WO2021229984A1 - Image processing device, image processing method, and program - Google Patents

Image processing device, image processing method, and program Download PDF

Info

Publication number
WO2021229984A1
WO2021229984A1 PCT/JP2021/015389 JP2021015389W WO2021229984A1 WO 2021229984 A1 WO2021229984 A1 WO 2021229984A1 JP 2021015389 W JP2021015389 W JP 2021015389W WO 2021229984 A1 WO2021229984 A1 WO 2021229984A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
skin
unit
analysis unit
noise
Prior art date
Application number
PCT/JP2021/015389
Other languages
French (fr)
Japanese (ja)
Inventor
信一郎 五味
哲平 栗田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021229984A1 publication Critical patent/WO2021229984A1/en

Links

Images

Classifications

    • G06T5/70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • G06T5/60
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • This disclosure relates to an image processing device, an image processing method, and a program. More specifically, the present invention relates to an image processing apparatus for performing analysis processing of human skin, an image processing method, and a program.
  • a process of observing and diagnosing the skin condition based on the photographed image by photographing the pixels of the human skin surface using a close-up photography camera, and by analyzing the photographed image, the condition of the skin such as texture and pores is quantified. Based on the results, care is widely practiced from the viewpoint of health and beauty.
  • the smoothness of the skin surface and the accuracy of analysis of the uneven shape vary depending on the degree of shading caused by the illumination at the time of taking a camera image and the uneven shape of the surface. Furthermore, there are spots and hair on the surface of the skin that are easily misrecognized as shadows, and these misrecognitions may cause an error in the analysis result.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-187849
  • Patent Document 2 Japanese Patent Laid-Open No. 2013-188341
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2015-187849 discloses a configuration in which a body hair (eyelash) region and a skin region are separated by performing a binarization process on the difference between a gray image and an edge image.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2013-188341 discloses a configuration in which a hair region and a skin region are separated by a color component of an image.
  • the present disclosure has been made in view of the above problems, for example, by taking a polarized image of human skin, analyzing the taken polarized image, and separating specular reflection and internal scattering. Exclude the effects of stains and stains. After that, a spectral image is taken, and by analyzing the spectral image, areas containing a large amount of melanin pigment, such as hair and stains, are detected and excluded from the analysis target, so that only the shadow component caused by the unevenness of the skin surface is selected. It is acquired and the selected data is analyzed to generate analysis data of the texture and unevenness of the skin surface. It is an object of the present disclosure to provide an image processing apparatus, an image processing method, and a program that realize highly accurate analysis processing of human skin by these processes.
  • the first aspect of this disclosure is The image acquisition section that acquires skin images, and An image analysis unit that analyzes the image acquired by the image acquisition unit, and an image analysis unit. It has a three-dimensional shape analysis unit that analyzes the three-dimensional shape of the skin using the analysis results of the image analysis unit.
  • the image acquisition unit Acquire multiple polarized images of different wavelength light, The image analysis unit The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
  • the three-dimensional shape analysis unit is It is in an image processing apparatus that analyzes a three-dimensional shape of skin by using the noise-removed skin image.
  • the second aspect of the present disclosure is It is an image processing method executed in an image processing device.
  • the image acquisition unit acquires the skin image and the image acquisition process, Image analysis processing in which the image analysis unit analyzes the image acquired by the image acquisition unit, and
  • the three-dimensional shape analysis unit executes a three-dimensional shape analysis process for analyzing the three-dimensional shape of the skin using the analysis result of the image analysis unit.
  • the image acquisition unit Acquire multiple polarized images of different wavelength light,
  • the image analysis unit The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
  • the three-dimensional shape analysis unit is It is an image processing method for analyzing a three-dimensional shape of skin by using the noise-removed skin image.
  • the third aspect of the present disclosure is A program that executes image processing in an image processing device.
  • Image acquisition processing that causes the image acquisition unit to acquire skin images
  • Image analysis processing that causes the image analysis unit to analyze the image acquired by the image acquisition unit
  • the 3D shape analysis unit is made to execute a 3D shape analysis process for analyzing the 3D shape of the skin by using the analysis result of the image analysis unit.
  • image acquisition process Acquire multiple polarized images of light of different wavelengths
  • the polarized image is analyzed to generate a noise-removed skin image with noise removed.
  • the three-dimensional shape analysis process There is a program for analyzing the three-dimensional shape of the skin using the noise-removing skin image.
  • the program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium provided in a computer-readable format to an information processing device or a computer system capable of executing various program codes.
  • a program can be provided by a storage medium or a communication medium provided in a computer-readable format to an information processing device or a computer system capable of executing various program codes.
  • system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to those in the same housing.
  • a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed is generated, and the three-dimensional skin is highly accurate.
  • a configuration that enables analysis of the shape is realized. Specifically, for example, an image acquisition unit that acquires an image of skin such as a face, an image analysis unit that analyzes the skin image acquired by the image acquisition unit, and a skin 3 using the analysis results of the image analysis unit. It has a three-dimensional shape analysis unit that analyzes a dimensional shape.
  • the image acquisition unit acquires a plurality of polarized images of light having different wavelengths, and the image analysis unit analyzes the polarized images to generate and generate a mirror reflection component image of the skin surface and a melanin dye concentration index value image. Using these images, a noise-removed skin image in which noise such as body hair and stains is removed is generated.
  • the three-dimensional shape analysis unit analyzes the highly accurate three-dimensional shape of the skin using this noise-removed skin image. With this configuration, it is possible to generate a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed, and to analyze the three-dimensional shape of the skin with high accuracy. It will be realized. It should be noted that the effects described in the present specification are merely exemplary and not limited, and may have additional effects.
  • the image processing device of the present disclosure takes a picture of the skin of a person's face with a close-up camera, analyzes the image taken by this camera, and performs a process of generating and displaying a highly accurate analysis result.
  • the outline of the processing executed by the image processing apparatus of the present disclosure is as follows.
  • a polarized light sensor camera is used to take a polarized image of the skin of a person's face, and the captured polarized image is analyzed to separate specular reflection and internal scattering, thereby excluding the effects of hokuro and stains. ..
  • a spectral image is taken, and by analyzing the spectral image, a region containing a large amount of melanin pigment, for example, a hair or a spot region is detected and excluded from the analysis target, so that only the shadow component caused by the unevenness of the skin surface is removed.
  • Selective acquisition is performed, and this selected data is analyzed to generate analysis data for the texture and unevenness of the skin surface.
  • the present disclosure analyzes the shape of the skin surface, that is, the three-dimensional (3D) shape of the skin without being affected by body hair and stains by these treatments, and based on the analysis results, wrinkles, textures, etc. of human skin. Generate high-precision analysis data and provide it to users.
  • FIG. 1 and 2 are diagrams showing an example of a UI (user interface) displayed on the display unit of the image processing apparatus of the present disclosure.
  • FIG. 1 is an example of an initial screen displayed to the user. As shown in FIG. 1, the initial screen is displayed.
  • (A) User operation guide image (b) Camera shooting skin image (c) Shooting start icon These display data are included.
  • the user operation guide image is an explanatory image for explaining the operation to be performed by the user.
  • the example shown in the figure is an example explaining that the camera is placed on the cheek to take a picture.
  • the skin image taken by the camera is an actual photographed image taken by the camera placed on the user's cheek by the user.
  • the shooting start icon is an icon corresponding to a switch (shutter) for causing the camera to shoot by touching the icon.
  • the image processing device When the user touches the shooting start icon according to this initial screen, a skin image of the user's face is shot.
  • the image processing device starts the analysis process of the shot image.
  • the image processing device When the analysis process is completed, the image processing device generates an analysis result and displays it on the display unit.
  • FIG. 2 is a diagram showing an example of display data of analysis results.
  • the example shown in FIG. 2 is a display example of the texture analysis result of the user's skin.
  • analysis data There are various types of analysis data, and the example shown in FIG. 2 is one of them.
  • the texture evaluation value and the comprehensive evaluation value of each of the three places are displayed based on the photographed images of the three skin areas of the user's forehead, cheek, and chin.
  • the user's skin image, the analysis result image corresponding to the skin image, and the like are also displayed.
  • the analysis data is not limited to the data shown in FIG. 2, and there are various data.
  • FIG. 3 is a diagram showing a configuration example of the image processing apparatus of the present disclosure.
  • the image processing apparatus 100 of the present disclosure includes an image acquisition unit (camera) 110, an image analysis unit 120, a three-dimensional (3D) shape analysis unit 130, and a display unit 140.
  • the image acquisition unit (camera) 110 is, for example, a close-up camera that photographs the skin of a person's face, and has a polarized image acquisition unit 111 that supports a plurality of colors.
  • the image analysis unit 120 includes a polarization signal analysis unit 121, a dye signal analysis unit 122, and a signal determination unit 123.
  • the three-dimensional (3D) shape analysis unit 130 includes a normal information estimation unit 131, a distance information conversion unit 132, and a distance information analysis unit 133.
  • the display unit 140 includes a measurement information display unit 141, a signal information display unit 142, a three-dimensional shape display unit 143, and a measurement status display unit 144.
  • the image acquisition unit (camera) 110 acquires image data for analysis in the image analysis unit 120 in the subsequent stage.
  • the multi-color polarized image acquisition unit 111 of the image acquisition unit 110 performs a process of acquiring polarized images of a plurality of colors, specifically, for example, white light, red light, and near-infrared (NIR) light.
  • a process of acquiring polarized images of a plurality of colors specifically, for example, white light, red light, and near-infrared (NIR) light.
  • the image analysis unit 120 inputs the measurement result of the image acquisition unit 110 and performs signal analysis.
  • the polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other components (inside). Performs the process of separating into scattered light, etc.).
  • the dye signal analysis unit 122 of the image analysis unit 120 analyzes the red (R) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 and the polarized image corresponding to near infrared (NIR) light. Performs processing to analyze pigment signals that cause disturbances other than human skin.
  • R red
  • NIR near infrared
  • the signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to reflect the uneven shape of the skin surface from which the influence of disturbance such as hair and stains is removed. Generate an image signal.
  • the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera using the signal output from the image analysis unit 120.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface.
  • the normal is a line orthogonal to the surface of the object. In the process of the present disclosure, it corresponds to a line orthogonal to the skin surface.
  • the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
  • the distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130 uses the distance information generated by the distance information conversion unit 132 as an index value that serves as an evaluation index for the texture of the skin such as the roughness coefficient of the skin surface. Is calculated and analyzed.
  • the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit (camera) 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
  • the measurement information display unit 141 of the display unit 140 displays the information acquired or measured by the image acquisition unit 110.
  • the signal information display unit 142 of the display unit 140 displays the information analyzed by the image analysis unit 120.
  • the three-dimensional shape display unit 143 of the display unit 140 displays the three-dimensional shape information of the human skin analyzed by the three-dimensional (3D) shape analysis unit 130.
  • the measurement status display unit 144 of the display unit 140 displays information on the progress of processing being executed by the image acquisition unit 110 to the three-dimensional (3D) shape analysis unit 130.
  • the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit (camera) 110 performs processing to acquire polarized images of a plurality of colors, specifically, for example, white light, red light, and near-infrared (NIR) light. ..
  • FIG. 4 is a diagram showing a configuration example of the image acquisition unit (camera) 110.
  • the image acquisition unit (camera) 110 has an image pickup unit 210 and an illumination unit 220 around the image pickup unit.
  • the illumination unit 220 around the image pickup unit 210 is composed of the following three types of illumination.
  • (A) Lighting A Lighting A221 with a polarizing filter in the direction in front of the white LED
  • (B) Lighting B Lighting B222 composed of red LEDs
  • Illumination C Illumination C223 composed of near infrared (NIR) LEDs,
  • the illumination A221 is composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
  • Illumination B is composed of an LED that outputs wavelength light in the red (R) color light region of about 660 nm.
  • Illumination C is composed of LEDs that output wavelength light in the near infrared (NIR) light region of about 880 nm.
  • NIR near infrared
  • the image acquisition unit (camera) 110 sequentially turns on these three types of lights A to C for the same skin area, and acquires three images taken in three different lighting environments.
  • the image pickup unit 210 is composed of a polarization sensor camera.
  • the infrared (IR) light cut filter attached to many general cameras has been removed.
  • each pixel constituting the image pickup device of the image pickup unit 210 is provided with a polarizing element that functions as an optical filter that allows only light polarized in a specific direction to pass through.
  • a photoelectric conversion element that receives light that has passed through the polarizing element is provided below the polarizing element.
  • the hatching shown in each pixel of the image pickup device shown in the lower right of FIG. 5 indicates the polarization direction.
  • the polarization directions of the four pixels a2311, b2232, c233, and d234 shown in the lower right of FIG. 5 are set as follows.
  • the polarization direction of the pixel a231 is the horizontal direction, and the pixel a receives only the horizontal polarization. That is, the pixel a231 is a 0-degree polarized pixel.
  • the polarization direction of the pixel b232 is the lower left diagonal direction, and the pixel b receives only the polarized light in the lower left diagonal direction. That is, the pixel b232 is a 45-degree polarized pixel.
  • the polarization direction of the pixel c233 is the vertical direction, and only the polarization in the direction perpendicular to the pixel c is received. That is, the pixel c233 is a 90-degree polarized pixel.
  • the polarization direction of the pixel d234 is the upper left diagonal direction, and the pixel d receives only the upper left oblique polarized light. That is, the pixel d234 is a 135 degree polarized pixel.
  • FIG. 6 is a diagram showing a cross-sectional configuration of an image pickup device of the image pickup unit 210.
  • the cross section of the image sensor has a laminated structure in which the following layers are configured from the top (the surface of the image sensor) to the bottom (the inside of the image sensor).
  • the image pickup unit 210 has a laminated structure having each of the layers (1) to (3).
  • the light input to the image sensor by image capture passes through the polarizing element via the silicon lens and is received by the photoelectric conversion element.
  • the image pickup unit 210 has a imaging unit 210.
  • A A plurality of polarizing elements that pass polarized light in a plurality of different polarization directions
  • B It is a photoelectric conversion element set corresponding to each of a plurality of polarizing elements, and has a photoelectric conversion element that receives incident light via each polarizing element and acquires a polarized image.
  • the photoelectric conversion element of each pixel receives only a specific polarized image. Therefore, a specific polarized image can receive only one pixel out of the four pixels of the image sensor.
  • the process of generating a polarized image of all pixels (demosaic process) based on the polarized image of only a part of pixels is executed by the polarized signal analysis unit 211 of the image analysis unit 120 in the subsequent stage. This process (demosaic process) will be described later.
  • the image analysis unit 120 inputs the measurement result of the image acquisition unit 110 and performs signal analysis.
  • the polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other components (inside). Performs the process of separating into scattered light, etc.).
  • the dye signal analysis unit 122 of the image analysis unit 120 analyzes the red (R) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 and the polarized image corresponding to near infrared (NIR) light. Performs processing to analyze pigment signals that cause disturbances other than human skin.
  • R red
  • NIR near infrared
  • the signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to reflect the uneven shape of the skin surface from which the influence of disturbance such as hair and stains is removed. Generate an image signal.
  • the polarization signal analysis unit 121 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a specular reflected light component and other components (internal scattered light, etc.). Perform the process of separation.
  • the polarization signal analysis unit 121 has a demosaic unit and a polarization model estimation unit.
  • the demosaic unit of the polarization signal analysis unit 121 can receive only one of the four pixels of the image pickup element, that is, the polarized image acquired by the multicolor compatible polarized image acquisition unit 111 of the image acquisition unit 110, that is, as described above.
  • all four types of polarized images (0 degree polarized image, 45 degree polarized image) , 90 degree polarized image, 135 degree polarized image) is executed (demosaic processing).
  • the polarization model estimation unit uses image analysis processing using four types of polarized images (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) generated by the demosaic unit to obtain pixel values.
  • the polarized images acquired by the multicolor compatible polarized image acquisition unit 111 of the image acquisition unit 110 are four types of polarized images in which each pixel is different in units of four pixels of the image pickup element (4 types of polarized images).
  • a 0-degree polarized image, a 45-degree polarized image, a 90-degree polarized image, and a 135-degree polarized image) are taken.
  • each polarized image (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) is only captured by one of the four pixels of the image sensor of the image pickup unit. The remaining 3 pixels out of the 4 pixels are taking another polarized image.
  • the demosaic unit executes pixel value interpolation processing using the pixel values of a specific polarized image captured in one pixel of four pixels, and executes demosaic processing to set the pixel values of the specific polarized image to all pixels. do.
  • the demosaic process is a pixel value interpolation process in which the pixel value of a certain pixel is used to estimate and set the pixel value of a pixel for which the pixel value is not set, and there are various methods.
  • the example shown in FIG. 7 is a diagram illustrating bilinear interpolation, which is a typical example of pixel value interpolation processing.
  • the pixel value of the 90-degree polarized image is set to only one of the four pixels of the image pickup device of the image pickup unit 210.
  • Pixel values of 90-degree polarized images are set for each of the pixels a, b, c, and d shown in FIG. 7.
  • the pixel value of the 90-degree polarized image is not set for each of the P, Q, and R pixels other than the a pixel among the four pixels at the upper left end shown in FIG.
  • the pixel value of the 90-degree polarized image of each pixel P, Q, R is estimated and set.
  • the pixel values of the 90-degree polarized images of the P, Q, and R pixels can be calculated (estimated) according to the following calculation formula according to the pixel value interpolation algorithm of bilinear interpolation.
  • P (a + b) / 2
  • Q (a + c) / 2
  • R (a + b + c + d) / 4
  • the pixel value of the pixel for which the pixel value is not set can be calculated (estimated) by using the pixel value of the surrounding pixel.
  • All the pixels of the image pickup unit are subjected to the same processing as the above calculation processing, and the pixels of four types of polarized images (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image) for all the pixels. Calculate the value.
  • the four types of polarized images (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image) generated by this demosaic processing are polarized model estimation which is a processing unit after the polarization signal analysis unit 121. It is input to the part.
  • the polarization model estimation unit uses image analysis processing using four types of polarized images (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) generated by the demosaic unit to obtain pixel values.
  • the graph shown in FIG. 8 is a graph in which the polarization angle ( ⁇ ) is set on the horizontal axis and the luminance I ( ⁇ ) is set on the vertical axis, and is a graph showing a polarization model. It is known that the brightness of one point of a polarized image taken by a camera changes as shown in the graph shown in FIG. 8 depending on the polarization angle.
  • the polarization model graph shown in FIG. 8 shows the same luminance change every time the polarization angle changes by 180 degrees. That is, it is known to exhibit a luminance change having a polarization angle period of 180 degrees.
  • the highest brightness within the brightness change range is Imax, and the lowest brightness is Imin.
  • the specular reflection component reflected on the surface of the subject such as the surface of the skin is Is.
  • the curve of the graph shown in FIG. 8 can be obtained by luminance analysis of the captured image of the camera 250 in the configuration shown in FIG. 9, for example.
  • the subject (OB) 251 is photographed using the camera (CM) 250 shown in FIG.
  • the camera (CM) 250 captures a polarized image by capturing an image via the polarizing plate (PL) 252 in front of the camera (CM) 250.
  • the brightness of the subject (OB) 251 changes according to the rotation of the polarizing plate (PL) 252.
  • the highest brightness when the polarizing plate (PL) 252 is rotated is Imax, and the lowest brightness is Imin.
  • the angle be the polarization angle ⁇ .
  • the polarizing plate (PL) 252 When the polarizing plate (PL) 252 is rotated 180 degrees, it returns to the original polarized state and has a period of 180 degrees.
  • the polarization angle ⁇ when the maximum luminance Imax is observed is defined as the azimuth angle ⁇ . With such a definition, the luminance I ( ⁇ ) observed when the polarizing plate (PL) 252 is rotated becomes a graph as shown in FIG.
  • the luminance I ( ⁇ ) at the polarization angle ⁇ is Maximum brightness value Imax and Minimum brightness value Imin and Polarization angle ⁇ and The polarization angle ⁇ that gives the maximum luminance value Imax, that is, the azimuth angle ⁇ , It is defined by the following equation using these four parameters.
  • the unknown parameter is Maximum brightness value Imax and Minimum brightness value Imin and The polarization angle ⁇ that gives the maximum luminance value Imax, that is, the azimuth angle ⁇ , These three parameters.
  • the known parameters are luminance I (0 °), luminance I (45 °), luminance I (90 °), luminance I (135 °), and the polarization angle ⁇ when these luminances are acquired.
  • the specular reflection component Is reflected on the surface of the subject (skin surface), Is Imax-Imin It can be calculated by the above formula.
  • the polarization model estimation unit of the polarization signal analysis unit 121 calculates the specular reflection component Is reflected on the subject surface (skin surface) by these processes.
  • the polarization model estimation unit of the polarization signal analysis unit 121 further obtains the maximum luminance value Imax calculated by the above (Equation 5) and the minimum luminance value Imin.
  • the specular reflection component Is reflected on the surface of the subject (skin surface), Is Imax-Imin Calculated by the above formula.
  • the polarization model estimation unit of the polarization signal analysis unit 121 is a polarized image of all four types of pixels generated by the demosaic unit (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image). By the image analysis process using The specular reflection component extraction process is executed.
  • the dye signal analysis unit 122 of the image analysis unit 120 is polarized for red (R) light or near-infrared (NIR) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110.
  • the image is analyzed and the dye signal that causes disturbance other than human skin is analyzed.
  • the dye signal analysis unit 122 has four directions calculated from the illumination B222 in the illumination unit 220 of the image acquisition unit (camera) 110 described above with reference to FIG. 4, that is, an image taken when the red LED is lit.
  • NIR near-infrared
  • NIR Near-infrared
  • Equation 22 for each corresponding pixel of each image of the component image (I (nir0 °), I (nir45 °), I (nir90 °), I (nir135 °)).
  • the average image pixel value (I (nir)) is calculated.
  • I (nir) (I (nir0 °) + I (nir45 °) + I (nir90 °) + I (nir135 °)) / 4 ... (Equation 22) According to the above (Equation 22), the near-infrared (NIR) polarized image pixel value average (I (nir)) of each pixel is calculated.
  • NIR near-infrared
  • the dye signal analysis unit 122 has the red polarized image pixel value average (I (r)) of each pixel calculated according to the above (Equation 21) and the near infrared (NIR) of each pixel calculated according to the above (Equation 22).
  • Polarized image Pixel value average (I (nir)) is used to calculate a melanin dye concentration index value (MI: MeraninIndex) according to the following (Equation 23).
  • MI ⁇ (logI (nir) -logI (r)) + ⁇ ... (Equation 23)
  • ⁇ and ⁇ are predetermined constants.
  • the melanin pigment concentration index value (MI: MeraninIndex) shows a high value in a region such as body hair or a spot.
  • FIG. 10 shows a specific example.
  • FIG. 10 shows each of the following images.
  • Regions with high melanin pigment concentration are (b) other skin regions (melanin pigments) in the melanin pigment concentration index value (MI: MeraninIndex) output image. It is set to a pixel value (for example, a dark red pixel value) different from that in the low density region).
  • the melanin pigment concentration index value (MI: ManinIndex) output image is an image in which the pixel value is set according to the melanin pigment concentration, and the pixel value output mode can be set in various ways.
  • it can be output as a luminance image, and an image with various settings such as an image having a high luminance value (white) as the melanin pigment concentration is high and an image having a low luminance value (black) as the melanin pigment concentration is high can be displayed. It can be generated.
  • the dye signal analysis unit 122 generates such a melanin dye concentration index value (MI: MeraninIndex) output image.
  • MI melanin dye concentration index value
  • the signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to remove the influence of disturbance such as hair and stains on the skin surface. Generates an image signal that reflects the uneven shape.
  • the signal discrimination unit 123 uses the specular reflection component signal obtained by the polarization signal analysis unit 121 and the melanin dye concentration index value (MI: MeraninIndex) obtained by the dye signal analysis unit 122 to make minute irregularities on the skin surface. The selective extraction process of the resulting shadow component is executed.
  • MI melanin dye concentration index value
  • FIG. 11 shows each of the following images.
  • A Camera image
  • B Specular component image (after brightness adjustment)
  • the "(b) specular component image (after brightness adjustment)" is generated by extracting only the specular reflection component generated by analyzing the polarized image described with reference to FIG. 8 above. It is an image that was made. That is, it is a specular reflection component image acquired by the polarization image analysis process executed by the polarization signal analysis unit 121 of the image analysis unit 120.
  • the pixel value is low (low brightness) in the image area such as body hair, stains, and moles, and the shadows such as skin grooves and wrinkles are also the same. , The pixel value becomes low (low brightness).
  • the "(b) specular component image” obtained by the analysis processing of the polarized image is an image in which only the shadow on the surface and the hair on the surface are reflected in the pixel value. The effect of spots, moles, etc. from the depths of the skin to the vicinity of the surface is hardly reflected in the pixel values.
  • the melanin pigment concentration index value output image generated by the dye signal analysis unit 122 of the image analysis unit 120 includes hair and spots / moles having a high melanin pigment concentration. It is an image that outputs a pixel value that is distinguished from other skin areas.
  • the dye signal analysis unit 122 of the image analysis unit 120 sets, for example, a melanin pigment having a higher pixel value (high brightness) than other skin regions for hair and spots / moles having a high melanin pigment concentration. It is possible to output a density index value output image. On the contrary, it is also possible to output a melanin pigment concentration index value output image in which the pixel value of hair and spots / moles having a high melanin pigment concentration is set lower than that of other skin areas (boat brightness).
  • the signal discrimination unit 123 of the image analysis unit 120 uses the following three types of images to reflect an image reflecting the uneven shape of the skin surface from which noise such as disturbance such as body hair and stains has been removed, that is, a noise-removed skin image.
  • A Image taken by the camera acquired by the image acquisition unit (camera) 110
  • (b) Mirror reflection component image generated by the polarized image analysis process executed by the polarization signal analysis unit 121 of the image analysis unit 120
  • the signal discrimination unit 123 synthesizes (b) a specular reflection component image shown in FIG. 12 and (c) a melanin dye concentration index value output image to generate (d) a composite image.
  • the composite image is an image in which a pixel region having a low specular reflection component and a high melanin pigment concentration index value is output as a low pixel value (low luminance) (hereinafter referred to as a dark portion).
  • the signal discrimination unit 123 first generates (e) a noise-removed skin image from (b) a specular reflection component image and (d) a composite image shown in FIG. 12.
  • the noise-removed skin image is an image that reflects the uneven shape of the skin surface from which noise such as disturbance such as body hair and spots is removed.
  • the luminance value of the corresponding (b) specular reflection component image is used for the portion other than the dark portion (hereinafter referred to as the bright portion) of the composite image.
  • the dark part of the image that is, the pixel region having a low specular reflection component and a high melanin dye concentration index value corresponds to the pixel value of the bright part if there is a bright part in the vicinity of the pixel, in other words, (b).
  • the pixel value of the pixel is used as it is without performing the interpolation processing.
  • the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122, and reflects the uneven shape of the skin surface from which the influence of disturbance such as body hair and spots is removed. Generates the image signal.
  • the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera using the signal output from the image analysis unit 120.
  • noise-removed skin image which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera.
  • the three-dimensional (3D) shape of the included skin is analyzed.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface.
  • the normal is a line orthogonal to the object surface, that is, the skin surface.
  • the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
  • the distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130 uses the distance information generated by the distance information conversion unit 132 as an index value that serves as an evaluation index for the texture of the skin such as the roughness coefficient of the skin surface. Is calculated and analyzed.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 removes the noise-removed skin image generated by the image analysis unit 120, that is, the influence of disturbance such as hair and stains described with reference to FIG.
  • the “(e) noise-removed skin image”, which is an image signal reflecting the uneven shape of the skin surface, is input to the learner 301.
  • the learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like, the input of the learning device 301 is "(e) noise removing skin image"), and the output is an input image ".
  • (E) Noise-removed skin image ” is pixel-based normal information.
  • the pixel-based normal information includes, for example, the following parameters. p: Calculated normal x-direction component value (nx) q: Y-direction component value (ny) of the calculated normal The x-direction and the y-direction correspond to the x- and y-directions of the coordinate well shown in FIG. 9 described above.
  • the normal information estimation unit 131 inputs the “(e) noise-removing skin image”, which is a signal output from the image analysis unit 120, into the learner (CNN) 301, and inputs the normal information for each pixel. Output.
  • the learning device (CNN) 301 is generated by a learning process executed in advance using various image data. At the time of learning, prepare a large number of pairs of images of actual skin and replicas and separately converted unevenness information measured by a 3D scanning device into normal information (GT (Ground Truth) data), and the least squares error (L2). ) Learn network weights using a loss function. A specific example of this learning process will be described later.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information on the skin surface using the learner 301 shown in FIG.
  • the normal is a line orthogonal to the object surface, that is, the skin surface.
  • the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
  • Equation 31 the distance calculation formula for obtaining the distance information from the normal information of the pixels.
  • the above (Equation 31) does not calculate the absolute distance between the camera and the subject.
  • the distance information (Z) calculated by the above (Equation 31) corresponds to the distance (shape) calculated by providing a certain reference point and integrating the gradient field from the reference point.
  • the distance (Z) is calculated so that the gradient field and the derivative of the shape match. In order to know the absolute distance from the camera to the subject, it is necessary to separately acquire the distance to the reference point.
  • the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface. ..
  • the distance information analysis unit 133 analyzes the distance information calculated by the distance information conversion unit 132. For example, using the distance information generated by the distance information conversion unit 132, index values such as the roughness coefficient of the skin surface, which are evaluation indexes for the texture of the skin, are calculated and analyzed.
  • the depth map (distance image) shown in FIG. 15 is a map generated based on the distance information calculated by the distance information conversion unit 132. That is, it is a depth map (distance image) in which pixel values are set according to the distance in pixel units of the skin image taken by the image acquisition unit (camera) 110.
  • the distance information analysis unit 133 analyzes, for example, the distance information (profile) of the portion indicated by the line AB in the central portion from this depth map.
  • the graph on the right side of FIG. 15 is an example of the distance (depth) analysis data generated by the distance information analysis unit 133, and shows changes in the distance (depth) of each pixel included in the line AB in the depth map (distance image). It is a graph which shows.
  • the distance information analysis unit 133 further uses the distance (depth) analysis data showing the change in the distance (depth) of each pixel shown in FIG. 15 to determine the "average roughness", "maximum height", and the like of the skin. Calculate the skin roughness index value. A specific example will be described with reference to FIG.
  • FIG. 16 shows a calculation example of the “average roughness” of the skin and the “maximum height” of the skin, which are the skin roughness index values calculated by the distance information analysis unit 133.
  • the average roughness (Za) of the skin is calculated by the following (Equation 32) as shown in the figure.
  • each parameter is as follows. N: Number of pixels in the calculation area Zn: Distance value of the pixel n in the calculation area
  • each parameter is as follows.
  • Zp Difference between the maximum distance and the average distance (Zave) in the calculation area
  • Zn Difference between the minimum distance and the average distance (Zave) in the calculation area
  • the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera by using the signal output from the image analysis unit 120. That is, using "(e) noise-removed skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera.
  • the three-dimensional (3D) shape of the included skin is analyzed.
  • the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
  • the measurement information display unit 141 of the display unit 140 displays the information acquired or measured by the image acquisition unit 110.
  • the signal information display unit 142 of the display unit 140 displays the information analyzed by the image analysis unit 120.
  • the three-dimensional shape display unit 143 of the display unit 140 displays the three-dimensional shape information of the human skin analyzed by the three-dimensional (3D) shape analysis unit 130.
  • the measurement status display unit 144 of the display unit 140 displays information on the progress of processing being executed by the image acquisition unit 110 to the three-dimensional (3D) shape analysis unit 130.
  • An example of data displayed by the display unit 140 will be described with reference to FIGS. 17 to 19.
  • An example of the display data shown in FIG. 17 is (A) Camera image (b) Depth map (distance image) (C) Three-dimensional (3D) image This is an example of displaying these image data.
  • the image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
  • the depth map (distance image) and (c) the three-dimensional (3D) image are images generated by the three-dimensional (3D) shape analysis unit 130. By looking at these images, the user can accurately determine the shape and unevenness of his / her skin.
  • FIG. 18 An example of the display data shown in FIG. 18 is (A) Camera image (b) Depth map (distance image) (C) Distance (depth) analysis data This is an example of displaying these data.
  • the image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
  • the depth map (distance image) and (c) the distance (depth) analysis data are images generated by the three-dimensional (3D) shape analysis unit 130.
  • FIG. 19 An example of the display data shown in FIG. 19 is (A) Image taken by a camera (b) Image of melanin pigment concentration index value output This is an example of displaying these image data.
  • the image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
  • the melanin pigment concentration index value output image is an image generated by the image analysis unit 120.
  • FIG. 20 is a diagram showing a flowchart illustrating a sequence of processes executed by the image processing apparatus 100 of the present disclosure.
  • the process according to the flowchart shown in FIG. 20 or lower can be executed according to the program stored in the storage unit of the image processing apparatus 100.
  • it can be performed as a program execution process by a processor such as a CPU having a program execution function.
  • a processor such as a CPU having a program execution function.
  • Steps S101 to S106 The processes of steps S101 to S106 are processes executed by the image acquisition unit (camera) 110.
  • the image acquisition unit (camera) 110 turns on the polarized white LED of the illumination unit in step S101, and captures a skin image in step S102.
  • 2 ⁇ 2 4 pixels are used as one unit, and these 4 pixels have different polarizations. It is configured to allow only light in the direction to pass through.
  • four types of polarized images 0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image
  • four types of polarized images 0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image
  • the image acquisition unit (camera) 110 turns on the red (R) LED of the lighting unit in step S103, and takes a skin image in step S104.
  • the image acquisition unit (camera) 110 turns on the near-infrared (NIR) LED of the illumination unit in step S105, and takes a skin image in step S106.
  • NIR near-infrared
  • Step S107 The processes of steps S107 to S109 are processes executed by the image analysis unit 120.
  • the image analysis unit 120 executes the polarization signal analysis process in step S107.
  • This process is executed by the polarization signal analysis unit 121 of the image analysis unit 120.
  • the polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other parts.
  • the process of separating into the components is performed.
  • This process is the process described above with reference to FIGS. 7 and 8, and includes demosaic process and polarization model estimation process.
  • a pixel value interpolation process using the pixel values of a specific polarized image captured in one pixel of four pixels is executed to obtain the pixel values of the specific polarized image. Executes the demosaic process to be set for all pixels.
  • Step S108 the image analysis unit 120 executes the color signal analysis process in step S108. This process is executed by the color signal analysis unit 122 of the image analysis unit 120.
  • the dye signal analysis unit 122 analyzes the red (R) light and the near-infrared (NIR) light-compatible polarized image acquired by the multi-color polarized image acquisition unit 111 of the image acquisition unit 110, and analyzes the polarized image other than human skin. Performs processing to analyze the dye signal that becomes a disturbance.
  • R red
  • NIR near-infrared
  • the dye signal analysis unit 122 includes illumination B222 in the illumination unit 220 of the image acquisition unit (camera) 110, that is, a four-direction polarization component image (I (r0 °), I) calculated from an image taken when the red LED is lit.
  • the illumination C223 in the illumination unit 220 of the image acquisition unit (camera) 110 that is, the four-direction polarization component image (I (nir0 °), I) calculated from the image taken when the near infrared (NIR) LED is lit.
  • NIR near-infrared
  • I (nir) (I (nir0 °) + I (nir45 °) + I (nir90 °) + I (nir135 °)) / 4
  • MI melanin pigment concentration index value
  • the melanin pigment concentration index value shows a high value in a region such as hair or a spot.
  • the pixel value of the melanin dye concentration index value (MI: MeraninIndex) output image is high in the pixel value of a specific color. It is set to a pixel value (for example, a dark red pixel value).
  • the dye signal analysis unit 122 generates such a melanin dye concentration index value (MI: MeraninIndex) output image.
  • Step S109 the image analysis unit 120 executes the signal discrimination process in step S109. This process is executed by the signal discrimination unit 123 of the image analysis unit 120.
  • the signal discrimination unit 123 uses the specular reflection component signal obtained by the polarization signal analysis unit 121 and the melanin dye concentration index value (MI: MeraninIndex) obtained by the dye signal analysis unit 122 to make minute irregularities on the skin surface.
  • MI melanin dye concentration index value
  • a noise-removing skin image is generated by performing a selective extraction process for the resulting shadow component.
  • the "(e) noise-removing skin image" described above with reference to FIG. 12 is generated.
  • the signal discrimination unit 123 synthesizes (b) a specular reflection component image shown in FIG. 12 and (c) a melanin dye concentration index value output image to generate (d) a composite image.
  • the composite image is an image in which a pixel region having a low specular reflection component and a high melanin pigment concentration index value is output as a low pixel value (low brightness).
  • the signal discrimination unit 123 generates (e) a noise-removed skin image by using (b) a specular reflection component image and (d) a composite image shown in FIG. 12.
  • the noise-removed skin image is an image that reflects the uneven shape of the skin surface from which noise such as disturbance such as body hair and spots is removed.
  • the portion of the mirror reflection component image having a particularly high brightness value is affected by sweat, cosmetics (lame), etc.
  • the low pixels of the composite image are also obtained in these pixel regions. It may be output as a value (low brightness), and a process of generating (e) a noise-removed skin image from (d) the composite image and (b) the mirror reflection component image thus generated may be performed.
  • the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122, and reflects the uneven shape of the skin surface from which the influence of disturbance such as body hair and spots is removed. Generates the image signal.
  • Step S110 The processes of steps S110 to S112 are processes executed by the three-dimensional (3D) shape analysis unit 130.
  • step S110 the normal estimation process is executed. This process is executed by the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface.
  • the normal is a line orthogonal to the object surface, that is, the skin surface.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 refers to the noise-removed skin image generated by the image analysis unit 120, that is, FIG.
  • the "(e) noise-removing skin image" which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as body hair and stains has been removed, is input to the learning device 301 and output from the learning device 301.
  • the normal line information for each pixel of "(e) noise-removed skin image" is acquired.
  • the learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information on the skin surface using the learner 301 shown in FIG.
  • the normal is a line orthogonal to the object surface, that is, the skin surface.
  • Step S111 Next, in step S111, the distance conversion process is executed. This process is executed by the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130.
  • the distance information conversion unit 132 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface. This process is the process described above with reference to FIG.
  • the distance calculation formula for obtaining the distance information for example, the Francot-Chellappa algorithm shown in (Equation 31) described above can be used.
  • Step S112 the distance analysis process is executed. This process is executed by the distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130.
  • the distance information analysis unit 133 analyzes the distance information calculated by the distance information conversion unit 132. For example, using the distance information generated by the distance information conversion unit 132, index values such as the roughness coefficient of the skin surface, which are evaluation indexes for the texture of the skin, are calculated and analyzed.
  • the distance information analysis unit 133 analyzes the distance information (profile) of the portion indicated by the line AB in the central portion from the depth map.
  • the graph on the right side of FIG. 15 is an example of the distance (depth) analysis data generated by the distance information analysis unit 133, and shows changes in the distance (depth) of each pixel included in the line AB in the depth map (distance image). It is a graph which shows.
  • the distance information analysis unit 133 uses the distance (depth) analysis data showing the change in the distance (depth) of each pixel shown in FIG. 15, and as described with reference to FIG. 16, the “average roughness” of the skin. Calculates skin roughness index values such as "sa” and "maximum height”.
  • the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera by using the signal output from the image analysis unit 120 in step S112. That is, using "(e) noise-removed skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera.
  • the three-dimensional (3D) shape of the included skin is analyzed.
  • Step S113 Finally, in step S113, the analysis result is displayed on the display unit.
  • This process is a process executed by the display unit 140.
  • the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
  • FIG. 17 An example of the display data shown in FIG. 17 is (A) Camera image (b) Depth map (distance image) (C) Three-dimensional (3D) image This is an example of displaying these image data.
  • FIG. 18 An example of the display data shown in FIG. 18 is (A) Camera image (b) Depth map (distance image) (C) Distance (depth) analysis data This is an example of displaying these data.
  • FIG. 19 An example of the display data shown in FIG. 19 is (A) Image taken by a camera (b) Image of melanin pigment concentration index value output This is an example of displaying these image data.
  • the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
  • the user can accurately determine the condition of his / her skin, for example, the shape of the skin, the uneven condition, the condition of stains, and the like.
  • the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 refers to the noise-removed skin image generated by the image analysis unit 120, that is, FIG.
  • the "(e) noise-removing skin image" which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as body hair and stains has been removed, is input to the learning device 301 and output from the learning device 301.
  • the normal line information for each pixel of "(e) noise-removed skin image" is acquired.
  • the learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like.
  • the learning device (CNN) 301 is generated by a learning process executed in advance using various image data.
  • GT Green Truth
  • L2 the least squares error
  • FIG. 21 is a diagram illustrating an example of generation of a learning device (CNN) 401, that is, an example of machine learning processing.
  • the sample image 411 is input to the learner (CNN) 401.
  • the output of the learner (CNN) 401 is pixel unit normal information 412.
  • the degree of similarity between the pixel unit normal information 412, which is the output when the sample image 411 is input to the learner 401, and the normal information 413, which is the true value (Ground Truth) of learning, is calculated.
  • L2 least squares error
  • the weight of the learner (CNN) 401 is updated by backpropagating the calculated loss.
  • the learner (CNN) 401 is generated.
  • a learning device is generated using CNN, but the present invention is not limited to this.
  • the learning device 300 may be generated by using various methods such as RNN (Recurrent Neural Network) other than CNN.
  • RNN Recurrent Neural Network
  • the weight of the learner is updated by backpropagating the calculated loss, but the weight is not limited to this.
  • the weight of the learner may be updated by using an arbitrary learning method such as a stochastic gradient descent method.
  • FIG. 22 is a flowchart illustrating a processing sequence of learning processing for generating a learning device.
  • the process of steps S201 to S209 of the flow shown in FIG. 22 is the same process as the process of steps S101 to S109 of the flow described above with reference to FIG. 20.
  • the image generated in step S209 is a sample image for the learning process.
  • This sample image is applied to the learning process executed in step S210 to perform the learning process.
  • a learning device is generated by performing a learning process according to this sequence. That is, the learning device (CNN) 301 used by the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 described above with reference to FIG. 13 can be generated.
  • CNN learning device
  • the learner (CNN) 301 is a noise-removing skin image generated by the image analysis unit 120, that is, an image reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains described with reference to FIG. 12 is removed. It is a learning device that enables input of a signal "(e) noise-removed skin image” and acquisition of pixel-based normal information of "(e) noise-removed skin image” as an output.
  • the image acquisition unit (camera) 110 can have a configuration other than that shown in FIG.
  • FIG. 23 shows a configuration example of the image acquisition unit (camera) 110 that is different from the configuration shown in FIG.
  • the image acquisition unit (camera) 500 shown in FIG. 23 also has an image pickup unit 510 and an illumination unit 520 around the image pickup unit.
  • the illumination unit 520 around the image pickup unit 510 is composed of the following four types of illumination.
  • Illumination A Illumination A521 in which a polarizing filter in a direction parallel to the polarizing filter set in the image pickup unit 510 is installed on the front surface of the white LED.
  • Illumination B Illumination B522 in which a polarizing filter set in the image pickup unit 510 and a polarizing filter in the orthogonal direction are installed on the front surface of the white LED.
  • Lighting C Lighting C523 composed of red LEDs
  • Illumination D Illumination D524 composed of near infrared (NIR) LEDs,
  • the illuminations A and B are composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
  • Illumination C is composed of an LED that outputs wavelength light in the red (R) color light region of about 660 nm.
  • Illumination D is composed of LEDs that output wavelength light in the near infrared (NIR) light region of about 880 nm.
  • NIR near infrared
  • the image acquisition unit (camera) 500 sequentially turns on these four types of lights A to D for the same skin area, and acquires four images taken in four different lighting environments.
  • the image pickup unit 510 is configured by a camera having a polarizing filter mounted on the front surface.
  • the infrared (IR) light cut filter attached to many general cameras has been removed.
  • the image sensor of the image pickup unit 510 is an image sensor similar to that of a normal camera, and a polarizing filter is installed in front of the image sensor.
  • the process when the image acquisition unit (camera) 500 is used is different from the process when the image acquisition unit (camera) 110 described with reference to FIG. 4 is used in the following points.
  • the white LED parallel direction filter
  • the white LED orthogonal direction filter
  • the red LED and the near infrared (NIR) LED are sequentially turned on.
  • Is Imax-Imin
  • the maximum luminance value Imax uses pixels of an image taken when the white LED and the polarization directions of the camera are parallel to each other.
  • the minimum luminance value Imin uses an image taken when the white LED and the polarization directions of the camera are orthogonal to each other.
  • FIG. 24 shows another configuration example of the image acquisition unit (camera) 110 that is different from the configuration shown in FIG.
  • the image acquisition unit (camera) 600 shown in FIG. 24 also has an image pickup unit 610 and an illumination unit 620 around the image pickup unit.
  • the illumination unit 620 around the image pickup unit 610 is composed of the following three types of illumination.
  • Illumination A Illumination A621 in which a polarizing filter in a direction parallel to the polarizing filter set in the image pickup unit 610 is installed on the front surface of the white LED.
  • Illumination B Illumination B622 in which a polarizing filter set in the image pickup unit 610 and a polarizing filter in the orthogonal direction are installed on the front surface of the white LED.
  • Lighting C Lighting C623 composed of white LEDs
  • the illuminations A, B, and C are all composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
  • the image acquisition unit (camera) 600 sequentially turns on these three types of lights A to C for the same skin area, and acquires three images taken in three different lighting environments.
  • the image pickup unit 610 is configured by a camera having a polarizing filter mounted on the front surface.
  • the infrared (IR) light cut filter attached to many general cameras has been removed.
  • the image sensor of the image pickup unit 610 is an image sensor similar to that of a normal camera, and a polarizing filter is installed in front of the image sensor. Further, a color filter 611 is mounted on the front surface of the polarizing filter.
  • the color filter 611 has a color filter 611.
  • a red (R) filter that selectively transmits light with a wavelength near 660 nm
  • a near-infrared (NIR) filter that selectively transmits light with a wavelength near 880 nm
  • Visible light (Vis filter,) that selectively transmits wavelength light in the vicinity of 400 to 700 nm It has a configuration in which these three types of filters are arranged.
  • the process when the image acquisition unit (camera) 600 is used is different from the process when the image acquisition unit (camera) 110 described with reference to FIG. 4 is used in the following points.
  • the color filter 611 installed in front of the imaging unit 610 is sequentially moved to sequentially change the wavelength band of the light incident on the imaging unit 610 to obtain a visible light component polarized image and a red component polarized image.
  • NIR near-infrared
  • the polarization signal analysis processing in the polarization signal analysis unit 121 the dye signal analysis processing in the dye signal analysis unit 122, and the signal determination unit 123 in the signal determination unit 123. Execute signal judgment processing.
  • FIG. 25 is a diagram showing a hardware configuration example of the image processing device. Each component of the hardware configuration shown in FIG. 25 will be described.
  • the CPU (Central Processing Unit) 701 functions as a data processing unit that executes various processes according to a program stored in the ROM (Read Only Memory) 702 or the storage unit 708. For example, the process according to the sequence described in the above-described embodiment is executed.
  • the RAM (Random Access Memory) 703 stores programs and data executed by the CPU 701. These CPU 701, ROM 702, and RAM 703 are connected to each other by a bus 704.
  • the CPU 701 is connected to the input / output interface 705 via the bus 704, and the input / output interface 705 includes an input unit 706 consisting of various operation units, switches, etc., and an output unit including a display, a speaker, etc., which are display units, in addition to the camera. 707 is connected.
  • the CPU 701 inputs camera shot images and operation information input from the input unit 706, executes various processes, and outputs the process results to, for example, the output unit 707.
  • the storage unit 708 connected to the input / output interface 705 is composed of, for example, a hard disk or the like, and stores a program executed by the CPU 701 and various data.
  • the communication unit 709 functions as a transmission / reception unit for data communication via a network such as the Internet or a local area network, and communicates with an external device.
  • the drive 710 connected to the input / output interface 705 drives a removable media 711 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory such as a memory card, and records or reads data.
  • a removable media 711 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory such as a memory card
  • the technology disclosed in the present specification can have the following configurations.
  • An image acquisition unit that acquires a skin image
  • An image analysis unit that analyzes the image acquired by the image acquisition unit, and an image analysis unit. It has a three-dimensional shape analysis unit that analyzes the three-dimensional shape of the skin using the analysis results of the image analysis unit.
  • the image acquisition unit Acquire multiple polarized images of different wavelength light
  • the image analysis unit The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
  • the three-dimensional shape analysis unit is An image processing device that analyzes the three-dimensional shape of skin using the noise-removed skin image.
  • the image analysis unit is The polarized image is analyzed to generate a specular reflection component image of the skin surface and a melanin pigment concentration index value image.
  • the image processing apparatus according to (1) which generates the noise-removed skin image by using the generated specular reflection component image and the melanin pigment concentration index value image.
  • the image acquisition unit is The image processing apparatus according to any one of (1) to (3), which has an illumination unit that selectively outputs light having different wavelengths.
  • the image acquisition unit is It has an illumination unit that selectively outputs three types of light with different wavelengths: white light, red light, and near-infrared light.
  • the image processing apparatus according to any one of (1) to (4), which acquires polarized images corresponding to three types of light having different wavelengths, white light, red light, and near-infrared light.
  • the image acquisition unit is The image processing apparatus according to any one of (1) to (5), which has a configuration for capturing a plurality of different polarized images on a pixel-by-pixel basis.
  • the image analysis unit is The image processing apparatus according to (6), which performs demosaic processing of a plurality of different polarized images captured in pixel units.
  • the image analysis unit is Using the image input from the image acquisition unit, a plurality of different polarized images are generated.
  • the image processing apparatus according to any one of (1) to (7), which generates a specular reflection component image of the skin surface based on the generated plurality of polarized images and the correspondence data between the polarization angle and the brightness.
  • the image analysis unit is Using the image input from the image acquisition unit, a plurality of different polarized images are generated. Based on the generated multiple polarized images and the polarization model which is the correspondence data between the polarization angle and the brightness, the specular component signal is separated into the specular reflected light component and the other component signals, and the specular reflection component on the skin surface.
  • the image processing apparatus according to any one of (1) to (8) for generating an image.
  • the image analysis unit is Described in any one of (1) to (10), which generates a melanin dye concentration index value image by using a photographed image under red light illumination and an image photographed under near infrared light illumination input from the image acquisition unit. Image processing equipment.
  • the image analysis unit is A composite image of the specular reflection component image of the skin surface generated by analyzing the polarized image and the melanin pigment concentration index value image is generated.
  • the image processing apparatus according to any one of (1) to (11), which generates the noise-removed skin image from the generated composite image and the specular reflection component image.
  • the three-dimensional shape analysis unit is The normal information estimation unit that estimates the normal information on the skin surface, A distance information conversion unit that converts the normal information on the skin surface estimated by the normal information estimation unit into distance information indicating the uneven shape of the skin surface, and a distance information conversion unit.
  • the image processing apparatus according to any one of (1) to (12), which has a distance information analysis unit that calculates an evaluation index value based on an evaluation of the uneven shape of the skin surface using the distance information generated by the distance information conversion unit.
  • the distance information analysis unit is The image processing apparatus according to (13), which calculates at least one of the average roughness and the maximum height of the skin by using the depth map showing the unevenness of the skin.
  • the normal information estimation unit is The image processing apparatus according to (13) or (14), wherein the noise-removing skin image generated by the image analysis unit is input to a learning device, and normal information on the skin surface is acquired as an output of the learning device.
  • the image processing apparatus further includes The image processing apparatus according to any one of (1) to (15), which has a display unit for displaying at least one of the analysis results of the image analysis unit or the analysis result of the three-dimensional shape analysis unit.
  • the display unit is The image processing apparatus according to (16), which displays at least one data of a three-dimensional image of the skin surface, a depth map showing unevenness of the skin surface, or a melanin pigment concentration index value image.
  • the image acquisition unit acquires the skin image and the image acquisition process, Image analysis processing in which the image analysis unit analyzes the image acquired by the image acquisition unit, and
  • the three-dimensional shape analysis unit executes a three-dimensional shape analysis process for analyzing the three-dimensional shape of the skin using the analysis result of the image analysis unit.
  • the image acquisition unit Acquire multiple polarized images of different wavelength light,
  • the image analysis unit The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
  • the three-dimensional shape analysis unit is An image processing method for analyzing a three-dimensional shape of skin using the noise-removed skin image.
  • a program that executes image processing in an image processing device image acquisition processing that causes the image acquisition unit to acquire skin images, Image analysis processing that causes the image analysis unit to analyze the image acquired by the image acquisition unit, and The 3D shape analysis unit is made to execute a 3D shape analysis process for analyzing the 3D shape of the skin by using the analysis result of the image analysis unit.
  • image acquisition processing Acquire multiple polarized images of light of different wavelengths
  • image analysis process The polarized image is analyzed to generate a noise-removed skin image with noise removed.
  • the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both.
  • the program can be pre-recorded on a recording medium.
  • programs can be received via networks such as LAN (Local Area Network) and the Internet, and installed on a recording medium such as a built-in hard disk.
  • the various processes described in the specification are not only executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.
  • the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
  • a noise-removing skin image that accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed is generated.
  • a configuration that enables analysis of the three-dimensional shape of the skin with high accuracy is realized. Specifically, for example, an image acquisition unit that acquires an image of skin such as a face, an image analysis unit that analyzes the skin image acquired by the image acquisition unit, and a skin 3 using the analysis results of the image analysis unit. It has a three-dimensional shape analysis unit that analyzes a dimensional shape.
  • the image acquisition unit acquires a plurality of polarized images of light having different wavelengths, and the image analysis unit analyzes the polarized images to generate and generate a mirror reflection component image of the skin surface and a melanin dye concentration index value image. Using these images, a noise-removed skin image in which noise such as body hair and stains is removed is generated.
  • the three-dimensional shape analysis unit analyzes the highly accurate three-dimensional shape of the skin using this noise-removed skin image. With this configuration, it is possible to generate a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed, and to analyze the three-dimensional shape of the skin with high accuracy. It will be realized.
  • Image processing device 110 Image acquisition unit (camera) 111 Multicolor compatible polarized image acquisition unit 120 Image analysis unit 121 Polarization signal analysis unit 122 Dye signal analysis unit 123 Signal judgment unit 130 3D (3D) shape analysis unit 131 Normal information estimation unit 132 Distance information conversion unit 133 Distance information analysis Unit 140 Display unit 141 Measurement information display unit 142 Signal information display unit 143 Three-dimensional shape display unit 144 Measurement status display unit 210 Imaging unit 220 Lighting unit 221 to 223 Lighting A to C 301 Learner 401 Learner 500 Image acquisition unit (camera) 510 Imaging unit 520 Lighting unit 600 Image acquisition unit (camera) 610 Imaging unit 620 Lighting unit 701 CPU 702 ROM 703 RAM 704 Bus 705 I / O interface 706 Input section 707 Output section 708 Storage section 709 Communication section 710 Drive 711 Removable media

Abstract

The objective of the present invention is to achieve a configuration for generating a noise-removed skin image reflecting irregularities in the skin with a high degree of accuracy by removing noise such as body hair and blemishes on the face of a user, and capable of analyzing the highly accurate three-dimensional shape of the skin. This image processing device includes: an image acquiring unit for acquiring an image of the skin of the face or the like; an image analyzing unit for analyzing the skin image acquired by the acquiring unit; and a three-dimensional shape analyzing unit for utilizing the analysis results obtained by the image analyzing unit to analyze the three-dimensional shape of the skin. The image acquiring unit acquires a plurality of polarized images of light with different wavelengths, and the image analyzing unit generates a mirror reflection component image of the skin surface, and a melanin pigment density index value image, and uses the generated images to generate a noise-removed skin image from which noise such as body hair and blemishes has been removed. The three-dimensional shape analyzing unit utilizes the noise-removed skin image to analyze the highly accurate three-dimensional shape of the skin.

Description

画像処理装置、および画像処理方法、並びにプログラムImage processing device, image processing method, and program
 本開示は、画像処理装置、および画像処理方法、並びにプログラムに関する。さらに詳細には、人の肌の解析処理を実行する画像処理装置、および画像処理方法、並びにプログラムに関する。 This disclosure relates to an image processing device, an image processing method, and a program. More specifically, the present invention relates to an image processing apparatus for performing analysis processing of human skin, an image processing method, and a program.
 接写撮影カメラを用いて人の肌表面の画素を撮影し、撮影画像に基づいて肌状態を観察・診断する処理や、撮影画像を解析することによって、肌のキメ・毛穴などの状態を数値化し、結果に基づいて健康、美容的観点からケアすることが広く行われている。 A process of observing and diagnosing the skin condition based on the photographed image by photographing the pixels of the human skin surface using a close-up photography camera, and by analyzing the photographed image, the condition of the skin such as texture and pores is quantified. Based on the results, care is widely practiced from the viewpoint of health and beauty.
 例えば、肌表面のキメや毛穴を解析する場合、肌表面の滑らかさや凹凸形状を高精度に解析することが必要となる。このような肌表面の滑らかさや凹凸形状の解析精度は、カメラ画像撮影時の照明や表面凹凸形状によって生じる陰影の度合いによって変化する。さらに、肌表面には陰影と誤認識しやすいシミや体毛などがあり、これらの誤認識により、解析結果にエラーを生じさせる場合がある。 For example, when analyzing the texture and pores of the skin surface, it is necessary to analyze the smoothness and uneven shape of the skin surface with high accuracy. The smoothness of the skin surface and the accuracy of analysis of the uneven shape vary depending on the degree of shading caused by the illumination at the time of taking a camera image and the uneven shape of the surface. Furthermore, there are spots and hair on the surface of the skin that are easily misrecognized as shadows, and these misrecognitions may cause an error in the analysis result.
 従って、高精度な解析処理を実現するためには、実際の肌の凹凸形状に起因する陰影と、その他のシミや体毛等に起因する陰影成分を分離する処理が必要となる。 Therefore, in order to realize highly accurate analysis processing, it is necessary to separate the shadows caused by the actual uneven shape of the skin from the shadow components caused by other spots, body hair, and the like.
 この課題を解決する手法を開示した従来技術として、例えば特許文献1(特開2015-187849号公報)や、特許文献2(特開2013-188341号公報)がある。 As the prior art that discloses the method for solving this problem, there are, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2015-187849) and Patent Document 2 (Japanese Patent Laid-Open No. 2013-188341).
 特許文献1(特開2015-187849号公報)は、グレー画像とエッジ画像の差分に対して二値化処理を行うことで、体毛(睫毛)領域と肌領域を分離する構成を開示している。
 また、特許文献2(特開2013-188341号公報)は、画像の色成分で体毛領域と肌領域を分離する構成を開示している。
Patent Document 1 (Japanese Unexamined Patent Publication No. 2015-187849) discloses a configuration in which a body hair (eyelash) region and a skin region are separated by performing a binarization process on the difference between a gray image and an edge image. ..
Further, Patent Document 2 (Japanese Unexamined Patent Publication No. 2013-188341) discloses a configuration in which a hair region and a skin region are separated by a color component of an image.
 しかし、これらの手法では、肌表面の皮溝による陰影を体毛と誤認識するエラーや、シミ領域の皮溝による陰影を区別できないといった問題が発生する。 However, with these methods, there are problems such as an error that the shadow due to the skin groove on the skin surface is mistakenly recognized as body hair, and the shadow due to the skin groove in the spot area cannot be distinguished.
特開2015-187849号公報Japanese Unexamined Patent Publication No. 2015-187849 特開2013-188341号公報Japanese Unexamined Patent Publication No. 2013-188341
 本開示は、例えば上記問題点に鑑みてなされたものであり、例えば人の肌の偏光画像を撮影し、撮影した偏光画像を解析して、鏡面反射と内部散乱等を分離することによって、ホクロやシミなどの影響を除外する。
 その後、分光画像の撮影を行い、分光画像の解析により、メラニン色素を多く含む領域、例えば体毛やシミを検出して解析対象から除外することによって、肌表面の凹凸に起因する陰影成分のみを選択取得し、この選択されたデータを解析して、肌表面のキメや、凹凸の解析データを生成する。
 本開示は、これらの処理により、人の肌の高精度な解析処理を実現する画像処理装置、および画像処理方法、並びにプログラムを提供することを目的とする。
The present disclosure has been made in view of the above problems, for example, by taking a polarized image of human skin, analyzing the taken polarized image, and separating specular reflection and internal scattering. Exclude the effects of stains and stains.
After that, a spectral image is taken, and by analyzing the spectral image, areas containing a large amount of melanin pigment, such as hair and stains, are detected and excluded from the analysis target, so that only the shadow component caused by the unevenness of the skin surface is selected. It is acquired and the selected data is analyzed to generate analysis data of the texture and unevenness of the skin surface.
It is an object of the present disclosure to provide an image processing apparatus, an image processing method, and a program that realize highly accurate analysis processing of human skin by these processes.
 本開示の第1の側面は、
 肌画像を取得する画像取得部と、
 前記画像取得部の取得した画像を解析する画像解析部と、
 前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析部を有し、
 前記画像取得部は、
 異なる波長光の複数の偏光画像を取得し、
 前記画像解析部は、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
 前記3次元形状解析部は、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理装置にある。
The first aspect of this disclosure is
The image acquisition section that acquires skin images, and
An image analysis unit that analyzes the image acquired by the image acquisition unit, and an image analysis unit.
It has a three-dimensional shape analysis unit that analyzes the three-dimensional shape of the skin using the analysis results of the image analysis unit.
The image acquisition unit
Acquire multiple polarized images of different wavelength light,
The image analysis unit
The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
The three-dimensional shape analysis unit is
It is in an image processing apparatus that analyzes a three-dimensional shape of skin by using the noise-removed skin image.
 さらに、本開示の第2の側面は、
 画像処理装置において実行する画像処理方法であり、
 画像取得部が、肌画像を取得する画像取得処理と、
 画像解析部が、前記画像取得部の取得した画像を解析する画像解析処理と、
 3次元形状解析部が、前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析処理を実行し、
 前記画像取得部は、
 異なる波長光の複数の偏光画像を取得し、
 前記画像解析部は、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
 前記3次元形状解析部は、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理方法にある。
Further, the second aspect of the present disclosure is
It is an image processing method executed in an image processing device.
The image acquisition unit acquires the skin image and the image acquisition process,
Image analysis processing in which the image analysis unit analyzes the image acquired by the image acquisition unit, and
The three-dimensional shape analysis unit executes a three-dimensional shape analysis process for analyzing the three-dimensional shape of the skin using the analysis result of the image analysis unit.
The image acquisition unit
Acquire multiple polarized images of different wavelength light,
The image analysis unit
The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
The three-dimensional shape analysis unit is
It is an image processing method for analyzing a three-dimensional shape of skin by using the noise-removed skin image.
 さらに、本開示の第3の側面は、
 画像処理装置において画像処理を実行させるプログラムであり、
 画像取得部に、肌画像を取得させる画像取得処理と、
 画像解析部に、前記画像取得部の取得した画像を解析させる画像解析処理と、
 3次元形状解析部に、前記画像解析部の解析結果を利用して肌の3次元形状を解析させる3次元形状解析処理を実行させ、
 前記画像取得処理においては、
 異なる波長光の複数の偏光画像を取得させ、
 前記画像解析処理においては、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成させ、
 前記3次元形状解析処理においては、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析させるプログラムにある。
Further, the third aspect of the present disclosure is
A program that executes image processing in an image processing device.
Image acquisition processing that causes the image acquisition unit to acquire skin images,
Image analysis processing that causes the image analysis unit to analyze the image acquired by the image acquisition unit, and
The 3D shape analysis unit is made to execute a 3D shape analysis process for analyzing the 3D shape of the skin by using the analysis result of the image analysis unit.
In the image acquisition process,
Acquire multiple polarized images of light of different wavelengths
In the image analysis process,
The polarized image is analyzed to generate a noise-removed skin image with noise removed.
In the three-dimensional shape analysis process,
There is a program for analyzing the three-dimensional shape of the skin using the noise-removing skin image.
 なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。 The program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium provided in a computer-readable format to an information processing device or a computer system capable of executing various program codes. By providing such a program in a computer-readable format, processing according to the program can be realized on an information processing apparatus or a computer system.
 本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 Still other objectives, features and advantages of the present disclosure will be clarified by more detailed description based on the examples of the present disclosure and the accompanying drawings described below. In the present specification, the system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to those in the same housing.
 本開示の一実施例の構成によれば、ユーザの顔の体毛やシミなどのノイズを除去した肌の凹凸を高精度に反映したノイズ除去肌画像を生成して、高精度な肌の3次元形状を解析可能とした構成が実現される。
 具体的には、例えば、顔などの肌の画像を取得する画像取得部と、画像取得部の取得した肌画像を解析する画像解析部と、画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析部を有する。画像取得部は、異なる波長光の複数の偏光画像を取得し、画像解析部は、偏光画像を解析して、肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像を生成し、生成したこれらの画像を用いて、体毛やシミなどのノイズを除去したノイズ除去肌画像を生成する。3次元形状解析部は、このノイズ除去肌画像を利用して肌の高精度な3次元形状を解析する。
 本構成により、ユーザの顔の体毛やシミなどのノイズを除去した肌の凹凸を高精度に反映したノイズ除去肌画像を生成して、高精度な肌の3次元形状を解析可能とした構成が実現される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
According to the configuration of one embodiment of the present disclosure, a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed is generated, and the three-dimensional skin is highly accurate. A configuration that enables analysis of the shape is realized.
Specifically, for example, an image acquisition unit that acquires an image of skin such as a face, an image analysis unit that analyzes the skin image acquired by the image acquisition unit, and a skin 3 using the analysis results of the image analysis unit. It has a three-dimensional shape analysis unit that analyzes a dimensional shape. The image acquisition unit acquires a plurality of polarized images of light having different wavelengths, and the image analysis unit analyzes the polarized images to generate and generate a mirror reflection component image of the skin surface and a melanin dye concentration index value image. Using these images, a noise-removed skin image in which noise such as body hair and stains is removed is generated. The three-dimensional shape analysis unit analyzes the highly accurate three-dimensional shape of the skin using this noise-removed skin image.
With this configuration, it is possible to generate a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed, and to analyze the three-dimensional shape of the skin with high accuracy. It will be realized.
It should be noted that the effects described in the present specification are merely exemplary and not limited, and may have additional effects.
本開示の画像処理装置が実行する処理について説明する図である。It is a figure explaining the process performed by the image processing apparatus of this disclosure. 本開示の画像処理装置が実行する処理について説明する図である。It is a figure explaining the process performed by the image processing apparatus of this disclosure. 本開示の画像処理装置の構成例について説明する図である。It is a figure explaining the configuration example of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像取得部の構成例について説明する図である。It is a figure explaining the structural example of the image acquisition part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像取得部の構成例について説明する図である。It is a figure explaining the structural example of the image acquisition part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像取得部の構成例について説明する図である。It is a figure explaining the structural example of the image acquisition part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行するデモザイク処理について説明する図である。It is a figure explaining the demosaic processing performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行する偏光信号解析処理について説明する図である。It is a figure explaining the polarization signal analysis processing performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行する偏光信号解析処理について説明する図である。It is a figure explaining the polarization signal analysis processing performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行する色素信号解析処理について説明する図である。It is a figure explaining the dye signal analysis processing performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行する信号判別処理について説明する図である。It is a figure explaining the signal discrimination process performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像解析部が実行する信号判別処理について説明する図である。It is a figure explaining the signal discrimination process performed by the image analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の3次元形状解析部が実行する法線情報算出処理について説明する図である。It is a figure explaining the normal information calculation process executed by the 3D shape analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の3次元形状解析部が実行する距離変換処理について説明する図である。It is a figure explaining the distance conversion process performed by the 3D shape analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の3次元形状解析部が実行する距離解析処理について説明する図である。It is a figure explaining the distance analysis processing executed by the 3D shape analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の3次元形状解析部が実行する距離解析処理について説明する図である。It is a figure explaining the distance analysis processing executed by the 3D shape analysis part of the image processing apparatus of this disclosure. 本開示の画像処理装置の表示部が実行する解析データ表示処理例について説明する図である。It is a figure explaining the analysis data display processing example executed by the display part of the image processing apparatus of this disclosure. 本開示の画像処理装置の表示部が実行する解析データ表示処理例について説明する図である。It is a figure explaining the analysis data display processing example executed by the display part of the image processing apparatus of this disclosure. 本開示の画像処理装置の表示部が実行する解析データ表示処理例について説明する図である。It is a figure explaining the analysis data display processing example executed by the display part of the image processing apparatus of this disclosure. 本開示の画像処理装置が実行する処理のシーケンスについて説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the sequence of processing executed by the image processing apparatus of this disclosure. 本開示の画像処理装置の実行する学習処理について説明する図である。It is a figure explaining the learning process executed by the image processing apparatus of this disclosure. 本開示の画像処理装置が実行する処理シーケンスについて説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining the processing sequence executed by the image processing apparatus of this disclosure. 本開示の画像処理装置の画像取得部の構成例について説明する図である。It is a figure explaining the structural example of the image acquisition part of the image processing apparatus of this disclosure. 本開示の画像処理装置の画像取得部の構成例について説明する図である。It is a figure explaining the structural example of the image acquisition part of the image processing apparatus of this disclosure. 本開示の画像処理装置のハードウェア構成例について説明する図である。It is a figure explaining the hardware configuration example of the image processing apparatus of this disclosure.
 以下、図面を参照しながら本開示の画像処理装置、および画像処理方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
 1.本開示の画像処理装置の実行する処理の概要について
 2.本開示の画像処理装置の構成例について
 3.画像処理装置の各構成要素の構成、実行する処理の詳細について
 3-(1).画像取得部の構成と処理の詳細について
 3-(2).画像解析部の構成と処理の詳細について
 3-(3).3次元(3D)形状解析部の構成と処理の詳細について
 3-(4).表示部の構成と処理の詳細について
 4.画像処理装置が実行する処理のシーケンスについて
 5.画素単位の法線情報の算出に用いる学習器を生成するための学習処理の例について
 6.画像取得部(カメラ)のその他の構成例について
 7.画像処理装置のハードウェア構成例について
 8.本開示の構成のまとめ
Hereinafter, the details of the image processing apparatus, the image processing method, and the program of the present disclosure will be described with reference to the drawings. The explanation will be given according to the following items.
1. 1. Outline of processing executed by the image processing apparatus of the present disclosure 2. About the configuration example of the image processing apparatus of this disclosure 3. Configuration of each component of the image processing device and details of the processing to be executed 3- (1). Details of the configuration and processing of the image acquisition unit 3- (2). Details of the configuration and processing of the image analysis unit 3- (3). Details of the configuration and processing of the three-dimensional (3D) shape analysis unit 3- (4). Details of display configuration and processing 4. 5. About the sequence of processing executed by the image processing device. 6. About an example of learning processing to generate a learning device used to calculate normal information for each pixel. About other configuration examples of the image acquisition unit (camera) 7. About the hardware configuration example of the image processing device 8. Summary of the structure of this disclosure
  [1.本開示の画像処理装置の実行する処理の概要について]
 まず、図1以下を参照して本開示の画像処理装置の実行する処理の概要について説明する。
[1. Outline of processing executed by the image processing apparatus of the present disclosure]
First, an outline of the processing executed by the image processing apparatus of the present disclosure will be described with reference to FIGS. 1 and the following.
 本開示の画像処理装置は、例えば人の顔の肌を接写カメラで撮影し、このカメラ撮影画像の解析を行い、高精度な解析結果を生成して表示する処理を行う。 The image processing device of the present disclosure, for example, takes a picture of the skin of a person's face with a close-up camera, analyzes the image taken by this camera, and performs a process of generating and displaying a highly accurate analysis result.
 本開示の画像処理装置が実行する処理の概要は以下の通りである。
 例えば偏光センサカメラを用いて、人の顔の肌の偏光画像を撮影し、撮影した偏光画像を解析して、鏡面反射と内部散乱等を分離することによって、ホクロやシミなどの影響を除外する。
The outline of the processing executed by the image processing apparatus of the present disclosure is as follows.
For example, a polarized light sensor camera is used to take a polarized image of the skin of a person's face, and the captured polarized image is analyzed to separate specular reflection and internal scattering, thereby excluding the effects of hokuro and stains. ..
 その後、分光画像の撮影を行い、分光画像の解析により、メラニン色素を多く含む領域、例えば体毛やシミ領域を検出して解析対象から除外することによって、肌表面の凹凸に起因する陰影成分のみを選択取得し、この選択されたデータを解析して、肌表面のキメや、凹凸の解析データを生成する。
 本開示は、これらの処理により、体毛やシミの影響を受けずに、肌表面の形状すなわち肌の3次元(3D)形状を解析し、解析結果に基づいてシワ、キメ等、人の肌の高精度な解析データを生成してユーザに提供する。
After that, a spectral image is taken, and by analyzing the spectral image, a region containing a large amount of melanin pigment, for example, a hair or a spot region is detected and excluded from the analysis target, so that only the shadow component caused by the unevenness of the skin surface is removed. Selective acquisition is performed, and this selected data is analyzed to generate analysis data for the texture and unevenness of the skin surface.
The present disclosure analyzes the shape of the skin surface, that is, the three-dimensional (3D) shape of the skin without being affected by body hair and stains by these treatments, and based on the analysis results, wrinkles, textures, etc. of human skin. Generate high-precision analysis data and provide it to users.
 図1、図2は、本開示の画像処理装置の表示部に表示されるUI(ユーザインタフェース)の例を示す図である。 1 and 2 are diagrams showing an example of a UI (user interface) displayed on the display unit of the image processing apparatus of the present disclosure.
 図1は、ユーザに対して表示する初期画面の例である。
 図1に示すように、初期画面には、
 (a)ユーザ動作ガイド画像
 (b)カメラ撮影肌画像
 (c)撮影開始アイコン
 これらの表示データが含まれる。
FIG. 1 is an example of an initial screen displayed to the user.
As shown in FIG. 1, the initial screen is displayed.
(A) User operation guide image (b) Camera shooting skin image (c) Shooting start icon These display data are included.
 (a)ユーザ動作ガイド画像は、ユーザに行ってもらう動作を説明するための説明画像である。図に示す例は、カメラを頬にあてて撮影することを説明している例である。
 (b)カメラ撮影肌画像は、ユーザによってユーザの頬にあてられたカメラによって撮影されている実際の撮影画像である。
 (c)撮影開始アイコンは、ユーザがタッチすることで、カメラによる撮影を行わせるためのスイッチ(シャッタ)に相当するアイコンである。
(A) The user operation guide image is an explanatory image for explaining the operation to be performed by the user. The example shown in the figure is an example explaining that the camera is placed on the cheek to take a picture.
(B) The skin image taken by the camera is an actual photographed image taken by the camera placed on the user's cheek by the user.
(C) The shooting start icon is an icon corresponding to a switch (shutter) for causing the camera to shoot by touching the icon.
 この初期画面に従ってユーザが撮影開始アイコンをタッチすると、ユーザの顔の肌画像が撮影される。
 画像が撮影されると、画像処理装置が撮影画像の解析処理を開始する。
 画像処理装置は、解析処理が終了すると、解析結果を生成して表示部に表示する。
When the user touches the shooting start icon according to this initial screen, a skin image of the user's face is shot.
When the image is taken, the image processing device starts the analysis process of the shot image.
When the analysis process is completed, the image processing device generates an analysis result and displays it on the display unit.
 図2は、解析結果の表示データの一例を示す図である。
 図2に示す例は、ユーザの肌のキメ解析結果の表示例である。なお、解析データは様々な種類があり、図2に示す例はその一例である。
FIG. 2 is a diagram showing an example of display data of analysis results.
The example shown in FIG. 2 is a display example of the texture analysis result of the user's skin. There are various types of analysis data, and the example shown in FIG. 2 is one of them.
 図2に示す例では、ユーザの額、頬、顎の3つの肌領域の撮影画像に基づいて、3か所各々のキメ評価値と、総合評価値を表示した例である。
 その他、ユーザの肌画像や、肌画像対応の解析結果の画像等も表示される。
 なお、前述したように、解析データは、この図2に示すデータに限らず、様々なデータがある。
In the example shown in FIG. 2, the texture evaluation value and the comprehensive evaluation value of each of the three places are displayed based on the photographed images of the three skin areas of the user's forehead, cheek, and chin.
In addition, the user's skin image, the analysis result image corresponding to the skin image, and the like are also displayed.
As described above, the analysis data is not limited to the data shown in FIG. 2, and there are various data.
  [2.本開示の画像処理装置の構成例について]
 次に、本開示の画像処理装置の構成例について説明する。
[2. About the configuration example of the image processing apparatus of the present disclosure]
Next, a configuration example of the image processing apparatus of the present disclosure will be described.
 図3は、本開示の画像処理装置の構成例を示す図である。
 図3に示すように、本開示の画像処理装置100は、画像取得部(カメラ)110、画像解析部120、3次元(3D)形状解析部130、表示部140を有する。
FIG. 3 is a diagram showing a configuration example of the image processing apparatus of the present disclosure.
As shown in FIG. 3, the image processing apparatus 100 of the present disclosure includes an image acquisition unit (camera) 110, an image analysis unit 120, a three-dimensional (3D) shape analysis unit 130, and a display unit 140.
 画像取得部(カメラ)110は、例えば人の顔の肌を撮影する接写カメラであり、複数色対応偏光画像取得部111を有する。
 画像解析部120は、偏光信号解析部121と、色素信号解析部122と、信号判定部123を有する。
 3次元(3D)形状解析部130は、法線情報推定部131、距離情報変換部132、距離情報解析部133を有する。
 表示部140は、測定情報表示部141、信号情報表示部142、3次元形状表示部143、測定状況表示部144を有する。
The image acquisition unit (camera) 110 is, for example, a close-up camera that photographs the skin of a person's face, and has a polarized image acquisition unit 111 that supports a plurality of colors.
The image analysis unit 120 includes a polarization signal analysis unit 121, a dye signal analysis unit 122, and a signal determination unit 123.
The three-dimensional (3D) shape analysis unit 130 includes a normal information estimation unit 131, a distance information conversion unit 132, and a distance information analysis unit 133.
The display unit 140 includes a measurement information display unit 141, a signal information display unit 142, a three-dimensional shape display unit 143, and a measurement status display unit 144.
 まず、これらの構成部の実行する処理の概要について説明する。
 各構成部の実行する処理の詳細については後段で、順次、説明する。
First, an outline of the processing executed by these components will be described.
The details of the processes executed by each component will be described in sequence in the latter part.
 画像取得部(カメラ)110は、測定対象、例えば、ユーザの顔の肌(=測定対象)の画像を撮影する。画像取得部(カメラ)110は、後段の画像解析部120において解析するための画像データを取得する。 The image acquisition unit (camera) 110 captures an image of a measurement target, for example, the skin of the user's face (= measurement target). The image acquisition unit (camera) 110 acquires image data for analysis in the image analysis unit 120 in the subsequent stage.
 画像取得部110の複数色対応偏光画像取得部111は、複数色、具体的には例えば、白色光、赤色光、近赤外(NIR)光各々の偏光画像を取得する処理を行う。 The multi-color polarized image acquisition unit 111 of the image acquisition unit 110 performs a process of acquiring polarized images of a plurality of colors, specifically, for example, white light, red light, and near-infrared (NIR) light.
 画像解析部120は、画像取得部110の測定結果を入力して信号解析を行う。
 画像解析部120の偏光信号解析部121は、画像取得部110の複数色対応偏光画像取得部111が取得した偏光画像を利用して、偏光成分信号を鏡面反射光成分とそれ以外の成分(内部散乱光等)に分離する処理を行う。
The image analysis unit 120 inputs the measurement result of the image acquisition unit 110 and performs signal analysis.
The polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other components (inside). Performs the process of separating into scattered light, etc.).
 画像解析部120の色素信号解析部122は、画像取得部110の複数色対応偏光画像取得部111が取得した赤色(R)光や、近赤外(NIR)光対応の偏光画像を解析し、人の肌以外の外乱となる色素信号を解析する処理を行う。 The dye signal analysis unit 122 of the image analysis unit 120 analyzes the red (R) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 and the polarized image corresponding to near infrared (NIR) light. Performs processing to analyze pigment signals that cause disturbances other than human skin.
 画像解析部120の信号判別部123は、偏光信号解析部121と色素信号解析部122の解析結果を入力して、例えば体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号を生成する。 The signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to reflect the uneven shape of the skin surface from which the influence of disturbance such as hair and stains is removed. Generate an image signal.
 3次元(3D)形状解析部130は、画像解析部120から出力された信号を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。 The three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera using the signal output from the image analysis unit 120.
 3次元(3D)形状解析部130の法線情報推定部131は、肌表面の法線情報を推定する。なお、法線とは、オブジェクト表面に直交する線である。本開示の処理では、肌表面に直交する線に相当する。 The normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface. The normal is a line orthogonal to the surface of the object. In the process of the present disclosure, it corresponds to a line orthogonal to the skin surface.
 3次元(3D)形状解析部130の距離情報変換部132は、法線情報推定部131が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する。
 3次元(3D)形状解析部130の距離情報解析部133は、距離情報変換部132が生成した距離情報を用いて、肌表面の粗さ係数など、肌のキメなどの評価指標となる指標値を算出し、解析する。
The distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
The distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130 uses the distance information generated by the distance information conversion unit 132 as an index value that serves as an evaluation index for the texture of the skin such as the roughness coefficient of the skin surface. Is calculated and analyzed.
 表示部140は、画像取得部(カメラ)110、画像解析部120、3次元(3D)形状解析部130の各々において取得、解析されたデータを表示する。
 表示部140の測定情報表示部141は、画像取得部110が取得、または測定した情報を表示する。
 表示部140の信号情報表示部142は、画像解析部120が解析した情報を表示する。
The display unit 140 displays the data acquired and analyzed by each of the image acquisition unit (camera) 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
The measurement information display unit 141 of the display unit 140 displays the information acquired or measured by the image acquisition unit 110.
The signal information display unit 142 of the display unit 140 displays the information analyzed by the image analysis unit 120.
 表示部140の3次元形状表示部143は、3次元(3D)形状解析部130が解析した人の肌の3次元形状情報を表示する。
 表示部140の測定状況表示部144は、画像取得部110~3次元(3D)形状解析部130において実行中の処理の進行度情報等を表示する。
The three-dimensional shape display unit 143 of the display unit 140 displays the three-dimensional shape information of the human skin analyzed by the three-dimensional (3D) shape analysis unit 130.
The measurement status display unit 144 of the display unit 140 displays information on the progress of processing being executed by the image acquisition unit 110 to the three-dimensional (3D) shape analysis unit 130.
  [3.画像処理装置の各構成要素の構成、実行する処理の詳細について]
 次に、本開示の画像処理装置100の各構成要素の構成、実行する処理の詳細について説明する。
[3. About the configuration of each component of the image processing device and the details of the processing to be executed]
Next, the configuration of each component of the image processing apparatus 100 of the present disclosure and the details of the processing to be executed will be described.
 以下に示す各構成部の構成と処理の詳細について、順次、説明する。
 (1)画像取得部の構成と処理の詳細について
 (2)画像解析部の構成と処理の詳細について
 (3)3次元(3D)形状解析部の構成と処理の詳細について
 (4)表示部の構成と処理の詳細について
The details of the configuration and processing of each component shown below will be described in sequence.
(1) Details of the configuration and processing of the image acquisition unit (2) Details of the configuration and processing of the image analysis unit (3) Details of the configuration and processing of the three-dimensional (3D) shape analysis unit (4) Details of the display unit Details of configuration and processing
  (3-(1).画像取得部の構成と処理の詳細について)
 まず、画像取得部(カメラ)110の構成と処理の詳細について説明する。
(3- (1). Details of configuration and processing of image acquisition unit)
First, the details of the configuration and processing of the image acquisition unit (camera) 110 will be described.
 前述したように、画像取得部(カメラ)110は、画像取得部(カメラ)110の接写カメラによって撮影された測定対象、例えば、ユーザの顔の肌(=測定対象)の画像を撮影する。 As described above, the image acquisition unit (camera) 110 captures an image of the measurement target, for example, the skin of the user's face (= measurement target) taken by the close-up camera of the image acquisition unit (camera) 110.
 画像取得部(カメラ)110の複数色対応偏光画像取得部111は、複数色、具体的には例えば、白色光、赤色光、近赤外(NIR)光各々の偏光画像を取得する処理を行う。 The multi-color compatible polarized image acquisition unit 111 of the image acquisition unit (camera) 110 performs processing to acquire polarized images of a plurality of colors, specifically, for example, white light, red light, and near-infrared (NIR) light. ..
 図4は、画像取得部(カメラ)110の構成例を示す図である。
 図4に示すように、画像取得部(カメラ)110は、撮像部210と、撮像部の周囲の照明部220を有する。
FIG. 4 is a diagram showing a configuration example of the image acquisition unit (camera) 110.
As shown in FIG. 4, the image acquisition unit (camera) 110 has an image pickup unit 210 and an illumination unit 220 around the image pickup unit.
 撮像部210周囲の照明部220は、図に示すように、以下の3種類の照明によって構成される。
 (a)照明A=白色LED前面にある方向の偏光フィルタを設置した照明A221、
 (b)照明B=赤色LEDによって構成される照明B222、
 (c)照明C=近赤外(NIR)LEDによって構成される照明C223、
As shown in the figure, the illumination unit 220 around the image pickup unit 210 is composed of the following three types of illumination.
(A) Lighting A = Lighting A221 with a polarizing filter in the direction in front of the white LED,
(B) Lighting B = Lighting B222 composed of red LEDs,
(C) Illumination C = Illumination C223 composed of near infrared (NIR) LEDs,
 なお、照明A221は、約400~700nmの可視光領域の波長光を出力するLEDによって構成される。
 照明Bは、約660nmの赤(R)色光領域の波長光を出力するLEDによって構成される。
 照明Cは、約880nmの近赤外(NIR)光領域の波長光を出力するLEDによって構成される。
The illumination A221 is composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
Illumination B is composed of an LED that outputs wavelength light in the red (R) color light region of about 660 nm.
Illumination C is composed of LEDs that output wavelength light in the near infrared (NIR) light region of about 880 nm.
 画像取得部(カメラ)110は、同一の肌領域について、これら3種類の照明A~Cを順次、点灯して、3種類の異なる照明環境で撮影した3枚の画像を取得する。 The image acquisition unit (camera) 110 sequentially turns on these three types of lights A to C for the same skin area, and acquires three images taken in three different lighting environments.
 撮像部210は、偏光センサカメラによって構成される。なお、多くの一般のカメラに装着されている赤外(IR)光カットフィルタは除去されている。 The image pickup unit 210 is composed of a polarization sensor camera. The infrared (IR) light cut filter attached to many general cameras has been removed.
 図5、図6を参照して、撮像部210の詳細構成について説明する。
 図5に示すように、撮像部210の撮像素子を構成する各画素には、それぞれ特定方向に偏光した光だけを通過させる光フィルタとして機能する偏光子が設けられている。偏光子の下に偏光子を通過した光を受光する光電変換素子が設けられている。
The detailed configuration of the imaging unit 210 will be described with reference to FIGS. 5 and 6.
As shown in FIG. 5, each pixel constituting the image pickup device of the image pickup unit 210 is provided with a polarizing element that functions as an optical filter that allows only light polarized in a specific direction to pass through. A photoelectric conversion element that receives light that has passed through the polarizing element is provided below the polarizing element.
 撮像素子を構成する各画素に設定される偏光子は、例えば2×2=4画素を一単位として、これら4画素が、それぞれ異なる偏光方向の光のみを通過させる構成となっている。
 図5右下に示す撮像素子の各画素に示すハッチングが偏光方向を示す。
 例えば、図5右下に示す4つの画素a231,b232,c233,d234の偏光方向は以下の設定である。
The polarizing element set for each pixel constituting the image pickup device is configured such that, for example, 2 × 2 = 4 pixels are set as one unit, and these 4 pixels pass only light in different polarization directions.
The hatching shown in each pixel of the image pickup device shown in the lower right of FIG. 5 indicates the polarization direction.
For example, the polarization directions of the four pixels a2311, b2232, c233, and d234 shown in the lower right of FIG. 5 are set as follows.
 画素a231の偏光方向は水平方向であり、画素aは水平偏光のみを受光する。すなわち、画素a231は0度偏光画素である。
 画素b232の偏光方向は左下斜め方向であり、画素bは左下斜め方向の偏光のみを受光する。すなわち、画素b232は45度偏光画素である。
 画素c233の偏光方向は垂直方向であり、画素c垂直方向の偏光のみを受光する。すなわち、画素c233は90度偏光画素である。
 画素d234の偏光方向は、左上斜め方向であり、画素dは左上斜め偏光のみを受光する。すなわち、画素d234は135度偏光画素である。
The polarization direction of the pixel a231 is the horizontal direction, and the pixel a receives only the horizontal polarization. That is, the pixel a231 is a 0-degree polarized pixel.
The polarization direction of the pixel b232 is the lower left diagonal direction, and the pixel b receives only the polarized light in the lower left diagonal direction. That is, the pixel b232 is a 45-degree polarized pixel.
The polarization direction of the pixel c233 is the vertical direction, and only the polarization in the direction perpendicular to the pixel c is received. That is, the pixel c233 is a 90-degree polarized pixel.
The polarization direction of the pixel d234 is the upper left diagonal direction, and the pixel d receives only the upper left oblique polarized light. That is, the pixel d234 is a 135 degree polarized pixel.
 図5に示す例では、撮像素子は、2×2=4画素を一単位としてそれぞれ異なる偏光方向光を通過させる構成であり、このような4画素単位の構成が繰り返し設定されて、撮像部210の全画素が構成される。 In the example shown in FIG. 5, the image sensor has a configuration in which 2 × 2 = 4 pixels are used as one unit to pass different polarization direction lights, and such a configuration in units of 4 pixels is repeatedly set, and the image pickup unit 210 All pixels of are configured.
 図6は、撮像部210の撮像素子の断面構成を示す図である。
 図6右下の断面拡大図に示すように、撮像素子の断面は、上(撮像素子表面)から下(撮像素子内部)にかけて、以下の各層が構成された積層構成を有する。
 (1)シリコンレンズ、
 (2)偏光子、
 (3)光電変換素子、
 撮像部210は、これら(1)~(3)の各層を有する積層構成となっている。
FIG. 6 is a diagram showing a cross-sectional configuration of an image pickup device of the image pickup unit 210.
As shown in the enlarged cross-sectional view at the lower right of FIG. 6, the cross section of the image sensor has a laminated structure in which the following layers are configured from the top (the surface of the image sensor) to the bottom (the inside of the image sensor).
(1) Silicon lens,
(2) Polarizer,
(3) Photoelectric conversion element,
The image pickup unit 210 has a laminated structure having each of the layers (1) to (3).
 画像撮影によって撮像素子に入力する光は、シリコンレンズを介して、偏光子を通過し、光電変換素子によって受光される。 The light input to the image sensor by image capture passes through the polarizing element via the silicon lens and is received by the photoelectric conversion element.
 撮像部210は、図6に示すように、
 (a)複数の異なる偏光方向の偏光を通過させる複数の偏光子と、
 (b)複数の偏光子各々に対応して設定された光電変換素子であり、各偏光子を介した入射光を受光して、偏光画像を取得する光電変換素子
 を有する。
 各画素の光電変換素子は、特定の偏光画像のみを受光する。
 従って、特定の偏光画像は、撮像素子の4画素中、1画素のみしか受光できない。
As shown in FIG. 6, the image pickup unit 210 has a imaging unit 210.
(A) A plurality of polarizing elements that pass polarized light in a plurality of different polarization directions,
(B) It is a photoelectric conversion element set corresponding to each of a plurality of polarizing elements, and has a photoelectric conversion element that receives incident light via each polarizing element and acquires a polarized image.
The photoelectric conversion element of each pixel receives only a specific polarized image.
Therefore, a specific polarized image can receive only one pixel out of the four pixels of the image sensor.
 この一部画素のみの偏光画像に基づいて、全画素の偏光画像を生成する処理(デモザイク処理)は、後段の画像解析部120の偏光信号解析部211において実行される。
 この処理(デモザイク処理)については後段で説明する。
The process of generating a polarized image of all pixels (demosaic process) based on the polarized image of only a part of pixels is executed by the polarized signal analysis unit 211 of the image analysis unit 120 in the subsequent stage.
This process (demosaic process) will be described later.
 図4~図6を参照して説明したように、画像取得部(カメラ)110は、以下の3種類の異なる波長光、すなわち、
 (a)照明A=白色LED前面にある方向の偏光フィルタを設置した照明A221、
 (b)照明B=赤色LEDによって構成される照明B222、
 (c)照明C=近赤外(NIR)LEDによって構成される照明C223、
 これら3書類の異なる照明の元で、4種類(0度、45度、90度、135度)の偏光画像を撮影する。撮影画像は後段の画像解析部120に入力される。
As described with reference to FIGS. 4 to 6, the image acquisition unit (camera) 110 has the following three types of different wavelength light, that is,
(A) Lighting A = Lighting A221 with a polarizing filter in the direction in front of the white LED,
(B) Lighting B = Lighting B222 composed of red LEDs,
(C) Illumination C = Illumination C223 composed of near infrared (NIR) LEDs,
Under the different lighting of these three documents, four types of polarized images (0 degree, 45 degree, 90 degree, 135 degree) are taken. The captured image is input to the image analysis unit 120 in the subsequent stage.
 (3-(2).画像解析部の構成と処理の詳細について)
 次に、画像解析部120の構成と処理の詳細について説明する。
(3- (2). Details of the configuration and processing of the image analysis unit)
Next, the details of the configuration and processing of the image analysis unit 120 will be described.
 前述したように、画像解析部120は、画像取得部110の測定結果を入力して信号解析を行う。
 画像解析部120の偏光信号解析部121は、画像取得部110の複数色対応偏光画像取得部111が取得した偏光画像を利用して、偏光成分信号を鏡面反射光成分とそれ以外の成分(内部散乱光等)に分離する処理を行う。
As described above, the image analysis unit 120 inputs the measurement result of the image acquisition unit 110 and performs signal analysis.
The polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other components (inside). Performs the process of separating into scattered light, etc.).
 画像解析部120の色素信号解析部122は、画像取得部110の複数色対応偏光画像取得部111が取得した赤色(R)光や、近赤外(NIR)光対応の偏光画像を解析し、人の肌以外の外乱となる色素信号を解析する処理を行う。 The dye signal analysis unit 122 of the image analysis unit 120 analyzes the red (R) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 and the polarized image corresponding to near infrared (NIR) light. Performs processing to analyze pigment signals that cause disturbances other than human skin.
 画像解析部120の信号判別部123は、偏光信号解析部121と色素信号解析部122の解析結果を入力して、例えば体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号を生成する。 The signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to reflect the uneven shape of the skin surface from which the influence of disturbance such as hair and stains is removed. Generate an image signal.
 まず、画像解析部120の偏光信号解析部121の実行する処理について説明する。
 偏光信号解析部121は、画像取得部110の複数色対応偏光画像取得部111が取得した偏光画像を利用して、偏光成分信号を鏡面反射光成分とそれ以外の成分(内部散乱光等)に分離する処理を行う。
First, the processing executed by the polarization signal analysis unit 121 of the image analysis unit 120 will be described.
The polarization signal analysis unit 121 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a specular reflected light component and other components (internal scattered light, etc.). Perform the process of separation.
 偏光信号解析部121は、デモザイク部と、偏光モデル推定部を有する。
 偏光信号解析部121のデモザイク部は、画像取得部110の複数色対応偏光画像取得部111が取得した偏光画像、すなわち先に説明したように、撮像素子の4画素中、1画素のみしか受光できていない4種類の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)の各々について、4種類の全画素の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)を生成する処理(デモザイク処理)を実行する。
The polarization signal analysis unit 121 has a demosaic unit and a polarization model estimation unit.
The demosaic unit of the polarization signal analysis unit 121 can receive only one of the four pixels of the image pickup element, that is, the polarized image acquired by the multicolor compatible polarized image acquisition unit 111 of the image acquisition unit 110, that is, as described above. For each of the four types of polarized images (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image), all four types of polarized images (0 degree polarized image, 45 degree polarized image) , 90 degree polarized image, 135 degree polarized image) is executed (demosaic processing).
 偏光モデル推定部は、デモザイク部が生成した4種類の全画素の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)を利用した画像解析処理により、画素値に含まれる光成分から、肌表面で反射した鏡面反射成分光のみを取得する処理、すなわち、鏡面反射光成分以外の成分(内部散乱光等)を除去した鏡面反射成分抽出処理を実行する。 The polarization model estimation unit uses image analysis processing using four types of polarized images (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) generated by the demosaic unit to obtain pixel values. A process of acquiring only the specular reflection component light reflected on the skin surface from the light component contained in the above, that is, a specular reflection component extraction process of removing components other than the specular reflected light component (internally scattered light, etc.) is performed.
 まず、図7を参照して、偏光信号解析部121のデモザイク部の実行するデモザイク処理について説明する。 First, with reference to FIG. 7, the demosaic process executed by the demosaic unit of the polarization signal analysis unit 121 will be described.
 先に図5を参照して説明したように、画像取得部110の複数色対応偏光画像取得部111が取得する偏光画像は、撮像素子の4画素単位で各画素が異なる4種類の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)を撮影している。 As described above with reference to FIG. 5, the polarized images acquired by the multicolor compatible polarized image acquisition unit 111 of the image acquisition unit 110 are four types of polarized images in which each pixel is different in units of four pixels of the image pickup element (4 types of polarized images). A 0-degree polarized image, a 45-degree polarized image, a 90-degree polarized image, and a 135-degree polarized image) are taken.
 従って、各偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)は撮像部の撮像素子の4画素中の1画素において撮影されているに過ぎない。4画素中の残りの3画素は別の偏光画像を撮影している。 Therefore, each polarized image (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) is only captured by one of the four pixels of the image sensor of the image pickup unit. The remaining 3 pixels out of the 4 pixels are taking another polarized image.
 デモザイク部は、4画素の1画素に撮影されている特定の偏光画像の画素値を用いた画素値補間処理を実行して、特定の偏光画像の画素値を全画素に設定するデモザイク処理を実行する。 The demosaic unit executes pixel value interpolation processing using the pixel values of a specific polarized image captured in one pixel of four pixels, and executes demosaic processing to set the pixel values of the specific polarized image to all pixels. do.
 図7を参照して具体的なデモザイク処理の例について説明する。
 デモザイク処理は、ある画素の画素値を利用して、画素値の設定されていない画素の画素値を推定して設定する画素値補間処理であり、様々な手法がある。
 図7に示す例は、画素値補間処理の代表例であるバイリニア補間を説明する図である。
A specific example of demosaic processing will be described with reference to FIG. 7.
The demosaic process is a pixel value interpolation process in which the pixel value of a certain pixel is used to estimate and set the pixel value of a pixel for which the pixel value is not set, and there are various methods.
The example shown in FIG. 7 is a diagram illustrating bilinear interpolation, which is a typical example of pixel value interpolation processing.
 例えば図7に示す例において、90度偏光画像の画素値は、撮像部210の撮像素子の4画素中の1画素のみに設定されている。図7に示すa,b,c,d各画素に90度偏光画像の画素値が設定されている。
 例えば図7に示す左上端の4画素中a画素以外のP,Q,R各画素には、90度偏光画像の画素値は設定されない。
For example, in the example shown in FIG. 7, the pixel value of the 90-degree polarized image is set to only one of the four pixels of the image pickup device of the image pickup unit 210. Pixel values of 90-degree polarized images are set for each of the pixels a, b, c, and d shown in FIG. 7.
For example, the pixel value of the 90-degree polarized image is not set for each of the P, Q, and R pixels other than the a pixel among the four pixels at the upper left end shown in FIG.
 このような設定で、画素P,Q,R各画素の90度偏光画像の画素値を推定して設定する。
 図7に示すように、バイリニア補間の画素値補間アルゴリズムに従い、P,Q,R各画素の90度偏光画像の画素値は、以下の算出式に従って算出(推定)できる。
 P=(a+b)/2
 Q=(a+c)/2
 R=(a+b+c+d)/4
With such a setting, the pixel value of the 90-degree polarized image of each pixel P, Q, R is estimated and set.
As shown in FIG. 7, the pixel values of the 90-degree polarized images of the P, Q, and R pixels can be calculated (estimated) according to the following calculation formula according to the pixel value interpolation algorithm of bilinear interpolation.
P = (a + b) / 2
Q = (a + c) / 2
R = (a + b + c + d) / 4
 このように、画素値が設定されていない画素の画素値は、周囲画素の画素値を利用して算出(推定)することができる。
 撮像部の全画素について、上記算出処理と同様の処理を行い、全ての画素についての4種類の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)の画素値を算出する。
As described above, the pixel value of the pixel for which the pixel value is not set can be calculated (estimated) by using the pixel value of the surrounding pixel.
All the pixels of the image pickup unit are subjected to the same processing as the above calculation processing, and the pixels of four types of polarized images (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image) for all the pixels. Calculate the value.
 このデモザイク処理によって生成された4種類の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)は、偏光信号解析部121の後段の処理部である偏光モデル推定部に入力される。 The four types of polarized images (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image) generated by this demosaic processing are polarized model estimation which is a processing unit after the polarization signal analysis unit 121. It is input to the part.
 偏光モデル推定部は、デモザイク部が生成した4種類の全画素の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)を利用した画像解析処理により、画素値に含まれる光成分から、肌表面で反射した鏡面反射成分光のみを取得する処理、すなわち、鏡面反射光成分以外の成分(内部散乱光等)を除去した鏡面反射成分抽出処理を実行する。 The polarization model estimation unit uses image analysis processing using four types of polarized images (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) generated by the demosaic unit to obtain pixel values. A process of acquiring only the specular reflection component light reflected on the skin surface from the light component contained in the above, that is, a specular reflection component extraction process of removing components other than the specular reflected light component (internally scattered light, etc.) is performed.
 図8を参照して、偏光モデル推定部が実行する処理、すなわち、肌表面で反射した鏡面反射成分光のみを取得する処理について説明する。 With reference to FIG. 8, a process executed by the polarization model estimation unit, that is, a process of acquiring only the specular reflection component light reflected on the skin surface will be described.
 図8に示すグラフは、横軸に偏光角(α)、縦軸に輝度I(α)を設定したグラフであり、偏光モデルを示すグラフである。カメラによって撮影される偏光画像のある1つの点の輝度は、偏光角度に応じて、図8に示すグラフのように変化することが知られている。
 図8に示す偏光モデルグラフは、偏光角度が180度変化するごとに同じ輝度変化を示す。すなわち180度の偏光角度周期を持つ輝度変化を示すことが知られている。
The graph shown in FIG. 8 is a graph in which the polarization angle (α) is set on the horizontal axis and the luminance I (α) is set on the vertical axis, and is a graph showing a polarization model. It is known that the brightness of one point of a polarized image taken by a camera changes as shown in the graph shown in FIG. 8 depending on the polarization angle.
The polarization model graph shown in FIG. 8 shows the same luminance change every time the polarization angle changes by 180 degrees. That is, it is known to exhibit a luminance change having a polarization angle period of 180 degrees.
 ここで、輝度変化範囲内の最も高い輝度をImax,最も低い輝度をIminとする。
 また、最大輝度Imaxが観測されるときの偏光角α=ψを方位角とする。
 例えば、肌表面等の被写体表面で反射した鏡面反射成分をIsとする。
 被写体表面で反射した鏡面反射成分Isは、偏光モデルにおける最大輝度値Imaxと最小輝度値Iminとの差分、すなわち、
 Is=Imax-Imin
 上記式によって算出できる。
Here, the highest brightness within the brightness change range is Imax, and the lowest brightness is Imin.
Further, the polarization angle α = ψ when the maximum luminance Imax is observed is set as the azimuth angle.
For example, the specular reflection component reflected on the surface of the subject such as the surface of the skin is Is.
The specular reflection component Is reflected on the surface of the subject is the difference between the maximum luminance value Imax and the minimum luminance value Imin in the polarization model, that is,
Is = Imax-Imin
It can be calculated by the above formula.
 なお、図8に示すグラフの曲線は、例えば図9に示すような構成において、カメラ250の撮影画像の輝度解析によって取得することができる。
 図9に示すカメラ(CM)250を用いて被写体(OB)251の撮影を行う。
 ただし、カメラ(CM)250は、カメラ(CM)250の前方の偏光板(PL)252を介して画像撮影を行うことで偏光画像を撮影する。
The curve of the graph shown in FIG. 8 can be obtained by luminance analysis of the captured image of the camera 250 in the configuration shown in FIG. 9, for example.
The subject (OB) 251 is photographed using the camera (CM) 250 shown in FIG.
However, the camera (CM) 250 captures a polarized image by capturing an image via the polarizing plate (PL) 252 in front of the camera (CM) 250.
 カメラ(CM)250で生成される偏光画像は、偏光板(PL)252の回転に応じて被写体(OB)251の輝度が変化することが知られている。ここで、偏光板(PL)252を回転させたときの最も高い輝度をImax,最も低い輝度をIminとする。また、図に示すように、2次元座標におけるx軸とy軸を偏光板(PL)52の平面方向としたとき、偏光板(PL)252を回転させたときのx軸に対するxy平面上の角度を偏光角αとする。偏光板(PL)252は、180度回転させると元の偏光状態に戻り180度の周期を有している。また、拡散反射のモデルの場合、最大輝度Imaxが観測されたときの偏光角αを方位角ψとする。このような定義を行うと、偏光板(PL)252を回転させたときに観測される輝度I(α)は、図8に示すようなグラフとなる。 It is known that in the polarized image generated by the camera (CM) 250, the brightness of the subject (OB) 251 changes according to the rotation of the polarizing plate (PL) 252. Here, the highest brightness when the polarizing plate (PL) 252 is rotated is Imax, and the lowest brightness is Imin. Further, as shown in the figure, when the x-axis and the y-axis in the two-dimensional coordinates are in the plane direction of the polarizing plate (PL) 52, it is on the xy plane with respect to the x-axis when the polarizing plate (PL) 252 is rotated. Let the angle be the polarization angle α. When the polarizing plate (PL) 252 is rotated 180 degrees, it returns to the original polarized state and has a period of 180 degrees. In the case of the diffuse reflection model, the polarization angle α when the maximum luminance Imax is observed is defined as the azimuth angle ψ. With such a definition, the luminance I (α) observed when the polarizing plate (PL) 252 is rotated becomes a graph as shown in FIG.
 なお、偏光角αにおける輝度I(α)は、
 最大輝度値Imaxと、
 最小輝度値Iminと、
 偏光角αと、
 最大輝度値Imaxとなる偏光角α、すなわち方位角ψ、
 これら4つのパラメータを用いた以下の式によって定義される。
The luminance I (α) at the polarization angle α is
Maximum brightness value Imax and
Minimum brightness value Imin and
Polarization angle α and
The polarization angle α that gives the maximum luminance value Imax, that is, the azimuth angle ψ,
It is defined by the following equation using these four parameters.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図8に示すグラフにおいて、
 (a)偏光角度=0度の時の輝度I(0°)
 (b)偏光角度=45度の時の輝度I(45°)
 (c)偏光角度=90度の時の輝度I(90°)
 (d)偏光角度=135度の時の輝度I(135°)
 これらの輝度値データは、デモザイク部の生成したデモザイク画像から取得することができる。
 また、輝度I(0°)、輝度I(45°)、輝度I(90°)、輝度I(135°)、これらの輝度が取得される際の偏光角αは、それぞれ0度、45度、90度、135度である。
In the graph shown in FIG. 8,
(A) Luminance I (0 °) when the polarization angle = 0 degrees
(B) Luminance I (45 °) when the polarization angle = 45 degrees
(C) Luminance I (90 °) when the polarization angle = 90 degrees
(D) Luminance I (135 °) when the polarization angle = 135 degrees
These luminance value data can be acquired from the demosaic image generated by the demosaic unit.
Further, the luminance I (0 °), the luminance I (45 °), the luminance I (90 °), the luminance I (135 °), and the polarization angles α when these luminances are acquired are 0 degrees and 45 degrees, respectively. , 90 degrees, 135 degrees.
 すなわち、上記(式1)において、未知パラメータは、
 最大輝度値Imaxと、
 最小輝度値Iminと、
 最大輝度値Imaxとなる偏光角α、すなわち方位角ψ、
 これらの3つのパラメータである。
That is, in the above (Equation 1), the unknown parameter is
Maximum brightness value Imax and
Minimum brightness value Imin and
The polarization angle α that gives the maximum luminance value Imax, that is, the azimuth angle ψ,
These three parameters.
 一方、既知パラメータは、輝度I(0°)、輝度I(45°)、輝度I(90°)、輝度I(135°)と、これらの輝度が取得される際の偏光角αであり、これらの既知パラメータを用いて、上記(式1)を解くことで、3つの未知数、すなわち、
 最大輝度値Imaxと、
 最小輝度値Iminと、
 最大輝度値Imaxとなる偏光角α、すなわち方位角ψ、
 これらの3つのパラメータを算出することができる。
On the other hand, the known parameters are luminance I (0 °), luminance I (45 °), luminance I (90 °), luminance I (135 °), and the polarization angle α when these luminances are acquired. By solving the above (Equation 1) using these known parameters, three unknowns, that is,
Maximum brightness value Imax and
Minimum brightness value Imin and
The polarization angle α that gives the maximum luminance value Imax, that is, the azimuth angle ψ,
These three parameters can be calculated.
 さらに、最大輝度値Imaxと、最小輝度値Iminから、
 被写体表面(肌表面)で反射した鏡面反射成分Isを、
 Is=Imax-Imin
 上記式によって算出することができる。
 偏光信号解析部121の偏光モデル推定部は、これらの処理によって、被写体表面(肌表面)で反射した鏡面反射成分Isを算出する。
Further, from the maximum luminance value Imax and the minimum luminance value Imin,
The specular reflection component Is reflected on the surface of the subject (skin surface),
Is = Imax-Imin
It can be calculated by the above formula.
The polarization model estimation unit of the polarization signal analysis unit 121 calculates the specular reflection component Is reflected on the subject surface (skin surface) by these processes.
 偏光信号解析部121の偏光モデル推定部が実行する具体的な処理例について説明する。
 上記(式1)は、輝度I(0°)、輝度I(45°)、輝度I(90°)、輝度I(135°)と、これらの輝度が取得される際の偏光角α(0度、45度、90度、135度)、これらの既知データを用いることで、以下に示す行列式、すなわち、(式2)に示す「既知行列」、「未知パラメータ構成式」、「撮影データ」、これらのデータによって構成される行列の行列式として示すことができる。
A specific processing example executed by the polarization model estimation unit of the polarization signal analysis unit 121 will be described.
In the above (formula 1), the luminance I (0 °), the luminance I (45 °), the luminance I (90 °), the luminance I (135 °), and the polarization angle α (0) when these luminances are acquired are obtained. Determinant, 45 degrees, 90 degrees, 135 degrees), by using these known data, the determinant shown below, that is, the "known matrix", "unknown parameter configuration formula", and "photographed data" shown in (Equation 2). It can be shown as a determinant of a matrix composed of these data.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さらに、未知パラメータImax,Imin,ψをそれぞれx1,x2,x3として設定した行列x、すなわち、 Furthermore, the matrix x in which the unknown parameters Imax, Imin, and ψ are set as x1, x2, x3, respectively, that is,
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記行列xを定義すると、上記(式2)は、
 Ax=b・・・(式3)
 ただし、A,bは既知パラメータとして表現することができる。
When the above matrix x is defined, the above (Equation 2) becomes
Ax = b ... (Equation 3)
However, A and b can be expressed as known parameters.
 さらに上記(式3)に基づいて、以下の(式4)が導かれる。
 x=A-1b・・・(式4)
Further, based on the above (Equation 3), the following (Equation 4) is derived.
x = A-1b ... (Equation 4)
 上記(式4)を解くことで、3つの未知数、すなわち、
 最大輝度値Imaxと、
 最小輝度値Iminと、
 最大輝度値Imaxとなる偏光角α、すなわち方位角ψ、
 これらの3つのパラメータを算出することができる。各パラメータは、以下の(式5)によって算出できる。
By solving the above (Equation 4), three unknowns, that is,
Maximum brightness value Imax and
Minimum brightness value Imin and
The polarization angle α that gives the maximum luminance value Imax, that is, the azimuth angle ψ,
These three parameters can be calculated. Each parameter can be calculated by the following (Equation 5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 偏光信号解析部121の偏光モデル推定部は、さらに、上記(式5)によって算出された最大輝度値Imaxと、最小輝度値Iminから、
 被写体表面(肌表面)で反射した鏡面反射成分Isを、
 Is=Imax-Imin
 上記式によって算出する。
The polarization model estimation unit of the polarization signal analysis unit 121 further obtains the maximum luminance value Imax calculated by the above (Equation 5) and the minimum luminance value Imin.
The specular reflection component Is reflected on the surface of the subject (skin surface),
Is = Imax-Imin
Calculated by the above formula.
 このように、偏光信号解析部121の偏光モデル推定部は、デモザイク部が生成した4種類の全画素の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)を利用した画像解析処理により、画素値に含まれる光成分から、肌表面で反射した鏡面反射成分光のみを取得する処理、すなわち、鏡面反射光成分以外の成分(内部散乱光等)を除去した鏡面反射成分抽出処理を実行する。 As described above, the polarization model estimation unit of the polarization signal analysis unit 121 is a polarized image of all four types of pixels generated by the demosaic unit (0 degree polarized image, 45 degree polarized image, 90 degree polarized image, 135 degree polarized image). By the image analysis process using The specular reflection component extraction process is executed.
 次に画像解析部120の色素信号解析部122の実行する処理の詳細について説明する。
 前述したように、画像解析部120の色素信号解析部122は、画像取得部110の複数色対応偏光画像取得部111が取得した赤色(R)光や、近赤外(NIR)光対応の偏光画像を解析し、人の肌以外の外乱となる色素信号を解析する処理を行う。
Next, the details of the processing executed by the dye signal analysis unit 122 of the image analysis unit 120 will be described.
As described above, the dye signal analysis unit 122 of the image analysis unit 120 is polarized for red (R) light or near-infrared (NIR) light acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110. The image is analyzed and the dye signal that causes disturbance other than human skin is analyzed.
 色素信号解析部122は、まず、先に図4を参照して説明した画像取得部(カメラ)110の照明部220中の照明B222、すなわち、赤色LED点灯時に撮影した画像から計算される4方向の偏光成分画像(I(r0°),I(r45°),I(r90°),I(r135°))の各画像の対応画素各々について以下の(式21)に従って、赤色偏光画像画素値平均(I(r))を算出する。
 すなわち、
 I(r)=(I(r0°)+I(r45°)+I(r90°)+I(r135°))/4・・・(式21)
 上記(式21)に従って、各画素の赤色偏光画像画素値平均(I(r))を算出する。
First, the dye signal analysis unit 122 has four directions calculated from the illumination B222 in the illumination unit 220 of the image acquisition unit (camera) 110 described above with reference to FIG. 4, that is, an image taken when the red LED is lit. Red polarized image pixel value according to the following (Equation 21) for each of the corresponding pixels of each of the polarized component images (I (r0 °), I (r45 °), I (r90 °), I (r135 °)) of The average (I (r)) is calculated.
That is,
I (r) = (I (r0 °) + I (r45 °) + I (r90 °) + I (r135 °)) / 4 ... (Equation 21)
According to the above (Equation 21), the average red polarized image pixel value (I (r)) of each pixel is calculated.
 さらに、先に図4を参照して説明した画像取得部(カメラ)110の照明部220中の照明C223、すなわち、近赤外(NIR)LED点灯時に撮影した画像から計算される4方向の偏光成分画像(I(nir0°),I(nir45°),I(nir90°),I(nir135°))の各画像の対応画素各々につい以下の(式22)に従って、近赤外(NIR)偏光画像画素値平均(I(nir))を算出する。
 すなわち、
 I(nir)=(I(nir0°)+I(nir45°)+I(nir90°)+I(nir135°))/4・・・(式22)
 上記(式22)に従って、各画素の近赤外(NIR)偏光画像画素値平均(I(nir))を算出する。
Further, the illumination C223 in the illumination unit 220 of the image acquisition unit (camera) 110 described above with reference to FIG. 4, that is, the polarization in four directions calculated from the image taken when the near-infrared (NIR) LED is lit. Near-infrared (NIR) polarization according to the following (Equation 22) for each corresponding pixel of each image of the component image (I (nir0 °), I (nir45 °), I (nir90 °), I (nir135 °)). The average image pixel value (I (nir)) is calculated.
That is,
I (nir) = (I (nir0 °) + I (nir45 °) + I (nir90 °) + I (nir135 °)) / 4 ... (Equation 22)
According to the above (Equation 22), the near-infrared (NIR) polarized image pixel value average (I (nir)) of each pixel is calculated.
 さらに、色素信号解析部122は、上記(式21)に従って算出した各画素の赤色偏光画像画素値平均(I(r))と、上記(式22)に従って算出した各画素の近赤外(NIR)偏光画像画素値平均(I(nir))を用いて、以下の(式23)に従って、メラニン色素濃度指標値(MI:MeraninIndex)を算出する。 Further, the dye signal analysis unit 122 has the red polarized image pixel value average (I (r)) of each pixel calculated according to the above (Equation 21) and the near infrared (NIR) of each pixel calculated according to the above (Equation 22). ) Polarized image Pixel value average (I (nir)) is used to calculate a melanin dye concentration index value (MI: MeraninIndex) according to the following (Equation 23).
 MI=α(logI(nir)-logI(r))+β・・・(式23)
 なお、上記(式23)において、α、βは予め規定した定数である。
MI = α (logI (nir) -logI (r)) + β ... (Equation 23)
In the above (Equation 23), α and β are predetermined constants.
 メラニン色素濃度指標値(MI:MeraninIndex)は、例えば体毛や、シミなどの領域において高い値を示す。
 図10に、具体例を示す。
The melanin pigment concentration index value (MI: MeraninIndex) shows a high value in a region such as body hair or a spot.
FIG. 10 shows a specific example.
 図10には、以下の各画像を示している。
 (a)カメラ撮影画像
 (b)メラニン色素濃度指標値(MI:MeraninIndex)出力画像
FIG. 10 shows each of the following images.
(A) Image taken by camera (b) Output image of melanin pigment concentration index value (MI: MeraninIndex)
 (a)カメラ撮影画像中の「シミ」領域や、体毛領域等、メラニン色素濃度の高い領域は、(b)メラニン色素濃度指標値(MI:MeraninIndex)出力画像において、他の肌領域(メラニン色素濃度が低い領域)と異なる画素値(例えば濃い赤色画素値)に設定される。 (A) Regions with high melanin pigment concentration, such as "blemishes" regions and body hair regions in images taken by cameras, are (b) other skin regions (melanin pigments) in the melanin pigment concentration index value (MI: MeraninIndex) output image. It is set to a pixel value (for example, a dark red pixel value) different from that in the low density region).
 なお、メラニン色素濃度指標値(MI:MeraninIndex)出力画像は、メラニン色素濃度に応じた画素値を設定した画像であり、画素値出力態様は様々な設定が可能である。 The melanin pigment concentration index value (MI: ManinIndex) output image is an image in which the pixel value is set according to the melanin pigment concentration, and the pixel value output mode can be set in various ways.
 例えば輝度画像としても出力可能であり、メラニン色素濃度が高いほど高輝度値(白色)とした画像や、メラニン色素濃度が高いほど低輝度値(黒色)とした画像等、様々な設定の画像が生成可能である。 For example, it can be output as a luminance image, and an image with various settings such as an image having a high luminance value (white) as the melanin pigment concentration is high and an image having a low luminance value (black) as the melanin pigment concentration is high can be displayed. It can be generated.
 色素信号解析部122は、このようなメラニン色素濃度指標値(MI:MeraninIndex)出力画像を生成する。 The dye signal analysis unit 122 generates such a melanin dye concentration index value (MI: MeraninIndex) output image.
 画像解析部120の信号判別部123が実行する処理の詳細について説明する。
 前述したように、画像解析部120の信号判別部123は、偏光信号解析部121と色素信号解析部122の解析結果を入力して、例えば体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号を生成する。
Details of the processing executed by the signal discrimination unit 123 of the image analysis unit 120 will be described.
As described above, the signal discrimination unit 123 of the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122 to remove the influence of disturbance such as hair and stains on the skin surface. Generates an image signal that reflects the uneven shape.
 信号判別部123は、偏光信号解析部121で求められた鏡面反射成分信号と色素信号解析部122で求められたメラニン色素濃度指標値(MI:MeraninIndex)を用いて、肌表面の微小な凹凸に起因する陰影成分の選択抽出処理を実行する。 The signal discrimination unit 123 uses the specular reflection component signal obtained by the polarization signal analysis unit 121 and the melanin dye concentration index value (MI: MeraninIndex) obtained by the dye signal analysis unit 122 to make minute irregularities on the skin surface. The selective extraction process of the resulting shadow component is executed.
 図11、図12を参照して、画像解析部120の信号判別部123が実行する処理の詳細について説明する。
 図11には、以下の各画像を示している。
 (a)カメラ撮影画像
 (b)鏡面反射(Specular)成分画像(明るさ調整後)
The details of the processing executed by the signal discrimination unit 123 of the image analysis unit 120 will be described with reference to FIGS. 11 and 12.
FIG. 11 shows each of the following images.
(A) Camera image (b) Specular component image (after brightness adjustment)
 なお、「(b)鏡面反射(Specular)成分画像(明るさ調整後)」は、先に図8を参照して説明した偏光画像を解析して生成される鏡面反射成分のみを抽出して生成した画像である。
 すなわち、画像解析部120の偏光信号解析部121が実行する偏光画像解析処理によって取得される鏡面反射成分画像である。
The "(b) specular component image (after brightness adjustment)" is generated by extracting only the specular reflection component generated by analyzing the polarized image described with reference to FIG. 8 above. It is an image that was made.
That is, it is a specular reflection component image acquired by the polarization image analysis process executed by the polarization signal analysis unit 121 of the image analysis unit 120.
 図11に示す画像からは分かりにくいが、「(a)カメラ撮影画像」は、体毛やシミ、ホクロなどの画像領域は画素値が低く(低輝度)なり、皮溝やシワなどの陰影も同じく、画素値が低く(低輝度)なる。
 一方、偏光画像の解析処理によって求められた「(b)鏡面反射(Specular)成分画像」は、表面の陰影と表面の体毛のみを画素値に反映した画像となる。皮膚の奥から表面付近にあるシミ・ホクロなどの影響は画素値にほとんど反映されない画像となる。
Although it is difficult to understand from the image shown in FIG. 11, in "(a) camera-taken image", the pixel value is low (low brightness) in the image area such as body hair, stains, and moles, and the shadows such as skin grooves and wrinkles are also the same. , The pixel value becomes low (low brightness).
On the other hand, the "(b) specular component image" obtained by the analysis processing of the polarized image is an image in which only the shadow on the surface and the hair on the surface are reflected in the pixel value. The effect of spots, moles, etc. from the depths of the skin to the vicinity of the surface is hardly reflected in the pixel values.
 また、先に図10を参照して説明したように、画像解析部120の色素信号解析部122が生成するメラニン色素濃度指標値出力画像は、メラニン色素濃度が高い体毛やシミ・ホクロ部分を、他の肌領域と区別した画素値を出力した画像となる。 Further, as described above with reference to FIG. 10, the melanin pigment concentration index value output image generated by the dye signal analysis unit 122 of the image analysis unit 120 includes hair and spots / moles having a high melanin pigment concentration. It is an image that outputs a pixel value that is distinguished from other skin areas.
 前述したように、画像解析部120の色素信号解析部122は、例えば、メラニン色素濃度が高い体毛やシミ・ホクロ部分を、他の肌領域より画素値を高く(高輝度)に設定したメラニン色素濃度指標値出力画像を出力可能である。
 また、逆に、メラニン色素濃度が高い体毛やシミ・ホクロ部分を、他の肌領域より画素値を低く(艇輝度)に設定したメラニン色素濃度指標値出力画像も出力可能である。
As described above, the dye signal analysis unit 122 of the image analysis unit 120 sets, for example, a melanin pigment having a higher pixel value (high brightness) than other skin regions for hair and spots / moles having a high melanin pigment concentration. It is possible to output a density index value output image.
On the contrary, it is also possible to output a melanin pigment concentration index value output image in which the pixel value of hair and spots / moles having a high melanin pigment concentration is set lower than that of other skin areas (boat brightness).
 画像解析部120の信号判別部123は、以下の3種類の画像を用いて、例えば体毛やシミ等の外乱等のノイズを除去した肌表面の凹凸形状を反映した画像、すなわち、ノイズ除去肌画像を生成する。
 (a)画像取得部(カメラ)110が取得するカメラ撮影画像
 (b)画像解析部120の偏光信号解析部121が実行する偏光画像解析処理によって生成される鏡面反射成分画像
 (c)画像解析部120の色素信号解析部122が実行する色素信号解析処理によって生成されるメラニン色素濃度指標値出力画像
The signal discrimination unit 123 of the image analysis unit 120 uses the following three types of images to reflect an image reflecting the uneven shape of the skin surface from which noise such as disturbance such as body hair and stains has been removed, that is, a noise-removed skin image. To generate.
(A) Image taken by the camera acquired by the image acquisition unit (camera) 110 (b) Mirror reflection component image generated by the polarized image analysis process executed by the polarization signal analysis unit 121 of the image analysis unit 120 (c) Image analysis unit A melanin dye concentration index value output image generated by a dye signal analysis process executed by the dye signal analysis unit 122 of 120.
 図12を参照して、画像解析部120の信号判別部123が実行する処理シーケンスについて説明する。
 信号判別部123は、まず、図12に示す(b)鏡面反射成分画像と、(c)メラニン色素濃度指標値出力画像を合成して(d)合成画像を生成する。
 (d)合成画像は、鏡面反射成分が低く、かつ、メラニン色素濃度指標値が高い画素領域を低画素値(低輝度)(以下、暗部という)として出力した画像とである。
A processing sequence executed by the signal discrimination unit 123 of the image analysis unit 120 will be described with reference to FIG. 12.
First, the signal discrimination unit 123 synthesizes (b) a specular reflection component image shown in FIG. 12 and (c) a melanin dye concentration index value output image to generate (d) a composite image.
(D) The composite image is an image in which a pixel region having a low specular reflection component and a high melanin pigment concentration index value is output as a low pixel value (low luminance) (hereinafter referred to as a dark portion).
 次に、信号判別部123は、まず、図12に示す(b)鏡面反射成分画像と、(d)合成画像から、(e)ノイズ除去肌画像を生成する。
 (e)ノイズ除去肌画像は、例えば体毛やシミ等の外乱等のノイズを除去した肌表面の凹凸形状を反映した画像となる。
Next, the signal discrimination unit 123 first generates (e) a noise-removed skin image from (b) a specular reflection component image and (d) a composite image shown in FIG. 12.
(E) The noise-removed skin image is an image that reflects the uneven shape of the skin surface from which noise such as disturbance such as body hair and spots is removed.
 (e)ノイズ除去肌画像の生成にあたっては、例えば、(d)合成画像の暗部以外の部分(以下、明部という)については、対応する(b)鏡面反射成分画像の輝度値を使う。また、(d)画像の暗部、つまり鏡面反射成分が低く、かつメラニン色素濃度指標値が高い画素領域は、当該画素近傍に明部があれば明部の画素値、換言すれば対応する(b)画素の輝度値で補間する。一方、当該画素近傍に明部がない場合においては、補間処理を行わず、当該画素の画素値をそのまま使う。 (E) In generating the noise-removed skin image, for example, (d) the luminance value of the corresponding (b) specular reflection component image is used for the portion other than the dark portion (hereinafter referred to as the bright portion) of the composite image. Further, (d) the dark part of the image, that is, the pixel region having a low specular reflection component and a high melanin dye concentration index value corresponds to the pixel value of the bright part if there is a bright part in the vicinity of the pixel, in other words, (b). ) Interpolate with the brightness value of the pixel. On the other hand, when there is no bright portion in the vicinity of the pixel, the pixel value of the pixel is used as it is without performing the interpolation processing.
 このように、画像解析部120は、は、偏光信号解析部121と色素信号解析部122の解析結果を入力して、例えば体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号を生成する。 In this way, the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122, and reflects the uneven shape of the skin surface from which the influence of disturbance such as body hair and spots is removed. Generates the image signal.
  (3-(3).3次元(3D)形状解析部の構成と処理の詳細について)
 次に、3次元(3D)形状解析部130の構成と処理の詳細について説明する。
(3- (3) .Details of configuration and processing of 3D (3D) shape analysis unit)
Next, the details of the configuration and processing of the three-dimensional (3D) shape analysis unit 130 will be described.
 前述したように、3次元(3D)形状解析部130は、画像解析部120から出力された信号を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。 As described above, the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera using the signal output from the image analysis unit 120.
 すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。 That is, using "(e) noise-removed skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera. The three-dimensional (3D) shape of the included skin is analyzed.
 3次元(3D)形状解析部130の法線情報推定部131は、肌表面の法線情報を推定する。なお、法線とは、オブジェクト表面、すなわち肌表面に直交する線である。
 3次元(3D)形状解析部130の距離情報変換部132は、法線情報推定部131が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する。
 3次元(3D)形状解析部130の距離情報解析部133は、距離情報変換部132が生成した距離情報を用いて、肌表面の粗さ係数など、肌のキメなどの評価指標となる指標値を算出し、解析する。
The normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface. The normal is a line orthogonal to the object surface, that is, the skin surface.
The distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
The distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130 uses the distance information generated by the distance information conversion unit 132 as an index value that serves as an evaluation index for the texture of the skin such as the roughness coefficient of the skin surface. Is calculated and analyzed.
 まず、図13を参照して、3次元(3D)形状解析部130の法線情報推定部131の実行する肌表面の法線情報推定処理について説明する。 First, with reference to FIG. 13, the normal information estimation process of the skin surface executed by the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 will be described.
 3次元(3D)形状解析部130の法線情報推定部131は、画像解析部120が生成したノイズ除去肌画像、すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を、学習器301に入力する。 The normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 removes the noise-removed skin image generated by the image analysis unit 120, that is, the influence of disturbance such as hair and stains described with reference to FIG. The “(e) noise-removed skin image”, which is an image signal reflecting the uneven shape of the skin surface, is input to the learner 301.
 学習器301は、例えば、CNN(Convolutional Neural Network)等を利用した学習器であり、学習器301の入力は、「(e)ノイズ除去肌画像」)であり、出力は、入力画像である「(e)ノイズ除去肌画像」の画素単位の法線情報である。 The learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like, the input of the learning device 301 is "(e) noise removing skin image"), and the output is an input image ". (E) Noise-removed skin image ”is pixel-based normal information.
 画素単位の法線情報には、例えば、以下のパラメータが含まれる。
 p:算出した法線のx方向成分値(nx)
 q:算出した法線のy方向成分値(ny)
 なお、上記のx方向、y方向は、先に説明した図9に示す座標井のx,y方向に対応する。
The pixel-based normal information includes, for example, the following parameters.
p: Calculated normal x-direction component value (nx)
q: Y-direction component value (ny) of the calculated normal
The x-direction and the y-direction correspond to the x- and y-directions of the coordinate well shown in FIG. 9 described above.
 このように、法線情報推定部131は、画像解析部120から出力された信号である「(e)ノイズ除去肌画像」を学習器(CNN)301に入力し、画素毎の法線情報を出力する。 In this way, the normal information estimation unit 131 inputs the “(e) noise-removing skin image”, which is a signal output from the image analysis unit 120, into the learner (CNN) 301, and inputs the normal information for each pixel. Output.
 なお、学習器(CNN)301は、事前に様々な画像データを利用して実行される学習処理によって生成される。学習時には、実際の肌やレプリカを撮影した画像と別途3Dスキャンデバイスで測定した凹凸情報を法線情報に変換したもの(GT(Ground Truth)データ)のペアを多数用意し、最小二乗誤差(L2)ロス関数を用いてネットワークの重みを学習させる。
 この学習処理の具体例については後段で説明する。
The learning device (CNN) 301 is generated by a learning process executed in advance using various image data. At the time of learning, prepare a large number of pairs of images of actual skin and replicas and separately converted unevenness information measured by a 3D scanning device into normal information (GT (Ground Truth) data), and the least squares error (L2). ) Learn network weights using a loss function.
A specific example of this learning process will be described later.
 このように、3次元(3D)形状解析部130の法線情報推定部131は、図13に示す学習器301を用いて肌表面の法線情報を推定する。なお、法線とは、オブジェクト表面、すなわち肌表面に直交する線である。 In this way, the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information on the skin surface using the learner 301 shown in FIG. The normal is a line orthogonal to the object surface, that is, the skin surface.
 次に、3次元(3D)形状解析部130の距離情報変換部132の実行する処理について説明する。
 3次元(3D)形状解析部130の距離情報変換部132は、法線情報推定部131が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する。
Next, the process executed by the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 will be described.
The distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
 図14を参照して、距離情報変換部132の実行する処理について説明する。
 距離情報変換部132は、法線情報推定部131から出力された画素単位の法線情報(p=nx,q=ny)を用いて、その画素の距離情報(Z)を算出する。
A process executed by the distance information conversion unit 132 will be described with reference to FIG.
The distance information conversion unit 132 calculates the distance information (Z) of the pixel by using the normal information (p = nx, q = ny) of each pixel output from the normal information estimation unit 131.
 画素の法線情報から、距離情報を求める距離算出式としては、例えば以下の(式31)に示すFrankot-Chellappaアルゴリズムを用いることができる。 As the distance calculation formula for obtaining the distance information from the normal information of the pixels, for example, the Frankot-Chellappa algorithm shown in the following (Equation 31) can be used.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、上記(式31)における各パラメータは以下の通りである。
 F:フーリエ変換
 εx:空間周波数(x)
 εy:空間周波数(y)
 p:法線のx方向成分値(nx)
 q:法線のy方向成分値(ny)
Each parameter in the above (Equation 31) is as follows.
F: Fourier transform εx: spatial frequency (x)
εy: Spatial frequency (y)
p: x-direction component value (nx) of the normal
q: Normal component value in the y direction (ny)
 なお、上記(式31)は、カメラと被写体との絶対距離を算出するものではない。上記(式31)によって算出される距離情報(Z)は、ある基準点を設け、そこから勾配場を積分して、算出される距離(形状)に相当するる。勾配場と形状の微分が一致するようにして距離(Z)を算出する。
 カメラから被写体までの絶対距離を知るには、別途、基準点までの距離を取得する必要がある。
The above (Equation 31) does not calculate the absolute distance between the camera and the subject. The distance information (Z) calculated by the above (Equation 31) corresponds to the distance (shape) calculated by providing a certain reference point and integrating the gradient field from the reference point. The distance (Z) is calculated so that the gradient field and the derivative of the shape match.
In order to know the absolute distance from the camera to the subject, it is necessary to separately acquire the distance to the reference point.
 このように、3次元(3D)形状解析部130の距離情報変換部132は、法線情報推定部131が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する。 In this way, the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface. ..
 次に、3次元(3D)形状解析部130の距離情報解析部133の実行する処理について説明する。
 距離情報解析部133は、距離情報変換部132で算出された距離情報の解析を行う。例えば、距離情報変換部132が生成した距離情報を用いて、肌表面の粗さ係数など、肌のキメなどの評価指標となる指標値を算出し、解析する。
Next, the process executed by the distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130 will be described.
The distance information analysis unit 133 analyzes the distance information calculated by the distance information conversion unit 132. For example, using the distance information generated by the distance information conversion unit 132, index values such as the roughness coefficient of the skin surface, which are evaluation indexes for the texture of the skin, are calculated and analyzed.
 図15、図16を参照して、距離情報解析部133の実行する処理について説明する。
 図15に示すデプスマップ(距離画像)は、距離情報変換部132で算出された距離情報に基づいて生成されるマップである。すなわち画像取得部(カメラ)110が撮影した肌画像の画素単位で、距離に応じた画素値を設定したデプスマップ(距離画像)である。
The process executed by the distance information analysis unit 133 will be described with reference to FIGS. 15 and 16.
The depth map (distance image) shown in FIG. 15 is a map generated based on the distance information calculated by the distance information conversion unit 132. That is, it is a depth map (distance image) in which pixel values are set according to the distance in pixel units of the skin image taken by the image acquisition unit (camera) 110.
 距離情報解析部133は、例えば、このデブスマップから、中央部のラインABで示される部分の距離情報(プロファイル)を解析する。
 図15の右側のグラフは、距離情報解析部133が生成する距離(デプス)解析データの一例であり、デプスマップ(距離画像)中のラインABに含まれる各画素の距離(デプス)の変化を示すグラフである。
The distance information analysis unit 133 analyzes, for example, the distance information (profile) of the portion indicated by the line AB in the central portion from this depth map.
The graph on the right side of FIG. 15 is an example of the distance (depth) analysis data generated by the distance information analysis unit 133, and shows changes in the distance (depth) of each pixel included in the line AB in the depth map (distance image). It is a graph which shows.
 ラインABに含まれる各画素の距離の変化が大きいほど肌の凹凸が大きいことを意味する。一方、ラインABに含まれる各画素の距離の変化が小さいほど肌の凹凸が小さくなめらかな肌であることを意味する。 The larger the change in the distance of each pixel included in the line AB, the larger the unevenness of the skin. On the other hand, the smaller the change in the distance of each pixel included in the line AB, the smaller the unevenness of the skin and the smoother the skin.
 距離情報解析部133は、さらに、図15に示す各画素の距離(デプス)の変化を示す距離(デプス)解析データを用いて、肌の「平均粗さ」や、「最大高さ」等の肌粗さ指標値を算出する。
 図16を参照して具体例について説明する。
The distance information analysis unit 133 further uses the distance (depth) analysis data showing the change in the distance (depth) of each pixel shown in FIG. 15 to determine the "average roughness", "maximum height", and the like of the skin. Calculate the skin roughness index value.
A specific example will be described with reference to FIG.
 図16には、距離情報解析部133が算出する肌粗さ指標値である肌の「平均粗さ」と、肌の「最大高さ」の算出例を示している。 FIG. 16 shows a calculation example of the “average roughness” of the skin and the “maximum height” of the skin, which are the skin roughness index values calculated by the distance information analysis unit 133.
 肌の平均粗さ(Za)は、図に示すように、以下の(式32)によって算出される。 The average roughness (Za) of the skin is calculated by the following (Equation 32) as shown in the figure.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記(式32)において、各パラメータは以下の通りである。
 N:算出領域の画素数
 Zn:算出領域の画素nの距離値
In the above (Equation 32), each parameter is as follows.
N: Number of pixels in the calculation area Zn: Distance value of the pixel n in the calculation area
 さらに、肌の最大高さ(Zz)は、以下の(式8)によって算出される。
 Zz=Zp+Zv・・・(式8)
Further, the maximum skin height (Zz) is calculated by the following (Equation 8).
Zz = Zp + Zv ... (Equation 8)
 上記(式8)において、各パラメータは以下の通りである。
 Zp:算出領域の最大距離と平均距離(Zave)の差分
 Zn:算出領域の最小距離と平均距離(Zave)の差分
In the above (Equation 8), each parameter is as follows.
Zp: Difference between the maximum distance and the average distance (Zave) in the calculation area Zn: Difference between the minimum distance and the average distance (Zave) in the calculation area
 このように、3次元(3D)形状解析部130は、画像解析部120から出力された信号を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。
 すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。
As described above, the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera by using the signal output from the image analysis unit 120.
That is, using "(e) noise-removed skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera. The three-dimensional (3D) shape of the included skin is analyzed.
  (3-(4).表示部の構成と処理の詳細について)
 次に、表示部140の構成と処理の詳細について説明する。
(3- (4). Details of display unit configuration and processing)
Next, the details of the configuration and processing of the display unit 140 will be described.
 前述したように、表示部140は、画像取得部110、画像解析部120、3次元(3D)形状解析部130の各々において取得、解析されたデータを表示する。
 表示部140の測定情報表示部141は、画像取得部110が取得、または測定した情報を表示する。
 表示部140の信号情報表示部142は、画像解析部120が解析した情報を表示する。
 表示部140の3次元形状表示部143は、3次元(3D)形状解析部130が解析した人の肌の3次元形状情報を表示する。
 表示部140の測定状況表示部144は、画像取得部110~3次元(3D)形状解析部130において実行中の処理の進行度情報等を表示する。
As described above, the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
The measurement information display unit 141 of the display unit 140 displays the information acquired or measured by the image acquisition unit 110.
The signal information display unit 142 of the display unit 140 displays the information analyzed by the image analysis unit 120.
The three-dimensional shape display unit 143 of the display unit 140 displays the three-dimensional shape information of the human skin analyzed by the three-dimensional (3D) shape analysis unit 130.
The measurement status display unit 144 of the display unit 140 displays information on the progress of processing being executed by the image acquisition unit 110 to the three-dimensional (3D) shape analysis unit 130.
 図17~図19を参照して表示部140が表示するデータの例について説明する。
 図17に示す表示データの例は、
 (a)カメラ撮影画像
 (b)デプスマップ(距離画像)
 (c)3次元(3D)画像
 これらの画像データを表示した例である。
An example of data displayed by the display unit 140 will be described with reference to FIGS. 17 to 19.
An example of the display data shown in FIG. 17 is
(A) Camera image (b) Depth map (distance image)
(C) Three-dimensional (3D) image This is an example of displaying these image data.
 (a)カメラ撮影画像は、画像取得部(カメラ)110から取得した画像である。
 (b)デプスマップ(距離画像)と、(c)3次元(3D)画像は、3次元(3D)形状解析部130が生成した画像である。
 ユーザは、これらの画像を見て、自分の肌の形状、凹凸状態を正確に判断することが可能となる。
(A) The image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
(B) The depth map (distance image) and (c) the three-dimensional (3D) image are images generated by the three-dimensional (3D) shape analysis unit 130.
By looking at these images, the user can accurately determine the shape and unevenness of his / her skin.
 図18に示す表示データの例は、
 (a)カメラ撮影画像
 (b)デプスマップ(距離画像)
 (c)距離(デプス)解析データ
 これらのデータを表示した例である。
An example of the display data shown in FIG. 18 is
(A) Camera image (b) Depth map (distance image)
(C) Distance (depth) analysis data This is an example of displaying these data.
 (a)カメラ撮影画像は、画像取得部(カメラ)110から取得した画像である。
 (b)デプスマップ(距離画像)と、(c)距離(デプス)解析データは、3次元(3D)形状解析部130が生成した画像である。
 ユーザは、これらの画像やグラフを見て、自分の肌の形状、凹凸状態を正確に判断することが可能となる。
(A) The image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
(B) The depth map (distance image) and (c) the distance (depth) analysis data are images generated by the three-dimensional (3D) shape analysis unit 130.
By looking at these images and graphs, the user can accurately determine the shape and unevenness of his / her skin.
 図19に示す表示データの例は、
 (a)カメラ撮影画像
 (b)メラニン色素濃度指標値出力画像
 これらの画像データを表示した例である。
An example of the display data shown in FIG. 19 is
(A) Image taken by a camera (b) Image of melanin pigment concentration index value output This is an example of displaying these image data.
 (a)カメラ撮影画像は、画像取得部(カメラ)110から取得した画像である。
 (b)メラニン色素濃度指標値出力画像は、画像解析部120が生成した画像である。
 ユーザは、これらの画像を見て、自分の肌の状態、例えばシミの状態等を正確に判断することが可能となる。
(A) The image captured by the camera is an image acquired from the image acquisition unit (camera) 110.
(B) The melanin pigment concentration index value output image is an image generated by the image analysis unit 120.
By looking at these images, the user can accurately determine the condition of his / her skin, for example, the condition of stains.
  [4.画像処理装置が実行する処理のシーケンスについて]
 次に、本開示の画像処理装置100が実行する処理のシーケンスについて説明する。
[4. About the sequence of processing executed by the image processing device]
Next, a sequence of processing executed by the image processing apparatus 100 of the present disclosure will be described.
 図20は、本開示の画像処理装置100が実行する処理のシーケンスについて説明するフローチャートを示す図である。
 なお、図20以下に示すフローチャートに従った処理は、画像処理装置100の記憶部に格納されたプログラムに従って実行することが可能である。例えばプログラム実行機能を有するCPU等のプロセッサによるプログラム実行処理として行うことができる。
 以下、フローの各ステップの処理について、順次、説明する。
FIG. 20 is a diagram showing a flowchart illustrating a sequence of processes executed by the image processing apparatus 100 of the present disclosure.
The process according to the flowchart shown in FIG. 20 or lower can be executed according to the program stored in the storage unit of the image processing apparatus 100. For example, it can be performed as a program execution process by a processor such as a CPU having a program execution function.
Hereinafter, the processing of each step of the flow will be described in sequence.
  (ステップS101~S106)
 ステップS101~S106の処理は、画像取得部(カメラ)110が実行する処理である。
 まず、画像取得部(カメラ)110は、ステップS101において、照明部の偏光白色LEDを点灯し、ステップS102において肌画像を撮影する。
(Steps S101 to S106)
The processes of steps S101 to S106 are processes executed by the image acquisition unit (camera) 110.
First, the image acquisition unit (camera) 110 turns on the polarized white LED of the illumination unit in step S101, and captures a skin image in step S102.
 なお、画像取得部(カメラ)110の撮像部は、先に図5、図6を参照して説明したように、例えば2×2=4画素を一単位として、これら4画素が、それぞれ異なる偏光方向の光のみを通過させる構成となっている。
 このようなカメラを用いて画像を撮影することで、撮像素子の4種類の画素単位で4種類の偏光画像(0度偏光画像、45度偏光画像、90度偏光画像、135度偏光画像)が撮影される。
In the image pickup unit of the image acquisition unit (camera) 110, as described above with reference to FIGS. 5 and 6, for example, 2 × 2 = 4 pixels are used as one unit, and these 4 pixels have different polarizations. It is configured to allow only light in the direction to pass through.
By taking an image using such a camera, four types of polarized images (0-degree polarized image, 45-degree polarized image, 90-degree polarized image, 135-degree polarized image) can be obtained in units of four types of pixels of the image sensor. Be photographed.
 次に、画像取得部(カメラ)110は、ステップS103において、照明部の赤色(R)LEDを点灯し、ステップS104において肌画像を撮影する。 Next, the image acquisition unit (camera) 110 turns on the red (R) LED of the lighting unit in step S103, and takes a skin image in step S104.
 次に、画像取得部(カメラ)110は、ステップS105において、照明部の近赤外(NIR)LEDを点灯し、ステップS106において肌画像を撮影する。 Next, the image acquisition unit (camera) 110 turns on the near-infrared (NIR) LED of the illumination unit in step S105, and takes a skin image in step S106.
 これらの撮影画像は、全て画像解析部120に入力される。 All of these captured images are input to the image analysis unit 120.
  (ステップS107)
 ステップS107~S109の処理は、画像解析部120が実行する処理である。
(Step S107)
The processes of steps S107 to S109 are processes executed by the image analysis unit 120.
 まず、画像解析部120は、ステップS107において、偏光信号解析処理を実行する。
 この処理は、画像解析部120の偏光信号解析部121が実行する。
 画像解析部120の偏光信号解析部121は、ステップS107において、画像取得部110の複数色対応偏光画像取得部111が取得した偏光画像を利用して、偏光成分信号を鏡面反射光成分とそれ以外の成分(内部散乱光等)に分離する処理を行う。
First, the image analysis unit 120 executes the polarization signal analysis process in step S107.
This process is executed by the polarization signal analysis unit 121 of the image analysis unit 120.
In step S107, the polarization signal analysis unit 121 of the image analysis unit 120 uses the polarized image acquired by the multi-color compatible polarized image acquisition unit 111 of the image acquisition unit 110 to convert the polarization component signal into a mirror-reflected light component and other parts. The process of separating into the components (internally scattered light, etc.) is performed.
 この処理は、先に図7、図8を参照して説明した処理であり、デモザイク処理や、偏光モデル推定処理が含まれる。 This process is the process described above with reference to FIGS. 7 and 8, and includes demosaic process and polarization model estimation process.
 まず、図7を参照して説明したように、4画素の1画素に撮影されている特定の偏光画像の画素値を用いた画素値補間処理を実行して、特定の偏光画像の画素値を全画素に設定するデモザイク処理を実行する。 First, as described with reference to FIG. 7, a pixel value interpolation process using the pixel values of a specific polarized image captured in one pixel of four pixels is executed to obtain the pixel values of the specific polarized image. Executes the demosaic process to be set for all pixels.
 次に、図8を参照して説明した横軸に偏光角(α)、縦軸に輝度I(α)を設定したグラフを利用して、被写体表面(肌表面)で反射した鏡面反射成分Isを算出する。
 すなわち、図8を参照して説明した偏光モデルの最大輝度値Imaxと最小輝度値Iminとの差分、すなわち、
 Is=Imax-Imin
 上記式を用いて、被写体表面(肌表面)で反射した鏡面反射成分Isを算出する。
Next, using a graph in which the polarization angle (α) is set on the horizontal axis and the brightness I (α) is set on the vertical axis, which is described with reference to FIG. 8, the mirror reflection component Is reflected on the subject surface (skin surface). Is calculated.
That is, the difference between the maximum luminance value Imax and the minimum luminance value Imin of the polarization model described with reference to FIG. 8, that is,
Is = Imax-Imin
Using the above formula, the specular reflection component Is reflected on the surface of the subject (skin surface) is calculated.
  (ステップS108)
 次に、画像解析部120は、ステップS108において、色信号解析処理を実行する。
 この処理は、画像解析部120の色信号解析部122が実行する。
(Step S108)
Next, the image analysis unit 120 executes the color signal analysis process in step S108.
This process is executed by the color signal analysis unit 122 of the image analysis unit 120.
 色素信号解析部122は、画像取得部110の複数色対応偏光画像取得部111が取得した赤色(R)光や、近赤外(NIR)光対応の偏光画像を解析し、人の肌以外の外乱となる色素信号を解析する処理を行う。 The dye signal analysis unit 122 analyzes the red (R) light and the near-infrared (NIR) light-compatible polarized image acquired by the multi-color polarized image acquisition unit 111 of the image acquisition unit 110, and analyzes the polarized image other than human skin. Performs processing to analyze the dye signal that becomes a disturbance.
 色素信号解析部122は、画像取得部(カメラ)110の照明部220中の照明B222、すなわち、赤色LED点灯時に撮影した画像から計算される4方向の偏光成分画像(I(r0°),I(r45°),I(r90°),I(r135°))の各画像の対応画素各々について以下の式に従って、赤色偏光画像画素値平均(I(r))を算出する。
 すなわち、
 I(r)=(I(r0°)+I(r45°)+I(r90°)+I(r135°))/4
The dye signal analysis unit 122 includes illumination B222 in the illumination unit 220 of the image acquisition unit (camera) 110, that is, a four-direction polarization component image (I (r0 °), I) calculated from an image taken when the red LED is lit. The average red polarized image pixel value (I (r)) is calculated according to the following equation for each of the corresponding pixels of each image of (r45 °), I (r90 °), I (r135 °)).
That is,
I (r) = (I (r0 °) + I (r45 °) + I (r90 °) + I (r135 °)) / 4
 さらに、画像取得部(カメラ)110の照明部220中の照明C223、すなわち、近赤外(NIR)LED点灯時に撮影した画像から計算される4方向の偏光成分画像(I(nir0°),I(nir45°),I(nir90°),I(nir135°))の各画像の対応画素各々につい以下の(式22)に従って、近赤外(NIR)偏光画像画素値平均(I(nir))を算出する。
 I(nir)=(I(nir0°)+I(nir45°)+I(nir90°)+I(nir135°))/4
Further, the illumination C223 in the illumination unit 220 of the image acquisition unit (camera) 110, that is, the four-direction polarization component image (I (nir0 °), I) calculated from the image taken when the near infrared (NIR) LED is lit. Near-infrared (NIR) polarized image pixel value average (I (nir)) according to the following (Equation 22) for each corresponding pixel of each image of (nir45 °), I (nir90 °), I (nir135 °)). Is calculated.
I (nir) = (I (nir0 °) + I (nir45 °) + I (nir90 °) + I (nir135 °)) / 4
 さらに、上記各式に従って算出した各画素の赤色偏光画像画素値平均(I(r))と、各画素の近赤外(NIR)偏光画像画素値平均(I(nir))を用いて、以下の式に従って、メラニン色素濃度指標値(MI:MeraninIndex)を算出する。
 MI=α(logI(nir)-logI(r))+β・・・(式23)
 なお、上記(式23)において、α、βは予め規定した定数である。
Further, using the red polarized image pixel value average (I (r)) of each pixel calculated according to the above equations and the near infrared (NIR) polarized image pixel value average (I (nir)) of each pixel, the following is used. The melanin pigment concentration index value (MI: MeraninIndex) is calculated according to the formula of.
MI = α (logI (nir) -logI (r)) + β ... (Equation 23)
In the above (Equation 23), α and β are predetermined constants.
 先に図10を参照して説明したように、メラニン色素濃度指標値(MI:MeraninIndex)は、例えば体毛や、シミなどの領域において高い値を示す。
 図10から理解されるように、(a)カメラ撮影画像中の「シミ」領域は、(b)メラニン色素濃度指標値(MI:MeraninIndex)出力画像の画素値が特定の色の画素値が高い画素値(例えば濃い赤色画素値)に設定されている。
 色素信号解析部122は、このようなメラニン色素濃度指標値(MI:MeraninIndex)出力画像を生成する。
As described above with reference to FIG. 10, the melanin pigment concentration index value (MI: MeraninIndex) shows a high value in a region such as hair or a spot.
As can be understood from FIG. 10, in (a) the “stain” region in the camera-taken image, (b) the pixel value of the melanin dye concentration index value (MI: MeraninIndex) output image is high in the pixel value of a specific color. It is set to a pixel value (for example, a dark red pixel value).
The dye signal analysis unit 122 generates such a melanin dye concentration index value (MI: MeraninIndex) output image.
  (ステップS109)
 次に、画像解析部120は、ステップS109において、信号判別処理を実行する。
 この処理は、画像解析部120の信号判別部123が実行する。
(Step S109)
Next, the image analysis unit 120 executes the signal discrimination process in step S109.
This process is executed by the signal discrimination unit 123 of the image analysis unit 120.
 信号判別部123は、偏光信号解析部121で求められた鏡面反射成分信号と色素信号解析部122で求められたメラニン色素濃度指標値(MI:MeraninIndex)を用いて、肌表面の微小な凹凸に起因する陰影成分の選択抽出処理を実行し、ノイズ除去肌画像を生成する。
 先に図12を参照して説明した「(e)ノイズ除去肌画像」を生成する。
The signal discrimination unit 123 uses the specular reflection component signal obtained by the polarization signal analysis unit 121 and the melanin dye concentration index value (MI: MeraninIndex) obtained by the dye signal analysis unit 122 to make minute irregularities on the skin surface. A noise-removing skin image is generated by performing a selective extraction process for the resulting shadow component.
The "(e) noise-removing skin image" described above with reference to FIG. 12 is generated.
 信号判別部123は、まず、図12に示す(b)鏡面反射成分画像と、(c)メラニン色素濃度指標値出力画像を合成して(d)合成画像を生成する。
 (d)合成画像は、鏡面反射成分が低く、かつ、メラニン色素濃度指標値が高い画素領域を低画素値(低輝度)として出力した画像とである。
First, the signal discrimination unit 123 synthesizes (b) a specular reflection component image shown in FIG. 12 and (c) a melanin dye concentration index value output image to generate (d) a composite image.
(D) The composite image is an image in which a pixel region having a low specular reflection component and a high melanin pigment concentration index value is output as a low pixel value (low brightness).
 次に、信号判別部123は、図12に示す(b)鏡面反射成分画像と、(d)合成画像を用いて、(e)ノイズ除去肌画像を生成する。
 (e)ノイズ除去肌画像は、例えば体毛やシミ等の外乱等のノイズを除去した肌表面の凹凸形状を反映した画像となる。
Next, the signal discrimination unit 123 generates (e) a noise-removed skin image by using (b) a specular reflection component image and (d) a composite image shown in FIG. 12.
(E) The noise-removed skin image is an image that reflects the uneven shape of the skin surface from which noise such as disturbance such as body hair and spots is removed.
 なお、(b)鏡面反射成分画像の特に輝度値が高い部分は、汗や化粧品(ラメ)などの影響であると推定されるので、これらの画素領域についても、(d)合成画像の低画素値(低輝度)として出力し、このようにして生成した(d)合成画像と(b)鏡面反射成分画像から、(e)ノイズ除去肌画像を生成する処理を行ってもよい。 Since it is presumed that (b) the portion of the mirror reflection component image having a particularly high brightness value is affected by sweat, cosmetics (lame), etc., (d) the low pixels of the composite image are also obtained in these pixel regions. It may be output as a value (low brightness), and a process of generating (e) a noise-removed skin image from (d) the composite image and (b) the mirror reflection component image thus generated may be performed.
 このように、画像解析部120は、は、偏光信号解析部121と色素信号解析部122の解析結果を入力して、例えば体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号を生成する。 In this way, the image analysis unit 120 inputs the analysis results of the polarization signal analysis unit 121 and the dye signal analysis unit 122, and reflects the uneven shape of the skin surface from which the influence of disturbance such as body hair and spots is removed. Generates the image signal.
  (ステップS110)
 ステップS110~S112の処理は、3次元(3D)形状解析部130が実行する処理である。
(Step S110)
The processes of steps S110 to S112 are processes executed by the three-dimensional (3D) shape analysis unit 130.
 まず、ステップS110において、法線推定処理を実行する。
 この処理は、3次元(3D)形状解析部130の法線情報推定部131が実行する。
 3次元(3D)形状解析部130の法線情報推定部131は、肌表面の法線情報を推定する。なお、法線とは、オブジェクト表面、すなわち肌表面に直交する線である。
First, in step S110, the normal estimation process is executed.
This process is executed by the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130.
The normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information of the skin surface. The normal is a line orthogonal to the object surface, that is, the skin surface.
 先に図13を参照して説明したように、3次元(3D)形状解析部130の法線情報推定部131は、画像解析部120が生成したノイズ除去肌画像、すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を、学習器301に入力して、学習器301の出力として「(e)ノイズ除去肌画像」の画素単位の法線情報を取得する。 As described above with reference to FIG. 13, the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 refers to the noise-removed skin image generated by the image analysis unit 120, that is, FIG. The "(e) noise-removing skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as body hair and stains has been removed, is input to the learning device 301 and output from the learning device 301. The normal line information for each pixel of "(e) noise-removed skin image" is acquired.
 なお、学習器301は、例えば、CNN(Convolutional Neural Network)等を利用した学習器である。 The learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like.
 このように、3次元(3D)形状解析部130の法線情報推定部131は、図13に示す学習器301を用いて肌表面の法線情報を推定する。なお、法線とは、オブジェクト表面、すなわち肌表面に直交する線である。 In this way, the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 estimates the normal information on the skin surface using the learner 301 shown in FIG. The normal is a line orthogonal to the object surface, that is, the skin surface.
  (ステップS111)
 次に、ステップS111において、距離変換処理を実行する。
 この処理は、3次元(3D)形状解析部130の距離情報変換部132が実行する。
(Step S111)
Next, in step S111, the distance conversion process is executed.
This process is executed by the distance information conversion unit 132 of the three-dimensional (3D) shape analysis unit 130.
 距離情報変換部132は、法線情報推定部131が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する。
 この処理は、先に図14を参照して説明した処理である。
 距離情報変換部132は、法線情報推定部131から出力された画素単位の法線情報(p=nx,q=ny)を用いて、その画素の距離情報(Z)を算出する。
 距離情報を求める距離算出式としては、例えば先に説明した(式31)に示すFrankot-Chellappaアルゴリズムを用いることができる。
The distance information conversion unit 132 converts the normal information on the skin surface estimated by the normal information estimation unit 131 into distance information indicating the uneven shape of the skin surface.
This process is the process described above with reference to FIG.
The distance information conversion unit 132 calculates the distance information (Z) of the pixel by using the normal information (p = nx, q = ny) of each pixel output from the normal information estimation unit 131.
As the distance calculation formula for obtaining the distance information, for example, the Francot-Chellappa algorithm shown in (Equation 31) described above can be used.
  (ステップS112)
 次に、ステップS112において、距離解析処理を実行する。
 この処理は、3次元(3D)形状解析部130の距離情報解析部133が実行する。
(Step S112)
Next, in step S112, the distance analysis process is executed.
This process is executed by the distance information analysis unit 133 of the three-dimensional (3D) shape analysis unit 130.
 距離情報解析部133は、距離情報変換部132で算出された距離情報の解析を行う。例えば、距離情報変換部132が生成した距離情報を用いて、肌表面の粗さ係数など、肌のキメなどの評価指標となる指標値を算出し、解析する。 The distance information analysis unit 133 analyzes the distance information calculated by the distance information conversion unit 132. For example, using the distance information generated by the distance information conversion unit 132, index values such as the roughness coefficient of the skin surface, which are evaluation indexes for the texture of the skin, are calculated and analyzed.
 この処理は、先に図15、図16を参照して説明した処理である。
 例えば図15を参照して説明したように、距離情報解析部133は、デブスマップから、中央部のラインABで示される部分の距離情報(プロファイル)を解析する。
 図15の右側のグラフは、距離情報解析部133が生成する距離(デプス)解析データの一例であり、デプスマップ(距離画像)中のラインABに含まれる各画素の距離(デプス)の変化を示すグラフである。
This process is the process described above with reference to FIGS. 15 and 16.
For example, as described with reference to FIG. 15, the distance information analysis unit 133 analyzes the distance information (profile) of the portion indicated by the line AB in the central portion from the depth map.
The graph on the right side of FIG. 15 is an example of the distance (depth) analysis data generated by the distance information analysis unit 133, and shows changes in the distance (depth) of each pixel included in the line AB in the depth map (distance image). It is a graph which shows.
 ラインABに含まれる各画素の距離の変化が大きいほど肌の凹凸が大きいことを意味する。一方、ラインABに含まれる各画素の距離の変化が小さいほど肌の凹凸が小さくなめらかな肌であることを意味する。 The larger the change in the distance of each pixel included in the line AB, the larger the unevenness of the skin. On the other hand, the smaller the change in the distance of each pixel included in the line AB, the smaller the unevenness of the skin and the smoother the skin.
 距離情報解析部133は、さらに、図15に示す各画素の距離(デプス)の変化を示す距離(デプス)解析データを用いて、図16を参照して説明したように、肌の「平均粗さ」や、「最大高さ」等の肌粗さ指標値を算出する。 Further, the distance information analysis unit 133 uses the distance (depth) analysis data showing the change in the distance (depth) of each pixel shown in FIG. 15, and as described with reference to FIG. 16, the “average roughness” of the skin. Calculates skin roughness index values such as "sa" and "maximum height".
 このように、3次元(3D)形状解析部130は、ステップS112において、画像解析部120から出力された信号を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。
 すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を用いて、カメラ撮影画像に含まれる肌の3次元(3D)形状を解析する。
As described above, the three-dimensional (3D) shape analysis unit 130 analyzes the three-dimensional (3D) shape of the skin included in the image captured by the camera by using the signal output from the image analysis unit 120 in step S112.
That is, using "(e) noise-removed skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains explained with reference to FIG. 12 is removed, is used in the image taken by the camera. The three-dimensional (3D) shape of the included skin is analyzed.
  (ステップS113)
 最後に、ステップS113において、表示部に解析結果を表示する。
 この処理は、表示部140が実行する処理である。
(Step S113)
Finally, in step S113, the analysis result is displayed on the display unit.
This process is a process executed by the display unit 140.
 前述したように、表示部140は、画像取得部110、画像解析部120、3次元(3D)形状解析部130の各々において取得、解析されたデータを表示する。 As described above, the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
 具体的には、例えば、先に図17~図19を参照して説明した様々な解析データの表示を行う。
 図17に示す表示データの例は、
 (a)カメラ撮影画像
 (b)デプスマップ(距離画像)
 (c)3次元(3D)画像
 これらの画像データを表示した例である。
Specifically, for example, various analysis data described above with reference to FIGS. 17 to 19 are displayed.
An example of the display data shown in FIG. 17 is
(A) Camera image (b) Depth map (distance image)
(C) Three-dimensional (3D) image This is an example of displaying these image data.
 図18に示す表示データの例は、
 (a)カメラ撮影画像
 (b)デプスマップ(距離画像)
 (c)距離(デプス)解析データ
 これらのデータを表示した例である。
An example of the display data shown in FIG. 18 is
(A) Camera image (b) Depth map (distance image)
(C) Distance (depth) analysis data This is an example of displaying these data.
 図19に示す表示データの例は、
 (a)カメラ撮影画像
 (b)メラニン色素濃度指標値出力画像
 これらの画像データを表示した例である。
An example of the display data shown in FIG. 19 is
(A) Image taken by a camera (b) Image of melanin pigment concentration index value output This is an example of displaying these image data.
 このように、表示部140は、画像取得部110、画像解析部120、3次元(3D)形状解析部130の各々において取得、解析されたデータを表示する。 In this way, the display unit 140 displays the data acquired and analyzed by each of the image acquisition unit 110, the image analysis unit 120, and the three-dimensional (3D) shape analysis unit 130.
 ユーザは、これらの表示データを見て、自分の肌の状態、例えば肌の形状、凹凸状態、シミの状態等を正確に判断することが可能となる。 By looking at these display data, the user can accurately determine the condition of his / her skin, for example, the shape of the skin, the uneven condition, the condition of stains, and the like.
  [5.画素単位の法線情報の算出に用いる学習器を生成するための学習処理の例について]
 次に、画素単位の法線情報の算出に用いる学習器を生成するための学習処理の例について説明する。
[5. About an example of learning processing to generate a learning device used to calculate normal information for each pixel]
Next, an example of learning processing for generating a learning device used for calculating normal information in pixel units will be described.
 先に図13を参照して説明したように、3次元(3D)形状解析部130の法線情報推定部131は、画像解析部120が生成したノイズ除去肌画像、すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を、学習器301に入力して、学習器301の出力として「(e)ノイズ除去肌画像」の画素単位の法線情報を取得する。 As described above with reference to FIG. 13, the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 refers to the noise-removed skin image generated by the image analysis unit 120, that is, FIG. The "(e) noise-removing skin image", which is an image signal reflecting the uneven shape of the skin surface from which the influence of disturbance such as body hair and stains has been removed, is input to the learning device 301 and output from the learning device 301. The normal line information for each pixel of "(e) noise-removed skin image" is acquired.
 なお、学習器301は、例えば、CNN(Convolutional Neural Network)等を利用した学習器である。
 学習器(CNN)301は、事前に様々な画像データを利用して実行される学習処理によって生成される。学習時には、実際の肌やレプリカを撮影した画像と別途3Dスキャンデバイスで測定した凹凸情報を法線情報に変換したもの(GT(Ground Truth)データ)のペアを多数用意し、最小二乗誤差(L2)ロス関数を用いてネットワークの重みを学習させる。
 この学習処理の具体例について説明する。
The learning device 301 is, for example, a learning device using a CNN (Convolutional Neural Network) or the like.
The learning device (CNN) 301 is generated by a learning process executed in advance using various image data. At the time of learning, prepare a large number of pairs of images of actual skin and replicas and separately converted unevenness information measured by a 3D scanning device into normal information (GT (Ground Truth) data), and the least squares error (L2). ) Learn network weights using a loss function.
A specific example of this learning process will be described.
 図21は、学習器(CNN)401の生成例、すなわち機械学習処理の一例を説明する図である。
 図21に示す例では、サンプル画像411を学習器(CNN)401に入力する。学習器(CNN)401の出力は画素単位法線情報412である。
FIG. 21 is a diagram illustrating an example of generation of a learning device (CNN) 401, that is, an example of machine learning processing.
In the example shown in FIG. 21, the sample image 411 is input to the learner (CNN) 401. The output of the learner (CNN) 401 is pixel unit normal information 412.
 サンプル画像411を学習器401に入力した場合の出力である画素単位法線情報412と、学習の真値(Ground Truth)である法線情報413との類似度を算出する。例えば、最小二乗誤差(L2)算出部402において、画素単位法線情報412と、学習の真値(Ground Truth)である法線情報413との最小二乗誤差(L2)を算出し、L2をロスとして学習処理を行う。 The degree of similarity between the pixel unit normal information 412, which is the output when the sample image 411 is input to the learner 401, and the normal information 413, which is the true value (Ground Truth) of learning, is calculated. For example, in the least squares error (L2) calculation unit 402, the minimum square error (L2) between the pixel unit normal information 412 and the normal information 413 which is the true value (Ground Truth) of learning is calculated, and L2 is lost. The learning process is performed as.
 例えば算出したロスをバックプロパゲーションすることにより、学習器(CNN)401の重みを更新する。これにより、学習器(CNN)401を生成する。 For example, the weight of the learner (CNN) 401 is updated by backpropagating the calculated loss. As a result, the learner (CNN) 401 is generated.
 なお、ここでは、機械学習の一例としてCNNを利用して学習器を生成するとしたが、これに限定されない。機械学習としてCNN以外にも例えばRNN(Recurrent Neural Network)等、種々の手法を用いて学習器300を生成してもよい。また、上述した例では、算出したロスをバックプロパゲーションすることにより、学習器の重みを更新するとしたが、これに限定されない。バックプロパゲーション以外にも例えば確率的勾配降下法等の任意の学習手法を用いて学習器の重みを更新するようにしてもよい。 Here, as an example of machine learning, it is assumed that a learning device is generated using CNN, but the present invention is not limited to this. As machine learning, the learning device 300 may be generated by using various methods such as RNN (Recurrent Neural Network) other than CNN. Further, in the above-mentioned example, the weight of the learner is updated by backpropagating the calculated loss, but the weight is not limited to this. In addition to backpropagation, the weight of the learner may be updated by using an arbitrary learning method such as a stochastic gradient descent method.
 図22は、学習器生成のための学習処理の処理シーケンスを説明するフローチャートである。
 図22に示すフローのステップS201~S209の処理は、先に図20を参照して説明したフローのステップS101~S109の処理と同様の処理である。
 ただし、ステップS209において生成される画像は学習処理のためのサンプル画像である。
FIG. 22 is a flowchart illustrating a processing sequence of learning processing for generating a learning device.
The process of steps S201 to S209 of the flow shown in FIG. 22 is the same process as the process of steps S101 to S109 of the flow described above with reference to FIG. 20.
However, the image generated in step S209 is a sample image for the learning process.
 このサンプル画像をステップS210において実行する学習処理に適用して学習処理を行う。 This sample image is applied to the learning process executed in step S210 to perform the learning process.
 このシーケンスに従った学習処理を行うことで、学習器が生成される。
 すなわち、先に図13を参照して説明した3次元(3D)形状解析部130の法線情報推定部131が利用する学習器(CNN)301を生成することができる。
A learning device is generated by performing a learning process according to this sequence.
That is, the learning device (CNN) 301 used by the normal information estimation unit 131 of the three-dimensional (3D) shape analysis unit 130 described above with reference to FIG. 13 can be generated.
 学習器(CNN)301は、画像解析部120が生成したノイズ除去肌画像、すなわち、図12を参照して説明した体毛やシミ等の外乱の影響を除去した肌表面の凹凸形状を反映した画像信号である「(e)ノイズ除去肌画像」を入力し、出力として「(e)ノイズ除去肌画像」の画素単位の法線情報を取得することを可能とした学習器である。 The learner (CNN) 301 is a noise-removing skin image generated by the image analysis unit 120, that is, an image reflecting the uneven shape of the skin surface from which the influence of disturbance such as hair and stains described with reference to FIG. 12 is removed. It is a learning device that enables input of a signal "(e) noise-removed skin image" and acquisition of pixel-based normal information of "(e) noise-removed skin image" as an output.
  [6.画像取得部(カメラ)のその他の構成例について]
 次に、画像処理装置100の構成要素となる画像取得部(カメラ)110のその他の構成例について説明する。
[6. About other configuration examples of the image acquisition unit (camera)]
Next, another configuration example of the image acquisition unit (camera) 110, which is a component of the image processing device 100, will be described.
 先に図4を参照して、画像取得部(カメラ)110の一構成例について説明した。
 画像取得部(カメラ)110は、図4に示す構成以外の構成とすることが可能である。
An example of a configuration of the image acquisition unit (camera) 110 has been described above with reference to FIG.
The image acquisition unit (camera) 110 can have a configuration other than that shown in FIG.
 図4に示す構成と異なる画像取得部(カメラ)110の構成例を図23に示す。
 図23に示す画像取得部(カメラ)500も、撮像部510と、撮像部の周囲の照明部520を有する。
FIG. 23 shows a configuration example of the image acquisition unit (camera) 110 that is different from the configuration shown in FIG.
The image acquisition unit (camera) 500 shown in FIG. 23 also has an image pickup unit 510 and an illumination unit 520 around the image pickup unit.
 撮像部510周囲の照明部520は、図に示すように、以下の4種類の照明によって構成される。
 (a)照明A=白色LED前面に、撮像部510に設定された偏光フィルタと平行方向の偏光フィルタを設置した照明A521、
 (b)照明B=白色LED前面に、撮像部510に設定された偏光フィルタと直交方向の偏光フィルタを設置した照明B522、
 (c)照明C=赤色LEDによって構成される照明C523、
 (d)照明D=近赤外(NIR)LEDによって構成される照明D524、
As shown in the figure, the illumination unit 520 around the image pickup unit 510 is composed of the following four types of illumination.
(A) Illumination A = Illumination A521 in which a polarizing filter in a direction parallel to the polarizing filter set in the image pickup unit 510 is installed on the front surface of the white LED.
(B) Illumination B = Illumination B522 in which a polarizing filter set in the image pickup unit 510 and a polarizing filter in the orthogonal direction are installed on the front surface of the white LED.
(C) Lighting C = Lighting C523 composed of red LEDs,
(D) Illumination D = Illumination D524 composed of near infrared (NIR) LEDs,
 なお、照明A,Bは、約400~700nmの可視光領域の波長光を出力するLEDによって構成される。
 照明Cは、約660nmの赤(R)色光領域の波長光を出力するLEDによって構成される。
 照明Dは、約880nmの近赤外(NIR)光領域の波長光を出力するLEDによって構成される。
The illuminations A and B are composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
Illumination C is composed of an LED that outputs wavelength light in the red (R) color light region of about 660 nm.
Illumination D is composed of LEDs that output wavelength light in the near infrared (NIR) light region of about 880 nm.
 画像取得部(カメラ)500は、同一の肌領域について、これら4種類の照明A~Dを順次、点灯して、4種類の異なる照明環境で撮影した4枚の画像を取得する。 The image acquisition unit (camera) 500 sequentially turns on these four types of lights A to D for the same skin area, and acquires four images taken in four different lighting environments.
 撮像部510は、偏光フィルタを前面に装着したカメラによって構成される。なお、多くの一般のカメラに装着されている赤外(IR)光カットフィルタは除去されている。
 撮像部510のイメージセンサは、通常のカメラと同様のイメージセンサであり、その前に偏光フィルタが設置されている。
The image pickup unit 510 is configured by a camera having a polarizing filter mounted on the front surface. The infrared (IR) light cut filter attached to many general cameras has been removed.
The image sensor of the image pickup unit 510 is an image sensor similar to that of a normal camera, and a polarizing filter is installed in front of the image sensor.
 なお、この画像取得部(カメラ)500を用いた場合の処理は、図4を参照して説明した画像取得部(カメラ)110を用いた場合と、以下の点が異なる処理となる。
 画像撮影処理では、白LED(平行方向フィルタ)、白LED(直交方向フィルタ)、赤LED、近赤外(NIR)LEDを、順次点灯して行う。
The process when the image acquisition unit (camera) 500 is used is different from the process when the image acquisition unit (camera) 110 described with reference to FIG. 4 is used in the following points.
In the image capturing process, the white LED (parallel direction filter), the white LED (orthogonal direction filter), the red LED, and the near infrared (NIR) LED are sequentially turned on.
 また、偏光信号解析部121における鏡面反射成分をIsの算出処理、すなわち、
 被写体表面で反射した鏡面反射成分Isを、最大輝度値Imaxと最小輝度値Iminとの差分、すなわち、
 Is=Imax-Imin
 上記式によって算出する処理において、最大輝度値Imaxと最小輝度値Iminは以下の各画素値を利用する。
Further, the specular reflection component in the polarization signal analysis unit 121 is calculated for Is, that is,
The specular reflection component Is reflected on the surface of the subject is the difference between the maximum luminance value Imax and the minimum luminance value Imin, that is,
Is = Imax-Imin
In the process calculated by the above formula, the following pixel values are used for the maximum luminance value Imax and the minimum luminance value Imin.
 最大輝度値Imaxは、白LEDとカメラの偏光方向が平行な場合に撮影した画像の画素を利用する。
 最小輝度値Iminは、白LEDとカメラの偏光方向が直交している場合に撮影した画像を利用する。
The maximum luminance value Imax uses pixels of an image taken when the white LED and the polarization directions of the camera are parallel to each other.
The minimum luminance value Imin uses an image taken when the white LED and the polarization directions of the camera are orthogonal to each other.
 さらに、図4に示す構成と異なる画像取得部(カメラ)110のもう一つの構成例を図24に示す。
 図24に示す画像取得部(カメラ)600も、撮像部610と、撮像部の周囲の照明部620を有する。
Further, FIG. 24 shows another configuration example of the image acquisition unit (camera) 110 that is different from the configuration shown in FIG.
The image acquisition unit (camera) 600 shown in FIG. 24 also has an image pickup unit 610 and an illumination unit 620 around the image pickup unit.
 撮像部610周囲の照明部620は、図に示すように、以下の3種類の照明によって構成される。
 (a)照明A=白色LED前面に、撮像部610に設定された偏光フィルタと平行方向の偏光フィルタを設置した照明A621、
 (b)照明B=白色LED前面に、撮像部610に設定された偏光フィルタと直交方向の偏光フィルタを設置した照明B622、
 (c)照明C=白色LEDによって構成される照明C623、
As shown in the figure, the illumination unit 620 around the image pickup unit 610 is composed of the following three types of illumination.
(A) Illumination A = Illumination A621 in which a polarizing filter in a direction parallel to the polarizing filter set in the image pickup unit 610 is installed on the front surface of the white LED.
(B) Illumination B = Illumination B622 in which a polarizing filter set in the image pickup unit 610 and a polarizing filter in the orthogonal direction are installed on the front surface of the white LED.
(C) Lighting C = Lighting C623 composed of white LEDs,
 なお、照明A,B,Cは、いずれも約400~700nmの可視光領域の波長光を出力するLEDによって構成される。
 画像取得部(カメラ)600は、同一の肌領域について、これら3種類の照明A~Cを順次、点灯して、3種類の異なる照明環境で撮影した3枚の画像を取得する。
The illuminations A, B, and C are all composed of LEDs that output wavelength light in the visible light region of about 400 to 700 nm.
The image acquisition unit (camera) 600 sequentially turns on these three types of lights A to C for the same skin area, and acquires three images taken in three different lighting environments.
 撮像部610は、偏光フィルタを前面に装着したカメラによって構成される。なお、多くの一般のカメラに装着されている赤外(IR)光カットフィルタは除去されている。
 撮像部610のイメージセンサは、通常のカメラと同様のイメージセンサであり、その前に偏光フィルタが設置されている。
 さらに、偏光フィルタの前面に、カラーフィルタ611が装着されている。
The image pickup unit 610 is configured by a camera having a polarizing filter mounted on the front surface. The infrared (IR) light cut filter attached to many general cameras has been removed.
The image sensor of the image pickup unit 610 is an image sensor similar to that of a normal camera, and a polarizing filter is installed in front of the image sensor.
Further, a color filter 611 is mounted on the front surface of the polarizing filter.
 カラーフィルタ611は、図に示すように、
 660nm近傍の波長光を選択的に透過させる赤色(R)フィルタ、
 880nm近傍の波長光を選択的に透過させる近赤外(NIR)フィルタ、
 400~700nm近傍の波長光を選択的に透過させる可視光(Visフィルタ、
 これら3種類のフィルタを配列した構成を持つ。
As shown in the figure, the color filter 611 has a color filter 611.
A red (R) filter that selectively transmits light with a wavelength near 660 nm,
A near-infrared (NIR) filter that selectively transmits light with a wavelength near 880 nm,
Visible light (Vis filter,) that selectively transmits wavelength light in the vicinity of 400 to 700 nm
It has a configuration in which these three types of filters are arranged.
 なお、この画像取得部(カメラ)600を用いた場合の処理は、図4を参照して説明した画像取得部(カメラ)110を用いた場合と、以下の点が異なる処理となる。
 画像撮影処理では、撮像部610の前に設置したカラーフィルタ611を、順次、移動させて、撮像部610へ入射する光の波長帯域を、順次、変えて可視光成分偏光画像、赤色成分偏光画像、近赤外(NIR)成分偏光画像を取得する。
The process when the image acquisition unit (camera) 600 is used is different from the process when the image acquisition unit (camera) 110 described with reference to FIG. 4 is used in the following points.
In the image capturing process, the color filter 611 installed in front of the imaging unit 610 is sequentially moved to sequentially change the wavelength band of the light incident on the imaging unit 610 to obtain a visible light component polarized image and a red component polarized image. , Acquires a near-infrared (NIR) component polarized image.
 画像解析部120では、これらの3種類の異なる色成分偏光画像を用いて、偏光信号解析部121での偏光信号解析処理、色素信号解析部122での色素信号解析処理、信号判定部123での信号判定処理を実行する。 In the image analysis unit 120, using these three different color component polarized images, the polarization signal analysis processing in the polarization signal analysis unit 121, the dye signal analysis processing in the dye signal analysis unit 122, and the signal determination unit 123 in the signal determination unit 123. Execute signal judgment processing.
  [7.画像処理装置のハードウェア構成例について]
 次に、本開示の画像処理装置100のハードウェア構成例について説明する。
 図25は、画像処理装置のハードウェア構成例を示す図である。
 図25に示すハードウェア構成の各構成部について説明する。
[7. About hardware configuration example of image processing device]
Next, a hardware configuration example of the image processing apparatus 100 of the present disclosure will be described.
FIG. 25 is a diagram showing a hardware configuration example of the image processing device.
Each component of the hardware configuration shown in FIG. 25 will be described.
 CPU(Central Processing Unit)701は、ROM(Read Only Memory)702、または記憶部708に記憶されているプログラムに従って各種の処理を実行するデータ処理部として機能する。例えば、上述した実施例において説明したシーケンスに従った処理を実行する。 The CPU (Central Processing Unit) 701 functions as a data processing unit that executes various processes according to a program stored in the ROM (Read Only Memory) 702 or the storage unit 708. For example, the process according to the sequence described in the above-described embodiment is executed.
 RAM(Random Access Memory)703には、CPU701が実行するプログラムやデータなどが記憶される。これらのCPU701、ROM702、およびRAM703は、バス704により相互に接続されている。 The RAM (Random Access Memory) 703 stores programs and data executed by the CPU 701. These CPU 701, ROM 702, and RAM 703 are connected to each other by a bus 704.
 CPU701はバス704を介して入出力インタフェース705に接続され、入出力インタフェース705には、カメラの他、各種操作部、スイッチ等よりなる入力部706、表示部であるディスプレイやスピーカなどよりなる出力部707が接続されている。 The CPU 701 is connected to the input / output interface 705 via the bus 704, and the input / output interface 705 includes an input unit 706 consisting of various operation units, switches, etc., and an output unit including a display, a speaker, etc., which are display units, in addition to the camera. 707 is connected.
 CPU701は、入力部706から入力されるカメラ撮影画像や、操作情報等を入力し、各種の処理を実行し、処理結果を例えば出力部707に出力する。
 入出力インタフェース705に接続されている記憶部708は、例えばハードディスク等からなり、CPU701が実行するプログラムや各種のデータを記憶する。通信部709は、インターネットやローカルエリアネットワークなどのネットワークを介したデータ通信の送受信部として機能し、外部の装置と通信する。
The CPU 701 inputs camera shot images and operation information input from the input unit 706, executes various processes, and outputs the process results to, for example, the output unit 707.
The storage unit 708 connected to the input / output interface 705 is composed of, for example, a hard disk or the like, and stores a program executed by the CPU 701 and various data. The communication unit 709 functions as a transmission / reception unit for data communication via a network such as the Internet or a local area network, and communicates with an external device.
 入出力インタフェース705に接続されているドライブ710は、磁気ディスク、光ディスク、光磁気ディスク、あるいはメモリカード等の半導体メモリなどのリムーバブルメディア711を駆動し、データの記録あるいは読み取りを実行する。 The drive 710 connected to the input / output interface 705 drives a removable media 711 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory such as a memory card, and records or reads data.
  [8.本開示の構成のまとめ]
 以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
[8. Summary of the structure of this disclosure]
As described above, the embodiments of the present disclosure have been described in detail with reference to the specific embodiments. However, it is self-evident that those skilled in the art may modify or substitute the examples without departing from the gist of the present disclosure. That is, the present invention has been disclosed in the form of an example and should not be construed in a limited manner. In order to judge the gist of this disclosure, the column of claims should be taken into consideration.
 なお、本明細書において開示した技術は、以下のような構成をとることができる。
 (1) 肌画像を取得する画像取得部と、
 前記画像取得部の取得した画像を解析する画像解析部と、
 前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析部を有し、
 前記画像取得部は、
 異なる波長光の複数の偏光画像を取得し、
 前記画像解析部は、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
 前記3次元形状解析部は、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理装置。
The technology disclosed in the present specification can have the following configurations.
(1) An image acquisition unit that acquires a skin image,
An image analysis unit that analyzes the image acquired by the image acquisition unit, and an image analysis unit.
It has a three-dimensional shape analysis unit that analyzes the three-dimensional shape of the skin using the analysis results of the image analysis unit.
The image acquisition unit
Acquire multiple polarized images of different wavelength light,
The image analysis unit
The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
The three-dimensional shape analysis unit is
An image processing device that analyzes the three-dimensional shape of skin using the noise-removed skin image.
 (2) 前記画像解析部は、
 前記偏光画像を解析して、肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像を生成し、
 生成した鏡面反射成分画像と、メラニン色素濃度指標値画像を利用して前記ノイズ除去肌画像を生成する(1)に記載の画像処理装置。
(2) The image analysis unit is
The polarized image is analyzed to generate a specular reflection component image of the skin surface and a melanin pigment concentration index value image.
The image processing apparatus according to (1), which generates the noise-removed skin image by using the generated specular reflection component image and the melanin pigment concentration index value image.
 (3) 前記ノイズは、体毛、または、シミ、または、ホクロの少なくともいずれかである(1)または(2)に記載の画像処理装置。 (3) The image processing apparatus according to (1) or (2), wherein the noise is at least one of body hair, a stain, or a mole.
 (4) 前記画像取得部は、
 異なる波長光を選択的に出力する照明部を有する(1)~(3)いずれかに記載の画像処理装置。
(4) The image acquisition unit is
The image processing apparatus according to any one of (1) to (3), which has an illumination unit that selectively outputs light having different wavelengths.
 (5) 前記画像取得部は、
 白色光、赤色光、近赤外光の3種類の異なる波長光を選択的に出力する照明部を有し、
 白色光、赤色光、近赤外光の3種類の異なる波長光対応の偏光画像を取得する(1)~(4)いずれかに記載の画像処理装置。
(5) The image acquisition unit is
It has an illumination unit that selectively outputs three types of light with different wavelengths: white light, red light, and near-infrared light.
The image processing apparatus according to any one of (1) to (4), which acquires polarized images corresponding to three types of light having different wavelengths, white light, red light, and near-infrared light.
 (6) 前記画像取得部は、
 複数の異なる偏光画像を画素単位で撮像する構成を有する(1)~(5)いずれかに記載の画像処理装置。
(6) The image acquisition unit is
The image processing apparatus according to any one of (1) to (5), which has a configuration for capturing a plurality of different polarized images on a pixel-by-pixel basis.
 (7) 前記画像解析部は、
 画素単位で撮像された複数の異なる偏光画像のデモザイク処理を実行する(6)に記載の画像処理装置。
(7) The image analysis unit is
The image processing apparatus according to (6), which performs demosaic processing of a plurality of different polarized images captured in pixel units.
 (8) 前記画像解析部は、
 前記画像取得部から入力する画像を利用して、複数の異なる偏光画像を生成し、
 生成した複数の偏光画像と、偏光角と輝度との対応関係データに基づいて、肌表面の鏡面反射成分画像を生成する(1)~(7)いずれかに記載の画像処理装置。
(8) The image analysis unit is
Using the image input from the image acquisition unit, a plurality of different polarized images are generated.
The image processing apparatus according to any one of (1) to (7), which generates a specular reflection component image of the skin surface based on the generated plurality of polarized images and the correspondence data between the polarization angle and the brightness.
 (9) 前記画像解析部は、
 前記画像取得部から入力する画像を利用して、複数の異なる偏光画像を生成し、
 生成した複数の偏光画像と、偏光角と輝度との対応関係データである偏光モデルに基づいて、偏光成分信号を鏡面反射光成分とそれ以外の成分信号に分離して、肌表面の鏡面反射成分画像を生成する(1)~(8)いずれかに記載の画像処理装置。
(9) The image analysis unit is
Using the image input from the image acquisition unit, a plurality of different polarized images are generated.
Based on the generated multiple polarized images and the polarization model which is the correspondence data between the polarization angle and the brightness, the specular component signal is separated into the specular reflected light component and the other component signals, and the specular reflection component on the skin surface. The image processing apparatus according to any one of (1) to (8) for generating an image.
 (10) 前記画像解析部は、
 前記鏡面反射光成分Isを、
 前記偏光モデルにおける最大輝度値Imaxと最小輝度値Iminとの差分、
 Is=Imax-Imin
 上記式に従って算出する(9)に記載の画像処理装置。
(10) The image analysis unit is
The specular reflected light component Is
Difference between maximum luminance value Imax and minimum luminance value Imin in the polarization model,
Is = Imax-Imin
The image processing apparatus according to (9), which is calculated according to the above formula.
 (11) 前記画像解析部は、
 前記画像取得部から入力する赤色光照明下の撮影画像と、近赤外光照明下の撮影画像を利用して、メラニン色素濃度指標値画像を生成する(1)~(10)いずれかに記載の画像処理装置。
(11) The image analysis unit is
Described in any one of (1) to (10), which generates a melanin dye concentration index value image by using a photographed image under red light illumination and an image photographed under near infrared light illumination input from the image acquisition unit. Image processing equipment.
 (12) 前記画像解析部は、
 前記偏光画像を解析して生成した肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像の合成画像を生成し、
 生成した合成画像と前記鏡面反射成分画像から、前記ノイズ除去肌画像を生成する(1)~(11)いずれかに記載の画像処理装置。
(12) The image analysis unit is
A composite image of the specular reflection component image of the skin surface generated by analyzing the polarized image and the melanin pigment concentration index value image is generated.
The image processing apparatus according to any one of (1) to (11), which generates the noise-removed skin image from the generated composite image and the specular reflection component image.
 (13) 前記3次元形状解析部は、
 肌表面の法線情報を推定する法線情報推定部と、
 前記法線情報推定部が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する距離情報変換部と、
 距離情報変換部が生成した距離情報を用いて、肌表面の凹凸形状評価に基づく評価指標値を算出する距離情報解析部を有する(1)~(12)いずれかに記載の画像処理装置。
(13) The three-dimensional shape analysis unit is
The normal information estimation unit that estimates the normal information on the skin surface,
A distance information conversion unit that converts the normal information on the skin surface estimated by the normal information estimation unit into distance information indicating the uneven shape of the skin surface, and a distance information conversion unit.
The image processing apparatus according to any one of (1) to (12), which has a distance information analysis unit that calculates an evaluation index value based on an evaluation of the uneven shape of the skin surface using the distance information generated by the distance information conversion unit.
 (14) 前記距離情報解析部は、
 肌の凹凸を示すデプスマップを利用して、肌の平均粗さ、または最大高さの少なくともいずれかを算出する(13)に記載の画像処理装置。
(14) The distance information analysis unit is
The image processing apparatus according to (13), which calculates at least one of the average roughness and the maximum height of the skin by using the depth map showing the unevenness of the skin.
 (15) 前記法線情報推定部は、
 前記画像解析部の生成した前記ノイズ除去肌画像を学習器に入力して、学習器の出力として肌表面の法線情報を取得する(13)または(14)に記載の画像処理装置。
(15) The normal information estimation unit is
The image processing apparatus according to (13) or (14), wherein the noise-removing skin image generated by the image analysis unit is input to a learning device, and normal information on the skin surface is acquired as an output of the learning device.
 (16) 前記画像処理装置は、さらに、
 前記画像解析部の解析結果、または前記3次元形状解析部の解析結果の少なくともいずれかの解析結果を表示する表示部を有する(1)~(15)いずれかに記載の画像処理装置。
(16) The image processing apparatus further includes
The image processing apparatus according to any one of (1) to (15), which has a display unit for displaying at least one of the analysis results of the image analysis unit or the analysis result of the three-dimensional shape analysis unit.
 (17) 前記表示部は、
 肌表面の3次元画像、または肌表面の凹凸を示すデプスマップ、またはメラニン色素濃度指標値画像の少なくともいずれかのデータを表示する(16)に記載の画像処理装置。
(17) The display unit is
The image processing apparatus according to (16), which displays at least one data of a three-dimensional image of the skin surface, a depth map showing unevenness of the skin surface, or a melanin pigment concentration index value image.
 (18) 画像処理装置において実行する画像処理方法であり、
 画像取得部が、肌画像を取得する画像取得処理と、
 画像解析部が、前記画像取得部の取得した画像を解析する画像解析処理と、
 3次元形状解析部が、前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析処理を実行し、
 前記画像取得部は、
 異なる波長光の複数の偏光画像を取得し、
 前記画像解析部は、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
 前記3次元形状解析部は、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理方法。
(18) An image processing method executed in an image processing apparatus.
The image acquisition unit acquires the skin image and the image acquisition process,
Image analysis processing in which the image analysis unit analyzes the image acquired by the image acquisition unit, and
The three-dimensional shape analysis unit executes a three-dimensional shape analysis process for analyzing the three-dimensional shape of the skin using the analysis result of the image analysis unit.
The image acquisition unit
Acquire multiple polarized images of different wavelength light,
The image analysis unit
The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
The three-dimensional shape analysis unit is
An image processing method for analyzing a three-dimensional shape of skin using the noise-removed skin image.
 (19) 画像処理装置において画像処理を実行させるプログラムであり、
 画像取得部に、肌画像を取得させる画像取得処理と、
 画像解析部に、前記画像取得部の取得した画像を解析させる画像解析処理と、
 3次元形状解析部に、前記画像解析部の解析結果を利用して肌の3次元形状を解析させる3次元形状解析処理を実行させ、
 前記画像取得処理においては、
 異なる波長光の複数の偏光画像を取得させ、
 前記画像解析処理においては、
 前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成させ、
 前記3次元形状解析処理においては、
 前記ノイズ除去肌画像を利用して肌の3次元形状を解析させるプログラム。
(19) A program that executes image processing in an image processing device.
Image acquisition processing that causes the image acquisition unit to acquire skin images,
Image analysis processing that causes the image analysis unit to analyze the image acquired by the image acquisition unit, and
The 3D shape analysis unit is made to execute a 3D shape analysis process for analyzing the 3D shape of the skin by using the analysis result of the image analysis unit.
In the image acquisition process,
Acquire multiple polarized images of light of different wavelengths
In the image analysis process,
The polarized image is analyzed to generate a noise-removed skin image with noise removed.
In the three-dimensional shape analysis process,
A program that analyzes the three-dimensional shape of the skin using the noise-removed skin image.
 なお、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。 Note that the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both. When executing processing by software, install the program that records the processing sequence in the memory in the computer built in the dedicated hardware and execute it, or execute the program on a general-purpose computer that can execute various processing. It can be installed and run. For example, the program can be pre-recorded on a recording medium. In addition to installing on a computer from a recording medium, programs can be received via networks such as LAN (Local Area Network) and the Internet, and installed on a recording medium such as a built-in hard disk.
 また、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。 Further, the various processes described in the specification are not only executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes. Further, in the present specification, the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
 以上、説明したように、本開示の一実施例の構成によれば、ユーザの顔の体毛やシミなどのノイズを除去した肌の凹凸を高精度に反映したノイズ除去肌画像を生成して、高精度な肌の3次元形状を解析可能とした構成が実現される。
 具体的には、例えば、顔などの肌の画像を取得する画像取得部と、画像取得部の取得した肌画像を解析する画像解析部と、画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析部を有する。画像取得部は、異なる波長光の複数の偏光画像を取得し、画像解析部は、偏光画像を解析して、肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像を生成し、生成したこれらの画像を用いて、体毛やシミなどのノイズを除去したノイズ除去肌画像を生成する。3次元形状解析部は、このノイズ除去肌画像を利用して肌の高精度な3次元形状を解析する。
 本構成により、ユーザの顔の体毛やシミなどのノイズを除去した肌の凹凸を高精度に反映したノイズ除去肌画像を生成して、高精度な肌の3次元形状を解析可能とした構成が実現される。
As described above, according to the configuration of one embodiment of the present disclosure, a noise-removing skin image that accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed is generated. A configuration that enables analysis of the three-dimensional shape of the skin with high accuracy is realized.
Specifically, for example, an image acquisition unit that acquires an image of skin such as a face, an image analysis unit that analyzes the skin image acquired by the image acquisition unit, and a skin 3 using the analysis results of the image analysis unit. It has a three-dimensional shape analysis unit that analyzes a dimensional shape. The image acquisition unit acquires a plurality of polarized images of light having different wavelengths, and the image analysis unit analyzes the polarized images to generate and generate a mirror reflection component image of the skin surface and a melanin dye concentration index value image. Using these images, a noise-removed skin image in which noise such as body hair and stains is removed is generated. The three-dimensional shape analysis unit analyzes the highly accurate three-dimensional shape of the skin using this noise-removed skin image.
With this configuration, it is possible to generate a noise-removing skin image that highly accurately reflects the unevenness of the skin from which noise such as hair and spots on the user's face has been removed, and to analyze the three-dimensional shape of the skin with high accuracy. It will be realized.
 100 画像処理装置
 110 画像取得部(カメラ)
 111 複数色対応偏光画像取得部
 120 画像解析部
 121 偏光信号解析部
 122 色素信号解析部
 123 信号判定部
 130 3次元(3D)形状解析部
 131 法線情報推定部
 132 距離情報変換部
 133距離情報解析部
 140 表示部
 141 測定情報表示部
 142 信号情報表示部
 143 3次元形状表示部
 144 測定状況表示部
 210 撮像部
 220 照明部
 221~223 照明A~C
 301 学習器
 401 学習器
 500 画像取得部(カメラ)
 510 撮像部
 520 照明部
 600 画像取得部(カメラ)
 610 撮像部
 620 照明部
 701 CPU
 702 ROM
 703 RAM
 704 バス
 705 入出力インタフェース
 706 入力部
 707 出力部
 708 記憶部
 709 通信部
 710 ドライブ
 711 リムーバブルメディア
100 Image processing device 110 Image acquisition unit (camera)
111 Multicolor compatible polarized image acquisition unit 120 Image analysis unit 121 Polarization signal analysis unit 122 Dye signal analysis unit 123 Signal judgment unit 130 3D (3D) shape analysis unit 131 Normal information estimation unit 132 Distance information conversion unit 133 Distance information analysis Unit 140 Display unit 141 Measurement information display unit 142 Signal information display unit 143 Three-dimensional shape display unit 144 Measurement status display unit 210 Imaging unit 220 Lighting unit 221 to 223 Lighting A to C
301 Learner 401 Learner 500 Image acquisition unit (camera)
510 Imaging unit 520 Lighting unit 600 Image acquisition unit (camera)
610 Imaging unit 620 Lighting unit 701 CPU
702 ROM
703 RAM
704 Bus 705 I / O interface 706 Input section 707 Output section 708 Storage section 709 Communication section 710 Drive 711 Removable media

Claims (19)

  1.  肌画像を取得する画像取得部と、
     前記画像取得部の取得した画像を解析する画像解析部と、
     前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析部を有し、
     前記画像取得部は、
     異なる波長光の複数の偏光画像を取得し、
     前記画像解析部は、
     前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
     前記3次元形状解析部は、
     前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理装置。
    The image acquisition section that acquires skin images, and
    An image analysis unit that analyzes the image acquired by the image acquisition unit, and an image analysis unit.
    It has a three-dimensional shape analysis unit that analyzes the three-dimensional shape of the skin using the analysis results of the image analysis unit.
    The image acquisition unit
    Acquire multiple polarized images of different wavelength light,
    The image analysis unit
    The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
    The three-dimensional shape analysis unit is
    An image processing device that analyzes the three-dimensional shape of skin using the noise-removed skin image.
  2.  前記画像解析部は、
     前記偏光画像を解析して、肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像を生成し、
     生成した鏡面反射成分画像と、メラニン色素濃度指標値画像を利用して前記ノイズ除去肌画像を生成する請求項1に記載の画像処理装置。
    The image analysis unit
    The polarized image is analyzed to generate a specular reflection component image of the skin surface and a melanin pigment concentration index value image.
    The image processing apparatus according to claim 1, wherein the noise-removed skin image is generated by using the generated specular reflection component image and the melanin pigment concentration index value image.
  3.  前記ノイズは、体毛、または、シミ、または、ホクロの少なくともいずれかである請求項1に記載の画像処理装置。 The image processing device according to claim 1, wherein the noise is at least one of body hair, stains, and moles.
  4.  前記画像取得部は、
     異なる波長光を選択的に出力する照明部を有する請求項1に記載の画像処理装置。
    The image acquisition unit
    The image processing apparatus according to claim 1, further comprising an illumination unit that selectively outputs light having different wavelengths.
  5.  前記画像取得部は、
     白色光、赤色光、近赤外光の3種類の異なる波長光を選択的に出力する照明部を有し、
     白色光、赤色光、近赤外光の3種類の異なる波長光対応の偏光画像を取得する請求項1に記載の画像処理装置。
    The image acquisition unit
    It has an illumination unit that selectively outputs three types of light with different wavelengths: white light, red light, and near-infrared light.
    The image processing apparatus according to claim 1, wherein a polarized image corresponding to three types of different wavelength light, white light, red light, and near-infrared light, is acquired.
  6.  前記画像取得部は、
     複数の異なる偏光画像を画素単位で撮像する構成を有する請求項1に記載の画像処理装置。
    The image acquisition unit
    The image processing apparatus according to claim 1, further comprising a configuration in which a plurality of different polarized images are captured on a pixel-by-pixel basis.
  7.  前記画像解析部は、
     画素単位で撮像された複数の異なる偏光画像のデモザイク処理を実行する請求項6に記載の画像処理装置。
    The image analysis unit
    The image processing apparatus according to claim 6, which performs demosaic processing of a plurality of different polarized images captured in pixel units.
  8.  前記画像解析部は、
     前記画像取得部から入力する画像を利用して、複数の異なる偏光画像を生成し、
     生成した複数の偏光画像と、偏光角と輝度との対応関係データに基づいて、肌表面の鏡面反射成分画像を生成する請求項1に記載の画像処理装置。
    The image analysis unit
    Using the image input from the image acquisition unit, a plurality of different polarized images are generated.
    The image processing apparatus according to claim 1, wherein a specular reflection component image of a skin surface is generated based on the generated plurality of polarized images and the correspondence data between the polarization angle and the brightness.
  9.  前記画像解析部は、
     前記画像取得部から入力する画像を利用して、複数の異なる偏光画像を生成し、
     生成した複数の偏光画像と、偏光角と輝度との対応関係データである偏光モデルに基づいて、偏光成分信号を鏡面反射光成分とそれ以外の成分信号に分離して、肌表面の鏡面反射成分画像を生成する請求項1に記載の画像処理装置。
    The image analysis unit
    Using the image input from the image acquisition unit, a plurality of different polarized images are generated.
    Based on the generated multiple polarized images and the polarization model which is the correspondence data between the polarization angle and the brightness, the specular component signal is separated into the specular reflected light component and the other component signals, and the specular reflection component on the skin surface. The image processing apparatus according to claim 1, which generates an image.
  10.  前記画像解析部は、
     前記鏡面反射光成分Isを、
     前記偏光モデルにおける最大輝度値Imaxと最小輝度値Iminとの差分、
     Is=Imax-Imin
     上記式に従って算出する請求項9に記載の画像処理装置。
    The image analysis unit
    The specular reflected light component Is
    Difference between maximum luminance value Imax and minimum luminance value Imin in the polarization model,
    Is = Imax-Imin
    The image processing apparatus according to claim 9, which is calculated according to the above formula.
  11.  前記画像解析部は、
     前記画像取得部から入力する赤色光照明下の撮影画像と、近赤外光照明下の撮影画像を利用して、メラニン色素濃度指標値画像を生成する請求項1に記載の画像処理装置。
    The image analysis unit
    The image processing apparatus according to claim 1, wherein a melanin dye concentration index value image is generated by using a photographed image under red light illumination and an image photographed under near infrared light illumination input from the image acquisition unit.
  12.  前記画像解析部は、
     前記偏光画像を解析して生成した肌表面の鏡面反射成分画像と、メラニン色素濃度指標値画像の合成画像を生成し、
     生成した合成画像と前記鏡面反射成分画像から、前記ノイズ除去肌画像を生成する請求項1に記載の画像処理装置。
    The image analysis unit
    A composite image of the specular reflection component image of the skin surface generated by analyzing the polarized image and the melanin pigment concentration index value image is generated.
    The image processing apparatus according to claim 1, wherein the noise-removed skin image is generated from the generated composite image and the specular reflection component image.
  13.  前記3次元形状解析部は、
     肌表面の法線情報を推定する法線情報推定部と、
     前記法線情報推定部が推定した肌表面の法線情報を、肌表面の凹凸形状を示す距離情報へ変換する距離情報変換部と、
     距離情報変換部が生成した距離情報を用いて、肌表面の凹凸形状評価に基づく評価指標値を算出する距離情報解析部を有する請求項1に記載の画像処理装置。
    The three-dimensional shape analysis unit is
    The normal information estimation unit that estimates the normal information on the skin surface,
    A distance information conversion unit that converts the normal information on the skin surface estimated by the normal information estimation unit into distance information indicating the uneven shape of the skin surface, and a distance information conversion unit.
    The image processing apparatus according to claim 1, further comprising a distance information analysis unit that calculates an evaluation index value based on an evaluation of the uneven shape of the skin surface using the distance information generated by the distance information conversion unit.
  14.  前記距離情報解析部は、
     肌の凹凸を示すデプスマップを利用して、肌の平均粗さ、または最大高さの少なくともいずれかを算出する請求項13に記載の画像処理装置。
    The distance information analysis unit
    The image processing apparatus according to claim 13, wherein the depth map showing the unevenness of the skin is used to calculate at least one of the average roughness and the maximum height of the skin.
  15.  前記法線情報推定部は、
     前記画像解析部の生成した前記ノイズ除去肌画像を学習器に入力して、学習器の出力として肌表面の法線情報を取得する請求項13に記載の画像処理装置。
    The normal information estimation unit is
    The image processing apparatus according to claim 13, wherein the noise-removing skin image generated by the image analysis unit is input to a learning device, and normal information on the skin surface is acquired as an output of the learning device.
  16.  前記画像処理装置は、さらに、
     前記画像解析部の解析結果、または前記3次元形状解析部の解析結果の少なくともいずれかの解析結果を表示する表示部を有する請求項1に記載の画像処理装置。
    The image processing device further
    The image processing apparatus according to claim 1, further comprising a display unit that displays the analysis result of the image analysis unit or at least one of the analysis results of the three-dimensional shape analysis unit.
  17.  前記表示部は、
     肌表面の3次元画像、または肌表面の凹凸を示すデプスマップ、またはメラニン色素濃度指標値画像の少なくともいずれかのデータを表示する請求項16に記載の画像処理装置。
    The display unit is
    The image processing apparatus according to claim 16, which displays at least one data of a three-dimensional image of the skin surface, a depth map showing unevenness of the skin surface, or a melanin pigment concentration index value image.
  18.  画像処理装置において実行する画像処理方法であり、
     画像取得部が、肌画像を取得する画像取得処理と、
     画像解析部が、前記画像取得部の取得した画像を解析する画像解析処理と、
     3次元形状解析部が、前記画像解析部の解析結果を利用して肌の3次元形状を解析する3次元形状解析処理を実行し、
     前記画像取得部は、
     異なる波長光の複数の偏光画像を取得し、
     前記画像解析部は、
     前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成し、
     前記3次元形状解析部は、
     前記ノイズ除去肌画像を利用して肌の3次元形状を解析する画像処理方法。
    It is an image processing method executed in an image processing device.
    The image acquisition unit acquires the skin image and the image acquisition process,
    Image analysis processing in which the image analysis unit analyzes the image acquired by the image acquisition unit, and
    The three-dimensional shape analysis unit executes a three-dimensional shape analysis process for analyzing the three-dimensional shape of the skin using the analysis result of the image analysis unit.
    The image acquisition unit
    Acquire multiple polarized images of different wavelength light,
    The image analysis unit
    The polarized image is analyzed to generate a noise-removed skin image from which noise is removed.
    The three-dimensional shape analysis unit is
    An image processing method for analyzing a three-dimensional shape of skin using the noise-removed skin image.
  19.  画像処理装置において画像処理を実行させるプログラムであり、
     画像取得部に、肌画像を取得させる画像取得処理と、
     画像解析部に、前記画像取得部の取得した画像を解析させる画像解析処理と、
     3次元形状解析部に、前記画像解析部の解析結果を利用して肌の3次元形状を解析させる3次元形状解析処理を実行させ、
     前記画像取得処理においては、
     異なる波長光の複数の偏光画像を取得させ、
     前記画像解析処理においては、
     前記偏光画像を解析して、ノイズを除去したノイズ除去肌画像を生成させ、
     前記3次元形状解析処理においては、
     前記ノイズ除去肌画像を利用して肌の3次元形状を解析させるプログラム。
    A program that executes image processing in an image processing device.
    Image acquisition processing that causes the image acquisition unit to acquire skin images,
    Image analysis processing that causes the image analysis unit to analyze the image acquired by the image acquisition unit, and
    The 3D shape analysis unit is made to execute a 3D shape analysis process for analyzing the 3D shape of the skin by using the analysis result of the image analysis unit.
    In the image acquisition process,
    Acquire multiple polarized images of light of different wavelengths
    In the image analysis process,
    The polarized image is analyzed to generate a noise-removed skin image with noise removed.
    In the three-dimensional shape analysis process,
    A program that analyzes the three-dimensional shape of the skin using the noise-removed skin image.
PCT/JP2021/015389 2020-05-15 2021-04-14 Image processing device, image processing method, and program WO2021229984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-086294 2020-05-15
JP2020086294 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021229984A1 true WO2021229984A1 (en) 2021-11-18

Family

ID=78525719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015389 WO2021229984A1 (en) 2020-05-15 2021-04-14 Image processing device, image processing method, and program

Country Status (2)

Country Link
TW (1) TW202147258A (en)
WO (1) WO2021229984A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193527A (en) * 1998-12-25 2000-07-14 Kao Corp Method for forming three-dimensional simulation image
WO2003096272A1 (en) * 2002-05-09 2003-11-20 Sony Corporation Method of detecting biological pattern, biological pattern detector, method of biological certificate and biological certificate apparatus
WO2013099628A1 (en) * 2011-12-27 2013-07-04 ソニー株式会社 Image processing device, image processing system, image processing method, and program
WO2013114891A1 (en) * 2012-02-03 2013-08-08 パナソニック株式会社 Imaging device and imaging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193527A (en) * 1998-12-25 2000-07-14 Kao Corp Method for forming three-dimensional simulation image
WO2003096272A1 (en) * 2002-05-09 2003-11-20 Sony Corporation Method of detecting biological pattern, biological pattern detector, method of biological certificate and biological certificate apparatus
WO2013099628A1 (en) * 2011-12-27 2013-07-04 ソニー株式会社 Image processing device, image processing system, image processing method, and program
WO2013114891A1 (en) * 2012-02-03 2013-08-08 パナソニック株式会社 Imaging device and imaging system

Also Published As

Publication number Publication date
TW202147258A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6039109B2 (en) Coloring inspection apparatus and coloring inspection method
JP4762369B2 (en) Image processing device
CN102973242B (en) Image processing equipment, image processing method, image processing system, program and recording medium
USRE47921E1 (en) Reflectance imaging and analysis for evaluating tissue pigmentation
EP3000386B1 (en) Skin function evaluation device and skin evaluation method
Cao et al. Sparse photometric 3D face reconstruction guided by morphable models
CN109152535B (en) Skin diagnosis device and skin diagnosis method
JP6799155B2 (en) Information processing device, information processing system, and subject information identification method
EP3382645B1 (en) Method for generation of a 3d model based on structure from motion and photometric stereo of 2d sparse images
EP2084499A2 (en) Apparatus and method for analyzing skin using l*a*b* colorspace
Hernández et al. Overcoming shadows in 3-source photometric stereo
CN110740679A (en) Skin radiance measurement for quantitative estimation of skin radiance
Vogiatzis et al. Self-calibrated, multi-spectral photometric stereo for 3D face capture
TW202103484A (en) System and method for creation of topical agents with improved image capture
JP5565765B2 (en) Derivation method of melanoma discrimination index
JP2014087464A (en) Skin evaluation method and skin evaluation device
Vazquez-Corral et al. Color constancy algorithms: Psychophysical evaluation on a new dataset
Murai et al. Surface normals and shape from water
JP2006061170A (en) Discrimination method for skin
JP2008167853A (en) Test sheet, object diagnostic apparatus and method, and program
WO2021229984A1 (en) Image processing device, image processing method, and program
JPWO2019123625A1 (en) Information processing device and surface roughness acquisition method
JP6527765B2 (en) Wrinkle state analyzer and method
Powell et al. A methodology for extracting objective color from images
Zhou et al. Combinatorial photometric stereo and its application in 3D modeling of melanoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP