WO2021229113A1 - System for the capture and storage of electrical energy - Google Patents
System for the capture and storage of electrical energy Download PDFInfo
- Publication number
- WO2021229113A1 WO2021229113A1 PCT/ES2020/070313 ES2020070313W WO2021229113A1 WO 2021229113 A1 WO2021229113 A1 WO 2021229113A1 ES 2020070313 W ES2020070313 W ES 2020070313W WO 2021229113 A1 WO2021229113 A1 WO 2021229113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical energy
- rectifier
- current transformer
- output
- current
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
Definitions
- the object of the present invention is a system for capturing and storing electrical energy that allows the extraction and use of energy that comes from sources of low intensity of current, but stable, to power loads that need energy intermittently, of the type of monitoring systems , sensorization, communications, alarms, etc., in electrical networks.
- the electrical energy capture and storage system object of the present invention has application in the industry of design, manufacture, installation and operation of equipment for electrical energy generation, transmission, distribution and storage networks.
- Electric energy transmission systems have equipment distributed along their route, such as transformation centers, substations, etc.
- this equipment there are derivations or earth networks, to ensure that the housings of the different equipment as well as the metallic parts in general that should not be subjected to an electrical voltage with respect to the earth are effectively kept at zero potential even in the event that there is any electrical contact with other live parts.
- the earth taps or earth networks conduct the earth shunt electric currents, thus ensuring that if a person comes into contact with a metal part that should not normally be live, they do not suffer an electric shock.
- the present invention refers to a system for capturing and storing electrical energy.
- the electrical energy capture and storage system object of the present invention comprises:
- a current transformer comprising an annular core configured to embrace at least one first electrical conductor that constitutes a primary circuit of the current transformer;
- the current transformer comprises a second wound conductor that constitutes a secondary circuit of the current transformer; the second conductor is wound to the core;
- a rectifier (preferably full bridge) comprising an input configured for a connection with an alternating current (AC) circuit and an output configured for a connection with a direct current (DC) circuit; the input of the rectifier is connected to the secondary circuit of the current transformer and the output of the rectifier is connected to a direct current bus; an electrical energy storage subsystem, connected to the direct current bus; - a first DC / DC converter comprising an input connected to the direct current bus and an output configured to connect to an electrical load to be supplied.
- AC alternating current
- DC direct current
- the electrical energy capture and storage system is configured to capture the electrical energy inherent in a circulating AC current through the primary circuit of the current transformer, storing said energy in the electrical energy storage subsystem, and delivering said stored energy to a electrical load connected to the output of the first DC / DC converter.
- the direct current bus comprises a diode at the output of the rectifier, in such a way that said diode allows the passage of electric current from the rectifier to the storage subsystem and prevents the passage of current in the reverse direction from the subsystem. to the rectifier, thus preventing the storage subsystem from discharging when the voltage on the DC bus drops below a predetermined value that causes reverse bias of the diode.
- the storage subsystem comprises one or more supercapacitors, connected in series or in parallel on the direct current bus.
- the provision of a storage subsystem based on supercapacitors makes it possible to make optimal use of the maximum energy inherent in the AC current of the primary source, and the fact of being able to configure the storage subsystem with a variable number of supercapacitors means that the electrical energy collection and storage system can adapt to the needs and duty cycles of the electrical load or loads that must be supplied .
- the electrical energy collection and storage system comprises a short-circuit switch on the direct current bus.
- This shorting switch is configured to short-circuit the DC bus to the rectifier output. This feature allows the storage subsystem to be protected when the voltage on the DC bus is above a predetermined maximum voltage threshold value.
- the short-circuit switch opens when the voltage on the DC bus is below a minimum voltage threshold value, allowing the storage subsystem to be recharged.
- the electrical energy capture and storage system preferably has a control module.
- This control module incorporates a microprocessor and a second DC / DC converter.
- the microprocessor is connected to the output of the first DC / DC converter, through the second DC / DC converter.
- the control module is configured to take voltage and electric current readings on the DC bus at the rectifier output, activating the closing of the short-circuit switch, when the DC bus voltage is above the voltage threshold value. maximum predetermined maximum, or by activating the opening of the short-circuit switch, when the voltage on the DC bus is below the minimum predetermined voltage threshold value.
- This control module supposes a control circuit for the opening and closing of the short-circuit switch, guaranteeing an automatic supervision logic that provides protection to the entire system.
- the core of the current transformer is made of a material having a nanocrystalline structure. This allows the magnetic permeability of the core to be high, reducing the dispersed magnetic field of the primary source to a minimum, and guaranteeing a high efficiency for capturing the electrical energy inherent in the primary source.
- the core of the current transformer comprises a toroidal geometry. This geometry also increases the utilization of the magnetic field generated by the AC current of the primary source and, therefore, improves the performance in energy collection.
- the storage subsystem comprises a voltage equalization system in each supercapacitor that makes it possible to equalize the voltages to which the supercapacitors are subjected. This enables you to improve the overall performance of the storage subsystem.
- Figure 1 Shows an operating block diagram of an embodiment of the electrical energy capture and storage system, object of the present invention.
- Figure 2 Schematically shows the main blocks that make up the power and control circuit of an embodiment of the electrical energy capture and storage system, object of the present invention.
- Figure 3 Schematically shows a power equivalent circuit of an embodiment of the electrical energy capture and storage system, object of the present invention.
- Figure 4 Schematically shows the main construction elements of the current transformer.
- the present invention relates, as mentioned above, to a system for capturing and storing electrical energy.
- the system of the invention comprises a current transformer (1) (also called a pick-up) comprising a core (4) to which a second conductor (3) wound around said core (4) is wound; this second conductor (3) constitutes the circuit secondary of the current transformer (1).
- the core (4) is configured to be arranged around at least one first residual current conductor (2) (eg an earth network conductor) of an electrical installation. This first conductor (2) constitutes the primary circuit of the current transformer (1).
- the current transformer (1) is connected to an AC / DC rectifier (5), as shown in figure 1, figure 2 and figure 3.
- the rectifier (5) is full-bridge, and allows converting the AC energy at the output of the secondary circuit of the current transformer (1) into DC current energy.
- the system of the invention comprises, at the output of the rectifier (5), a direct current bus (6) to which an electrical energy storage subsystem (8) is connected.
- said storage subsystem (8) comprises a supercapacitor (7) or a battery of supercapacitors (7).
- the system of the invention comprises a first DC / DC converter (9), which is configured to adapt the DC bus voltage (6) to the voltage value required for the load ( 10) to feed.
- the system of the invention provides, at the output of the first DC / DC converter (9), the power, the voltage and the intensity of the current that the load (10) needs to be supplied.
- the electrical energy capture and storage system object of the present invention comprises a control module (11) connected to the output of the first DC / DC converter (9), in parallel with the load (10).
- This control module (11) is based on a microprocessor (12) (MCU, for the acronym in English Microcontroller Unit) with a second DC / DC converter (13) associated to adapt the bus voltage (6) from direct to the low level voltage necessary for the operation of the microprocessor (12).
- This control module (11) is configured to measure the voltage and current values in the DC bus (6) that precedes the first DC / DC converter (9), and to act on a short-circuit switch (14) located in the DC bus (6).
- control module (11) is configured to control the output voltages and currents of the rectifier (5) (power supply of the supercapacitor bank (7)). If the voltage limit in the supercapacitors (7) is exceeded, above the maximum or below the minimum, the output of the rectifier (5) is short-circuited or opened, respectively. This supposes the work situation without risk for the current transformer (1); if it were to open, there would be an overvoltage damaging to the sensor (current transformer (1)).
- this first DC / DC converter (9) can provide, by design, a maximum power of 10 W, for example, for a 5V output voltage application.
- the maximum power that the first DC / DC converter (9) is capable of providing can vary, said first DC / DC converter (9) being scalable depending on the different loads (10) that must feed.
- Figure 2 schematically shows in block form the main elements of the power and control circuit of the electrical energy collection and storage system that is the object of the present invention.
- the diagram in figure 2 shows the elements that allow controlling voltages and currents and protecting the sensitive elements of the system, where:
- V Represents the voltage measurement at the output of the rectifier (5), which is the input of the storage subsystem (8).
- I Represents the current measurement at the output of the rectifier (5), which is the input of the storage subsystem (8).
- Short-circuit switch (14) Switch that closes the circuit when the voltage is too high in the storage subsystem (8).
- Diode (15) Element that protects, once the nominal voltage of the storage subsystem (8) has been reached, from its discharge through the rectifier (5).
- FIG. 3 shows a schematic representation of the equivalent circuit of the electrical energy collection and storage system object of the present invention, where the current collector or transformer (1) is represented by:
- Is current through the transformer secondary
- Lm magnetization inductance of the transformer
- R resistance in the transformer secondary winding
- Ld leakage inductance of the transformer
- Figure 4 shows a schematic representation of some construction details of the current transformer (1), which has an approximately toroidal geometry. Below is a list of some parameters of the current transformer (1), where:
- Lh length of the toroidal core (4) of the current transformer (1)
- Hsat intensity of the saturation magnetic field of the core (4) of the current transformer (1)
- Dcu diameter of the second conductor (3) of the current transformer (1); reads: short-circuit current of the secondary of the current transformer (1), and;
- the design problem of the electrical energy capture and storage system starts from the necessary conversion of the primary energy input into direct current (DC) and its output in the form of DC energy suitable for powering the load (10 ).
- the primary source is the earth mesh (instead of the earth mesh, the use of phase currents is contemplated; if these phase currents are high, the available energy is large and can be used without interruption a load (10) at the output, without waiting; however, if the phase currents were very variable or very low we would find our in the same situation as with the ground mesh) of a low, medium or high voltage electrical installation , whose currents range between 4 and 7 A (the voltage of the electrical system is the one that generates the current through the earth mesh, thus, in high voltage there will be high currents (> 7 A) and in low voltage, low currents ( ⁇ 4 A)), according to locations and ground systems used.
- the main advantage of the present system for capturing and storing electrical energy is its ability to take advantage of the energy of low alternating intensities, storing the electrical energy for a much longer time compared to the time or energy to be used at a given power.
- said load (10) is used for a time of 40 seconds, every 30 minutes, and consumes a power of 10 W, at a voltage level of 5 V (DC).
- the energy necessary for the operation of the load (10) is extracted from the storage subsystem (8) and comes from the primary source of AC at 50 Hz, with currents between 4 and 7 A.
- the case can be considered from primary sources with higher current intensities in which more energy is available and therefore power can be supplied for a longer time to the load (10); it is a matter of defining the duty cycle of the load (10).
- the problem is to design an inductive coupling with a determined maximum Voc and a read, dimensioning Ih, Di, De, N, deu, y, on the other hand, selecting the nanocrystalline material of the nucleus (4) (which determines Bsaty Hsat; it is necessary that Hsat be as low as possible and that Bsat be as high as possible (this is the case in nanocrystalline nuclei (4)); in this way , the maximum energy is achieved in the secondary of the current transformer (1))
- the output voltage of the current transformer (1) in open circuit determines the maximum voltage that the rectifier input (5) must withstand and, after rectification, the bus voltage ( 6) of continuous and, consequently, the number of supercapacitors (7) in series that are adequate to avoid damaging them.
- the maximum DC bus voltage (6) determines the input voltage of the first DC / DC converter (9) that supplies the load (10), which indicates that the output and input of the feedback system and electrical energy storage are totally related in design.
- the magnetization inductance, Lm, of the current transformer (1) must be as high as possible so that the energy is not consumed in the magnetization of the core (4) and does not reach the secondary.
- materials with high magnetic permeability are used, preferably with an internal nanocrystalline structure.
- the electrical variables that define the design of the current transformer (1) when providing power are its open circuit voltage, Voc, and its short circuit current, read, which, in turn, define the dimensions of the core (4) and the permeability necessary to have a reduced Lm. It is also important that the nanocrystalline material has induction values, Bsat, and field intensity, Hsat, at the saturation elbow adequate to those needed in an open circuit situation (the worst case) and thus not saturate the material. .
- the equivalent circuit of each particular case can be obtained.
- the number of supercapacitors (7) can be modified, which leads to changes in the input voltage of the first DC / DC converter (9).
- the most reasonable thing is to have an equivalent circuit design adapted for current levels of the primary source and, varying the number of supercapacitors (7) of the storage subsystem (8) and choosing between different possible first DC / DC converters (9), to be able to provide power to a range of different loads (10).
- the current transformer (1) is designed to extract the greatest possible amount of energy with the minimum cost and dimensions. Its output, maximum voltage (in open circuit, Voc), and maximum current (in short circuit, read), define the rectifier
- said voltage is the input voltage of the first DC / DC converter (9) supplying the load (10).
- the definition of the rectifier (5) is totally related to the current transformer (1). For given parameters of the current transformer (1) and by properly choosing the rectifier (5), conversion efficiencies of approximately 99% can be achieved.
- the bus voltage (6) will affect the design of the rectifier (5) (currents and voltages) and the current transformer (1), the voltage behind the rectifier (5), as well as the energy required determines the total capacity required. .
- the necessary capacity To be able to attend to the aforementioned work and rest cycles of the load (10) it must be 2.06 F. From this capacity data, it is possible to choose the type and number of supercapacitors (7) to be arranged in series or in parallel for the storage of the required energy, taking into account the work cycles in which said energy must be supplied, for which the internal resistance of the supercapacitors (7) must also be taken into account (which influences the charging time ).
- each supercapacitor (7) Using a voltage equalization system in each supercapacitor (7), the voltages to which the supercapacitors (7) are subjected can be equalized, thereby improving the performance of the storage subsystem (8).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
A system for the capture and storage of electrical energy, comprising: a current transformer (1) with an annular core (4) holding at least a first conductor (2) and a second conductor (3) wound around the annular core (4); a rectifier (5) comprising an input connected to the secondary circuit of the current transformer (1) and an output connected to a direct current bus (6); a storage sub-system (8) connected to the direct current bus (6); a first DC/DC converter (9) connected to the bus (6) and to an electrical load (10) to be supplied; where the electrical energy capture and storage system is configured to capture the electrical energy inherent to an AC current flowing through the primary circuit of the current transformer (1), storing said energy in the storage sub-system (8) and supplying said stored energy to an electrical load (10) connected to the output of the first DC/DC converter (9).
Description
DESCRIPCIÓN DESCRIPTION
SISTEMA DE CAPTACIÓN Y ALMACENAMIENTO DE ENERGÍA ELÉCTRICA ELECTRIC ENERGY COLLECTION AND STORAGE SYSTEM
Sector de la técnica Technical sector
La presente invención tiene por objeto un sistema de captación y almacenamiento de energía eléctrica que permite extraer y aprovechar energía que proviene de fuentes de baja intensidad de corriente, pero estable, para alimentar cargas que necesitan energía de forma intermitente, del tipo de sistemas de monitorización, sensorización, comunicaciones, alarmas, etc., en redes eléctricas. The object of the present invention is a system for capturing and storing electrical energy that allows the extraction and use of energy that comes from sources of low intensity of current, but stable, to power loads that need energy intermittently, of the type of monitoring systems , sensorization, communications, alarms, etc., in electrical networks.
El sistema de captación y almacenamiento de energía eléctrica objeto de la presente invención tiene aplicación en la industria del diseño, fabricación, instalación y explotación de equipamiento para redes de generación, transporte, distribución y almacenamiento de energía eléctrica. The electrical energy capture and storage system object of the present invention has application in the industry of design, manufacture, installation and operation of equipment for electrical energy generation, transmission, distribution and storage networks.
Estado de la técnica State of the art
Los sistemas de transporte de energía eléctrica disponen de equipos distribuidos a lo largo de su trazado, tales como centros de transformación, subestaciones, etc. En estos equipos, se disponen de derivaciones o redes de tierra, para asegurar que las carcasas de los diferentes equipos así como las partes metálicas en general que no debieran estar sometidas a una tensión eléctrica con respecto a la tierra se mantengan efectivamente a potencial cero aún en el caso de que exista algún contacto eléctrico con otras partes en tensión. En este último caso, las derivaciones a tierra o redes de tierra conducen las corrientes eléctricas de derivación a tierra, asegurando así que si una persona entra en contacto con una parte metálica que normalmente no debiera estar en tensión, no sufra una descarga eléctrica. Electric energy transmission systems have equipment distributed along their route, such as transformation centers, substations, etc. In this equipment, there are derivations or earth networks, to ensure that the housings of the different equipment as well as the metallic parts in general that should not be subjected to an electrical voltage with respect to the earth are effectively kept at zero potential even in the event that there is any electrical contact with other live parts. In the latter case, the earth taps or earth networks conduct the earth shunt electric currents, thus ensuring that if a person comes into contact with a metal part that should not normally be live, they do not suffer an electric shock.
Pese a que no es la situación ideal teórica, en la práctica, ya sea por contactos eléctricos indebidos o por acoplamientos magnéticos con partes activas, siempre existen corrientes residuales circulantes por la malla de tierra de una instalación eléctrica tal como una subestación o centro de transformación. La energía portada por estas corrientes residuales se pierde sin ser aprovechada para la alimentación de ningún equipo.
Por otra parte, en una red de transporte/distribución de energía eléctrica, existen muchos equipos auxiliares que están previstos para funcionar de manera intermitente y prestar servicios tales como: alarmas, sensores de temperatura de los conductores eléctricos, dispositivos de transmisión de información, etc. Estos equipos son frecuentemente alimentados por baterías y/o mediante una red de alimentación de tensión continua independiente. Although it is not the ideal theoretical situation, in practice, either due to improper electrical contacts or magnetic couplings with live parts, there are always residual currents circulating through the ground mesh of an electrical installation such as a substation or transformation center. . The energy carried by these residual currents is lost without being used to power any equipment. On the other hand, in an electrical energy transmission / distribution network, there are many auxiliary equipment that are designed to operate intermittently and provide services such as: alarms, temperature sensors of electrical conductors, information transmission devices, etc. . These equipments are frequently powered by batteries and / or by means of an independent DC voltage supply network.
Se tiene así una situación de ineficiencia energética en donde, por un lado, se desaprovecha la energía inherente a las corrientes residuales que circulan por la malla de tierra de una instalación de una red de transporte/distribución de energía eléctrica y, por otro lado, se necesita alimentar dispositivos que prestan servicios auxiliares de manera periódica. There is thus a situation of energy inefficiency where, on the one hand, the energy inherent in the residual currents that circulate through the earth mesh of an installation of an electrical energy transmission / distribution network is wasted and, on the other hand, devices that provide auxiliary services need to be powered periodically.
Objeto de la invención Object of the invention
Con objeto de solucionar los inconvenientes anteriormente mencionados, la presente invención se refiere a un sistema de captación y almacenamiento de energía eléctrica. In order to solve the aforementioned drawbacks, the present invention refers to a system for capturing and storing electrical energy.
El sistema de captación y almacenamiento de energía eléctrica objeto de la presente invención comprende: The electrical energy capture and storage system object of the present invention comprises:
- un transformador de corriente, que comprende un núcleo anular configurado para abrazar al menos un primer conductor eléctrico que constituye un circuito primario del transformador de corriente; el transformador de corriente comprende un segundo conductor bobinado que constituye un circuito secundario del transformador de corriente; el segundo conductor está arrollado al núcleo; - a current transformer, comprising an annular core configured to embrace at least one first electrical conductor that constitutes a primary circuit of the current transformer; the current transformer comprises a second wound conductor that constitutes a secondary circuit of the current transformer; the second conductor is wound to the core;
- un rectificador (preferentemente de puente completo) que comprende una entrada configurada para una conexión con un circuito de corriente alterna (AC) y una salida configurada para una conexión con un circuito de corriente continua (DC); la entrada del rectificador está conectada al circuito secundario del transformador de corriente y la salida del rectificador está conectada a un bus de corriente continua; un subsistema de almacenamiento de energía eléctrica, conectado al bus de corriente continua;
- un primer convertidor DC/DC que comprende una entrada conectada al bus de corriente continua y una salida configurada para conectarse a una carga eléctrica a alimentar. - a rectifier (preferably full bridge) comprising an input configured for a connection with an alternating current (AC) circuit and an output configured for a connection with a direct current (DC) circuit; the input of the rectifier is connected to the secondary circuit of the current transformer and the output of the rectifier is connected to a direct current bus; an electrical energy storage subsystem, connected to the direct current bus; - a first DC / DC converter comprising an input connected to the direct current bus and an output configured to connect to an electrical load to be supplied.
El sistema de captación y almacenamiento de energía eléctrica está configurado para captar la energía eléctrica inherente a una corriente AC circulante por el circuito primario del transformador de corriente, almacenando dicha energía en el subsistema de almacenamiento de energía eléctrica, y entregando dicha energía almacenada a una carga eléctrica conectada a la salida del primer convertidor DC/DC. The electrical energy capture and storage system is configured to capture the electrical energy inherent in a circulating AC current through the primary circuit of the current transformer, storing said energy in the electrical energy storage subsystem, and delivering said stored energy to a electrical load connected to the output of the first DC / DC converter.
Mediante el sistema descrito, se permite extraer la energía inherente a una fuente primaria de energía (un primer conductor por el que circula una corriente AC), permitiendo aprovechar corrientes AC residuales y almacenar su energía inherente en el subsistema de almacenamiento, para entregar posteriormente dicha energía a una o más cargas eléctricas que se tengan que alimentar según ciclos de trabajo predeterminados. By means of the described system, it is possible to extract the energy inherent to a primary source of energy (a first conductor through which an AC current circulates), allowing to take advantage of residual AC currents and store their inherent energy in the storage subsystem, to later deliver said power to one or more electrical loads to be powered according to predetermined duty cycles.
De manera preferente, el bus de corriente continua comprende un diodo a la salida del rectificador, de tal forma que dicho diodo permite el paso de corriente eléctrica desde el rectificador hacia el subsistema de almacenamiento e impide el paso de corriente en sentido inverso desde el subsistema de almacenamiento hacia el rectificador, evitando así que se descargue el subsistema de almacenamiento cuando la tensión en el bus de corriente continua desciende por debajo de un valor predeterminado que produce una polarización inversa del diodo. Preferably, the direct current bus comprises a diode at the output of the rectifier, in such a way that said diode allows the passage of electric current from the rectifier to the storage subsystem and prevents the passage of current in the reverse direction from the subsystem. to the rectifier, thus preventing the storage subsystem from discharging when the voltage on the DC bus drops below a predetermined value that causes reverse bias of the diode.
Esto garantiza un máximo aprovechamiento de la energía almacenada, con la seguridad de que dicha energía almacenada no va a ser devuelta hacia la fuente primaria en caso de que la tensión en el bus de corriente continua momentáneamente descienda por debajo de un valor predeterminado. This guarantees maximum use of the stored energy, with the assurance that said stored energy will not be returned to the primary source in the event that the voltage on the DC bus momentarily drops below a predetermined value.
Según una realización preferente de la invención, el subsistema de almacenamiento comprende uno o más supercondensadores, conectados en serie o en paralelo en el bus de corriente continua. According to a preferred embodiment of the invention, the storage subsystem comprises one or more supercapacitors, connected in series or in parallel on the direct current bus.
La provisión de un subsistema de almacenamiento a base de supercondensadores hace que se pueda aprovechar de manera óptima el máximo de energía inherente a la corriente AC de
la fuente primaria, y el hecho de poder configurar el subsistema de almacenamiento con un número variable de supercondensadores hace que el sistema de captación y almacenamiento de energía eléctrica pueda adaptarse a las necesidades y ciclos de trabajo de la carga o cargas eléctricas que sea preciso alimentar. The provision of a storage subsystem based on supercapacitors makes it possible to make optimal use of the maximum energy inherent in the AC current of the primary source, and the fact of being able to configure the storage subsystem with a variable number of supercapacitors means that the electrical energy collection and storage system can adapt to the needs and duty cycles of the electrical load or loads that must be supplied .
Según una forma de realización preferente de la invención, el sistema de captación y almacenamiento de energía eléctrica comprende un conmutador de cortocircuito en el bus de corriente continua. Este conmutador de cortocircuito está configurado para cortocircuitar el bus de corriente continua a la salida del rectificador. Esta característica permite proteger el subsistema de almacenamiento cuando la tensión en el bus de corriente continua está por encima de un valor umbral de tensión máximo predeterminado. El conmutador de cortocircuito se abre cuando la tensión en el bus de corriente continua está por debajo de un valor umbral de tensión mínimo, permitiendo cargar de nuevo el subsistema de almacenamiento. According to a preferred embodiment of the invention, the electrical energy collection and storage system comprises a short-circuit switch on the direct current bus. This shorting switch is configured to short-circuit the DC bus to the rectifier output. This feature allows the storage subsystem to be protected when the voltage on the DC bus is above a predetermined maximum voltage threshold value. The short-circuit switch opens when the voltage on the DC bus is below a minimum voltage threshold value, allowing the storage subsystem to be recharged.
El sistema de captación y almacenamiento de energía eléctrica dispone preferentemente de un módulo de control. Este módulo de control incorpora un microprocesador y un segundo convertidor DC/DC. El microprocesador está conectado a la salida del primer convertidor DC/DC, a través del segundo convertidor DC/DC. El módulo de control está configurado para efectuar lecturas de tensión y corriente eléctrica en el bus de corriente continua a la salida del rectificador activando el cierre del conmutador de cortocircuito, cuando la tensión en el bus de corriente continua está por encima del valor umbral de tensión máximo predeterminado, o activando la apertura del conmutador de cortocircuito, cuando la tensión en el bus de corriente continua está por debajo del valor umbral de tensión mínimo predeterminado. Este módulo de control supone un circuito de control para la apertura y cierre del conmutador de cortocircuito, garantizando una lógica de supervisión automática que aporta protección a todo el sistema. The electrical energy capture and storage system preferably has a control module. This control module incorporates a microprocessor and a second DC / DC converter. The microprocessor is connected to the output of the first DC / DC converter, through the second DC / DC converter. The control module is configured to take voltage and electric current readings on the DC bus at the rectifier output, activating the closing of the short-circuit switch, when the DC bus voltage is above the voltage threshold value. maximum predetermined maximum, or by activating the opening of the short-circuit switch, when the voltage on the DC bus is below the minimum predetermined voltage threshold value. This control module supposes a control circuit for the opening and closing of the short-circuit switch, guaranteeing an automatic supervision logic that provides protection to the entire system.
De manera preferente, el núcleo del transformador de corriente está hecho de un material que tiene una estructura nanocristalina. Esto permite que la permeabilidad magnética del núcleo sea elevada, reduciendo al mínimo el campo magnético dispersado de la fuente primaria, y garantizando un elevado rendimiento de captación de la energía eléctrica inherente a la fuente primaria. Preferably, the core of the current transformer is made of a material having a nanocrystalline structure. This allows the magnetic permeability of the core to be high, reducing the dispersed magnetic field of the primary source to a minimum, and guaranteeing a high efficiency for capturing the electrical energy inherent in the primary source.
Según una forma de realización preferente, el núcleo del transformador de corriente comprende una geometría toroidal. Esta geometría también incrementa el aprovechamiento
del campo magnético generado por la corriente AC de la fuente primaria y, por ende, mejora el rendimiento en la captación de energía. According to a preferred embodiment, the core of the current transformer comprises a toroidal geometry. This geometry also increases the utilization of the magnetic field generated by the AC current of the primary source and, therefore, improves the performance in energy collection.
De manera preferente, el subsistema de almacenamiento comprende un sistema de ecualización de tensiones en cada supercondensador que permite igualar las tensiones a las que se someten los supercondensadores. Esto permite mejorar el rendimiento global del subsistema de almacenamiento. Preferably, the storage subsystem comprises a voltage equalization system in each supercapacitor that makes it possible to equalize the voltages to which the supercapacitors are subjected. This enables you to improve the overall performance of the storage subsystem.
Descripción de las figuras Description of the figures
Como parte de la explicación de al menos una forma de realización de la invención se han incluido las siguientes figuras. As part of the explanation of at least one embodiment of the invention, the following figures have been included.
Figura 1: Muestra un diagrama de bloques de funcionamiento de una forma de realización del sistema de captación y almacenamiento de energía eléctrica, objeto de la presente invención. Figure 1: Shows an operating block diagram of an embodiment of the electrical energy capture and storage system, object of the present invention.
Figura 2: Muestra de manera esquemática los principales bloques que componen el circuito de potencia y de control de una forma de realización del sistema de captación y almacenamiento de energía eléctrica, objeto de la presente invención. Figure 2: Schematically shows the main blocks that make up the power and control circuit of an embodiment of the electrical energy capture and storage system, object of the present invention.
Figura 3: Muestra de manera esquemática un circuito equivalente de potencia de una forma de realización del sistema de captación y almacenamiento de energía eléctrica, objeto de la presente invención. Figure 3: Schematically shows a power equivalent circuit of an embodiment of the electrical energy capture and storage system, object of the present invention.
Figura 4: Muestra de manera esquemática los principales elementos constructivos del transformador de corriente. Figure 4: Schematically shows the main construction elements of the current transformer.
Descripción detallada de la invención Detailed description of the invention
La presente invención se refiere, tal y como se ha mencionado anteriormente, a un sistema de captación y almacenamiento de energía eléctrica. The present invention relates, as mentioned above, to a system for capturing and storing electrical energy.
El sistema de la invención comprende un transformador de corriente (1) (también denominado captador) que comprende un núcleo (4) al cual está arrollado un segundo conductor (3) bobinado en torno a dicho núcleo (4); este segundo conductor (3) constituye el circuito
secundario del transformador de corriente (1). El núcleo (4) está configurado para disponerse alrededor de al menos un primer conductor (2) de corriente residual (p.ej. un conductor de red de tierra) de una instalación eléctrica. Este primer conductor (2) constituye el circuito primario del transformador de corriente (1). The system of the invention comprises a current transformer (1) (also called a pick-up) comprising a core (4) to which a second conductor (3) wound around said core (4) is wound; this second conductor (3) constitutes the circuit secondary of the current transformer (1). The core (4) is configured to be arranged around at least one first residual current conductor (2) (eg an earth network conductor) of an electrical installation. This first conductor (2) constitutes the primary circuit of the current transformer (1).
Así pues, mediante acoplamiento magnético de la fuente de energía (el primer conductor (2) de corriente residual) con el transformador de corriente (1), se consigue transferir energía de la corriente residual al sistema de captación y almacenamiento de energía eléctrica, objeto de la presente invención. Thus, by means of magnetic coupling of the energy source (the first residual current conductor (2)) with the current transformer (1), it is possible to transfer energy from the residual current to the electrical energy collection and storage system, object of the present invention.
El transformador de corriente (1) está conectado a un rectificador (5) AC/DC, tal y como se muestra en la figura 1 , figura 2 y figura 3. The current transformer (1) is connected to an AC / DC rectifier (5), as shown in figure 1, figure 2 and figure 3.
El rectificador (5) es de puente completo, y permite convertir la energía de AC a la salida del circuito secundario del transformador de corriente (1) en energía de corriente DC. The rectifier (5) is full-bridge, and allows converting the AC energy at the output of the secondary circuit of the current transformer (1) into DC current energy.
Por su parte, el sistema de la invención comprende, a la salida del rectificador (5), un bus (6) de corriente continua al cual está conectado un subsistema de almacenamiento (8) de energía eléctrica. De manera preferente, dicho subsistema de almacenamiento (8) comprende un supercondensador (7) o una batería de supercondensadores (7). For its part, the system of the invention comprises, at the output of the rectifier (5), a direct current bus (6) to which an electrical energy storage subsystem (8) is connected. Preferably, said storage subsystem (8) comprises a supercapacitor (7) or a battery of supercapacitors (7).
A la salida del subsistema de almacenamiento (8), el sistema de la invención comprende un primer convertidor DC/DC (9), que está configurado para adecuar la tensión del bus (6) de continua al valor de tensión requerido para la carga (10) a alimentar. De esta forma, el sistema de la invención proporciona, a la salida del primer convertidor DC/DC (9), la potencia, la tensión y la intensidad de corriente que necesita la carga (10) que se quiere alimentar. At the output of the storage subsystem (8), the system of the invention comprises a first DC / DC converter (9), which is configured to adapt the DC bus voltage (6) to the voltage value required for the load ( 10) to feed. In this way, the system of the invention provides, at the output of the first DC / DC converter (9), the power, the voltage and the intensity of the current that the load (10) needs to be supplied.
El sistema de captación y almacenamiento de energía eléctrica objeto de la presente invención comprende un módulo de control (11) conectado a la salida del primer convertidor DC/DC (9), en paralelo con la carga (10). Este módulo de control (11) está basado en un microprocesador (12) (MCU, por las siglas en inglés de Microcontroller Unit) con un segundo convertidor DC/DC (13) asociado para adaptar la tensión del bus (6) de continua a la tensión de bajo nivel necesaria para el funcionamiento del microprocesador (12).
Este módulo de control (11) está configurado para medir los valores de tensión y corriente en el bus (6) de continua que precede al primer convertidor DC/DC (9), y actuar sobre un conmutador de cortocircuito (14) situado en el bus (6) de continua. The electrical energy capture and storage system object of the present invention comprises a control module (11) connected to the output of the first DC / DC converter (9), in parallel with the load (10). This control module (11) is based on a microprocessor (12) (MCU, for the acronym in English Microcontroller Unit) with a second DC / DC converter (13) associated to adapt the bus voltage (6) from direct to the low level voltage necessary for the operation of the microprocessor (12). This control module (11) is configured to measure the voltage and current values in the DC bus (6) that precedes the first DC / DC converter (9), and to act on a short-circuit switch (14) located in the DC bus (6).
Así pues, el módulo de control (11) está configurado para controlar las tensiones y corrientes de salida del rectificador (5) (alimentación de la batería de supercondensadores (7)). Si se supera el límite de tensiones en los supercondensadores (7), por encima del máximo o por debajo del mínimo, se cortocircuita o se abre la salida del rectificador (5), respectivamente. Esto supone la situación de trabajo sin riesgo para el transformador de corriente (1); si se abriera, habría una sobretensión dañina para el captador (transformador de corriente (1)). Thus, the control module (11) is configured to control the output voltages and currents of the rectifier (5) (power supply of the supercapacitor bank (7)). If the voltage limit in the supercapacitors (7) is exceeded, above the maximum or below the minimum, the output of the rectifier (5) is short-circuited or opened, respectively. This supposes the work situation without risk for the current transformer (1); if it were to open, there would be an overvoltage damaging to the sensor (current transformer (1)).
En cuanto a la carga (10), ésta también incorpora sus protecciones convencionales específicas (no representadas en las Figuras), en función del tipo de carga (10). Regarding the load (10), it also incorporates its specific conventional protections (not represented in the Figures), depending on the type of load (10).
Cuando el módulo de control (11) envía la orden de alimentar la carga (10), la energía almacenada en el subsistema de almacenamiento (8) (supercapacidades) se trasmite a través del primer convertidor DC/DC (9) que reduce la tensión del banco de supercondensadores (7) y mantiene la tensión de salida controlada. Según una posible forma de realización, este primer convertidor DC/DC (9) puede proporcionar, por diseño, una potencia máxima de 10 W, por ejemplo, para una aplicación de 5V de tensión de salida. No obstante, según formas de realización alternativas, la potencia máxima que es capaz de proporcionar el primer convertidor DC/DC (9) puede variar, siendo dicho primer convertidor DC/DC (9) escalable en función de las diferentes cargas (10) que deba alimentar. When the control module (11) sends the command to supply the load (10), the energy stored in the storage subsystem (8) (supercapacities) is transmitted through the first DC / DC converter (9) which reduces the voltage of the bank of supercapacitors (7) and keeps the output voltage controlled. According to a possible embodiment, this first DC / DC converter (9) can provide, by design, a maximum power of 10 W, for example, for a 5V output voltage application. However, according to alternative embodiments, the maximum power that the first DC / DC converter (9) is capable of providing can vary, said first DC / DC converter (9) being scalable depending on the different loads (10) that must feed.
La figura 2 muestra de manera esquemática en forma de bloques los principales elementos del circuito de potencia y de control del sistema de captación y almacenamiento de energía eléctrica objeto de la presente invención. Figure 2 schematically shows in block form the main elements of the power and control circuit of the electrical energy collection and storage system that is the object of the present invention.
En el esquema de la figura 2 se observan los elementos que permiten controlar tensiones y corrientes y proteger los elementos sensibles del sistema, donde: The diagram in figure 2 shows the elements that allow controlling voltages and currents and protecting the sensitive elements of the system, where:
- V: Representa la medida de tensión a la salida del rectificador (5), que es la entrada del subsistema de almacenamiento (8).
I: Representa la medida de corriente a la salida del rectificador (5), que es la entrada del subsistema de almacenamiento (8). - V: Represents the voltage measurement at the output of the rectifier (5), which is the input of the storage subsystem (8). I: Represents the current measurement at the output of the rectifier (5), which is the input of the storage subsystem (8).
Conmutador de cortocircuito (14): Interruptor que cierra el circuito cuando la tensión es demasiado elevada en el subsistema de almacenamiento (8). Short-circuit switch (14): Switch that closes the circuit when the voltage is too high in the storage subsystem (8).
Diodo (15): Elemento que protege, una vez alcanzada la tensión nominal del subsistema de almacenamiento (8), de su descarga a través del rectificador (5). Diode (15): Element that protects, once the nominal voltage of the storage subsystem (8) has been reached, from its discharge through the rectifier (5).
La figura 3 muestra una representación esquemática del circuito equivalente del sistema de captación y almacenamiento de energía eléctrica objeto de la presente invención, donde el captador o transformador de corriente (1) aparece representado mediante: Figure 3 shows a schematic representation of the equivalent circuit of the electrical energy collection and storage system object of the present invention, where the current collector or transformer (1) is represented by:
Is: corriente por el secundario del transformador; Is: current through the transformer secondary;
Lm: inductancia de magnetización del transformador; Lm: magnetization inductance of the transformer;
R: resistencia en el bobinado del secundario del transformador; R: resistance in the transformer secondary winding;
Ld: inductancia de dispersión del transformador; Ld: leakage inductance of the transformer;
La corriente en el secundario del transformador de corriente (1) (es decir, la corriente por el segundo conductor (3)) tiene un valor: ls=lp/N, donde Ip es la corriente de la fuente de energía primaria de AC (la corriente residual en el al menos un primer conductor (2) de corriente residual), y donde N es el número de espiras del secundario del transformador de corriente. The current in the secondary of the current transformer (1) (that is, the current through the second conductor (3)) has a value: ls = lp / N, where Ip is the current of the primary AC power source ( the residual current in the at least one first residual current conductor (2)), and where N is the number of turns of the secondary of the current transformer.
La figura 4 muestra una representación esquemática de algunos detalles constructivos del transformador de corriente (1), que tiene una geometría aproximadamente toroidal. A continuación se menciona un listado de algunos parámetros propios del transformador de corriente (1), donde: Figure 4 shows a schematic representation of some construction details of the current transformer (1), which has an approximately toroidal geometry. Below is a list of some parameters of the current transformer (1), where:
De: diámetro exterior del secundario del transformador de corriente (1), estando dicho bobinado del secundario arrollado alrededor del núcleo (4) del transformador de corriente (1);
Di: diámetro interior del secundario del transformador de corriente (1), estando dicho bobinado del secundario arrollado alrededor del núcleo (4) del transformador de corriente (1); From: outer diameter of the secondary of the current transformer (1), said secondary winding being wound around the core (4) of the current transformer (1); Di: inner diameter of the secondary of the current transformer (1), said secondary winding being wound around the core (4) of the current transformer (1);
Lh: longitud del núcleo (4) toroidal del transformador de corriente (1); Lh: length of the toroidal core (4) of the current transformer (1);
Bsat: inducción de saturación del núcleo (4) del transformador de corriente (1); Bsat: saturation induction of the core (4) of the current transformer (1);
Hsat: intensidad de campo magnético de saturación del núcleo (4) del transformador de corriente (1); Hsat: intensity of the saturation magnetic field of the core (4) of the current transformer (1);
Dcu: diámetro del segundo conductor (3) del transformador de corriente (1); lee: corriente de cortocircuito del secundario del transformador de corriente (1), y; Dcu: diameter of the second conductor (3) of the current transformer (1); reads: short-circuit current of the secondary of the current transformer (1), and;
- Voc: tensión a circuito abierto del secundario del transformador de corriente (1). - Voc: open circuit voltage of the secondary of the current transformer (1).
El problema de diseño del sistema de captación y almacenamiento de energía eléctrica parte de la necesaria conversión de la entrada primaria de energía en corriente continua (DC) y la salida de esta en forma de energía en DC adecuada para la alimentación de la carga (10). En un caso particular, la fuente primaria es la malla de tierra (en vez de la malla de tierra se contempla el uso de corrientes de fase; si dichas corrientes de fase son elevadas, la energía disponible es grande y se puede utilizar de manera ininterrumpida una carga (10) a la salida, sin esperas; sin embargo, si las corrientes de fase fueran muy variables o muy bajas nos encontraríamos en la misma situación que con la malla de tierra) de una instalación eléctrica de baja, media o alta tensión, cuyas corrientes oscilan entre los 4 y los 7 A (la tensión del sistema eléctrico es la que genera la corriente por la malla de tierra, así, en alta tensión habrá corrientes altas (> 7 A) y en baja tensión, corrientes bajas (<4 A)), según ubicaciones y sistemas de tierra utilizados. No obstante, se podría tener valores diferentes de corriente que llevarían a un diseño del transformador de corriente (1) adecuado a esa fuente primaria. En este sentido no hay restricciones técnicas para la corriente de entrada al transformador de corriente (1). The design problem of the electrical energy capture and storage system starts from the necessary conversion of the primary energy input into direct current (DC) and its output in the form of DC energy suitable for powering the load (10 ). In a particular case, the primary source is the earth mesh (instead of the earth mesh, the use of phase currents is contemplated; if these phase currents are high, the available energy is large and can be used without interruption a load (10) at the output, without waiting; however, if the phase currents were very variable or very low we would find ourselves in the same situation as with the ground mesh) of a low, medium or high voltage electrical installation , whose currents range between 4 and 7 A (the voltage of the electrical system is the one that generates the current through the earth mesh, thus, in high voltage there will be high currents (> 7 A) and in low voltage, low currents ( <4 A)), according to locations and ground systems used. However, one could have different current values that would lead to a design of the current transformer (1) suitable for that primary source. In this sense, there are no technical restrictions for the input current to the current transformer (1).
La ventaja principal del presente sistema de captación y almacenamiento de energía eléctrica es su capacidad de aprovechar la energía de bajas intensidades alternas, almacenando la
energía eléctrica durante un tiempo mucho mayor en comparación con el tiempo o energía a utilizar a una potencia dada. The main advantage of the present system for capturing and storing electrical energy is its ability to take advantage of the energy of low alternating intensities, storing the electrical energy for a much longer time compared to the time or energy to be used at a given power.
Según un posible ejemplo de realización, dicha carga (10) se utiliza durante un tiempo de 40 segundos, cada 30 minutos, y consume una potencia de 10 W, a un nivel de tensión de 5 V (DC). La energía necesaria para el funcionamiento de la carga (10) se extrae del subsistema de almacenamiento (8) y proviene de la fuente primaria de AC a 50 Hz, con corrientes de entre 4 y 7 A. No obstante, se puede contemplar el caso de fuentes primarias con intensidades de corriente mayores en las que se dispone de más energía y por tanto se puede suministrar potencia durante más tiempo a la carga (10); es cuestión de definir el ciclo de trabajo de la carga (10). According to a possible embodiment, said load (10) is used for a time of 40 seconds, every 30 minutes, and consumes a power of 10 W, at a voltage level of 5 V (DC). The energy necessary for the operation of the load (10) is extracted from the storage subsystem (8) and comes from the primary source of AC at 50 Hz, with currents between 4 and 7 A. However, the case can be considered from primary sources with higher current intensities in which more energy is available and therefore power can be supplied for a longer time to the load (10); it is a matter of defining the duty cycle of the load (10).
En lo que se refiere a la energía disponible en la fuente primaria, para una intensidad alterna del primario, el problema es diseñar un acoplamiento inductivo con una Voc y una lee máximas determinadas, dimensionando Ih, Di, De, N, deu, y, por otra parte, seleccionando el material nanocristalino del núcleo (4) (lo cual determina Bsaty Hsat; se necesita que Hsat sea lo menor posible y que Bsat sea lo mayor posible (es así en los núcleos (4) nanocristalinos); de esta manera, se consigue el máximo de energía en el secundario del transformador de corriente (1))· Regarding the energy available in the primary source, for an alternating intensity of the primary, the problem is to design an inductive coupling with a determined maximum Voc and a read, dimensioning Ih, Di, De, N, deu, y, on the other hand, selecting the nanocrystalline material of the nucleus (4) (which determines Bsaty Hsat; it is necessary that Hsat be as low as possible and that Bsat be as high as possible (this is the case in nanocrystalline nuclei (4)); in this way , the maximum energy is achieved in the secondary of the current transformer (1))
La tensión de salida del transformador de corriente (1) en circuito abierto (tanto la de pico como la eficaz) determina la tensión máxima que debe soportar la entrada del rectificador (5) y, también, después de rectificada, la tensión del bus (6) de continua y, por consiguiente, el número de supercondensadores (7) en serie que resultan adecuados para no dañarlos. Por otro lado, la máxima tensión del bus (6) de continua determina la tensión de entrada del primer convertidor DC/DC (9) que alimenta a la carga (10), lo que indica que la salida y la entrada del sistema de captación y almacenamiento de energía eléctrica están totalmente relacionadas en el diseño. The output voltage of the current transformer (1) in open circuit (both peak and effective) determines the maximum voltage that the rectifier input (5) must withstand and, after rectification, the bus voltage ( 6) of continuous and, consequently, the number of supercapacitors (7) in series that are adequate to avoid damaging them. On the other hand, the maximum DC bus voltage (6) determines the input voltage of the first DC / DC converter (9) that supplies the load (10), which indicates that the output and input of the feedback system and electrical energy storage are totally related in design.
La inductancia de magnetización, Lm, del transformador de corriente (1) debe ser lo más elevada posible para que la energía no se consuma en la magnetización del núcleo (4) y no llegue al secundario. Para ello se emplean materiales de alta permeabilidad magnética, preferentemente con una estructura interna nanocristalina. Las variables eléctricas que definen el diseño del transformador de corriente (1) a la hora de proporcionar energía son su tensión de circuito abierto, Voc, y su corriente de cortocircuito, lee, que, a su vez, definen las
dimensiones del núcleo (4) y la permeabilidad necesaria para tener una Lm reducida. También es importante que el material nanocristalino tenga unos valores de inducción, Bsat, y de intensidad de campo, Hsat, en el codo de saturación adecuados a los que se necesitan en situación de circuito abierto (el peor caso) y así no saturar el material. The magnetization inductance, Lm, of the current transformer (1) must be as high as possible so that the energy is not consumed in the magnetization of the core (4) and does not reach the secondary. For this, materials with high magnetic permeability are used, preferably with an internal nanocrystalline structure. The electrical variables that define the design of the current transformer (1) when providing power are its open circuit voltage, Voc, and its short circuit current, read, which, in turn, define the dimensions of the core (4) and the permeability necessary to have a reduced Lm. It is also important that the nanocrystalline material has induction values, Bsat, and field intensity, Hsat, at the saturation elbow adequate to those needed in an open circuit situation (the worst case) and thus not saturate the material. .
Una vez obtenidos los parámetros del transformador de corriente (1) y conociendo los requerimientos de la carga (10), se puede obtener el circuito equivalente de cada caso particular. Se puede modificar el número de supercondensadores (7), lo cual conlleva cambios en la tensión de entrada del primer convertidor DC/DC (9). No obstante, lo más razonable es tener un diseño de circuito equivalente adaptado para unos niveles de corriente de la fuente primaria y, variando el número de supercondensadores (7) del subsistema de almacenamiento (8) y eligiendo entre distintos posibles primeros convertidores DC/DC (9), poder proporcionar energía a una gama de cargas (10) diferentes. Once the parameters of the current transformer (1) have been obtained and knowing the requirements of the load (10), the equivalent circuit of each particular case can be obtained. The number of supercapacitors (7) can be modified, which leads to changes in the input voltage of the first DC / DC converter (9). However, the most reasonable thing is to have an equivalent circuit design adapted for current levels of the primary source and, varying the number of supercapacitors (7) of the storage subsystem (8) and choosing between different possible first DC / DC converters (9), to be able to provide power to a range of different loads (10).
En resumen, el transformador de corriente (1) se diseña para conseguir extraer la mayor cantidad posible de energía con el mínimo coste y dimensiones. Su salida, tensión máxima (en circuito abierto, Voc), y la corriente máxima (en cortocircuito, lee), definen el rectificadorIn summary, the current transformer (1) is designed to extract the greatest possible amount of energy with the minimum cost and dimensions. Its output, maximum voltage (in open circuit, Voc), and maximum current (in short circuit, read), define the rectifier
(5) y, a su vez, las tensiones del bus (6) de continua y la corriente de carga de los supercondensadores (7). Asimismo, dicha tensión es la de entrada del primer convertidor DC/DC (9) de alimentación a la carga (10). (5) and, in turn, the DC bus voltages (6) and the load current of the supercapacitors (7). Likewise, said voltage is the input voltage of the first DC / DC converter (9) supplying the load (10).
Teniendo en cuenta todas las restricciones, la definición del rectificador (5) está totalmente relacionada con el transformador de corriente (1). Para unos parámetros del transformador de corriente (1) dados y eligiendo adecuadamente el rectificador (5), se pueden lograr rendimientos de conversión de aproximadamente un 99 %. Taking into account all the restrictions, the definition of the rectifier (5) is totally related to the current transformer (1). For given parameters of the current transformer (1) and by properly choosing the rectifier (5), conversion efficiencies of approximately 99% can be achieved.
A continuación, de acuerdo con el rectificador (5) y el transformador de corriente (1) diseñados, es muy importante diseñar correctamente la batería de supercondensadores (7) del subsistema de almacenamiento (8) (bus (6) de continua), ya que es el elemento que almacena la energía necesaria para el funcionamiento de la carga (10) de acuerdo con el ciclo de trabajo asignado. Next, according to the designed rectifier (5) and current transformer (1), it is very important to correctly design the supercapacitor battery (7) of the storage subsystem (8) (DC bus (6)), since which is the element that stores the energy necessary for the operation of the load (10) according to the assigned duty cycle.
Lo fundamental es el número de supercondensadores (7) que deben implementarse en el busThe fundamental thing is the number of supercapacitors (7) that must be implemented in the bus
(6) de continua o batería, su capacidad, su tensión en estado cargado y descargado y su resistencia serie. Sin embargo, dependiendo de la conexión de estos supercondensadores
(7), en paralelo o en serie, las tensiones y las corrientes del subsistema de almacenamiento(6) DC or battery, its capacity, its voltage in the charged and discharged state and its series resistance. However, depending on the connection of these supercapacitors (7), in parallel or in series, the voltages and currents of the storage subsystem
(8) son diferentes y están relacionadas entre sí y con el tiempo de carga de la batería de supercondensadores (7). Por ello, es importante su definición de acuerdo con las características de la carga (10) mencionada y la fuente de energía primaria disponible. Por ejemplo, a mayor número de supercondensadores (7) en serie, mayor será la tensión que se alcance en el bus (6) de continua, pero también se tardará más en conseguir esa carga total. Asimismo, la tensión del bus (6) afectará al diseño del rectificador (5) (corrientes y tensiones) y del transformador de corriente (1), la tensión tras el rectificador (5), así como la energía requerida determina la capacidad total necesaria. (8) are different and are related to each other and to the charging time of the supercapacitor battery (7). Therefore, it is important to define it according to the characteristics of the load (10) mentioned and the primary energy source available. For example, the greater the number of supercapacitors (7) in series, the higher the voltage that will be reached on the DC bus (6), but it will also take longer to achieve that total load. Likewise, the bus voltage (6) will affect the design of the rectifier (5) (currents and voltages) and the current transformer (1), the voltage behind the rectifier (5), as well as the energy required determines the total capacity required. .
Para el caso de una carga (10) que precisa de una energía de 600 J para su funcionamiento, y habiendo definido el bus (6) de continua para que sus tensiones máxima y mínima sean respectivamente de 25 V y 6.5 V, la capacidad necesaria para poder atender los mencionados ciclos de trabajo y reposo de la carga (10) debe ser de 2.06 F. A partir de este dato de capacidad, se puede elegir el tipo y número de supercondensadores (7) que han de disponerse en serie o en paralelo para el almacenamiento de la energía requerida, teniendo en cuenta los ciclos de trabajo en los que debe suministrarse dicha energía, para lo cual hay que tener en cuenta también la resistencia interna de los supercondensadores (7) (que influye en el tiempo de carga). For the case of a load (10) that requires an energy of 600 J for its operation, and having defined the DC bus (6) so that its maximum and minimum voltages are respectively 25 V and 6.5 V, the necessary capacity To be able to attend to the aforementioned work and rest cycles of the load (10) it must be 2.06 F. From this capacity data, it is possible to choose the type and number of supercapacitors (7) to be arranged in series or in parallel for the storage of the required energy, taking into account the work cycles in which said energy must be supplied, for which the internal resistance of the supercapacitors (7) must also be taken into account (which influences the charging time ).
Utilizando un sistema de ecualización de tensiones en cada supercondensador (7), se pueden igualar las tensiones a las que se someten los supercondensadores (7), mejorando con ello el rendimiento del subsistema de almacenamiento (8).
Using a voltage equalization system in each supercapacitor (7), the voltages to which the supercapacitors (7) are subjected can be equalized, thereby improving the performance of the storage subsystem (8).
Claims
1. Sistema de captación y almacenamiento de energía eléctrica caracterizado por que comprende: 1. Electric energy capture and storage system characterized by comprising:
- un transformador de corriente (1), que comprende un núcleo (4) anular configurado para abrazar al menos un primer conductor (2) eléctrico que constituye un circuito primario del transformador de corriente (1), donde el transformador de corriente (1) comprende un segundo conductor (3) bobinado que constituye un circuito de secundario del transformador de corriente (1), donde el segundo conductor (3) está arrollado al núcleo (4) anular; - a current transformer (1), comprising an annular core (4) configured to embrace at least one first electrical conductor (2) that constitutes a primary circuit of the current transformer (1), where the current transformer (1) It comprises a second conductor (3) wound that constitutes a secondary circuit of the current transformer (1), where the second conductor (3) is wound to the annular core (4);
- un rectificador (5) que comprende una entrada configurada para una conexión con un circuito AC y una salida configurada para una conexión con un circuito DC, donde la entrada del rectificador (5) está conectada al circuito secundario del transformador de corriente (1) y donde la salida del rectificador (5) está conectada a un bus (6) de corriente continua; - a rectifier (5) comprising an input configured for a connection with an AC circuit and an output configured for a connection with a DC circuit, where the input of the rectifier (5) is connected to the secondary circuit of the current transformer (1) and where the output of the rectifier (5) is connected to a direct current bus (6);
- un subsistema de almacenamiento (8) de energía eléctrica, conectado al bus (6) de corriente continua; - an electrical energy storage subsystem (8), connected to the direct current bus (6);
- un primer convertidor DC/DC (9) que comprende una entrada conectada al bus (6) de corriente continua y una salida configurada para conectarse a una carga (10) eléctrica a alimentar; donde el sistema de captación y almacenamiento de energía eléctrica está configurado para captar la energía eléctrica inherente a una corriente AC circulante por el circuito primario del transformador de corriente (1), almacenando dicha energía en el subsistema de almacenamiento (8) de energía eléctrica, y entregando dicha energía almacenada a una carga (10) eléctrica conectada a la salida del primer convertidor DC/DC (9).
- a first DC / DC converter (9) comprising an input connected to the direct current bus (6) and an output configured to connect to an electrical load (10) to be supplied; where the electrical energy capture and storage system is configured to capture the electrical energy inherent to a circulating AC current through the primary circuit of the current transformer (1), storing said energy in the electrical energy storage subsystem (8), and delivering said stored energy to an electrical load (10) connected to the output of the first DC / DC converter (9).
2. Sistema de captación y almacenamiento de energía eléctrica según la reivindicación 1 , caracterizado por que el bus (6) de corriente continua comprende un diodo (15) a la salida del rectificador (5), de tal forma que dicho diodo (15) permite el paso de corriente eléctrica desde el rectificador (5) hacia el subsistema de almacenamiento (8) e impide el paso de corriente en sentido inverso desde el subsistema de almacenamiento (8) hacia el rectificador (5), evitando así que se descargue el subsistema de almacenamiento (8) cuando la tensión en el bus (6) de corriente continua desciende por debajo de un valor predeterminado que produce una polarización inversa del diodo (15). 2. System for capturing and storing electrical energy according to claim 1, characterized in that the direct current bus (6) comprises a diode (15) at the output of the rectifier (5), in such a way that said diode (15) allows the passage of electrical current from the rectifier (5) to the storage subsystem (8) and prevents the passage of current in the reverse direction from the storage subsystem (8) to the rectifier (5), thus preventing the discharge of the storage subsystem (8) when the voltage on the DC bus (6) falls below a predetermined value causing a reverse bias of the diode (15).
3. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de almacenamiento (8) comprende un supercondensador (7). 3. Electrical energy capture and storage system according to any of the preceding claims, characterized in that the storage subsystem (8) comprises a supercapacitor (7).
4. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de almacenamiento (8) comprende una pluralidad de supercondensadores (7). 4. System for capturing and storing electrical energy according to any of the preceding claims, characterized in that the storage subsystem (8) comprises a plurality of supercapacitors (7).
5. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende un conmutador de cortocircuito (14) en el bus (6) de corriente continua, configurado para cortocircuitar el bus (6) de corriente continua a la salida del rectificador (5). 5. Electrical energy collection and storage system according to any of the preceding claims, characterized in that it comprises a short-circuit switch (14) on the direct current bus (6), configured to short-circuit the direct current bus (6) to the output of the rectifier (5).
6. Sistema de captación y almacenamiento de energía eléctrica según la reivindicación 5, caracterizado por que comprende un módulo de control (11) que a su vez comprende un microprocesador (12) y un segundo convertidor DC/DC (13), donde el microprocesador (12) está conectado a la salida del primer convertidor DC/DC (9) a través del segundo convertidor DC/DC (13), donde el módulo de control (11) está configurado para efectuar lecturas de tensión y corriente eléctrica en el bus (6) de corriente continua a la salida del rectificador (5) y activar el cierre del conmutador de cortocircuito (14), si la tensión a la salida del rectificador (5) está por encima de un valor umbral de tensión máximo predeterminado, o su apertura, si está por debajo de un valor umbral de tensión mínimo predeterminado.
6. System for capturing and storing electrical energy according to claim 5, characterized in that it comprises a control module (11) which in turn comprises a microprocessor (12) and a second DC / DC converter (13), where the microprocessor (12) is connected to the output of the first DC / DC converter (9) through the second DC / DC converter (13), where the control module (11) is configured to take voltage and electrical current readings on the bus (6) of direct current at the output of the rectifier (5) and activate the closing of the short-circuit switch (14), if the voltage at the output of the rectifier (5) is above a predetermined maximum voltage threshold value, or its opening, if it is below a predetermined minimum voltage threshold value.
7. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que el núcleo (4) del transformador de corriente (1) está hecho de un material que tiene una estructura nanocristalina. 7. System for capturing and storing electrical energy according to any of the preceding claims, characterized in that the core (4) of the current transformer (1) is made of a material having a nanocrystalline structure.
8. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que el núcleo (4) del transformador de corriente (1) comprende una geometría toroidal. 8. System for capturing and storing electrical energy according to any of the preceding claims, characterized in that the core (4) of the current transformer (1) comprises a toroidal geometry.
9. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado por que el rectificador (5) es de puente completo. 9. System for capturing and storing electrical energy according to any of the preceding claims, characterized in that the rectifier (5) is full-bridge.
10. Sistema de captación y almacenamiento de energía eléctrica según cualquiera de las reivindicaciones 4 a 9, caracterizado por que el subsistema de almacenamiento (8) comprende un sistema de ecualización de tensiones en cada supercondensador (7) que permite igualar las tensiones a las que se someten los supercondensadores (7).
10. System for capturing and storing electrical energy according to any of claims 4 to 9, characterized in that the storage subsystem (8) comprises a voltage equalization system in each supercapacitor (7) that allows equalizing the voltages to which supercapacitors (7) are subjected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2020/070313 WO2021229113A1 (en) | 2020-05-15 | 2020-05-15 | System for the capture and storage of electrical energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2020/070313 WO2021229113A1 (en) | 2020-05-15 | 2020-05-15 | System for the capture and storage of electrical energy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229113A1 true WO2021229113A1 (en) | 2021-11-18 |
Family
ID=78525376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2020/070313 WO2021229113A1 (en) | 2020-05-15 | 2020-05-15 | System for the capture and storage of electrical energy |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021229113A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150214746A1 (en) * | 2012-08-17 | 2015-07-30 | Mariano Lopez Gomez | Energy harvesting system and methods |
EP2966752A1 (en) * | 2014-07-09 | 2016-01-13 | Paresh Jogia | Body heat powered wireless transmitter |
US20170199533A1 (en) * | 2016-01-11 | 2017-07-13 | Electric Power Research Institute Inc. | Energy harvesting device |
EP3444828A1 (en) * | 2017-08-18 | 2019-02-20 | Rosemount Aerospace Inc. | Electromagnetic energy harvester for aircraft applications |
KR102066560B1 (en) * | 2019-06-18 | 2020-01-15 | 주식회사 케이디파워 | Wireless current and temperature monitoring system for energy harvesting |
US20200075235A1 (en) * | 2018-08-31 | 2020-03-05 | S&C Electric Company | Spiral core current transformer for energy harvesting applications |
US20200091721A1 (en) * | 2018-09-18 | 2020-03-19 | Sentient Energy, Inc. | Systems and methods to maximize power from multiple power line energy harvesting devices |
-
2020
- 2020-05-15 WO PCT/ES2020/070313 patent/WO2021229113A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150214746A1 (en) * | 2012-08-17 | 2015-07-30 | Mariano Lopez Gomez | Energy harvesting system and methods |
EP2966752A1 (en) * | 2014-07-09 | 2016-01-13 | Paresh Jogia | Body heat powered wireless transmitter |
US20170199533A1 (en) * | 2016-01-11 | 2017-07-13 | Electric Power Research Institute Inc. | Energy harvesting device |
EP3444828A1 (en) * | 2017-08-18 | 2019-02-20 | Rosemount Aerospace Inc. | Electromagnetic energy harvester for aircraft applications |
US20200075235A1 (en) * | 2018-08-31 | 2020-03-05 | S&C Electric Company | Spiral core current transformer for energy harvesting applications |
US20200091721A1 (en) * | 2018-09-18 | 2020-03-19 | Sentient Energy, Inc. | Systems and methods to maximize power from multiple power line energy harvesting devices |
KR102066560B1 (en) * | 2019-06-18 | 2020-01-15 | 주식회사 케이디파워 | Wireless current and temperature monitoring system for energy harvesting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6348175B2 (en) | Circuit devices for series voltage supply, use of such circuit devices and devices having such circuit devices | |
ES2910698T3 (en) | Installation for supplying auxiliary equipment in power generation plants | |
US8994217B2 (en) | Energy storage system | |
ES2322406T3 (en) | HIGH EFFICIENCY LIGHTING SYSTEM. | |
KR101084214B1 (en) | Grid-connected energy storage system and method for controlling grid-connected energy storage system | |
ES2521040T3 (en) | Load balancing system for batteries | |
ES2962988T3 (en) | Battery-powered ground power unit with improved construction, durability and maintenance | |
Kutkut | Nondissipative current diverter using a centralized multi-winding transformer | |
ES2948084T3 (en) | Method and arrangement for charging vehicle batteries | |
EP3317936B1 (en) | Power transmission arrangement and method for operating a power transmission arrangement | |
ES2926686T3 (en) | Charging station with high frequency distribution network | |
WO2021229113A1 (en) | System for the capture and storage of electrical energy | |
CN211183508U (en) | Power supply control device | |
BR102016009787B1 (en) | METHOD FOR CONTROLLING THE POWER FLOW OF A HYBRID ELECTRIC ENERGY STORAGE SYSTEM, ASSOCIATED DEVICE AND USES | |
CN201015172Y (en) | Suspending type induction power source | |
CN207426665U (en) | Current transformer and its secondary side protective arrangement for limiting output voltage | |
ES2874544T3 (en) | Power conversion system, power supply system, and power conversion apparatus | |
CN212849970U (en) | Uninterruptible power supply and power supply system | |
KR101058351B1 (en) | Circuit for controlling battery's charge/discharge with regulator and inverter | |
CN219420734U (en) | Active harmonic pulse generating device and storage battery protection circuit | |
US20240258809A1 (en) | Mobile power supply system comprising cascaded multi-level inverter | |
ES2344938T3 (en) | PROCEDURE AND DEVICE TO GUARANTEE THE SUPPLY OF ENERGY IN AUTONOMOUS FACILITIES. | |
ES2888251A1 (en) | GEO (ELECTRONIC OPTIMIZED MANAGEMENT OF ELECTRICAL ENERGY) (Machine-translation by Google Translate, not legally binding) | |
WO2018027495A1 (en) | Storage battery life protection circuit for electronic device | |
CN116826982A (en) | Energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20935304 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20935304 Country of ref document: EP Kind code of ref document: A1 |