 2D video distribution, a distribution technology using DASH (Dynamic Adaptive Streaming over HTTP, ISO / IEC 23009-1) is known. In the distribution technology, a plurality of stream variations of the same content but having different bit rates are prepared in advance in the distribution server, and the streams are switched according to the fluctuation of the communication network bandwidth. Specifically, in the distribution technology, for example, when the bandwidth of the communication network is insufficient, the distribution is switched to the distribution of a stream variation having a low bit rate. By doing so, it is possible to reduce the load on the communication network due to the increase in the amount of data to be delivered, but the image quality is deteriorated.
 さらに、近年、全天周カメラ等により撮影された、全方位を見回すことが可能な全天周映像も配信されるようになってきている。加えて、最近では、視聴者が、全方位見回しすることができ、3次元空間中を自由に移動することができる6DoFコンテンツを配信する技術の開発が進められている。6DoFコンテンツは、先に説明したように、時刻毎に、視聴者の視点位置、視線方向及び視野角に応じて、1つもしくは複数の3次元オブジェクトで3次元空間を動的に再現するものである。そして、6DoFコンテンツの配信においては、上述したDASHに、3次元CG(computer graphics)で利用されているシーン記述データを利用した手法を組み合わせることが検討されている。 Furthermore, in recent years, all-sky images taken by all-sky cameras and the like, which can look around in all directions, have come to be distributed. In addition, recently, the development of a technology for distributing 6DoF content that allows viewers to look around in all directions and freely move in a three-dimensional space is underway. As explained above, 6DoF content dynamically reproduces 3D space with one or more 3D objects according to the viewer's viewpoint position, line-of-sight direction, and viewing angle at each time. be. Then, in the distribution of 6DoF contents, it is considered to combine the above-mentioned DASH with a method using scene description data used in 3D CG (computer graphics).
 詳細には、上記6DoFコンテンツの配信では、視聴者の位置が移動しても、3次元空間中に存在する全ての物体(3次元オブジェクト)を表示するために、各3次元オブジェクトに関するオブジェクト・データを配信する。当該オブジェクト・データは、3次元オブジェクトの、多面体の形状であるメッシュデータとその面に張り付けるデータであるテクスチャデータとを組み合わせたデータや、複数の点の集合であるPoint Cloud(点群)といったデータで構成される。 Specifically, in the above 6DoF content distribution, object data relating to each 3D object is displayed in order to display all objects (3D objects) existing in the 3D space even if the position of the viewer moves. To deliver. The object data is a combination of mesh data, which is the shape of a polyhedron of a three-dimensional object, and texture data, which is data to be attached to the surface, or Point Cloud (point cloud), which is a set of multiple points. Consists of data.
 さらに、当該配信では、上述したオブジェクト・データとともに、視聴者の視点位置に応じて3次元オブジェクトを表示するためのシーン記述というデータも配信する。当該シーン記述は、3次元空間における3次元オブジェクトの位置や姿勢を定義するばかりでなく、1つの3次元オブジェクトに対して、視聴者の視点位置に応じた複数の異なるLOD(Level Of Detail)を定義する。LODとは、例えばPoint Cloudで表現された3次元オブジェクトの場合には、同一の3次元オブジェクトを表現するポイント数(ディテール)を定義するものである。詳細には、3次元空間の表現としては、視聴者の視点位置から離れている3次元オブジェクトは、その表示を小さくし、視聴者の視点位置に近い3次元オブジェクトは、その表示を大きくする。さらに、当該表現においては、表示の大きい3次元オブジェクトは、その表示のLODを高くし、表示が小さい3次元オブジェクトについては、その表示のLODは低くする。なお、LODが高くなるほど、その表示のためのデータのデータ量は増加することとなる。このように定義されたLODを用いて3次元空間内の3次元オブジェクトを表現することにより、表示の大きい3次元オブジェクトは高解像度で再現され、表示の小さい3次元オブジェクトは低解像度で再現されることから、視聴者にとっては、現実空間と同様に、近くに位置する3次元オブジェクトは鮮明に見えることとなる。従って、このように3次元空間を表現することにより、データ量の増加を抑えつつ、視聴者は違和感なく視聴することを可能とすることができる。 Furthermore, in the distribution, along with the above-mentioned object data, data called a scene description for displaying a three-dimensional object according to the viewpoint position of the viewer is also distributed. The scene description not only defines the position and posture of the three-dimensional object in the three-dimensional space, but also provides a plurality of different LODs (Level Of Detail) according to the viewpoint position of the viewer for one three-dimensional object. Define. The LOD defines, for example, the number of points (details) representing the same three-dimensional object in the case of a three-dimensional object represented by Point Cloud. Specifically, as a representation of the three-dimensional space, a three-dimensional object far from the viewer's viewpoint position makes the display small, and a three-dimensional object close to the viewer's viewpoint position makes the display large. Further, in the expression, a three-dimensional object having a large display has a high LOD of its display, and a three-dimensional object having a small display has a low LOD of its display. The higher the LOD, the larger the amount of data for the display. By expressing a 3D object in a 3D space using the LOD defined in this way, a 3D object with a large display is reproduced with high resolution, and a 3D object with a small display is reproduced with low resolution. Therefore, for the viewer, the three-dimensional object located nearby can be clearly seen as in the real space. Therefore, by expressing the three-dimensional space in this way, it is possible for the viewer to view the data without discomfort while suppressing an increase in the amount of data.
 しかしながら、6DoFコンテンツの配信技術においても、表示装置の高解像度化に伴うコンテンツの高解像度化により、配信されるデータ量が増加し、通信ネットワークへの負荷が高まることを避けることが難しい。 However, even in the 6DoF content distribution technology, it is difficult to avoid an increase in the amount of data to be distributed and an increase in the load on the communication network due to the increase in the resolution of the content accompanying the increase in the resolution of the display device.
 なお、シーン記述の規格については、現在、様々な規格が存在する。基本的には、シーンをシーングラフと称するツリー階層構造のグラフで表現し、そのシーングラフをバイナリ形式またはテキスト形式で表現する。ここで、シーングラフは、視聴者の視点位置に基づく空間表示制御情報であり、その視点位置における3次元オブジェクトの表示に関する情報を、ノードを構成単位として定義し、複数のノードを階層的に組合せることで構成される。ノードは、3次元オブジェクトの位置情報や大きさ情報のノード、メッシュデータやテクスチャデータへのアクセス情報のノード、視点位置からの距離に応じて適切に表示するための情報等のためのノードがあり、3次元オブジェクト毎にこれらのノードを用いることとなる。例えば、シーン記述のデータは、MPEG-4 Scene Description(ISO/IEC 14496-11)に準拠することができる。なお、MPEG-4 Scene Descriptionデータは、シーングラフをBIFS(BInary Format for Scenes)という形式でバイナリ化してものである。このシーングラフをBIFSへ変換するのは決められたアルゴリズムで可能である。また、ISO base media file formatに格納することで時刻ごとにシーンを規定することができ、動いている物体等の表現が可能となる。 Currently, there are various standards for scene description. Basically, a scene is represented by a graph with a tree hierarchical structure called a scene graph, and the scene graph is represented in binary format or text format. Here, the scene graph is spatial display control information based on the viewpoint position of the viewer, and the information regarding the display of the three-dimensional object at the viewpoint position is defined by defining the node as a constituent unit, and a plurality of nodes are hierarchically combined. It consists of. There are nodes for position information and size information of 3D objects, nodes for access information to mesh data and texture data, and nodes for information to be displayed appropriately according to the distance from the viewpoint position. These nodes will be used for each 3D object. For example, the data of the scene description can conform to MPEG-4 Scene Description (ISO / IEC 14496-11). The MPEG-4 Scene Description data is obtained by binarizing the scene graph in the format of BIFS (Binary Form at for Scenes). It is possible to convert this scene graph to BIFS with a fixed algorithm. In addition, by storing in ISO base media file format, it is possible to specify a scene for each time, and it is possible to express a moving object or the like.
 <<2. 本開示の実施形態の概要>>
 このような状況において、本発明者らは、動画コンテンツ配信において、高解像化に伴う、配信データ量の増加や通信ネットワークへの負荷の増加を避けることができないものかと、鋭意検討を進めていた。そして、このような検討を進める中、本発明者らは、上述の配信技術においては、配信される動画コンテンツのデータは、表示装置の解像度や通信ネットワークで使用可能な帯域等に応じたデータ量の解像度を持っているが、動画コンテンツを視聴する視聴者の目の分解能に応じた解像度ではないことに気が付いた。すなわち、本発明者らは、視聴者の目の分解能に対して不必要に高い解像度を持つ動画コンテンツのデータを配信している場合があることに気が付いたのである。そして、本発明者らは、上記着眼点に基づき、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることが可能な、本開示の実施形態を独自に創作するに至ったのである。
<< 2. Summary of Embodiments of the present disclosure >>
In such a situation, the present inventors are diligently studying whether it is possible to avoid an increase in the amount of distribution data and an increase in the load on the communication network due to the high resolution in the distribution of video content. rice field. Then, while proceeding with such a study, the present inventors, in the above-mentioned distribution technology, the data of the video content to be distributed is the amount of data according to the resolution of the display device, the band that can be used in the communication network, and the like. I noticed that it has the resolution of, but the resolution does not correspond to the resolution of the eyes of the viewer who watches the video content. That is, the present inventors have noticed that there are cases where the data of the moving image content having an unnecessarily high resolution with respect to the resolution of the viewer's eyes is delivered. Then, based on the above viewpoint, the present inventors can avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. It came to create the embodiment independently.
 以下に、本発明者らが創作した本開示の実施形態の概要を、図1及び図2を参照して説明する。図1及び図2は、本開示の実施形態の概要を説明するための説明図であって、図1は、上方から見た視聴者と表示装置との位置関係を示す図であり、図2は、横から見た視聴者と表示装置との位置関係を示す図である。 The outline of the embodiment of the present disclosure created by the present inventors will be described below with reference to FIGS. 1 and 2. 1 and 2 are explanatory views for explaining an outline of the embodiment of the present disclosure, and FIG. 1 is a diagram showing a positional relationship between a viewer and a display device as viewed from above, and FIG. 2 is a diagram. Is a diagram showing the positional relationship between the viewer and the display device as viewed from the side.
 本開示の実施形態においては、視聴者の視力に関する視力情報と、表示装置のサイズに関する表示部情報、及び、視聴者の表示装置に対する位置を示す位置情報に基づいて、当該視聴者のための(当該視聴者にとって必要十分な)解像度(ユーザ解像度)を算出する。そして、本開示の実施形態によれば、算出した解像度に応じた動画コンテンツのデータを配信することにより、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることができる。 In the embodiment of the present disclosure, for the viewer, based on the visual acuity information regarding the visual acuity of the viewer, the display unit information regarding the size of the display device, and the position information indicating the position of the viewer with respect to the display device. Calculate the necessary and sufficient resolution (user resolution) for the viewer. Then, according to the embodiment of the present disclosure, by distributing the data of the video content according to the calculated resolution, the amount of the distributed data can be increased and the communication network can be increased while avoiding the viewer from feeling the deterioration of the image quality. It is possible to avoid an increase in load.
 そこで、以下では、視聴者の視力、及び、視聴者と表示装置との間の距離に基づいて、視聴者の目の分解能に対して必要十分となる解像度を算出する手法について説明する。詳細には、人間の目の分解能を、表示装置に対して使用される解像度で表現しようとする場合、PPD(Pixels Per Degree)という単位が使用され、一般に、視力1.0の人間の目の分解能は、60PPDと言われている。なお、視力1.0の人間の目の分解能の具体的な値については、諸説存在するため、以下の説明では、視力1.0の人間の目の分解能は、Pという定数で表現するものする。 Therefore, in the following, a method of calculating a resolution necessary and sufficient for the resolution of the viewer's eyes will be described based on the viewer's visual acuity and the distance between the viewer and the display device. Specifically, when trying to express the resolution of the human eye with the resolution used for the display device, a unit called PPD (Pixels Per Degree) is used, and generally, the human eye with a visual acuity of 1.0 is used. The resolution is said to be 60 PPD. Since there are various theories about the specific value of the resolution of the human eye with a visual acuity of 1.0, in the following description, the resolution of the human eye with a visual acuity of 1.0 is expressed by a constant P. ..
 従って、視力1.0の人間の目において必要十分な解像度は、1度の視野範囲に対応する表示装置上の長さXの範囲にP(pixel)存在することで満たすことができる。そこで、図1及び図2のような状況におかれた視聴者(「視力」を持つ視聴者)のための、表示装置の幅方向の解像度(Width)と高さ方向の解像度(Height)は、以下の数式(1)で表現することができる。 Therefore, the necessary and sufficient resolution for the human eye with a visual acuity of 1.0 can be satisfied by the presence of P (pixel) in the range of length X on the display device corresponding to one visual field range. Therefore, the width direction resolution (Width) and the height direction resolution (Height) of the display device for the viewers (viewers with "visual acuity") in the situations shown in FIGS. 1 and 2 are determined. , Can be expressed by the following mathematical formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そして、上記xは、図1及び図2から明らかなように、以下の数式(2)で表現することができる。 And, as is clear from FIGS. 1 and 2, the above x can be expressed by the following mathematical formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 よって、数式(2)を用いて数式(1)を書き換えると、図1及び図2のような状況におかれた視聴者(「視力」を持つ視聴者)のための、表示装置の幅方向の解像度(Width)と高さ方向の解像度(Height)は、以下の数式(3)で表現することができる。 Therefore, when the mathematical formula (1) is rewritten using the mathematical formula (2), the width direction of the display device for the viewers (viewers with "visual acuity") in the situations shown in FIGS. 1 and 2. The resolution (Width) and the resolution (Height) in the height direction can be expressed by the following mathematical formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、例として、W(幅)=1.6m、H(高さ)=0.9mのサイズの表示装置に対してL=1.44m離れた位置から視聴する視力1.0の視聴者Aと、視力0.5の視聴者Bとに対する必要十分となる解像度は、数式(3)を用いると、以下のようになる(なお、ここでは、P=60PPDとしている)。 Here, as an example, a viewer with a visual acuity of 1.0 who watches from a position L = 1.44 m away from a display device having a size of W (width) = 1.6 m and H (height) = 0.9 m. Using the mathematical formula (3), the necessary and sufficient resolutions for A and the viewer B with a visual acuity of 0.5 are as follows (here, P = 60PPD).
 視聴者A(視力1.0)の場合、幅方向の解像度(Width)は、3819.62、高さ方向の解像度(Height)は、2148.54となる。 In the case of viewer A (visual acuity 1.0), the resolution in the width direction (Width) is 3819.62, and the resolution in the height direction (Height) is 2148.54.
 また、視聴者B(視力0.5)の場合、幅方向の解像度(Width)は、1909.81、高さ方向の解像度(Height)は、1074.27となる。 In the case of viewer B (visual acuity 0.5), the resolution in the width direction (Width) is 1909.81, and the resolution in the height direction (Height) is 1074.27.
 そして、再生装置は、配信サーバから、同一コンテンツの、解像度が異なる複数のコンテンツデータから、数式(3)を用いて算出される解像度よりも高く、且つ、配信サーバ内のコンテンツデータの中で最も解像度が低いコンテンツデータを取得する。例えば、配信サーバには、SD(Standard definition)(720×480)、HD(1280×720)、フルHD(1920×1080)、4K(3840×2160)、8K(7680×4320)の各解像度を持つコンテンツデータが格納されているものとする。 Then, the playback device has a resolution higher than the resolution calculated by using the mathematical formula (3) from a plurality of content data of the same content but different resolutions from the distribution server, and is the most among the content data in the distribution server. Acquire content data with low resolution. For example, the distribution server has SD (Standard definition) (720 x 480), HD (1280 x 720), full HD (1920 x 1080), 4K (3840 x 2160), and 8K (7680 x 4320) resolutions. It is assumed that the content data to be stored is stored.
 このような場合、視聴者Aのためには、4K(3840×2160)のコンテンツデータを選択すればよく、視聴者Bのためには、フルHD(1920×1080)のコンテンツデータを選択することとなる。 In such a case, 4K (3840 × 2160) content data may be selected for viewer A, and full HD (1920 × 1080) content data may be selected for viewer B. Will be.
 仮に、表示装置の解像度が8K(7680×4320)であった場合であっても、表示装置に応じて8Kのコンテンツデータを取得する代わりに、本開示の実施形態においては、視聴者Aのために4Kのコンテンツデータ、視聴者BのためにフルHDのコンテンツデータを取得することとなる。このようにすることで、本開示の実施形態においては、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することを避けることができ、視聴者の目の分解能に必要十分なコンテンツデータを取得することができる。従って、本開示の実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。以下、本開示の各実施形態の詳細を順次説明する。 Even if the resolution of the display device is 8K (7680 × 4320), instead of acquiring 8K content data according to the display device, in the embodiment of the present disclosure, it is for the viewer A. 4K content data and full HD content data for viewer B will be acquired. By doing so, in the embodiment of the present disclosure, it is possible to avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes, and the content necessary and sufficient for the resolution of the viewer's eyes. You can get the data. Therefore, according to the embodiment of the present disclosure, it is possible to avoid an increase in the amount of distribution data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. Hereinafter, details of each embodiment of the present disclosure will be sequentially described.
 <<3. 第1の実施形態>>
 <3.1 システム構成>
 まずは、図3を参照して、本開示の第1の実施形態に係る動画コンテンツの配信システム1を説明する。図3は、本開示の第1の実施形態に係る動画コンテンツ配信システムの概要を説明するための説明図である。本実施形態においては、配信システム1は、2次元映像からなる動画コンテンツを配信するものとする。
<< 3. First Embodiment >>
<3.1 System configuration>
First, the video content distribution system 1 according to the first embodiment of the present disclosure will be described with reference to FIG. FIG. 3 is an explanatory diagram for explaining an outline of the video content distribution system according to the first embodiment of the present disclosure. In the present embodiment, the distribution system 1 distributes moving image content composed of two-dimensional video.
 詳細には、図3に示すように、本実施形態に係る動画コンテンツの配信システム1は、再生装置30からのリクエストに応じて動画コンテンツのコンテンツデータを配信するコンテンツ配信サーバ10を含む。当該配信システム1は、配信された動画コンテンツを再生する再生装置30と、再生装置30からの制御に従って動画コンテンツを表示する表示装置20とをさらに含む。また、コンテンツ配信サーバ10と再生装置30とは、通信ネットワーク40によって互いに接続されている。なお、本実施形態においては、再生装置30と表示装置20とは、図3に示すような別個の装置であってもよく、一体の装置であってもよく、特に限定されるものではない。また、通信ネットワーク40で用いられる通信方式は、有線又は無線を問わず任意の方式を適用することができるが、安定した動作を維持することができる通信方式を用いることが望ましい。以下に、配信システム1に含まれる各装置の概要について説明する。 Specifically, as shown in FIG. 3, the video content distribution system 1 according to the present embodiment includes a content distribution server 10 that distributes content data of video content in response to a request from the playback device 30. The distribution system 1 further includes a reproduction device 30 for reproducing the distributed moving image content, and a display device 20 for displaying the moving image content according to the control from the reproduction device 30. Further, the content distribution server 10 and the playback device 30 are connected to each other by a communication network 40. In the present embodiment, the reproduction device 30 and the display device 20 may be separate devices as shown in FIG. 3, or may be an integrated device, and are not particularly limited. Further, as the communication method used in the communication network 40, any method can be applied regardless of whether it is wired or wireless, but it is desirable to use a communication method capable of maintaining stable operation. The outline of each device included in the distribution system 1 will be described below.
 (コンテンツ配信サーバ10)
 コンテンツ配信サーバ10は、再生装置30からのリクエストに応じて、所定の解像度を持つ動画コンテンツのコンテンツデータを再生装置30へ配信する。さらに、コンテンツ配信サーバ10は、同一の動画コンテンツの、解像度が異なる複数のコンテンツデータを格納する(例えば、SD(720×480)、HD(1280×720)、フルHD(1920×1080)、4K(3840×2160)、8K(7680×4320))。
(Content distribution server 10)
The content distribution server 10 distributes the content data of the moving image content having a predetermined resolution to the reproduction device 30 in response to the request from the reproduction device 30. Further, the content distribution server 10 stores a plurality of content data of the same video content having different resolutions (for example, SD (720 × 480), HD (1280 × 720), full HD (1920 × 1080), 4K). (3840 x 2160), 8K (7680 x 4320)).
 (表示装置20)
 表示装置20は、テレビジョン、タブレット及びスマートフォン等の2次元ディスプレイである。なお、本実施形態においては、表示装置20は、測距装置(例えば、ToF(Time of Flight)センサ)やカメラ等のセンサ(距離測定部)を内蔵し、これらセンサのセンシングデータに基づいて、視聴者との間の相対位置(位置及び距離)を検出することができるものとする。なお、ここで、視聴者と表示装置20との間の距離は、視聴者から、当該視聴者から見て表示装置20の表示面の一番近い箇所までの距離であるものとする。また、表示装置20は、視聴者が携帯する通信装置との間で無線通信する通信ユニットを内蔵し、当該通信ユニットによるセンシングデータに基づいて、視聴者との間の相対位置(位置及び距離)を検出してもよい。もしくは、本実施形態においては、表示装置20は、視聴者が携帯する測距装置(例えば、GNSS(Global Navigation Satellite System)信号受信機)からの位置情報に基づいて、視聴者との間の相対位置(位置及び距離)を検出してもよい。
(Display device 20)
The display device 20 is a two-dimensional display such as a television, a tablet, and a smartphone. In the present embodiment, the display device 20 incorporates a distance measuring device (for example, a ToF (Time of Flight) sensor) and a sensor (distance measuring unit) such as a camera, and is based on the sensing data of these sensors. It shall be possible to detect the relative position (position and distance) with the viewer. Here, the distance between the viewer and the display device 20 is assumed to be the distance from the viewer to the closest point on the display surface of the display device 20 as seen from the viewer. Further, the display device 20 has a built-in communication unit that wirelessly communicates with a communication device carried by the viewer, and is a relative position (position and distance) with the viewer based on the sensing data by the communication unit. May be detected. Alternatively, in the present embodiment, the display device 20 is relative to the viewer based on the position information from the distance measuring device carried by the viewer (for example, a GNSS (Global Navigation Satellite System) signal receiver). The position (position and distance) may be detected.
 (再生装置30)
 再生装置30は、視聴者の視力情報に応じて動画コンテンツのコンテンツデータをコンテンツ配信サーバ10からリアルタイムで取得し、取得したコンテンツデータを再生し、表示装置20に出力する。なお、再生装置30の詳細については、後述する。
(Reproduction device 30)
The reproduction device 30 acquires the content data of the moving image content in real time from the content distribution server 10 according to the visual acuity information of the viewer, reproduces the acquired content data, and outputs the acquired content data to the display device 20. The details of the reproduction device 30 will be described later.
 なお、図3を参照して説明した上記の構成はあくまで一例であり、本実施形態に係る配信システム1の構成はかかる例に限定されない。すなわち、本実施形態に係る配信システム1の構成は、仕様や運用に応じて柔軟に変形可能である。 Note that the above configuration described with reference to FIG. 3 is merely an example, and the configuration of the distribution system 1 according to the present embodiment is not limited to such an example. That is, the configuration of the distribution system 1 according to the present embodiment can be flexibly modified according to the specifications and operation.
 <3.2 再生装置の構成>
 次に、図4を参照して、本実施形態に係る再生装置30の構成例について説明する。図4は、本実施形態に係る再生装置30の機能構成例を示すブロック図である。詳細には、図4に示すように、再生装置30は、表示制御部300と、主制御部330と、記憶部340と、送受信部350とを主に有する。以下、再生装置30の各機能部の詳細について順次説明する。
<3.2 Configuration of playback device>
Next, a configuration example of the reproduction device 30 according to the present embodiment will be described with reference to FIG. FIG. 4 is a block diagram showing a functional configuration example of the reproduction device 30 according to the present embodiment. Specifically, as shown in FIG. 4, the reproduction device 30 mainly includes a display control unit 300, a main control unit 330, a storage unit 340, and a transmission / reception unit 350. Hereinafter, details of each functional unit of the reproduction device 30 will be sequentially described.
 (表示制御部300)
 表示制御部300は、例えば、CPU(Central Processing Unit)(図示省略)、MPU(Micro Processing Unit)(図示省略)等から構成され、後述する記憶部340に格納されたプログラムやデータを利用して、本実施形態に係る処理を実行する。詳細には、表示制御部300は、視聴者の視力情報に応じて動画コンテンツのコンテンツデータをコンテンツ配信サーバ10から取得するための、位置情報取得部302と、算出部304と、比較部306と、取得部308とを有する。さらに、表示制御部300は、取得したコンテンツデータの復号を行う、処理部322と、デコード部324と、表示情報生成部326と(本明細書では、これら機能部を復号ブロック320とも呼ぶ)を有する。
(Display control unit 300)
The display control unit 300 is composed of, for example, a CPU (Central Processing Unit) (not shown), an MPU (Micro Processing Unit) (not shown), or the like, and uses programs and data stored in the storage unit 340 described later. , The process according to this embodiment is executed. Specifically, the display control unit 300 includes a position information acquisition unit 302, a calculation unit 304, and a comparison unit 306 for acquiring content data of video content from the content distribution server 10 according to the visual acuity information of the viewer. , Acquiring unit 308. Further, the display control unit 300 includes a processing unit 322, a decoding unit 324, and a display information generation unit 326 (in the present specification, these functional units are also referred to as a decoding block 320) that decode the acquired content data. Have.
 位置情報取得部302は、例えば、表示装置20から、視聴者の表示装置20に対する距離情報(位置情報)を取得し、後述する算出部304へ出力する。 The position information acquisition unit 302 acquires distance information (position information) for the viewer's display device 20 from the display device 20, for example, and outputs the distance information (position information) to the calculation unit 304, which will be described later.
 算出部304は、予め取得した、視聴者の視力の情報(視力情報)、表示装置20のサイズ(幅、高さ)の情報(表示部情報)、及び、位置情報取得部302から出力された距離情報(視聴者の表示装置20に対する距離)に基づき、当該視聴者のための、表示装置20の高さ方向及び幅方向における解像度(ユーザ解像度)を算出する。さらに、算出部304は、算出した解像度を、後述する比較部306へ出力する。 The calculation unit 304 is output from the viewer's visual information (visual information), the size (width, height) information (display unit information) of the display device 20, and the position information acquisition unit 302, which are acquired in advance. Based on the distance information (distance to the display device 20 of the viewer), the resolution (user resolution) in the height direction and the width direction of the display device 20 for the viewer is calculated. Further, the calculation unit 304 outputs the calculated resolution to the comparison unit 306 described later.
 比較部306は、算出部304で算出した解像度と、予め取得した表示装置20の解像度とを比較し、比較結果を後述する取得部308へ出力する。 The comparison unit 306 compares the resolution calculated by the calculation unit 304 with the resolution of the display device 20 acquired in advance, and outputs the comparison result to the acquisition unit 308 described later.
 取得部308は、視聴者の視力(視力情報)に基づいて、視聴者の目の分解能に必要十分な解像度を持つコンテンツデータをリアルタイム取得する。詳細には、取得部308は、算出された解像度に対する比較結果に基づく解像度を持つコンテンツデータを取得する。なお、視聴者が複数存在する場合には、本実施形態においては、取得部308は、比較部306による各視聴者のための解像度の比較の比較結果に基づいて、解像度を持つコンテンツデータを取得することとなる。そして、取得部308は、取得したコンテンツデータを、復号ブロック320の処理部322へ出力する。 The acquisition unit 308 acquires content data having a resolution necessary and sufficient for the resolution of the viewer's eyes in real time based on the viewer's visual acuity (visual acuity information). Specifically, the acquisition unit 308 acquires content data having a resolution based on the comparison result with respect to the calculated resolution. When there are a plurality of viewers, in the present embodiment, the acquisition unit 308 acquires content data having a resolution based on the comparison result of the resolution comparison for each viewer by the comparison unit 306. Will be done. Then, the acquisition unit 308 outputs the acquired content data to the processing unit 322 of the decoding block 320.
 処理部322は、動画コンテンツの再生に関する処理を行う機能部であって、取得するコンテンツデータを切り替える処理(DASH)を行ったり、取得したコンテンツデータを解析し、後述するデコード部324での復号処理を行うことが可能なファイル形式に変換したりすることができる。さらに、処理部322は、処理したコンテンツデータを、デコード部324へ出力する。 The processing unit 322 is a functional unit that performs processing related to playback of video content, performs processing for switching acquisition content data (DASH), analyzes acquired content data, and decodes processing in the decoding unit 324, which will be described later. Can be converted to a file format that can be used. Further, the processing unit 322 outputs the processed content data to the decoding unit 324.
 デコード部324は、処理部322から出力されたコンテンツデータに対して、復号処理(デコード)を行い、復号後のコンテンツデータを後述する表示情報生成部326へ出力する。 The decoding unit 324 performs decoding processing (decoding) on the content data output from the processing unit 322, and outputs the decoded content data to the display information generation unit 326 described later.
 表示情報生成部326は、デコード部324から出力された復号後のコンテンツデータを処理して、表示装置20で表示するための表示画面を生成し、表示装置20へ出力する。なお、表示情報生成部326は、視聴者の視点に応じた画像の切り出し(レンダリング)を行ってもよい。 The display information generation unit 326 processes the decoded content data output from the decoding unit 324, generates a display screen for display on the display device 20, and outputs the display screen to the display device 20. The display information generation unit 326 may cut out (render) the image according to the viewpoint of the viewer.
 (主制御部330)
 主制御部330は、再生装置30が行う処理全般を統括的に制御する機能構成であり、例えば、CPU(図示省略)、MPU(図示省略)等から構成され、後述する記憶部340に格納されたプログラムやデータを利用して、処理を実行する。
(Main control unit 330)
The main control unit 330 has a functional configuration that comprehensively controls all the processing performed by the playback device 30, and is composed of, for example, a CPU (not shown), an MPU (not shown), and the like, and is stored in a storage unit 340 described later. Execute the process using the program or data.
 (記憶部340)
 記憶部340は、各種情報を格納する機能部である。例えば、記憶部340は、再生装置30の各機能部によって使用されるプログラムやコンテンツデータ、又はパラメータ等を格納する。また、記憶部360は、例えば、ハードディスク(Hard Disk:HD)等の磁気記録媒体や、不揮発性メモリ等により実現される。
(Memory unit 340)
The storage unit 340 is a functional unit that stores various types of information. For example, the storage unit 340 stores programs, content data, parameters, and the like used by each functional unit of the reproduction device 30. Further, the storage unit 360 is realized by, for example, a magnetic recording medium such as a hard disk (Hard Disk: HD), a non-volatile memory, or the like.
 (送受信部350)
 送受信部350は、コンテンツ配信サーバ10との間で各種通信を行う。詳細には、送受信部350は、データの送受信を行う機能を有する通信インタフェースであって、例えば、通信アンテナ、送受信回路やポート等の通信デバイス(図示省略)により実現される。
(Transmission / reception unit 350)
The transmission / reception unit 350 performs various communications with the content distribution server 10. Specifically, the transmission / reception unit 350 is a communication interface having a function of transmitting / receiving data, and is realized by, for example, a communication device (not shown) such as a communication antenna, a transmission / reception circuit, and a port.
 さらに、本実施形態においては、再生装置30は、図示されていない入力部を有し、入力部に対する視聴者からの視力情報の入力操作を受けつけることにより、当該視聴者の視力情報を取得することができる。なお、図4を参照して説明した上記の構成はあくまで一例であり、本実施形態に係る再生装置30の構成はかかる例に限定されない。すなわち、本実施形態に係る再生装置30の構成は、仕様や運用に応じて柔軟に変形可能である。 Further, in the present embodiment, the reproduction device 30 has an input unit (not shown), and acquires the visual acuity information of the viewer by receiving an input operation of the visual acuity information from the viewer to the input unit. Can be done. The above configuration described with reference to FIG. 4 is merely an example, and the configuration of the reproduction device 30 according to the present embodiment is not limited to such an example. That is, the configuration of the reproduction device 30 according to the present embodiment can be flexibly modified according to the specifications and operation.
 <3.3 情報処理方法>
 以上、本実施形態に係る再生装置30の詳細構成について説明した。次に、図5を参照して、本実施形態に係る情報処理方法について説明する。図5は、本実施形態に係る情報処理方法のフローチャートを示した図である。詳細には、図5に示すように、本実施形態に係る情報処理方法には、ステップS101からステップS110までが含まれる。以下に、本実施形態に係る情報処理方法の各ステップを説明する。
<3.3 Information processing method>
The detailed configuration of the reproduction device 30 according to the present embodiment has been described above. Next, the information processing method according to the present embodiment will be described with reference to FIG. FIG. 5 is a diagram showing a flowchart of the information processing method according to the present embodiment. In detail, as shown in FIG. 5, the information processing method according to the present embodiment includes steps S101 to S110. Hereinafter, each step of the information processing method according to the present embodiment will be described.
 まずは、再生装置30は、表示装置20のサイズ(幅、高さ)の情報(表示部情報)を取得する(ステップS101)。次に、再生装置30は、視聴者からの入力により、視聴者の視力の情報(視力情報)を取得する(ステップS102)。さらに、再生装置30は、例えば表示装置20から、視聴者の表示装置20に対する距離の情報(距離情報)を取得する(ステップS103)。なお、本実施形態においては、視聴者の位置が移動するごとに、上記距離情報を取得し、この後の処理を行うこととなる。 First, the reproduction device 30 acquires information (display unit information) of the size (width, height) of the display device 20 (step S101). Next, the reproduction device 30 acquires the visual acuity information (visual acuity information) of the viewer by the input from the viewer (step S102). Further, the reproduction device 30 acquires information (distance information) of the distance to the display device 20 of the viewer from, for example, the display device 20 (step S103). In this embodiment, the distance information is acquired every time the position of the viewer moves, and the subsequent processing is performed.
 次に、再生装置30は、上述のステップS101からステップS103で取得した、視聴者の視力情報と、表示装置20のサイズ(幅、高さ)の情報と、視聴者の表示装置20に対する距離情報(距離情報)に基づき、当該視聴者の、表示装置20の高さ方向及び幅方向における解像度(ユーザ解像度)を算出する(ステップS105)。なお、算出の方法については、既に説明したため、ここでは説明を省略する。 Next, the reproduction device 30 obtains the viewer's sight information, the size (width, height) information of the display device 20, and the distance information of the viewer with respect to the display device 20 acquired in steps S101 to S103. Based on (distance information), the resolution (user resolution) of the viewer in the height direction and the width direction of the display device 20 is calculated (step S105). Since the calculation method has already been described, the description thereof will be omitted here.
 そして、再生装置30は、全ての視聴者の解像度を算出したか否かを判定する(ステップS105)。再生装置30は、全ての視聴者に対して解像度の算出がなされている場合には(ステップS105:Yes)、ステップS106へ進み、一方、全ての視聴者に対して解像度の算出がなされていない場合には(ステップS105:No)、上述したステップS102へ戻る。すなわち、本実施形態においては、ステップS102からステップS105までの処理を、全ての視聴者に対して解像度を算出するまで繰り返し実施する。 Then, the playback device 30 determines whether or not the resolutions of all the viewers have been calculated (step S105). The playback device 30 proceeds to step S106 when the resolution has been calculated for all the viewers (step S105: Yes), while the resolution has not been calculated for all the viewers. In that case (step S105: No), the process returns to step S102 described above. That is, in the present embodiment, the processes from step S102 to step S105 are repeated until the resolution is calculated for all the viewers.
 次に、再生装置30は、これまで算出した視聴者の解像度を、表示装置20の高さ方向及び幅方向ごとに比較し、最も高い解像度を特定する。本実施形態においては、視聴者が複数人いる場合は、最も高い解像度に基づき、コンテンツデータを取得することにより、全ての視聴者に対して画質劣化を感じさせることを避けることができる。さらに、再生装置30は、特定した解像度と、予め取得した表示装置20の解像度とを比較し、低い解像度を選択する(ステップS106)。 Next, the playback device 30 compares the viewer resolutions calculated so far for each of the height direction and the width direction of the display device 20, and specifies the highest resolution. In the present embodiment, when there are a plurality of viewers, it is possible to avoid causing all the viewers to feel the deterioration of the image quality by acquiring the content data based on the highest resolution. Further, the reproduction device 30 compares the specified resolution with the resolution of the display device 20 acquired in advance, and selects a lower resolution (step S106).
 そして、再生装置30は、上述したステップS106で選択した解像度に対応するコンテンツデータを取得する(ステップS107)。次に、再生装置30は、上述したステップS107で取得したコンテンツデータに対してデコード処理を行う(ステップS108)。さらに、再生装置30は、上述したステップS108でデコード処理されたコンテンツデータを表示装置20に出力することにより、動画コンテンツの表示を行う(ステップS109)。 Then, the playback device 30 acquires the content data corresponding to the resolution selected in step S106 described above (step S107). Next, the playback device 30 performs decoding processing on the content data acquired in step S107 described above (step S108). Further, the reproduction device 30 displays the moving image content by outputting the content data decoded in the above-mentioned step S108 to the display device 20 (step S109).
 さらに、再生装置30は、コンテンツデータに含まれるストリーム(複数のフレーム)の終端まで処理を行ったか否かを判定する(ステップS109)。再生装置30は、ストリームの終端まで処理を行っている場合には(ステップS109:Yes)、本実施形態に係る情報処理を終了する。一方、再生装置30は、ストリームの終端まで処理を行っていない場合には(ステップS109:No)、上述したステップS102へ戻る。すなわち、本実施形態においては、ステップS102からステップS110までの処理を、ストリームの終端まで処理を終わらせるまで繰り返し実施する。 Further, the playback device 30 determines whether or not processing has been performed up to the end of the stream (plurality of frames) included in the content data (step S109). When the reproduction device 30 is processing up to the end of the stream (step S109: Yes), the reproduction device 30 ends the information processing according to the present embodiment. On the other hand, if the reproduction device 30 has not processed to the end of the stream (step S109: No), the reproduction device 30 returns to the above-mentioned step S102. That is, in the present embodiment, the processing from step S102 to step S110 is repeatedly performed until the processing is completed up to the end of the stream.
 以上のように、本実施形態においては、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することを避けることができ、視聴者の目の分解能に必要十分なコンテンツデータを取得することができる。従って、本実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。 As described above, in the present embodiment, it is possible to avoid acquiring the content data having a resolution unnecessary for the resolution of the viewer's eyes, and to acquire the content data necessary and sufficient for the resolution of the viewer's eyes. be able to. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
 <<4. 第2の実施形態>>
 <4.1 第2の実施形態の概要>
 まずは、図6を参照して、第2の実施形態の概要を説明する。図6は、本実施形態の概要を説明するための説明図である。上述した第1の実施形態では、視聴者の視力(視力情報)及び視聴者の表示装置20に対する距離(距離情報)に基づき、当該視聴者ための解像度の算出を行ったが、以下に説明する第2の実施形態においては、これらの視力情報及び距離情報に加えて、視聴者の表示装置20に対する角度を示す角度情報を利用することにより、より精度よく、当該視聴者のための解像度を算出することができる。すなわち、本実施形態においては、上記角度情報も考慮して算出を行うことから、精度よく、視聴者に好適な解像度を算出することができることから、より効果的に、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。
<< 4. Second embodiment >>
<4.1 Outline of the second embodiment>
First, the outline of the second embodiment will be described with reference to FIG. FIG. 6 is an explanatory diagram for explaining the outline of the present embodiment. In the first embodiment described above, the resolution for the viewer is calculated based on the visual acuity (visual acuity information) of the viewer and the distance (distance information) to the display device 20 of the viewer, which will be described below. In the second embodiment, in addition to the visual acuity information and the distance information, the angle information indicating the angle of the viewer with respect to the display device 20 is used to more accurately calculate the resolution for the viewer. can do. That is, in the present embodiment, since the calculation is performed in consideration of the above angle information, it is possible to calculate the resolution suitable for the viewer with high accuracy, so that the viewer feels the image quality deterioration more effectively. While avoiding this, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network.
 まずは、本実施形態における解像度の算出方法の詳細について、図6を参照して説明する。図6は、本実施形態の概要を説明するための説明図であり、視聴者が、表示装置20の端(視聴者から見て一番近い表示装置20の端の部分)を、表示装置20の表示面に対して斜めの位置から視聴している様子を、視聴者の上方から見た場合の図である。 First, the details of the resolution calculation method in the present embodiment will be described with reference to FIG. FIG. 6 is an explanatory diagram for explaining the outline of the present embodiment, and the viewer displays the end of the display device 20 (the end portion of the display device 20 closest to the viewer) to the display device 20. It is a figure when the appearance of viewing from an oblique position with respect to the display surface of the viewer is seen from above the viewer.
 本実施形態においても、視力1.0の人間の目の分解能は、Pという定数で表現するものし、視力1.0の人間の目において必要十分な解像度は、1度の視野範囲にP(pixel)存在することで満たすことができるものとする。そこで、図6のような状況におかれた視聴者(「視力」を持つ視聴者)を想定した場合には、0.5度の視野範囲に対応する長さX(m)にP/2(pixel)存在すればよいこととなる。そこで、図6における視聴者にとって必要十分な、表示装置20の幅方向の解像度(Width)は、以下の数式(4)で表現することができる。 Also in this embodiment, the resolution of the human eye with a visual acuity of 1.0 is expressed by a constant P, and the necessary and sufficient resolution for the human eye with a visual acuity of 1.0 is P (1 degree in the visual field range). resolution) It shall be possible to satisfy by being present. Therefore, assuming a viewer (viewer with "visual acuity") in the situation shown in FIG. 6, P / 2 is set to a length X (m) corresponding to a viewing range of 0.5 degrees. (Pixel) It suffices if it exists. Therefore, the width direction resolution (Width) of the display device 20 which is necessary and sufficient for the viewer in FIG. 6 can be expressed by the following mathematical formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Xは、視聴者の、表示装置20の端(視聴者から見て一番近い表示装置20の端の部分)までの距離Lと、視聴者の表示装置20の端に対する角度θとによって、以下の数式(5)で表現することができる。 Here, X is the distance L of the viewer to the end of the display device 20 (the end portion of the display device 20 closest to the viewer) and the angle θ with respect to the end of the display device 20 of the viewer. Can be expressed by the following mathematical formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 よって、数式(5)を用いて、数式(4)を書き換えると、図6における視聴者にとって必要十分な、表示装置20の幅方向の解像度(Width)は、以下の数式(6)で表現することができる。 Therefore, when the mathematical formula (4) is rewritten using the mathematical formula (5), the width direction resolution (Width) of the display device 20 necessary and sufficient for the viewer in FIG. 6 is expressed by the following mathematical formula (6). be able to.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 同様に、図6における視聴者にとって必要十分な、表示装置20の高さ方向の解像度(Height)は、以下の数式(7)で表現することができる。なお、ここでは、高さ方向における、視聴者の、表示装置20の端(視聴者から見て一番近い表示装置20の端の部分)に対する角度をβ(度)としている。 Similarly, the height resolution (Height) of the display device 20 in the height direction, which is necessary and sufficient for the viewer in FIG. 6, can be expressed by the following mathematical formula (7). Here, the angle of the viewer with respect to the end of the display device 20 (the portion of the end of the display device 20 closest to the viewer) in the height direction is defined as β (degree).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、例として、W(幅)=1.6m、H(高さ)=0.9mのサイズの表示装置20に対してL=1.44m離れ、且つ、視聴角度θ、β=60度の位置から視聴する視力1.0の視聴者Aの必要十分となる解像度は、数式(6)及び数式(7)を用いると、以下のようになる(なお、ここでは、P=60PPDとしている)。 Here, as an example, L = 1.44 m away from the display device 20 having a size of W (width) = 1.6 m and H (height) = 0.9 m, and viewing angles θ and β = 60 degrees. Using the mathematical formulas (6) and (7), the necessary and sufficient resolutions of the viewer A with a visual acuity of 1.0 to be viewed from the position of are as follows (here, P = 60PPD). ).
 幅方向の解像度(Width)は、1880.94、高さ方向の解像度(Height)は1058.03となる。 The resolution in the width direction (Width) is 1880.94, and the resolution in the height direction (Height) is 1058.03.
 ここで、例えば、コンテンツ配信サーバ10には、SD(720×480)、HD(1280×720)、フルHD(1920×1080)、4K(3840×2160)、8K(7680×4320)の各解像度を持つコンテンツデータが格納されているものとする。このような場合、本実施形態においては、上述のように算出された視聴者Aの解像度を満たす最も低い解像度を持つ、フルHDのコンテンツデータを選択、配信することとなる。 Here, for example, the content distribution server 10 has SD (720 × 480), HD (1280 × 720), full HD (1920 × 1080), 4K (3840 × 2160), and 8K (7680 × 4320) resolutions. It is assumed that the content data with is stored. In such a case, in the present embodiment, the full HD content data having the lowest resolution satisfying the resolution of the viewer A calculated as described above is selected and distributed.
 本実施形態においては、表示装置20の解像度が8K(7680×4320)であった場合であっても、視聴者AにとってはフルHD(1920×1080)の解像度があれば必要十分であることから、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することを避けることができる。従って、本実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。さらに、本実施形態においては、視聴者の視聴角度の情報も考慮して解像度(上記例では、フルHD(1920×1080))を算出することから、視聴角度を考慮しないで解像度を算出した場合(上記例では、4K(3840×2160))に比べて、より視聴者の視聴状態に即した解像度を得ることができ、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することをより避けることができる。以下、本実施形態の詳細を順次説明する。 In the present embodiment, even if the resolution of the display device 20 is 8K (7680 × 4320), it is necessary and sufficient for the viewer A to have a resolution of full HD (1920 × 1080). , It is possible to avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. Further, in the present embodiment, since the resolution (full HD (1920 × 1080) in the above example) is calculated in consideration of the viewing angle information of the viewer, the resolution is calculated without considering the viewing angle. (In the above example, it is possible to obtain a resolution more suitable for the viewing state of the viewer as compared with 4K (3840 × 2160)), and to acquire content data having a resolution unnecessary for the resolution of the viewer's eyes. Can be avoided more. Hereinafter, the details of the present embodiment will be sequentially described.
 <4.2 システム構成>
 まずは、本実施形態に係る動画コンテンツの配信システム1を説明するが、本実施形態に係る配信システム1は、第1の実施形態と以下の点以外で共通するため、ここでは、共通する点の説明を省略し、異なる点だけを説明する。
<4.2 system configuration>
First, the video content distribution system 1 according to the present embodiment will be described. However, since the distribution system 1 according to the present embodiment is common to the first embodiment except for the following points, the common points are described here. The explanation is omitted, and only the differences are explained.
 本実施形態においては、第1の実施形態と同様に、表示装置20は、測距装置やカメラ等のセンサ(角度測定部)を内蔵し、これらのセンシングデータに基づいて、視聴者の、表示装置20に対する相対位置や視聴角度も検出することができるものとする。なお、ここで、視聴者の視聴角度とは、視聴者から見て表示装置20の表示面の一番近い端に対する、視聴者の角度であるものとする。 In the present embodiment, as in the first embodiment, the display device 20 incorporates a sensor (angle measuring unit) such as a distance measuring device or a camera, and displays the viewer based on these sensing data. It is assumed that the relative position and viewing angle with respect to the device 20 can also be detected. Here, the viewing angle of the viewer is assumed to be the angle of the viewer with respect to the closest end of the display surface of the display device 20 as seen from the viewer.
 <4.3 再生装置の構成>
 次に、本実施形態に係る再生装置30の構成を説明するが、本実施形態に係る再生装置30は、第1の実施形態と以下の点以外で共通するため、ここでは、共通する点の説明を省略し、異なる点だけを説明する。本実施形態においては、位置情報取得部302及び算出部304が以下の点で、第1の実施形態と異なる。
<4.3 Configuration of playback device>
Next, the configuration of the reproduction device 30 according to the present embodiment will be described. However, since the reproduction device 30 according to the present embodiment is common to the first embodiment except for the following points, the common points are described here. The explanation is omitted, and only the differences are explained. In the present embodiment, the position information acquisition unit 302 and the calculation unit 304 are different from the first embodiment in the following points.
 位置情報取得部302は、例えば、表示装置20から、視聴者の表示装置20に対する距離情報だけでなく、相対的な位置情報及び視聴角度の情報を取得し、後述する算出部304へ出力する。 The position information acquisition unit 302 acquires not only the distance information of the viewer with respect to the display device 20 but also the relative position information and the viewing angle information from the display device 20, and outputs the information to the calculation unit 304 described later.
 算出部304は、予め取得した、視聴者の視力の情報(視力情報)と、表示装置20のサイズ(幅、高さ)の情報(表示部情報)、及び、位置情報取得部302から出力された距離情報に加えて、視聴者の表示装置20に対する視聴角度に基づき、当該視聴者のための、表示装置20の高さ方向及び幅方向における解像度(ユーザ解像度)を算出する。 The calculation unit 304 is output from the viewer's visual information (visual information) acquired in advance, the size (width, height) information (display unit information) of the display device 20, and the position information acquisition unit 302. In addition to the distance information, the resolution (user resolution) in the height direction and the width direction of the display device 20 for the viewer is calculated based on the viewing angle with respect to the display device 20 of the viewer.
 <4.4 情報処理方法>
 以上、本実施形態に係る再生装置30の詳細構成について説明した。次に、図7を参照して、本実施形態に係る情報処理方法について説明する。図7は、同実施形態に係る情報処理方法のフローチャートを示した図である。詳細には、図7に示すように、本実施形態に係る情報処理方法には、ステップS201からステップS213までが含まれる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。なお、以下の説明においては、上述の第1の実施形態と異なる点のみを説明し、第1の実施形態と共通する点については、その説明を省略する。
<4.4 Information processing method>
The detailed configuration of the reproduction device 30 according to the present embodiment has been described above. Next, the information processing method according to the present embodiment will be described with reference to FIG. 7. FIG. 7 is a diagram showing a flowchart of the information processing method according to the embodiment. In detail, as shown in FIG. 7, the information processing method according to the present embodiment includes steps S201 to S213. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned first embodiment will be described, and the points common to the first embodiment will be omitted.
 ステップS201及びステップS202は、図5に示す、第1の実施形態のステップS101及びステップS102と同様であるため、ここではその説明を省略する。 Since steps S201 and S202 are the same as steps S101 and S102 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
 再生装置30は、表示装置20から、視聴者の表示装置20に対する距離情報とともに、視聴者の表示装置20に対する相対位置の情報を取得する(ステップS203)。そして、再生装置30は、上述のステップS203で取得した相対位置に基づき、視聴者が表示装置20の表示面の枠内に向かい合うように存在するか否かを判定する(ステップS204)。再生装置30は、視聴者が表示装置20の表示面の枠内に向かい合うように存在する場合には(ステップS204:Yes)、ステップS205へ進み、一方、視聴者が表示装置20の表示面の枠内に向かい合うように存在しない合には(ステップS204:No)、ステップS206へ進む。 The playback device 30 acquires information on the relative position of the viewer with respect to the display device 20 as well as information on the distance to the viewer's display device 20 from the display device 20 (step S203). Then, the reproduction device 30 determines whether or not the viewer exists so as to face the frame of the display surface of the display device 20 based on the relative position acquired in the above-mentioned step S203 (step S204). When the viewer is present so as to face the frame of the display surface of the display device 20 (step S204: Yes), the playback device 30 proceeds to step S205, while the viewer is on the display surface of the display device 20. If they do not exist so as to face each other in the frame (step S204: No), the process proceeds to step S206.
 視聴者が表示装置20の表示面の枠内に向かい合うように存在する場合には、視聴者と表示面との視聴角度は、0度と考えることができることから、後述するステップS206にように視聴角度の情報を取得する必要はない。従って、再生装置30は、視聴角度を0度に設定する(ステップS205)。また、再生装置30は、表示装置20から、視聴者の表示装置20に対する視聴角度の情報を取得する(ステップS206)。 When the viewers are present so as to face each other within the frame of the display surface of the display device 20, the viewing angle between the viewer and the display surface can be considered to be 0 degrees. There is no need to get angle information. Therefore, the playback device 30 sets the viewing angle to 0 degrees (step S205). Further, the playback device 30 acquires information on the viewing angle with respect to the viewer's display device 20 from the display device 20 (step S206).
 再生装置30は、上述のステップS201からステップS203で取得した、視聴者の視力情報と、表示装置20のサイズ(幅、高さ)の情報と、視聴者の表示装置20に対する距離情報(距離情報)に加えて、ステップS205及びステップS206で設定又は取得した視聴角度に基づき、当該視聴者の、表示装置20の高さ方向及び幅方向における解像度(ユーザ解像度)を算出する(ステップS207)。なお、算出の方法については、既に説明したため、ここでは説明を省略する。 The reproduction device 30 has acquired the viewer's sight information, the size (width, height) information of the display device 20, and the distance information (distance information) with respect to the viewer's display device 20 acquired from the above-mentioned steps S201 to S203. ), And based on the viewing angle set or acquired in steps S205 and S206, the resolution (user resolution) of the viewer in the height direction and the width direction of the display device 20 is calculated (step S207). Since the calculation method has already been described, the description thereof will be omitted here.
 ステップS209からステップS213は、図5に示す、第1の実施形態のステップS106からステップS110までと同様であるため、ここではその説明を省略する。 Since steps S209 to S213 are the same as steps S106 to S110 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
 以上のように、本実施形態においては、視聴者の視聴角度の情報も考慮して解像度を算出することから、視聴角度を考慮しないで解像度を算出した場合に比べて、より視聴者の視聴状態に即した解像度を得ることができる。その結果、本実施形態によれば、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することをより避けることができ、すなわち、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。 As described above, in the present embodiment, since the resolution is calculated in consideration of the information of the viewing angle of the viewer, the viewing state of the viewer is more as compared with the case where the resolution is calculated without considering the viewing angle. It is possible to obtain a resolution that matches the above. As a result, according to the present embodiment, it is possible to further avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes, that is, distribution while avoiding the viewer's feeling of image quality deterioration. It is possible to avoid an increase in the amount of data and an increase in the load on the communication network.
 <<5. 第3の実施形態>>
 <5.1 第3の実施形態の概要>
 まずは、図8から図12を参照して、第3の実施形態の概要を説明する。図8から図12は、本実施形態の概要を説明するための説明図である。本実施形態において配信される動画コンテンツは、全天周映像データや、6DoFコンテンツ(3次元空間データ)を含む360度の仮想空間映像データ(3次元空間データ)であるものとする。そして、先に説明したように、これらコンテンツのコンテンツデータは、3次元空間の構成を定義するシーン記述(3次元空間記述データ)と、3次元空間における3次元オブジェクトを定義するオブジェクト・データと含むものとする。
<< 5. Third Embodiment >>
<5.1 Outline of the third embodiment>
First, the outline of the third embodiment will be described with reference to FIGS. 8 to 12. 8 to 12 are explanatory views for explaining the outline of the present embodiment. The moving image content delivered in the present embodiment is assumed to be 360-degree virtual space video data (three-dimensional space data) including all-sky video data and 6DoF content (three-dimensional space data). And, as explained above, the content data of these contents includes the scene description (three-dimensional space description data) that defines the configuration of the three-dimensional space and the object data that defines the three-dimensional object in the three-dimensional space. It shall be muted.
 ところで、先に説明したように、3次元空間の表現においては、視聴者の視点位置から離れている3次元オブジェクトは、その表示を小さくし、視聴者の視点位置に近い3次元オブジェクトは、その表示を大きくする。さらに、当該表現においては、表示の大きい3次元オブジェクトは、その表示のLODを高くし、表示が小さい3次元オブジェクトについては、その表示のLODは低くする。そして、このように定義されたLODを用いて3次元空間内の3次元オブジェクトを表現することにより、表示の大きい3次元オブジェクトは高解像度で再現され、表示の小さい3次元オブジェクトは低解像度で再現されることから、視聴者にとっては、現実空間と同様に、近くに位置する3次元オブジェクトは鮮明に見えることとなる。従って、このように3次元空間を表現することにより、データ量の増加を抑えつつ、視聴者は違和感なく視聴することを可能とすることができる。そこで、本実施形態においては、コンテンツ配信サーバ10には、同一の3次元オブジェクトの、LODの異なる複数のオブジェクト・データを予め準備し、仮想的な3次元空間における視聴者の視点と3次元オブジェクトとの間の距離に応じてシーン記述で定義されたLODに対応するように、オブジェクト・データを切り替えている。 By the way, as described above, in the representation of a three-dimensional space, a three-dimensional object that is far from the viewer's viewpoint position makes its display smaller, and a three-dimensional object that is close to the viewer's viewpoint position is its display. Enlarge the display. Further, in the expression, a three-dimensional object having a large display has a high LOD of its display, and a three-dimensional object having a small display has a low LOD of its display. Then, by expressing the 3D object in the 3D space using the LOD defined in this way, the 3D object with a large display is reproduced with high resolution, and the 3D object with a small display is reproduced with low resolution. Therefore, for the viewer, the three-dimensional object located nearby can be clearly seen as in the real space. Therefore, by expressing the three-dimensional space in this way, it is possible for the viewer to view the data without discomfort while suppressing an increase in the amount of data. Therefore, in the present embodiment, a plurality of object data of the same 3D object having different LODs are prepared in advance in the content distribution server 10, and the viewpoint of the viewer and the 3D object in the virtual 3D space are prepared in advance. The object data is switched so as to correspond to the LOD defined in the scene description according to the distance between the object and the object.
 そこで、本実施形態においては、視聴者の視力情報と、仮想的な3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離情報とに基づいて、当該視聴者の目の分解能において必要十分となるLODの選択基準値を算出する。そして、算出したLOD選択基準値に基づいて、3次元オブジェクトの表示のためのオブジェクト・データを選択する。このようにすることで、視聴者の目の分解能に不必要なLODの3次元オブジェクトのデータを取得することを避けることができる。従って、本実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。まずは、本実施形態における、LODの選択基準値の算出方法の詳細について、図8から図12を参照して説明する。図8から図12は、本実施形態の概要を説明するための説明図である。 Therefore, in the present embodiment, the resolution of the eyes of the viewer is determined based on the visual acuity information of the viewer and the distance information between the viewpoint of the viewer and the three-dimensional object in the virtual three-dimensional space. Calculate the necessary and sufficient LOD selection reference value. Then, the object data for displaying the three-dimensional object is selected based on the calculated LOD selection reference value. By doing so, it is possible to avoid acquiring the data of the three-dimensional object of LOD which is unnecessary for the resolution of the viewer's eyes. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. First, the details of the method of calculating the selection reference value of LOD in the present embodiment will be described with reference to FIGS. 8 to 12. 8 to 12 are explanatory views for explaining the outline of the present embodiment.
 詳細には、図8は、本実施形態において、3次元仮想空間内での視聴者の視点位置の変化に応じて、表示される3次元オブジェクトの大きさ、必要となるLODの変化を示した図である。図8に示すように、3次元仮想空間上で視聴者の視点がオブジェクト1に近い近距離にある場合には、表示されるオブジェクト1の大きさは大きくなる。従って、表示されるオブジェクト1の表示のLODは高くなり(例えば、オブジェクト1がPoint Cloudで表現される場合、ポイント数が多くなる)、高解像度で再現されることとなる。また、視聴者の視点がオブジェクト1から中距離にある場合には、表示されるオブジェクト1の大きさは中程度となる。従って、表示されるオブジェクト1の表示のLODは中程度となり、中程度の解像度で再現されることとなる。さらに、視聴者の視点が、オブジェクト1に遠い近距離にある場合には、表示されるオブジェクト1の大きさは小さくなる。従って、表示されるオブジェクト1の表示のLODは低くなり、低解像度で再現されることとなる。 In detail, FIG. 8 shows changes in the size of the displayed 3D object and the required LOD in accordance with the change in the viewpoint position of the viewer in the 3D virtual space in the present embodiment. It is a figure. As shown in FIG. 8, when the viewer's viewpoint is close to the object 1 in the three-dimensional virtual space, the size of the displayed object 1 becomes large. Therefore, the display LOD of the displayed object 1 is high (for example, when the object 1 is represented by the Point Cloud, the number of points is large), and the object 1 is reproduced with high resolution. Further, when the viewpoint of the viewer is at a medium distance from the object 1, the size of the displayed object 1 is medium. Therefore, the display LOD of the displayed object 1 is medium, and it is reproduced at a medium resolution. Further, when the viewer's viewpoint is far from the object 1, the size of the displayed object 1 becomes small. Therefore, the display LOD of the displayed object 1 becomes low, and it is reproduced at a low resolution.
 そこで、本実施形態においては、コンテンツ配信サーバ10には、同一の3次元オブジェクトについて、LODの異なる複数のオブジェクト・データを準備する。そして、図9のような、仮想的な3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離(LOD 距離)であるLOD選択基準値に紐づけるように、参照すべきオブジェクト・データの参照情報(例えば、参照先URL(Uniform Resource Locator)等)を示す表に従って、再生装置30a(図13 参照)は、3次元オブジェクトのオブジェクト・データを取得する。 Therefore, in the present embodiment, a plurality of object data having different LODs are prepared in the content distribution server 10 for the same three-dimensional object. Then, as shown in FIG. 9, the object to be referred to is linked to the LOD selection reference value, which is the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space. The playback device 30a (see FIG. 13) acquires object data of a three-dimensional object according to a table showing data reference information (for example, a reference URL (Uniform Resource Locator) or the like).
 そして、図9に示す表は、表示装置20の解像度を考慮して設定されており、対象となる表示装置20自体の解像度が異なれば、それに応じて変わってくる。3次元オブジェクトの表示に求められるディテールは、表示される大きさよりも先に、表示する表示装置20の解像度(ピクセル数)によって制限を受ける。従って、本実施形態においては、仮想的な3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離(LOD 距離)に紐づいたポイント数(LOD)が、表示装置20での表示においてのピクセル数に対して十分であるという条件を満たすことが求められる。 The table shown in FIG. 9 is set in consideration of the resolution of the display device 20, and if the resolution of the target display device 20 itself is different, the table will change accordingly. The details required for displaying a three-dimensional object are limited by the resolution (number of pixels) of the display device 20 to be displayed before the displayed size. Therefore, in the present embodiment, the number of points (LOD) associated with the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space is displayed on the display device 20. It is required to satisfy the condition that it is sufficient for the number of pixels in.
 よって、3次元オブジェクトの表示の大きさが同一であっても、表示装置20の解像度が4K(3840×2160)である場合、3次元オブジェクトを表示するために必要なポイントの密度(2次元における密度)は、表示装置20の解像度が8K(7680×4320)である場合に比べて1/4になる。そのため、表示装置20の解像度が4K(3840×2160)である場合の、表示装置の20幅方向又は高さ方向に沿った1次元における密度は、表示装置20の解像度が8K(7680×4320)である場合に比べて1/2になる。例えば、図10に示すように、表示装置20の解像度が異なると、同じ大きさで表示される3次元オブジェクトであっても、4Kの表示装置20での表示に必要なポイント数は、8Kの表示装置20での表示に必要なポイント数の1/2となっている。 Therefore, even if the display size of the three-dimensional object is the same, if the resolution of the display device 20 is 4K (3840 × 2160), the density of points required to display the three-dimensional object (in two dimensions). The density) is 1/4 of that when the resolution of the display device 20 is 8K (7680 × 4320). Therefore, when the resolution of the display device 20 is 4K (3840 × 2160), the density in one dimension along the 20 width direction or the height direction of the display device is 8K (7680 × 4320) for the display device 20. It is halved compared to the case of. For example, as shown in FIG. 10, if the resolution of the display device 20 is different, the number of points required for display on the 4K display device 20 is 8K even if the three-dimensional objects are displayed in the same size. It is 1/2 of the number of points required for display on the display device 20.
 また、図11においては、8Kの表示装置20に、高さhの3次元オブジェクトの全体が表示されているものとする。この際、視聴者は、視聴者の視野範囲が当該3次元オブジェクトの全体を含むことができるような仮想空間上の距離Iに位置するものとし、3次元オブジェクトの高さ方向のポイント数は、表示装置20の高さ方向のピクセル数と同じ4320であるものとする。すなわち、ポイント数とピクセル数とは同じとなるため、当該3次元オブジェクトの表示は、8Kの表示装置20での表示に十分なポイント密度をもっているといえる。 Further, in FIG. 11, it is assumed that the entire three-dimensional object having a height h is displayed on the 8K display device 20. At this time, it is assumed that the viewer is located at a distance I in the virtual space so that the viewer's viewing range can include the entire 3D object, and the number of points in the height direction of the 3D object is determined. It is assumed that the number of pixels in the height direction of the display device 20 is 4320, which is the same as the number of pixels. That is, since the number of points and the number of pixels are the same, it can be said that the display of the three-dimensional object has a sufficient point density for display on the 8K display device 20.
 このような状況で、視聴者は、3次元オブジェクトに対して、仮想空間上でI/2の距離の位置に移動するものとする。この際、3次元オブジェクトの半分の範囲が、表示装置20の表示面の高さ方向に占めるように表示されることとなる。この場合、図11に示されるように、当初の状況と同一オブジェクト・データによって表示された3次元オブジェクトは、高さ方向においてポイント数2160を持つこととなる。しかしながら、このような場合、当該ポイント数が、表示装置の高さ方向のピクセル数(4320)に比べて不足することとなるため、仮想空間上のI/2の距離の条件では、当該3次元オブジェクトを8Kの表示装置20で適切に表示することはできない。一方、表示装置20が4K(3840×2160)の解像度であれば、ポイント数とピクセル数とは同一となるため、仮想空間上のI/2の距離の条件では、当該3次元オブジェクトを4Kの表示装置20で適切に表示することができる。 In such a situation, the viewer shall move to a position at a distance of I / 2 in the virtual space with respect to the 3D object. At this time, half of the range of the three-dimensional object is displayed so as to occupy the height direction of the display surface of the display device 20. In this case, as shown in FIG. 11, the 3D object displayed with the same object data as the initial situation will have 2160 points in the height direction. However, in such a case, the number of points is insufficient compared to the number of pixels (4320) in the height direction of the display device. Therefore, under the condition of the distance of I / 2 on the virtual space, the three dimensions are met. The object cannot be properly displayed on the 8K display device 20. On the other hand, if the display device 20 has a resolution of 4K (3840 × 2160), the number of points and the number of pixels are the same. Therefore, under the condition of the distance of I / 2 on the virtual space, the three-dimensional object is 4K. It can be appropriately displayed on the display device 20.
 つまり、対象となる表示装置20の1次元方向の解像度が半分になれば、仮想的な3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離(LOD 距離)も半分になる。つまり、8Kの表示装置で視聴する際に視聴者の視力や距離から算出される必要十分な表示装置の解像度が4Kとなる場合、LODの選択基準値である、仮想3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離(LOD 距離)は、当初のシーン記述で定義された値に対して半分になっていることがわかる。 That is, if the resolution in the one-dimensional direction of the target display device 20 is halved, the distance (LOD distance) between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space is also halved. That is, when the necessary and sufficient resolution of the display device calculated from the viewer's eyesight and distance when viewing on the 8K display device is 4K, the viewer in the virtual three-dimensional space, which is the selection reference value of LOD. It can be seen that the distance (LOD distance) between the viewpoint and the 3D object is half of the value defined in the original scene description.
 また、上述した第1の実施形態においては、視聴者の視力(視力情報)及び視聴者の表示装置20に対する距離(距離情報)に基づき、当該視聴者ための必要十分な解像度の算出を行ったが、当該解像度は、所定の視聴状況下における必要十分となる表示装置20の解像度と考えることができる。 Further, in the first embodiment described above, the necessary and sufficient resolution for the viewer is calculated based on the viewer's visual acuity (visual acuity information) and the viewer's distance to the display device 20 (distance information). However, the resolution can be considered to be the resolution of the display device 20 that is necessary and sufficient under a predetermined viewing situation.
 そこで、視聴者の視力(視力情報)及び視聴者の表示装置20に対する距離(距離情報)に基づき、当該視聴者ための必要十分な解像度(必要十分な解像度)と、表示装置20の解像度(ディスプレイの解像度)により、当初のシーン記述で定義されたLOD選択基準値と、実際の視聴者に必要十分なLOD選択基準値との関係は、以下の数式(8)によって示すことができる。 Therefore, based on the viewer's eyesight (vision information) and the viewer's distance to the display device 20 (distance information), the necessary and sufficient resolution (necessary and sufficient resolution) for the viewer and the resolution of the display device 20 (display). The relationship between the LOD selection reference value defined in the initial scene description and the LOD selection reference value necessary and sufficient for the actual viewer can be shown by the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、数式(8)では、表示装置20の幅方向における解像度を用いているが、本実施形態においては、幅方向における解像度の代わりに、高さ方向における解像度を用いてもよい。 Although the formula (8) uses the resolution in the width direction of the display device 20, in the present embodiment, the resolution in the height direction may be used instead of the resolution in the width direction.
 ここで、例として、W(幅)=1.6m、H(高さ)=0.9mのサイズの8Kの表示装置20に対してL=1.44m離れた位置から視聴する視力1.0の視聴者Aと、視力0.5の視聴者Bとの、新たなLOD選択基準値の、当初のシーン記述で定義されたLOD選択基準値に対する割合は、数式(8)を用いると以下のように算出される。視聴者A(視力1.0)の場合、3819.62/7680≒1/2となり、視聴者B(視力0.5)の場合、1909.81/7680≒1/4となる。 Here, as an example, the visual acuity of viewing from a position L = 1.44 m away from the 8K display device 20 having a size of W (width) = 1.6 m and H (height) = 0.9 m is 1.0. The ratio of the new LOD selection reference value to the LOD selection reference value defined in the initial scene description between the viewer A and the viewer B with a visual acuity of 0.5 is as follows using the formula (8). Is calculated as follows. In the case of viewer A (visual acuity 1.0), 3819.62 / 7680 ≈ 1/2, and in the case of viewer B (visual acuity 0.5), 1909.81 / 7680 ≈ 1/4.
 従って、このような考えに基づき算出された視聴者A及び視聴者Bのための新たなLOD選択基準値は、図12に示されるような表に示される。ここでは、視聴者Aのための新たなLOD選択基準値をケース(1)差し替え距離として示し、視聴者Bのための新たなLOD選択基準値をケース(2)差し替え距離として示す。 Therefore, the new LOD selection reference values for viewer A and viewer B calculated based on such an idea are shown in a table as shown in FIG. Here, the new LOD selection reference value for the viewer A is shown as the case (1) replacement distance, and the new LOD selection reference value for the viewer B is shown as the case (2) replacement distance.
 詳細には、仮想的な3次元空間における当該視聴者の視点と3次元オブジェクトとの間の距離が3mであった場合には、当初は、高LODのオブジェクト・データであるH-LODのオブジェクト・データを選択するところ、本実施形態によれば、視聴者Aに対しては、中程度のLODのオブジェクト・データであるM-LODのオブジェクト・データを選択すればよく、視聴者Bでは、低LODのオブジェクト・データであるL-LODのオブジェクト・データを選択すればよい。このようにすることで、本実施形態においては、視聴者の目の分解能に不必要なLODの3次元オブジェクトのオブジェクト・データを取得することを避けることができる。従って、本実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。以下、本実施形態の詳細について順次説明する。 Specifically, when the distance between the viewer's viewpoint and the three-dimensional object in the virtual three-dimensional space is 3 m, the H-LOD object, which is initially high LOD object data, is initially used. -When selecting data, according to the present embodiment, for the viewer A, the object data of the M-LOD, which is the object data of the medium LOD, may be selected, and for the viewer B, the object data of the M-LOD may be selected. L-LOD object data, which is low LOD object data, may be selected. By doing so, in the present embodiment, it is possible to avoid acquiring the object data of the three-dimensional object of LOD which is unnecessary for the resolution of the eyes of the viewer. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. Hereinafter, the details of the present embodiment will be sequentially described.
 <5.2 システム構成>
 まずは、本実施形態に係る動画コンテンツの配信システム1を説明するが、本実施形態に係る配信システム1は、第1の実施形態と以下の点以外で共通するため、ここでは、共通する点の説明を省略し、異なる点だけを説明する。
<5.2 System configuration>
First, the video content distribution system 1 according to the present embodiment will be described. However, since the distribution system 1 according to the present embodiment is common to the first embodiment except for the following points, the common points are described here. The explanation is omitted, and only the differences are explained.
 (表示装置20)
 本実施形態においては、表示装置20は、テレビジョン、タブレット及びスマートフォン等の2次元ディスプレイに限定されるものではなく、例えば、視聴者の頭部に装着される、AR(Augmented Reality)グラス、HMD(Head Mounted Display)等のウェアラブルデバイスであってもよい。これらHMD等は、測位センサ(図示省略)やモーションセンサ(図示省略)を含んでもよく、この場合、視聴者の位置や、身体の向き、傾き、動きや移動速度等を検知することができる。
(Display device 20)
In the present embodiment, the display device 20 is not limited to a two-dimensional display such as a television, a tablet, and a smartphone, and is, for example, an AR (Augmented Reality) glass or HMD worn on the head of a viewer. It may be a wearable device such as (Head Mounted Display). These HMDs and the like may include a positioning sensor (not shown) and a motion sensor (not shown), and in this case, the position of the viewer, the direction and inclination of the body, the movement, the moving speed, and the like can be detected.
 <5.3 再生装置の構成>
 次に、図13を参照して、本実施形態に係る再生装置30aの構成を説明する。図13は、本実施形態に係る再生装置30aの機能構成例を示すブロック図である。本実施形態に係る再生装置30aは、第1の実施形態と以下の点以外で共通するため、ここでは、共通する点の説明を省略し、異なる点だけを説明する。
<5.3 Configuration of playback device>
Next, the configuration of the reproduction device 30a according to the present embodiment will be described with reference to FIG. 13. FIG. 13 is a block diagram showing a functional configuration example of the reproduction device 30a according to the present embodiment. Since the reproduction device 30a according to the present embodiment is common to the first embodiment except for the following points, the description of the common points will be omitted here, and only the differences will be described.
 本実施形態においては、再生装置30aの表示制御部300がLOD算出部(選択基準値算出部)310を含む点で、第1の実施形態と異なる。LOD算出部310は、視聴者の視力(視力情報)及び視聴者の表示装置20に対する距離(距離情報)に基づく、当該視聴者ための必要十分な解像度(ユーザ解像度)に基づいて、当該視聴者のための、新たなLOD選択基準値を算出する。なお、算出方法については、上述したため、ここでは説明を省略する。さらに、本実施形態においては、取得部308は、新たに算出されたLOD選択基準値に基づいて、視聴者の目の分解能に必要十分なLODを持つオブジェクト・データ(動画コンテンツ内の3次元オブジェクトを表示するためのコンテンツデータ)を取得する。 The present embodiment is different from the first embodiment in that the display control unit 300 of the reproduction device 30a includes the LOD calculation unit (selection reference value calculation unit) 310. The LOD calculation unit 310 is based on the viewer's visual acuity (visual acuity information) and the viewer's distance to the display device 20 (distance information), and based on the necessary and sufficient resolution (user resolution) for the viewer. Calculate a new LOD selection reference value for. Since the calculation method has been described above, the description thereof will be omitted here. Further, in the present embodiment, the acquisition unit 308 has object data (three-dimensional object in the moving image content) having a LOD necessary and sufficient for the resolution of the viewer's eyes based on the newly calculated LOD selection reference value. Content data for displaying)).
 <5.4 情報処理方法>
 以上、本実施形態に係る再生装置30aの詳細構成について説明した。次に、図14を参照して、本実施形態に係る情報処理方法について説明する。図14は、同実施形態に係る情報処理方法のフローチャートを示した図である。図14に示すように、本実施形態に係る配信処理方法には、ステップS301からステップS311までが含まれる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。なお、以下の説明においては、上述の第1の実施形態と異なる点のみを説明し、第1の実施形態と共通する点については、その説明を省略する。
<5.4 Information processing method>
The detailed configuration of the reproduction device 30a according to the present embodiment has been described above. Next, the information processing method according to the present embodiment will be described with reference to FIG. FIG. 14 is a diagram showing a flowchart of the information processing method according to the embodiment. As shown in FIG. 14, the distribution processing method according to the present embodiment includes steps S301 to S311. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned first embodiment will be described, and the points common to the first embodiment will be omitted.
 ステップS301からステップS306までは、図5に示す、第1の実施形態のステップS101からステップS106までと同様であるため、ここではその説明を省略する。 Since steps S301 to S306 are the same as steps S101 to S106 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
 再生装置30aは、上述のステップS306で特定された解像度に基づいて、当該視聴者のための、新たなLOD選択基準値を算出する(ステップS307)。なお、算出方法については、上述したため、ここでは説明を省略する。そして、再生装置30aは、上述したステップS307で選択したLOD選択基準値に対応するLODを持つ3次元オブジェクトのオブジェクト・データ(コンテンツデータ)を取得する(ステップS308)。 The playback device 30a calculates a new LOD selection reference value for the viewer based on the resolution specified in step S306 described above (step S307). Since the calculation method has been described above, the description thereof will be omitted here. Then, the reproduction device 30a acquires the object data (content data) of the three-dimensional object having the LOD corresponding to the LOD selection reference value selected in step S307 described above (step S308).
 ステップS309からステップS311までは、図5に示す、第1の実施形態のステップS108からステップS110までと同様であるため、ここではその説明を省略する。 Since steps S309 to S311 are the same as steps S108 to S110 of the first embodiment shown in FIG. 5, the description thereof will be omitted here.
 以上のように、本実施形態においては、視聴者の目の分解能に不必要なLODの3次元オブジェクトのオブジェクト・データを取得することを避けることができる。従って、本実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。 As described above, in the present embodiment, it is possible to avoid acquiring the object data of the three-dimensional object of LOD which is unnecessary for the resolution of the eyes of the viewer. Therefore, according to the present embodiment, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality.
 <<6. 第4の実施形態>>
 <6.1 第4の実施形態の概要>
 上述した第3の実施形態においても、上述した第2の実施形態と同様に、視聴者の視力情報及び距離情報に加えて、さらに、視聴者の表示装置20に対する角度を示す視聴角度の情報を利用することにより、より精度よく、LOD選択基準値を算出することができる。本実施形態においては、上記視聴角度も考慮して算出を行うことから、精度よく、視聴者に好適なLOD選択基準値を算出することができることから、より効果的に、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。
<< 6. Fourth Embodiment >>
<6.1 Outline of the fourth embodiment>
Also in the third embodiment described above, as in the second embodiment described above, in addition to the visual acuity information and the distance information of the viewer, information on the viewing angle indicating the angle with respect to the display device 20 of the viewer is further provided. By using it, the LOD selection reference value can be calculated more accurately. In the present embodiment, since the calculation is performed in consideration of the viewing angle, the LOD selection reference value suitable for the viewer can be calculated with high accuracy, so that the viewer can more effectively deteriorate the image quality. While avoiding feeling, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network.
 詳細には、本実施形態においては、第2の実施形態と同様に、視聴者の視力(視力情報)、視聴者の表示装置20に対する距離(距離情報)及び視聴角度に基づき、当該視聴者ための必要十分な解像度(必要十分な解像度)を算出する。ただし、第3の実施形態においては、幅方向における解像度と高さ方向における解像度のどちらを用いてもよいとしていたが、本実施形態においては、必要十分な解像度としては、視聴角度θ及び視聴角度βが互いに異なると、それぞれ算出される値も大きく変わってしまうため、高さ方向の解像度及び幅方向の解像度のうちの大きい値を用いることとなる。従って、本実施形態における、当初のシーン記述で定義されたLOD選択基準値と、実際の視聴者に必要十分なLOD選択基準値との関係は、以下の数式(9)によって示すことができる。 Specifically, in the present embodiment, as in the second embodiment, for the viewer, based on the viewer's visual acuity (visual acuity information), the viewer's distance to the display device 20 (distance information), and the viewing angle. Calculate the necessary and sufficient resolution (necessary and sufficient resolution). However, in the third embodiment, either the resolution in the width direction or the resolution in the height direction may be used, but in the present embodiment, the viewing angle θ and the viewing angle are the necessary and sufficient resolutions. If β is different from each other, the calculated values will also change significantly, so the larger value of the resolution in the height direction and the resolution in the width direction will be used. Therefore, in the present embodiment, the relationship between the LOD selection reference value defined in the initial scene description and the LOD selection reference value necessary and sufficient for the actual viewer can be shown by the following mathematical formula (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 <6.2 システム構成及び再生装置の構成>
 まずは、本実施形態に係る動画コンテンツの配信システム1及び再生装置30aを説明するが、本実施形態に係る配信システム及び再生装置30aは、これまで説明した第2及び第3の実施形態と共通するため、ここでは説明を省略する。
<6.2 System configuration and playback device configuration>
First, the video content distribution system 1 and the reproduction device 30a according to the present embodiment will be described, but the distribution system and the reproduction device 30a according to the present embodiment are common to the second and third embodiments described so far. Therefore, the description is omitted here.
 <6.3 情報処理方法>
 次に、図15を参照して、本実施形態に係る情報処理方法について説明する。図15は、同実施形態に係る情報処理方法のフローチャートを示した図である。図15に示すように、本実施形態に係る情報処理方法には、ステップS401からステップS414までが含まれる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。なお、以下の説明においては、上述の第2及び第3の実施形態と異なる点のみを説明し、第2及び第3の実施形態と共通する点については、その説明を省略する。
<6.3 Information processing method>
Next, the information processing method according to the present embodiment will be described with reference to FIG. FIG. 15 is a diagram showing a flowchart of the information processing method according to the embodiment. As shown in FIG. 15, the information processing method according to the present embodiment includes steps S401 to S414. The details of each of these steps according to the present embodiment will be described below. In the following description, only the points different from the above-mentioned second and third embodiments will be described, and the points common to the second and third embodiments will be omitted.
 詳細には、ステップS401からステップS409は、図7に示す、第2の実施形態のステップS201からステップS209と同様であるため、ここではその説明を省略する。 Specifically, since steps S401 to S409 are the same as steps S201 to S209 of the second embodiment shown in FIG. 7, the description thereof will be omitted here.
 さらに、ステップS410からステップS414は、図14に示す、第3の実施形態のステップS307からステップS311と同様であるため、ここではその説明を省略する。 Further, since steps S410 to S414 are the same as steps S307 to S311 of the third embodiment shown in FIG. 14, the description thereof will be omitted here.
 以上のように、本実施形態においては、視聴者の視力情報及び距離情報に加えて、さらに、視聴者の表示装置20に対する角度を示す視聴角度の情報を利用することにより、より精度よく、LOD選択基準値を算出することができる。従って、本実施形態によれば、上記視聴角度も考慮して算出を行うことから、精度よく、視聴者に好適なLOD選択基準値を算出することができることから、より効果的に、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。 As described above, in the present embodiment, by using the viewing angle information indicating the angle of the viewer with respect to the display device 20, in addition to the visual acuity information and the distance information of the viewer, the LOD can be performed more accurately. The selection reference value can be calculated. Therefore, according to the present embodiment, since the calculation is performed in consideration of the viewing angle, the LOD selection reference value suitable for the viewer can be calculated with high accuracy, so that the viewer can more effectively calculate. While avoiding the deterioration of image quality, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network.
 <<7. まとめ>>
 以上説明したように、本開示の各実施形態においては、視聴者の目の分解能に不必要な解像度のコンテンツデータを取得することを避けることができ、視聴者の目の分解能に必要十分なコンテンツデータを取得することができる。従って、本開示の各実施形態によれば、視聴者が画質劣化を感じることを避けつつ、配信データ量の増加や、通信ネットワークへの負荷の増加を避けることできる。なお、本開示の各実施形態は、映像配信を伴うエンタテイメント・サービスの提供への適用に限定されるものではなく、教育、医療支援等にも適用することができる。
<< 7. Summary >>
As described above, in each embodiment of the present disclosure, it is possible to avoid acquiring content data having a resolution unnecessary for the resolution of the viewer's eyes, and the content necessary and sufficient for the resolution of the viewer's eyes. You can get the data. Therefore, according to each embodiment of the present disclosure, it is possible to avoid an increase in the amount of distributed data and an increase in the load on the communication network while avoiding the viewer from feeling the deterioration of the image quality. It should be noted that each embodiment of the present disclosure is not limited to application to the provision of entertainment services accompanied by video distribution, but can also be applied to education, medical support, and the like.
 <<8. ハードウェア構成例>>
 上述してきた各実施形態に係る再生装置30等の情報処理装置は、例えば図16に示すような構成のコンピュータ1000によって実現される。以下、本開示の実施形態の再生装置30を例に挙げて説明する。図16は、再生装置30等の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インタフェース1500、及び入出力インタフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
<< 8. Hardware configuration example >>
The information processing device such as the reproduction device 30 according to each of the above-described embodiments is realized by, for example, a computer 1000 having a configuration as shown in FIG. Hereinafter, the reproduction device 30 according to the embodiment of the present disclosure will be described as an example. FIG. 16 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the playback device 30 and the like. The computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る情報処理プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by such a program. Specifically, the HDD 1400 is a recording medium for recording an information processing program according to the present disclosure, which is an example of program data 1450.
 通信インタフェース1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインタフェースである。例えば、CPU1100は、通信インタフェース1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet). For example, the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
 入出力インタフェース1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインタフェースである。例えば、CPU1100は、入出力インタフェース1600を介して、キーボードやマウス、マイクロフォン(マイク)等の入出力デバイス1650からデータを受信する。また、CPU1100は、入出力インタフェース1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インタフェース1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input / output device 1650 such as a keyboard, a mouse, and a microphone (microphone) via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media). The media includes, for example, an optical recording medium such as a DVD (Digital Versaille Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, a semiconductor memory, or the like. Is.
 例えば、コンピュータ1000が本開示の実施形態に係る再生装置30として機能する場合、コンピュータ1000のCPU1100は、RAM1200に格納されたプログラムを実行することにより、表示制御部310等の機能を実現する。また、HDD1400には、本開示に係る処理プログラム等が格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the reproduction device 30 according to the embodiment of the present disclosure, the CPU 1100 of the computer 1000 realizes the functions of the display control unit 310 and the like by executing the program stored in the RAM 1200. Further, the processing program and the like according to the present disclosure are stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
 また、本実施形態に係る情報処理装置は、例えばクラウドコンピューティング等のように、ネットワークへの接続(または各装置間の通信)を前提とした、複数の装置からなるシステムに適用されてもよい。つまり、上述した本実施形態に係る情報処理装置は、例えば、複数の装置により本実施形態に係る情報処理システムとして実現することも可能である。 Further, the information processing device according to the present embodiment may be applied to a system including a plurality of devices, which is premised on connection to a network (or communication between each device), such as cloud computing. .. That is, the information processing device according to the present embodiment described above can be realized as an information processing system according to the present embodiment by, for example, a plurality of devices.
 以上、再生装置30等のハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更され得る。 The above is an example of the hardware configuration of the playback device 30 and the like. Each of the above-mentioned components may be configured by using general-purpose members, or may be configured by hardware specialized for the function of each component. Such a configuration may be appropriately modified depending on the technical level at the time of implementation.
 <<9. 応用例>>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<< 9. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the techniques according to the present disclosure may be applied to an endoscopic surgery system.
 図17は、本開示に係る技術が適用され得る内視鏡手術システム5000の概略的な構成の一例を示す図である。図17では、術者(医師)5067が、内視鏡手術システム5000を用いて、患者ベッド5069上の患者5071に手術を行っている様子が図示されている。図示するように、内視鏡手術システム5000は、内視鏡5001と、その他の術具5017と、内視鏡5001を支持する支持アーム装置5027と、内視鏡下手術のための各種の装置が搭載されたカート5037と、から構成される。 FIG. 17 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technique according to the present disclosure can be applied. FIG. 17 shows a surgeon (doctor) 5067 performing surgery on patient 5071 on patient bed 5069 using the endoscopic surgery system 5000. As shown in the figure, the endoscopic surgery system 5000 includes an endoscope 5001, other surgical tools 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. It is composed of a cart 5037 and a cart 5037.
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5025a~5025dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5025a~5025dから、内視鏡5001の鏡筒5003や、その他の術具5017が患者5071の体腔内に挿入される。図示する例では、その他の術具5017として、気腹チューブ5019、エネルギー処置具5021及び鉗子5023が、患者5071の体腔内に挿入されている。また、エネルギー処置具5021は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5017はあくまで一例であり、術具5017としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。 In endoscopic surgery, instead of cutting and opening the abdominal wall, multiple tubular laparotomy instruments called trocca 5025a to 5025d are punctured into the abdominal wall. Then, from the trocca 5025a to 5025d, the lens barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071. In the illustrated example, as other surgical tools 5017, a pneumoperitoneum tube 5019, an energy treatment tool 5021 and forceps 5023 are inserted into the body cavity of patient 5071. Further, the energy treatment tool 5021 is a treatment tool for incising and peeling a tissue, sealing a blood vessel, or the like by using a high frequency current or ultrasonic vibration. However, the surgical tool 5017 shown in the illustration is merely an example, and as the surgical tool 5017, various surgical tools generally used in endoscopic surgery such as a sword and a retractor may be used.
 内視鏡5001によって撮影された患者5071の体腔内の術部の画像が、表示装置5041に表示される。術者5067は、表示装置5041に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5021や鉗子5023を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5019、エネルギー処置具5021及び鉗子5023は、手術中に、術者5067又は助手等によって支持される。 The image of the surgical site in the body cavity of the patient 5071 taken by the endoscope 5001 is displayed on the display device 5041. The surgeon 5067 performs a procedure such as excising the affected area by using the energy treatment tool 5021 or the forceps 5023 while viewing the image of the surgical site displayed on the display device 5041 in real time. Although not shown, the pneumoperitoneum tube 5019, the energy treatment tool 5021, and the forceps 5023 are supported by the operator 5067, an assistant, or the like during the operation.
 (支持アーム装置)
 支持アーム装置5027は、ベース部5029から延伸するアーム部5031を備える。図示する例では、アーム部5031は、関節部5033a、5033b、5033c、及びリンク5035a、5035bから構成されており、アーム制御装置5045からの制御により駆動される。アーム部5031によって内視鏡5001が支持され、その位置及び姿勢が制御される。これにより、内視鏡5001の安定的な位置の固定が実現され得る。
(Support arm device)
The support arm device 5027 includes an arm portion 5031 extending from the base portion 5029. In the illustrated example, the arm portion 5031 is composed of joint portions 5033a, 5033b, 5033c, and links 5035a, 5035b, and is driven by control from the arm control device 5045. The endoscope 5001 is supported by the arm portion 5031, and its position and posture are controlled. Thereby, the stable position fixing of the endoscope 5001 can be realized.
 (内視鏡)
 内視鏡5001は、先端から所定の長さの領域が患者5071の体腔内に挿入される鏡筒5003と、鏡筒5003の基端に接続されるカメラヘッド5005と、から構成される。図示する例では、硬性の鏡筒5003を有するいわゆる硬性鏡として構成される内視鏡5001を図示しているが、内視鏡5001は、軟性の鏡筒5003を有するいわゆる軟性鏡として構成されてもよい。
(Endoscope)
The endoscope 5001 is composed of a lens barrel 5003 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the base end of the lens barrel 5003. In the illustrated example, the endoscope 5001 configured as a so-called rigid mirror having a rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having a flexible barrel 5003. May be good.
 鏡筒5003の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5001には光源装置5043が接続されており、当該光源装置5043によって生成された光が、鏡筒5003の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5071の体腔内の観察対象に向かって照射される。なお、内視鏡5001は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening in which an objective lens is fitted is provided at the tip of the lens barrel 5003. A light source device 5043 is connected to the endoscope 5001, and the light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5003, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 5071 through the lens. The endoscope 5001 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド5005の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5039に送信される。なお、カメラヘッド5005には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。 An optical system and an image pickup element are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system. The observation light is photoelectrically converted by the image pickup device, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 5039. The camera head 5005 is equipped with a function of adjusting the magnification and the focal length by appropriately driving the optical system thereof.
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5005には撮像素子が複数設けられてもよい。この場合、鏡筒5003の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。 Note that, for example, in order to support stereoscopic viewing (3D display) and the like, the camera head 5005 may be provided with a plurality of image pickup elements. In this case, a plurality of relay optical systems are provided inside the lens barrel 5003 in order to guide the observation light to each of the plurality of image pickup elements.
 (カートに搭載される各種の装置)
 CCU5039は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5001及び表示装置5041の動作を統括的に制御する。具体的には、CCU5039は、カメラヘッド5005から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5039は、当該画像処理を施した画像信号を表示装置5041に提供する。また、CCU5039は、カメラヘッド5005に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。
(Various devices mounted on the cart)
The CCU 5039 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 5001 and the display device 5041. Specifically, the CCU 5039 performs various image processing for displaying an image based on the image signal, such as a development process (demosaic process), on the image signal received from the camera head 5005. The CCU 5039 provides the image signal subjected to the image processing to the display device 5041. Further, the CCU 5039 transmits a control signal to the camera head 5005 and controls the driving thereof. The control signal may include information about imaging conditions such as magnification and focal length.
 表示装置5041は、CCU5039からの制御により、当該CCU5039によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5001が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5041としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5041として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5041が設けられてもよい。 The display device 5041 displays an image based on the image signal processed by the CCU 5039 under the control of the CCU 5039. When the endoscope 5001 is compatible with high-resolution shooting such as 4K (horizontal pixel number 3840 x vertical pixel number 2160) or 8K (horizontal pixel number 7680 x vertical pixel number 4320), and / or 3D display. As the display device 5041, a display device capable of displaying a high resolution and / or a device capable of displaying in 3D can be used. When a display device 5041 having a size of 55 inches or more is used for high-resolution shooting such as 4K or 8K, a further immersive feeling can be obtained. Further, a plurality of display devices 5041 having different resolutions and sizes may be provided depending on the application.
 光源装置5043は、例えばLED(Light Emitting Diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5001に供給する。 The light source device 5043 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light for photographing the surgical site to the endoscope 5001.
 アーム制御装置5045は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5027のアーム部5031の駆動を制御する。 The arm control device 5045 is configured by a processor such as a CPU, and operates according to a predetermined program to control the drive of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
 入力装置5047は、内視鏡手術システム5000に対する入力インタフェースである。ユーザは、入力装置5047を介して、内視鏡手術システム5000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5047を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5047を介して、アーム部5031を駆動させる旨の指示や、内視鏡5001による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5021を駆動させる旨の指示等を入力する。 The input device 5047 is an input interface for the endoscopic surgery system 5000. The user can input various information and input instructions to the endoscopic surgery system 5000 via the input device 5047. For example, the user inputs various information related to the surgery, such as physical information of the patient and information about the surgical procedure, via the input device 5047. Further, for example, the user is instructed to drive the arm portion 5031 via the input device 5047, or is instructed to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5001. , Instructions to drive the energy treatment tool 5021, etc. are input.
 入力装置5047の種類は限定されず、入力装置5047は各種の公知の入力装置であってよい。入力装置5047としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5057及び/又はレバー等が適用され得る。入力装置5047としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5041の表示面上に設けられてもよい。 The type of the input device 5047 is not limited, and the input device 5047 may be various known input devices. As the input device 5047, for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057 and / or a lever and the like can be applied. When a touch panel is used as the input device 5047, the touch panel may be provided on the display surface of the display device 5041.
 あるいは、入力装置5047は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5047は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5047は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5047が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5067)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。 Alternatively, the input device 5047 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), and various inputs are made according to the user's gesture and line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the gesture and the line of sight of the user detected from the image captured by the camera. Further, the input device 5047 includes a microphone capable of picking up the voice of the user, and various inputs are performed by voice via the microphone. In this way, the input device 5047 is configured to be able to input various information in a non-contact manner, so that a user who belongs to a clean area (for example, an operator 5067) can operate a device belonging to the unclean area in a non-contact manner. Is possible. In addition, the user can operate the device without taking his / her hand off the surgical tool that he / she has, which improves the convenience of the user.
 処置具制御装置5049は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5021の駆動を制御する。気腹装置5051は、内視鏡5001による視野の確保及び術者の作業空間の確保の目的で、患者5071の体腔を膨らめるために、気腹チューブ5019を介して当該体腔内にガスを送り込む。レコーダ5053は、手術に関する各種の情報を記録可能な装置である。プリンタ5055は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 5049 controls the drive of the energy treatment tool 5021 for cauterizing tissue, incising, sealing a blood vessel, or the like. The pneumoperitoneum device 5051 gas in the body cavity of the patient 5071 via the pneumoperitoneum tube 5019 in order to inflate the body cavity of the patient 5071 for the purpose of securing the field of view by the endoscope 5001 and securing the work space of the operator. Is sent. The recorder 5053 is a device capable of recording various information related to surgery. The printer 5055 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
 以下、内視鏡手術システム5000において特に特徴的な構成について、更に詳細に説明する。 Hereinafter, a particularly characteristic configuration of the endoscopic surgery system 5000 will be described in more detail.
 (支持アーム装置)
 支持アーム装置5027は、基台であるベース部5029と、ベース部5029から延伸するアーム部5031と、を備える。図示する例では、アーム部5031は、複数の関節部5033a、5033b、5033cと、関節部5033bによって連結される複数のリンク5035a、5035bと、から構成されているが、図17では、簡単のため、アーム部5031の構成を簡略化して図示している。実際には、アーム部5031が所望の自由度を有するように、関節部5033a~5033c及びリンク5035a、5035bの形状、数及び配置、並びに関節部5033a~5033cの回転軸の方向等が適宜設定され得る。例えば、アーム部5031は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5031の可動範囲内において内視鏡5001を自由に移動させることが可能になるため、所望の方向から内視鏡5001の鏡筒5003を患者5071の体腔内に挿入することが可能になる。
(Support arm device)
The support arm device 5027 includes a base portion 5029 which is a base, and an arm portion 5031 extending from the base portion 5029. In the illustrated example, the arm portion 5031 is composed of a plurality of joint portions 5033a, 5033b, 5033c and a plurality of links 5035a, 5035b connected by the joint portions 5033b, but in FIG. 17, for the sake of simplicity. , The configuration of the arm portion 5031 is simplified and illustrated. Actually, the shapes, numbers and arrangements of the joint portions 5033a to 5033c and the links 5035a and 5035b, the direction of the rotation axis of the joint portions 5033a to 5033c, and the like are appropriately set so that the arm portion 5031 has a desired degree of freedom. obtain. For example, the arm portion 5031 may be preferably configured to have more than 6 degrees of freedom. As a result, the endoscope 5001 can be freely moved within the movable range of the arm portion 5031, so that the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
 関節部5033a~5033cにはアクチュエータが設けられており、関節部5033a~5033cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5045によって制御されることにより、各関節部5033a~5033cの回転角度が制御され、アーム部5031の駆動が制御される。これにより、内視鏡5001の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5045は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5031の駆動を制御することができる。 Actuators are provided in the joint portions 5033a to 5033c, and the joint portions 5033a to 5033c are configured to be rotatable around a predetermined rotation axis by driving the actuator. By controlling the drive of the actuator by the arm control device 5045, the rotation angles of the joint portions 5033a to 5033c are controlled, and the drive of the arm portion 5031 is controlled. Thereby, control of the position and posture of the endoscope 5001 can be realized. At this time, the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
 例えば、術者5067が、入力装置5047(フットスイッチ5057を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5045によってアーム部5031の駆動が適宜制御され、内視鏡5001の位置及び姿勢が制御されてよい。当該制御により、アーム部5031の先端の内視鏡5001を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5031は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5031は、手術室から離れた場所に設置される入力装置5047を介してユーザによって遠隔操作され得る。 For example, when the operator 5067 appropriately inputs an operation via the input device 5047 (including the foot switch 5057), the drive of the arm unit 5031 is appropriately controlled by the arm control device 5045 according to the operation input. The position and orientation of the endoscope 5001 may be controlled. By this control, the endoscope 5001 at the tip of the arm portion 5031 can be moved from an arbitrary position to an arbitrary position, and then fixedly supported at the position after the movement. The arm portion 5031 may be operated by a so-called master slave method. In this case, the arm portion 5031 can be remotely controlled by the user via an input device 5047 installed at a location away from the operating room.
 また、力制御が適用される場合には、アーム制御装置5045は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5031が移動するように、各関節部5033a~5033cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5031に触れながらアーム部5031を移動させる際に、比較的軽い力で当該アーム部5031を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5001を移動させることが可能となり、ユーザの利便性を向上させることができる。 When force control is applied, the arm control device 5045 receives an external force from the user, and the actuators of the joint portions 5033a to 5033c are arranged so that the arm portion 5031 moves smoothly according to the external force. So-called power assist control for driving may be performed. As a result, when the user moves the arm portion 5031 while directly touching the arm portion 5031, the arm portion 5031 can be moved with a relatively light force. Therefore, the endoscope 5001 can be moved more intuitively and with a simpler operation, and the convenience of the user can be improved.
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5001が支持されていた。これに対して、支持アーム装置5027を用いることにより、人手によらずに内視鏡5001の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。 Here, in general, in endoscopic surgery, the endoscope 5001 was supported by a doctor called a scopist. On the other hand, by using the support arm device 5027, the position of the endoscope 5001 can be more reliably fixed without human intervention, so that an image of the surgical site can be stably obtained. , It becomes possible to perform surgery smoothly.
 なお、アーム制御装置5045は必ずしもカート5037に設けられなくてもよい。また、アーム制御装置5045は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5045は、支持アーム装置5027のアーム部5031の各関節部5033a~5033cにそれぞれ設けられてもよく、複数のアーム制御装置5045が互いに協働することにより、アーム部5031の駆動制御が実現されてもよい。 The arm control device 5045 does not necessarily have to be provided on the cart 5037. Further, the arm control device 5045 does not necessarily have to be one device. For example, the arm control device 5045 may be provided in each of the joint portions 5033a to 5033c of the arm portion 5031 of the support arm device 5027, and the plurality of arm control devices 5045 cooperate with each other to drive the arm portion 5031. Control may be realized.
 (光源装置)
 光源装置5043は、内視鏡5001に術部を撮影する際の照射光を供給する。光源装置5043は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5043において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5005の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
(Light source device)
The light source device 5043 supplies the endoscope 5001 with irradiation light for photographing the surgical site. The light source device 5043 is composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof. At this time, when the white light source is configured by the combination of the RGB laser light sources, the output intensity and the output timing of each color (each wavelength) can be controlled with high accuracy, so that the white balance of the captured image in the light source device 5043 can be controlled. Can be adjusted. Further, in this case, the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 5005 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image pickup device.
 また、光源装置5043は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5005の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the drive of the light source device 5043 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the drive of the image sensor of the camera head 5005 in synchronization with the timing of the change of the light intensity to acquire an image in time division and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
 また、光源装置5043は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5043は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 5043 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface layer of the mucous membrane is irradiated with light in a narrower band than the irradiation light (that is, white light) during normal observation. A so-called narrow band imaging (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. An excitation light corresponding to the fluorescence wavelength of the reagent may be irradiated to obtain a fluorescence image. The light source device 5043 may be configured to be capable of supplying narrowband light and / or excitation light corresponding to such special light observation.
 (カメラヘッド及びCCU)
 図18を参照して、内視鏡5001のカメラヘッド5005及びCCU5039の機能についてより詳細に説明する。図18は、図17に示すカメラヘッド5005及びCCU5039の機能構成の一例を示すブロック図である。
(Camera head and CCU)
The functions of the camera head 5005 and the CCU 5039 of the endoscope 5001 will be described in more detail with reference to FIG. FIG. 18 is a block diagram showing an example of the functional configuration of the camera head 5005 and CCU5039 shown in FIG.
 図18を参照すると、カメラヘッド5005は、その機能として、レンズユニット5007と、撮像部5009と、駆動部5011と、通信部5013と、カメラヘッド制御部5015と、を有する。また、CCU5039は、その機能として、通信部5059と、画像処理部5061と、制御部5063と、を有する。カメラヘッド5005とCCU5039とは、伝送ケーブル5065によって双方向に通信可能に接続されている。 Referring to FIG. 18, the camera head 5005 has a lens unit 5007, an image pickup unit 5009, a drive unit 5011, a communication unit 5013, and a camera head control unit 5015 as its functions. Further, the CCU 5039 has a communication unit 5059, an image processing unit 5061, and a control unit 5063 as its functions. The camera head 5005 and the CCU 5039 are bidirectionally connected by a transmission cable 5065 so as to be communicable.
 まず、カメラヘッド5005の機能構成について説明する。レンズユニット5007は、鏡筒5003との接続部に設けられる光学系である。鏡筒5003の先端から取り込まれた観察光は、カメラヘッド5005まで導光され、当該レンズユニット5007に入射する。レンズユニット5007は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5007は、撮像部5009の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。 First, the functional configuration of the camera head 5005 will be described. The lens unit 5007 is an optical system provided at a connection portion with the lens barrel 5003. The observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and incident on the lens unit 5007. The lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5007 are adjusted so as to collect the observation light on the light receiving surface of the image pickup element of the image pickup unit 5009. Further, the zoom lens and the focus lens are configured so that their positions on the optical axis can be moved in order to adjust the magnification and the focus of the captured image.
 撮像部5009は撮像素子によって構成され、レンズユニット5007の後段に配置される。レンズユニット5007を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5009によって生成された画像信号は、通信部5013に提供される。 The image pickup unit 5009 is composed of an image pickup element and is arranged after the lens unit 5007. The observation light that has passed through the lens unit 5007 is focused on the light receiving surface of the image pickup device, and an image signal corresponding to the observation image is generated by photoelectric conversion. The image signal generated by the image pickup unit 5009 is provided to the communication unit 5013.
 撮像部5009を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5067は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。 As the image pickup element constituting the image pickup unit 5009, for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor having a Bayer array and capable of color photographing is used. As the image pickup device, for example, an image pickup device capable of capturing a high-resolution image of 4K or higher may be used. By obtaining the image of the surgical site with high resolution, the surgeon 5067 can grasp the state of the surgical site in more detail, and the operation can proceed more smoothly.
 また、撮像部5009を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5067は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5009が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5007も複数系統設けられる。 Further, the image pickup elements constituting the image pickup unit 5009 are configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D display, respectively. The 3D display enables the surgeon 5067 to more accurately grasp the depth of the living tissue in the surgical site. When the image pickup unit 5009 is composed of a multi-plate type, a plurality of lens units 5007 are also provided corresponding to each image pickup element.
 また、撮像部5009は、必ずしもカメラヘッド5005に設けられなくてもよい。例えば、撮像部5009は、鏡筒5003の内部に、対物レンズの直後に設けられてもよい。 Further, the image pickup unit 5009 does not necessarily have to be provided on the camera head 5005. For example, the image pickup unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
 駆動部5011は、アクチュエータによって構成され、カメラヘッド制御部5015からの制御により、レンズユニット5007のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5009による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 5011 is composed of an actuator, and the zoom lens and the focus lens of the lens unit 5007 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 5015. As a result, the magnification and focus of the image captured by the image pickup unit 5009 can be adjusted as appropriate.
 通信部5013は、CCU5039との間で各種の情報を送受信するための通信装置によって構成される。通信部5013は、撮像部5009から得た画像信号をRAWデータとして伝送ケーブル5065を介してCCU5039に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5067が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5013には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5065を介してCCU5039に送信される。 The communication unit 5013 is composed of a communication device for transmitting and receiving various information to and from the CCU 5039. The communication unit 5013 transmits the image signal obtained from the image pickup unit 5009 as RAW data to the CCU 5039 via the transmission cable 5065. At this time, in order to display the captured image of the surgical site with low latency, it is preferable that the image signal is transmitted by optical communication. At the time of surgery, the surgeon 5067 performs the surgery while observing the condition of the affected area with the captured image, so for safer and more reliable surgery, the moving image of the surgical site is displayed in real time as much as possible. This is because it is required. When optical communication is performed, the communication unit 5013 is provided with a photoelectric conversion module that converts an electric signal into an optical signal. The image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5039 via the transmission cable 5065.
 また、通信部5013は、CCU5039から、カメラヘッド5005の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5013は、受信した制御信号をカメラヘッド制御部5015に提供する。なお、CCU5039からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5013には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5015に提供される。 Further, the communication unit 5013 receives a control signal for controlling the drive of the camera head 5005 from the CCU 5039. The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition. The communication unit 5013 provides the received control signal to the camera head control unit 5015. The control signal from the CCU 5039 may also be transmitted by optical communication. In this case, the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and then provided to the camera head control unit 5015.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5039の制御部5063によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5001に搭載される。 The image pickup conditions such as the frame rate, the exposure value, the magnification, and the focal point are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5001.
 カメラヘッド制御部5015は、通信部5013を介して受信したCCU5039からの制御信号に基づいて、カメラヘッド5005の駆動を制御する。例えば、カメラヘッド制御部5015は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5009の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5015は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5011を介してレンズユニット5007のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5015は、更に、鏡筒5003やカメラヘッド5005を識別するための情報を記憶する機能を備えてもよい。 The camera head control unit 5015 controls the drive of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the drive of the image pickup element of the image pickup unit 5009 based on the information to specify the frame rate of the image pickup image and / or the information to specify the exposure at the time of image pickup. Further, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the drive unit 5011 based on the information that the magnification and the focus of the captured image are specified. The camera head control unit 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
 なお、レンズユニット5007や撮像部5009等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5005について、オートクレーブ滅菌処理に対する耐性を持たせることができる。 By arranging the configuration of the lens unit 5007, the image pickup unit 5009, and the like in a sealed structure having high airtightness and waterproofness, the camera head 5005 can be made resistant to autoclave sterilization.
 次に、CCU5039の機能構成について説明する。通信部5059は、カメラヘッド5005との間で各種の情報を送受信するための通信装置によって構成される。通信部5059は、カメラヘッド5005から、伝送ケーブル5065を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5059には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5059は、電気信号に変換した画像信号を画像処理部5061に提供する。 Next, the functional configuration of CCU5039 will be described. The communication unit 5059 is configured by a communication device for transmitting and receiving various information to and from the camera head 5005. The communication unit 5059 receives an image signal transmitted from the camera head 5005 via the transmission cable 5065. At this time, as described above, the image signal can be suitably transmitted by optical communication. In this case, corresponding to optical communication, the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electric signal. The communication unit 5059 provides the image processing unit 5061 with an image signal converted into an electric signal.
 また、通信部5059は、カメラヘッド5005に対して、カメラヘッド5005の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。 Further, the communication unit 5059 transmits a control signal for controlling the drive of the camera head 5005 to the camera head 5005. The control signal may also be transmitted by optical communication.
 画像処理部5061は、カメラヘッド5005から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise Reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5061は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。 The image processing unit 5061 performs various image processing on the image signal which is the RAW data transmitted from the camera head 5005. The image processing includes, for example, development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise Reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Etc., various known signal processing is included. Further, the image processing unit 5061 performs detection processing on the image signal for performing AE, AF and AWB.
 画像処理部5061は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5061が複数のGPUによって構成される場合には、画像処理部5061は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。 The image processing unit 5061 is composed of a processor such as a CPU or GPU, and the processor operates according to a predetermined program, so that the above-mentioned image processing and detection processing can be performed. When the image processing unit 5061 is composed of a plurality of GPUs, the image processing unit 5061 appropriately divides the information related to the image signal and performs image processing in parallel by the plurality of GPUs.
 制御部5063は、内視鏡5001による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5063は、カメラヘッド5005の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5063は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5001にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5063は、画像処理部5061による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。 The control unit 5063 performs various controls regarding the imaging of the surgical site by the endoscope 5001 and the display of the captured image. For example, the control unit 5063 generates a control signal for controlling the drive of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with an AE function, an AF function, and an AWB function, the control unit 5063 has an optimum exposure value, a focal length, and an optimum exposure value according to the result of detection processing by the image processing unit 5061. The white balance is calculated appropriately and a control signal is generated.
 また、制御部5063は、画像処理部5061によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5041に表示させる。この際、制御部5063は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5063は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5021使用時のミスト等を認識することができる。制御部5063は、表示装置5041に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5067に提示されることにより、より安全かつ確実に手術を進めることが可能になる。 Further, the control unit 5063 causes the display device 5041 to display the image of the surgical unit based on the image signal processed by the image processing unit 5061. At this time, the control unit 5063 recognizes various objects in the surgical unit image by using various image recognition techniques. For example, the control unit 5063 detects a surgical tool such as forceps, a specific biological part, bleeding, a mist when using the energy treatment tool 5021, etc. by detecting the shape, color, etc. of the edge of the object included in the surgical site image. Can be recognized. When displaying the image of the surgical site on the display device 5041, the control unit 5063 uses the recognition result to superimpose and display various surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 5067, it becomes possible to proceed with the surgery more safely and surely.
 カメラヘッド5005及びCCU5039を接続する伝送ケーブル5065は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electric signal cable compatible with electric signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル5065を用いて有線で通信が行われていたが、カメラヘッド5005とCCU5039との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5065を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5065によって妨げられる事態が解消され得る。 Here, in the illustrated example, the communication is performed by wire using the transmission cable 5065, but the communication between the camera head 5005 and the CCU 5039 may be performed wirelessly. When the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5065 can be solved.
 以上、本開示に係る技術が適用され得る内視鏡手術システム5000の一例について説明した。なお、ここでは、一例として内視鏡手術システム5000について説明したが、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、本開示に係る技術は、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。 The above is an example of the endoscopic surgery system 5000 to which the technique according to the present disclosure can be applied. Although the endoscopic surgery system 5000 has been described here as an example, the system to which the technique according to the present disclosure can be applied is not limited to such an example. For example, the technique according to the present disclosure may be applied to a flexible endoscopic system for examination or a microsurgery system.
 <<10. 補足>>
 なお、先に説明した本開示の実施形態は、例えば、上記で説明したような再生装置30で実行される処理方法、装置を機能させるためのプログラム、及びプログラムが記録された一時的でない有形の媒体を含みうる。また、当該プログラムをインターネット等の通信回線(無線通信も含む)を介して頒布してもよい。
<< 10. Supplement >>
It should be noted that the embodiments of the present disclosure described above are, for example, a processing method executed by the reproduction device 30 as described above, a program for operating the device, and a non-temporary tangible program in which the program is recorded. Can include media. Further, the program may be distributed via a communication line (including wireless communication) such as the Internet.
 また、上述した本開示の実施形態の情報処理方法における各ステップは、必ずしも記載された順序に沿って処理されなくてもよい。例えば、各ステップは、適宜順序が変更されて処理されてもよい。また、各ステップは、時系列的に処理される代わりに、一部並列的に又は個別的に処理されてもよい。さらに、各ステップの処理についても、必ずしも記載された方法に沿って処理されなくてもよく、例えば、他の機能部によって他の方法により処理されていてもよい。 Further, each step in the information processing method of the embodiment of the present disclosure described above does not necessarily have to be processed in the order described. For example, each step may be processed in an appropriately reordered manner. Further, each step may be partially processed in parallel or individually instead of being processed in chronological order. Further, the processing of each step does not necessarily have to be processed according to the described method, and may be processed by another method, for example, by another functional unit.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that anyone with ordinary knowledge in the technical field of the present disclosure may come up with various modifications or modifications within the scope of the technical ideas set forth in the claims. Is, of course, understood to belong to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示にかかる技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Further, the effects described in the present specification are merely explanatory or exemplary and are not limited. That is, the technique according to the present disclosure may have other effects apparent to those skilled in the art from the description herein, in addition to or in place of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得する取得部を備える、情報処理装置。
(2)
 前記ユーザの視力情報、動画コンテンツを表示する表示部に関する表示部情報、及び、前記ユーザの前記表示部に対する位置情報に基づいて、前記ユーザのためのユーザ解像度をリアルタイムで算出する算出部をさらに備え、
 前記取得部は、前記ユーザ解像度に基づいて、前記動画コンテンツデータを取得する、
 上記(1)に記載の情報処理装置。
(3)
 前記表示部情報は、前記表示部の高さ及び幅の情報を含み、
 前記算出部は、高さ方向における前記ユーザ解像度及び幅方向における前記ユーザ解像度を算出する、
 上記(2)に記載の情報処理装置。
(4)
 前記ユーザ解像度と前記表示部の解像度とを比較する比較部をさらに備え、
 前記取得部は、比較結果に基づき、前記動画コンテンツデータを取得する、
 上記(2)又は(3)に記載の情報処理装置。
(5)
 前記算出部は、前記ユーザの前記表示部に対する距離に基づき、前記ユーザ解像度を算出する、上記(2)~(4)のいずれか1つに記載の情報処理装置。
(6)
 前記算出部は、前記ユーザの前記表示部に対する角度に基づき、前記ユーザ解像度を算出する、上記(5)に記載の情報処理装置。
(7)
 前記取得部は、前記ユーザ解像度に基づいて、前記動画コンテンツ内の仮想空間上のオブジェクトを再生するための前記動画コンテンツデータを取得する、
 上記(2)~(6)のいずれか1つに記載の情報処理装置。
(8)
 前記ユーザ解像度に基づいて、前記動画コンテンツデータを選択するための選択基準値を新たに算出する選択基準値算出部をさらに備える、
 上記(7)に記載の情報処理装置。
(9)
 前記位置情報を取得する位置情報取得部をさらに備える、上記(2)~(8)のいずれか1つに記載の情報処理装置。
(10)
 前記取得部は、複数の前記ユーザの視力情報に応じて、当該複数のユーザに向けて再生する前記動画コンテンツデータを取得する、
 上記(1)~(9)のいずれか1つに記載の情報処理装置。
(11)
 前記動画コンテンツデータをデコードするデコード部をさらに備える、
 上記(1)~(9)のいずれか1つに記載の情報処理装置。
(12)
 前記表示部をさらに備える、上記(2)~(9)のいずれか1つに記載の情報処理装置。
(13)
 前記動画コンテンツデータは、全天周映像データ又は仮想空間映像データである、上記(1)~(12)のいずれか1つに記載の情報処理装置。
(14)
 ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得することを含む、
 情報処理方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
An information processing device including an acquisition unit that acquires video content data to be played back to the user in real time according to the user's visual acuity information.
(2)
Further provided is a calculation unit that calculates the user resolution for the user in real time based on the user's visual acuity information, the display unit information regarding the display unit that displays the moving image content, and the position information of the user with respect to the display unit. ,
The acquisition unit acquires the moving image content data based on the user resolution.
The information processing device according to (1) above.
(3)
The display unit information includes information on the height and width of the display unit.
The calculation unit calculates the user resolution in the height direction and the user resolution in the width direction.
The information processing device according to (2) above.
(4)
Further, a comparison unit for comparing the user resolution and the resolution of the display unit is provided.
The acquisition unit acquires the video content data based on the comparison result.
The information processing device according to (2) or (3) above.
(5)
The information processing device according to any one of (2) to (4) above, wherein the calculation unit calculates the user resolution based on the distance of the user to the display unit.
(6)
The information processing device according to (5) above, wherein the calculation unit calculates the user resolution based on the angle of the user with respect to the display unit.
(7)
The acquisition unit acquires the video content data for reproducing an object in the virtual space in the video content based on the user resolution.
The information processing apparatus according to any one of (2) to (6) above.
(8)
Further, a selection reference value calculation unit for newly calculating a selection reference value for selecting the moving image content data based on the user resolution is provided.
The information processing device according to (7) above.
(9)
The information processing apparatus according to any one of (2) to (8) above, further comprising a position information acquisition unit for acquiring the position information.
(10)
The acquisition unit acquires the video content data to be reproduced for the plurality of users according to the visual acuity information of the plurality of users.
The information processing apparatus according to any one of (1) to (9) above.
(11)
Further provided with a decoding unit for decoding the moving image content data.
The information processing apparatus according to any one of (1) to (9) above.
(12)
The information processing apparatus according to any one of (2) to (9) above, further comprising the display unit.
(13)
The information processing device according to any one of (1) to (12) above, wherein the moving image content data is all-sky video data or virtual space video data.
(14)
Including acquiring video content data to be played back to the user in real time according to the user's visual acuity information.
Information processing method.
  1  配信システム
  10  コンテンツ配信サーバ
  20  表示装置
  30、30a  再生装置
  40  通信ネットワーク
  300  表示制御部
  302  位置情報取得部
  304  算出部
  306  比較部
  308  取得部
  310  LOD算出部
  320  復号ブロック
  322  処理部
  324  デコード部
  326  表示情報生成部
  330  主制御部
  340  記憶部
  350  送受信部
1 Distribution system 10 Content distribution server 20 Display device 30, 30a Playback device 40 Communication network 300 Display control unit 302 Location information acquisition unit 304 Calculation unit 306 Comparison unit 308 Acquisition unit 310 LOD calculation unit 320 Decoding block 322 Processing unit 324 Decoding unit 326 Display information generation unit 330 Main control unit 340 Storage unit 350 Transmission / reception unit

Claims (14)

  1.  ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得する取得部を備える、情報処理装置。 An information processing device equipped with an acquisition unit that acquires video content data to be played back to the user in real time according to the user's visual acuity information.
  2.  前記ユーザの視力情報、動画コンテンツを表示する表示部に関する表示部情報、及び、前記ユーザの前記表示部に対する位置情報に基づいて、前記ユーザのためのユーザ解像度をリアルタイムで算出する算出部をさらに備え、
     前記取得部は、前記ユーザ解像度に基づいて、前記動画コンテンツデータを取得する、
     請求項1に記載の情報処理装置。
    Further provided is a calculation unit that calculates the user resolution for the user in real time based on the user's visual acuity information, the display unit information regarding the display unit that displays the moving image content, and the position information of the user with respect to the display unit. ,
    The acquisition unit acquires the moving image content data based on the user resolution.
    The information processing apparatus according to claim 1.
  3.  前記表示部情報は、前記表示部の高さ及び幅の情報を含み、
     前記算出部は、高さ方向における前記ユーザ解像度及び幅方向における前記ユーザ解像度を算出する、
     請求項2に記載の情報処理装置。
    The display unit information includes information on the height and width of the display unit.
    The calculation unit calculates the user resolution in the height direction and the user resolution in the width direction.
    The information processing apparatus according to claim 2.
  4.  前記ユーザ解像度と前記表示部の解像度とを比較する比較部をさらに備え、
     前記取得部は、比較結果に基づき、前記動画コンテンツデータを取得する、
     請求項2に記載の情報処理装置。
    Further, a comparison unit for comparing the user resolution and the resolution of the display unit is provided.
    The acquisition unit acquires the video content data based on the comparison result.
    The information processing apparatus according to claim 2.
  5.  前記算出部は、前記ユーザの前記表示部に対する距離に基づき、前記ユーザ解像度を算出する、請求項2に記載の情報処理装置。 The information processing device according to claim 2, wherein the calculation unit calculates the user resolution based on the distance of the user to the display unit.
  6.  前記算出部は、前記ユーザの前記表示部に対する角度に基づき、前記ユーザ解像度を算出する、請求項5に記載の情報処理装置。 The information processing device according to claim 5, wherein the calculation unit calculates the user resolution based on the angle of the user with respect to the display unit.
  7.  前記取得部は、前記ユーザ解像度に基づいて、前記動画コンテンツ内の仮想空間上のオブジェクトを再生するための前記動画コンテンツデータを取得する、
     請求項2に記載の情報処理装置。
    The acquisition unit acquires the video content data for reproducing an object in the virtual space in the video content based on the user resolution.
    The information processing apparatus according to claim 2.
  8.  前記ユーザ解像度に基づいて、前記動画コンテンツデータを選択するための選択基準値を新たに算出する選択基準値算出部をさらに備える、
     請求項7に記載の情報処理装置。
    Further, a selection reference value calculation unit for newly calculating a selection reference value for selecting the moving image content data based on the user resolution is provided.
    The information processing apparatus according to claim 7.
  9.  前記位置情報を取得する位置情報取得部をさらに備える、請求項2に記載の情報処理装置。 The information processing device according to claim 2, further comprising a position information acquisition unit for acquiring the position information.
  10.  前記取得部は、複数の前記ユーザの視力情報に応じて、当該複数のユーザに向けて再生する前記動画コンテンツデータを取得する、
     請求項1に記載の情報処理装置。
    The acquisition unit acquires the video content data to be reproduced for the plurality of users according to the visual acuity information of the plurality of users.
    The information processing apparatus according to claim 1.
  11.  前記動画コンテンツデータをデコードするデコード部をさらに備える、
     請求項1に記載の情報処理装置。
    Further provided with a decoding unit for decoding the moving image content data.
    The information processing apparatus according to claim 1.
  12.  前記表示部をさらに備える、請求項2に記載の情報処理装置。 The information processing device according to claim 2, further comprising the display unit.
  13.  前記動画コンテンツデータは、全天周映像データ又は仮想空間映像データである、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the moving image content data is all-sky video data or virtual space video data.
  14.  ユーザの視力情報に応じて、当該ユーザに向けて再生する動画コンテンツデータをリアルタイムで取得することを含む、
     情報処理方法。
    Including acquiring video content data to be played back to the user in real time according to the user's visual acuity information.
    Information processing method.
PCT/JP2021/015660 2020-05-11 2021-04-16 Information processing apparatus and information processing method WO2021230001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020083493 2020-05-11
JP2020-083493 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230001A1 true WO2021230001A1 (en) 2021-11-18

Family

ID=78525677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015660 WO2021230001A1 (en) 2020-05-11 2021-04-16 Information processing apparatus and information processing method

Country Status (1)

Country Link
WO (1) WO2021230001A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076180A (en) * 1999-09-07 2001-03-23 Nec Corp Three-dimensional graphics display device
JP2015510325A (en) * 2012-01-19 2015-04-02 ヴィド スケール インコーポレイテッド Method and system for video distribution supporting adaptation to viewing conditions
US20150178976A1 (en) * 2011-11-28 2015-06-25 Google Inc. View Dependent Level-of-Detail for Tree-Based Replicated Geometry
US20160080448A1 (en) * 2014-09-11 2016-03-17 Microsoft Corporation Dynamic Video Streaming Based on Viewer Activity
US20170085959A1 (en) * 2015-09-23 2017-03-23 International Business Machines Corporation Adaptive multimedia display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076180A (en) * 1999-09-07 2001-03-23 Nec Corp Three-dimensional graphics display device
US20150178976A1 (en) * 2011-11-28 2015-06-25 Google Inc. View Dependent Level-of-Detail for Tree-Based Replicated Geometry
JP2015510325A (en) * 2012-01-19 2015-04-02 ヴィド スケール インコーポレイテッド Method and system for video distribution supporting adaptation to viewing conditions
US20160080448A1 (en) * 2014-09-11 2016-03-17 Microsoft Corporation Dynamic Video Streaming Based on Viewer Activity
US20170085959A1 (en) * 2015-09-23 2017-03-23 International Business Machines Corporation Adaptive multimedia display

Similar Documents

Publication Publication Date Title
CN110622500B (en) Image forming apparatus and image forming method
EP2903551B1 (en) Digital system for surgical video capturing and display
CN110832842B (en) Imaging apparatus and image generating method
EP3571662B1 (en) Video signal processing apparatus, video signal processing method, and program for dynamic range compression
CN110612720B (en) Information processing apparatus, information processing method, and readable storage medium
JP2021192313A (en) Information processing apparatus and method, as well as program
JP7095693B2 (en) Medical observation system
US20220148128A1 (en) Image processing apparatus, image processing method, and program
JP7363767B2 (en) Image processing device, image processing method, and program
WO2018221068A1 (en) Information processing device, information processing method and information processing program
WO2021230068A1 (en) Distribution device and distribution method
CN110945399A (en) Signal processing device, imaging device, signal processing method, and program
WO2020213296A1 (en) Signal processing device, signal processing method, program and directivity changing system
WO2021230001A1 (en) Information processing apparatus and information processing method
US11671872B2 (en) Communication system and transmission apparatus
WO2018230510A1 (en) Image processing device, image processing method, and image capture system
JP7230923B2 (en) Information processing device, information processing method and program
JP7420141B2 (en) Image processing device, imaging device, image processing method, program
WO2020246181A1 (en) Image processing device, image processing method, and program
WO2020241050A1 (en) Audio processing device, audio processing method and program
US11394759B2 (en) Communication system and control apparatus
JP2021193762A (en) Receiving device and receiving method, and image processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP