WO2021229720A1 - Aerial haptics control device, aerial haptics system, and aerial haptics control method - Google Patents

Aerial haptics control device, aerial haptics system, and aerial haptics control method Download PDF

Info

Publication number
WO2021229720A1
WO2021229720A1 PCT/JP2020/019112 JP2020019112W WO2021229720A1 WO 2021229720 A1 WO2021229720 A1 WO 2021229720A1 JP 2020019112 W JP2020019112 W JP 2020019112W WO 2021229720 A1 WO2021229720 A1 WO 2021229720A1
Authority
WO
WIPO (PCT)
Prior art keywords
haptics
aerial
driver
region
failure
Prior art date
Application number
PCT/JP2020/019112
Other languages
French (fr)
Japanese (ja)
Inventor
将平 近藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/019112 priority Critical patent/WO2021229720A1/en
Priority to JP2022515464A priority patent/JP7126312B2/en
Publication of WO2021229720A1 publication Critical patent/WO2021229720A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present disclosure relates to an aerial haptics control device, an aerial haptics system, and an aerial haptics control method.
  • an “aerial display device” a device that displays an image in the air by projecting light into the air
  • a device that presents a tactile sensation in the air by transmitting ultrasonic waves in the air hereinafter referred to as "aerial haptics device”
  • HMI Human Machine Interface
  • Patent Document 1 discloses such a system.
  • the aerial haptics device uses a group of haptics drivers.
  • the haptics driver group includes a plurality of haptics drivers.
  • a plurality of haptics drivers are arranged one-dimensionally.
  • a plurality of haptics drivers are arranged two-dimensionally.
  • Each haptics driver is configured, for example, by an ultrasonic transducer.
  • the area where the tactile sensation is presented by the aerial haptics device includes the area where the tactile sensation is presented by each haptics driver.
  • the aerial haptics region includes the region corresponding to each haptics driver.
  • each haptics driver can fail due to various factors.
  • the at least one haptics driver when at least one haptics driver among a plurality of haptics drivers is out of order, the at least one haptics driver may be referred to as a "failure haptics driver”. Further, the remaining one or more haptics drivers among the plurality of haptics drivers may be referred to as a "normal haptics driver”.
  • a state in which haptics is not normally realized occurs in the region corresponding to the fault haptics driver (hereinafter sometimes referred to as "failure region”) in the aerial haptics region.
  • the tactile stimulus in the faulty region is weaker than the tactile stimulus in the region of the aerial haptics region excluding the faulty region (hereinafter, may be referred to as “normal region”).
  • normal region the tactile stimulus in the region of the aerial haptics region excluding the faulty region
  • Patent Document 1 does not have a configuration for dealing with the occurrence of such a failure. Therefore, there is a problem that it is not possible to deal with the occurrence of such a failure.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to deal with the occurrence of a failure in the haptics driver group.
  • the aerial haptics control device is included in the failure driver detection unit that detects the failure haptics driver included in the haptics driver group in the aerial haptics device, and in the haptics driver group when the failure haptics driver is detected.
  • a first driver selection unit that selects one or more of the first normal haptics drivers out of a plurality of normal haptics drivers, and a first frequency corresponding to each of the one or more normal haptics drivers. It includes a first frequency setting unit that lowers the value.
  • FIG. 1 It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the aerial haptics apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the drive control part among the control devices in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the operation of the 1st driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the screen UI including the UI for slide operation. It is explanatory drawing which shows the example of the state which the slide operation over the slide range including a failure area is input.
  • FIG. 1 It is explanatory drawing which shows the example of the state which the tap operation is input in the state which the 1st frequency is lowered. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 2.
  • It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the operation of the 2nd driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2.
  • FIG. It is explanatory drawing which shows the example of the failure area in the aerial haptics area.
  • FIG. 1 It is explanatory drawing which shows the example of the 2nd part region in the aerial haptics region. It is explanatory drawing which shows the example of the state in which the 2nd frequency is raised.
  • FIG. 2 It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 3.
  • It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a flowchart which shows the operation of the 1st driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3.
  • FIG. It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3.
  • FIG. 1 is a block diagram showing a main part of the aerial haptics system according to the first embodiment.
  • FIG. 2 is a block diagram showing a main part of an aerial haptics device in the aerial haptics system according to the first embodiment.
  • FIG. 3 is a block diagram showing a main part of a drive control unit among the control devices in the aerial haptics system according to the first embodiment.
  • the aerial haptics system according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the aerial haptics system 1 includes a control device 2, an aerial haptics device 3, and an aerial display device 4.
  • the control device 2 includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2 includes a failure driver detection unit 21, a first driver selection unit 22, and a first frequency setting unit 23.
  • the failure driver detection unit 21, the first driver selection unit 22, and the first frequency setting unit 23 constitute a main part of the aerial haptics control device 100.
  • the control device 2 is composed of, for example, an in-vehicle information communication device. That is, the control device 2 is configured by, for example, an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the control device 2 is composed of an in-vehicle information communication device. That is, an example in which the aerial haptics system 1 is for an in-vehicle use will be mainly described.
  • the aerial haptics device 3 uses the haptics driver group DG.
  • the haptics driver group DG includes a plurality of haptics drivers D.
  • Each haptics driver D is composed of, for example, an ultrasonic transducer.
  • a plurality of haptics drivers D are arranged one-dimensionally.
  • the plurality of haptics drivers D are arranged two-dimensionally.
  • M ⁇ N haptics drivers D are arranged in a matrix of N rows and M columns.
  • N is an arbitrary integer of 2 or more.
  • M is an arbitrary integer of 2 or more.
  • the aerial display device 4 displays an image in the air by projecting light into the air.
  • the area where the image is displayed by the aerial display device 4 (hereinafter referred to as “display area”) A1 corresponds to the area where the tactile sensation is presented by the aerial haptics device 3 (that is, the aerial haptics area) A2. That is, the aerial display device 4 corresponds to the aerial haptics device 3.
  • the aerial display device 4 is composed of, for example, a 3D-HUD (Three-Dimensional Head-Up Display).
  • the system control unit 11 controls the operation of the entire control device 2. As a result, the system control unit 11 controls the operation of the entire aerial haptics system 1.
  • the system control unit 11 is composed of, for example, a dedicated circuit.
  • the drive control unit 12 executes control for driving each haptics driver D based on an instruction from the system control unit 11.
  • the drive control unit 12 is composed of, for example, a dedicated circuit.
  • the drive control unit 12 includes a carrier wave signal generation unit 31, a vibration wave signal generation unit 32, a modulation unit 33, and an amplification unit 34.
  • the carrier wave signal generation unit 31 generates an electric signal (hereinafter referred to as “carrier signal”) corresponding to an ultrasonic wave having a predetermined frequency f (hereinafter referred to as “carrier wave”) based on an instruction by the system control unit 11. Is.
  • carrier wave signal generation unit 31 outputs the generated carrier wave signal to the modulation unit 33.
  • the vibration wave signal generation unit 32 is an electric signal (hereinafter referred to as “vibration”) corresponding to ultrasonic waves (hereinafter referred to as “vibration wave”) for realizing vibration corresponding to a desired tactile stimulus based on an instruction by the system control unit 11. It is called a "wave signal").
  • the vibration wave signal generation unit 32 outputs the generated vibration wave signal to the modulation unit 33.
  • the modulation unit 33 modulates the carrier wave signal output by the carrier wave signal generation unit 31 by using the vibration wave signal output by the vibration wave signal generation unit 32.
  • the modulation unit 33 outputs the modulated carrier wave signal (hereinafter referred to as “modulated wave signal”) to the amplification unit 34.
  • the amplification unit 34 amplifies the modulated wave signal output by the modulation unit 33. As a result, the output modulated wave signal is amplified to a predetermined level.
  • the amplification unit 34 outputs the amplified modulated wave signal (hereinafter referred to as “transmission signal”) to the haptics driver group DG.
  • the carrier wave signal generation unit 31 generates a carrier wave signal corresponding to each haptics driver D.
  • the vibration wave signal generation unit 32 generates a vibration wave signal corresponding to each haptics driver D.
  • the modulation unit 33 modulates the corresponding carrier signal using the corresponding vibration wave signal for each haptics driver D.
  • the amplification unit 34 amplifies the modulated wave signal corresponding to each haptics driver D.
  • the amplification unit 34 outputs a transmission signal corresponding to each haptics driver D.
  • each haptics driver D is driven. That is, each haptics driver D transmits ultrasonic waves U in the air. As a result, the antennae are presented to the aerial haptics region A2. That is, haptics in the aerial haptics region A2 are realized.
  • the ultrasonic wave U transmitted by the corresponding haptics driver D is reflected by the indicator P and reflected.
  • the ultrasonic wave U' is received by the corresponding haptics driver D.
  • the corresponding haptics driver D outputs an electric signal (hereinafter referred to as "received signal") corresponding to the received ultrasonic wave U'.
  • the display control unit 13 executes control to display images corresponding to various screens by using the aerial display device 4 based on the instruction from the system control unit 11.
  • the display control unit 13 is composed of, for example, a dedicated circuit.
  • the image displayed by the aerial display device 4 includes images corresponding to screens for various operations (hereinafter referred to as "operation screens”).
  • the UI (User Interface) on each operation screen includes a UI for operation input by hand gesture.
  • the UI on each operation screen is referred to as "screen UI”.
  • the screen UI includes a UI for operation input by slide operation (hereinafter referred to as “UI for slide operation”).
  • the screen UI includes a UI for operation input by flick operation (hereinafter referred to as “UI for flick operation”).
  • the screen UI includes a UI for operation input by tap operation (hereinafter referred to as “UI for tap operation”).
  • the current detection unit 14 detects the current value I in each haptics driver D. More specifically, the current detection unit 14 detects the current value I_1 corresponding to the transmission signal and the current value I_2 corresponding to the reception signal for each haptics driver D.
  • the current detection unit 14 is composed of, for example, a dedicated circuit.
  • the operation detection unit 15 detects an operation input to the operation screen by the user by using the current value I detected by the current detection unit 14.
  • the operation detection unit 15 is composed of, for example, a dedicated circuit.
  • the transmission signal is input to the corresponding haptics driver D, and the reception signal is output by the corresponding haptics driver D.
  • the received signal is attenuated with respect to the corresponding transmitted signal. Further, the received signal has a phase difference with respect to the corresponding transmitted signal.
  • the operation detection unit 15 detects the operation by the hand gesture based on the result of the determination. Specifically, for example, the operation detection unit 15 detects a slide operation, a flick operation, or a tap operation.
  • the failure driver detection unit 21 determines whether or not there is a failure in each haptics driver D by using the current value I detected by the current detection unit 14. As a result, the failure driver detection unit 21 detects the failure haptics driver D_E when the failure haptics driver D_E is included in the haptics driver group DG.
  • the current value I in the fault haptics driver D_E is smaller than the current value I in each normal haptics driver D_N.
  • the current value I in the fault haptics driver D_E is larger than the current value I in each normal haptics driver D_N.
  • the failure driver detection unit 21 determines whether or not the current value I in each haptics driver D is within a predetermined range (hereinafter referred to as “threshold range”) Is. When the current value I is within the threshold range Is, the failure driver detection unit 21 determines that the corresponding haptics driver D is the normal haptics driver D_N. On the other hand, when the current value I is a value outside the threshold range Is, the failure driver detection unit 21 determines that the corresponding haptics driver D is the failure haptics driver D_E.
  • the first driver selection unit 22 has one or more normal haptics drivers D_N among a plurality of normal haptics drivers D_N included in the haptics driver group DG.
  • the tics driver hereinafter referred to as "first normal haptics driver" D_N_1 is selected.
  • one or more first normal haptics drivers D_N_1 correspond to a predetermined region (hereinafter referred to as "first region") A3 of the aerial haptics region A2.
  • the first driver selection unit 22 sets a different area in the first area A3 according to the screen UI being displayed in the aerial display device 4.
  • the first driver selection unit 22 acquires information indicating the screen UI being displayed in the aerial display device 4 (hereinafter referred to as "screen UI information").
  • the screen UI information is acquired from, for example, the system control unit 11.
  • the screen UI information includes, for example, information indicating whether or not the displayed screen UI includes a UI for slide operation, information indicating whether or not the displayed screen UI includes a UI for flick operation, and information indicating whether or not the displayed screen UI includes a UI for flick operation. It contains information indicating whether or not the displayed screen UI includes a UI for tap operation.
  • the first driver selection unit 22 is the area A3_1 corresponding to the entire aerial haptic area A2, or substantially the entire aerial haptic area A2.
  • the area A3_1 corresponding to is set in the first area A3.
  • such area A3_1 is referred to as “whole area”.
  • the first driver selection unit 22 when the displayed screen UI includes a UI for tap operation (that is, when the displayed screen UI does not include a UI for slide operation and a UI for flick operation), the first driver selection unit 22 , A region A3_2 which is a part of the aerial haptics region A2 and includes a region (that is, a fault region) A4 corresponding to the fault haptics driver D_E is extracted.
  • the first driver selection unit 22 sets the extracted area A3_2 in the first area A3.
  • such a region A3_2 is referred to as a “first partial region”.
  • the first frequency setting unit 23 lowers the frequency (hereinafter referred to as "first frequency”) F_N_1 of the ultrasonic wave U_N_1 transmitted by each first normal haptics driver D_N_1.
  • the first frequency setting unit 23 instructs the carrier wave signal generation unit 31 to generate a carrier wave signal having a frequency f'lower than the predetermined frequency f for each first normal haptics driver D_N_1.
  • the frequency (that is, the first frequency) F_N_1 of the ultrasonic wave U_N_1 transmitted by the individual first normal haptics driver D_N_1 becomes the frequency F_N of the ultrasonic wave U_N transmitted by the other individual normal haptics driver D_N.
  • the value is relatively low.
  • the main part of the aerial haptics system 1 is configured.
  • failure driver detection processing the processes executed by the failure driver detection unit 21 may be collectively referred to as "failure driver detection processing". Further, the functions of the failure driver detection unit 21 may be collectively referred to as a “failure driver detection function”. Further, the reference numeral of "F1" may be used for the failure driver detection function.
  • first driver selection process the processes executed by the first driver selection unit 22 may be collectively referred to as "first driver selection process”. Further, the functions of the first driver selection unit 22 may be collectively referred to as the “first driver selection function”. Further, the reference numeral of "F2" may be used for the first driver selection function.
  • first frequency setting process the processes executed by the first frequency setting unit 23 may be collectively referred to as "first frequency setting process”. Further, the functions of the first frequency setting unit 23 may be collectively referred to as “first frequency setting function”. Further, the reference numeral of "F3" may be used for the first frequency setting function.
  • the aerial haptics control device 100 has a processor 41 and a memory 42.
  • the memory 42 stores programs corresponding to a plurality of functions (including a failure driver detection function, a first driver selection function, and a first frequency setting function) F1 to F3.
  • the processor 41 reads and executes the program stored in the memory 42. As a result, a plurality of functions F1 to F3 are realized.
  • the aerial haptics control device 100 has a processing circuit 43.
  • the processing circuit 43 executes processing corresponding to a plurality of functions F1 to F3. As a result, a plurality of functions F1 to F3 are realized.
  • the aerial haptics control device 100 includes a processor 41, a memory 42, and a processing circuit 43.
  • a program corresponding to a part of the plurality of functions F1 to F3 is stored in the memory 42.
  • the processor 41 reads and executes the program stored in the memory 42. As a result, some of these functions are realized.
  • the processing circuit 43 executes processing corresponding to the remaining functions of the plurality of functions F1 to F3. As a result, such residual functions are realized.
  • the processor 41 is composed of one or more processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microprocessor
  • a microprocessor a microprocessor
  • a DSP Digital Signal Processor
  • the memory 42 is composed of one or more non-volatile memories.
  • the memory 42 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 42 is composed of one or more memories.
  • the individual memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memory is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programle) drive, a solid state drive O Is.
  • the processing circuit 43 is composed of one or more digital circuits.
  • the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or more processing circuits.
  • the individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
  • the processor 41 when the processor 41 is composed of a plurality of processors, the correspondence between the plurality of functions F1 to F3 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 to F3.
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F3.
  • each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 to F3.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F3.
  • the processing circuit 43 when the processing circuit 43 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 to F3 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1 to F3.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F3.
  • the fault driver detection unit 21 executes the fault driver detection process (step ST1).
  • the first driver selection unit 22 executes the first driver selection process (step ST3).
  • the first frequency setting unit 23 executes the first frequency setting process (step ST4). If the fault haptics driver D_E is not detected by the fault driver detection process (step ST2 “NO”), the processes in steps ST3 and ST4 are skipped.
  • step ST3 the operation of the first driver selection unit 22 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST3 will be described.
  • the first driver selection unit 22 acquires screen UI information (step ST11). Next, the first driver selection unit 22 uses the acquired screen UI information to determine whether or not the displayed screen UI includes a UI for slide operation or a UI for flick operation (step ST12). ).
  • the first driver selection unit 22 sets the entire area A3_1 to the first area A3 (step). ST13).
  • the first step. 1 The driver selection unit 22 extracts the first partial area A3_2 including the failure area A4 (step ST14). Next, the first driver selection unit 22 sets the extracted first partial region A3_2 in the first region A3 (step ST15).
  • the first driver selection unit 22 selects one or more first normal haptics drivers D_N_1 based on the first region A3 set in step ST13 or step ST15 (step ST16).
  • FIG. 9 is an example of an image displayed by the aerial display device 4, and shows an example of an image corresponding to a map screen.
  • the screen UI includes a UI for slide operation.
  • the arrow A shows an example of the slide range of the indicator body P in the slide operation.
  • haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG. Further, one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG. As a result, the failure region A4 is included in the aerial haptics region A2.
  • the fault haptics driver D_E is in a state where the ultrasonic wave U cannot be transmitted. Therefore, the tactile stimulus in the faulty region A4 is weaker than the tactile stimulus in the region (that is, the normal region) of the aerial haptics region A2 excluding the faulty region A4. Therefore, when a slide operation over the slide range including the failure area A4 is input (see arrow A), the intensity of the tactile stimulus fluctuates during the operation. This may cause the user to feel uncomfortable. This also applies when a flick operation over a flick range including the failure area A4 is input.
  • the entire area A3_1 is set in the first area A3 by the first driver selection unit 22.
  • the first driver selection unit 22 selects 15 normal haptics drivers D_N corresponding to the entire area A3_1. That is, 15 first normal haptics drivers D_N_1 are selected.
  • the first frequency setting unit 23 lowers the first frequency F_N_1 for the selected 15 first normal haptics drivers D_N_1 (see FIG. 12).
  • the higher the frequency of the ultrasonic wave the higher the directivity of the ultrasonic wave.
  • the lower the frequency of the ultrasonic wave the lower the directivity of the ultrasonic wave. Therefore, when the first frequency setting process is executed, the directivity of the ultrasonic wave U_N_1 transmitted by each of the 15 selected first normal haptics drivers D_N_1 is lowered.
  • the region where the tactile sensation is presented by each first normal haptics driver D_N_1 is expanded (see FIG. 12).
  • the failure area A4 can be compensated. In other words, the failure area A4 can be complemented. Then, when the user inputs a slide operation (see FIG. 13), it is possible to suppress fluctuations in the strength of the tactile stimulus during the operation. This makes it possible to reduce the discomfort that the user remembers.
  • FIG. 14 is an example of an image displayed by the aerial display device 4, and shows an example of an image corresponding to a menu screen.
  • the screen UI includes a UI for tap operation. More specifically, four buttons B_1 to B_1 are included.
  • haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG.
  • one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG.
  • the failure region A4 is included in the aerial haptics region A2.
  • the failure area A4 corresponds to a part of the button B_2.
  • the fault haptics driver D_E is in a state where the ultrasonic wave U cannot be transmitted. Therefore, when the tap position of the indicator body P in the tap operation is included in the failure area A4, the tactile stimulus does not occur. That is, when the tap operation for the button B_2 is input, the tactile stimulus may not be generated. This may cause the user to feel uncomfortable.
  • the first driver selection unit 22 extracts the first partial region A3_2 including the failure region A4. Next, the extracted first partial region A3_2 is set in the first region A3. Then, the first driver selection unit 22 selects six normal haptics drivers D_N corresponding to the first partial region A3_2. That is, six first normal haptics drivers D_N_1 are selected. Next, the first frequency setting unit 23 lowers the first frequency F_N_1 for the six selected first normal haptics drivers D_N_1 (see FIG. 17).
  • the directivity of the ultrasonic wave U_N_1 transmitted by each of the six selected first normal haptics drivers D_N_1 is lowered.
  • the region where the tactile sensation is presented by each first normal haptics driver D_N_1 is expanded (see FIG. 17).
  • the failure area A4 can be compensated. In other words, the failure area A4 can be complemented. Then, when the user inputs a tap operation for the button B_2 (see FIG. 18), the tactile stimulus can be generated regardless of the tap position.
  • the accuracy of the tactile stimulus generated by such ultrasonic waves may decrease due to the decrease in the directivity of the ultrasonic waves.
  • the screen UI includes a UI for tap operation (see FIGS. 14 to 18)
  • the first partial region A3_2 is set to the first region A3 from the viewpoint of suppressing a decrease in the accuracy of the tactile stimulus in the normal region. Is preferable. Therefore, the first driver selection unit 22 sets the first partial region A3_2 in the first region A3.
  • the screen UI includes a UI for slide operation (see FIGS. 9 to 13), there is a possibility that a slide operation over a large slide range may be input.
  • the entire region A3_1 is set in the first region A3 from the viewpoint of suppressing fluctuations in the intensity of the tactile stimulus over the entire large slide range. Therefore, the first driver selection unit 22 sets the entire area A3_1 to the first area A3. This also applies when the screen UI includes a UI for flick operation.
  • the aerial haptics system 1 may include a sensor 5.
  • the sensor 5 is composed of, for example, a camera or an infrared sensor.
  • the operation detection unit 15 may use the sensor 5 instead of the current value I when detecting the operation by the hand gesture.
  • Various known techniques can be used to detect the operation by the sensor 5. Detailed description of these techniques will be omitted.
  • the aerial haptics control device 100 has a failure driver detection unit 21 for detecting a failure haptics driver D_E included in the haptics driver group DG in the aerial haptics device 3 and a failure haptics driver.
  • the first driver selection unit 22 and one that select one or more of the first normal haptics drivers D_N_1 among the plurality of normal haptics drivers D_N included in the haptics driver group DG.
  • a first frequency setting unit 23 that lowers the value of the first frequency F_N_1 corresponding to each of the above first normal haptics drivers D_N_1 is provided.
  • the failure region A4 can be complemented by reducing the directivity of the ultrasonic waves U_N_1 transmitted by the individual first normal haptics drivers D_N_1.
  • the area suitable for each screen UI can be set in the first area A3.
  • the entire region A3_1 or the first partial region A3_2 can be selectively set in the first region A3.
  • the entire area A3_1 is set in the first area A3. This makes it possible to suppress fluctuations in the intensity of the tactile stimulus over the entire slide range or flick range.
  • the screen UI includes a UI for tap operation (that is, when the screen UI does not include a UI for slide operation and a UI for flick operation)
  • the first partial area A3_2 is set in the first area A3.
  • NS the deterioration of the accuracy of the tactile stimulus in the normal region
  • the failure driver detection unit 21 has step ST1 for detecting the failure haptics driver D_E included in the haptics driver group DG in the aerial haptics device 3, and the first driver selection.
  • Step ST3 in which the unit 22 selects one or more of the first normal haptics drivers D_N_1 among the plurality of normal haptics drivers D_N included in the haptics driver group DG when the failure haptics driver D_E is detected.
  • the first frequency setting unit 23 includes a step ST4 for lowering the value of the first frequency F_N_1 corresponding to each of the one or more first normal haptics drivers D_N_1.
  • the failure region A4 can be complemented by reducing the directivity of the ultrasonic waves U_N_1 transmitted by the individual first normal haptics drivers D_N_1.
  • FIG. 20 is a block diagram showing a main part of the aerial haptics system according to the second embodiment.
  • the aerial haptics system according to the second embodiment will be described with reference to FIG. 20.
  • FIG. 20 the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • the aerial haptics system 1a includes a control device 2a, an aerial haptics device 3, and an aerial display device 4.
  • the control device 2a includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2a includes a failure driver detection unit 21, a first driver selection unit 22, a first frequency setting unit 23, a second driver selection unit 24, and a second frequency setting unit 25.
  • the failure driver detection unit 21, the first driver selection unit 22, the first frequency setting unit 23, the second driver selection unit 24, and the second frequency setting unit 25 constitute the main part of the aerial haptics control device 100a.
  • the second driver selection unit 24 has one or more normal haptics drivers D_N among a plurality of normal haptics drivers D_N included in the haptics driver group DG.
  • the tics driver hereinafter referred to as "second normal haptics driver" D_N_2 is selected.
  • one or more second normal haptics drivers D_N_2 correspond to a predetermined region (hereinafter referred to as “second region”) A5 in the aerial haptics region A2.
  • the second driver selection unit 24 sets the following areas in the second area A5.
  • the second driver selection unit 24 extracts a region A5_1 which is a part of the aerial haptics region A2 and includes a region (that is, a fault region) A4 corresponding to the fault haptics driver D_E.
  • the second driver selection unit 24 sets the extracted area A5-11 in the second area A5.
  • a region A5_1 is referred to as a “second partial region”.
  • the second frequency setting unit 25 raises the frequency (hereinafter referred to as “second frequency”) F_N_2 of the ultrasonic wave U_N_2 transmitted by each second normal haptics driver D_N_2.
  • the second frequency setting unit 25 instructs the carrier wave signal generation unit 31 to generate a carrier wave signal having a frequency f "higher than the predetermined frequency f" for each second normal haptics driver D_N_2.
  • the frequency of the ultrasonic U_N_2 transmitted by the individual second normal haptics driver D_N_2 (ie, the second frequency) F_N_2 is relative to the frequency F_N of the ultrasonic U_N transmitted by the other individual normal haptics drivers D_N. It becomes a high value.
  • the main part of the aerial haptics system 1a is configured.
  • second driver selection process the processes executed by the second driver selection unit 24 may be collectively referred to as "second driver selection process”. Further, the functions of the second driver selection unit 24 may be collectively referred to as “second driver selection function”. Further, the reference numeral of "F4" may be used for the second driver selection function.
  • second frequency setting process the processes executed by the second frequency setting unit 25 may be collectively referred to as "second frequency setting process”. Further, the functions of the second frequency setting unit 25 may be collectively referred to as “second frequency setting function”. Further, the reference numeral of "F5" may be used for the second frequency setting function.
  • the aerial haptics control device 100a has an operation mode (hereinafter referred to as "first operation mode”) for executing the first driver selection process and the first frequency setting process when the failure haptics driver D_E is detected. doing. Further, the aerial haptics control device 100a has an operation mode (hereinafter referred to as "second operation mode") for executing the second driver selection process and the second frequency setting process when the failure haptics driver D_E is detected. ing.
  • the aerial haptics control device 100a is adapted to selectively operate in the first operation mode or the second operation mode.
  • an example in which the aerial haptics control device 100a operates in the second operation mode will be mainly described.
  • the hardware configuration of the main part of the aerial haptics control device 100a is the same as that described with reference to FIGS. 4 to 6 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the aerial haptics control device 100a has a plurality of functions (including a failure driver detection function, a first driver selection function, a first frequency setting function, a second driver selection function, and a second frequency setting function) F1 to F5.
  • a failure driver detection function e.g., a failure driver detection function
  • a first driver selection function e.g., a failure driver detection function
  • a first frequency setting function e.g., a second driver selection function
  • a second frequency setting function e.g., a failure driver detection function, a failure driver detection function, a first driver selection function, a first frequency setting function, a second driver selection function, and a second frequency setting function
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F5.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F5.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F5.
  • the fault driver detection unit 21 executes the fault driver detection process (step ST1).
  • the second driver selection unit 24 executes the second driver selection process (step ST5).
  • the second frequency setting unit 25 executes the second frequency setting process (step ST6). If the failure haptics driver D_E is not detected by the failure driver detection process (step ST2 “NO”), the processes of steps ST5 and ST6 are skipped.
  • step ST5 the operation of the second driver selection unit 24 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST5 will be described.
  • the second driver selection unit 24 extracts the second subregion A5-1 including the failure region A4 (step ST21). Next, the second driver selection unit 24 sets the extracted second partial region A5_1 in the second region A5 (step ST22). Next, the second driver selection unit 24 selects one or more second normal haptics drivers D_N_2 based on the set second region A5 (step ST23).
  • haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG. Further, one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG. As a result, the failure region A4 is included in the aerial haptics region A2.
  • the second driver selection unit 24 extracts the second partial region A5_1 including the failure region A4. Next, the extracted second partial region A5_1 is set in the second region A5. Then, the second driver selection unit 24 selects five normal haptics drivers D_N corresponding to the second partial region A5-1. That is, five second normal haptics drivers D_N_2 are selected. The second frequency setting unit 25 then raises the second frequency F_N_2 for the five selected second normal haptics drivers D_N_2 (see FIG. 25).
  • the higher the frequency of the ultrasonic wave the higher the directivity of the ultrasonic wave.
  • the higher the directivity of the ultrasonic wave the stronger the tactile stimulus generated by the ultrasonic wave. That is, the higher the frequency of the ultrasonic wave, the stronger the tactile stimulus generated by the ultrasonic wave.
  • the aerial haptics system 1a can adopt various modifications similar to those described in the first embodiment.
  • the aerial haptics system 1a may include a sensor 5.
  • the operation detection unit 15 may use the sensor 5 to detect the operation by the hand gesture.
  • one or more of the plurality of normal haptics drivers D_N is the second normal haptics driver.
  • a second driver selection unit 24 for selecting D_N_2 and a second frequency setting unit 25 for increasing the value of the second frequency F_N_2 corresponding to each of the one or more second normal haptic drivers D_N_2 are provided. This makes it possible to tactilely notify the user of the existence of the failure haptics driver D_E.
  • one or more second normal haptics drivers D_N_2 correspond to the second region A5 of the aerial haptics region A2 in the aerial haptics apparatus 3, and the failure haptics driver D_E in the aerial haptics region A2.
  • the second partial region A5_1 including the region (failure region) A4 corresponding to the above is set in the second region A5. This makes it possible to tactilely inform the user of the position of the fault haptics driver D_E.
  • FIG. 27 is a block diagram showing a main part of the aerial haptics system according to the third embodiment.
  • the aerial haptics system according to the third embodiment will be described with reference to FIG. 27.
  • the same blocks as those shown in FIG. 20 are designated by the same reference numerals and the description thereof will be omitted.
  • the aerial haptics system 1b includes a control device 2b, an aerial haptics device 3, and an aerial display device 4.
  • the control device 2b includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2b includes a failure driver detection unit 21, a first driver selection unit 22a, a first frequency setting unit 23, a second driver selection unit 24, and a second frequency setting unit 25.
  • the failure driver detection unit 21, the first driver selection unit 22a, the first frequency setting unit 23, the second driver selection unit 24, and the second frequency setting unit 25 constitute the main part of the aerial haptics control device 100b.
  • first driver selection process the processes executed by the first driver selection unit 22a may be collectively referred to as "first driver selection process”. Further, the functions of the first driver selection unit 22a may be collectively referred to as “first driver selection function”. Further, the reference numeral of "F2a" may be used for the first driver selection function.
  • the aerial haptics control device 100b executes the second driver selection process and the second frequency setting process, and also executes the first driver selection process and the first frequency setting process. It has become.
  • the first driver selection unit 22a sets the area other than the second partial area A5_1 of the entire area A3_1 to the first area A3. It is designed to be set.
  • the first driver selection unit 22a is the first when the screen UI being displayed includes a UI for flick operation (that is, when the screen UI being displayed does not include a UI for slide operation and a UI for flick operation).
  • the area of the one partial area A3_2 excluding the second partial area A5_1 is set in the first area A3.
  • the main part of the aerial haptics system 1b is configured.
  • the hardware configuration of the main part of the aerial haptics control device 100b is the same as that described with reference to FIGS. 4 to 6 in the first embodiment. Therefore, detailed description thereof will be omitted.
  • the aerial haptics control device 100b includes a plurality of functions (including a failure driver detection function, a first driver selection function, a first frequency setting function, a second driver selection function, and a second frequency setting function) F1, F2a, and so on. It has F3 to F5.
  • Each of the plurality of functions F1, F2a, F3 to F5 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
  • the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1, F2a, F3 to F5.
  • the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1, F2a, F3 to F5.
  • the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1, F2a, F3 to F5.
  • FIG. 28 the same reference numerals are given to the same steps as those shown in FIG. 7. Further, in FIG. 28, the same steps as those shown in FIG. 21 are designated by the same reference numerals.
  • the fault driver detection unit 21 executes the fault driver detection process (step ST1).
  • the failure haptics driver D_E is detected by the failure driver detection process (step ST2 “YES”)
  • the second driver selection unit 24 executes the second driver selection process (step ST5)
  • the first driver selection unit 22a executes the first driver selection process (step ST3a).
  • the second frequency setting unit 25 executes the second frequency setting process (step ST6)
  • the first frequency setting unit 23 executes the first frequency setting process (step ST4). If the failure haptics driver D_E is not detected by the failure driver detection process (step ST2 “NO”), the processes of steps ST5, ST3a, ST6, and ST4 are skipped.
  • step ST3a the same reference numerals are given to the same steps as those shown in FIG. Further, it is assumed that the second partial region A5-1 has been extracted by the second driver selection unit 24.
  • the first driver selection unit 22a acquires screen UI information (step ST11). Next, the first driver selection unit 22a uses the acquired screen UI information to determine whether or not the screen UI being displayed includes a UI for slide operation or a UI for flick operation (step ST12). ).
  • the first driver selection unit 22a excludes the second partial area A5_1 of the entire area A3_1. The area is set to the first area A3 (step ST13a).
  • the first step. 1 The driver selection unit 22a extracts the first partial region A3_2 including the failure region A4 (step ST14). Next, the first driver selection unit 22a sets the region of the extracted first partial region A3_2 excluding the second partial region A5_1 in the first region A3 (step ST15a).
  • the first driver selection unit 22a selects one or more first normal haptics drivers D_N_1 based on the first region A3 set in step ST13a or step ST15a (step ST16).
  • the aerial haptics system 1b can employ various modifications similar to those described in the first embodiment.
  • the aerial haptics system 1b may include a sensor 5.
  • the operation detection unit 15 may use the sensor 5 to detect the operation by the hand gesture.
  • the aerial haptics control device, the aerial haptics system, and the aerial haptics control method according to the present disclosure can be used, for example, in an in-vehicle information communication device.
  • 1,1a, 1b aerial haptics system 1,2a, 2b control device, 3 aerial haptics device, 4 aerial display device, 5 sensors, 11 system control unit, 12 drive control unit, 13 display control unit, 14 current detection unit , 15 Operation detection unit, 21 Failure driver detection unit, 22, 22a 1st driver selection unit, 23 1st frequency setting unit, 24 2nd driver selection unit, 25 2nd frequency setting unit, 31 carrier wave signal generation unit, 32 vibration Wave signal generation unit, 33 modulation unit, 34 amplification unit, 41 processor, 42 memory, 43 processing circuit, 100, 100a, 100b aerial haptics control device, D haptics driver, DG haptics driver group.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

An aerial haptics control device (100) is provided with: a failed driver detection unit (21) that detects a failed haptics driver (D_E) included in a haptics driver group (DG) in an aerial haptics device (3); a first driver selection unit (22) that selects one or more first normal haptics drivers (D_N_1) among a plurality of normal haptics drivers (D_N) included in the haptics driver group (DG) when the failed haptics driver (D_E) is detected; and a first frequency setting unit (23) that lowers the value of a first frequency (F_N_1) corresponding to each of the one or more first normal haptics drivers (D_N_1).

Description

空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法Aerial haptics controller, aerial haptics system and aerial haptics control method
 本開示は、空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法に関する。 The present disclosure relates to an aerial haptics control device, an aerial haptics system, and an aerial haptics control method.
 従来、空中に光を投影することにより、空中に映像を表示する装置(以下「空中ディスプレイ装置」という。)が開発されている。また、空中に超音波を送信することにより、空中に触覚を提示する装置(以下「空中ハプティクス装置」という。)が開発されている。また、空中ディスプレイ装置及び空中ハプティクス装置を用いて、空中におけるHMI(Human Machine Interface)を実現するシステムが開発されている。特許文献1には、かかるシステムが開示されている。 Conventionally, a device that displays an image in the air by projecting light into the air (hereinafter referred to as an "aerial display device") has been developed. Further, a device that presents a tactile sensation in the air by transmitting ultrasonic waves in the air (hereinafter referred to as "aerial haptics device") has been developed. In addition, a system that realizes an HMI (Human Machine Interface) in the air has been developed by using an aerial display device and an aerial haptics device. Patent Document 1 discloses such a system.
特開2017-162195号公報Japanese Unexamined Patent Publication No. 2017-162195
 空中ハプティクス装置は、ハプティクスドライバ群を用いるものである。ハプティクスドライバ群は、複数個のハプティクスドライバを含むものである。複数個のハプティクスドライバは、一次元状に配列されている。または、複数個のハプティクスドライバは、二次元状に配列されている。個々のハプティクスドライバは、例えば、超音波トランスデューサにより構成されている。 The aerial haptics device uses a group of haptics drivers. The haptics driver group includes a plurality of haptics drivers. A plurality of haptics drivers are arranged one-dimensionally. Alternatively, a plurality of haptics drivers are arranged two-dimensionally. Each haptics driver is configured, for example, by an ultrasonic transducer.
 空中ハプティクス装置により触覚が提示される領域(以下「空中ハプティクス領域」という。)は、個々のハプティクスドライバにより触覚が提示される領域を含むものである。換言すれば、空中ハプティクス領域は、個々のハプティクスドライバに対応する領域を含むものである。 The area where the tactile sensation is presented by the aerial haptics device (hereinafter referred to as "aerial haptics area") includes the area where the tactile sensation is presented by each haptics driver. In other words, the aerial haptics region includes the region corresponding to each haptics driver.
 ここで、個々のハプティクスドライバは、種々の要因により故障し得るものである。以下、複数個のハプティクスドライバのうちの少なくとも1個のハプティクスドライバが故障しているとき、当該少なくとも1個のハプティクスドライバを「故障ハプティクスドライバ」ということがある。また、複数個のハプティクスドライバのうちの残余の1個以上のハプティクスドライバを「正常ハプティクスドライバ」ということがある。 Here, each haptics driver can fail due to various factors. Hereinafter, when at least one haptics driver among a plurality of haptics drivers is out of order, the at least one haptics driver may be referred to as a "failure haptics driver". Further, the remaining one or more haptics drivers among the plurality of haptics drivers may be referred to as a "normal haptics driver".
 故障ハプティクスドライバが存在するとき、空中ハプティクス領域のうちの故障ハプティクスドライバに対応する領域(以下「故障領域」ということがある。)において、ハプティクスが正常に実現されない状態が発生する。具体的には、例えば、故障領域における触覚刺激が空中ハプティクス領域のうちの故障領域を除く領域(以下「正常領域」ということがある。)における触覚刺激に比して弱くなる。これにより、ユーザが違和感を覚えることがある。 When a fault haptics driver exists, a state in which haptics is not normally realized occurs in the region corresponding to the fault haptics driver (hereinafter sometimes referred to as "failure region") in the aerial haptics region. Specifically, for example, the tactile stimulus in the faulty region is weaker than the tactile stimulus in the region of the aerial haptics region excluding the faulty region (hereinafter, may be referred to as “normal region”). As a result, the user may feel uncomfortable.
 特許文献1記載のシステムは、かかる故障の発生に対応するための構成を有していない。このため、かかる故障の発生に対応することができない問題があった。 The system described in Patent Document 1 does not have a configuration for dealing with the occurrence of such a failure. Therefore, there is a problem that it is not possible to deal with the occurrence of such a failure.
 本開示は、上記のような課題を解決するためになされたものであり、ハプティクスドライバ群における故障の発生に対応することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to deal with the occurrence of a failure in the haptics driver group.
 本開示に係る空中ハプティクス制御装置は、空中ハプティクス装置におけるハプティクスドライバ群に含まれる故障ハプティクスドライバを検出する故障ドライバ検出部と、故障ハプティクスドライバが検出されたとき、ハプティクスドライバ群に含まれる複数個の正常ハプティクスドライバのうちの1個以上の第1正常ハプティクスドライバを選択する第1ドライバ選択部と、1個以上の第1正常ハプティクスドライバの各々に対応する第1周波数の値を低下させる第1周波数設定部と、を備えるものである。 The aerial haptics control device according to the present disclosure is included in the failure driver detection unit that detects the failure haptics driver included in the haptics driver group in the aerial haptics device, and in the haptics driver group when the failure haptics driver is detected. A first driver selection unit that selects one or more of the first normal haptics drivers out of a plurality of normal haptics drivers, and a first frequency corresponding to each of the one or more normal haptics drivers. It includes a first frequency setting unit that lowers the value.
 本開示によれば、上記のように構成したので、ハプティクスドライバ群における故障の発生に対応することができる。 According to the present disclosure, since it is configured as described above, it is possible to deal with the occurrence of a failure in the haptics driver group.
実施の形態1に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス装置の要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける制御装置のうちの駆動制御部の要部を示すブロック図である。It is a block diagram which shows the main part of the drive control part among the control devices in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の要部の他のハードウェア構成を示すブロック図である。It is a block diagram which shows the other hardware composition of the main part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの第1ドライバ選択部の動作を示すフローチャートである。It is a flowchart which shows the operation of the 1st driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 1. FIG. スライド操作用のUIを含む画面UIの例を示す説明図である。It is explanatory drawing which shows the example of the screen UI including the UI for slide operation. 故障領域を含むスライド範囲に亘るスライド操作が入力される状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the slide operation over the slide range including a failure area is input. 空中ハプティクス領域における全体領域の例を示す説明図である。It is explanatory drawing which shows the example of the whole area in the aerial haptics area. 第1周波数が低下した状態の例を示す説明図である。It is explanatory drawing which shows the example of the state in which the 1st frequency is lowered. 第1周波数が低下した状態にてスライド操作が入力される状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the slide operation is input in the state which the 1st frequency is lowered. タップ操作用のUIを含む画面UIの例を示す説明図である。It is explanatory drawing which shows the example of the screen UI including the UI for tap operation. 故障領域に含まれるタップ位置に対するタップ操作が入力される状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the tap operation is input with respect to the tap position included in the failure area. 空中ハプティクス領域における第1部分領域の例を示す説明図である。It is explanatory drawing which shows the example of the 1st partial area in the aerial haptics area. 第1周波数が低下した状態の例を示す説明図である。It is explanatory drawing which shows the example of the state in which the 1st frequency is lowered. 第1周波数が低下した状態にてタップ操作が入力される状態の例を示す説明図である。It is explanatory drawing which shows the example of the state which the tap operation is input in the state which the 1st frequency is lowered. 実施の形態1に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 1. FIG. 実施の形態2に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 2. 実施の形態2に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態2に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの第2ドライバ選択部の動作を示すフローチャートである。It is a flowchart which shows the operation of the 2nd driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 2. FIG. 空中ハプティクス領域における故障領域の例を示す説明図である。It is explanatory drawing which shows the example of the failure area in the aerial haptics area. 空中ハプティクス領域における第2部分領域の例を示す説明図である。It is explanatory drawing which shows the example of the 2nd part region in the aerial haptics region. 第2周波数が上昇した状態の例を示す説明図である。It is explanatory drawing which shows the example of the state in which the 2nd frequency is raised. 実施の形態2に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 2. FIG. 実施の形態3に係る空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of the aerial haptics system which concerns on Embodiment 3. 実施の形態3に係る空中ハプティクスシステムにおける空中ハプティクス制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る空中ハプティクスシステムにおける空中ハプティクス制御装置のうちの第1ドライバ選択部の動作を示すフローチャートである。It is a flowchart which shows the operation of the 1st driver selection part of the aerial haptics control apparatus in the aerial haptics system which concerns on Embodiment 3. FIG. 実施の形態3に係る他の空中ハプティクスシステムの要部を示すブロック図である。It is a block diagram which shows the main part of another aerial haptics system which concerns on Embodiment 3. FIG.
 以下、この開示をより詳細に説明するために、この開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain this disclosure in more detail, a mode for carrying out this disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る空中ハプティクスシステムの要部を示すブロック図である。図2は、実施の形態1に係る空中ハプティクスシステムにおける空中ハプティクス装置の要部を示すブロック図である。図3は、実施の形態1に係る空中ハプティクスシステムにおける制御装置のうちの駆動制御部の要部を示すブロック図である。図1~図3を参照して、実施の形態1に係る空中ハプティクスシステムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of the aerial haptics system according to the first embodiment. FIG. 2 is a block diagram showing a main part of an aerial haptics device in the aerial haptics system according to the first embodiment. FIG. 3 is a block diagram showing a main part of a drive control unit among the control devices in the aerial haptics system according to the first embodiment. The aerial haptics system according to the first embodiment will be described with reference to FIGS. 1 to 3.
 図1に示す如く、空中ハプティクスシステム1は、制御装置2、空中ハプティクス装置3及び空中ディスプレイ装置4を含むものである。制御装置2は、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2は、故障ドライバ検出部21、第1ドライバ選択部22及び第1周波数設定部23を含むものである。故障ドライバ検出部21、第1ドライバ選択部22及び第1周波数設定部23により、空中ハプティクス制御装置100の要部が構成されている。 As shown in FIG. 1, the aerial haptics system 1 includes a control device 2, an aerial haptics device 3, and an aerial display device 4. The control device 2 includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2 includes a failure driver detection unit 21, a first driver selection unit 22, and a first frequency setting unit 23. The failure driver detection unit 21, the first driver selection unit 22, and the first frequency setting unit 23 constitute a main part of the aerial haptics control device 100.
 制御装置2は、例えば、車載用の情報通信機器により構成されている。すなわち、制御装置2は、例えば、ECU(Electronic Control Unit)により構成されている。以下、制御装置2が車載用の情報通信機器により構成されている場合の例を中心に説明する。すなわち、空中ハプティクスシステム1が車載用である場合の例を中心に説明する。 The control device 2 is composed of, for example, an in-vehicle information communication device. That is, the control device 2 is configured by, for example, an ECU (Electronic Control Unit). Hereinafter, an example in which the control device 2 is composed of an in-vehicle information communication device will be mainly described. That is, an example in which the aerial haptics system 1 is for an in-vehicle use will be mainly described.
 図2に示す如く、空中ハプティクス装置3は、ハプティクスドライバ群DGを用いるものである。ハプティクスドライバ群DGは、複数個のハプティクスドライバDを含むものである。個々のハプティクスドライバDは、例えば、超音波トランスデューサにより構成されている。 As shown in FIG. 2, the aerial haptics device 3 uses the haptics driver group DG. The haptics driver group DG includes a plurality of haptics drivers D. Each haptics driver D is composed of, for example, an ultrasonic transducer.
 複数個のハプティクスドライバDは、一次元状に配列されている。または、複数個のハプティクスドライバDは、二次元状に配列されている。図2に示す例においては、M×N個のハプティクスドライバDがN行M列のマトリクス状に配列されている。ここで、Nは、2以上の任意の整数である。また、Mは、2以上の任意の整数である。 A plurality of haptics drivers D are arranged one-dimensionally. Alternatively, the plurality of haptics drivers D are arranged two-dimensionally. In the example shown in FIG. 2, M × N haptics drivers D are arranged in a matrix of N rows and M columns. Here, N is an arbitrary integer of 2 or more. Further, M is an arbitrary integer of 2 or more.
 以下、複数個のハプティクスドライバDが二次元状に配列されている場合の例を中心に説明する。より具体的には、M×N個のハプティクスドライバDがN行M列のマトリクス状に配列されている場合の例を中心に説明する。 Hereinafter, an example in which a plurality of haptics drivers D are arranged two-dimensionally will be mainly described. More specifically, an example in which M × N haptics drivers D are arranged in a matrix of N rows and M columns will be mainly described.
 空中ディスプレイ装置4は、空中に光を投影することにより、空中に映像を表示するものである。空中ディスプレイ装置4により映像が表示される領域(以下「表示領域」という。)A1は、空中ハプティクス装置3により触覚が提示される領域(すなわち空中ハプティクス領域)A2に対応している。すなわち、空中ディスプレイ装置4は、空中ハプティクス装置3に対応するものである。空中ディスプレイ装置4は、例えば、3D-HUD(Three-Dimensional Head-Up Display)により構成されている。 The aerial display device 4 displays an image in the air by projecting light into the air. The area where the image is displayed by the aerial display device 4 (hereinafter referred to as “display area”) A1 corresponds to the area where the tactile sensation is presented by the aerial haptics device 3 (that is, the aerial haptics area) A2. That is, the aerial display device 4 corresponds to the aerial haptics device 3. The aerial display device 4 is composed of, for example, a 3D-HUD (Three-Dimensional Head-Up Display).
 システム制御部11は、制御装置2全体の動作を制御するものである。これにより、システム制御部11は、空中ハプティクスシステム1全体の動作を制御するものである。システム制御部11は、例えば、専用の回路により構成されている。 The system control unit 11 controls the operation of the entire control device 2. As a result, the system control unit 11 controls the operation of the entire aerial haptics system 1. The system control unit 11 is composed of, for example, a dedicated circuit.
 駆動制御部12は、システム制御部11による指示に基づき、個々のハプティクスドライバDを駆動する制御を実行するものである。駆動制御部12は、例えば、専用の回路により構成されている。 The drive control unit 12 executes control for driving each haptics driver D based on an instruction from the system control unit 11. The drive control unit 12 is composed of, for example, a dedicated circuit.
 すなわち、図3に示す如く、駆動制御部12は、搬送波信号生成部31、振動波信号生成部32、変調部33及び増幅部34を含むものである。 That is, as shown in FIG. 3, the drive control unit 12 includes a carrier wave signal generation unit 31, a vibration wave signal generation unit 32, a modulation unit 33, and an amplification unit 34.
 搬送波信号生成部31は、システム制御部11による指示に基づき、所定の周波数fを有する超音波(以下「搬送波」という。)に対応する電気信号(以下「搬送波信号」という。)を生成するものである。搬送波信号生成部31は、当該生成された搬送波信号を変調部33に出力するものである。 The carrier wave signal generation unit 31 generates an electric signal (hereinafter referred to as “carrier signal”) corresponding to an ultrasonic wave having a predetermined frequency f (hereinafter referred to as “carrier wave”) based on an instruction by the system control unit 11. Is. The carrier wave signal generation unit 31 outputs the generated carrier wave signal to the modulation unit 33.
 振動波信号生成部32は、システム制御部11による指示に基づき、所望の触覚刺激に対応する振動を実現するための超音波(以下「振動波」という。)に対応する電気信号(以下「振動波信号」という。)を生成するものである。振動波信号生成部32は、当該生成された振動波信号を変調部33に出力するものである。 The vibration wave signal generation unit 32 is an electric signal (hereinafter referred to as “vibration”) corresponding to ultrasonic waves (hereinafter referred to as “vibration wave”) for realizing vibration corresponding to a desired tactile stimulus based on an instruction by the system control unit 11. It is called a "wave signal"). The vibration wave signal generation unit 32 outputs the generated vibration wave signal to the modulation unit 33.
 変調部33は、振動波信号生成部32により出力された振動波信号を用いて、搬送波信号生成部31により出力された搬送波信号を変調するものである。変調部33は、当該変調された搬送波信号(以下「変調波信号」という。)を増幅部34に出力するものである。 The modulation unit 33 modulates the carrier wave signal output by the carrier wave signal generation unit 31 by using the vibration wave signal output by the vibration wave signal generation unit 32. The modulation unit 33 outputs the modulated carrier wave signal (hereinafter referred to as “modulated wave signal”) to the amplification unit 34.
 増幅部34は、変調部33により出力された変調波信号を増幅するものである。これにより、当該出力された変調波信号は、所定のレベルに増幅される。増幅部34は、当該増幅された変調波信号(以下「送信信号」という。)をハプティクスドライバ群DGに出力するものである。 The amplification unit 34 amplifies the modulated wave signal output by the modulation unit 33. As a result, the output modulated wave signal is amplified to a predetermined level. The amplification unit 34 outputs the amplified modulated wave signal (hereinafter referred to as “transmission signal”) to the haptics driver group DG.
 ここで、搬送波信号生成部31は、個々のハプティクスドライバDに対応する搬送波信号を生成する。振動波信号生成部32は、個々のハプティクスドライバDに対応する振動波信号を生成する。変調部33は、個々のハプティクスドライバDについて、対応する振動波信号を用いて対応する搬送波信号を変調する。増幅部34は、個々のハプティクスドライバDに対応する変調波信号を増幅する。増幅部34は、個々のハプティクスドライバDに対応する送信信号を出力する。 Here, the carrier wave signal generation unit 31 generates a carrier wave signal corresponding to each haptics driver D. The vibration wave signal generation unit 32 generates a vibration wave signal corresponding to each haptics driver D. The modulation unit 33 modulates the corresponding carrier signal using the corresponding vibration wave signal for each haptics driver D. The amplification unit 34 amplifies the modulated wave signal corresponding to each haptics driver D. The amplification unit 34 outputs a transmission signal corresponding to each haptics driver D.
 これにより、個々のハプティクスドライバDが駆動する。すなわち、個々のハプティクスドライバDが空中に超音波Uを送信する。これにより、空中ハプティクス領域A2に触覚が提示される。すなわち、空中ハプティクス領域A2におけるハプティクスが実現される。 As a result, each haptics driver D is driven. That is, each haptics driver D transmits ultrasonic waves U in the air. As a result, the antennae are presented to the aerial haptics region A2. That is, haptics in the aerial haptics region A2 are realized.
 なお、空中ハプティクス領域A2のうちの指示体(例えばユーザの指)Pが存在する領域においては、対応するハプティクスドライバDにより送信された超音波Uが指示体Pにより反射されて、当該反射された超音波U’が当該対応するハプティクスドライバDにより受信される。当該対応するハプティクスドライバDは、当該受信された超音波U’に対応する電気信号(以下「受信信号」という。)を出力する。 In the region of the aerial haptics region A2 where the indicator (for example, the user's finger) P exists, the ultrasonic wave U transmitted by the corresponding haptics driver D is reflected by the indicator P and reflected. The ultrasonic wave U'is received by the corresponding haptics driver D. The corresponding haptics driver D outputs an electric signal (hereinafter referred to as "received signal") corresponding to the received ultrasonic wave U'.
 表示制御部13は、システム制御部11による指示に基づき、空中ディスプレイ装置4を用いて種々の画面に対応する映像を表示する制御を実行するものである。表示制御部13は、例えば、専用の回路により構成されている。 The display control unit 13 executes control to display images corresponding to various screens by using the aerial display device 4 based on the instruction from the system control unit 11. The display control unit 13 is composed of, for example, a dedicated circuit.
 ここで、空中ディスプレイ装置4により表示される映像は、種々の操作用の画面(以下「操作画面」という。)に対応する映像を含むものである。個々の操作画面におけるUI(User Interface)は、ハンドジェスチャによる操作入力用のUIを含むものである。以下、個々の操作画面におけるUIを「画面UI」という。 Here, the image displayed by the aerial display device 4 includes images corresponding to screens for various operations (hereinafter referred to as "operation screens"). The UI (User Interface) on each operation screen includes a UI for operation input by hand gesture. Hereinafter, the UI on each operation screen is referred to as "screen UI".
 具体的には、例えば、画面UIは、スライド操作による操作入力用のUI(以下「スライド操作用のUI」という。)を含むものである。または、例えば、画面UIは、フリック操作による操作入力用のUI(以下「フリック操作用のUI」という。)を含むものである。または、例えば、画面UIは、タップ操作による操作入力用のUI(以下「タップ操作用のUI」という。)を含むものである。 Specifically, for example, the screen UI includes a UI for operation input by slide operation (hereinafter referred to as "UI for slide operation"). Alternatively, for example, the screen UI includes a UI for operation input by flick operation (hereinafter referred to as "UI for flick operation"). Alternatively, for example, the screen UI includes a UI for operation input by tap operation (hereinafter referred to as "UI for tap operation").
 電流検出部14は、個々のハプティクスドライバDにおける電流値Iを検出するものである。より具体的には、電流検出部14は、個々のハプティクスドライバDについて、送信信号に対応する電流値I_1を検出するとともに、受信信号に対応する電流値I_2を検出するものである。電流検出部14は、例えば、専用の回路により構成されている。 The current detection unit 14 detects the current value I in each haptics driver D. More specifically, the current detection unit 14 detects the current value I_1 corresponding to the transmission signal and the current value I_2 corresponding to the reception signal for each haptics driver D. The current detection unit 14 is composed of, for example, a dedicated circuit.
 操作検出部15は、電流検出部14により検出された電流値Iを用いて、ユーザにより操作画面に対して入力された操作を検出するものである。操作検出部15は、例えば、専用の回路により構成されている。 The operation detection unit 15 detects an operation input to the operation screen by the user by using the current value I detected by the current detection unit 14. The operation detection unit 15 is composed of, for example, a dedicated circuit.
 すなわち、空中ハプティクス領域A2のうちの指示体Pが存在する領域においては、対応するハプティクスドライバDに送信信号が入力されるとともに、当該対応するハプティクスドライバDにより受信信号が出力される。通常、受信信号は、対応する送信信号に対して減衰したものとなる。また、受信信号は、対応する送信信号に対して位相差を有するものとなる。 That is, in the region of the aerial haptics region A2 where the indicator P exists, the transmission signal is input to the corresponding haptics driver D, and the reception signal is output by the corresponding haptics driver D. Normally, the received signal is attenuated with respect to the corresponding transmitted signal. Further, the received signal has a phase difference with respect to the corresponding transmitted signal.
 このため、個々のハプティクスドライバDにおける電流値I_1,I_2の差分値ΔIに基づき、対応する領域における指示体Pの有無を判定することができる。操作検出部15は、かかる判定の結果に基づき、ハンドジェスチャによる操作を検出する。具体的には、例えば、操作検出部15は、スライド操作、フリック操作又はタップ操作を検出する。 Therefore, it is possible to determine the presence / absence of the indicator P in the corresponding region based on the difference value ΔI of the current values I_1 and I_1 in each haptics driver D. The operation detection unit 15 detects the operation by the hand gesture based on the result of the determination. Specifically, for example, the operation detection unit 15 detects a slide operation, a flick operation, or a tap operation.
 故障ドライバ検出部21は、電流検出部14により検出された電流値Iを用いて、個々のハプティクスドライバDにおける故障の有無を判定するものである。これにより、故障ドライバ検出部21は、ハプティクスドライバ群DGに故障ハプティクスドライバD_Eが含まれるとき、故障ハプティクスドライバD_Eを検出するものである。 The failure driver detection unit 21 determines whether or not there is a failure in each haptics driver D by using the current value I detected by the current detection unit 14. As a result, the failure driver detection unit 21 detects the failure haptics driver D_E when the failure haptics driver D_E is included in the haptics driver group DG.
 すなわち、通常、故障ハプティクスドライバD_Eにおける電流値Iは、個々の正常ハプティクスドライバD_Nにおける電流値Iに比して小さい値となる。または、故障ハプティクスドライバD_Eにおける電流値Iは、個々の正常ハプティクスドライバD_Nにおける電流値Iに比して大きい値となる。 That is, normally, the current value I in the fault haptics driver D_E is smaller than the current value I in each normal haptics driver D_N. Alternatively, the current value I in the fault haptics driver D_E is larger than the current value I in each normal haptics driver D_N.
 そこで、故障ドライバ検出部21は、個々のハプティクスドライバDにおける電流値Iが所定の範囲(以下「閾値範囲」という。)Ith内の値であるか否かを判定する。電流値Iが閾値範囲Ith内の値である場合、故障ドライバ検出部21は、対応するハプティクスドライバDが正常ハプティクスドライバD_Nであると判定する。他方、電流値Iが閾値範囲Ith外の値である場合、故障ドライバ検出部21は、対応するハプティクスドライバDが故障ハプティクスドライバD_Eであると判定する。 Therefore, the failure driver detection unit 21 determines whether or not the current value I in each haptics driver D is within a predetermined range (hereinafter referred to as “threshold range”) Is. When the current value I is within the threshold range Is, the failure driver detection unit 21 determines that the corresponding haptics driver D is the normal haptics driver D_N. On the other hand, when the current value I is a value outside the threshold range Is, the failure driver detection unit 21 determines that the corresponding haptics driver D is the failure haptics driver D_E.
 第1ドライバ選択部22は、故障ドライバ検出部21により故障ハプティクスドライバD_Eが検出されたとき、ハプティクスドライバ群DGに含まれる複数個の正常ハプティクスドライバD_Nのうちの1個以上の正常ハプティクスドライバ(以下「第1正常ハプティクスドライバ」という。)D_N_1を選択するものである。 When the failure haptics driver D_E is detected by the failure driver detection unit 21, the first driver selection unit 22 has one or more normal haptics drivers D_N among a plurality of normal haptics drivers D_N included in the haptics driver group DG. The tics driver (hereinafter referred to as "first normal haptics driver") D_N_1 is selected.
 ここで、1個以上の第1正常ハプティクスドライバD_N_1は、空中ハプティクス領域A2のうちの所定の領域(以下「第1領域」という。)A3に対応するものである。第1ドライバ選択部22は、空中ディスプレイ装置4における表示中の画面UIに応じて異なる領域を第1領域A3に設定するようになっている。 Here, one or more first normal haptics drivers D_N_1 correspond to a predetermined region (hereinafter referred to as "first region") A3 of the aerial haptics region A2. The first driver selection unit 22 sets a different area in the first area A3 according to the screen UI being displayed in the aerial display device 4.
 すなわち、第1ドライバ選択部22は、空中ディスプレイ装置4における表示中の画面UIを示す情報(以下「画面UI情報」という。)を取得する。画面UI情報は、例えば、システム制御部11から取得される。画面UI情報は、例えば、表示中の画面UIにスライド操作用のUIが含まれるか否かを示す情報、表示中の画面UIにフリック操作用のUIが含まれるか否かを示す情報、及び表示中の画面UIにタップ操作用のUIが含まれるか否かを示す情報を含むものである。 That is, the first driver selection unit 22 acquires information indicating the screen UI being displayed in the aerial display device 4 (hereinafter referred to as "screen UI information"). The screen UI information is acquired from, for example, the system control unit 11. The screen UI information includes, for example, information indicating whether or not the displayed screen UI includes a UI for slide operation, information indicating whether or not the displayed screen UI includes a UI for flick operation, and information indicating whether or not the displayed screen UI includes a UI for flick operation. It contains information indicating whether or not the displayed screen UI includes a UI for tap operation.
 表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれる場合、第1ドライバ選択部22は、空中ハプティクス領域A2の全体に対応する領域A3_1、又は空中ハプティクス領域A2の略全体に対応する領域A3_1を第1領域A3に設定する。以下、かかる領域A3_1を「全体領域」という。 When the screen UI being displayed includes a UI for slide operation or a UI for flick operation, the first driver selection unit 22 is the area A3_1 corresponding to the entire aerial haptic area A2, or substantially the entire aerial haptic area A2. The area A3_1 corresponding to is set in the first area A3. Hereinafter, such area A3_1 is referred to as “whole area”.
 他方、表示中の画面UIにタップ操作用のUIが含まれる場合(すなわち表示中の画面UIにスライド操作用のUI及びフリック操作用のUIが含まれない場合)、第1ドライバ選択部22は、空中ハプティクス領域A2のうちの一部の領域A3_2であって、故障ハプティクスドライバD_Eに対応する領域(すなわち故障領域)A4を含む領域A3_2を抽出する。第1ドライバ選択部22は、当該抽出された領域A3_2を第1領域A3に設定する。以下、かかる領域A3_2を「第1部分領域」という。 On the other hand, when the displayed screen UI includes a UI for tap operation (that is, when the displayed screen UI does not include a UI for slide operation and a UI for flick operation), the first driver selection unit 22 , A region A3_2 which is a part of the aerial haptics region A2 and includes a region (that is, a fault region) A4 corresponding to the fault haptics driver D_E is extracted. The first driver selection unit 22 sets the extracted area A3_2 in the first area A3. Hereinafter, such a region A3_2 is referred to as a “first partial region”.
 第1周波数設定部23は、個々の第1正常ハプティクスドライバD_N_1により送信される超音波U_N_1の周波数(以下「第1周波数」という。)F_N_1を低下させるものである。 The first frequency setting unit 23 lowers the frequency (hereinafter referred to as "first frequency") F_N_1 of the ultrasonic wave U_N_1 transmitted by each first normal haptics driver D_N_1.
 すなわち、第1周波数設定部23は、個々の第1正常ハプティクスドライバD_N_1について、上記所定の周波数fよりも低い周波数f’を有する搬送波信号の生成を搬送波信号生成部31に指示する。これにより、個々の第1正常ハプティクスドライバD_N_1により送信される超音波U_N_1の周波数(すなわち第1周波数)F_N_1は、他の個々の正常ハプティクスドライバD_Nにより送信される超音波U_Nの周波数F_Nに比して低い値となる。 That is, the first frequency setting unit 23 instructs the carrier wave signal generation unit 31 to generate a carrier wave signal having a frequency f'lower than the predetermined frequency f for each first normal haptics driver D_N_1. As a result, the frequency (that is, the first frequency) F_N_1 of the ultrasonic wave U_N_1 transmitted by the individual first normal haptics driver D_N_1 becomes the frequency F_N of the ultrasonic wave U_N transmitted by the other individual normal haptics driver D_N. The value is relatively low.
 このようにして、空中ハプティクスシステム1の要部が構成されている。 In this way, the main part of the aerial haptics system 1 is configured.
 以下、故障ドライバ検出部21により実行される処理を総称して「故障ドライバ検出処理」ということがある。また、故障ドライバ検出部21が有する機能を総称して「故障ドライバ検出機能」ということがある。また、かかる故障ドライバ検出機能に「F1」の符号を用いることがある。 Hereinafter, the processes executed by the failure driver detection unit 21 may be collectively referred to as "failure driver detection processing". Further, the functions of the failure driver detection unit 21 may be collectively referred to as a "failure driver detection function". Further, the reference numeral of "F1" may be used for the failure driver detection function.
 以下、第1ドライバ選択部22により実行される処理を総称して「第1ドライバ選択処理」ということがある。また、第1ドライバ選択部22が有する機能を総称して「第1ドライバ選択機能」ということがある。また、かかる第1ドライバ選択機能に「F2」の符号を用いることがある。 Hereinafter, the processes executed by the first driver selection unit 22 may be collectively referred to as "first driver selection process". Further, the functions of the first driver selection unit 22 may be collectively referred to as the "first driver selection function". Further, the reference numeral of "F2" may be used for the first driver selection function.
 以下、第1周波数設定部23により実行される処理を総称して「第1周波数設定処理」ということがある。また、第1周波数設定部23が有する機能を総称して「第1周波数設定機能」ということがある。また、かかる第1周波数設定機能に「F3」の符号を用いることがある。 Hereinafter, the processes executed by the first frequency setting unit 23 may be collectively referred to as "first frequency setting process". Further, the functions of the first frequency setting unit 23 may be collectively referred to as "first frequency setting function". Further, the reference numeral of "F3" may be used for the first frequency setting function.
 次に、図4~図6を参照して、空中ハプティクス制御装置100の要部のハードウェア構成について説明する。 Next, with reference to FIGS. 4 to 6, the hardware configuration of the main part of the aerial haptics control device 100 will be described.
 図4に示す如く、空中ハプティクス制御装置100は、プロセッサ41及びメモリ42を有している。メモリ42には、複数個の機能(故障ドライバ検出機能、第1ドライバ選択機能及び第1周波数設定機能を含む。)F1~F3に対応するプログラムが記憶されている。プロセッサ41は、メモリ42に記憶されているプログラムを読み出して実行する。これにより、複数個の機能F1~F3が実現される。 As shown in FIG. 4, the aerial haptics control device 100 has a processor 41 and a memory 42. The memory 42 stores programs corresponding to a plurality of functions (including a failure driver detection function, a first driver selection function, and a first frequency setting function) F1 to F3. The processor 41 reads and executes the program stored in the memory 42. As a result, a plurality of functions F1 to F3 are realized.
 または、図5に示す如く、空中ハプティクス制御装置100は、処理回路43を有している。処理回路43は、複数個の機能F1~F3に対応する処理を実行する。これにより、複数個の機能F1~F3が実現される。 Alternatively, as shown in FIG. 5, the aerial haptics control device 100 has a processing circuit 43. The processing circuit 43 executes processing corresponding to a plurality of functions F1 to F3. As a result, a plurality of functions F1 to F3 are realized.
 または、図6に示す如く、空中ハプティクス制御装置100は、プロセッサ41、メモリ42及び処理回路43を有している。メモリ42には、複数個の機能F1~F3のうちの一部の機能に対応するプログラムが記憶されている。プロセッサ41は、メモリ42に記憶されているプログラムを読み出して実行する。これにより、かかる一部の機能が実現される。また、処理回路43は、複数個の機能F1~F3のうちの残余の機能に対応する処理を実行する。これにより、かかる残余の機能が実現される。 Alternatively, as shown in FIG. 6, the aerial haptics control device 100 includes a processor 41, a memory 42, and a processing circuit 43. A program corresponding to a part of the plurality of functions F1 to F3 is stored in the memory 42. The processor 41 reads and executes the program stored in the memory 42. As a result, some of these functions are realized. Further, the processing circuit 43 executes processing corresponding to the remaining functions of the plurality of functions F1 to F3. As a result, such residual functions are realized.
 プロセッサ41は、1個以上のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 41 is composed of one or more processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microprocessor, or a DSP (Digital Signal Processor) is used.
 メモリ42は、1個以上の不揮発性メモリにより構成されている。または、メモリ42は、1個以上の不揮発性メモリ及び1個以上の揮発性メモリにより構成されている。すなわち、メモリ42は、1個以上のメモリにより構成されている。個々のメモリは、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。また、個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ソリッドステートドライブ又はハードディスクドライブを用いたものである。 The memory 42 is composed of one or more non-volatile memories. Alternatively, the memory 42 is composed of one or more non-volatile memories and one or more volatile memories. That is, the memory 42 is composed of one or more memories. The individual memory uses, for example, a semiconductor memory or a magnetic disk. More specifically, each volatile memory uses, for example, a RAM (Random Access Memory). In addition, the individual non-volatile memory is, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programle) drive, a solid state drive O Is.
 処理回路43は、1個以上のデジタル回路により構成されている。または、処理回路43は、1個以上のデジタル回路及び1個以上のアナログ回路により構成されている。すなわち、処理回路43は、1個以上の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System on a Chip)又はシステムLSI(Large Scale Integration)を用いたものである。 The processing circuit 43 is composed of one or more digital circuits. Alternatively, the processing circuit 43 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 43 is composed of one or more processing circuits. The individual processing circuits are, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), System LSI (Sy), and System (Sy). Is.
 ここで、プロセッサ41が複数個のプロセッサにより構成されているとき、複数個の機能F1~F3と複数個のプロセッサとの対応関係は任意である。すなわち、複数個のプロセッサの各々は、複数個の機能F1~F3のうちの対応する1個以上の機能に対応するプログラムを読み出して実行するものであっても良い。プロセッサ41は、複数個の機能F1~F3の各々に対応する専用のプロセッサを含むものであっても良い。 Here, when the processor 41 is composed of a plurality of processors, the correspondence between the plurality of functions F1 to F3 and the plurality of processors is arbitrary. That is, each of the plurality of processors may read and execute a program corresponding to one or more corresponding functions among the plurality of functions F1 to F3. The processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F3.
 また、メモリ42が複数個のメモリにより構成されているとき、複数個の機能F1~F3と複数個のメモリとの対応関係は任意である。すなわち、複数個のメモリの各々は、複数個の機能F1~F3のうちの対応する1個以上の機能に対応するプログラムを記憶するものであっても良い。メモリ42は、複数個の機能F1~F3の各々に対応する専用のメモリを含むものであっても良い。 Further, when the memory 42 is composed of a plurality of memories, the correspondence between the plurality of functions F1 to F3 and the plurality of memories is arbitrary. That is, each of the plurality of memories may store a program corresponding to one or more corresponding functions among the plurality of functions F1 to F3. The memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F3.
 また、処理回路43が複数個の処理回路により構成されているとき、複数個の機能F1~F3と複数個の処理回路との対応関係は任意である。すなわち、複数個の処理回路の各々は、複数個の機能F1~F3のうちの対応する1個以上の機能に対応する処理を実行するものであっても良い。処理回路43は、複数個の機能F1~F3の各々に対応する専用の処理回路を含むものであっても良い。 Further, when the processing circuit 43 is composed of a plurality of processing circuits, the correspondence between the plurality of functions F1 to F3 and the plurality of processing circuits is arbitrary. That is, each of the plurality of processing circuits may execute processing corresponding to one or more corresponding functions among the plurality of functions F1 to F3. The processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F3.
 次に、図7に示すフローチャートを参照して、空中ハプティクス制御装置100の動作について説明する。 Next, the operation of the aerial haptics control device 100 will be described with reference to the flowchart shown in FIG.
 まず、故障ドライバ検出部21が故障ドライバ検出処理を実行する(ステップST1)。故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出された場合(ステップST2“YES”)、第1ドライバ選択部22が第1ドライバ選択処理を実行する(ステップST3)。次いで、第1周波数設定部23が第1周波数設定処理を実行する(ステップST4)。なお、故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出されなかった場合(ステップST2“NO”)、ステップST3,ST4の処理はスキップされる。 First, the fault driver detection unit 21 executes the fault driver detection process (step ST1). When the failure haptics driver D_E is detected by the failure driver detection process (step ST2 “YES”), the first driver selection unit 22 executes the first driver selection process (step ST3). Next, the first frequency setting unit 23 executes the first frequency setting process (step ST4). If the fault haptics driver D_E is not detected by the fault driver detection process (step ST2 “NO”), the processes in steps ST3 and ST4 are skipped.
 次に、図8に示すフローチャートを参照して、第1ドライバ選択部22の動作について説明する。すなわち、ステップST3にて実行される処理について説明する。 Next, the operation of the first driver selection unit 22 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST3 will be described.
 まず、第1ドライバ選択部22は、画面UI情報を取得する(ステップST11)。次いで、第1ドライバ選択部22は、当該取得された画面UI情報を用いて、表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれるか否かを判定する(ステップST12)。 First, the first driver selection unit 22 acquires screen UI information (step ST11). Next, the first driver selection unit 22 uses the acquired screen UI information to determine whether or not the displayed screen UI includes a UI for slide operation or a UI for flick operation (step ST12). ).
 表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれる場合(ステップST12“YES”)、第1ドライバ選択部22は、全体領域A3_1を第1領域A3に設定する(ステップST13)。 When the displayed screen UI includes a UI for slide operation or a UI for flick operation (step ST12 “YES”), the first driver selection unit 22 sets the entire area A3_1 to the first area A3 (step). ST13).
 他方、表示中の画面UIにタップ操作用のUIが含まれる場合、すなわち表示中の画面UIにスライド操作用のUI及びフリック操作用のUIが含まれない場合(ステップST12“NO”)、第1ドライバ選択部22は、故障領域A4を含む第1部分領域A3_2を抽出する(ステップST14)。次いで、第1ドライバ選択部22は、当該抽出された第1部分領域A3_2を第1領域A3に設定する(ステップST15)。 On the other hand, when the displayed screen UI includes a tap operation UI, that is, the displayed screen UI does not include a slide operation UI and a flick operation UI (step ST12 “NO”), the first step. 1 The driver selection unit 22 extracts the first partial area A3_2 including the failure area A4 (step ST14). Next, the first driver selection unit 22 sets the extracted first partial region A3_2 in the first region A3 (step ST15).
 次いで、第1ドライバ選択部22は、ステップST13又はステップST15にて設定された第1領域A3に基づき、1個以上の第1正常ハプティクスドライバD_N_1を選択する(ステップST16)。 Next, the first driver selection unit 22 selects one or more first normal haptics drivers D_N_1 based on the first region A3 set in step ST13 or step ST15 (step ST16).
 次に、図9~図18を参照して、第1ドライバ選択処理及び第1周波数設定処理の具体例について説明する。また、空中ハプティクス制御装置100の効果について説明する。 Next, specific examples of the first driver selection process and the first frequency setting process will be described with reference to FIGS. 9 to 18. Further, the effect of the aerial haptics control device 100 will be described.
 図9は、空中ディスプレイ装置4により表示される映像の例であって、地図画面に対応する映像の例を示している。図9に示す例においては、画面UIにスライド操作用のUIが含まれている。図中、矢印Aは、スライド操作における指示体Pのスライド範囲の例を示している。 FIG. 9 is an example of an image displayed by the aerial display device 4, and shows an example of an image corresponding to a map screen. In the example shown in FIG. 9, the screen UI includes a UI for slide operation. In the figure, the arrow A shows an example of the slide range of the indicator body P in the slide operation.
 ここで、図10に示す如く、4行4列のマトリクス状に配列された16個のハプティクスドライバDがハプティクスドライバ群DGに含まれている。また、1個の故障ハプティクスドライバD_E及び15個の正常ハプティクスドライバD_Nがハプティクスドライバ群DGに含まれている。これにより、空中ハプティクス領域A2に故障領域A4が含まれている。 Here, as shown in FIG. 10, 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG. Further, one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG. As a result, the failure region A4 is included in the aerial haptics region A2.
 図10に示す例において、故障ハプティクスドライバD_Eは、超音波Uを送信することができない状態にある。このため、故障領域A4における触覚刺激は、空中ハプティクス領域A2のうちの故障領域A4を除く領域(すなわち正常領域)における触覚刺激に比して弱くなる。したがって、故障領域A4を含むスライド範囲に亘るスライド操作が入力されたとき(矢印A参照)、操作中に触覚刺激の強さが変動する。これにより、ユーザが違和感を覚える可能性がある。これは、故障領域A4を含むフリック範囲に亘るフリック操作が入力されたときも同様である。 In the example shown in FIG. 10, the fault haptics driver D_E is in a state where the ultrasonic wave U cannot be transmitted. Therefore, the tactile stimulus in the faulty region A4 is weaker than the tactile stimulus in the region (that is, the normal region) of the aerial haptics region A2 excluding the faulty region A4. Therefore, when a slide operation over the slide range including the failure area A4 is input (see arrow A), the intensity of the tactile stimulus fluctuates during the operation. This may cause the user to feel uncomfortable. This also applies when a flick operation over a flick range including the failure area A4 is input.
 この場合、図11に示す如く、第1ドライバ選択部22により、全体領域A3_1が第1領域A3に設定される。そして、第1ドライバ選択部22により、全体領域A3_1に対応する15個の正常ハプティクスドライバD_Nが選択される。すなわち、15個の第1正常ハプティクスドライバD_N_1が選択される。次いで、第1周波数設定部23は、当該選択された15個の第1正常ハプティクスドライバD_N_1について、第1周波数F_N_1を低下させる(図12参照)。 In this case, as shown in FIG. 11, the entire area A3_1 is set in the first area A3 by the first driver selection unit 22. Then, the first driver selection unit 22 selects 15 normal haptics drivers D_N corresponding to the entire area A3_1. That is, 15 first normal haptics drivers D_N_1 are selected. Next, the first frequency setting unit 23 lowers the first frequency F_N_1 for the selected 15 first normal haptics drivers D_N_1 (see FIG. 12).
 一般に、超音波の周波数が高いほど、かかる超音波の指向性が高くなる。換言すれば、超音波の周波数が低いほど、かかる超音波の指向性が低くなる。このため、第1周波数設定処理が実行されることにより、上記選択された15個の第1正常ハプティクスドライバD_N_1の各々により送信される超音波U_N_1について、その指向性が低下する。これにより、空中ハプティクス領域A2において、個々の第1正常ハプティクスドライバD_N_1により触覚が提示される領域が拡大する(図12参照)。 Generally, the higher the frequency of the ultrasonic wave, the higher the directivity of the ultrasonic wave. In other words, the lower the frequency of the ultrasonic wave, the lower the directivity of the ultrasonic wave. Therefore, when the first frequency setting process is executed, the directivity of the ultrasonic wave U_N_1 transmitted by each of the 15 selected first normal haptics drivers D_N_1 is lowered. As a result, in the aerial haptics region A2, the region where the tactile sensation is presented by each first normal haptics driver D_N_1 is expanded (see FIG. 12).
 この結果、図12に示す如く、故障領域A4を埋め合わせることができる。換言すれば、故障領域A4を補完することができる。そして、ユーザがスライド操作を入力したとき(図13参照)、操作中に触覚刺激の強さが変動するのを抑制することができる。これにより、ユーザが覚える違和感を軽減することができる。 As a result, as shown in FIG. 12, the failure area A4 can be compensated. In other words, the failure area A4 can be complemented. Then, when the user inputs a slide operation (see FIG. 13), it is possible to suppress fluctuations in the strength of the tactile stimulus during the operation. This makes it possible to reduce the discomfort that the user remembers.
 図14は、空中ディスプレイ装置4により表示される映像の例であって、メニュー画面に対応する映像の例を示している。図14に示す例においては、画面UIにタップ操作用のUIが含まれている。より具体的には、4個のボタンB_1~B_4が含まれている。 FIG. 14 is an example of an image displayed by the aerial display device 4, and shows an example of an image corresponding to a menu screen. In the example shown in FIG. 14, the screen UI includes a UI for tap operation. More specifically, four buttons B_1 to B_1 are included.
 ここで、図15に示す如く、4行4列のマトリクス状に配列された16個のハプティクスドライバDがハプティクスドライバ群DGに含まれている。また、1個の故障ハプティクスドライバD_E及び15個の正常ハプティクスドライバD_Nがハプティクスドライバ群DGに含まれている。これにより、空中ハプティクス領域A2に故障領域A4が含まれている。故障領域A4は、ボタンB_2の一部に対応している。 Here, as shown in FIG. 15, 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG. Further, one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG. As a result, the failure region A4 is included in the aerial haptics region A2. The failure area A4 corresponds to a part of the button B_2.
 図15に示す例において、故障ハプティクスドライバD_Eは、超音波Uを送信することができない状態にある。このため、タップ操作における指示体Pのタップ位置が故障領域A4に含まれるとき、触覚刺激が発生しない。すなわち、ボタンB_2に対するタップ操作が入力されたとき、触覚刺激が発生しないことがある。これにより、ユーザが違和感を覚える可能性がある。 In the example shown in FIG. 15, the fault haptics driver D_E is in a state where the ultrasonic wave U cannot be transmitted. Therefore, when the tap position of the indicator body P in the tap operation is included in the failure area A4, the tactile stimulus does not occur. That is, when the tap operation for the button B_2 is input, the tactile stimulus may not be generated. This may cause the user to feel uncomfortable.
 この場合、図16に示す如く、第1ドライバ選択部22により、故障領域A4を含む第1部分領域A3_2が抽出される。次いで、当該抽出された第1部分領域A3_2が第1領域A3に設定される。そして、第1ドライバ選択部22により、第1部分領域A3_2に対応する6個の正常ハプティクスドライバD_Nが選択される。すなわち、6個の第1正常ハプティクスドライバD_N_1が選択される。次いで、第1周波数設定部23は、当該選択された6個の第1正常ハプティクスドライバD_N_1について、第1周波数F_N_1を低下させる(図17参照)。 In this case, as shown in FIG. 16, the first driver selection unit 22 extracts the first partial region A3_2 including the failure region A4. Next, the extracted first partial region A3_2 is set in the first region A3. Then, the first driver selection unit 22 selects six normal haptics drivers D_N corresponding to the first partial region A3_2. That is, six first normal haptics drivers D_N_1 are selected. Next, the first frequency setting unit 23 lowers the first frequency F_N_1 for the six selected first normal haptics drivers D_N_1 (see FIG. 17).
 かかる第1周波数設定処理が実行されることにより、上記選択された6個の第1正常ハプティクスドライバD_N_1の各々により送信される超音波U_N_1について、その指向性が低下する。これにより、空中ハプティクス領域A2において、個々の第1正常ハプティクスドライバD_N_1により触覚が提示される領域が拡大する(図17参照)。 By executing the first frequency setting process, the directivity of the ultrasonic wave U_N_1 transmitted by each of the six selected first normal haptics drivers D_N_1 is lowered. As a result, in the aerial haptics region A2, the region where the tactile sensation is presented by each first normal haptics driver D_N_1 is expanded (see FIG. 17).
 この結果、図17に示す如く、故障領域A4を埋め合わせることができる。換言すれば、故障領域A4を補完することができる。そして、ユーザがボタンB_2に対するタップ操作を入力したとき(図18参照)、タップ位置にかかわらず触覚刺激を発生させることができる。 As a result, as shown in FIG. 17, the failure area A4 can be compensated. In other words, the failure area A4 can be complemented. Then, when the user inputs a tap operation for the button B_2 (see FIG. 18), the tactile stimulus can be generated regardless of the tap position.
 なお、超音波の指向性が低下することにより、かかる超音波により発生する触覚刺激の精度が低下することがある。画面UIにタップ操作用のUIが含まれる場合(図14~図18参照)、正常領域における触覚刺激の精度の低下を抑制する観点から、第1部分領域A3_2が第1領域A3に設定されるのが好適である。そこで、第1ドライバ選択部22は、第1部分領域A3_2を第1領域A3に設定するのである。 Note that the accuracy of the tactile stimulus generated by such ultrasonic waves may decrease due to the decrease in the directivity of the ultrasonic waves. When the screen UI includes a UI for tap operation (see FIGS. 14 to 18), the first partial region A3_2 is set to the first region A3 from the viewpoint of suppressing a decrease in the accuracy of the tactile stimulus in the normal region. Is preferable. Therefore, the first driver selection unit 22 sets the first partial region A3_2 in the first region A3.
 他方、画面UIにスライド操作用のUIが含まれる場合(図9~図13参照)、大きいスライド範囲に亘るスライド操作が入力される可能性がある。この場合、かかる大きいスライド範囲の全体に亘り触覚刺激の強さの変動を抑制する観点から、全体領域A3_1が第1領域A3に設定されるのが好適である。そこで、第1ドライバ選択部22は、全体領域A3_1を第1領域A3に設定するのである。これは、画面UIにフリック操作用のUIが含まれる場合も同様である。 On the other hand, when the screen UI includes a UI for slide operation (see FIGS. 9 to 13), there is a possibility that a slide operation over a large slide range may be input. In this case, it is preferable that the entire region A3_1 is set in the first region A3 from the viewpoint of suppressing fluctuations in the intensity of the tactile stimulus over the entire large slide range. Therefore, the first driver selection unit 22 sets the entire area A3_1 to the first area A3. This also applies when the screen UI includes a UI for flick operation.
 次に、図19を参照して、空中ハプティクスシステム1の変形例について説明する。 Next, a modified example of the aerial haptics system 1 will be described with reference to FIG.
 図19に示す如く、空中ハプティクスシステム1は、センサ5を含むものであっても良い。センサ5は、例えば、カメラ又は赤外線センサにより構成されている。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、電流値Iを用いるのに代えてセンサ5を用いるものであっても良い。センサ5による操作の検出には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 As shown in FIG. 19, the aerial haptics system 1 may include a sensor 5. The sensor 5 is composed of, for example, a camera or an infrared sensor. The operation detection unit 15 may use the sensor 5 instead of the current value I when detecting the operation by the hand gesture. Various known techniques can be used to detect the operation by the sensor 5. Detailed description of these techniques will be omitted.
 以上のように、実施の形態1に係る空中ハプティクス制御装置100は、空中ハプティクス装置3におけるハプティクスドライバ群DGに含まれる故障ハプティクスドライバD_Eを検出する故障ドライバ検出部21と、故障ハプティクスドライバD_Eが検出されたとき、ハプティクスドライバ群DGに含まれる複数個の正常ハプティクスドライバD_Nのうちの1個以上の第1正常ハプティクスドライバD_N_1を選択する第1ドライバ選択部22と、1個以上の第1正常ハプティクスドライバD_N_1の各々に対応する第1周波数F_N_1の値を低下させる第1周波数設定部23と、を備える。これにより、ハプティクスドライバ群DGの故障に対応することができる。より具体的には、個々の第1正常ハプティクスドライバD_N_1により送信される超音波U_N_1の指向性を低下させることにより、故障領域A4を補完することができる。 As described above, the aerial haptics control device 100 according to the first embodiment has a failure driver detection unit 21 for detecting a failure haptics driver D_E included in the haptics driver group DG in the aerial haptics device 3 and a failure haptics driver. When D_E is detected, the first driver selection unit 22 and one that select one or more of the first normal haptics drivers D_N_1 among the plurality of normal haptics drivers D_N included in the haptics driver group DG. A first frequency setting unit 23 that lowers the value of the first frequency F_N_1 corresponding to each of the above first normal haptics drivers D_N_1 is provided. As a result, it is possible to deal with the failure of the haptics driver group DG. More specifically, the failure region A4 can be complemented by reducing the directivity of the ultrasonic waves U_N_1 transmitted by the individual first normal haptics drivers D_N_1.
 また、空中ハプティクス装置3に対応する空中ディスプレイ装置4における画面UIに応じて異なる領域が第1領域A3に設定される。これにより、個々の画面UIに適した領域を第1領域A3に設定することができる。具体的には、例えば、全体領域A3_1又は第1部分領域A3_2を選択的に第1領域A3に設定することができる。 Further, different areas are set in the first area A3 according to the screen UI in the aerial display device 4 corresponding to the aerial haptics device 3. Thereby, the area suitable for each screen UI can be set in the first area A3. Specifically, for example, the entire region A3_1 or the first partial region A3_2 can be selectively set in the first region A3.
 また、画面UIにスライド操作用のUI又はフリック操作用のUIが含まれるとき、全体領域A3_1が第1領域A3に設定される。これにより、スライド範囲又はフリック範囲の全体に亘り触覚刺激の強さの変動を抑制することができる。 Further, when the screen UI includes a UI for slide operation or a UI for flick operation, the entire area A3_1 is set in the first area A3. This makes it possible to suppress fluctuations in the intensity of the tactile stimulus over the entire slide range or flick range.
 また、画面UIにタップ操作用のUIが含まれるとき(すなわち画面UIにスライド操作用のUI及びフリック操作用のUIが含まれないとき)、第1部分領域A3_2が第1領域A3に設定される。これにより、故障領域A4を補完することができるのはもちろんのこと、正常領域における触覚刺激の精度の低下を抑制することができる。 Further, when the screen UI includes a UI for tap operation (that is, when the screen UI does not include a UI for slide operation and a UI for flick operation), the first partial area A3_2 is set in the first area A3. NS. As a result, not only the faulty region A4 can be complemented, but also the deterioration of the accuracy of the tactile stimulus in the normal region can be suppressed.
 また、実施の形態1に係る空中ハプティクス制御方法は、故障ドライバ検出部21が、空中ハプティクス装置3におけるハプティクスドライバ群DGに含まれる故障ハプティクスドライバD_Eを検出するステップST1と、第1ドライバ選択部22が、故障ハプティクスドライバD_Eが検出されたとき、ハプティクスドライバ群DGに含まれる複数個の正常ハプティクスドライバD_Nのうちの1個以上の第1正常ハプティクスドライバD_N_1を選択するステップST3と、第1周波数設定部23が、1個以上の第1正常ハプティクスドライバD_N_1の各々に対応する第1周波数F_N_1の値を低下させるステップST4と、を備える。これにより、ハプティクスドライバ群DGの故障に対応することができる。より具体的には、個々の第1正常ハプティクスドライバD_N_1により送信される超音波U_N_1の指向性を低下させることにより、故障領域A4を補完することができる。 Further, in the aerial haptics control method according to the first embodiment, the failure driver detection unit 21 has step ST1 for detecting the failure haptics driver D_E included in the haptics driver group DG in the aerial haptics device 3, and the first driver selection. Step ST3 in which the unit 22 selects one or more of the first normal haptics drivers D_N_1 among the plurality of normal haptics drivers D_N included in the haptics driver group DG when the failure haptics driver D_E is detected. The first frequency setting unit 23 includes a step ST4 for lowering the value of the first frequency F_N_1 corresponding to each of the one or more first normal haptics drivers D_N_1. As a result, it is possible to deal with the failure of the haptics driver group DG. More specifically, the failure region A4 can be complemented by reducing the directivity of the ultrasonic waves U_N_1 transmitted by the individual first normal haptics drivers D_N_1.
実施の形態2.
 図20は、実施の形態2に係る空中ハプティクスシステムの要部を示すブロック図である。図20を参照して、実施の形態2に係る空中ハプティクスシステムについて説明する。なお、図20において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 20 is a block diagram showing a main part of the aerial haptics system according to the second embodiment. The aerial haptics system according to the second embodiment will be described with reference to FIG. 20. In FIG. 20, the same blocks as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
 図20に示す如く、空中ハプティクスシステム1aは、制御装置2a、空中ハプティクス装置3及び空中ディスプレイ装置4を含むものである。制御装置2aは、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2aは、故障ドライバ検出部21、第1ドライバ選択部22、第1周波数設定部23、第2ドライバ選択部24及び第2周波数設定部25を含むものである。故障ドライバ検出部21、第1ドライバ選択部22、第1周波数設定部23、第2ドライバ選択部24及び第2周波数設定部25により、空中ハプティクス制御装置100aの要部が構成されている。 As shown in FIG. 20, the aerial haptics system 1a includes a control device 2a, an aerial haptics device 3, and an aerial display device 4. The control device 2a includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2a includes a failure driver detection unit 21, a first driver selection unit 22, a first frequency setting unit 23, a second driver selection unit 24, and a second frequency setting unit 25. The failure driver detection unit 21, the first driver selection unit 22, the first frequency setting unit 23, the second driver selection unit 24, and the second frequency setting unit 25 constitute the main part of the aerial haptics control device 100a.
 第2ドライバ選択部24は、故障ドライバ検出部21により故障ハプティクスドライバD_Eが検出されたとき、ハプティクスドライバ群DGに含まれる複数個の正常ハプティクスドライバD_Nのうちの1個以上の正常ハプティクスドライバ(以下「第2正常ハプティクスドライバ」という。)D_N_2を選択するものである。 When the failure haptics driver D_E is detected by the failure driver detection unit 21, the second driver selection unit 24 has one or more normal haptics drivers D_N among a plurality of normal haptics drivers D_N included in the haptics driver group DG. The tics driver (hereinafter referred to as "second normal haptics driver") D_N_2 is selected.
 ここで、1個以上の第2正常ハプティクスドライバD_N_2は、空中ハプティクス領域A2のうちの所定の領域(以下「第2領域」という。)A5に対応するものである。第2ドライバ選択部24は、以下のような領域を第2領域A5に設定するようになっている。 Here, one or more second normal haptics drivers D_N_2 correspond to a predetermined region (hereinafter referred to as “second region”) A5 in the aerial haptics region A2. The second driver selection unit 24 sets the following areas in the second area A5.
 すなわち、第2ドライバ選択部24は、空中ハプティクス領域A2のうちの一部の領域A5_1であって、故障ハプティクスドライバD_Eに対応する領域(すなわち故障領域)A4を含む領域A5_1を抽出する。第2ドライバ選択部24は、当該抽出された領域A5_1を第2領域A5に設定する。以下、かかる領域A5_1を「第2部分領域」という。 That is, the second driver selection unit 24 extracts a region A5_1 which is a part of the aerial haptics region A2 and includes a region (that is, a fault region) A4 corresponding to the fault haptics driver D_E. The second driver selection unit 24 sets the extracted area A5-11 in the second area A5. Hereinafter, such a region A5_1 is referred to as a “second partial region”.
 第2周波数設定部25は、個々の第2正常ハプティクスドライバD_N_2により送信される超音波U_N_2の周波数(以下「第2周波数」という。)F_N_2を上昇させるものである。 The second frequency setting unit 25 raises the frequency (hereinafter referred to as “second frequency”) F_N_2 of the ultrasonic wave U_N_2 transmitted by each second normal haptics driver D_N_2.
 すなわち、第2周波数設定部25は、個々の第2正常ハプティクスドライバD_N_2について、上記所定の周波数fよりも高い周波数f”を有する搬送波信号の生成を搬送波信号生成部31に指示する。これにより、個々の第2正常ハプティクスドライバD_N_2により送信される超音波U_N_2の周波数(すなわち第2周波数)F_N_2は、他の個々の正常ハプティクスドライバD_Nにより送信される超音波U_Nの周波数F_Nに比して高い値となる。 That is, the second frequency setting unit 25 instructs the carrier wave signal generation unit 31 to generate a carrier wave signal having a frequency f "higher than the predetermined frequency f" for each second normal haptics driver D_N_2. , The frequency of the ultrasonic U_N_2 transmitted by the individual second normal haptics driver D_N_2 (ie, the second frequency) F_N_2 is relative to the frequency F_N of the ultrasonic U_N transmitted by the other individual normal haptics drivers D_N. It becomes a high value.
 このようにして、空中ハプティクスシステム1aの要部が構成されている。 In this way, the main part of the aerial haptics system 1a is configured.
 以下、第2ドライバ選択部24により実行される処理を総称して「第2ドライバ選択処理」ということがある。また、第2ドライバ選択部24が有する機能を総称して「第2ドライバ選択機能」ということがある。また、かかる第2ドライバ選択機能に「F4」の符号を用いることがある。 Hereinafter, the processes executed by the second driver selection unit 24 may be collectively referred to as "second driver selection process". Further, the functions of the second driver selection unit 24 may be collectively referred to as "second driver selection function". Further, the reference numeral of "F4" may be used for the second driver selection function.
 以下、第2周波数設定部25により実行される処理を総称して「第2周波数設定処理」ということがある。また、第2周波数設定部25が有する機能を総称して「第2周波数設定機能」ということがある。また、かかる第2周波数設定機能に「F5」の符号を用いることがある。 Hereinafter, the processes executed by the second frequency setting unit 25 may be collectively referred to as "second frequency setting process". Further, the functions of the second frequency setting unit 25 may be collectively referred to as "second frequency setting function". Further, the reference numeral of "F5" may be used for the second frequency setting function.
 ここで、空中ハプティクス制御装置100aは、故障ハプティクスドライバD_Eが検出されたとき、第1ドライバ選択処理及び第1周波数設定処理を実行する動作モード(以下「第1動作モード」という。)を有している。また、空中ハプティクス制御装置100aは、故障ハプティクスドライバD_Eが検出されたとき、第2ドライバ選択処理及び第2周波数設定処理を実行する動作モード(以下「第2動作モード」という。)を有している。空中ハプティクス制御装置100aは、第1動作モード又は第2動作モードにて選択的に動作するようになっている。以下、空中ハプティクス制御装置100aが第2動作モードにて動作する場合の例を中心に説明する。 Here, the aerial haptics control device 100a has an operation mode (hereinafter referred to as "first operation mode") for executing the first driver selection process and the first frequency setting process when the failure haptics driver D_E is detected. doing. Further, the aerial haptics control device 100a has an operation mode (hereinafter referred to as "second operation mode") for executing the second driver selection process and the second frequency setting process when the failure haptics driver D_E is detected. ing. The aerial haptics control device 100a is adapted to selectively operate in the first operation mode or the second operation mode. Hereinafter, an example in which the aerial haptics control device 100a operates in the second operation mode will be mainly described.
 空中ハプティクス制御装置100aの要部のハードウェア構成は、実施の形態1にて図4~図6を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the aerial haptics control device 100a is the same as that described with reference to FIGS. 4 to 6 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、空中ハプティクス制御装置100aは、複数個の機能(故障ドライバ検出機能、第1ドライバ選択機能、第1周波数設定機能、第2ドライバ選択機能及び第2周波数設定機能を含む。)F1~F5を有している。複数個の機能F1~F5の各々は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は処理回路43により実現されるものであっても良い。 That is, the aerial haptics control device 100a has a plurality of functions (including a failure driver detection function, a first driver selection function, a first frequency setting function, a second driver selection function, and a second frequency setting function) F1 to F5. Have. Each of the plurality of functions F1 to F5 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
 ここで、プロセッサ41は、複数個の機能F1~F5の各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ42は、複数個の機能F1~F5の各々に対応する専用のメモリを含むものであっても良い。また、処理回路43は、複数個の機能F1~F5の各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1 to F5. Further, the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1 to F5. Further, the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1 to F5.
 次に、図21に示すフローチャートを参照して、空中ハプティクス制御装置100aの動作について説明する。なお、図21において、図7に示すステップと同様のステップには同一符号を付している。 Next, the operation of the aerial haptics control device 100a will be described with reference to the flowchart shown in FIG. In FIG. 21, the same reference numerals are given to the same steps as those shown in FIG. 7.
 まず、故障ドライバ検出部21が故障ドライバ検出処理を実行する(ステップST1)。故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出された場合(ステップST2“YES”)、第2ドライバ選択部24が第2ドライバ選択処理を実行する(ステップST5)。次いで、第2周波数設定部25が第2周波数設定処理を実行する(ステップST6)。なお、故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出されなかった場合(ステップST2“NO”)、ステップST5,ST6の処理はスキップされる。 First, the fault driver detection unit 21 executes the fault driver detection process (step ST1). When the failure haptics driver D_E is detected by the failure driver detection process (step ST2 “YES”), the second driver selection unit 24 executes the second driver selection process (step ST5). Next, the second frequency setting unit 25 executes the second frequency setting process (step ST6). If the failure haptics driver D_E is not detected by the failure driver detection process (step ST2 “NO”), the processes of steps ST5 and ST6 are skipped.
 次に、図22に示すフローチャートを参照して、第2ドライバ選択部24の動作について説明する。すなわち、ステップST5にて実行される処理について説明する。 Next, the operation of the second driver selection unit 24 will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST5 will be described.
 まず、第2ドライバ選択部24は、故障領域A4を含む第2部分領域A5_1を抽出する(ステップST21)。次いで、第2ドライバ選択部24は、当該抽出された第2部分領域A5_1を第2領域A5に設定する(ステップST22)。次いで、第2ドライバ選択部24は、当該設定された第2領域A5に基づき、1個以上の第2正常ハプティクスドライバD_N_2を選択する(ステップST23)。 First, the second driver selection unit 24 extracts the second subregion A5-1 including the failure region A4 (step ST21). Next, the second driver selection unit 24 sets the extracted second partial region A5_1 in the second region A5 (step ST22). Next, the second driver selection unit 24 selects one or more second normal haptics drivers D_N_2 based on the set second region A5 (step ST23).
 次に、図23~図25を参照して、第2ドライバ選択処理及び第2周波数設定処理の具体例について説明する。また、空中ハプティクス制御装置100aの効果について説明する。 Next, specific examples of the second driver selection process and the second frequency setting process will be described with reference to FIGS. 23 to 25. Further, the effect of the aerial haptics control device 100a will be described.
 いま、図23に示す如く、4行4列のマトリクス状に配列された16個のハプティクスドライバDがハプティクスドライバ群DGに含まれている。また、1個の故障ハプティクスドライバD_E及び15個の正常ハプティクスドライバD_Nがハプティクスドライバ群DGに含まれている。これにより、空中ハプティクス領域A2に故障領域A4が含まれている。 Now, as shown in FIG. 23, 16 haptics drivers D arranged in a matrix of 4 rows and 4 columns are included in the haptics driver group DG. Further, one failure haptics driver D_E and 15 normal haptics drivers D_N are included in the haptics driver group DG. As a result, the failure region A4 is included in the aerial haptics region A2.
 この場合、図24に示す如く、第2ドライバ選択部24により、故障領域A4を含む第2部分領域A5_1が抽出される。次いで、当該抽出された第2部分領域A5_1が第2領域A5に設定される。そして、第2ドライバ選択部24により、第2部分領域A5_1に対応する5個の正常ハプティクスドライバD_Nが選択される。すなわち、5個の第2正常ハプティクスドライバD_N_2が選択される。次いで、第2周波数設定部25は、当該選択された5個の第2正常ハプティクスドライバD_N_2について、第2周波数F_N_2を上昇させる(図25参照)。 In this case, as shown in FIG. 24, the second driver selection unit 24 extracts the second partial region A5_1 including the failure region A4. Next, the extracted second partial region A5_1 is set in the second region A5. Then, the second driver selection unit 24 selects five normal haptics drivers D_N corresponding to the second partial region A5-1. That is, five second normal haptics drivers D_N_2 are selected. The second frequency setting unit 25 then raises the second frequency F_N_2 for the five selected second normal haptics drivers D_N_2 (see FIG. 25).
 一般に、超音波の周波数が高いほど、かかる超音波の指向性が高くなる。また、超音波の指向性が高いほど、かかる超音波により発生する触覚刺激が強くなる。すなわち、超音波の周波数が高いほど、かかる超音波により発生する触覚刺激が強くなる。第2周波数設定処理が実行されることにより、空中ハプティクス領域A2のうちの故障領域A4に対する周囲の領域における触覚刺激を強くすることができる(図25参照)。これにより、故障ハプティクスドライバD_Eの存在をユーザに触覚的に知らせることができる。また、故障ハプティクスドライバD_Eの位置をユーザに触覚的に知らせることができる。 Generally, the higher the frequency of the ultrasonic wave, the higher the directivity of the ultrasonic wave. Further, the higher the directivity of the ultrasonic wave, the stronger the tactile stimulus generated by the ultrasonic wave. That is, the higher the frequency of the ultrasonic wave, the stronger the tactile stimulus generated by the ultrasonic wave. By executing the second frequency setting process, the tactile stimulus in the surrounding region with respect to the failure region A4 in the aerial haptic region A2 can be strengthened (see FIG. 25). This makes it possible to tactilely notify the user of the existence of the failure haptics driver D_E. In addition, the position of the failure haptics driver D_E can be tactilely notified to the user.
 なお、空中ハプティクスシステム1aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、図26に示す如く、空中ハプティクスシステム1aは、センサ5を含むものであっても良い。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、センサ5を用いるものであっても良い。 Note that the aerial haptics system 1a can adopt various modifications similar to those described in the first embodiment. For example, as shown in FIG. 26, the aerial haptics system 1a may include a sensor 5. The operation detection unit 15 may use the sensor 5 to detect the operation by the hand gesture.
 以上のように、実施の形態2に係る空中ハプティクス制御装置100aは、故障ハプティクスドライバD_Eが検出されたとき、複数個の正常ハプティクスドライバD_Nのうちの1個以上の第2正常ハプティクスドライバD_N_2を選択する第2ドライバ選択部24と、1個以上の第2正常ハプティクスドライバD_N_2の各々に対応する第2周波数F_N_2の値を上昇させる第2周波数設定部25と、を備える。これにより、故障ハプティクスドライバD_Eの存在をユーザに触覚的に知らせることができる。 As described above, in the aerial haptics control device 100a according to the second embodiment, when the failure haptics driver D_E is detected, one or more of the plurality of normal haptics drivers D_N is the second normal haptics driver. A second driver selection unit 24 for selecting D_N_2 and a second frequency setting unit 25 for increasing the value of the second frequency F_N_2 corresponding to each of the one or more second normal haptic drivers D_N_2 are provided. This makes it possible to tactilely notify the user of the existence of the failure haptics driver D_E.
 また、1個以上の第2正常ハプティクスドライバD_N_2は、空中ハプティクス装置3における空中ハプティクス領域A2のうちの第2領域A5に対応するものであり、空中ハプティクス領域A2のうちの故障ハプティクスドライバD_Eに対応する領域(故障領域)A4を含む第2部分領域A5_1が第2領域A5に設定される。これにより、故障ハプティクスドライバD_Eの位置をユーザに触覚的に知らせることができる。 Further, one or more second normal haptics drivers D_N_2 correspond to the second region A5 of the aerial haptics region A2 in the aerial haptics apparatus 3, and the failure haptics driver D_E in the aerial haptics region A2. The second partial region A5_1 including the region (failure region) A4 corresponding to the above is set in the second region A5. This makes it possible to tactilely inform the user of the position of the fault haptics driver D_E.
実施の形態3.
 図27は、実施の形態3に係る空中ハプティクスシステムの要部を示すブロック図である。図27を参照して、実施の形態3に係る空中ハプティクスシステムについて説明する。なお、図27において、図20に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 3.
FIG. 27 is a block diagram showing a main part of the aerial haptics system according to the third embodiment. The aerial haptics system according to the third embodiment will be described with reference to FIG. 27. In FIG. 27, the same blocks as those shown in FIG. 20 are designated by the same reference numerals and the description thereof will be omitted.
 図27に示す如く、空中ハプティクスシステム1bは、制御装置2b、空中ハプティクス装置3及び空中ディスプレイ装置4を含むものである。制御装置2bは、システム制御部11、駆動制御部12、表示制御部13、電流検出部14及び操作検出部15を含むものである。また、制御装置2bは、故障ドライバ検出部21、第1ドライバ選択部22a、第1周波数設定部23、第2ドライバ選択部24及び第2周波数設定部25を含むものである。故障ドライバ検出部21、第1ドライバ選択部22a、第1周波数設定部23、第2ドライバ選択部24及び第2周波数設定部25により、空中ハプティクス制御装置100bの要部が構成されている。 As shown in FIG. 27, the aerial haptics system 1b includes a control device 2b, an aerial haptics device 3, and an aerial display device 4. The control device 2b includes a system control unit 11, a drive control unit 12, a display control unit 13, a current detection unit 14, and an operation detection unit 15. Further, the control device 2b includes a failure driver detection unit 21, a first driver selection unit 22a, a first frequency setting unit 23, a second driver selection unit 24, and a second frequency setting unit 25. The failure driver detection unit 21, the first driver selection unit 22a, the first frequency setting unit 23, the second driver selection unit 24, and the second frequency setting unit 25 constitute the main part of the aerial haptics control device 100b.
 以下、第1ドライバ選択部22aにより実行される処理を総称して「第1ドライバ選択処理」ということがある。また、第1ドライバ選択部22aが有する機能を総称して「第1ドライバ選択機能」ということがある。また、かかる第1ドライバ選択機能に「F2a」の符号を用いることがある。 Hereinafter, the processes executed by the first driver selection unit 22a may be collectively referred to as "first driver selection process". Further, the functions of the first driver selection unit 22a may be collectively referred to as "first driver selection function". Further, the reference numeral of "F2a" may be used for the first driver selection function.
 空中ハプティクス制御装置100bは、故障ハプティクスドライバD_Eが検出されたとき、第2ドライバ選択処理及び第2周波数設定処理を実行するとともに、第1ドライバ選択処理及び第1周波数設定処理を実行するようになっている。 When the failure haptics driver D_E is detected, the aerial haptics control device 100b executes the second driver selection process and the second frequency setting process, and also executes the first driver selection process and the first frequency setting process. It has become.
 第1ドライバ選択部22aは、表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれる場合、全体領域A3_1のうちの第2部分領域A5_1を除く領域を第1領域A3に設定するようになっている。 When the screen UI being displayed includes a UI for slide operation or a UI for flick operation, the first driver selection unit 22a sets the area other than the second partial area A5_1 of the entire area A3_1 to the first area A3. It is designed to be set.
 第1ドライバ選択部22aは、表示中の画面UIにフリック操作用のUIが含まれる場合(すなわち表示中の画面UIにスライド操作用のUI及びフリック操作用のUIが含まれない場合)、第1部分領域A3_2のうちの第2部分領域A5_1を除く領域を第1領域A3に設定するようになっている。 The first driver selection unit 22a is the first when the screen UI being displayed includes a UI for flick operation (that is, when the screen UI being displayed does not include a UI for slide operation and a UI for flick operation). The area of the one partial area A3_2 excluding the second partial area A5_1 is set in the first area A3.
 このようにして、空中ハプティクスシステム1bの要部が構成されている。 In this way, the main part of the aerial haptics system 1b is configured.
 空中ハプティクス制御装置100bの要部のハードウェア構成は、実施の形態1にて図4~図6を参照して説明したものと同様である。このため、詳細な説明は省略する。 The hardware configuration of the main part of the aerial haptics control device 100b is the same as that described with reference to FIGS. 4 to 6 in the first embodiment. Therefore, detailed description thereof will be omitted.
 すなわち、空中ハプティクス制御装置100bは、複数個の機能(故障ドライバ検出機能、第1ドライバ選択機能、第1周波数設定機能、第2ドライバ選択機能及び第2周波数設定機能を含む。)F1,F2a,F3~F5を有している。複数個の機能F1,F2a,F3~F5の各々は、プロセッサ41及びメモリ42により実現されるものであっても良く、又は処理回路43により実現されるものであっても良い。 That is, the aerial haptics control device 100b includes a plurality of functions (including a failure driver detection function, a first driver selection function, a first frequency setting function, a second driver selection function, and a second frequency setting function) F1, F2a, and so on. It has F3 to F5. Each of the plurality of functions F1, F2a, F3 to F5 may be realized by the processor 41 and the memory 42, or may be realized by the processing circuit 43.
 ここで、プロセッサ41は、複数個の機能F1,F2a,F3~F5の各々に対応する専用のプロセッサを含むものであっても良い。また、メモリ42は、複数個の機能F1,F2a,F3~F5の各々に対応する専用のメモリを含むものであっても良い。また、処理回路43は、複数個の機能F1,F2a,F3~F5の各々に対応する専用の処理回路を含むものであっても良い。 Here, the processor 41 may include a dedicated processor corresponding to each of the plurality of functions F1, F2a, F3 to F5. Further, the memory 42 may include a dedicated memory corresponding to each of the plurality of functions F1, F2a, F3 to F5. Further, the processing circuit 43 may include a dedicated processing circuit corresponding to each of the plurality of functions F1, F2a, F3 to F5.
 次に、図28に示すフローチャートを参照して、空中ハプティクス制御装置100bの動作について説明する。なお、図28において、図7に示すステップと同様のステップには同一符号を付している。また、図28において、図21に示すステップと同様のステップには同一符号を付している。 Next, the operation of the aerial haptics control device 100b will be described with reference to the flowchart shown in FIG. 28. In FIG. 28, the same reference numerals are given to the same steps as those shown in FIG. 7. Further, in FIG. 28, the same steps as those shown in FIG. 21 are designated by the same reference numerals.
 まず、故障ドライバ検出部21が故障ドライバ検出処理を実行する(ステップST1)。故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出された場合(ステップST2“YES”)、第2ドライバ選択部24が第2ドライバ選択処理を実行するとともに(ステップST5)、第1ドライバ選択部22aが第1ドライバ選択処理を実行する(ステップST3a)。次いで、第2周波数設定部25が第2周波数設定処理を実行するとともに(ステップST6)、第1周波数設定部23が第1周波数設定処理を実行する(ステップST4)。なお、故障ドライバ検出処理により故障ハプティクスドライバD_Eが検出されなかった場合(ステップST2“NO”)、ステップST5,ST3a,ST6,ST4の処理はスキップされる。 First, the fault driver detection unit 21 executes the fault driver detection process (step ST1). When the failure haptics driver D_E is detected by the failure driver detection process (step ST2 “YES”), the second driver selection unit 24 executes the second driver selection process (step ST5), and the first driver selection unit 22a. Executes the first driver selection process (step ST3a). Next, the second frequency setting unit 25 executes the second frequency setting process (step ST6), and the first frequency setting unit 23 executes the first frequency setting process (step ST4). If the failure haptics driver D_E is not detected by the failure driver detection process (step ST2 “NO”), the processes of steps ST5, ST3a, ST6, and ST4 are skipped.
 次に、図29に示すフローチャートを参照して、第1ドライバ選択部22aの動作について説明する。すなわち、ステップST3aにて実行される処理について説明する。なお、図29において、図8に示すステップと同様のステップには同一符号を付している。また、第2ドライバ選択部24により第2部分領域A5_1が抽出済みであるものとする。 Next, the operation of the first driver selection unit 22a will be described with reference to the flowchart shown in FIG. That is, the process executed in step ST3a will be described. In FIG. 29, the same reference numerals are given to the same steps as those shown in FIG. Further, it is assumed that the second partial region A5-1 has been extracted by the second driver selection unit 24.
 まず、第1ドライバ選択部22aは、画面UI情報を取得する(ステップST11)。次いで、第1ドライバ選択部22aは、当該取得された画面UI情報を用いて、表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれるか否かを判定する(ステップST12)。 First, the first driver selection unit 22a acquires screen UI information (step ST11). Next, the first driver selection unit 22a uses the acquired screen UI information to determine whether or not the screen UI being displayed includes a UI for slide operation or a UI for flick operation (step ST12). ).
 表示中の画面UIにスライド操作用のUI又はフリック操作用のUIが含まれる場合(ステップST12“YES”)、第1ドライバ選択部22aは、全体領域A3_1のうちの第2部分領域A5_1を除く領域を第1領域A3に設定する(ステップST13a)。 When the displayed screen UI includes a UI for slide operation or a UI for flick operation (step ST12 “YES”), the first driver selection unit 22a excludes the second partial area A5_1 of the entire area A3_1. The area is set to the first area A3 (step ST13a).
 他方、表示中の画面UIにタップ操作用のUIが含まれる場合、すなわち表示中の画面UIにスライド操作用のUI及びフリック操作用のUIが含まれない場合(ステップST12“NO”)、第1ドライバ選択部22aは、故障領域A4を含む第1部分領域A3_2を抽出する(ステップST14)。次いで、第1ドライバ選択部22aは、当該抽出された第1部分領域A3_2のうちの第2部分領域A5_1を除く領域を第1領域A3に設定する(ステップST15a)。 On the other hand, when the displayed screen UI includes a tap operation UI, that is, the displayed screen UI does not include a slide operation UI and a flick operation UI (step ST12 “NO”), the first step. 1 The driver selection unit 22a extracts the first partial region A3_2 including the failure region A4 (step ST14). Next, the first driver selection unit 22a sets the region of the extracted first partial region A3_2 excluding the second partial region A5_1 in the first region A3 (step ST15a).
 次いで、第1ドライバ選択部22aは、ステップST13a又はステップST15aにて設定された第1領域A3に基づき、1個以上の第1正常ハプティクスドライバD_N_1を選択する(ステップST16)。 Next, the first driver selection unit 22a selects one or more first normal haptics drivers D_N_1 based on the first region A3 set in step ST13a or step ST15a (step ST16).
 なお、空中ハプティクスシステム1bは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、図30に示す如く、空中ハプティクスシステム1bは、センサ5を含むものであっても良い。操作検出部15は、ハンドジェスチャによる操作を検出するにあたり、センサ5を用いるものであっても良い。 The aerial haptics system 1b can employ various modifications similar to those described in the first embodiment. For example, as shown in FIG. 30, the aerial haptics system 1b may include a sensor 5. The operation detection unit 15 may use the sensor 5 to detect the operation by the hand gesture.
 なお、本願開示はその開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that, within the scope of the disclosure of the present application, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本開示に係る空中ハプティクス制御装置、空中ハプティクスシステム及び空中ハプティクス制御方法は、例えば、車載用の情報通信機器に用いることができる。 The aerial haptics control device, the aerial haptics system, and the aerial haptics control method according to the present disclosure can be used, for example, in an in-vehicle information communication device.
 1,1a,1b 空中ハプティクスシステム、2,2a,2b 制御装置、3 空中ハプティクス装置、4 空中ディスプレイ装置、5 センサ、11 システム制御部、12 駆動制御部、13 表示制御部、14 電流検出部、15 操作検出部、21 故障ドライバ検出部、22,22a 第1ドライバ選択部、23 第1周波数設定部、24 第2ドライバ選択部、25 第2周波数設定部、31 搬送波信号生成部、32 振動波信号生成部、33 変調部、34 増幅部、41 プロセッサ、42 メモリ、43 処理回路、100,100a,100b 空中ハプティクス制御装置、D ハプティクスドライバ、DG ハプティクスドライバ群。 1,1a, 1b aerial haptics system, 2,2a, 2b control device, 3 aerial haptics device, 4 aerial display device, 5 sensors, 11 system control unit, 12 drive control unit, 13 display control unit, 14 current detection unit , 15 Operation detection unit, 21 Failure driver detection unit, 22, 22a 1st driver selection unit, 23 1st frequency setting unit, 24 2nd driver selection unit, 25 2nd frequency setting unit, 31 carrier wave signal generation unit, 32 vibration Wave signal generation unit, 33 modulation unit, 34 amplification unit, 41 processor, 42 memory, 43 processing circuit, 100, 100a, 100b aerial haptics control device, D haptics driver, DG haptics driver group.

Claims (11)

  1.  空中ハプティクス装置におけるハプティクスドライバ群に含まれる故障ハプティクスドライバを検出する故障ドライバ検出部と、
     前記故障ハプティクスドライバが検出されたとき、前記ハプティクスドライバ群に含まれる複数個の正常ハプティクスドライバのうちの1個以上の第1正常ハプティクスドライバを選択する第1ドライバ選択部と、
     前記1個以上の第1正常ハプティクスドライバの各々に対応する第1周波数の値を低下させる第1周波数設定部と、
     を備える空中ハプティクス制御装置。
    A failure driver detector that detects failure haptics drivers included in the haptics driver group in the aerial haptics device, and
    A first driver selection unit that selects one or more of the first normal haptics drivers among a plurality of normal haptics drivers included in the haptics driver group when the failure haptics driver is detected.
    A first frequency setting unit that lowers the value of the first frequency corresponding to each of the one or more first normal haptics drivers, and
    An aerial haptic controller equipped with.
  2.  前記1個以上の第1正常ハプティクスドライバは、前記空中ハプティクス装置における空中ハプティクス領域のうちの第1領域に対応するものであり、
     前記空中ハプティクス装置に対応する空中ディスプレイ装置における画面UIに応じて異なる領域が前記第1領域に設定される
     ことを特徴とする請求項1記載の空中ハプティクス制御装置。
    The one or more first normal haptics drivers correspond to the first region of the aerial haptics regions in the aerial haptics apparatus.
    The aerial haptics control device according to claim 1, wherein a different area is set in the first area according to the screen UI in the aerial display device corresponding to the aerial haptics device.
  3.  前記空中ハプティクス領域のうちの全体領域又は前記空中ハプティクス領域のうちの前記故障ハプティクスドライバに対応する領域を含む第1部分領域が選択的に前記第1領域に設定されることを特徴とする請求項2記載の空中ハプティクス制御装置。 A claim characterized in that a first partial region including an entire region of the aerial haptics region or a region of the aerial haptics region corresponding to the failure haptics driver is selectively set in the first region. Item 2. The aerial haptics control device according to item 2.
  4.  前記画面UIにスライド操作用のUI又はフリック操作用のUIが含まれるとき、前記全体領域が前記第1領域に設定されることを特徴とする請求項3記載の空中ハプティクス制御装置。 The aerial haptics control device according to claim 3, wherein when the screen UI includes a UI for slide operation or a UI for flick operation, the entire area is set to the first area.
  5.  前記画面UIにタップ操作用のUIが含まれるとき、前記第1部分領域が前記第1領域に設定されることを特徴とする請求項3記載の空中ハプティクス制御装置。 The aerial haptics control device according to claim 3, wherein when the screen UI includes a UI for tap operation, the first partial area is set in the first area.
  6.  前記故障ハプティクスドライバが検出されたとき、前記複数個の正常ハプティクスドライバのうちの1個以上の第2正常ハプティクスドライバを選択する第2ドライバ選択部と、
     前記1個以上の第2正常ハプティクスドライバの各々に対応する第2周波数の値を上昇させる第2周波数設定部と、
     を備えることを特徴とする請求項1記載の空中ハプティクス制御装置。
    A second driver selection unit that selects one or more of the second normal haptics drivers among the plurality of normal haptics drivers when the failure haptics driver is detected.
    A second frequency setting unit that raises the value of the second frequency corresponding to each of the one or more second normal haptics drivers, and
    1. The aerial haptics control device according to claim 1.
  7.  前記1個以上の第2正常ハプティクスドライバは、前記空中ハプティクス装置における空中ハプティクス領域のうちの第2領域に対応するものであり、
     前記空中ハプティクス領域のうちの前記故障ハプティクスドライバに対応する領域を含む第2部分領域が前記第2領域に設定される
     ことを特徴とする請求項6記載の空中ハプティクス制御装置。
    The one or more second normal haptic drivers correspond to the second region of the aerial haptics region in the aerial haptic apparatus.
    The aerial haptics control device according to claim 6, wherein a second partial region including an region corresponding to the failure haptics driver in the aerial haptics region is set in the second region.
  8.  請求項1記載の空中ハプティクス制御装置と、
     前記空中ハプティクス装置と、
     を備える空中ハプティクスシステム。
    The aerial haptics control device according to claim 1 and
    With the aerial haptics device,
    An aerial haptics system with.
  9.  請求項2記載の空中ハプティクス制御装置と、
     前記空中ハプティクス装置と、
     前記空中ディスプレイ装置と、
     を備える空中ハプティクスシステム。
    The aerial haptics control device according to claim 2,
    With the aerial haptics device,
    With the aerial display device
    An aerial haptics system with.
  10.  車載用であることを特徴とする請求項8又は請求項9記載の空中ハプティクスシステム。 The aerial haptics system according to claim 8 or 9, wherein the system is for in-vehicle use.
  11.  故障ドライバ検出部が、空中ハプティクス装置におけるハプティクスドライバ群に含まれる故障ハプティクスドライバを検出するステップと、
     第1ドライバ選択部が、前記故障ハプティクスドライバが検出されたとき、前記ハプティクスドライバ群に含まれる複数個の正常ハプティクスドライバのうちの1個以上の第1正常ハプティクスドライバを選択するステップと、
     第1周波数設定部が、前記1個以上の第1正常ハプティクスドライバの各々に対応する第1周波数の値を低下させるステップと、
     を備える空中ハプティクス制御方法。
    A step in which the failure driver detector detects a failure haptics driver included in the haptics driver group in the aerial haptics device, and
    When the failure haptics driver is detected, the first driver selection unit selects one or more of the first normal haptics drivers among the plurality of normal haptics drivers included in the haptics driver group. When,
    A step in which the first frequency setting unit lowers the value of the first frequency corresponding to each of the one or more first normal haptics drivers.
    Aerial haptics control method with.
PCT/JP2020/019112 2020-05-13 2020-05-13 Aerial haptics control device, aerial haptics system, and aerial haptics control method WO2021229720A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/019112 WO2021229720A1 (en) 2020-05-13 2020-05-13 Aerial haptics control device, aerial haptics system, and aerial haptics control method
JP2022515464A JP7126312B2 (en) 2020-05-13 2020-05-13 Aerial Haptics Control Device, Aerial Haptics System, and Aerial Haptics Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019112 WO2021229720A1 (en) 2020-05-13 2020-05-13 Aerial haptics control device, aerial haptics system, and aerial haptics control method

Publications (1)

Publication Number Publication Date
WO2021229720A1 true WO2021229720A1 (en) 2021-11-18

Family

ID=78525532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019112 WO2021229720A1 (en) 2020-05-13 2020-05-13 Aerial haptics control device, aerial haptics system, and aerial haptics control method

Country Status (2)

Country Link
JP (1) JP7126312B2 (en)
WO (1) WO2021229720A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162195A (en) * 2016-03-09 2017-09-14 株式会社Soken Touch sense presentation device
JP2017533500A (en) * 2014-09-09 2017-11-09 ウルトラハプティクス アイピー リミテッドUltrahaptics Ip Ltd Method and apparatus for adjusting haptic feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533500A (en) * 2014-09-09 2017-11-09 ウルトラハプティクス アイピー リミテッドUltrahaptics Ip Ltd Method and apparatus for adjusting haptic feedback
JP2017162195A (en) * 2016-03-09 2017-09-14 株式会社Soken Touch sense presentation device

Also Published As

Publication number Publication date
JP7126312B2 (en) 2022-08-26
JPWO2021229720A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US20120044169A1 (en) Operation display device and operation display method
JP2008305174A (en) Information processor, information processing method, and program
CN106993091B (en) Image blurring method and mobile terminal
US9471178B2 (en) Electronic device, method, and program for supporting touch panel operation
CN111837176B (en) Display system and computer-readable non-transitory recording medium
US20140085244A1 (en) Electronic device
US20150124147A1 (en) Method of displaying high dynamic range (hdr) image, computer-readable storage medium for recording the method, and digital imaging apparatus
WO2021229720A1 (en) Aerial haptics control device, aerial haptics system, and aerial haptics control method
US10009583B2 (en) Projection system, projection apparatus, information processing method, and storage medium
JP2009134508A (en) Image display system
US10993703B2 (en) Ultrasound diagnosis apparatus and computer readable recording medium
US20210240341A1 (en) Input control device
JP7072744B2 (en) Aerial haptics controller, aerial haptics system and aerial haptics control method
JP6452553B2 (en) Touch area control device and touch area control method
US10691293B2 (en) Display device and computer-readable non-transitory recording medium with display control program stored thereon
JP2020061081A (en) Image processor and method for processing image
US20210201511A1 (en) Image processing apparatus, image processing method, and storage medium
JP2010128567A (en) Cursor movement control method and device, and program
US11045161B2 (en) Radiographic image processing apparatus, radiographic image processing method, and storage medium
JP2021157110A (en) Display device and control method thereof
JP2017090962A (en) Display device and communication method
JP4646811B2 (en) Remote control input system
WO2022003970A1 (en) Operation feeling providing device, operation feeling providing system and operation feeling providing method
US11344193B2 (en) Method for performing an assessment of vision
JP2009301269A (en) Software input key display method, program, and information processing terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935344

Country of ref document: EP

Kind code of ref document: A1