WO2021228175A1 - 功率控制方法、装置、服务节点、终端及存储介质 - Google Patents
功率控制方法、装置、服务节点、终端及存储介质 Download PDFInfo
- Publication number
- WO2021228175A1 WO2021228175A1 PCT/CN2021/093503 CN2021093503W WO2021228175A1 WO 2021228175 A1 WO2021228175 A1 WO 2021228175A1 CN 2021093503 W CN2021093503 W CN 2021093503W WO 2021228175 A1 WO2021228175 A1 WO 2021228175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- terminal
- configuration information
- information
- grouping
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000005540 biological transmission Effects 0.000 claims abstract description 63
- 230000011664 signaling Effects 0.000 claims description 25
- 230000008054 signal transmission Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 19
- 230000033001 locomotion Effects 0.000 description 17
- 239000000969 carrier Substances 0.000 description 13
- 230000015654 memory Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/46—TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
- H04W72/232—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- This application relates to a wireless communication network, for example, to a power control method, device, service node, terminal, and storage medium.
- NTN Non-Terrestrial Network
- the beams constantly move or switch due to satellite motion, which makes the link quality of the terminal sending uplink signals constantly changing, and the beams of different types of satellites affect the link quality It is also different, and the transmit power of the uplink signal sent by the terminal cannot be flexibly adjusted. If the transmit power is too high, unnecessary power consumption will be wasted, and if it is too low, the transmission quality of the uplink signal cannot be guaranteed. Since the transmission power cannot dynamically adapt to the moving or switched beam, the power control flexibility is poor, which seriously affects the communication quality and reliability.
- This application provides a power control method, device, service node, terminal, and storage medium to improve the flexibility of power control and improve communication quality.
- the embodiment of the present application provides a power control method, which is applied to a serving node, and includes:
- the uplink data is received, and the transmission power of the uplink data is determined by the terminal according to the configuration information.
- the embodiment of the present application also provides a power control method, which is applied to a terminal, and includes:
- configuration information where the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer
- the transmission power is determined according to the configuration information, and the uplink data is transmitted according to the transmission power.
- An embodiment of the present application also provides a power control device, including:
- the power indicating module is configured to send configuration information, where the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer;
- the data receiving module is configured to receive uplink data, and the transmission power of the uplink data is determined by the terminal according to the configuration information.
- An embodiment of the present application also provides a power control device, including:
- the information receiving module is configured to receive configuration information, where the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer;
- the power control module is configured to determine the transmission power according to the configuration information, and send uplink data according to the transmission power.
- the embodiment of the present application also provides a service node, including:
- One or more processors are One or more processors;
- Storage device for storing one or more programs
- the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the above-mentioned power control method applied to the service node.
- the embodiment of the present application also provides a communication node, including:
- One or more processors are One or more processors;
- Storage device for storing one or more programs
- the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the aforementioned power control method applied to the terminal.
- the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
- the program is executed by a processor, the above-mentioned power control method applied to a service node or power control applied to a terminal is implemented. method.
- FIG. 1 is a flowchart of a power control method provided by an embodiment
- FIG. 2 is a schematic diagram of power control of a single beam of a low-orbit satellite according to an embodiment
- FIG. 3 is a schematic diagram of power control of a low-orbit satellite fixed beam provided by an embodiment
- FIG. 4 is a schematic diagram of power control for multi-beam switching of a low-orbit satellite according to an embodiment
- FIG. 5 is a schematic diagram of power control of a single beam of a synchronous earth orbiting satellite according to an embodiment
- FIG. 6 is a schematic diagram of power control for multi-beam switching of a synchronous earth orbiting satellite according to an embodiment
- FIG. 7 is a flowchart of a power control method provided by another embodiment
- FIG. 8 is a schematic structural diagram of a power control device provided by an embodiment
- FIG. 9 is a schematic structural diagram of a power control device provided by another embodiment.
- FIG. 10 is a schematic diagram of the hardware structure of a service node provided by an embodiment
- FIG. 11 is a schematic diagram of the hardware structure of a terminal provided by an embodiment.
- the satellite In the NTN system, the satellite is mobile. The coverage area of the beam or cell will move with the movement of the satellite, and the beam will continue to move or switch, making the link quality of the terminal sending the uplink signal constantly changing and different. The influence of the beam of the type of satellite on the link quality is also different. Since the transmitting power of the terminal cannot dynamically adapt to the moving or switched beam, the flexibility of power control is poor, which seriously affects the communication quality and reliability.
- a power parameter set is preconfigured by the serving node and indicated to the terminal, and on this basis, a flexible indication and control of the terminal's transmit power is realized.
- Fig. 1 is a flowchart of a power control method provided by an embodiment.
- the power control method can be applied to a serving node, such as a base station.
- the method provided in this embodiment includes step 110 and step 120.
- step 110 configuration information is sent, and the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer.
- step 120 uplink data is received, and the transmission power of the uplink data is determined by the terminal according to the configuration information.
- the serving node pre-configures N sets of power parameter sets and indicates them to the terminal through configuration information. These N sets of power parameter sets are for the terminal to select and apply under different reference signals or carrier-associated beams, as calculation uplink data The basis of transmit power.
- the corresponding relationship between the N sets of power parameter sets and different beams different reference signals or different carriers may also be indicated.
- the first set of power parameters corresponds to the first beam.
- the two sets of power parameters correspond to the second beam.
- the terminal uses the first beam (using the first beam as the service beam) to transmit uplink data
- the corresponding transmit power on the first beam can be calculated based on the first set of power parameters
- the terminal uses the second beam (the first beam is used as the service beam).
- the corresponding transmit power on the second beam can be calculated based on the second set of power parameters.
- the terminal can also change the adopted power parameter set according to the instructions of the configuration information to accurately calculate the transmission power and adapt to the movement of the beam. Switch.
- the serving node instructs the terminal with a set of pre-configured power parameters through configuration information to provide a basis for the terminal to calculate the transmission power. On this basis, it realizes flexible indication and control of the terminal transmission power and improves the reliability of power control.
- N sets of power parameters are associated with L beams, where L is a positive integer.
- the serving beam is used to transmit uplink data.
- the terminal can select a corresponding set of power parameters according to the serving beam, and calculate the transmit power of the uplink data accordingly.
- the N sets of power parameters and the L beams may correspond to each other in a certain order, or may have other association relationships, and are indicated to the terminal by the serving node.
- each beam is represented by one of the following: one reference signal; one carrier; one spatial transmission resource; wherein, the spatial transmission resource includes one of the following: antenna port; codebook; transmission layer.
- the serving node generates different reference signals or different carriers, where the generated carriers may include anchor carriers (Anchor Carrier) and non-anchor carriers (Non-Anchor Carrier), and anchor carriers are used to transmit narrowbands Primary synchronization signal, narrowband auxiliary synchronization signal, narrowband physical broadcast channel or narrowband system information block, etc.
- Anchor Carrier anchor carriers
- Different beams can be distinguished by associated different reference signals or different carriers.
- the serving node indicates the index values of different reference signals or different carriers to the terminal for distinguishing different beams, so as to realize the power parameter set of different beams. Accurate instructions.
- Different beams can also be distinguished by different spatial transmission resources. For example, different beams correspond to different antenna ports, different codebooks, or different transmission layers.
- the configuration information is sent through one of the following signaling: broadcast message; radio resource control (Radio Resource Control, RRC) signaling; medium access control layer control element (Medium Access Control, Control Element, MAC CE) ) Signaling; Downlink Control Information (DCI).
- RRC Radio Resource Control
- DCI Downlink Control Information
- the power parameter set includes at least one of the following: power reference value; partial power compensation factor; downlink reference signal for measuring path loss; downlink reference signal transmission power; power offset.
- each power parameter set may include one or more of the following parameters: power reference value (PO_PUSCH); partial power compensation factor ( ⁇ ); downlink reference signal transmission power (rs-power); carrier The power offset (rs-PowerOffsetNonAnchor); the downlink reference signal for measuring path loss.
- the terminal may also obtain these power parameters in other ways, for example, pre-defined in the protocol, implicitly obtained according to the mapping relationship between other information indicated by the serving node and the power parameter set. According to these power parameters, the terminal can perform power compensation, offset adjustment, etc. on the basis of the power reference value, and calculate the corresponding transmit power under the serving beam in real time.
- the downlink reference signal used to measure the path loss may be different or the same, but the corresponding transmission power or fixed power offset is different.
- the serving node pre-configures and instructs the downlink reference signal used to measure the path loss, can clarify which beam is used as the serving beam, and provide a reliable basis for the terminal to apply the corresponding power parameter set.
- the serving node can indicate the index of the power parameter set to the terminal through System Information Blocks (SIB) or (Physical Broadcast Channel, PBCH), thereby indicating which power parameter set the terminal needs to use in the N sets of power parameters. Group power parameter collection.
- SIB System Information Blocks
- PBCH Physical Broadcast Channel
- the serving node can indicate the carrier index value corresponding to the beam through the bit field in the SIB. Different carriers are associated with different beams. Therefore, the terminal can determine the difference according to the mapping between the carrier (index value) and the beam. The power offset value of the Anchor or Non-Anchor carrier on the beam.
- it further includes:
- Step 130 Send power update indication information to the terminal according to the service beam switching information; or,
- Step 140 Send power update indication information to the terminal according to the uplink measurement result.
- the service beam may be a beam used for data transmission between the service node and the terminal, and the service beam switching refers to the switching of the service beam used for data transmission among the L beams.
- the serving node when the serving beam is switched from beam 1 to beam 2, the serving node sends power update indication information to the terminal to instruct the terminal to use the power parameter set associated with beam 2 to calculate the transmit power when the service beam is switched.
- the serving node will measure the path loss of the uplink channel for the new serving beam (beam 2), and send power update indication information to the terminal according to the uplink measurement result to indicate that the terminal is in the path loss
- the configuration information is further used to indicate an association relationship between N sets of power parameters and L beams.
- the serving node can also indicate to the terminal the association relationship between the N groups of power parameters and the L beams through the configuration information, that is, the i-th (1 ⁇ i ⁇ N) group of power parameter sets and the j-th (1 ⁇ N) group of power parameter sets are indicated to the terminal. j ⁇ L) the association relationship of the beams, so that the terminal can uniquely determine which set of power parameters to use under different service beams.
- it further includes:
- Step 101 Send first grouping indication information, where the first grouping indication information includes grouping reference point information, and each grouping reference point corresponds to one grouping.
- the terminals in the network can be divided into one or more packets, and then the configuration information can be sent according to the packets, thereby saving signaling overhead and network resources, and improving the efficiency of indicating power parameter sets.
- the service node sends the first grouping indication information to the terminal, and the terminal can determine the group to which it belongs according to the first grouping indication information, and according to the indication of the configuration information, determine which group of power parameter sets it belongs to.
- the first grouping indication information includes grouping reference point information
- the grouping reference point information is, for example, the location of the terminal serving as the grouping reference point, the terminal identifier, and the like. For example, there are multiple terminals within the network coverage of the serving node. Among them, terminal A, terminal B, and terminal C are used as grouping reference points.
- the first grouping indication information includes the locations of terminal A, terminal B, and terminal C. A grouping indication information is sent to each target terminal, and the target terminal can determine that it belongs to the group of terminal A, the group of terminal B, or the group of terminal C based on this.
- the target terminal determines that the closest terminal in the group reference point is terminal B according to the received first grouping instruction information, the target terminal determines that it belongs to the group of terminal B; after the target terminal receives the configuration information, it can use the terminal
- the power parameter set corresponding to the group of B calculates the transmit power.
- it further includes:
- Step 102 Send second grouping indication information, where the second grouping indication information includes an area identifier, and each area corresponds to a group.
- the terminals in the network can be divided into one or more packets, and then the configuration information can be sent according to the packets, thereby saving signaling overhead and network resources, and improving the efficiency of indicating power parameter sets.
- the serving node sends the second grouping indication information to the terminal, and the terminal can determine the group to which it belongs according to the second grouping indication information, and according to the indication of the configuration information, determine which group of power parameter sets the group belongs to.
- the second grouping indication information includes an area identifier.
- the service node network coverage is divided into area A, area B, and area C, and the terminals in each area are divided into the same group.
- the second grouping indication information includes the area identifier of area A, area B, or area C.
- the serving node sends the second grouping indication information to each target terminal, and the target terminal can determine that it belongs to domain A, area B, or area C. Grouping. For example, if the target terminal determines that it is in area B according to the received second grouping indication information, the target terminal determines that it belongs to the group of area B; after receiving the configuration information, the target terminal can use the power parameter corresponding to the group of area B Calculate the transmit power collectively.
- step 120 specifically includes: separately sending to each of the groups the power parameter set associated with the corresponding group.
- the serving node sends configuration information to each group according to the group reference point or area, thereby indicating the power parameter set associated with each group, without sending the configuration information to each terminal within the network coverage. This saves signaling overhead and network resources, and improves the efficiency of indicating power parameter sets.
- Fig. 2 is a schematic diagram of power control of a single beam of a low-orbit satellite according to an embodiment. As shown in Figure 2, taking the case of a single beam movement of a Low Earth Orbit (LEO) satellite as an example, the power control process includes:
- the service node is pre-configured with the power parameter sets corresponding to different power control areas (area 1, area 2, area 3...area N) in the case of single beam movement, and the path loss under single beam movement has deviation;
- the serving node Before the beam moves to a specific area, the serving node (in groups) sends configuration information to the terminal.
- the configuration information may include the index value of the power parameter set and various power parameters;
- the terminal receives the configuration information and calculates the transmit power according to the power parameter set indicated by the configuration information.
- the difference in path loss in different areas can be adjusted by the partial power compensation factor ⁇ .
- Fig. 3 is a schematic diagram of power control of a low-orbit satellite fixed beam provided by an embodiment. As shown in Figure 3, taking the case of beam fixation under LEO satellite motion as an example, the process of power control includes:
- the service node pre-configures the power parameter sets of the beam in different directions (power parameter set 1, power parameter set 2...power parameter set N);
- the serving node sends the first grouping indication information according to the satellite ephemeris and the movement trajectory of the grouping reference point to indicate the position of the grouping reference point to the terminal;
- the terminal calculates the distance to each adjacent group reference point and selects the closest group reference point to determine the group to which it belongs;
- the serving node Before the beam orientation is changed, the serving node sends configuration information to each packet through the SIB or PBCH.
- the configuration information may include the index value of the power parameter set to distinguish beams of different orientations;
- the terminal receives the configuration information and uses the corresponding power parameter set to calculate the transmit power according to the group it belongs to.
- the path loss difference in different directions can be adjusted by the partial power compensation factor ⁇ .
- Fig. 4 is a schematic diagram of power control for multi-beam switching of a low-orbit satellite according to an embodiment. As shown in Figure 4, taking the case of multi-beam handover under LEO satellite motion as an example, the process of power control includes:
- the service node is pre-configured with different power parameter sets (power parameter set 1, power parameter set 2...power parameter set N), different power parameter sets correspond to different beams, and different beams are distinguished by different carriers;
- the serving node broadcasts the index values of different carriers (Anchor or Non-Anchor) to the terminal through SIB or PBCH to distinguish different beams;
- the serving node sends the first grouping indication information according to the satellite ephemeris and the movement trajectory of the reference point to indicate the position of the grouping reference point to the terminal;
- the terminal calculates the distance to each adjacent group reference point and selects the closest group reference point to determine the group to which it belongs;
- the serving node Before serving beam switching, the serving node sends configuration information to each packet to indicate a power parameter set, which includes a power reference value, a partial power compensation factor, a downlink reference signal transmit power, and a downlink reference signal for measuring path loss;
- the power offset of the carrier rs-PowerOffsetNonAnchor terminal can be obtained through the corresponding carrier index value mapping;
- the terminal receives the configuration information according to the group and calculates the transmission power, so as to realize the power control of all groups under the service beam switching.
- Fig. 5 is a schematic diagram of power control of a single beam of a synchronous earth orbiting satellite according to an embodiment. As shown in Figure 5, taking the case of a single beam under Geosynchronous Earth Orbit (GEO) satellite motion as an example, the beam coverage area is always fixed, and the power control process includes:
- GEO Geosynchronous Earth Orbit
- the serving node divides the beam coverage area into multiple areas, and sends the area identifier to the terminal under the corresponding area through the second grouping indication information;
- the serving node broadcasts the reference signal, and indicates the power parameter set to the terminal through configuration information
- the terminal receives the configuration information according to the grouping, and uses the power parameter set corresponding to the area to calculate the transmit power.
- the transmit power difference between different terminals can be adjusted by the partial power compensation factor ⁇ .
- the terminal is not anchored on the anchor carrier Anchor or Non-Anchor.
- the power deviation under a certain carrier is adjusted by the power offset rs-PowerOffsetNonAnchor parameter of the carrier.
- Fig. 6 is a schematic diagram of power control for multi-beam switching of a synchronous earth orbiting satellite provided by an embodiment. As shown in Figure 6, taking the case of beam switching under GEO satellite motion as an example, the beam coverage area is always fixed, and the power control process includes:
- the service node is pre-configured with different power parameter sets (power parameter set 1, power parameter set 2...power parameter set N), and different power parameter sets correspond to different beams;
- the service node generates different reference signals to distinguish different beams
- the serving node divides the beam coverage area into multiple areas, and sends the area identifier to the terminal under the corresponding area through the second grouping indication information;
- the service node Before the service beam switching, the service node indicates the power parameter set to the terminal through configuration information
- the terminal uses the power parameter set corresponding to the region to calculate the transmit power according to the received configuration information of the group, so as to realize the power control of all the groups under the service beam switching.
- the serving node implements the instruction and control of the terminal's transmit power by pre-configuring and instructing the power parameter set under beam movement and beam switching, improves the flexibility of power control, and ensures communication quality; the serving node generates different Reference signal or broadcast different carriers to distinguish beams to accurately indicate the corresponding power parameter set; the service node broadcasts the grouping reference point according to the satellite ephemeris and the reference point movement track, or indicates the area to realize the grouping of the terminal, according to the grouping Perform indication and power control, save signaling overhead, and improve the efficiency of indication and power control.
- a power control method is also provided, which is applied to a terminal, and the terminal is, for example, a User Equipment (UE).
- UE User Equipment
- FIG. 7 is a flowchart of a power control method provided by another embodiment. As shown in FIG. 7, the method provided in this embodiment includes step 210 and step 220.
- step 210 configuration information is received, where the configuration information is used to indicate N sets of power parameters, where N is a positive integer.
- step 220 the transmission power is determined according to the configuration information, and uplink data is transmitted according to the transmission power.
- the serving node pre-configures N sets of power parameter sets and indicates them to the terminal through configuration information.
- These N sets of power parameter sets provide reliable selection and application for the terminal under different beams, different reference signals, or different carriers. Basis.
- the terminal uses the corresponding power parameter set to calculate the transmit power, which can adapt to the movement or switching of the beam and realize the flexible control of the power.
- N sets of power parameters are associated with L beams, where L is a positive integer.
- each beam is represented by one of the following: one reference signal; one carrier; one spatial transmission resource; wherein, the spatial transmission resource includes one of the following: antenna port; codebook; transmission layer.
- the configuration information is received through one of the following signaling: broadcast message; RRC signaling; MAC CE signaling; DCI.
- the power parameter set includes at least one of the following: power reference value; partial power compensation factor; downlink reference signal for measuring path loss; downlink reference signal transmission power; power offset.
- it further includes:
- S230 Receive power update indication information, and adjust the transmit power according to the power update indication information; or,
- S240 Adjust the transmit power based on the power parameter set associated with the switched service beam according to the service beam switching information.
- the service beam may be a beam used for data transmission between the service node and the terminal, and the service beam switching refers to the switching of the service beam used for data transmission among the L beams.
- the terminal receives the power update indication information, it can update the transmit power by adjusting the parameters in the power parameter set (for example, adjusting the power compensation factor ⁇ from 0.7 to 1); it can also be in the case of service beam switching.
- the transmission power is recalculated using the power parameter set associated with the switched service beam, so as to realize the real-time update and adjustment of the transmission power, improve the flexibility and reliability of power control, and ensure the quality of data transmission.
- it further includes:
- S211 Determine an association relationship between N groups of power parameters and L beams according to the configuration information.
- it further includes:
- S250 Receive first grouping indication information, where the first grouping indication information includes grouping reference point information, and each grouping reference point corresponds to a grouping;
- S251 Determine the group to which the terminal belongs according to the first group indication information.
- the terminal may determine the group to which it belongs according to the first group indication information, and according to the indication of the configuration information, determine which group of power parameter sets the group belongs to. For example, the terminal can determine the closest grouping reference point according to the first grouping indication information, and use the group corresponding to the grouping reference point as the group described by itself. On this basis, it can determine which group to use from the configuration information according to the grouping. A set of power parameter sets, the serving node does not need to indicate the power parameter set to each terminal, which effectively reduces signaling overhead and improves the efficiency of indication and power control.
- it further includes:
- S260 Receive second grouping indication information, where the second grouping indication information includes an area identifier, and each area corresponds to a group;
- S261 Determine the group to which the terminal belongs according to the second group indication information.
- the terminal may determine the group to which it belongs according to the second group indication information, and according to the indication of the configuration information, determine which group of power parameter sets it belongs to in the group. For example, the terminal may determine the area where it is located according to the second grouping indication information, and use the group corresponding to the area as its own grouping. On this basis, it may determine which power parameter set to use from the configuration information according to the grouping. , The serving node does not need to indicate the power parameter set to each terminal, which effectively reduces the signaling overhead and improves the efficiency of indication and power control.
- it further includes:
- S270 Determine a power parameter set associated with the group to which the terminal belongs in the configuration information according to the group to which the terminal belongs.
- FIG. 8 is a schematic structural diagram of a power control device provided by an embodiment. As shown in FIG. 8, the power control device includes: a power indicating module 310 and a data receiving module 320.
- the power indicating module 310 is configured to send configuration information, where the configuration information is used to indicate N groups of power parameter sets, where N is a positive integer;
- the data receiving module 320 is configured to receive uplink data, and the transmission power of the uplink data is determined by the terminal according to the configuration information.
- the power control device of this embodiment provides a basis for the terminal to calculate the transmission power by indicating the pre-configured power parameter set to the terminal through configuration information, and on this basis, it realizes flexible indication and control of the terminal transmission power, and increases the power control. Reliability.
- N sets of power parameters are associated with L beams, where L is a positive integer.
- each beam is represented by one of the following: a reference signal; a carrier; and a spatial transmission resource.
- the airspace transmission resource includes one of the following: different antenna ports, different codebooks, and different transmission layers.
- the configuration information is sent through one of the following signaling: broadcast message; RRC signaling; MAC CE signaling; DCI.
- the power parameter set includes at least one of the following: power reference value; partial power compensation factor; downlink reference signal for measuring path loss; downlink reference signal transmission power; power offset.
- it further includes:
- the first update module is configured to send power update indication information to the terminal according to the service beam switching information; or,
- the second update module is configured to send power update indication information to the terminal according to the uplink measurement result.
- the configuration information is further used to indicate the association relationship between the N sets of power parameters and the L beams.
- it further includes:
- the first grouping indication module is configured to send first grouping indication information, where the first grouping indication information includes grouping reference point information, and each grouping reference point corresponds to a grouping.
- it further includes:
- the second grouping indication module is configured to send second grouping indication information, where the second grouping indication information includes an area identifier, and each area corresponds to a group.
- the power indicator module is specifically configured to:
- the power parameter set associated with the corresponding group is sent to each of the groups respectively.
- the power control device proposed in this embodiment belongs to the same inventive concept as the power control method applied to the service node proposed in the above embodiment.
- the power control method applied to the service node proposed in the above embodiment For technical details not described in detail in this embodiment, please refer to any of the above embodiments, and this embodiment has It has the same beneficial effects as performing the power control method applied to the service node.
- FIG. 9 is a schematic structural diagram of a power control device provided by another embodiment. As shown in FIG. 9, the power control device includes: an information receiving module 410 and a power control module 420.
- the information receiving module 410 is configured to receive configuration information, where the configuration information is used to indicate N groups of power parameter sets, where N is a positive integer;
- the power control module 420 is configured to determine the transmission power according to the configuration information, and send uplink data according to the transmission power.
- the power control device of this embodiment can calculate the transmit power using a suitable power parameter set, which can adapt to the movement or switching of the beam and realize flexible power control.
- N sets of power parameters are associated with L beams, where L is a positive integer.
- each beam is represented by one of the following: a reference signal; a carrier; and a spatial transmission resource.
- the airspace transmission resource includes one of the following: different antenna ports, different codebooks, and different transmission layers.
- the configuration information is received through one of the following signaling: broadcast message; RRC signaling; MAC CE signaling; DCI.
- the power parameter set includes at least one of the following: power reference value; partial power compensation factor; downlink reference signal for measuring path loss; downlink reference signal transmission power; power offset.
- it further includes:
- the first adjustment module is configured to receive power update indication information, and adjust the transmission power according to the power update indication information; or,
- the second adjustment module is configured to adjust the transmission power based on the power parameter set associated with the switched service beam according to the service beam switching information.
- it further includes:
- the relationship determination module is configured to determine the relationship between N groups of power parameters and L beams according to the configuration information.
- it further includes:
- a first group determination module configured to receive first group indication information, where the first group indication information includes group reference point information, and each group reference point corresponds to a group;
- it further includes:
- a second group determining module configured to receive second grouping indication information, where the second grouping indication information includes an area identifier, and each area corresponds to a group;
- it further includes:
- the parameter set determining module is configured to send the power parameter set associated with the corresponding group to each of the groups.
- the power control device proposed in this embodiment and the power control method applied to the terminal proposed in the above embodiment belong to the same inventive concept.
- the embodiment of the present application also provides a service node.
- the power control method may be executed by a power control device, which may be implemented by software and/or hardware, and integrated in the service node.
- the serving node is, for example, a base station.
- FIG. 10 is a schematic diagram of the hardware structure of a service node provided by an embodiment.
- a service node provided by this embodiment includes: a processor 510 and a storage device 520.
- one processor 510 is taken as an example.
- the processor 510 and the storage device 520 in the device may be connected by a bus or other means.
- FIG. Take the bus connection as an example.
- the one or more programs are executed by the one or more processors 510, so that the one or more processors implement the power control method applied to the service node described in any of the foregoing embodiments.
- the storage device 520 in the service node is used as a computer-readable storage medium, and can be used to store one or more programs.
- the programs can be software programs, computer-executable programs, and modules.
- the program instructions/modules corresponding to the node power control method include: a power indicating module 310 and a data receiving module 320).
- the processor 510 executes various functional applications and data processing of the service node by running the software programs, instructions, and modules stored in the storage device 520, that is, implements the power control method applied to the service node in the foregoing method embodiment.
- the storage device 520 mainly includes a storage program area and a storage data area.
- the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. Example configuration information, power parameter set, etc.).
- the storage device 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the storage device 520 may further include a memory remotely provided with respect to the processor 510, and these remote memories may be connected to the service node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- the following operations are implemented: sending configuration information, where the configuration information is used to indicate N sets of power parameter sets, where: N is a positive integer; when uplink data is received, the transmit power of the uplink data is determined by the terminal according to the configuration information.
- the service node proposed in this embodiment and the power control method applied to the service node proposed in the foregoing embodiment belong to the same inventive concept.
- this embodiment has the same features as Perform the same beneficial effects as the power control method applied to the service node.
- the embodiment of the present application also provides a terminal.
- the power control method may be executed by a power control device, which may be implemented in software and/or hardware, and integrated in the terminal.
- the terminal is, for example, a base station.
- FIG. 11 is a schematic diagram of the hardware structure of a terminal provided by an embodiment.
- a terminal provided in this embodiment includes a processor 610 and a storage device 620.
- one processor 610 is taken as an example.
- the processor 610 and the storage device 620 in the device may be connected through a bus or other methods.
- FIG. Connect as an example.
- the one or more programs are executed by the one or more processors 610, so that the one or more processors implement the power control method applied to the terminal according to any one of the foregoing embodiments.
- the storage device 620 in the terminal is used as a computer-readable storage medium, and can be used to store one or more programs.
- the programs can be software programs, computer-executable programs, and modules.
- the program instructions/modules corresponding to the control method include: an information receiving module 410 and a power control module 420).
- the processor 610 executes various functional applications and data processing of the terminal by running the software programs, instructions, and modules stored in the storage device 620, that is, implements the power control method applied to the terminal in the foregoing method embodiment.
- the storage device 620 mainly includes a storage program area and a storage data area.
- the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. Example configuration information, power parameter set, etc.).
- the storage device 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the storage device 620 may further include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- the following operations are implemented: receiving configuration information, where the configuration information is used to indicate N sets of power parameters, where N It is a positive integer; the transmission power is determined according to the configuration information, and the uplink data is sent according to the transmission power.
- the terminal proposed in this embodiment and the power control method applied to the terminal proposed in the above embodiment belong to the same inventive concept.
- technical details that are not described in detail in this embodiment please refer to any of the above embodiments, and this embodiment has and executes applications. It has the same beneficial effect as the power control method of the terminal.
- the embodiment of the present application also provides a storage medium containing computer-executable instructions.
- the computer-executable instructions are used to execute a power control method applied to a serving node or a power control method applied to a terminal when executed by a computer processor.
- the power control method applied to the serving node includes: sending configuration information, the configuration information is used to indicate N groups of power parameter sets, where N is a positive integer; receiving uplink data, the transmission power of the uplink data is determined by the terminal according to The configuration information is determined.
- the power control method applied to the terminal includes: receiving configuration information, the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer; the transmission power is determined according to the configuration information, and the transmission power is determined according to the transmission power.
- Send upstream data the configuration information is used to indicate N sets of power parameter sets, where N is a positive integer.
- this application can be implemented by software and general hardware, or can be implemented by hardware.
- the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute any of this application The method described in the embodiment.
- the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
- the computer program can be stored on the memory.
- the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Versatile Disc, DVD) or Compact Disk (CD)), etc.
- Computer-readable media may include non-transitory storage media.
- the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Process, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
- DSP Digital Signal Process
- ASICs application specific integrated circuits
- FGPA programmable logic devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种功率控制方法、装置、服务节点、终端及存储介质。该方法发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
Description
本申请涉及无线通信网络,例如涉及一种功率控制方法、装置、服务节点、终端及存储介质。
在非地面网络(Non-Terrestrial Network,NTN)系统中,由于卫星运动导致波束不断移动或者切换,使得终端发送上行信号的链路质量不断变化,且不同类型的卫星的波束对链路质量的影响也有所不同,而终端发送上行信号的发射功率并不能灵活调整,发射功率过高会浪费不必要的功耗,过低则无法保证上行信号的传输质量。由于发射功率无法动态适应移动或切换的波束、功率控制灵活性差,严重影响了通信质量和可靠性。
发明内容
本申请提供一种功率控制方法、装置、服务节点、终端及存储介质,以提高功率控制的灵活性,提高通信质量。
本申请实施例提供一种功率控制方法,应用于服务节点,包括:
发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;
接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
本申请实施例还提供了一种功率控制方法,应用于终端,包括:
接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;
根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
本申请实施例还提供了一种功率控制装置,包括:
功率指示模块,设置为发送配置信息,所述配置信息用于指示N组功率参数 集合,其中,N为正整数;
数据接收模块,设置为接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
本申请实施例还提供了一种功率控制装置,包括:
信息接收模块,设置为接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;
功率控制模块,设置为根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
本申请实施例还提供了一种服务节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述应用于服务节点的功率控制方法。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述应用于终端的功率控制方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述应用于服务节点的功率控制方法或应用于终端的功率控制方法。
图1为一实施例提供的一种功率控制方法的流程图;
图2为一实施例提供的低轨道卫星单波束的功率控制的示意图;
图3为一实施例提供的低轨道卫星固定波束的功率控制的示意图;
图4为一实施例提供的低轨道卫星多波束切换的功率控制的示意图;
图5为一实施例提供的同步地球轨道卫星单波束的功率控制的示意图;
图6为一实施例提供的同步地球轨道卫星多波束切换的功率控制的示意图;
图7为另一实施例提供的一种功率控制方法的流程图;
图8为一实施例提供的一种功率控制装置的结构示意图;
图9为另一实施例提供的一种功率控制装置的结构示意图;
图10为一实施例提供的一种服务节点的硬件结构示意图;
图11为一实施例提供的一种终端的硬件结构示意图。
下面结合附图和实施例对本申请进行说明。
在NTN系统中,卫星具有移动性,波束(Beam)或小区(Cell)的覆盖区域会随着卫星运动而移动,波束不断移动或者切换,使得终端发送上行信号的链路质量不断变化,且不同类型的卫星的波束对链路质量的影响也有所不同。由于终端的发射功率无法动态适应移动或切换的波束、功率控制灵活性差,严重影响了通信质量和可靠性。本实施例针对NTN中波束移动与切换的情况,由服务节点预配置功率参数集合并指示给终端,在此基础上实现对终端发射功率的灵活指示与控制。
图1为一实施例提供的一种功率控制方法的流程图。该功率控制方法可应用于服务节点,例如应用于基站。如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数。
在步骤120中,接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
本实施例中,服务节点预配置了N组功率参数集合并通过配置信息指示给 终端,这N组功率参数集合供终端在不同参考信号或者载波关联的波束下进行选择和应用,作为计算上行数据发射功率的依据。在指示N组功率参数集合的过程中,还可以指示N组功率参数集合与不同波束、不同参考信号或不同载波之间的对应关系,例如,第一组功率参数集合对应于第一波束,第二组功率参数集合对应于第二波束。在终端采用第一波束(将第一波束作为服务波束)发送上行数据的情况下,可以基于第一组功率参数集合计算该第一波束上对应的发射功率;在终端采用第二波束(将第二波束作为服务波束)发送上行数据的情况下,可以基于第二组功率参数集合计算该第二波束上对应的发射功率。此外,如果发生服务波束切换,例如服务波束由第一波束切换为第二波束,则终端也可以根据配置信息的指示,改变所采用的功率参数集合,以准确计算发射功率,适应波束的移动或切换。
服务节点通过将预配置的功率参数集合通过配置信息指示给终端,为终端计算发射功率提供依据,在此基础上实现对终端发射功率的灵活指示与控制,提高功率控制的可靠性。
在一实施例中,N组功率参数关联于L个波束,其中,L为正整数。
本实施例中,N组功率参数与L个波束之间具有关联关系。L个波束中,被用于传输上行数据的即为服务波束。终端根据服务波束即可选用相应的一组功率参数,据此计算上行数据的发射功率。N组功率参数与L个波束可以按照一定的顺序依次对应,也可以具有其他的关联关系,并由服务节点指示给终端。
在一实施例中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源;其中,所述空域传输资源包括如下之一:天线端口;码本;传输层。
本实施例中,服务节点生成不同的参考信号或者不同的载波,其中,生成的载波可以包括锚定载波(Anchor Carrier)和非锚定载波(Non-Anchor Carrier),锚定载波用以发送窄带主同步信号、窄带辅同步信号、窄带物理广播信道或窄带系统信息块等。不同的波束可以通过关联的不同参考信号或者不同载波来区 分,例如,服务节点将不同参考信号或不同载波的索引值指示给终端,用于区分不同波束,从而实现对不同波束的功率参数集合的准确指示。不同的波束也可以通过不同的空域传输资源来区分,例如,不同的波束对应于不同的天线端口、不同的码本或者不同的传输层。
在一实施例中,所述配置信息通过如下信令之一发送:广播消息;无线资源控制(Radio Resource Control,RRC)信令;介质访问控制层控制单元(Medium Access Control,Control Element,MAC CE)信令;下行控制信息(Downlink Control Information,DCI)。通过上述的信令发送配置信息,实现N组功率参数集合的高效指示。
在一实施例中,所述功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
本实施例中,每组功率参数集合中都可以包括以下参数的一种或多种:功率基准值(PO_PUSCH);部分功率补偿因子(α);下行参考信号发射功率(rs-power);载波的功率偏移(rs-PowerOffsetNonAnchor);测量路损的下行参考信号。终端也可以通过其他方式获得这些功率参数,例如是协议中预定义的、根据服务节点指示的其他信息与功率参数集合的映射关系隐含获得的等。终端根据这些功率参数,可以在功率基准值的基础上,对功率进行补偿、偏移调整等,实时计算在服务波束下对应的发射功率。
其中,不同的波束下,用于测量路损的下行参考信号可能是不一样的,也可能是一样的,但对应的发送功率或者固定功率偏移不同。服务节点通过预配置并指示用于测量路损的下行参考信号,可以明确哪个波束作为服务波束,为终端应用相应的功率参数集合提供可靠的依据。
在一些实施例中,服务节点可以通过系统信息块(System Information Blocks,SIB)或(Physical Broadcast Channel,PBCH)向终端指示功率参数集合的索引,从而指示终端需要在N组功率参数集合中采用哪组功率参数集合。
在一些实施例中,服务节点可以通过SIB中的比特位域来指示波束对应的 载波索引值,不同载波关联于不同波束,因此,终端可以根据载波(索引值)与波束之间的映射确定不同波束上的Anchor或Non-Anchor载波的功率偏移值。
在一实施例中,还包括:
步骤130:根据服务波束切换信息向所述终端发送功率更新指示信息;或者,
步骤140:根据上行测量结果向所述终端发送功率更新指示信息。
本实施例中,服务波束可以为用于在服务节点和终端之间的数据传输的波束,服务波束切换指在L个波束中,用于数据传输的服务波束发生了切换。例如服务波束由波束1切换到波束2,则服务节点向终端发送功率更新指示信息,以指示终端在服务波束切换的情况下,应用波束2关联的功率参数集合来计算发射功率。或者,在服务波束切换的情况下,服务节点会针对新的服务波束(波束2)进行上行信道的路径损耗的测量,根据上行测量结果,向终端发送功率更新指示信息,以指示终端在路径损耗发生变化的情况下,需要对所采用的功率参数集合根据实际情况进行调整,例如,功率参数集合中的部分功率补偿因子α=0.7,服务节点根据对路径损耗的上行测量结果,向终端发送功率更新指示信息,终端可以据此将部分功率补偿因子调整为α=1。
在一实施例中,所述配置信息还用于指示N组功率参数与L个波束之间的关联关系。
本实施例中,服务节点通过配置信息还可向终端指示N组功率参数与L个波束之间的关联关系,即指示第i(1≤i≤N)组功率参数集合与第j(1≤j≤L)个波束的关联关系,从而终端可以唯一确定在不同的服务波束下采用哪组功率参数集合。
在一实施例中,还包括:
步骤101:发送第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个分组。
本实施例可以将网络中的终端划分为一个或多个分组,然后按照分组发送配置信息,从而节省信令开销和网络资源,提高指示功率参数集合的效率。服 务节点向终端发送第一分组指示信息,终端根据第一分组指示信息可以确定所属的分组,并根据配置信息的指示,确定其所属的分组应采用哪一组功率参数集合。
本实施例中,第一分组指示信息包括分组参考点信息,分组参考点信息例如为作为分组参考点的终端的所在位置、终端标识等。例如,服务节点网络覆盖范围内有多个终端,其中,终端A、终端B、终端C作为分组参考点,第一分组指示信息包括终端A、终端B和终端C的所在位置,服务节点将第一分组指示信息发送给各个目标终端,则目标终端可以据此确定自身属于终端A的分组、终端B的分组或者终端C的分组。例如,目标终端根据接收到的第一分组指示信息,确定在分组参考点中距离最近的终端为终端B,则目标终端确定自身属于终端B的分组;目标终端接收到配置信息后,可以采用终端B的分组对应的功率参数集合计算发射功率。
在一实施例中,还包括:
步骤102:发送第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个分组。
本实施例可以将网络中的终端划分为一个或多个分组,然后按照分组发送配置信息,从而节省信令开销和网络资源,提高指示功率参数集合的效率。服务节点向终端发送第二分组指示信息,终端根据第二分组指示信息可以确定所属的分组,并根据配置信息的指示,确定其所属的分组应采用哪一组功率参数集合。
本实施例中,第二分组指示信息包括区域标识。例如,服务节点网络覆盖范围划分为区域A、区域B、区域C,每个区域的终端划分为同一个分组。第二分组指示信息包括区域A、区域B或区域C的区域标识,服务节点将第二分组指示信息发送给各个目标终端,则目标终端可以据此确定自身属于域A、区域B或区域C的分组。例如,目标终端根据接收到的第二分组指示信息,确定自身处于区域B中,则目标终端确定自身属于区域B的分组;目标终端接收到配置 信息后,可以采用区域B的分组对应的功率参数集合计算发射功率。
在一实施例中,步骤120具体包括:分别向各所述分组发送相应分组所关联的功率参数集合。
本实施例中,服务节点按照分组参考点或区域,分别向每个分组发送配置信息,从而指示每个分组关联的功率参数集合,而无需向网络覆盖范围内的每个终端都发送配置信息,从而节省信令开销和网络资源,提高指示功率参数集合的效率。
图2为一实施例提供的低轨道卫星单波束的功率控制的示意图。如图2所示,以低轨道(Low Earth Orbit,LEO)卫星单波束移动的情况为例,功率控制的过程包括:
服务节点预配置单波束移动的情况下不同的功率控制区域(区域1、区域2、区域3……区域N)对应的功率参数集合,单波束移动下的路径损耗存在偏差;
在波束移动到特定区域之前,服务节点(按照分组)向终端发送配置信息,配置信息中可以包括功率参数集合的索引值以及各项功率参数;
终端接收配置信息并根据配置信息指示的功率参数集合计算发射功率,针对不同区域上的路径损耗差异,可以通过部分功率补偿因子α进行调整。
图3为一实施例提供的低轨道卫星固定波束的功率控制的示意图。如图3所示,以LEO卫星运动下波束固定的情况为例,功率控制的过程包括:
服务节点预配置波束在不同方向上的功率参数集合(功率参数集合1、功率参数集合2……功率参数集合N);
服务节点根据卫星星历和分组参考点的运动轨迹发送第一分组指示信息,向终端指示分组参考点的位置;
终端计算与邻近的各分组参考点之间的距离并选择距离最近的分组参考点,确定所属的分组;
在波束朝向发生改变之前,服务节点通过SIB或者PBCH,分别向每个分组发送配置信息,配置信息中可以包括功率参数集合的索引值,用于区分不同 朝向的波束;
终端接收配置信息,并按照所属分组采用相应的功率参数集合计算发射功率,不同方向上的路径损耗差异可通过部分功率补偿因子α来调整。
图4为一实施例提供的低轨道卫星多波束切换的功率控制的示意图。如图4所示,以LEO卫星运动下多波束切换的情况为例,功率控制的过程包括:
服务节点预配置不同的功率参数集合(功率参数集合1、功率参数集合2……功率参数集合N),不同的功率参数集合对应于不同波束,不同波束通过不同的载波区分;
服务节点通过SIB或者PBCH广播不同载波(Anchor或Non-Anchor)的索引值给终端,用于区分不同波束;
服务节点根据卫星星历和参考点运动轨迹发送第一分组指示信息,向终端指示分组参考点的位置;
终端计算与邻近的各分组参考点之间的距离并选择距离最近的分组参考点,确定所属的分组;
在服务波束切换之前,服务节点向每个分组发送配置信息,以指示功率参数集合,功率参数集合中包括功率基准值、部分功率补偿因子、下行参考信号发射功率、测量路损的下行参考信号;而载波的功率偏移rs-PowerOffsetNonAnchor终端可以通过相对应的载波索引值映射获取;
终端按照所述分组接收配置信息并计算发射功率,实现所有分组在服务波束切换下的功率控制。
图5为一实施例提供的同步地球轨道卫星单波束的功率控制的示意图。如图5所示,以同步地球轨道(Geosynchronous Earth Orbit,GEO)卫星运动下单波束的情况为例,波束覆盖区域始终固定,功率控制的过程包括:
服务节点将波束覆盖范围划分为多个区域,并通过第二分组指示信息将区域标识发送给相对应区域下的终端;
服务节点广播参考信号,并通过配置信息向终端指示功率参数集合;
终端按照分组接收配置信息,采用所属区域相对应的功率参数集合计算发射功率,不同终端之间的发射功率差异可通过部分功率补偿因子α来调整,终端在锚定载波Anchor或Non-Anchor非锚定载波下的功率偏差通过载波的功率偏移rs-PowerOffsetNonAnchor参数来调节。
图6为一实施例提供的同步地球轨道卫星多波束切换的功率控制的示意图。如图6所示,以GEO卫星运动下波束切换的情况为例,波束覆盖区域始终固定,功率控制的过程包括:
服务节点预配置不同的功率参数集合(功率参数集合1、功率参数集合2……功率参数集合N),不同的功率参数集合对应于不同波束;
服务节点生成不同参考信号,用于区分不同波束;
服务节点将波束覆盖范围划分为多个区域,并通过第二分组指示信息将区域标识发送给相对应区域下的终端;
在服务波束切换之前,服务节点通过配置信息向终端指示功率参数集合;
终端按照分组接收配置信息,采用所属区域相对应的功率参数集合计算发射功率,从而实现所有分组在服务波束切换下的功率控制。
在上述实施例中,服务节点通过预配置并指示波束移动和波束切换下的功率参数集合,实现对终端的发射功率的指示和控制,提高功率控制的灵活性,保证通信质量;服务节点生成不同参考信号或者广播不同载波来区分波束,以准确指示相应的功率参数集合;服务节点根据卫星星历和参考点运动轨迹来广播分组参考点,或者指示区域表示,以实现对终端的分组,按照分组进行指示和功率控制,节省信令开销,提高指示和功率控制效率。
在本申请实施例中,还提供一种功率控制方法,应用于终端,终端例如为用户终端(User Equipment,UE)。需要说明的是,本实施例中,终端所执行的操作与上述实施例中服务节点所执行的操作一一对应,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
图7为另一实施例提供的一种功率控制方法的流程图,如图7所示,本实施例提供的方法包括步骤210和步骤220。
在步骤210中,接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数。
在步骤220中,根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
本实施例中,服务节点预配置了N组功率参数集合并通过配置信息指示给终端,这N组功率参数集合为终端在不同波束、不同参考信号或不同载波的情况下选择和应用提供了可靠的依据。终端根据配置信息的指示,采用对应的功率参数集合计算发射功率,能够适应波束的移动或切换,实现功率的灵活控制。
在一实施例中,N组功率参数关联于L个波束,其中,L为正整数。
在一实施例中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源;其中,所述空域传输资源包括如下之一:天线端口;码本;传输层。
在一实施例中,所述配置信息通过如下信令之一接收:广播消息;RRC信令;MAC CE信令;DCI。
在一实施例中,所述功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
在一实施例中,还包括:
S230:接收功率更新指示信息,并根据所述功率更新指示信息调整所述发射功率;或者,
S240:根据服务波束切换信息,基于切换后的服务波束所关联的功率参数集合调整所述发射功率。
本实施例中,服务波束可以为用于在服务节点和终端之间的数据传输的波束,服务波束切换指在L个波束中,用于数据传输的服务波束发生了切换。终端在接收到功率更新指示信息的情况下,可以通过调整功率参数集合中的参数 (例如将功率补偿因子α由0.7调整为1),更新发射功率;也可以是在发生服务波束切换的情况下,采用切换后的服务波束所关联的功率参数集合重新计算发射功率,从而实现发射功率的实时更新和调整,提高功率控制的灵活性和可靠性,保证数据传输质量。
在一实施例中,还包括:
S211:根据所述配置信息,确定N组功率参数与L个波束之间的关联关系。
在一实施例中,还包括:
S250:接收第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个分组;
S251:根据所述第一分组指示信息确定终端所属分组。
本实施例中,终端根据第一分组指示信息可以确定所属的分组,并根据配置信息的指示,确定其所属的分组应采用哪一组功率参数集合。例如,终端可以根据第一分组指示信息确定距离最近的分组参考点,并将该分组参考点对应的分组作为自身所述的分组,在此基础上,可以按照分组从配置信息中确定该采用哪一组功率参数集合,服务节点无需向每个终端都指示功率参数集合,有效降低了信令开销,提高指示和功率控制的效率。
在一实施例中,还包括:
S260:接收第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个分组;
S261:根据所述第二分组指示信息确定终端所属分组。
本实施例中,终端根据第二分组指示信息可以确定所属的分组,并根据配置信息的指示,确定其所属的分组应采用哪一组功率参数集合。例如,终端可以根据第二分组指示信息确定所在的区域,并将该区域对应的分组作为自身所述的分组,在此基础上,可以按照分组从配置信息中确定该采用哪一组功率参数集合,服务节点无需向每个终端都指示功率参数集合,有效降低了信令开销,提高指示和功率控制的效率。
在一实施例中,还包括:
S270:根据所述终端所属分组,确定所述配置信息中与所述终端所属分组所关联的功率参数集合。
本申请实施例还提供一种功率控制装置。图8为一实施例提供的一种功率控制装置的结构示意图。如图8所示,所述功率控制装置包括:功率指示模块310和数据接收模块320。
功率指示模块310,设置为发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;
数据接收模块320,设置为接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
本实施例的功率控制装置,通过将预配置的功率参数集合通过配置信息指示给终端,为终端计算发射功率提供依据,在此基础上实现对终端发射功率的灵活指示与控制,调高功率控制的可靠性。
在一实施例中,N组功率参数关联于L个波束,其中,L为正整数。
在一实施例中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源。所述空域传输资源包括如下之一:不同天线端口,不同码本,不同传输层。
在一实施例中,所述配置信息通过如下信令之一发送:广播消息;RRC信令;MAC CE信令;DCI。
在一实施例中,所述功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
在一实施例中,还包括:
第一更新模块,设置为根据服务波束切换信息向所述终端发送功率更新指示信息;或者,
第二更新模块,设置为根据上行测量结果向所述终端发送功率更新指示信 息。
在一实施例中,所述配置信息还用于指示所述N组功率参数与所述L个波束之间的关联关系。
在一实施例中,还包括:
第一分组指示模块,设置为发送第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个分组。
在一实施例中,还包括:
第二分组指示模块,设置为发送第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个分组。
在一实施例中,所述功率指示模块,具体用于:
分别向各所述分组发送相应分组所关联的功率参数集合。
本实施例提出的功率控制装置与上述实施例提出的应用于服务节点的功率控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于服务节点的功率控制方法相同的有益效果。
本申请实施例还提供一种功率控制装置。图9为另一实施例提供的一种功率控制装置的结构示意图。如图9所示,所述功率控制装置包括:信息接收模块410和功率控制模块420。
信息接收模块410,设置为接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;
功率控制模块420,设置为根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
本实施例的功率控制装置,根据配置信息的指示,可以采用合适的功率参数集合计算发射功率,能够适应波束的移动或切换,实现功率的灵活控制。
在一实施例中,N组功率参数关联于L个波束,其中,L为正整数。
在一实施例中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源。所述空域传输资源包括如下之一:不同天线端口,不同码本,不同传输层。
在一实施例中,所述配置信息通过如下信令之一接收:广播消息;RRC信令;MAC CE信令;DCI。
在一实施例中,所述功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
在一实施例中,还包括:
第一调整模块,设置为接收功率更新指示信息,并根据所述功率更新指示信息调整所述发射功率;或者,
第二调整模块,设置为根据服务波束切换信息,基于切换后的服务波束所关联的功率参数集合调整所述发射功率。
在一实施例中,还包括:
关系确定模块,设置为根据所述配置信息,确定N组功率参数与L个波束之间的关联关系。
在一实施例中,还包括:
第一分组确定模块,设置为接收第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个分组;
根据所述第一分组指示信息确定终端所属分组。
在一实施例中,还包括:
第二分组确定模块,设置为接收第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个分组;
根据所述第二分组指示信息确定终端所属分组。
在一实施例中,还包括:
参数集合确定模块,设置为分别向各所述分组发送相应分组所关联的功率参数集合。
本实施例提出的功率控制装置与上述实施例提出的应用于终端的功率控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于终端的功率控制方法相同的有益效果。
本申请实施例还提供一种服务节点。所述功率控制方法可以由功率控制装置执行,该功率控制装置可以通过软件和/或硬件的方式实现,并集成在所述服务节点中。所述服务节点例如为基站。
图10为一实施例提供的一种服务节点的硬件结构示意图。如图10所示,本实施例提供的一种服务节点,包括:处理器510和存储装置520。该服务节点中的处理器可以是一个或多个,图10中以一个处理器510为例,所述设备中的处理器510和存储装置520可以通过总线或其他方式连接,图10中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器实现上述任一实施例所述的应用于服务节点的功率控制方法。
该服务节点中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中应用于服务节点功率控制方法对应的程序指令/模块(例如,附图8所示的功率控制装置中的模块,包括:功率指示模块310和数据接收模块320)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行服务节点的各种功能应用以及数据处理,即实现上述方法实施例中应用于服务节点的功率控制方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的配置信息、功率参数集合等)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实 例中,存储装置520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至服务节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述服务节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
本实施例提出的服务节点与上述实施例提出的应用于服务节点的功率控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于服务节点的功率控制方法相同的有益效果。
本申请实施例还提供一种终端。所述功率控制方法可以由功率控制装置执行,该功率控制装置可以通过软件和/或硬件的方式实现,并集成在所述终端中。所述终端例如为基站。
图11为一实施例提供的一种终端的硬件结构示意图。如图11所示,本实施例提供的一种终端,包括:处理器610和存储装置620。该终端中的处理器可以是一个或多个,图11中以一个处理器610为例,所述设备中的处理器610和存储装置620可以通过总线或其他方式连接,图11中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器610执行,使得所述一个或多个处理器实现上述任一实施例所述的应用于终端的功率控制方法。
该终端中的存储装置620作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中应用于终端功率控制方法对应的程序指令/模块(例如,附图9所示的功率控制装置中的模块,包括:信息接收模块410和功率控制模块420)。处理器610通过运行存储在存储装置620中的软件程序、指令以及模块,从而执 行终端的各种功能应用以及数据处理,即实现上述方法实施例中应用于终端的功率控制方法。
存储装置620主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的配置信息、功率参数集合等)。此外,存储装置620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述终端中所包括一个或者多个程序被所述一个或者多个处理器610执行时,实现如下操作:接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
本实施例提出的终端与上述实施例提出的应用于终端的功率控制方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于终端的功率控制方法相同的有益效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于服务节点的功率控制方法或应用于终端的功率控制方法。
其中,应用于服务节点的功率控制方法包括:发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
其中,应用于终端的功率控制方法包括:接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;根据所述配置信息确定发射功 率,并按照所述发射功率发送上行数据。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Process,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
Claims (25)
- 一种功率控制方法,应用于服务节点,包括:发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
- 根据权利要求1所述的方法,其中,N组功率参数集合关联于L个波束,其中,L为正整数。
- 根据权利要求2所述的方法,其中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源;其中,所述空域传输资源包括如下之一:天线端口;码本;传输层。
- 根据权利要求1所述的方法,其中,所述配置信息通过如下信令之一发送:广播消息;无线资源控制RRC信令;介质访问控制层控制单元MAC CE信令;下行控制信息DCI。
- 根据权利要求1所述的方法,其中,每组功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
- 根据权利要求2所述的方法,还包括:根据服务波束切换信息向所述终端发送功率更新指示信息;或者,根据上行测量结果向所述终端发送功率更新指示信息。
- 根据权利要求2所述的方法,其中,所述配置信息还用于指示所述N组功率参数集合与所述L个波束之间的关联关系。
- 根据权利要求1所述的方法,还包括:发送第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个终端分组。
- 根据权利要求1所述的方法,还包括:发送第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个终端分组。
- 根据权利要求8或9所述的方法,其中,所述发送配置信息,包括:分别向多个所述终端分组发送相应终端分组所关联的功率参数集合。
- 一种功率控制方法,应用于终端,包括:接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
- 根据权利要求11所述的方法,其中,N组功率参数集合关联于L个波束,其中,L为正整数。
- 根据权利要求12所述的方法,其中,每个波束由如下之一表示:一个参考信号;一个载波;一个空域传输资源;其中,所述空域传输资源包括如下之一:天线端口;码本;传输层。
- 根据权利要求11所述的方法,其中,所述配置信息通过如下信令之一接收:广播消息;无线资源控制RRC信令;介质访问控制层控制单元MAC CE信令;下行控制信息DCI。
- 根据权利要求11所述的方法,其中,每组功率参数集合包括以下至少之一:功率基准值;部分功率补偿因子;测量路损的下行参考信号;下行参考信号发射功率;功率偏移。
- 根据权利要求12所述的方法,还包括:接收功率更新指示信息,并根据所述功率更新指示信息调整所述发射功率;或者,根据服务波束切换信息,基于切换后的服务波束所关联的功率参数集合调整所述发射功率。
- 根据权利要求11所述的方法,还包括:根据所述配置信息,确定N组功率参数集合与L个波束之间的关联关系。
- 根据权利要求11所述的方法,还包括:接收第一分组指示信息,所述第一分组指示信息包括分组参考点信息,每个分组参考点对应于一个终端分组;根据所述第一分组指示信息确定终端所属分组。
- 根据权利要求11所述的方法,还包括:接收第二分组指示信息,所述第二分组指示信息包括区域标识,每个区域对应于一个终端分组;根据所述第二分组指示信息确定终端所属分组。
- 根据权利要求18或19项所述的方法,还包括:根据所述终端所属分组,确定所述配置信息中与所述终端所属分组所关联的功率参数集合。
- 一种功率控制装置,包括:功率指示模块,设置为发送配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;数据接收模块,设置为接收上行数据,所述上行数据的发射功率由终端根据所述配置信息确定。
- 一种功率控制装置,包括:信息接收模块,设置为接收配置信息,所述配置信息用于指示N组功率参数集合,其中,N为正整数;功率控制模块,设置为根据所述配置信息确定发射功率,并按照所述发射功率发送上行数据。
- 一种服务节点,包括:至少一个处理器;存储装置,设置为存储至少一个程序;当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-10中任一项所述的功率控制方法。
- 一种终端,包括:至少一个处理器;存储装置,设置为存储至少一个程序;当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求11-20中任一项所述的功率控制方法。
- 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-10中任一项所述的功率控制方法或如权利要求11-20任一项所述的功率控制方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21804676.1A EP4152836A4 (en) | 2020-05-14 | 2021-05-13 | POWER REGULATION METHOD AND APPARATUS, AS WELL AS SERVICE NODE, TERMINAL, AND STORAGE MEDIUM |
KR1020227042593A KR20230006577A (ko) | 2020-05-14 | 2021-05-13 | 전력 제어 방법, 장치, 서빙 노드, 단말 및 저장 매체 |
US17/998,278 US20230239803A1 (en) | 2020-05-14 | 2021-05-13 | Power control method and apparatus, and service node, terminal and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010407761.4A CN111901859A (zh) | 2020-05-14 | 2020-05-14 | 功率控制方法、装置、服务节点、终端及存储介质 |
CN202010407761.4 | 2020-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021228175A1 true WO2021228175A1 (zh) | 2021-11-18 |
Family
ID=73206502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/093503 WO2021228175A1 (zh) | 2020-05-14 | 2021-05-13 | 功率控制方法、装置、服务节点、终端及存储介质 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230239803A1 (zh) |
EP (1) | EP4152836A4 (zh) |
KR (1) | KR20230006577A (zh) |
CN (1) | CN111901859A (zh) |
WO (1) | WO2021228175A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024001443A1 (zh) * | 2022-07-01 | 2024-01-04 | 荣耀终端有限公司 | 发射功率限制方法及设备 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111901859A (zh) * | 2020-05-14 | 2020-11-06 | 中兴通讯股份有限公司 | 功率控制方法、装置、服务节点、终端及存储介质 |
CN114424633A (zh) * | 2021-12-27 | 2022-04-29 | 北京小米移动软件有限公司 | 信息传输方法、装置、通信设备和存储介质 |
EP4460112A1 (en) * | 2021-12-31 | 2024-11-06 | Beijing Xiaomi Mobile Software Co., Ltd. | Method and apparatus thereof for non-random-access channel switching in non-terrestrial network |
WO2024011507A1 (zh) * | 2022-07-14 | 2024-01-18 | Oppo广东移动通信有限公司 | 无线通信的方法、终端设备和网络设备 |
CN118338396A (zh) * | 2023-01-12 | 2024-07-12 | 华为技术有限公司 | 一种发射功率的确定方法和装置 |
WO2024211465A1 (en) * | 2023-04-04 | 2024-10-10 | Interdigital Patent Holdings, Inc. | Power control configuration for same-pci satellite switches |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140226551A1 (en) * | 2011-09-30 | 2014-08-14 | Sharp Kabushiki Kaisha | Terminal apparatus, communication system, communication method, and base station apparatus |
CN110049539A (zh) * | 2018-01-16 | 2019-07-23 | 维沃移动通信有限公司 | 上行功率控制参数配置方法、终端及网络设备 |
CN110167122A (zh) * | 2018-02-13 | 2019-08-23 | 电信科学技术研究院有限公司 | 一种上行物理共享信道功率控制方法和终端 |
CN110831135A (zh) * | 2018-08-10 | 2020-02-21 | 华为技术有限公司 | 一种功率控制的方法和装置 |
CN111901859A (zh) * | 2020-05-14 | 2020-11-06 | 中兴通讯股份有限公司 | 功率控制方法、装置、服务节点、终端及存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358920A1 (en) * | 2013-01-14 | 2015-12-10 | Telefonaktiebolaget L M Ericsson (Publ) | Handling uplink transmit power reporting |
WO2018167864A1 (ja) * | 2017-03-15 | 2018-09-20 | 三菱電機株式会社 | 無線端末と無線端末の送信電力制御方法、および無線基地局 |
CN108924920B (zh) * | 2017-03-24 | 2021-09-03 | 中兴通讯股份有限公司 | 发送功率的确定方法和配置方法,终端和基站 |
CN108112065B (zh) * | 2017-05-05 | 2023-09-26 | 中兴通讯股份有限公司 | 发送功率的确定、信令配置方法及装置、终端、基站 |
CN114900876A (zh) * | 2017-11-17 | 2022-08-12 | 中兴通讯股份有限公司 | 功率控制方法、ue、基站、参数配置方法和控制方法 |
CN110536396A (zh) * | 2018-08-10 | 2019-12-03 | 中兴通讯股份有限公司 | 功率控制方法和装置、确定目标接收功率的方法和装置 |
CN110535605B (zh) * | 2019-06-19 | 2024-06-14 | 中兴通讯股份有限公司 | 路损参考信号指示方法及装置、终端、基站及存储介质 |
-
2020
- 2020-05-14 CN CN202010407761.4A patent/CN111901859A/zh active Pending
-
2021
- 2021-05-13 EP EP21804676.1A patent/EP4152836A4/en active Pending
- 2021-05-13 US US17/998,278 patent/US20230239803A1/en active Pending
- 2021-05-13 WO PCT/CN2021/093503 patent/WO2021228175A1/zh unknown
- 2021-05-13 KR KR1020227042593A patent/KR20230006577A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140226551A1 (en) * | 2011-09-30 | 2014-08-14 | Sharp Kabushiki Kaisha | Terminal apparatus, communication system, communication method, and base station apparatus |
CN110049539A (zh) * | 2018-01-16 | 2019-07-23 | 维沃移动通信有限公司 | 上行功率控制参数配置方法、终端及网络设备 |
CN110167122A (zh) * | 2018-02-13 | 2019-08-23 | 电信科学技术研究院有限公司 | 一种上行物理共享信道功率控制方法和终端 |
CN110831135A (zh) * | 2018-08-10 | 2020-02-21 | 华为技术有限公司 | 一种功率控制的方法和装置 |
CN111901859A (zh) * | 2020-05-14 | 2020-11-06 | 中兴通讯股份有限公司 | 功率控制方法、装置、服务节点、终端及存储介质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4152836A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024001443A1 (zh) * | 2022-07-01 | 2024-01-04 | 荣耀终端有限公司 | 发射功率限制方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
KR20230006577A (ko) | 2023-01-10 |
EP4152836A1 (en) | 2023-03-22 |
EP4152836A4 (en) | 2024-06-12 |
US20230239803A1 (en) | 2023-07-27 |
CN111901859A (zh) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021228175A1 (zh) | 功率控制方法、装置、服务节点、终端及存储介质 | |
EP3627875B1 (en) | Communication method and device | |
WO2021057980A1 (zh) | 信息上报、接收方法、装置、终端、服务节点及存储介质 | |
US11968640B2 (en) | Timing advance update method, terminal, and base station | |
US20190028170A1 (en) | Methods and Apparatus to Support Mobility through Beam Tracking in New Radio Access System | |
KR102209559B1 (ko) | 상향링크 측정 기준 신호 전력 제어 방법, 네트워크 장치, 및 단말 장치 | |
US20220386200A1 (en) | Network resource configuration method and apparatus | |
CN113079546B (zh) | 一种低轨卫星间切换方法和装置 | |
US20210068065A1 (en) | Method and signaling for optimized cell switch in earth fixed cells ntn configuration | |
TW202239224A (zh) | 可重配智慧表面輔助定位的操作調整 | |
WO2021135858A1 (zh) | 指示方法及设备 | |
WO2021135869A1 (zh) | 卫星波束偏置处理方法、设备及介质 | |
US11202220B2 (en) | Method of adapting report mapping based on beamforming | |
JP2014508447A (ja) | 多重ノードシステムにおけるチャネル状態情報フィードバック方法及び装置 | |
US20210045084A1 (en) | Increasing mobile device positioning accuracy | |
WO2021000805A1 (zh) | 频段切换的方法、装置、终端设备、通信节点和计算机可读存储介质 | |
US10341926B2 (en) | Handover in high speed scenario | |
US20220124669A1 (en) | Communication method and apparatus, device, system, and storage medium | |
CN113783601A (zh) | 动态波束形成及空分复用方法 | |
JP2024510231A (ja) | 再構成可能インテリジェントサーフェス補助測位のためのロケーション支援データ | |
US20230396330A1 (en) | Beam selection in non-terrestrial networks | |
US20230354438A1 (en) | Wireless communication method and apparatus | |
CN110337786B (zh) | 用于控制天线系统、传送指示符的方法、系统和无线终端 | |
JP2024507158A (ja) | 変動する測位のための基準信号構成 | |
CA3190146A1 (en) | Communication method, apparatus, and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21804676 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227042593 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021804676 Country of ref document: EP Effective date: 20221214 |