WO2021229658A1 - Packet transfer system and packet transfer method - Google Patents

Packet transfer system and packet transfer method Download PDF

Info

Publication number
WO2021229658A1
WO2021229658A1 PCT/JP2020/018880 JP2020018880W WO2021229658A1 WO 2021229658 A1 WO2021229658 A1 WO 2021229658A1 JP 2020018880 W JP2020018880 W JP 2020018880W WO 2021229658 A1 WO2021229658 A1 WO 2021229658A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
packet
control
autonomous
communication device
Prior art date
Application number
PCT/JP2020/018880
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 山田
恵太 西本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/018880 priority Critical patent/WO2021229658A1/en
Priority to JP2022522116A priority patent/JP7469699B2/en
Publication of WO2021229658A1 publication Critical patent/WO2021229658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing

Definitions

  • the present invention relates to a packet transfer system and a packet transfer method.
  • FIG. 9 is a block diagram showing a communication network system 100 in which the OpenFlow protocol operates.
  • the communication network system 100 includes an OpenFlow controller 101, OpenFlow switches 110, 111, 112, and a DHCP (Dynamic Host Configuration Protocol) server 120.
  • OpenFlow controller 101 OpenFlow controller 101
  • OpenFlow switches 110 OpenFlow switches 110
  • 111 111
  • 112 OpenFlow switches 110
  • 111 111
  • 112 Dynamic Host Configuration Protocol
  • the OpenFlow switches 110 and 111 are connected, and each of them has established a connection with the OpenFlow controller 101 in advance.
  • the OpenFlow switch 111 is connected to the DHCP server 120. In this state, it is assumed that the OpenFlow switch 112 is newly connected to the OpenFlow switch 110.
  • the OpenFlow switch 112 When the OpenFlow switch 112 is connected to the OpenFlow switch 110, it is connected to the OpenFlow switch 110 by using the data transfer port instead of the management port.
  • the OpenFlow switch 112 In the OpenFlow switch 112, the DHCP client is operating, and the OpenFlow switch 112 is recognized by the OpenFlow controller 101 by the following procedure.
  • the OpenFlow switch 112 transmits a DHCP message to the OpenFlow switch 110.
  • the OpenFlow switches 110 and 111 transfer the DHCP message transmitted by the OpenFlow switch 112 to the DHCP server 120.
  • the DHCP server 120 transmits the IP (Internet Protocol) address and port number of the OpenFlow controller 101 to the OpenFlow switch 112.
  • the OpenFlow switches 110 and 111 transfer the IP address and port number of the OpenFlow controller 101 transmitted by the DHCP server 120 to the OpenFlow switch 112.
  • the OpenFlow agent operating in the OpenFlow switch 112 takes in the IP address and port number of the OpenFlow controller 101.
  • the OpenFlow agent connects to the OpenFlow controller 101 based on the captured IP address and port number.
  • the OpenFlow controller 101 detects the connection relationship between the OpenFlow switches 110, 111, 112 by using LLDP (Link Layer Discovery Protocol) or the like.
  • the newly connected OpenFlow switch 112 establishes a connection with the OpenFlow controller 101 by superimposing it on the data network without using the management port and network.
  • the OpenFlow controller 101 can detect the connection relationship between the OpenFlow switches 110, 111, 112. Therefore, it is possible to reduce the cost required for the installation and management of management ports and networks.
  • Non-Patent Document 1 it is necessary that the DHCP client and the OpenFlow agent are operating in the newly connected OpenFlow switch 112. Further, in the technique disclosed in Non-Patent Document 1, it is premised that the OpenFlow switch 112 is provided with a CPU (Central Processing Unit) or the like for operating them.
  • CPU Central Processing Unit
  • the device connected to the OpenFlow switch 110 is a modular communication device.
  • Such modular communication devices may not have a port dedicated to management. Further, in terms of size and cost, it may not be equipped with an OpenFlow agent, a CPU for operating a DHCP client, or the like. Therefore, in such a modular communication device, it may not be possible to connect to the OpenFlow controller 101.
  • an object of the present invention is to provide a technique capable of connecting to a controller by a simple method even if it is a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like.
  • One aspect of the present invention is a transfer control device that controls the transfer of a packet, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device.
  • a packet forwarding system comprising: The communication device sends a control packet to the forwarding device, and the forwarding device receives the control packet for the control packet sent from the communication device.
  • the physical port identification information that identifies the physical port and the identification information of the own device are added and transferred to the transfer control device, and the transfer control device uses the identification information of the transfer device assigned to the control packet.
  • a packet forwarding system that acquires the physical port identification information.
  • One aspect of the present invention is a transfer control device that controls the transfer of a packet, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device.
  • a packet forwarding method in a packet forwarding system comprising the above, wherein the communication device sends a control packet to the forwarding device, and the forwarding device controls the control packet sent from the communication device.
  • the physical port identification information that identifies the physical port that received the packet and the identification information of the own device are added and transferred to the transfer control device, and the transfer control device transfers the transfer attached to the control packet.
  • This is a packet forwarding method for acquiring device identification information and the physical port identification information.
  • a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to a controller by a simple method.
  • Non-Patent Document 1 It is a block diagram which shows the structure of the packet transfer system in 3rd Embodiment. It is a sequence diagram which shows the flow of a part of the connection configuration collection processing by a packet transfer system in 3rd Embodiment. It is a figure for demonstrating the technique disclosed in Non-Patent Document 1.
  • one or more transfer devices are connected to the transfer control device.
  • One or a plurality of transfer devices have a plurality of ports, and a spanning tree-shaped logic path rooted at the transfer control device is preset in the plurality of ports.
  • the spanning tree-shaped logical path may be set by the transfer control device in each transfer device, or may be set in each transfer device according to an instruction from the transfer control device.
  • the communication device When a communication device is newly connected to any of the transfer devices, the communication device transmits a control packet to the transfer control device through the logical path.
  • the communication device transmits a control packet at regular intervals from the time when the power is turned on and started, or transmits a control packet in response to an instruction from the outside (for example, a transfer control device). Since the logical path is configured in a spanning tree shape, loops of control packets and the like do not occur.
  • the control packet always reaches the transfer control device through the port of the transfer device corresponding to the root.
  • the transfer device to which the communication device is connected receives the control packet through the logical path.
  • the transfer device to which the communication device is connected attaches the identification information of the physical port that received the control packet and the identification information of the transfer device (own device) to the control packet, and transfers the control packet to the transfer control device.
  • the transfer control device identifies the newly connected communication device based on the information given to the control packet transferred from the transfer device, and also identifies the transfer device newly connected to the communication device and its physical port. ..
  • the transfer device to which the communication device is newly connected and the physical port thereof can be specified.
  • the newly connected communication device can be connected to the transfer control device. Therefore, even a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to the controller by a simple method.
  • embodiments that configure the above packet transfer system will be described.
  • FIG. 1 is a block diagram showing a configuration of a packet transfer system 1 according to the first embodiment.
  • the packet transfer system 1 includes a transfer control device 2, an OpenFlow switch 3, an autonomous transfer device 4, and a communication device 5.
  • the transfer control device 2 controls the packet route.
  • the transfer control device 2 transmits information indicating a transfer rule defined in the transfer control device 2 (hereinafter referred to as “transfer rule information”) to the OpenFlow switch 3.
  • transfer rule information a transfer rule defined in the transfer control device 2
  • the transfer control device 2 is, for example, a controller in SDN (Software Designed Network). In the following description, it is assumed that the transfer control device 2 is an OpenFlow controller.
  • the transfer rule information is, for example, an OpenFlow flow entry.
  • the forwarding rule information includes information for identifying a packet to be forwarded and information indicating processing for the identified packet.
  • the processing for the specified packet is, for example, a processing for transferring the packet to a specific route, a processing for rewriting or deleting a part of the data of the packet, a processing for discarding the packet, and the like.
  • the transfer control device 2 receives the Packet-In message of the OpenFlow protocol transmitted by the OpenFlow switch 3.
  • the transfer control device 2 transmits a Packet-Out message of the OpenFlow protocol to the OpenFlow switch 3.
  • the transfer control device 2 instructs the OpenFlow switch 3 and the autonomous transfer device 4 to set a logical path.
  • the transfer control device 2 may set a logical path for the OpenFlow switch 3 and the autonomous transfer device 4.
  • the OpenFlow switch 3 includes an autonomous transfer device transmission / reception unit 31, a search logic path generation unit 32, a transfer rule storage unit 34, a transfer processing unit 35, a transfer control device transmission / reception unit 36, and an external transmission / reception unit 37.
  • the transfer control device transmission / reception unit 36 is a physical port connected to the transfer control device 2.
  • the transfer control device transmission / reception unit 36 connects to the transfer control device 2 via the physical line 7.
  • the transfer control device transmission / reception unit 36 establishes a secure channel connection with the transfer control device 2 and transmits / receives data according to the OpenFlow protocol.
  • the external transmission / reception unit 37 is a port to which another OpenFlow switch, a communication network such as the Internet, or the like is connected to the OpenFlow switch 3.
  • the communication device 5 may be directly connected to the external transmission / reception unit 37.
  • the external transmitter / receiver 37 may be a single or a plurality of physical ports.
  • the autonomous transfer device transmission / reception unit 31 is a physical port connected to the autonomous transfer device 4.
  • FIG. 1 shows an example in which the autonomous transfer device transmission / reception unit 31 is connected to the autonomous transfer device 4 via a physical line 6-n.
  • the OpenFlow switch 3 When the OpenFlow switch 3 is connected to a plurality of autonomous transfer devices 4, the OpenFlow switch 3 includes an autonomous transfer device transmission / reception unit 31 corresponding to each of the plurality of autonomous transfer devices 4.
  • the autonomous transfer device transmission / reception unit 31, transfer control device transmission / reception unit 36, and external transmission / reception unit 37 have different names for convenience of explanation, but they are all physical ports included in the OpenFlow switch 3.
  • the physical port connected to the transfer control device 2 becomes the transfer control device transmission / reception unit 36
  • the physical port connected to the autonomous transfer device 4 becomes the autonomous transfer device transmission / reception unit 31, and the other physical ports are the external transmission / reception unit 37. become.
  • the transfer rule storage unit 34 stores the transfer rule information transmitted by the transfer control device 2 to the OpenFlow switch 3.
  • the forwarding rule information is written in the forwarding rule storage unit 34 as follows.
  • the transfer control device transmission / reception unit 36 receives transfer rule information from the transfer control device 2.
  • the transfer control device transmission / reception unit 36 outputs the received transfer rule information to the transfer processing unit 35.
  • the transfer processing unit 35 writes the transfer rule information output by the transfer control device transmission / reception unit 36 to the transfer rule storage unit 34.
  • the search logical path generation unit 32 generates a logical path composed of spanning trees having the transfer processing unit 35 as a node in response to an instruction from the transfer control device 2.
  • the spanning tree has a physical link between the transfer devices (for example, between the OpenFlow switch 3 and the autonomous transfer device 4) as a branch, and the transfer processing unit of the transfer device directly connected to the transfer control device as a root. However, it is configured so that loops do not occur.
  • the tag VLAN Virtual Local Area Network
  • the search logical path generation unit 32 associates a VLAN-ID (Identifier) indicating the generated logical path with identification information (hereinafter referred to as “physical port identification information”) that identifies the autonomous transfer device transmission / reception unit 31. Add to the transfer rule information stored in the transfer rule storage unit 34.
  • the forwarding rule information may be preset with a rule for Packet-In the control packet. For example, when a control packet is received, a rule for forwarding a Packet-In message to the forwarding control device 2 may be set in advance in the forwarding rule information.
  • the transfer processing unit 35 selects a process for the received packet based on the transfer rule information stored in the transfer rule storage unit 34, and performs the selected process on the packet.
  • the autonomous transfer device 4 is, for example, a device corresponding to a Layer 2 switch.
  • the autonomous transfer device 4 includes physical ports 41-1 to 41-N, an autonomous search logic path generation unit 42, an autonomous transfer processing unit 44, and an autonomous transfer rule storage unit 45.
  • Physical lines 6-1 to 6-N are connected to each of the physical ports 41-1 to 41-N. Note that N is an integer of 2 or more, and n is an arbitrary integer of 1 to N. In FIG. 1, the physical line 6-n is assumed to indicate any one of the physical lines 6-1 to 6-N.
  • the autonomous transfer rule storage unit 45 stores predetermined autonomous transfer rule information.
  • the autonomous transfer rule information is information indicating the rules of the transfer process performed by a general Layer2 switch.
  • the autonomous forwarding rule information includes information for identifying a packet to be forwarded and information indicating processing for the identified packet.
  • the process for the specified packet is, for example, a process of transferring the packet to the physical ports 41-1 to 41-N to which the device having the destination MAC (Media Access Control) address is connected. For example, it is assumed that the following information is also registered in the autonomous forwarding rule information.
  • packets received on a physical port connected to a node far from the root of the spanning tree (ie, children in the tree structure) and packets received on the physical port corresponding to the leaves of the spanning tree are nodes near the root (ie, tree). Sent to the physical port connected to the parent) in the structure.
  • the autonomous search logic path generation unit 42 permits the communication device 5 to connect to the physical ports 41-1 to 41-N with the OpenFlow switch 3 as the root in response to the instruction of the transfer control device 2. That is, the autonomous search logic path generation unit 42 generates a logic path constituting a spanning tree having physical ports 41-1 to 41-N to which the communication device 5 may be connected as leaves.
  • the autonomous search logical path generation unit 42 assigns the same VLAN-ID as the VLAN-ID assigned to the logical path by the search logical path generation unit 32 of the OpenFlow switch 3 to the generated logical path. ..
  • the logic path generation unit 42 for autonomous search includes identification information (hereinafter referred to as “physical port identification information”) that identifies physical ports 41-1 to 41-N to which VLAN-ID is assigned, and the assigned VLAN-ID. Is associated with and written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45.
  • the autonomous transfer processing unit 44 selects a process for the received packet based on the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45, and performs the selected process on the packet.
  • the autonomous transfer processing unit 44 performs the following processing. Specifically, when the captured control packet is not given the assigned information regarding the other autonomous transfer device 4, the autonomous transfer processing unit 44 stores the identification information of its own device in the internal storage area in advance. And the assigned information including the physical port identification information that received the control packet is attached to the control packet, and then the control packet is forwarded.
  • the communication device 5 is, for example, a modular communication device having an IP communication function.
  • the modular communication device is a communication device having limited functions, for example, which does not have a port dedicated to management and does not have a CPU on which an OpenFlow agent or a DHCP client operates.
  • the communication device 5 is connected to the physical port 41-1 of the autonomous transfer device 4 via the physical line 6-1.
  • Such a modular communication device is not available.
  • the physical port 41-1 is connected as it is without using the physical line 6-1.
  • the communication device 5 When the power is turned on and started, the communication device 5 sends out a control packet containing the identification information of the own device at regular intervals.
  • the identification information of the own device is, for example, information such as a MAC address and an IP address.
  • FIG. 2 is a block diagram showing a configuration of a packet transfer system 1a which is a specific example of the first embodiment.
  • the packet transfer system 1a includes a transfer control device 2, an OpenFlow switch 3, autonomous transfer devices 4a and 4b, and communication devices 5a and 5b.
  • the packet transfer system 1a includes a transfer control device 2, an OpenFlow switch 3, autonomous transfer devices 4a and 4b, and communication devices 5a and 5b.
  • the autonomous transfer device 4a includes four physical ports 41a-1, 41a-2, 41a-3.
  • the autonomous transfer device 4b includes four physical ports 41b-1, 41b-2, 41b-3.
  • the physical port 41a-1 of the autonomous transfer device 4a and the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 are connected by a physical line 6a-1.
  • the physical port 41a-3 of the autonomous transfer device 4a and the physical port 41b-1 of the autonomous transfer device 4b are connected by a physical line 6a-3.
  • the communication device 5a is connected to the physical port 41b-2 of the autonomous transfer device 4b via the physical line 6b-2, and communicates with the physical port 41a-2 of the autonomous transfer device 4a via the physical line 6a-2.
  • the device 5b is connected.
  • the search logic path generation unit 32 of the OpenFlow switch 3, the autonomous search logic path generation unit 42a of the autonomous transfer device 4a, and the autonomous search logic path generation unit 42a of the autonomous transfer device 4b are transfer control devices.
  • the logic path 60 shown in FIG. 2 is generated according to the instruction of 2.
  • the search logic path generation unit 32 assigns any one free VLAN-ID to the autonomous transfer device transmission / reception unit 31. Here, for example, it is assumed that "1001" is assigned as the VLAN-ID.
  • the search logic path generation unit 32 transmits the assigned VLAN-ID “1001” to the autonomous search logic path generation units 42a and 42b.
  • the search logical path generation unit 32 writes the transfer rule information stored in the transfer rule storage unit 34 in association with the physical port identification information of the autonomous transfer device transmission / reception unit 31 and the VLAN-ID “1001”.
  • the autonomous search logic path generation units 42a and 42b receive the information of the VLAN-ID "1001" transmitted by the search logic path generation unit 32.
  • the autonomous search logic path generation unit 42a has the physical port identification information corresponding to each of the physical ports 41a-1, 41a-2, 41a-3 and the VLAN-ID "1001" received from the search logic path generation unit 32. Is written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a in association with.
  • the autonomous search logical path generation unit 42b also has the physical port identification information corresponding to each of the physical ports 41b-1, 41b-2, and 41b-3, and the VLAN-ID received from the search logical path generation unit 32. It is written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b in association with "1001". As a result, the logical path 60 corresponding to the VLAN-ID "1001" is generated.
  • FIG. 3 is a sequence diagram showing a flow of processing for collecting the connection configuration of the communication device 5a by the packet transfer system 1a shown in FIG. It is assumed that the communication device 5a is started in a state of being connected to the physical port 41b-2 of the autonomous transfer device 4b. The communication device 5a sends a control packet including the identification information of the own device to the physical line 6b-2 at regular intervals (step Sa1).
  • the physical port 41b-2 of the autonomous transfer device 4b receives the control packet transmitted by the communication device 5a.
  • the physical port 41b-2 outputs the received control packet to the autonomous transfer processing unit 44b (step Sa2).
  • the autonomous transfer processing unit 44b captures the control packet output by the physical port 41b-2. No grant information is given to the captured control packet. Therefore, the autonomous transfer processing unit 44b reads out the identification information of the autonomous transfer device 4b from the internal storage area.
  • the autonomous transfer processing unit 44b generates grant information including the read identification information of the autonomous transfer device 4b and the physical port identification information of the physical port 41b-2 that has captured the control packet.
  • the autonomous transfer processing unit 44b adds the generated grant information to the control packet (step Sa3).
  • the autonomous transfer processing unit 44b refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b, and refers to the control packet via the logical path 60 associated with the physical port 41b-2 that has captured the control packet. Is transferred (step Sa4). Specifically, the transfer is performed as follows. In the autonomous forwarding rule information stored in the autonomous forwarding rule storage unit 45b, the VLAN-ID "1001" is associated with the physical port 41b-2 that has captured the control packet. The autonomous transfer processing unit 44b refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b, and refers to the physical ports 41b-1, 41b-2, 4b associated with the VLAN-ID "1001". -3 is detected.
  • the physical port 41b-2 that has taken in the control packet is a port corresponding to the spanning tree leaf. Therefore, the autonomous transfer processing unit 44b refers to the autonomous transfer rule information, assigns the VLAN-ID "1001" to the control packet, and transfers the control packet to the physical port 41b-1, which is a port near the root of the spanning tree. do.
  • the physical port 41b-1 sends a control packet via the physical line 6a-3.
  • the physical port 41a-3 of the autonomous transfer device 4a receives a control packet via the physical line 6a-3 (step Sa5).
  • the physical port 41a-3 outputs the received control packet to the autonomous transfer processing unit 44a.
  • the autonomous transfer processing unit 44a captures the control packet output by the physical port 41a-3.
  • the captured control packet is already given information about the autonomous transfer device 4b. Therefore, the autonomous transfer processing unit 44a does not add the given information to the control packet to which the given information is given.
  • the autonomous transfer processing unit 44a refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a, and refers to the control packet via the logical path 60 associated with the physical port 41a-3 that has captured the control packet. Is transferred (step Sa6). Specifically, the transfer is performed as follows. The VLAN-ID "1001" is assigned to the control packet captured by the autonomous transfer processing unit 44a. Therefore, the autonomous transfer processing unit 44a refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a, and refers to the physical ports 41a-1, 41a-2 associated with the VLAN-ID "1001". , 41a-3 are detected.
  • the physical port 41a-3 that has taken in the control packet is a port corresponding to the spanning tree leaf. Therefore, the autonomous transfer processing unit 44a refers to the autonomous transfer rule information and transfers the control packet to the physical port 41a-1 corresponding to the root of the spanning tree.
  • the physical port 41a-1 sends a control packet via the physical line 6a-1.
  • the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 receives a control packet via the physical line 6a-1 (step Sa7).
  • the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 outputs the received control packet to the transfer processing unit 35.
  • the transfer processing unit 35 refers to the transfer rule information stored in the transfer rule storage unit 34, and identifies the control packet from which the VLAN-ID "1001" is removed from the control packet and the physical port of the received autonomous transfer device transmission / reception unit 31. Generate a Packet-In message containing information.
  • the transfer processing unit 35 transmits the generated Packet-In message to the transfer control device 2 via the transfer control device transmission / reception unit 36 (step Sa8).
  • the transfer processing unit 35 does not have to remove the VLAN-ID when transferring the control packet.
  • the transfer control device 2 receives the Packet-In message transmitted by the transfer control device transmission / reception unit 36 (step Sa9).
  • the transfer control device 2 has the identification information of the autonomous transfer device 4b included in the grant information given to the control packet included in the Packet-In message, and the physical port of the physical port 41b-2 that has captured the control packet.
  • the identification information and the identification information of the communication device 5a included in the control packet are read out, and the read information is recorded in the internal storage area (step Sa10).
  • the transfer control device 2 generates a table having three items of "communication device", "connection destination device”, and "connection destination port” shown in FIG.
  • the transfer control device 2 refers to the generated table with the information shown in the first row shown in FIG. 4, that is, the identification information of the communication device 5a, the identification information of the autonomous transfer device 4b, and the physical port 41b-2. Write the physical port identification information.
  • the communication device 5a is connected to the physical port 41b-2 of the autonomous transfer device 4b by referring to the table shown in FIG. 4, and the communication device 5b is connected to the autonomous transfer device 4a. It can be recognized that it is connected to the physical port 41a-2 of.
  • the physical ports 41a-2, 41b-that are physical ports included in the autonomous transfer devices 4a and 4b and are allowed to be connected to the communication devices 5a and 5b with the OpenFlow switch 3 as the starting point.
  • a logical path 60 of a spanning tree having 2,41b-3 as leaves is generated.
  • the communication devices 5a and 5b are connected to the physical ports 41a-2 and 41b-2 of the autonomous transfer devices 4a and 4b, and send a control packet containing the identification information of the own device to the connected autonomous transfer devices 4a and 4b. ..
  • the autonomous transfer devices 4a and 4b receive the control packets.
  • the physical port identification information for identifying the physical ports 41a-2 and 41b-2 and the identification information of the own device are added to the control packet, and the control packet is transmitted via the logical path 60.
  • the OpenFlow switch 3 transfers the control packet received via the logical path 60 to the transfer control device 2.
  • the transfer control device 2 receives the control packet, and the identification information and the physical port identification information of the autonomous transfer devices 4a and 4b added to the received control packet, and the communication devices 5a and 5b included in the control packet. And read out the identification information of.
  • the transfer control device 2 can specify the transfer device (for example, the autonomous transfer device 4a, 4b or the OpenFlow switch 3) to which the communication device is newly connected and its physical port.
  • the newly connected communication device can be connected to the transfer control device 2. Therefore, even a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to the transfer control device 2 by a simple method.
  • FIG. 5 is a block diagram showing a configuration of the packet transfer system 1b according to the second embodiment.
  • the packet transfer system 1b includes a transfer control device 2b, an OpenFlow switch 3, autonomous transfer devices 4a and 4b, and a communication device 5ab.
  • the transfer control device 2b has the following configurations in addition to the configurations of the transfer control device 2.
  • the transfer control device 2b generates a control packet transmission instruction packet.
  • the control packet transmission instruction packet is a packet including an instruction for transmitting a control packet to a communication device newly connected to a transfer device such as the OpenFlow switch 3 or the autonomous transfer devices 4a and 4b.
  • the transfer control device 2b transmits a Packet-Out message including an instruction to send a control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 and a generated control packet transmission instruction packet to the OpenFlow switch 3. ..
  • the communication device 5ab is, for example, a modular communication device, like the communication devices 5, 5a, 5b of the first embodiment.
  • the communication device 5ab has a configuration different from that of the communication devices 5, 5a, 5b in the following points.
  • the communication device 5ab receives the control packet transmission instruction packet, the communication device 5ab transmits a control packet including the identification information of the own device.
  • FIG. 6 is a sequence diagram showing a partial flow of processing for collecting the connection configuration of the communication device 5ab by the packet transfer system 1b shown in FIG.
  • the transfer control device 2b generates a control packet transmission instruction packet.
  • the transfer control device 2b transmits a Packet-Out message including an instruction to send a control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 and a generated control packet transmission instruction packet to the OpenFlow switch 3. (Step Sb1).
  • the transfer control device transmission / reception unit 36 of the OpenFlow switch 3 receives the Packet-Out message transmitted by the transfer control device 2b (step Sb2), and the transfer control device transmission / reception unit 36 receives the received Packet-Out message in the transfer processing unit 35. Output to.
  • the transfer processing unit 35 captures the Packet-Out message output by the transfer control device transmission / reception unit 36.
  • the transfer processing unit 35 transmits the control packet transmission instruction packet from the physical port 31 according to the instruction to transmit the control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 included in the Packet-Out message (step Sb2). ).
  • the autonomous transfer device transmission / reception unit 31 transmits a control packet transmission instruction packet via the physical line 6a-1.
  • the physical port 41a-1 of the autonomous transfer device 4a receives the control packet transmission instruction packet via the physical line 6a-1 (step Sb4).
  • the physical port 41a-1 outputs the received control packet transmission instruction packet to the autonomous transfer processing unit 44a.
  • the autonomous transfer processing unit 44a transmits a control packet transmission instruction packet from a physical port other than the physical port (here, physical port 41a-1) that has received the control packet transmission instruction packet (step Sb5). As a result, the control packet transmission instruction packet is transmitted to the physical ports 41a-2 and 41a-3. No device is connected to the physical port 41a-2. Therefore, the control packet transmission instruction packet is not transmitted from the physical port 41a-2.
  • the physical port 41a-3 transmits a control packet transmission instruction packet via the physical line 6a-3.
  • the physical port 41b-1 of the autonomous transfer device 4b receives the control packet transmission instruction packet via the physical line 6a-3 (step Sb6).
  • the physical port 41b-1 outputs the received control packet transmission instruction packet to the autonomous transfer processing unit 44b.
  • the autonomous transfer processing unit 44b transmits a control packet transmission instruction packet from a physical port other than the physical port (here, physical port 41b-1) that has received the control packet transmission instruction packet (step Sb6). As a result, the control packet transmission instruction packet is transmitted to the physical ports 41b-2 and 41b-3. None of the devices are connected to physical port 41b-3. Therefore, the control packet transmission instruction packet is not transmitted from the physical port 41b-3.
  • the physical port 41b-2 transmits a control packet transmission instruction packet via the physical line 6b-2.
  • the communication device 5ab receives the control packet transmission instruction packet via the physical line 6b-2 (step Sb8).
  • the communication device 5ab sends a control packet including the identification information of the own device to the physical line 6b-2.
  • the processes of steps Sa2 to Sa10 shown in FIG. 3 are performed.
  • the transfer control device 2b acquires the information shown in the first row of the table shown in FIG. 4, as in the transfer control device 2 of the first embodiment.
  • the control packet when the communication device 5ab receives the packet transmission instruction packet without transmitting the control packet at regular intervals, the control packet is transmitted. Therefore, it is not necessary for the communication device 5ab to be equipped with a clock or the like for transmitting control packets at regular intervals.
  • a large number of control packets may be sent due to a malfunction, but in the communication device 5ab of the second embodiment, the control packet transmission instruction packet is sent. Since the control packet is transmitted at the timing of receiving the control packet, it is possible to suppress the transmission of unnecessary control packets as compared with the first embodiment.
  • control packet transmission instruction packet may be the same as that of the control packet.
  • the communication device 5ab since the communication device 5ab only needs to send back the received control packet transmission instruction packet without generating a new control packet, the function of the communication device 5ab can be further reduced.
  • the control packet transmission instruction packet may be generated including the information indicating the format of the logical path 60.
  • the communication device 5ab can generate a control packet based on the information indicating the format of the logical path 60 included in the control packet transmission instruction packet.
  • the OpenFlow switch 3 and the autonomous transfer devices 4a and 4b change the format of the logical path 60.
  • the OpenFlow switch 3 transmits information in the form of the changed logical path 60 to the transfer control device 2b.
  • the transfer control device 2b can notify the communication device 5ab of the format of the changed logic path 60 by the control packet transmission instruction packet, so that the communication device 5ab changes the format of the logic path 60. Can be flexibly followed.
  • the configuration is not shown as a configuration in which a VLAN-ID is assigned to the communication devices 5, 5a, 5b, 5ab in advance, but the communication devices 5, 5a, 5b, 5ab have a logic path 60. It is also possible to register the VLAN-ID "1001" in advance. In this case, the autonomous transfer processing unit 44a of the autonomous transfer device 4b does not need to assign a VLAN-ID to the control packet captured via the physical port 41b-2. In such a configuration, for example, when the VLAN-ID is changed from "1001" to "1002", the change of the VLAN-ID can be notified to the communication device 5ab by the control packet transmission instruction packet. ..
  • FIG. 7 is a block diagram showing a configuration of the packet transfer system 1c according to the third embodiment.
  • the packet transfer system 1c includes a transfer control device 2c, an OpenFlow switch 3, 3c, an autonomous transfer device 4a, and a communication device 5ab.
  • the OpenFlow switch 3c has the same internal configuration as the OpenFlow switch 3 shown in FIG.
  • the code of each functional unit is indicated by a reference numeral “c”.
  • the OpenFlow switch 3c includes a transfer control device transmission / reception unit 36c, a transfer processing unit 35c, a transfer rule storage unit 34c, a search logic path generation unit 32c, an external transmission / reception unit 37c-1, 37c-2, and an autonomous transfer device transmission / reception unit 31c-. It is equipped with 1,31c-2.
  • the transfer control device transmission / reception unit 36c is connected to the transfer control device 2c via the physical line 7c.
  • the transfer control device transmission / reception unit 36c establishes a secure channel connection with the transfer control device 2c, and transmits / receives data according to the OpenFlow protocol.
  • the autonomous transfer device transmission / reception unit 31c-1 is connected to the physical port 41a-3 of the autonomous transfer device 4a by a physical line 6a-3.
  • a communication device 5ab is connected to the external transmission / reception unit 37c-2 via the physical line 6b-2.
  • the search logic path generation unit 32c of the OpenFlow switch 3c generates a logic path composed of spanning trees according to the instruction of the transfer control device 2c.
  • the search logic path generation unit 32c is preset so that the OpenFlow switch 3c does not serve as the starting point of the spanning tree.
  • the search logical path generation unit 32c of the OpenFlow switch 3c receives the transfer rule information stored in the transfer rule storage unit 34c by the autonomous transfer device transmission / reception unit 31c-1 and the external transmission / reception units 37c-1, 37c-.
  • the identification information of 2 is written in association with the VLAN-ID "1001".
  • the transfer control device 2c has the following configuration in addition to the configuration of the transfer control device 2b.
  • the transfer control device 2c transmits the transfer rule information including the instruction to transfer the control packet received to the transfer control device 2b by the Packet-In message to the OpenFlow switch 3c.
  • the transfer control device transmission / reception unit 36c receives the transfer rule information transmitted by the transfer control device 2c, and outputs the received transfer rule information to the transfer processing unit 35c.
  • the transfer processing unit 35c writes the transfer rule information output by the transfer control device transmission / reception unit 36c to the transfer rule storage unit 34c.
  • step Sb8 the communication device 5ab receives the control packet transmission instruction packet transmitted by the external transmission / reception unit 37c-1 of the OpenFlow switch 3c to the physical line 6b-2.
  • FIG. 8 is a sequence diagram showing a flow of processing performed after the communication device 5ab receives the control packet transmission instruction packet in the third embodiment.
  • the communication device 5ab sends a control packet including the identification information of the own device to the physical line 6b-2 (step Sd1).
  • the external transmission / reception unit 37c-1 of the OpenFlow switch 3c receives the control packet transmitted by the communication device 5ab.
  • the external transmission / reception unit 37c-1 outputs the received control packet to the transfer processing unit 35c (step Sd2).
  • the transfer processing unit 35c refers to the transfer rule information stored in the transfer rule storage unit 34c.
  • the forwarding rule information stored in the forwarding rule storage unit 34c defines an instruction to forward the control packet to the forwarding control device 2c by a Packet-In message.
  • the transfer rule information includes information regarding the VLAN-ID "1001". However, it is assumed that the instruction to transfer the control packet to the transfer control device 2c by the Packet-In message has priority. In this case, the transfer processing unit 35c does not transfer the control packet via the logical path 60.
  • the transfer processing unit 35c transmits a Packet-In message including a control packet and a physical port identification information that identifies the received external transmission / reception unit 37c-1 to the transfer control device 2c via the transfer control device transmission / reception unit 36c. (Step Sd3).
  • the transfer control device 2c receives the Packet-In message transmitted by the transfer control device transmission / reception unit 36c (step Sd4).
  • the transfer control device 2c detects that the device that has received the control packet is the OpenFlow switch 3c by referring to the information of the source of the Packet-In message.
  • the transfer control device 2c can acquire the information of the physical port to which the communication device 5ab is connected from the physical port identification information of the external transmission / reception unit 37c-1 included in the Packet-In message.
  • the transfer control device 2c can acquire the identification information of the communication device 5ab by referring to the control packet included in the Packet-In message.
  • the transfer control device 2c acquires a combination of three pieces of information recorded in the table having the items of "communication device”, "connection destination device”, and "connection destination port” shown in FIG. 4 from the Packet-In message. be able to.
  • the transfer control device 2c records the acquired three pieces of information in the table of the internal storage area (step Sd5).
  • the OpenFlow switch 3c is connected to the autonomous transfer device 4a, and the logical path 60 is connected to the physical port included in the OpenFlow switch 3c, that is, the external transmission / reception unit and the communication device 5ab.
  • the OpenFlow switch 3c is connected to the transfer control device 2c by a physical line 7c which is a route other than the logical path 60.
  • the communication device 5ab is connected to the OpenFlow switch 3c.
  • the OpenFlow switch 3c uses the transfer rule information stored in the transfer rule storage unit 34c together with the physical port identification information that identifies the external transmission / reception unit 37c-1 that received the control packet. Based on this, a control packet is sent to the transfer control device 2c via the physical line 7c.
  • the communication device 5ab that does not have a port dedicated to management and the OpenFlow agent or DHCP client is not operating is connected to the OpenFlow switch 3c in which the OpenFlow agent is operating, the communication device 5ab and the OpenFlow switch 3c are connected. It is possible to detect the connection configuration with.
  • the OpenFlow switch 3c connected to the communication device 5ab does not transfer the control packet to the device higher than the logical path 60, but directly transmits the control packet to the transfer control device 2c by the Packet-In message. Therefore, the control packet is not transferred to the autonomous transfer device 4a and the OpenFlow switch 3 existing above the logical path 60, so that the bandwidth utilization rate can be improved as compared with the configuration of the second embodiment. ..
  • the starting point of the logical paths 60, 61, 62 is set to the OpenFlow switch 3, but the starting point of the logical paths 60, 61, 62 is set to the transfer control devices 2, 2b. , 2c may be used.
  • the transfer of the control packet from the OpenFlow switch 3 to the transfer control devices 2, 2b, 2c is performed via the logical paths 60, 61, that is, based on the VLAN-ID.
  • the transfer of the control packet transmission instruction packet from the transfer control devices 2b and 2c to the OpenFlow switch 3 is also performed based on the VLAN-ID.
  • the generation of the logic paths 60, 61, 62 is performed by the search logic path generation units 32, 32c and the autonomous search according to the instructions of the transfer control devices 2, 2b, 2c.
  • the logical path generation units 42a and 42b the generation of the logical path does not have to be limited to this.
  • the administrators of the packet transfer systems 1a, 1b, and 1c may generate the logical paths 60, 61, and 62 so as to configure the spanning tree.
  • the administrator decides to add information about the VLAN-ID to the forwarding rule information stored in the forwarding rule storage units 34 and 34c and the autonomous forwarding rule information stored in the autonomous forwarding rule storage units 45a and 45b. Become.
  • a logical path may be set for each transfer device so that the transfer control devices 2, 2b, 2c form a spanning tree.
  • the OpenFlow switches 3 and 3c do not have to include the search logic path generator 32, and the autonomous transfer devices 4, 4a and 4b do not have to include the search logic path generator 42. good.
  • the transfer control devices 2, 2b, 2c include a logic path generator for constructing a spanning tree.
  • the control packet includes the identifiers of the communication devices 5, 5a, 5b, and 5ab, but the control packet contains the identifiers of the communication devices 5, 5a, 5b, and 5ab. May not be included.
  • the communication devices 5, 5a, 5b, and 5ab communicate at regular intervals from the time when the power is turned on and started, or in response to an instruction from the outside (for example, a transfer control device).
  • a control packet that does not include the identifiers of the devices 5, 5a, 5b, and 5ab is transmitted.
  • the packet transfer systems 1, 1a, 1b, 1c have an OpenFlow switch (for example, OpenFlow switches 3, 3c) and an autonomous transfer device (for example, 4, 4a, 4b).
  • OpenFlow switch for example, OpenFlow switches 3, 3c
  • autonomous transfer device for example, 4, 4a, 4b
  • the packet transfer system 1, 1a, 1b, 1c may be configured to include any one of the transfer devices. Taking FIG. 2 as an example of such a configuration, the packet transfer system 1a includes a transfer device of either the OpenFlow switch 3 or the autonomous transfer devices 4a and 4b. Then, the packet transfer system 1a sets a spanning tree-shaped logic path rooted in the transfer control device 2 in the transfer device provided.
  • the transfer control devices 2, 2b, 2c, the OpenFlow switches 3, 3c, and the autonomous transfer devices 4, 4a, 4b according to the first to third embodiments described above may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Abstract

A packet transfer system, according to the present invention, comprising: a transfer control device that controls packet transfer; a transfer device that transfers packets on the basis of a transfer rule defined by the transfer control device; and a communication device newly connected to the transfer device, wherein the communication device sends a control packet to the transfer device, the transfer device adds, to the control packet sent from the communication device, physical port identifying information that specifies a physical port which has received the control packet, and identifying information for the transfer device itself, and transfers the control packet to the transfer control device, and the transfer control device acquires the transfer device identifying information and physical port identifying information added to the control packet.

Description

パケット転送システム及びパケット転送方法Packet transfer system and packet transfer method
 本発明は、パケット転送システム及びパケット転送方法に関する。 The present invention relates to a packet transfer system and a packet transfer method.
 非特許文献1に開示される技術の概要を、図9を参照しつつ説明する。図9は、OpenFlowプロトコルが動作する通信ネットワークシステム100を示すブロック図である。通信ネットワークシステム100は、OpenFlowコントローラ101、OpenFlowスイッチ110,111,112及びDHCP(Dynamic Host Configuration Protocol)サーバ120を備える。 The outline of the technique disclosed in Non-Patent Document 1 will be described with reference to FIG. FIG. 9 is a block diagram showing a communication network system 100 in which the OpenFlow protocol operates. The communication network system 100 includes an OpenFlow controller 101, OpenFlow switches 110, 111, 112, and a DHCP (Dynamic Host Configuration Protocol) server 120.
 OpenFLowスイッチ110,111は、接続しており、各々が予めOpenFlowコントローラ101との間でコネクションを確立している。OpenFlowスイッチ111は、DHCPサーバ120と接続している。この状態において、OpenFlowスイッチ110に、新たにOpenFlowスイッチ112が接続したとする。 The OpenFlow switches 110 and 111 are connected, and each of them has established a connection with the OpenFlow controller 101 in advance. The OpenFlow switch 111 is connected to the DHCP server 120. In this state, it is assumed that the OpenFlow switch 112 is newly connected to the OpenFlow switch 110.
 OpenFlowスイッチ112は、OpenFlowスイッチ110に接続する際、マネジメント用ポートではなく、データ転送用ポートを利用してOpenFlowスイッチ110に接続する。OpenFlowスイッチ112では、DHCPクライアントが動作しており、以下のような手順でOpenFlowスイッチ112が、OpenFlowコントローラ101によって認識される。 When the OpenFlow switch 112 is connected to the OpenFlow switch 110, it is connected to the OpenFlow switch 110 by using the data transfer port instead of the management port. In the OpenFlow switch 112, the DHCP client is operating, and the OpenFlow switch 112 is recognized by the OpenFlow controller 101 by the following procedure.
(1)OpenFlowスイッチ112は、OpenFlowスイッチ110にDHCPメッセージを送信する。OpenFlowスイッチ110,111は、OpenFlowスイッチ112が送信したDHCPメッセージをDHCPサーバ120に転送する。 (1) The OpenFlow switch 112 transmits a DHCP message to the OpenFlow switch 110. The OpenFlow switches 110 and 111 transfer the DHCP message transmitted by the OpenFlow switch 112 to the DHCP server 120.
(2)DHCPサーバ120は、OpenFlowコントローラ101のIP(Internet Protocol)アドレスとポート番号をOpenFlowスイッチ112に送信する。OpenFlowスイッチ110,111は、DHCPサーバ120が送信したOpenFlowコントローラ101のIPアドレスとポート番号をOpenFlowスイッチ112に転送する。 (2) The DHCP server 120 transmits the IP (Internet Protocol) address and port number of the OpenFlow controller 101 to the OpenFlow switch 112. The OpenFlow switches 110 and 111 transfer the IP address and port number of the OpenFlow controller 101 transmitted by the DHCP server 120 to the OpenFlow switch 112.
(3)OpenFlowスイッチ112において動作するOpenFlowエージェントが、OpenFlowコントローラ101のIPアドレスとポート番号を取り込む。OpenFlowエージェントは、取り込んだIPアドレスとポート番号に基づいて、OpenFlowコントローラ101に接続する。OpenFlowコントローラ101は、LLDP(Link Layer Discovery Protocol)等により、OpenFlowスイッチ110,111,112の間の接続関係を検出する。 (3) The OpenFlow agent operating in the OpenFlow switch 112 takes in the IP address and port number of the OpenFlow controller 101. The OpenFlow agent connects to the OpenFlow controller 101 based on the captured IP address and port number. The OpenFlow controller 101 detects the connection relationship between the OpenFlow switches 110, 111, 112 by using LLDP (Link Layer Discovery Protocol) or the like.
 このようにして、新たに接続するOpenFlowスイッチ112は、マネジメント用のポート及びネットワークを使用することなく、データ用のネットワークに重畳する形で、OpenFlowコントローラ101との間でコネクションを確立する。OpenFlowコントローラ101は、OpenFlowスイッチ110,111,112の間の接続関係を検出することができる。そのため、マネジメント用のポートやネットワークの設置や管理に要するコストを削減することができることになる。 In this way, the newly connected OpenFlow switch 112 establishes a connection with the OpenFlow controller 101 by superimposing it on the data network without using the management port and network. The OpenFlow controller 101 can detect the connection relationship between the OpenFlow switches 110, 111, 112. Therefore, it is possible to reduce the cost required for the installation and management of management ports and networks.
 非特許文献1に開示される技術では、新たに接続するOpenFlowスイッチ112においてDHCPクライアント及びOpenFlowエージェントが動作している必要がある。さらに、非特許文献1に開示される技術では、これらを動作させるためのCPU(Central Processing Unit)等をOpenFlowスイッチ112に備えていることが前提になっている。 In the technique disclosed in Non-Patent Document 1, it is necessary that the DHCP client and the OpenFlow agent are operating in the newly connected OpenFlow switch 112. Further, in the technique disclosed in Non-Patent Document 1, it is premised that the OpenFlow switch 112 is provided with a CPU (Central Processing Unit) or the like for operating them.
 ここで、OpenFlowスイッチ110に接続する装置が、モジュール型の通信装置であるとする。このようなモジュール型の通信装置は、マネジメント専用のポートを備えていないこともある。さらに、サイズやコストの面からOpenFlowエージェントやDHCPクライアントを動作させるためのCPU等を備えていないこともある。そのため、このようなモジュール型の通信装置では、OpenFlowコントローラ101に接続することができない場合があった。 Here, it is assumed that the device connected to the OpenFlow switch 110 is a modular communication device. Such modular communication devices may not have a port dedicated to management. Further, in terms of size and cost, it may not be equipped with an OpenFlow agent, a CPU for operating a DHCP client, or the like. Therefore, in such a modular communication device, it may not be possible to connect to the OpenFlow controller 101.
 上記事情に鑑み、本発明は、OpenFlowエージェントやDHCPクライアント等を動作させることができない通信装置であっても、簡易な方法でコントローラに接続することができる技術の提供を目的としている。 In view of the above circumstances, an object of the present invention is to provide a technique capable of connecting to a controller by a simple method even if it is a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like.
 本発明の一態様は、パケットの転送制御を行う転送制御装置と、前記転送制御装置が定義する転送規則に基づいて前記パケットを転送する転送装置と、前記転送装置に新たに接続される通信装置とを備えるパケット転送システムであって、前記通信装置は、制御パケットを前記転送装置に送出し、前記転送装置は、前記通信装置から送出された前記制御パケットに対して、前記制御パケットを受信した前記物理ポートを特定する物理ポート識別情報と、自装置の識別情報とを付与して前記転送制御装置に転送し、前記転送制御装置は、前記制御パケットに付与されている前記転送装置の識別情報及び前記物理ポート識別情報を取得する、パケット転送システム。 One aspect of the present invention is a transfer control device that controls the transfer of a packet, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device. A packet forwarding system comprising: The communication device sends a control packet to the forwarding device, and the forwarding device receives the control packet for the control packet sent from the communication device. The physical port identification information that identifies the physical port and the identification information of the own device are added and transferred to the transfer control device, and the transfer control device uses the identification information of the transfer device assigned to the control packet. And a packet forwarding system that acquires the physical port identification information.
 本発明の一態様は、パケットの転送制御を行う転送制御装置と、前記転送制御装置が定義する転送規則に基づいて前記パケットを転送する転送装置と、前記転送装置に新たに接続される通信装置とを備えるパケット転送システムにおけるパケット転送方法であって、前記通信装置が、制御パケットを前記転送装置に送出し、前記転送装置が、前記通信装置から送出された前記制御パケットに対して、前記制御パケットを受信した前記物理ポートを特定する物理ポート識別情報と、自装置の識別情報とを付与して前記転送制御装置に転送し、前記転送制御装置が、前記制御パケットに付与されている前記転送装置の識別情報及び前記物理ポート識別情報を取得する、パケット転送方法である。 One aspect of the present invention is a transfer control device that controls the transfer of a packet, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device. A packet forwarding method in a packet forwarding system comprising the above, wherein the communication device sends a control packet to the forwarding device, and the forwarding device controls the control packet sent from the communication device. The physical port identification information that identifies the physical port that received the packet and the identification information of the own device are added and transferred to the transfer control device, and the transfer control device transfers the transfer attached to the control packet. This is a packet forwarding method for acquiring device identification information and the physical port identification information.
 この発明によれば、OpenFlowエージェントやDHCPクライアント等を動作させることができない通信装置であっても、簡易な方法でコントローラに接続することが可能になる。 According to the present invention, even a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to a controller by a simple method.
第1の実施形態におけるパケット転送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the packet transfer system in 1st Embodiment. 第1の実施形態の具体例であるパケット転送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the packet transfer system which is a specific example of 1st Embodiment. 第1の実施形態におけるパケット転送システムによる接続構成収集処理の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of the connection configuration collection processing by the packet transfer system in 1st Embodiment. 第1の実施形態において転送制御装置が記録する接続構成の情報を示す図である。It is a figure which shows the information of the connection structure recorded by the transfer control apparatus in 1st Embodiment. 第2の実施形態におけるパケット転送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the packet transfer system in 2nd Embodiment. 第2の実施形態におけるパケット転送システムによる接続構成収集処理の一部の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a part of the connection configuration collection processing by a packet transfer system in 2nd Embodiment. 第3の実施形態におけるパケット転送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the packet transfer system in 3rd Embodiment. 第3の実施形態におけるパケット転送システムによる接続構成収集処理の一部の流れを示すシーケンス図である。It is a sequence diagram which shows the flow of a part of the connection configuration collection processing by a packet transfer system in 3rd Embodiment. 非特許文献1に開示される技術を説明するための図である。It is a figure for demonstrating the technique disclosed in Non-Patent Document 1.
 以下、本発明の実施形態について図面を参照して説明する。
(概要)
 まず本発明のパケット転送システムの概要について説明する。
 本発明におけるパケット転送システムでは、転送制御装置に対して1又は複数の転送装置が接続される。1又は複数の転送装置は、複数のポートを有し、複数のポートには転送制御装置を根とするスパニング木状の論理パスが事前に設定される。スパニング木状の論理パスは、転送制御装置が各転送装置に設定してもよいし、転送制御装置からの指示に応じて各転送装置で設定してもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Overview)
First, the outline of the packet transfer system of the present invention will be described.
In the packet transfer system of the present invention, one or more transfer devices are connected to the transfer control device. One or a plurality of transfer devices have a plurality of ports, and a spanning tree-shaped logic path rooted at the transfer control device is preset in the plurality of ports. The spanning tree-shaped logical path may be set by the transfer control device in each transfer device, or may be set in each transfer device according to an instruction from the transfer control device.
 いずれかの転送装置に新たに通信装置が接続されると、通信装置は論理パスを通じて転送制御装置に対して制御パケットを送信する。通信装置は、電源が投入されて起動した時点から一定の間隔で制御パケットを送信、又は、外部(例えば、転送制御装置)からの指示に応じて制御パケットを送信する。なお、論理パスは、スパニング木状に構成されているため、制御パケットのループ等は発生しない。制御パケットは、必ず根に相当する転送装置のポートを介して転送制御装置に到達する。 When a communication device is newly connected to any of the transfer devices, the communication device transmits a control packet to the transfer control device through the logical path. The communication device transmits a control packet at regular intervals from the time when the power is turned on and started, or transmits a control packet in response to an instruction from the outside (for example, a transfer control device). Since the logical path is configured in a spanning tree shape, loops of control packets and the like do not occur. The control packet always reaches the transfer control device through the port of the transfer device corresponding to the root.
 通信装置が接続された転送装置は、論理パスを通じて制御パケットを受信する。通信装置が接続された転送装置は、制御パケットを受信した物理ポートの識別情報及び転送装置(自装置)の識別情報を制御パケットに付与して、制御パケットを転送制御装置に転送する。 The transfer device to which the communication device is connected receives the control packet through the logical path. The transfer device to which the communication device is connected attaches the identification information of the physical port that received the control packet and the identification information of the transfer device (own device) to the control packet, and transfers the control packet to the transfer control device.
 転送制御装置は、転送装置から転送された制御パケットに付与されている情報に基づいて、新たに接続した通信装置を特定するとともに、通信装置が新たに接続した転送装置及びその物理ポートを特定する。このように、1又は複数の転送装置に対してスパニング木状の論理パスが設定されることにより、通信装置が新たに接続された転送装置及びその物理ポートを特定することができる。これにより、新たに接続した通信装置が転送制御装置と接続することができる。そのため、OpenFlowエージェントやDHCPクライアント等を動作させることができない通信装置であっても、簡易な方法でコントローラに接続することができる。
 以下、上記のパケット転送システムを構成する実施形態について説明する。
The transfer control device identifies the newly connected communication device based on the information given to the control packet transferred from the transfer device, and also identifies the transfer device newly connected to the communication device and its physical port. .. By setting the spanning tree-shaped logical path for one or a plurality of transfer devices in this way, the transfer device to which the communication device is newly connected and the physical port thereof can be specified. As a result, the newly connected communication device can be connected to the transfer control device. Therefore, even a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to the controller by a simple method.
Hereinafter, embodiments that configure the above packet transfer system will be described.
(第1の実施形態)
 図1は、第1の実施形態におけるパケット転送システム1の構成を示すブロック図である。パケット転送システム1は、転送制御装置2、OpenFlowスイッチ3、自律型転送装置4及び通信装置5を備える。
(First Embodiment)
FIG. 1 is a block diagram showing a configuration of a packet transfer system 1 according to the first embodiment. The packet transfer system 1 includes a transfer control device 2, an OpenFlow switch 3, an autonomous transfer device 4, and a communication device 5.
 転送制御装置2は、パケットの経路制御を行う。転送制御装置2は、転送制御装置2において定義する転送規則を示す情報(以下「転送規則情報」という。)をOpenFlowスイッチ3に対して送信する。転送制御装置2は、例えば、SDN(Software Designed Network)におけるコントローラである。以下の説明では、転送制御装置2が、OpenFlowコントローラであるとする。 The transfer control device 2 controls the packet route. The transfer control device 2 transmits information indicating a transfer rule defined in the transfer control device 2 (hereinafter referred to as “transfer rule information”) to the OpenFlow switch 3. The transfer control device 2 is, for example, a controller in SDN (Software Designed Network). In the following description, it is assumed that the transfer control device 2 is an OpenFlow controller.
 転送規則情報とは、例えば、OpenFlowのフローエントリーである。転送規則情報には、転送対象のパケットを特定するための情報と、特定したパケットに対する処理を示す情報とが含まれる。特定したパケットに対する処理とは、例えば、パケットを特定の経路に転送させる処理、パケットのデータの一部を書き替えたり削除したりする処理、パケットを破棄する処理等である。 The transfer rule information is, for example, an OpenFlow flow entry. The forwarding rule information includes information for identifying a packet to be forwarded and information indicating processing for the identified packet. The processing for the specified packet is, for example, a processing for transferring the packet to a specific route, a processing for rewriting or deleting a part of the data of the packet, a processing for discarding the packet, and the like.
 転送制御装置2は、OpenFlowスイッチ3が送信するOpenFlowプロトコルのPacket-Inメッセージを受信する。転送制御装置2は、OpenFlowプロトコルのPacket-OutメッセージをOpenFlowスイッチ3に送信する。転送制御装置2は、OpenFlowスイッチ3及び自律型転送装置4に対して論理パスの設定を指示する。なお、転送制御装置2は、OpenFlowスイッチ3及び自律型転送装置4に対して論理パスを設定してもよい。 The transfer control device 2 receives the Packet-In message of the OpenFlow protocol transmitted by the OpenFlow switch 3. The transfer control device 2 transmits a Packet-Out message of the OpenFlow protocol to the OpenFlow switch 3. The transfer control device 2 instructs the OpenFlow switch 3 and the autonomous transfer device 4 to set a logical path. The transfer control device 2 may set a logical path for the OpenFlow switch 3 and the autonomous transfer device 4.
 OpenFlowスイッチ3は、自律型転送装置送受信部31、探索用論理パス生成部32、転送規則記憶部34、転送処理部35、転送制御装置送受信部36及び外部送受信部37を備える。 The OpenFlow switch 3 includes an autonomous transfer device transmission / reception unit 31, a search logic path generation unit 32, a transfer rule storage unit 34, a transfer processing unit 35, a transfer control device transmission / reception unit 36, and an external transmission / reception unit 37.
 転送制御装置送受信部36は、転送制御装置2と接続する物理ポートである。転送制御装置送受信部36は、物理回線7を介して転送制御装置2に接続する。転送制御装置送受信部36は、転送制御装置2との間で、セキュアチャネルのコネクションを確立し、OpenFlowプロトコルにしたがってデータの送受信を行う。
 外部送受信部37は、OpenFlowスイッチ3に他のOpenFlowスイッチ、インターネット等の通信ネットワーク等が接続するポートである。外部送受信部37に、通信装置5が直接接続してもよい。外部送受信部37は、単一または複数の物理ポートであってもよい。
The transfer control device transmission / reception unit 36 is a physical port connected to the transfer control device 2. The transfer control device transmission / reception unit 36 connects to the transfer control device 2 via the physical line 7. The transfer control device transmission / reception unit 36 establishes a secure channel connection with the transfer control device 2 and transmits / receives data according to the OpenFlow protocol.
The external transmission / reception unit 37 is a port to which another OpenFlow switch, a communication network such as the Internet, or the like is connected to the OpenFlow switch 3. The communication device 5 may be directly connected to the external transmission / reception unit 37. The external transmitter / receiver 37 may be a single or a plurality of physical ports.
 自律型転送装置送受信部31は、自律型転送装置4と接続する物理ポートである。図1では、自律型転送装置送受信部31は、物理回線6-nを介して自律型転送装置4と接続する例を示している。OpenFlowスイッチ3が、複数の自律型転送装置4と接続する場合、複数の自律型転送装置4の各々に対応する自律型転送装置送受信部31を備えることになる。 The autonomous transfer device transmission / reception unit 31 is a physical port connected to the autonomous transfer device 4. FIG. 1 shows an example in which the autonomous transfer device transmission / reception unit 31 is connected to the autonomous transfer device 4 via a physical line 6-n. When the OpenFlow switch 3 is connected to a plurality of autonomous transfer devices 4, the OpenFlow switch 3 includes an autonomous transfer device transmission / reception unit 31 corresponding to each of the plurality of autonomous transfer devices 4.
 自律型転送装置送受信部31、転送制御装置送受信部36及び外部送受信部37は、説明の便宜上、異なる名称にしているが、いずれもOpenFlowスイッチ3が備える物理ポートである。転送制御装置2が接続する物理ポートが転送制御装置送受信部36になり、自律型転送装置4が接続する物理ポートが自律型転送装置送受信部31になり、それ以外の物理ポートが外部送受信部37になる。 The autonomous transfer device transmission / reception unit 31, transfer control device transmission / reception unit 36, and external transmission / reception unit 37 have different names for convenience of explanation, but they are all physical ports included in the OpenFlow switch 3. The physical port connected to the transfer control device 2 becomes the transfer control device transmission / reception unit 36, the physical port connected to the autonomous transfer device 4 becomes the autonomous transfer device transmission / reception unit 31, and the other physical ports are the external transmission / reception unit 37. become.
 転送規則記憶部34は、転送制御装置2がOpenFlowスイッチ3に対して送信する転送規則情報を記憶する。なお、転送規則情報は、以下のようにして転送規則記憶部34に書き込まれる。転送制御装置送受信部36は、転送制御装置2から転送規則情報を受信する。転送制御装置送受信部36は、受信した転送規則情報を転送処理部35に出力する。転送処理部35は、転送制御装置送受信部36が出力する転送規則情報を転送規則記憶部34に書き込む。 The transfer rule storage unit 34 stores the transfer rule information transmitted by the transfer control device 2 to the OpenFlow switch 3. The forwarding rule information is written in the forwarding rule storage unit 34 as follows. The transfer control device transmission / reception unit 36 receives transfer rule information from the transfer control device 2. The transfer control device transmission / reception unit 36 outputs the received transfer rule information to the transfer processing unit 35. The transfer processing unit 35 writes the transfer rule information output by the transfer control device transmission / reception unit 36 to the transfer rule storage unit 34.
 探索用論理パス生成部32は、転送制御装置2の指示に応じて、転送処理部35を節とするスパニング木で構成される論理パスを生成する。なお、スパニング木は転送装置間(例えば、OpenFlowスイッチ3と自律型転送装置4との間)の物理的なリンクを枝とし、転送制御装置に直接接続した転送装置の転送処理部を根として、ただし、ループが発生しないように構成される。ここでは、論理パスの生成に、例えば、タグVLAN(Virtual Local Area Network)を適用する。探索用論理パス生成部32は、生成した論理パスを示すVLAN-ID(Identifier)と、自律型転送装置送受信部31を特定する識別情報(以下「物理ポート識別情報」という。)とを関連付けて転送規則記憶部34が記憶する転送規則情報に書き加える。転送規則情報には、制御パケットをPacket-Inするための規則が予め設定されていてもよい。例えば、制御パケットが受信されると、Packet-Inメッセージを転送制御装置2に転送する規則が転送規則情報に予め設定されていてもよい。 The search logical path generation unit 32 generates a logical path composed of spanning trees having the transfer processing unit 35 as a node in response to an instruction from the transfer control device 2. The spanning tree has a physical link between the transfer devices (for example, between the OpenFlow switch 3 and the autonomous transfer device 4) as a branch, and the transfer processing unit of the transfer device directly connected to the transfer control device as a root. However, it is configured so that loops do not occur. Here, for example, the tag VLAN (Virtual Local Area Network) is applied to the generation of the logical path. The search logical path generation unit 32 associates a VLAN-ID (Identifier) indicating the generated logical path with identification information (hereinafter referred to as “physical port identification information”) that identifies the autonomous transfer device transmission / reception unit 31. Add to the transfer rule information stored in the transfer rule storage unit 34. The forwarding rule information may be preset with a rule for Packet-In the control packet. For example, when a control packet is received, a rule for forwarding a Packet-In message to the forwarding control device 2 may be set in advance in the forwarding rule information.
 転送処理部35は、転送規則記憶部34が記憶する転送規則情報に基づいて、受信したパケットに対する処理を選択し、選択した処理を当該パケットに対して行う。 The transfer processing unit 35 selects a process for the received packet based on the transfer rule information stored in the transfer rule storage unit 34, and performs the selected process on the packet.
 自律型転送装置4は、例えばLayer2スイッチに相当する装置である。自律型転送装置4は、物理ポート41-1~41-N、自律型探索用論理パス生成部42、自律型転送処理部44及び自律型転送規則記憶部45を備える。物理ポート41-1~41-Nの各々には、物理回線6-1~6-Nが接続される。なお、Nは2以上の整数であり、nは1~Nの任意の整数である。図1において、物理回線6-nは、物理回線6-1~6-Nの中の任意の1つの回線を示すものとする。 The autonomous transfer device 4 is, for example, a device corresponding to a Layer 2 switch. The autonomous transfer device 4 includes physical ports 41-1 to 41-N, an autonomous search logic path generation unit 42, an autonomous transfer processing unit 44, and an autonomous transfer rule storage unit 45. Physical lines 6-1 to 6-N are connected to each of the physical ports 41-1 to 41-N. Note that N is an integer of 2 or more, and n is an arbitrary integer of 1 to N. In FIG. 1, the physical line 6-n is assumed to indicate any one of the physical lines 6-1 to 6-N.
 自律型転送規則記憶部45は、予め定められる自律型転送規則情報を記憶する。自律型転送規則情報は、一般的なLayer2スイッチが行う転送処理の規則を示した情報である。例えば、自律型転送規則情報には、転送対象のパケットを特定するための情報と、特定したパケットに対する処理を示す情報とが含まれる。特定したパケットに対する処理とは、例えば、宛先のMAC(Media Access Control)アドレスを有する装置が接続する物理ポート41-1~41-Nにパケットを転送する処理である。例えば、自律型転送規則情報には、以下の情報も登録されているものとする。スパニング木の論理パスでは、スパニング木の根から遠い節(すなわち木構造における子)と接続された物理ポートで受信したパケットおよびスパニング木の葉に相当する物理ポートで受信したパケットは、根に近い節(すなわち木構造における親)と接続された物理ポートへ送信される。 The autonomous transfer rule storage unit 45 stores predetermined autonomous transfer rule information. The autonomous transfer rule information is information indicating the rules of the transfer process performed by a general Layer2 switch. For example, the autonomous forwarding rule information includes information for identifying a packet to be forwarded and information indicating processing for the identified packet. The process for the specified packet is, for example, a process of transferring the packet to the physical ports 41-1 to 41-N to which the device having the destination MAC (Media Access Control) address is connected. For example, it is assumed that the following information is also registered in the autonomous forwarding rule information. In the spanning tree logical path, packets received on a physical port connected to a node far from the root of the spanning tree (ie, children in the tree structure) and packets received on the physical port corresponding to the leaves of the spanning tree are nodes near the root (ie, tree). Sent to the physical port connected to the parent) in the structure.
 自律型探索用論理パス生成部42は、転送制御装置2の指示に応じて、物理ポート41-1~41-Nに対して、OpenFlowスイッチ3を根とし、通信装置5に接続を許可する。すなわち、自律型探索用論理パス生成部42は、通信装置5が接続する可能性がある物理ポート41-1~41-Nを葉とするスパニング木を構成する論理パスを生成する。 The autonomous search logic path generation unit 42 permits the communication device 5 to connect to the physical ports 41-1 to 41-N with the OpenFlow switch 3 as the root in response to the instruction of the transfer control device 2. That is, the autonomous search logic path generation unit 42 generates a logic path constituting a spanning tree having physical ports 41-1 to 41-N to which the communication device 5 may be connected as leaves.
 自律型探索用論理パス生成部42は、生成した論理パスに対して、OpenFlowスイッチ3の探索用論理パス生成部32が論理パスに対して付与したVLAN-IDと同一のVLAN-IDを付与する。自律型探索用論理パス生成部42は、VLAN-IDを付与した物理ポート41-1~41-Nを特定する識別情報(以下「物理ポート識別情報」という。)と、付与したVLAN-IDとを関連付けて自律型転送規則記憶部45が記憶する自律型転送規則情報に書き込む。 The autonomous search logical path generation unit 42 assigns the same VLAN-ID as the VLAN-ID assigned to the logical path by the search logical path generation unit 32 of the OpenFlow switch 3 to the generated logical path. .. The logic path generation unit 42 for autonomous search includes identification information (hereinafter referred to as “physical port identification information”) that identifies physical ports 41-1 to 41-N to which VLAN-ID is assigned, and the assigned VLAN-ID. Is associated with and written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45.
 自律型転送処理部44は、自律型転送規則記憶部45が記憶する自律型転送規則情報に基づいて、受信したパケットに対する処理を選択し、選択した処理を当該パケットに対して行う。自律型転送処理部44は、通信装置5が送信する制御パケットを取り込んだ場合、以下の処理を行う。具体的には、自律型転送処理部44は、取り込んだ制御パケットに他の自律型転送装置4に関する付与情報が付与されていない場合、予め内部の記憶領域に記憶させている自装置の識別情報と、制御パケットを受信した物理ポート識別情報とを含む付与情報を制御パケットに付与した上で制御パケットの転送を行う。 The autonomous transfer processing unit 44 selects a process for the received packet based on the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45, and performs the selected process on the packet. When the control packet transmitted by the communication device 5 is captured, the autonomous transfer processing unit 44 performs the following processing. Specifically, when the captured control packet is not given the assigned information regarding the other autonomous transfer device 4, the autonomous transfer processing unit 44 stores the identification information of its own device in the internal storage area in advance. And the assigned information including the physical port identification information that received the control packet is attached to the control packet, and then the control packet is forwarded.
 通信装置5は、例えば、IPによる通信機能を備えたモジュール型の通信装置である。ここで、モジュール型の通信装置とは、例えば、マネジメント専用のポートを備えず、OpenFlowエージェントやDHCPクライアントが動作するCPUを備えていないような、機能が限られている通信装置である。なお、図1では、説明の便宜上、通信装置5は、物理回線6-1を介して自律型転送装置4の物理ポート41-1に接続されているが、このようなモジュール型の通信装置は、物理ポート41-1に、物理回線6-1を用いずにそのまま接続されるような形態もある。 The communication device 5 is, for example, a modular communication device having an IP communication function. Here, the modular communication device is a communication device having limited functions, for example, which does not have a port dedicated to management and does not have a CPU on which an OpenFlow agent or a DHCP client operates. In FIG. 1, for convenience of explanation, the communication device 5 is connected to the physical port 41-1 of the autonomous transfer device 4 via the physical line 6-1. Such a modular communication device is not available. There is also a form in which the physical port 41-1 is connected as it is without using the physical line 6-1.
 通信装置5は、電源が投入されて起動すると、自装置の識別情報を含む制御パケットを一定の間隔で送出する。自装置の識別情報は、例えば、MACアドレス、IPアドレス等の情報である。 When the power is turned on and started, the communication device 5 sends out a control packet containing the identification information of the own device at regular intervals. The identification information of the own device is, for example, information such as a MAC address and an IP address.
 図2は、第1の実施形態の具体例であるパケット転送システム1aの構成を示すブロック図である。なお、図2において、図1と同一の構成については同一の符号を付している。パケット転送システム1aは、転送制御装置2、OpenFlowスイッチ3、自律型転送装置4a,4b及び通信装置5a,5bを備える。以下の説明において、自律型転送装置4a,4bの内部の機能部の各々を示す場合、それぞれの機能部の符号に「a」、「b」を付して示すものとする。 FIG. 2 is a block diagram showing a configuration of a packet transfer system 1a which is a specific example of the first embodiment. In FIG. 2, the same components as those in FIG. 1 are designated by the same reference numerals. The packet transfer system 1a includes a transfer control device 2, an OpenFlow switch 3, autonomous transfer devices 4a and 4b, and communication devices 5a and 5b. In the following description, when each of the internal functional parts of the autonomous transfer devices 4a and 4b is shown, "a" and "b" are added to the reference numerals of the respective functional parts.
 自律型転送装置4aは、4つの物理ポート41a-1,41a-2,41a-3を備える。自律型転送装置4bは、4つの物理ポート41b-1,41b-2,41b-3を備える。 The autonomous transfer device 4a includes four physical ports 41a-1, 41a-2, 41a-3. The autonomous transfer device 4b includes four physical ports 41b-1, 41b-2, 41b-3.
 自律型転送装置4aの物理ポート41a-1と、OpenFlowスイッチ3の自律型転送装置送受信部31とは、物理回線6a-1により接続されている。自律型転送装置4aの物理ポート41a-3と、自律型転送装置4bの物理ポート41b-1とは、物理回線6a-3により接続されている。自律型転送装置4bの物理ポート41b-2には物理回線6b-2を介して通信装置5aが接続し、自律型転送装置4aの物理ポート41a-2には物理回線6a-2を介して通信装置5bが接続する。 The physical port 41a-1 of the autonomous transfer device 4a and the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 are connected by a physical line 6a-1. The physical port 41a-3 of the autonomous transfer device 4a and the physical port 41b-1 of the autonomous transfer device 4b are connected by a physical line 6a-3. The communication device 5a is connected to the physical port 41b-2 of the autonomous transfer device 4b via the physical line 6b-2, and communicates with the physical port 41a-2 of the autonomous transfer device 4a via the physical line 6a-2. The device 5b is connected.
 OpenFlowスイッチ3の探索用論理パス生成部32と、自律型転送装置4aの自律型探索用論理パス生成部42aと、自律型転送装置4bの自律型探索用論理パス生成部42aは、転送制御装置2の指示に応じて図2に示す論理パス60を生成する。 The search logic path generation unit 32 of the OpenFlow switch 3, the autonomous search logic path generation unit 42a of the autonomous transfer device 4a, and the autonomous search logic path generation unit 42a of the autonomous transfer device 4b are transfer control devices. The logic path 60 shown in FIG. 2 is generated according to the instruction of 2.
 探索用論理パス生成部32は、自律型転送装置送受信部31に対して空き状態の任意の1つのVLAN-IDを付与する。ここでは、例えば、VLAN-IDとして「1001」を付与したとする。探索用論理パス生成部32は、付与したVLAN-ID「1001」を自律型探索用論理パス生成部42a,42bに送信する。探索用論理パス生成部32は、転送規則記憶部34が記憶する転送規則情報に対して、自律型転送装置送受信部31の物理ポート識別情報と、VLAN-ID「1001」とを関連付けて書き込む。 The search logic path generation unit 32 assigns any one free VLAN-ID to the autonomous transfer device transmission / reception unit 31. Here, for example, it is assumed that "1001" is assigned as the VLAN-ID. The search logic path generation unit 32 transmits the assigned VLAN-ID “1001” to the autonomous search logic path generation units 42a and 42b. The search logical path generation unit 32 writes the transfer rule information stored in the transfer rule storage unit 34 in association with the physical port identification information of the autonomous transfer device transmission / reception unit 31 and the VLAN-ID “1001”.
 自律型探索用論理パス生成部42a,42bは、探索用論理パス生成部32が送信するVLAN-ID「1001」の情報を受信する。自律型探索用論理パス生成部42aは、物理ポート41a-1,41a-2,41a-3の各々に対応する物理ポート識別情報と、探索用論理パス生成部32から受信したVLAN-ID「1001」とを関連付けて自律型転送規則記憶部45aが記憶する自律型転送規則情報に書き込む。自律型探索用論理パス生成部42bも同様に、物理ポート41b-1,41b-2,41b-3の各々に対応する物理ポート識別情報と、探索用論理パス生成部32から受信したVLAN-ID「1001」とを関連付けて自律型転送規則記憶部45bが記憶する自律型転送規則情報に書き込む。これにより、VLAN-ID「1001」に対応する論理パス60が生成されることになる。 The autonomous search logic path generation units 42a and 42b receive the information of the VLAN-ID "1001" transmitted by the search logic path generation unit 32. The autonomous search logic path generation unit 42a has the physical port identification information corresponding to each of the physical ports 41a-1, 41a-2, 41a-3 and the VLAN-ID "1001" received from the search logic path generation unit 32. Is written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a in association with. Similarly, the autonomous search logical path generation unit 42b also has the physical port identification information corresponding to each of the physical ports 41b-1, 41b-2, and 41b-3, and the VLAN-ID received from the search logical path generation unit 32. It is written in the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b in association with "1001". As a result, the logical path 60 corresponding to the VLAN-ID "1001" is generated.
(第1の実施形態におけるパケット転送システムによる接続構成収集処理)
 図3は、図2に示したパケット転送システム1aによる通信装置5aの接続構成を収集する処理の流れを示すシーケンス図である。通信装置5aが自律型転送装置4bの物理ポート41b-2に接続した状態で起動したとする。通信装置5aは、一定の間隔で、自装置の識別情報を含む制御パケットを物理回線6b-2に送出する(ステップSa1)。
(Connection configuration collection process by the packet transfer system in the first embodiment)
FIG. 3 is a sequence diagram showing a flow of processing for collecting the connection configuration of the communication device 5a by the packet transfer system 1a shown in FIG. It is assumed that the communication device 5a is started in a state of being connected to the physical port 41b-2 of the autonomous transfer device 4b. The communication device 5a sends a control packet including the identification information of the own device to the physical line 6b-2 at regular intervals (step Sa1).
 自律型転送装置4bの物理ポート41b-2は、通信装置5aが送出した制御パケットを受信する。物理ポート41b-2は、受信した制御パケットを自律型転送処理部44bに出力する(ステップSa2)。自律型転送処理部44bは、物理ポート41b-2が出力する制御パケットを取り込む。取り込んだ制御パケットには付与情報が付与されていない。そのため、自律型転送処理部44bは、内部の記憶領域から自律型転送装置4bの識別情報を読み出す。自律型転送処理部44bは、読み出した自律型転送装置4bの識別情報と、制御パケットを取り込んだ物理ポート41b-2の物理ポート識別情報とを含む付与情報を生成する。自律型転送処理部44bは、生成した付与情報を制御パケットに付与する(ステップSa3)。 The physical port 41b-2 of the autonomous transfer device 4b receives the control packet transmitted by the communication device 5a. The physical port 41b-2 outputs the received control packet to the autonomous transfer processing unit 44b (step Sa2). The autonomous transfer processing unit 44b captures the control packet output by the physical port 41b-2. No grant information is given to the captured control packet. Therefore, the autonomous transfer processing unit 44b reads out the identification information of the autonomous transfer device 4b from the internal storage area. The autonomous transfer processing unit 44b generates grant information including the read identification information of the autonomous transfer device 4b and the physical port identification information of the physical port 41b-2 that has captured the control packet. The autonomous transfer processing unit 44b adds the generated grant information to the control packet (step Sa3).
 自律型転送処理部44bは、自律型転送規則記憶部45bが記憶する自律型転送規則情報を参照し、制御パケットを取り込んだ物理ポート41b-2に関連付けられている論理パス60を介して制御パケットを転送する(ステップSa4)。具体的には、以下のようにして転送が行われる。自律型転送規則記憶部45bが記憶する自律型転送規則情報において、制御パケットを取り込んだ物理ポート41b-2には、VLAN-ID「1001」が関連付けられている。自律型転送処理部44bは、自律型転送規則記憶部45bが記憶する自律型転送規則情報を参照して、VLAN-ID「1001」に関連付けられている物理ポート41b-1,41b-2,4b-3を検出する。 The autonomous transfer processing unit 44b refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b, and refers to the control packet via the logical path 60 associated with the physical port 41b-2 that has captured the control packet. Is transferred (step Sa4). Specifically, the transfer is performed as follows. In the autonomous forwarding rule information stored in the autonomous forwarding rule storage unit 45b, the VLAN-ID "1001" is associated with the physical port 41b-2 that has captured the control packet. The autonomous transfer processing unit 44b refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45b, and refers to the physical ports 41b-1, 41b-2, 4b associated with the VLAN-ID "1001". -3 is detected.
 また、制御パケットを取り込んだ物理ポート41b-2は、スパニング木の葉に相当するポートである。そこで、自律型転送処理部44bは、自律型転送規則情報を参照し、制御パケットにVLAN-ID「1001」を付与して、スパニング木の根に近いポートである物理ポート41b-1に制御パケットを転送する。 Further, the physical port 41b-2 that has taken in the control packet is a port corresponding to the spanning tree leaf. Therefore, the autonomous transfer processing unit 44b refers to the autonomous transfer rule information, assigns the VLAN-ID "1001" to the control packet, and transfers the control packet to the physical port 41b-1, which is a port near the root of the spanning tree. do.
 物理ポート41b-1は、物理回線6a-3を介して制御パケットを送出する。自律型転送装置4aの物理ポート41a-3は、物理回線6a-3を介して制御パケットを受信する(ステップSa5)。物理ポート41a-3は、受信した制御パケットを自律型転送処理部44aに出力する。自律型転送処理部44aは、物理ポート41a-3が出力する制御パケットを取り込む。取り込んだ制御パケットには、既に自律型転送装置4bに関する付与情報が付与されている。そのため、自律型転送処理部44aは、付与情報が付与されている制御パケットについては付与情報の付与を行わない。 The physical port 41b-1 sends a control packet via the physical line 6a-3. The physical port 41a-3 of the autonomous transfer device 4a receives a control packet via the physical line 6a-3 (step Sa5). The physical port 41a-3 outputs the received control packet to the autonomous transfer processing unit 44a. The autonomous transfer processing unit 44a captures the control packet output by the physical port 41a-3. The captured control packet is already given information about the autonomous transfer device 4b. Therefore, the autonomous transfer processing unit 44a does not add the given information to the control packet to which the given information is given.
 自律型転送処理部44aは、自律型転送規則記憶部45aが記憶する自律型転送規則情報を参照し、制御パケットを取り込んだ物理ポート41a-3に関連付けられている論理パス60を介して制御パケットを転送する(ステップSa6)。具体的には、以下のようにして転送が行われる。自律型転送処理部44aが取り込んだ制御パケットにVLAN-ID「1001」が付与されている。そのため、自律型転送処理部44aは、自律型転送規則記憶部45aが記憶する自律型転送規則情報を参照して、VLAN-ID「1001」に関連付けられている物理ポート41a-1,41a-2,41a-3を検出する。 The autonomous transfer processing unit 44a refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a, and refers to the control packet via the logical path 60 associated with the physical port 41a-3 that has captured the control packet. Is transferred (step Sa6). Specifically, the transfer is performed as follows. The VLAN-ID "1001" is assigned to the control packet captured by the autonomous transfer processing unit 44a. Therefore, the autonomous transfer processing unit 44a refers to the autonomous transfer rule information stored in the autonomous transfer rule storage unit 45a, and refers to the physical ports 41a-1, 41a-2 associated with the VLAN-ID "1001". , 41a-3 are detected.
 また、制御パケットを取り込んだ物理ポート41a-3は、スパニング木の葉に相当するポートである。そこで、自律型転送処理部44aは、自律型転送規則情報を参照し、スパニング木の根に相当する物理ポート41a-1に対して制御パケットを転送する。 Further, the physical port 41a-3 that has taken in the control packet is a port corresponding to the spanning tree leaf. Therefore, the autonomous transfer processing unit 44a refers to the autonomous transfer rule information and transfers the control packet to the physical port 41a-1 corresponding to the root of the spanning tree.
 物理ポート41a-1は、物理回線6a-1を介して制御パケットを送出する。OpenFlowスイッチ3の自律型転送装置送受信部31は、物理回線6a-1を介して制御パケットを受信する(ステップSa7)。 The physical port 41a-1 sends a control packet via the physical line 6a-1. The autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 receives a control packet via the physical line 6a-1 (step Sa7).
 OpenFlowスイッチ3の自律型転送装置送受信部31は、受信した制御パケットを転送処理部35に出力する。転送処理部35は、転送規則記憶部34が記憶する転送規則情報を参照し、制御パケットからVLAN-ID「1001」を取り除いた制御パケットと、受信した自律型転送装置送受信部31の物理ポート識別情報とを含むPacket-Inメッセージを生成する。転送処理部35は、生成したPacket-Inメッセージを、転送制御装置送受信部36を介して転送制御装置2に送信する(ステップSa8)。なお、転送処理部35は、制御パケットを転送する際にVLAN-IDを取り除かなくてもよい。 The autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 outputs the received control packet to the transfer processing unit 35. The transfer processing unit 35 refers to the transfer rule information stored in the transfer rule storage unit 34, and identifies the control packet from which the VLAN-ID "1001" is removed from the control packet and the physical port of the received autonomous transfer device transmission / reception unit 31. Generate a Packet-In message containing information. The transfer processing unit 35 transmits the generated Packet-In message to the transfer control device 2 via the transfer control device transmission / reception unit 36 (step Sa8). The transfer processing unit 35 does not have to remove the VLAN-ID when transferring the control packet.
 転送制御装置2は、転送制御装置送受信部36が送信するPacket-Inメッセージを受信する(ステップSa9)。転送制御装置2は、Packet-Inメッセージに含まれている制御パケットに付与されている付与情報に含まれる自律型転送装置4bの識別情報と、制御パケットを取り込んだ物理ポート41b-2の物理ポート識別情報と、制御パケットに含まれている通信装置5aの識別情報とを読み出し、読み出した情報を内部の記憶領域に記録する(ステップSa10)。 The transfer control device 2 receives the Packet-In message transmitted by the transfer control device transmission / reception unit 36 (step Sa9). The transfer control device 2 has the identification information of the autonomous transfer device 4b included in the grant information given to the control packet included in the Packet-In message, and the physical port of the physical port 41b-2 that has captured the control packet. The identification information and the identification information of the communication device 5a included in the control packet are read out, and the read information is recorded in the internal storage area (step Sa10).
 例えば、転送制御装置2は、図4に示す「通信装置」、「接続先装置」、「接続先ポート」の3つの項目を有するテーブルを生成する。転送制御装置2は、生成したテーブルに対して、図4に示す1行目に示す情報、すなわち、通信装置5aの識別情報と、自律型転送装置4bの識別情報と、物理ポート41b-2の物理ポート識別情報とを書き込む。 For example, the transfer control device 2 generates a table having three items of "communication device", "connection destination device", and "connection destination port" shown in FIG. The transfer control device 2 refers to the generated table with the information shown in the first row shown in FIG. 4, that is, the identification information of the communication device 5a, the identification information of the autonomous transfer device 4b, and the physical port 41b-2. Write the physical port identification information.
 通信装置5bにおいても通信装置5aの場合と同様の処理が行われることにより、図4に示すテーブルの2行目に示す情報が記録されることになる。これにより、転送制御装置2は、図4に示すテーブルを参照することで、通信装置5aが自律型転送装置4bの物理ポート41b-2に接続しており、通信装置5bが自律型転送装置4aの物理ポート41a-2に接続していることを認識することができる。 By performing the same processing in the communication device 5b as in the case of the communication device 5a, the information shown in the second row of the table shown in FIG. 4 is recorded. As a result, in the transfer control device 2, the communication device 5a is connected to the physical port 41b-2 of the autonomous transfer device 4b by referring to the table shown in FIG. 4, and the communication device 5b is connected to the autonomous transfer device 4a. It can be recognized that it is connected to the physical port 41a-2 of.
 上記の第1の実施形態の構成では、OpenFlowスイッチ3を起点とし、自律型転送装置4a,4bが備える物理ポートであって通信装置5a,5bに接続を許可する物理ポート41a-2,41b-2,41b-3を葉とするスパニング木の論理パス60が生成されている。通信装置5a,5bは、自律型転送装置4a,4bの物理ポート41a-2,41b-2に接続し、接続した自律型転送装置4a,4bに自装置の識別情報を含む制御パケットを送出する。自律型転送装置4a,4bは、自装置の物理ポート41a-2,41b-2に通信装置5a,5bが接続し、当該通信装置5a,5bから制御パケットを受信した場合、当該制御パケットを受信した物理ポート41a-2,41b-2を特定する物理ポート識別情報と、自装置の識別情報とを制御パケットに付与し、論理パス60を介して制御パケットを送出する。OpenFlowスイッチ3は、論理パス60を介して受信した制御パケットを転送制御装置2に転送する。転送制御装置2は、制御パケットを受信し、受信した制御パケットに付与されている自律型転送装置4a,4bの識別情報及び物理ポート識別情報と、制御パケットに含まれている通信装置5a,5bの識別情報とを読み出す。 In the configuration of the first embodiment described above, the physical ports 41a-2, 41b-that are physical ports included in the autonomous transfer devices 4a and 4b and are allowed to be connected to the communication devices 5a and 5b with the OpenFlow switch 3 as the starting point. A logical path 60 of a spanning tree having 2,41b-3 as leaves is generated. The communication devices 5a and 5b are connected to the physical ports 41a-2 and 41b-2 of the autonomous transfer devices 4a and 4b, and send a control packet containing the identification information of the own device to the connected autonomous transfer devices 4a and 4b. .. When the communication devices 5a and 5b are connected to the physical ports 41a-2 and 41b-2 of the own device and the control packets are received from the communication devices 5a and 5b, the autonomous transfer devices 4a and 4b receive the control packets. The physical port identification information for identifying the physical ports 41a-2 and 41b-2 and the identification information of the own device are added to the control packet, and the control packet is transmitted via the logical path 60. The OpenFlow switch 3 transfers the control packet received via the logical path 60 to the transfer control device 2. The transfer control device 2 receives the control packet, and the identification information and the physical port identification information of the autonomous transfer devices 4a and 4b added to the received control packet, and the communication devices 5a and 5b included in the control packet. And read out the identification information of.
 これにより、転送制御装置2は、通信装置が新たに接続された転送装置(例えば、自律型転送装置4a,4b又はOpenFlowスイッチ3)及びその物理ポートを特定することができる。その結果、新たに接続した通信装置が転送制御装置2と接続することができる。そのため、OpenFlowエージェントやDHCPクライアント等を動作させることができない通信装置であっても、簡易な方法で転送制御装置2に接続することが可能になる。 Thereby, the transfer control device 2 can specify the transfer device (for example, the autonomous transfer device 4a, 4b or the OpenFlow switch 3) to which the communication device is newly connected and its physical port. As a result, the newly connected communication device can be connected to the transfer control device 2. Therefore, even a communication device that cannot operate an OpenFlow agent, a DHCP client, or the like can be connected to the transfer control device 2 by a simple method.
(第2の実施形態)
 図5は、第2の実施形態におけるパケット転送システム1bの構成を示すブロック図である。図5において、図1及び図2に示したパケット転送システム1,1aと同一の構成については同一の符号を付し、以下、異なる構成について説明する。パケット転送システム1bは、転送制御装置2b、OpenFlowスイッチ3、自律型転送装置4a,4b、通信装置5abを備える。
(Second embodiment)
FIG. 5 is a block diagram showing a configuration of the packet transfer system 1b according to the second embodiment. In FIG. 5, the same configurations as those of the packet transfer systems 1 and 1a shown in FIGS. 1 and 2 are designated by the same reference numerals, and different configurations will be described below. The packet transfer system 1b includes a transfer control device 2b, an OpenFlow switch 3, autonomous transfer devices 4a and 4b, and a communication device 5ab.
 転送制御装置2bは、転送制御装置2が有する構成に加えて、以下の構成を備える。転送制御装置2bは、制御パケット送出指示パケットを生成する。制御パケット送出指示パケットは、OpenFlowスイッチ3又は自律型転送装置4a,4b等の転送装置に新たに接続した通信装置に対して制御パケットを送出させるための指示を含むパケットである。転送制御装置2bは、OpenFlowスイッチ3の自律型転送装置送受信部31から制御パケット送出指示パケットを送出させる指示と、生成した制御パケット送出指示パケットとを含むPacket-OutメッセージをOpenFlowスイッチ3に送信する。 The transfer control device 2b has the following configurations in addition to the configurations of the transfer control device 2. The transfer control device 2b generates a control packet transmission instruction packet. The control packet transmission instruction packet is a packet including an instruction for transmitting a control packet to a communication device newly connected to a transfer device such as the OpenFlow switch 3 or the autonomous transfer devices 4a and 4b. The transfer control device 2b transmits a Packet-Out message including an instruction to send a control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 and a generated control packet transmission instruction packet to the OpenFlow switch 3. ..
 通信装置5abは、第1の実施形態の通信装置5,5a,5bと同様に、例えば、モジュール型の通信装置である。通信装置5abは、通信装置5,5a,5bとは以下の点で異なる構成を備える。通信装置5abは、制御パケット送出指示パケットを受信した場合に、自装置の識別情報を含む制御パケットを送出する。 The communication device 5ab is, for example, a modular communication device, like the communication devices 5, 5a, 5b of the first embodiment. The communication device 5ab has a configuration different from that of the communication devices 5, 5a, 5b in the following points. When the communication device 5ab receives the control packet transmission instruction packet, the communication device 5ab transmits a control packet including the identification information of the own device.
(第2の実施形態のパケット転送システムによる接続構成収集処理)
 図6は、図5に示したパケット転送システム1bによる通信装置5abの接続構成を収集する処理の一部の流れを示すシーケンス図である。
(Connection configuration collection process by the packet transfer system of the second embodiment)
FIG. 6 is a sequence diagram showing a partial flow of processing for collecting the connection configuration of the communication device 5ab by the packet transfer system 1b shown in FIG.
 転送制御装置2bは、制御パケット送出指示パケットを生成する。転送制御装置2bは、OpenFlowスイッチ3の自律型転送装置送受信部31から制御パケット送出指示パケットを送出させる指示と、生成した制御パケット送出指示パケットとを含むPacket-OutメッセージをOpenFlowスイッチ3に送信する(ステップSb1)。 The transfer control device 2b generates a control packet transmission instruction packet. The transfer control device 2b transmits a Packet-Out message including an instruction to send a control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 of the OpenFlow switch 3 and a generated control packet transmission instruction packet to the OpenFlow switch 3. (Step Sb1).
 OpenFlowスイッチ3の転送制御装置送受信部36は、転送制御装置2bが送信したPacket-Outメッセージを受信する(ステップSb2)、転送制御装置送受信部36は、受信したPacket-Outメッセージを転送処理部35に出力する。転送処理部35は、転送制御装置送受信部36が出力するPacket-Outメッセージを取り込む。 The transfer control device transmission / reception unit 36 of the OpenFlow switch 3 receives the Packet-Out message transmitted by the transfer control device 2b (step Sb2), and the transfer control device transmission / reception unit 36 receives the received Packet-Out message in the transfer processing unit 35. Output to. The transfer processing unit 35 captures the Packet-Out message output by the transfer control device transmission / reception unit 36.
 転送処理部35は、Packet-Outメッセージに含まれている自律型転送装置送受信部31から制御パケット送出指示パケットを送出させる指示にしたがって、制御パケット送出指示パケットを物理ポート31から送出する(ステップSb2)。 The transfer processing unit 35 transmits the control packet transmission instruction packet from the physical port 31 according to the instruction to transmit the control packet transmission instruction packet from the autonomous transfer device transmission / reception unit 31 included in the Packet-Out message (step Sb2). ).
 自律型転送装置送受信部31は、物理回線6a-1を介して制御パケット送出指示パケットを送出する。自律型転送装置4aの物理ポート41a-1は、物理回線6a-1を介して制御パケット送出指示パケットを受信する(ステップSb4)。物理ポート41a-1は、受信した制御パケット送出指示パケットを自律型転送処理部44aに出力する。 The autonomous transfer device transmission / reception unit 31 transmits a control packet transmission instruction packet via the physical line 6a-1. The physical port 41a-1 of the autonomous transfer device 4a receives the control packet transmission instruction packet via the physical line 6a-1 (step Sb4). The physical port 41a-1 outputs the received control packet transmission instruction packet to the autonomous transfer processing unit 44a.
 自律型転送処理部44aは、制御パケット送出指示パケットを受信した物理ポート(ここでは、物理ポート41a-1)以外の物理ポートから制御パケット送出指示パケットを送出する(ステップSb5)。これにより、制御パケット送出指示パケットは、物理ポート41a-2,41a-3に送出される。物理ポート41a-2にはいずれの装置も接続されていない。そのため、物理ポート41a-2からは制御パケット送出指示パケットが送出されない。 The autonomous transfer processing unit 44a transmits a control packet transmission instruction packet from a physical port other than the physical port (here, physical port 41a-1) that has received the control packet transmission instruction packet (step Sb5). As a result, the control packet transmission instruction packet is transmitted to the physical ports 41a-2 and 41a-3. No device is connected to the physical port 41a-2. Therefore, the control packet transmission instruction packet is not transmitted from the physical port 41a-2.
 物理ポート41a-3は、物理回線6a-3を介して制御パケット送出指示パケットを送出する。自律型転送装置4bの物理ポート41b-1は、物理回線6a-3を介して制御パケット送出指示パケットを受信する(ステップSb6)。物理ポート41b-1は、受信した制御パケット送出指示パケットを自律型転送処理部44bに出力する。 The physical port 41a-3 transmits a control packet transmission instruction packet via the physical line 6a-3. The physical port 41b-1 of the autonomous transfer device 4b receives the control packet transmission instruction packet via the physical line 6a-3 (step Sb6). The physical port 41b-1 outputs the received control packet transmission instruction packet to the autonomous transfer processing unit 44b.
 自律型転送処理部44bは、制御パケット送出指示パケットを受信した物理ポート(ここでは、物理ポート41b-1)以外の物理ポートから制御パケット送出指示パケットを送出する(ステップSb6)。これにより、制御パケット送出指示パケットは、物理ポート41b-2,41b-3に送出される。物理ポート41b-3にはいずれの装置も接続されていない。そのため、物理ポート41b-3からは制御パケット送出指示パケットが送出されない。 The autonomous transfer processing unit 44b transmits a control packet transmission instruction packet from a physical port other than the physical port (here, physical port 41b-1) that has received the control packet transmission instruction packet (step Sb6). As a result, the control packet transmission instruction packet is transmitted to the physical ports 41b-2 and 41b-3. None of the devices are connected to physical port 41b-3. Therefore, the control packet transmission instruction packet is not transmitted from the physical port 41b-3.
 物理ポート41b-2は、物理回線6b-2を介して制御パケット送出指示パケットを送出する。通信装置5abは、物理回線6b-2を介して制御パケット送出指示パケットを受信する(ステップSb8)。通信装置5abは、自装置の識別情報を含む制御パケットを物理回線6b-2に送出する。その後、図3に示したステップSa2~Sa10の処理が行われる。これにより、転送制御装置2bは、第1の実施形態の転送制御装置2と同様に、図4に示したテーブルの1行目に示す情報を取得することになる。 The physical port 41b-2 transmits a control packet transmission instruction packet via the physical line 6b-2. The communication device 5ab receives the control packet transmission instruction packet via the physical line 6b-2 (step Sb8). The communication device 5ab sends a control packet including the identification information of the own device to the physical line 6b-2. After that, the processes of steps Sa2 to Sa10 shown in FIG. 3 are performed. As a result, the transfer control device 2b acquires the information shown in the first row of the table shown in FIG. 4, as in the transfer control device 2 of the first embodiment.
 上記の第2の実施形態では、通信装置5abが一定の間隔で制御パケットを送出せずに、パケット送出指示パケットを受信した場合に、制御パケットを送出する。そのため、通信装置5abが一定の間隔で制御パケットを送出するためのクロックなどを搭載する必要がなくなる。第1の実施形態の通信装置5,5a,5bの場合、誤作動により大量の制御パケットを送出してしまう可能性があるが、第2の実施形態の通信装置5abでは、制御パケット送出指示パケットを受信したタイミングで制御パケットを送出するために、第1の実施形態よりも不要な制御パケットの送信を抑制することができる。 In the second embodiment described above, when the communication device 5ab receives the packet transmission instruction packet without transmitting the control packet at regular intervals, the control packet is transmitted. Therefore, it is not necessary for the communication device 5ab to be equipped with a clock or the like for transmitting control packets at regular intervals. In the case of the communication devices 5, 5a and 5b of the first embodiment, a large number of control packets may be sent due to a malfunction, but in the communication device 5ab of the second embodiment, the control packet transmission instruction packet is sent. Since the control packet is transmitted at the timing of receiving the control packet, it is possible to suppress the transmission of unnecessary control packets as compared with the first embodiment.
 また、制御パケット送出指示パケットのフォーマットを制御パケットと同一としてもよい。この場合、通信装置5abは新たに制御パケットを生成しなくとも、受け取った制御パケット送出指示パケットを送り返すだけでよいため、通信装置5abの機能をより軽量化できる。 Further, the format of the control packet transmission instruction packet may be the same as that of the control packet. In this case, since the communication device 5ab only needs to send back the received control packet transmission instruction packet without generating a new control packet, the function of the communication device 5ab can be further reduced.
 なお、第2の実施形態では、転送制御装置2bが、制御パケット送出指示パケットを生成する際に、論理パス60の形式を示す情報を含めて制御パケット送出指示パケットを生成してもよい。これにより、通信装置5abは、制御パケット送出指示パケットを受信した際に、制御パケット送出指示パケットに含まれる論理パス60の形式を示す情報に基づいて制御パケットを生成することができる。 In the second embodiment, when the transfer control device 2b generates the control packet transmission instruction packet, the control packet transmission instruction packet may be generated including the information indicating the format of the logical path 60. As a result, when the communication device 5ab receives the control packet transmission instruction packet, the communication device 5ab can generate a control packet based on the information indicating the format of the logical path 60 included in the control packet transmission instruction packet.
 例えば、OpenFlowスイッチ3及び自律型転送装置4a,4bが論理パス60の形式を変更したとする。OpenFlowスイッチ3は、変更した論理パス60の形式の情報を転送制御装置2bに送信しておく。これにより、転送制御装置2bは、通信装置5abに対して、変更後の論理パス60の形式を制御パケット送出指示パケットにより通知することができるので、通信装置5abは、論理パス60の形式の変更に柔軟に追従することができる。 For example, it is assumed that the OpenFlow switch 3 and the autonomous transfer devices 4a and 4b change the format of the logical path 60. The OpenFlow switch 3 transmits information in the form of the changed logical path 60 to the transfer control device 2b. As a result, the transfer control device 2b can notify the communication device 5ab of the format of the changed logic path 60 by the control packet transmission instruction packet, so that the communication device 5ab changes the format of the logic path 60. Can be flexibly followed.
 ここで、論理パス60の形式としては、例えば、VLAN-IDがある。上記の第1及び第2の実施形態では、通信装置5,5a,5b,5abにVLAN-IDを予め付与する構成として示していないが、通信装置5,5a,5b,5abに論理パス60のVLAN-ID「1001」を予め登録しておくこともできる。この場合、自律型転送装置4bの自律型転送処理部44aは、物理ポート41b-2を介して取り込んだ制御パケットに対してVLAN-IDを付与する必要がなくなる。このような構成にしている場合、例えば、VLAN-IDを「1001」から「1002」に変更した場合、制御パケット送出指示パケットによりVLAN-IDの変更を通信装置5abに通知することが可能になる。 Here, as a format of the logical path 60, for example, there is a VLAN-ID. In the first and second embodiments described above, the configuration is not shown as a configuration in which a VLAN-ID is assigned to the communication devices 5, 5a, 5b, 5ab in advance, but the communication devices 5, 5a, 5b, 5ab have a logic path 60. It is also possible to register the VLAN-ID "1001" in advance. In this case, the autonomous transfer processing unit 44a of the autonomous transfer device 4b does not need to assign a VLAN-ID to the control packet captured via the physical port 41b-2. In such a configuration, for example, when the VLAN-ID is changed from "1001" to "1002", the change of the VLAN-ID can be notified to the communication device 5ab by the control packet transmission instruction packet. ..
(第3の実施形態)
 図7は、第3の実施形態におけるパケット転送システム1cの構成を示すブロック図である。図7において、図1、図2及び図5に示したパケット転送システム1,1a,1bと同一の構成については同一の符号を付し、以下、異なる構成について説明する。パケット転送システム1cは、転送制御装置2c、OpenFlowスイッチ3,3c、自律型転送装置4a及び通信装置5abを備える。
(Third embodiment)
FIG. 7 is a block diagram showing a configuration of the packet transfer system 1c according to the third embodiment. In FIG. 7, the same configurations as those of the packet transfer systems 1, 1a and 1b shown in FIGS. 1, 2 and 5 are designated by the same reference numerals, and different configurations will be described below. The packet transfer system 1c includes a transfer control device 2c, an OpenFlow switch 3, 3c, an autonomous transfer device 4a, and a communication device 5ab.
 OpenFlowスイッチ3cは、図1に示したOpenFlowスイッチ3と同一の内部構成を備えている。以下、OpenFlowスイッチ3cにおいて、OpenFlowスイッチ3が備える機能部に対応する機能部の各々を示す場合、各機能部の符号に対して、符号「c」を付して示すものとする。 The OpenFlow switch 3c has the same internal configuration as the OpenFlow switch 3 shown in FIG. Hereinafter, in the OpenFlow switch 3c, when each of the functional units corresponding to the functional units included in the OpenFlow switch 3 is shown, the code of each functional unit is indicated by a reference numeral “c”.
 OpenFlowスイッチ3cは、転送制御装置送受信部36c、転送処理部35c、転送規則記憶部34c、探索用論理パス生成部32c、外部送受信部37c-1,37c-2及び自律型転送装置送受信部31c-1,31c-2を備える。 The OpenFlow switch 3c includes a transfer control device transmission / reception unit 36c, a transfer processing unit 35c, a transfer rule storage unit 34c, a search logic path generation unit 32c, an external transmission / reception unit 37c-1, 37c-2, and an autonomous transfer device transmission / reception unit 31c-. It is equipped with 1,31c-2.
 転送制御装置送受信部36cは、物理回線7cを介して転送制御装置2cに接続する。転送制御装置送受信部36cは、転送制御装置2cとの間で、セキュアチャネルのコネクションを確立し、OpenFlowプロトコルにしたがってデータの送受信を行う。自律型転送装置送受信部31c-1は、物理回線6a-3により自律型転送装置4aの物理ポート41a-3に接続されている。外部送受信部37c-2には、物理回線6b-2を介して通信装置5abが接続する。 The transfer control device transmission / reception unit 36c is connected to the transfer control device 2c via the physical line 7c. The transfer control device transmission / reception unit 36c establishes a secure channel connection with the transfer control device 2c, and transmits / receives data according to the OpenFlow protocol. The autonomous transfer device transmission / reception unit 31c-1 is connected to the physical port 41a-3 of the autonomous transfer device 4a by a physical line 6a-3. A communication device 5ab is connected to the external transmission / reception unit 37c-2 via the physical line 6b-2.
 OpenFlowスイッチ3cの探索用論理パス生成部32cは、転送制御装置2cの指示に応じてスパニング木で構成される論理パスを生成する。なお、探索用論理パス生成部32cは、OpenFlowスイッチ3cがスパニング木の起点とはならないように予め設定されている。 The search logic path generation unit 32c of the OpenFlow switch 3c generates a logic path composed of spanning trees according to the instruction of the transfer control device 2c. The search logic path generation unit 32c is preset so that the OpenFlow switch 3c does not serve as the starting point of the spanning tree.
 図7に示す通り、第3の実施形態のパケット転送システム1cにおいて、第1及び第2の実施形態と同様の論理パス60が生成されているものとする。論理パス60の生成には、VLAN-ID「1001」が使用されているとする。この場合、OpenFlowスイッチ3cの探索用論理パス生成部32cは、転送規則記憶部34cが記憶する転送規則情報に対して、自律型転送装置送受信部31c-1、外部送受信部37c-1,37c-2の識別情報と、VLAN-ID「1001」を関連付けて書き込む。 As shown in FIG. 7, it is assumed that the same logical path 60 as in the first and second embodiments is generated in the packet transfer system 1c of the third embodiment. It is assumed that the VLAN-ID "1001" is used to generate the logical path 60. In this case, the search logical path generation unit 32c of the OpenFlow switch 3c receives the transfer rule information stored in the transfer rule storage unit 34c by the autonomous transfer device transmission / reception unit 31c-1 and the external transmission / reception units 37c-1, 37c-. The identification information of 2 is written in association with the VLAN-ID "1001".
 転送制御装置2cは、転送制御装置2bが有する構成に加えて、以下の構成を備える。転送制御装置2cは、OpenFlowスイッチ3cが制御パケットを受信した場合にPacket-Inメッセージにより転送制御装置2bに受信した制御パケットを転送する指示を含む転送規則情報をOpenFlowスイッチ3cに送信する。転送制御装置送受信部36cは、転送制御装置2cが送信した転送規則情報を受信し、受信した転送規則情報を転送処理部35cに出力する。転送処理部35cは、転送制御装置送受信部36cが出力する転送規則情報を転送規則記憶部34cに書き込む。 The transfer control device 2c has the following configuration in addition to the configuration of the transfer control device 2b. When the OpenFlow switch 3c receives the control packet, the transfer control device 2c transmits the transfer rule information including the instruction to transfer the control packet received to the transfer control device 2b by the Packet-In message to the OpenFlow switch 3c. The transfer control device transmission / reception unit 36c receives the transfer rule information transmitted by the transfer control device 2c, and outputs the received transfer rule information to the transfer processing unit 35c. The transfer processing unit 35c writes the transfer rule information output by the transfer control device transmission / reception unit 36c to the transfer rule storage unit 34c.
(第3の実施形態のパケット転送システムによる接続構成収集処理)
 第3の実施形態において、第2の実施形態と同様に、図6に示す制御パケット送出指示パケットが転送制御装置2cより送信される処理が開始される。ステップSb1~Sb5までは、転送制御装置2c、OpenFlowスイッチ3、自律型転送装置4aにより第2の実施形態と同様の処理が行われる。ステップSb6,Sb7の処理については、自律型転送装置4bに代わって、OpenFlowスイッチ3cが同一の処理を行う。ステップSb8において、通信装置5abは、OpenFlowスイッチ3cの外部送受信部37c-1が物理回線6b-2に送出する制御パケット送出指示パケットを受信する。
(Connection configuration collection process by the packet transfer system of the third embodiment)
In the third embodiment, as in the second embodiment, the process of transmitting the control packet transmission instruction packet shown in FIG. 6 from the transfer control device 2c is started. In steps Sb1 to Sb5, the transfer control device 2c, the OpenFlow switch 3, and the autonomous transfer device 4a perform the same processing as in the second embodiment. Regarding the processing of steps Sb6 and Sb7, the OpenFlow switch 3c performs the same processing instead of the autonomous transfer device 4b. In step Sb8, the communication device 5ab receives the control packet transmission instruction packet transmitted by the external transmission / reception unit 37c-1 of the OpenFlow switch 3c to the physical line 6b-2.
 図8は、第3の実施形態において、通信装置5abが制御パケット送出指示パケットを受信した後に行われる処理の流れを示すシーケンス図である。通信装置5abは、自装置の識別情報を含む制御パケットを物理回線6b-2に送出する(ステップSd1)。 FIG. 8 is a sequence diagram showing a flow of processing performed after the communication device 5ab receives the control packet transmission instruction packet in the third embodiment. The communication device 5ab sends a control packet including the identification information of the own device to the physical line 6b-2 (step Sd1).
 OpenFlowスイッチ3cの外部送受信部37c-1は、通信装置5abが送出した制御パケットを受信する。外部送受信部37c-1は、受信した制御パケットを転送処理部35cに出力する(ステップSd2)。 The external transmission / reception unit 37c-1 of the OpenFlow switch 3c receives the control packet transmitted by the communication device 5ab. The external transmission / reception unit 37c-1 outputs the received control packet to the transfer processing unit 35c (step Sd2).
 転送処理部35cは、転送規則記憶部34cが記憶する転送規則情報を参照する。転送規則記憶部34cが記憶する転送規則情報には、制御パケットについてはPacket-Inメッセージにより転送制御装置2cに転送する指示が定義されている。転送規則情報には、VLAN-ID「1001」に関する情報が含まれている。しかしながら、制御パケットをPacket-Inメッセージにより転送制御装置2cに転送する指示の方が優先するように定義されているものとする。この場合、転送処理部35cは、制御パケットを、論理パス60を介して転送しない。転送処理部35cは、制御パケットと、受信した外部送受信部37c-1を特定する物理ポート識別情報とを含むPacket-Inメッセージを、転送制御装置送受信部36cを介して転送制御装置2cに送信する(ステップSd3)。 The transfer processing unit 35c refers to the transfer rule information stored in the transfer rule storage unit 34c. The forwarding rule information stored in the forwarding rule storage unit 34c defines an instruction to forward the control packet to the forwarding control device 2c by a Packet-In message. The transfer rule information includes information regarding the VLAN-ID "1001". However, it is assumed that the instruction to transfer the control packet to the transfer control device 2c by the Packet-In message has priority. In this case, the transfer processing unit 35c does not transfer the control packet via the logical path 60. The transfer processing unit 35c transmits a Packet-In message including a control packet and a physical port identification information that identifies the received external transmission / reception unit 37c-1 to the transfer control device 2c via the transfer control device transmission / reception unit 36c. (Step Sd3).
 転送制御装置2cは、転送制御装置送受信部36cが送信するPacket-Inメッセージを受信する(ステップSd4)。転送制御装置2cは、Packet-Inメッセージの送信元の情報を参照することにより、制御パケットを受信した装置がOpenFlowスイッチ3cであることを検出する。転送制御装置2cは、Packet-Inメッセージに含まれる外部送受信部37c-1の物理ポート識別情報から通信装置5abが接続した物理ポートの情報を取得することができる。転送制御装置2cは、Packet-Inメッセージに含まれる制御パケットを参照することにより、通信装置5abの識別情報を取得することができる。 The transfer control device 2c receives the Packet-In message transmitted by the transfer control device transmission / reception unit 36c (step Sd4). The transfer control device 2c detects that the device that has received the control packet is the OpenFlow switch 3c by referring to the information of the source of the Packet-In message. The transfer control device 2c can acquire the information of the physical port to which the communication device 5ab is connected from the physical port identification information of the external transmission / reception unit 37c-1 included in the Packet-In message. The transfer control device 2c can acquire the identification information of the communication device 5ab by referring to the control packet included in the Packet-In message.
 したがって、転送制御装置2cは、図4に示す「通信装置」、「接続先装置」、「接続先ポート」の項目を有するテーブルに記録される3つの情報の組み合わせをPacket-Inメッセージから取得することができる。転送制御装置2cは、内部の記憶領域のテーブルに取得した3つの情報を記録する(ステップSd5)。 Therefore, the transfer control device 2c acquires a combination of three pieces of information recorded in the table having the items of "communication device", "connection destination device", and "connection destination port" shown in FIG. 4 from the Packet-In message. be able to. The transfer control device 2c records the acquired three pieces of information in the table of the internal storage area (step Sd5).
 上記の第3の実施形態の構成では、自律型転送装置4aにOpenFlowスイッチ3cが接続して、論理パス60が、OpenFlowスイッチ3cが備える物理ポート、すなわち外部送受信部であって通信装置5abに接続を許可する外部送受信部37c-1,37c-2に生成されており、更に、OpenFlowスイッチ3cは、論理パス60以外の経路である物理回線7cにより転送制御装置2cに接続している。通信装置5abは、OpenFlowスイッチ3cに接続する。OpenFlowスイッチ3cは、通信装置5abが送出する制御パケットを受信した場合、制御パケットを受信した外部送受信部37c-1を特定する物理ポート識別情報と共に、転送規則記憶部34cが記憶する転送規則情報に基づいて、物理回線7cを介して転送制御装置2cに制御パケットを送出する。 In the configuration of the third embodiment described above, the OpenFlow switch 3c is connected to the autonomous transfer device 4a, and the logical path 60 is connected to the physical port included in the OpenFlow switch 3c, that is, the external transmission / reception unit and the communication device 5ab. The OpenFlow switch 3c is connected to the transfer control device 2c by a physical line 7c which is a route other than the logical path 60. The communication device 5ab is connected to the OpenFlow switch 3c. When the OpenFlow switch 3c receives the control packet transmitted by the communication device 5ab, the OpenFlow switch 3c uses the transfer rule information stored in the transfer rule storage unit 34c together with the physical port identification information that identifies the external transmission / reception unit 37c-1 that received the control packet. Based on this, a control packet is sent to the transfer control device 2c via the physical line 7c.
 これにより、マネジメント専用のポートを備えず、OpenFlowエージェントやDHCPクライアントも動作していない通信装置5abが、OpenFlowエージェントが動作しているOpenFlowスイッチ3cに接続したとしても、通信装置5abと、OpenFlowスイッチ3cとの接続構成を検出することができる。通信装置5abが接続したOpenFlowスイッチ3cは、制御パケットを論理パス60の上位の装置に転送するのではなく、Pakcet-Inメッセージによって直接、転送制御装置2cに送信する。そのため、論理パス60の上位に存在する自律型転送装置4a、OpenFlowスイッチ3に制御パケットを転送しないことになるため、第2の実施形態の構成に比べて、帯域利用率を向上させることができる。 As a result, even if the communication device 5ab that does not have a port dedicated to management and the OpenFlow agent or DHCP client is not operating is connected to the OpenFlow switch 3c in which the OpenFlow agent is operating, the communication device 5ab and the OpenFlow switch 3c are connected. It is possible to detect the connection configuration with. The OpenFlow switch 3c connected to the communication device 5ab does not transfer the control packet to the device higher than the logical path 60, but directly transmits the control packet to the transfer control device 2c by the Packet-In message. Therefore, the control packet is not transferred to the autonomous transfer device 4a and the OpenFlow switch 3 existing above the logical path 60, so that the bandwidth utilization rate can be improved as compared with the configuration of the second embodiment. ..
 なお、上記の第1から第3の実施形態では、論理パス60,61,62の起点を、OpenFlowスイッチ3にしているが、論理パス60,61,62の起点を、転送制御装置2,2b,2cにしてもよい。この場合、OpenFlowスイッチ3から転送制御装置2,2b,2cへの制御パケットの転送は、論理パス60,61を介して、すなわち、VLAN-IDに基づいて行われることになる。転送制御装置2b,2cからOpenFlowスイッチ3への制御パケット送出指示パケットの転送も、VLAN-IDに基づいて行われることになる。 In the first to third embodiments described above, the starting point of the logical paths 60, 61, 62 is set to the OpenFlow switch 3, but the starting point of the logical paths 60, 61, 62 is set to the transfer control devices 2, 2b. , 2c may be used. In this case, the transfer of the control packet from the OpenFlow switch 3 to the transfer control devices 2, 2b, 2c is performed via the logical paths 60, 61, that is, based on the VLAN-ID. The transfer of the control packet transmission instruction packet from the transfer control devices 2b and 2c to the OpenFlow switch 3 is also performed based on the VLAN-ID.
 上記の第1から第3の実施形態では、論理パス60,61,62の生成を、転送制御装置2,2b,2cの指示に応じて、探索用論理パス生成部32,32c、自律型探索用論理パス生成部42a,42bが行うようにしているが、論理パスの生成はこれに限定される必要はない。例えば、構成が複雑でない場合などには、パケット転送システム1a,1b,1cの管理者によってスパニング木を構成するように論理パス60,61,62を生成するようにしてもよい。この場合、管理者が、転送規則記憶部34,34cが記憶する転送規則情報及び自律型転送規則記憶部45a,45bが記憶する自律型転送規則情報に、VLAN-IDに関する情報を追加することになる。 In the first to third embodiments described above, the generation of the logic paths 60, 61, 62 is performed by the search logic path generation units 32, 32c and the autonomous search according to the instructions of the transfer control devices 2, 2b, 2c. Although it is designed to be performed by the logical path generation units 42a and 42b, the generation of the logical path does not have to be limited to this. For example, when the configuration is not complicated, the administrators of the packet transfer systems 1a, 1b, and 1c may generate the logical paths 60, 61, and 62 so as to configure the spanning tree. In this case, the administrator decides to add information about the VLAN-ID to the forwarding rule information stored in the forwarding rule storage units 34 and 34c and the autonomous forwarding rule information stored in the autonomous forwarding rule storage units 45a and 45b. Become.
 転送制御装置2,2b,2cがスパニング木を構成するように論理パスを各転送装置に設定してもよい。このように構成される場合、OpenFlowスイッチ3,3cは探索用論理パス生成部32を備えなくてよく、自律型転送装置4,4a,4bは自律型探索用論理パス生成部42を備えなくてよい。その代わり、転送制御装置2,2b,2cがスパニング木を構成するための論理パス生成部を備える。
 上記の第1から第3の実施形態では、制御パケットに通信装置5,5a,5b,5abの識別子が含まれる構成を示したが、制御パケットには通信装置5,5a,5b,5abの識別子が含まれなくてもよい。このように構成される場合、通信装置5,5a,5b,5abは、電源が投入されて起動した時点から一定の間隔、又は、外部(例えば、転送制御装置)からの指示に応じて、通信装置5,5a,5b,5abの識別子を含めない制御パケットを送信する。
A logical path may be set for each transfer device so that the transfer control devices 2, 2b, 2c form a spanning tree. In this configuration, the OpenFlow switches 3 and 3c do not have to include the search logic path generator 32, and the autonomous transfer devices 4, 4a and 4b do not have to include the search logic path generator 42. good. Instead, the transfer control devices 2, 2b, 2c include a logic path generator for constructing a spanning tree.
In the first to third embodiments described above, the control packet includes the identifiers of the communication devices 5, 5a, 5b, and 5ab, but the control packet contains the identifiers of the communication devices 5, 5a, 5b, and 5ab. May not be included. When configured in this way, the communication devices 5, 5a, 5b, and 5ab communicate at regular intervals from the time when the power is turned on and started, or in response to an instruction from the outside (for example, a transfer control device). A control packet that does not include the identifiers of the devices 5, 5a, 5b, and 5ab is transmitted.
 上記の第1から第3の実施形態では、SDNのうち、OpenFlowプロトコルが、転送制御装置2,2b,2c及びOpenFlowスイッチ3,3cにおいて動作していることを前提として示しているが、OpenFlowプロトコル以外のSDNの通信プロトコルが動作していてもよい。 In the first to third embodiments described above, it is assumed that the OpenFlow protocol among the SDNs is operating in the transfer control devices 2, 2b, 2c and the OpenFlow switches 3, 3c, but the OpenFlow protocol is shown. An SDN communication protocol other than the above may be operating.
 上記の第1から第3の実施形態では、パケット転送システム1,1a,1b,1cがOpenFlowスイッチ(例えば、OpenFlowスイッチ3,3c)と、自律型転送装置(例えば、4,4a,4b)とを両方を備える構成を示したが、パケット転送システム1,1a,1b,1cはいずれか一方の転送装置を備えるように構成されてもよい。このような構成の一例として図2を例に挙げると、パケット転送システム1aは、OpenFlowスイッチ3又は自律型転送装置4a,4bのいずれか一方の転送装置を備える。そして、パケット転送システム1aは、転送制御装置2を根とするスパニング木状の論理パスを、備えている転送装置に設定する。 In the first to third embodiments described above, the packet transfer systems 1, 1a, 1b, 1c have an OpenFlow switch (for example, OpenFlow switches 3, 3c) and an autonomous transfer device (for example, 4, 4a, 4b). Although the configuration including both is shown, the packet transfer system 1, 1a, 1b, 1c may be configured to include any one of the transfer devices. Taking FIG. 2 as an example of such a configuration, the packet transfer system 1a includes a transfer device of either the OpenFlow switch 3 or the autonomous transfer devices 4a and 4b. Then, the packet transfer system 1a sets a spanning tree-shaped logic path rooted in the transfer control device 2 in the transfer device provided.
 上述した第1から第3の実施形態における転送制御装置2,2b,2c、OpenFlowスイッチ3,3c、自律型転送装置4,4a,4bをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The transfer control devices 2, 2b, 2c, the OpenFlow switches 3, 3c, and the autonomous transfer devices 4, 4a, 4b according to the first to third embodiments described above may be realized by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.
 SDNの通信プロトコルを備える装置と、SDNの通信プロトコルを備えない装置とが相互に接続する通信ネットワークに適用することができる。 It can be applied to a communication network in which a device having an SDN communication protocol and a device not having an SDN communication protocol are interconnected.
1…パケット転送システム、2…転送制御装置、3…OpenFlowスイッチ、4…自律型転送装置、5…通信装置、31…自律型転送装置送受信部、32…探索用論理パス生成部、34…転送規則記憶部、35…転送処理部、36…転送制御装置送受信部、37…外部送受信部、41-1~41-N…物理ポート、42…自律型探索用論理パス生成部、44…自律型転送処理部、45…自律型転送規則記憶部 1 ... Packet transfer system, 2 ... Transfer control device, 3 ... OpenFlow switch, 4 ... Autonomous transfer device, 5 ... Communication device, 31 ... Autonomous transfer device transmission / reception unit, 32 ... Search logic path generation unit, 34 ... Transfer Rule storage unit, 35 ... Transfer processing unit, 36 ... Transfer control device transmission / reception unit, 37 ... External transmission / reception unit, 41-1 to 41-N ... Physical port, 42 ... Autonomous search logic path generation unit, 44 ... Autonomous type Transfer processing unit, 45 ... Autonomous transfer rule storage unit

Claims (7)

  1.  パケットの転送制御を行う転送制御装置と、前記転送制御装置が定義する転送規則に基づいて前記パケットを転送する転送装置と、前記転送装置に新たに接続される通信装置とを備えるパケット転送システムであって、
     前記通信装置は、制御パケットを前記転送装置に送出し、
     前記転送装置は、前記通信装置から送出された前記制御パケットに対して、前記制御パケットを受信した前記物理ポートを特定する物理ポート識別情報と、自装置の識別情報とを付与して前記転送制御装置に転送し、
     前記転送制御装置は、前記制御パケットに付与されている前記転送装置の識別情報及び前記物理ポート識別情報を取得する、
     パケット転送システム。
    A packet transfer system including a transfer control device that controls packet transfer, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device. There,
    The communication device sends a control packet to the transfer device,
    The transfer device assigns the physical port identification information for identifying the physical port that received the control packet and the identification information of the own device to the control packet transmitted from the communication device, and performs the transfer control. Transfer to the device
    The transfer control device acquires the identification information of the transfer device and the physical port identification information attached to the control packet.
    Packet forwarding system.
  2.  前記転送装置には、前記転送装置が備える物理ポートであって、各転送装置の転送処理部を節、前記通信装置に接続を許可する物理ポートを葉、前記転送制御装置と接続する転送装置の転送処理部を根とするスパニング木の論理パスが生成されている、
     請求項1に記載のパケット転送システム。
    The transfer device is a physical port included in the transfer device, the transfer processing unit of each transfer device is a section, the physical port that allows connection to the communication device is a leaf, and the transfer device is connected to the transfer control device. The logical path of the spanning tree rooted in the transfer processing unit is generated,
    The packet transfer system according to claim 1.
  3.  前記転送装置と直接又は間接的に接続し、自律型転送規則に基づいてパケットを転送する自律型転送装置をさらに備え、
     前記自律型転送装置に前記転送装置が接続して、前記転送装置が備える物理ポートであって通信装置に接続を許可する物理ポートに論理パスが生成されており、更に、前記転送装置は、論理パス以外の経路で前記転送制御装置に接続しており、
     前記転送装置は、前記通信装置が送出する前記制御パケットを受信した場合、前記転送制御装置が定義する転送規則に基づいて、論理パス以外の経路を通じて前記転送制御装置に前記制御パケットを送出する
     請求項1に記載のパケット転送システム。
    Further provided with an autonomous transfer device that directly or indirectly connects to the transfer device and forwards packets based on autonomous transfer rules.
    The transfer device is connected to the autonomous transfer device, and a logical path is generated in a physical port included in the transfer device that allows connection to the communication device. Further, the transfer device is logical. It is connected to the transfer control device by a route other than the path,
    When the transfer device receives the control packet transmitted by the communication device, the transfer device requests to send the control packet to the transfer control device through a route other than the logical path based on the transfer rule defined by the transfer control device. Item 1. The packet transfer system according to Item 1.
  4.  前記通信装置は、前記転送装置に接続した状態で電源が投入されると、所定の間隔で前記制御パケットを、接続している前記転送装置に送出する、
     請求項1から3のいずれか一項に記載のパケット転送システム。
    When the power is turned on while the communication device is connected to the transfer device, the communication device sends the control packet to the connected transfer device at predetermined intervals.
    The packet transfer system according to any one of claims 1 to 3.
  5.  前記転送制御装置は、前記転送装置を介して制御パケット送出指示パケットを送出し、
     前記通信装置は、前記制御パケット送出指示パケットを受信すると、前記制御パケットを送出する、
     請求項1から4のいずれか一項に記載のパケット転送システム。
    The transfer control device transmits a control packet transmission instruction packet via the transfer device.
    When the communication device receives the control packet transmission instruction packet, the communication device transmits the control packet.
    The packet transfer system according to any one of claims 1 to 4.
  6.  前記転送制御装置は、
     前記制御パケット送出指示パケットを送出する論理パスの形式を示す情報を当該制御パケット送出指示パケットに含めており、
     前記通信装置は、
     前記制御パケット送出指示パケットを受信すると、前記制御パケット送出指示パケットに含まれている前記論理パスの形式を示す情報に応じた前記制御パケットを生成し、生成した前記制御パケットを前記論理パスに送出する、
     請求項5に記載のパケット転送システム。
    The transfer control device is
    Information indicating the format of the logical path for transmitting the control packet transmission instruction packet is included in the control packet transmission instruction packet.
    The communication device is
    When the control packet transmission instruction packet is received, the control packet corresponding to the information indicating the format of the logic path included in the control packet transmission instruction packet is generated, and the generated control packet is transmitted to the logic path. do,
    The packet transfer system according to claim 5.
  7.  パケットの転送制御を行う転送制御装置と、前記転送制御装置が定義する転送規則に基づいて前記パケットを転送する転送装置と、前記転送装置に新たに接続される通信装置とを備えるパケット転送システムにおけるパケット転送方法であって、
     前記通信装置が、制御パケットを前記転送装置に送出し、
     前記転送装置が、前記通信装置から送出された前記制御パケットに対して、前記制御パケットを受信した前記物理ポートを特定する物理ポート識別情報と、自装置の識別情報とを付与して前記転送制御装置に転送し、
     前記転送制御装置が、前記制御パケットに付与されている前記転送装置の識別情報及び前記物理ポート識別情報を取得する、
     パケット転送方法。
    In a packet transfer system including a transfer control device that controls packet transfer, a transfer device that transfers the packet based on a transfer rule defined by the transfer control device, and a communication device newly connected to the transfer device. It ’s a packet forwarding method.
    The communication device sends a control packet to the transfer device,
    The transfer device assigns the physical port identification information for identifying the physical port that received the control packet and the identification information of the own device to the control packet transmitted from the communication device, and performs the transfer control. Transfer to the device
    The transfer control device acquires the identification information of the transfer device and the physical port identification information attached to the control packet.
    Packet forwarding method.
PCT/JP2020/018880 2020-05-11 2020-05-11 Packet transfer system and packet transfer method WO2021229658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018880 WO2021229658A1 (en) 2020-05-11 2020-05-11 Packet transfer system and packet transfer method
JP2022522116A JP7469699B2 (en) 2020-05-11 2020-05-11 Packet forwarding system and packet forwarding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018880 WO2021229658A1 (en) 2020-05-11 2020-05-11 Packet transfer system and packet transfer method

Publications (1)

Publication Number Publication Date
WO2021229658A1 true WO2021229658A1 (en) 2021-11-18

Family

ID=78525463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018880 WO2021229658A1 (en) 2020-05-11 2020-05-11 Packet transfer system and packet transfer method

Country Status (2)

Country Link
JP (1) JP7469699B2 (en)
WO (1) WO2021229658A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023604A1 (en) * 2010-08-20 2012-02-23 日本電気株式会社 Communication system, control apparatus, communication method and program
JP2017175462A (en) * 2016-03-24 2017-09-28 学校法人東京電機大学 Communication control device, communication control method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023604A1 (en) * 2010-08-20 2012-02-23 日本電気株式会社 Communication system, control apparatus, communication method and program
JP2017175462A (en) * 2016-03-24 2017-09-28 学校法人東京電機大学 Communication control device, communication control method and program

Also Published As

Publication number Publication date
JPWO2021229658A1 (en) 2021-11-18
JP7469699B2 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
EP2641377B1 (en) Forwarding traffic flow in intelligent resilient framework system
JP2012085005A (en) Network system and virtual network management method
US6791948B1 (en) Distributed switch and connection control arrangement and method for digital communications network
US20140301226A1 (en) Apparatus and method for network monitoring and packet inspection
JP2007081877A (en) Network system, and data transfer method
WO2021229658A1 (en) Packet transfer system and packet transfer method
KR100889753B1 (en) Method of protection switching for link aggregation group and Apparatus thereof
JP5941556B2 (en) Packet relay device, packet transfer method, and communication system
JP7039818B2 (en) Port configuration method and communication device
WO2019240158A1 (en) Communication system and communication method
JP3875121B2 (en) COMMUNICATION SYSTEM, COMMUNICATION METHOD, TRANSFER DEVICE, AND NETWORK MANAGEMENT DEVICE
WO2015186366A1 (en) Data transfer system, data transfer server, data transfer method, and program recording medium
JP2014003408A (en) Relay transfer system, path control device and edge device
JP4638849B2 (en) Function distributed communication apparatus and path control method
Cisco Configuring DECnet
Cisco Configuring DECnet
JP5911620B2 (en) Virtual network management server and edge router
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet
Cisco Configuring DECnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935782

Country of ref document: EP

Kind code of ref document: A1