WO2021228120A1 - 扫描式全息成像器和相关系统 - Google Patents

扫描式全息成像器和相关系统 Download PDF

Info

Publication number
WO2021228120A1
WO2021228120A1 PCT/CN2021/093251 CN2021093251W WO2021228120A1 WO 2021228120 A1 WO2021228120 A1 WO 2021228120A1 CN 2021093251 W CN2021093251 W CN 2021093251W WO 2021228120 A1 WO2021228120 A1 WO 2021228120A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
dimensional
imaging
lens group
imaging lens
Prior art date
Application number
PCT/CN2021/093251
Other languages
English (en)
French (fr)
Inventor
王广军
余为伟
Original Assignee
荆门市探梦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010401924.8A external-priority patent/CN111399333A/zh
Priority claimed from CN202020786678.8U external-priority patent/CN211698579U/zh
Priority claimed from CN202010401956.8A external-priority patent/CN111399217A/zh
Priority claimed from CN202020786676.9U external-priority patent/CN212515339U/zh
Priority claimed from CN202020787327.9U external-priority patent/CN211698580U/zh
Priority claimed from CN202010401923.3A external-priority patent/CN111399332A/zh
Priority claimed from CN202020786662.7U external-priority patent/CN212031858U/zh
Priority claimed from CN202010401524.7A external-priority patent/CN111399331A/zh
Application filed by 荆门市探梦科技有限公司 filed Critical 荆门市探梦科技有限公司
Publication of WO2021228120A1 publication Critical patent/WO2021228120A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/02Stereoscopic photography by sequential recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing

Definitions

  • This application relates to the field of optics and 3D imaging technology, and in particular to a scanning holographic imager and related systems.
  • 3D display technology can provide additional depth information on the basis of traditional two-dimensional display, so it is considered to be the development direction of next-generation display technology.
  • 3D display there is no effective solution to realize 3D display.
  • Most commercial successful cases are pseudo 3D technology based on stereo image pairs, which cannot provide users with 3D images with real depth information.
  • the principle of a 3D movie in a movie theater is to use a projector to project two two-dimensional left and right eye image pairs on the screen. By wearing selective filter eyes, the two eyes can receive different images, thus creating a kind of I see the illusion of a 3D picture, but in fact the projected picture is only a 2D picture. Watching for a long time can also cause eye discomfort.
  • volume scanning imaging 3D often requires a high-speed rotating/moving screen, and the system has major safety hazards, poor stability, very limited display space, unable to directly touch and interact, and the display screen is transparent and cannot express the correct occlusion relationship.
  • An existing patent discloses a solution that can realize true 3D display. Its key component is a stereoscopic display module, which can realize true 3D picture reproduction through depth-of-field scanning. Its working principle is to make a focal plane scan back and forth in the depth direction (depth of field scan) to form a continuous 3D picture.
  • this method can realize the projection of 3D images, it relies on the scanning and imaging of a single focal plane, which requires extremely high movement speed of the mechanical structure of the display system, and the reliability of the system cannot be guaranteed.
  • the overall brightness cannot be optimized, and at the same time, the calculation and control system is extremely complicated, it is difficult to realize a stable screen display, and the manufacturing cost is extremely high.
  • An existing patent proposes an all-solid-state holographic projector, which discloses that an all-solid-state holographic display effect is realized by arranging multiple discrete focal planes in a projector.
  • the 3D images formed in this way are not continuous, and the sliced images in the real space cannot fully realize the continuous 3D images.
  • the visual performance ability cannot satisfy the user’s requirements.
  • problems such as heavy equipment and large restrictions on application forms.
  • the resolution is a crucial parameter related to the imaging quality.
  • the image quality of two-dimensional imaging equipment has been greatly improved from the initial 480P to 720P and then to 1080P. But with people's pursuit of large-size ultra-high-definition imaging, conventional imaging technology has been difficult to meet this demanding requirement.
  • the improvement of imaging quality often leads to a square increase in the number of pixels.
  • the sharp increase in the number of pixels poses a great challenge to the processing technology and greatly increases the difficulty of manufacturing; on the other hand, as the number of pixels increases, the number of pixels is broken.
  • the probability of dots has also increased significantly, and the yield rate has been greatly reduced. As a result, the production cost of high-quality imaging equipment has been high, and even some high-end products can only be produced by a few companies.
  • the technical problem to be solved by this application is to increase the resolution and improve the user's viewing experience.
  • the first aspect of this application proposes a Bragg periodic scanning type holographic imager, which includes:
  • the imaging element is used to provide multiple equivalent image planes that are not coincident or parallel to each other, and the number of equivalent image planes is n;
  • the imaging lens group whose position corresponds to the equivalent image plane, is used for optical imaging and is formed with multiple two-dimensional section planes; and the focal depth scanning mechanism is respectively connected with the imaging element and/or the imaging lens group to control the imaging element and / Or the spatial position of the imaging lens group is changed to achieve volume scanning of the two-dimensional section.
  • the scanning frequency or equivalent frequency of the focal depth scanning mechanism is greater than Hz.
  • the focal depth scanning mechanism realizes volume scanning of the two-dimensional section by changing the spatial position between the equivalent image plane and the imaging lens group and/or the effective focal length of the imaging lens group.
  • the focal depth scanning mechanism realizes volume scanning of the two-dimensional section by changing the relative position and/or the overall position of the optical elements in the imaging lens group.
  • the imaging lens group at least includes a liquid zoom lens or a flexible zoom lens.
  • the focal depth scanning mechanism controls the amplitude of the volume scan along the focal depth direction to L 1 mm, and the multiple equivalent image planes have a distribution depth of L 2 mm along the focal depth direction, which satisfies L 1 ⁇ L 2 .
  • the imaging element is a projection display element or a photographing photosensitive element.
  • a number of projection display chips and photographing photosensitive chips are provided in the imaging element to realize the dual functions of projection and photographing.
  • the first aspect of the present application has the advantages that: the present application can realize a completely continuous 3D scene reproduction, which is a true holographic display; only a small amplitude (Bragg periodic scan) is required in the working process of the present application Scanning can achieve continuous full-scene reproduction. Compared with the previous volume scanning 3D method, the reliability is guaranteed. At the same time, the refresh rate can be increased by more than an order of magnitude, which greatly improves the user viewing experience; there is no security risk, and 3D can be achieved.
  • the touch operation of the screen can correctly express the occlusion relationship; when this application is applied, the eyes need to dynamically adjust the focus depth as when watching real things, instead of the fixed focus depth of the ordinary 2D display screen, so it will not cause visual fatigue. Help protect eyesight; this application can realize projection and shooting functions at the same time, which is convenient for outputting image information and receiving external image information in real time during actual application. For example, it can recognize user interaction and facial expression information while displaying.
  • the second aspect of the present application proposes a Bragg periodic scanning holographic imager, which includes:
  • the imaging element is used to provide a plurality of first equivalent image planes that do not overlap or are parallel to each other;
  • At least one galvanometer the position corresponding to the first equivalent image plane, is used to optically convert multiple first equivalent image planes into multiple second equivalent image planes, the first equivalent image plane and the second equivalent image plane
  • the number of faces is n;
  • the imaging lens group whose position corresponds to the second equivalent image plane, is used for optical imaging and is formed with multiple two-dimensional slices; and the focal depth scanning mechanism, connected with the galvanometer, is used to control the spatial position of the galvanometer to achieve alignment.
  • the depth-of-focus scanning mechanism is respectively connected with the imaging element and/or the imaging lens group to control the spatial position change of the imaging element and/or the imaging lens group to realize volume scanning of the two-dimensional section.
  • the focal depth scanning mechanism is also connected with the imaging lens group, and is used to control the effective focal length of the imaging lens group to realize volume scanning of the two-dimensional section.
  • the imaging lens group at least includes a liquid zoom lens or a flexible zoom lens.
  • the amplitude of a single second equivalent image plane in the depth of focus direction is L 1 mm
  • the depth of distribution of multiple second equivalent image planes in the depth of focus direction is L 2 mm, which satisfies L 1 ⁇ L 2 .
  • the quality of the imaging element is M g, and the relationship with the number n of the first equivalent image plane satisfies:
  • the number of galvanometer mirrors is N
  • the mass of any galvanometer mirror is M N g
  • the amplitude is A mm
  • the mass of the outermost lens of the holographic imager is mg, which satisfies:
  • the scanning frequency or equivalent frequency of the focal depth scanning mechanism is greater than Hz.
  • the imaging element is a projection display element or a photographing photosensitive element.
  • projection display chips are provided in the imaging element, and the projection display chips can all be replaced with photographing photosensitive chips to realize the photographing function.
  • the second aspect of the present application has the advantages that: the present application can realize a completely continuous 3D scene reproduction, which is a true holographic display; only a small amplitude (Bragg periodic scan) is required in the working process of the present application. Scanning can achieve continuous full-scene reproduction. Compared with the previous volume scanning 3D method, the reliability is guaranteed. At the same time, the refresh rate can be increased by more than an order of magnitude, which greatly improves the user viewing experience; there is no security risk, and 3D can be achieved.
  • the touch operation of the screen can correctly express the occlusion relationship; when this application is applied, the eyes need to dynamically adjust the focus depth as when watching real things, instead of the fixed focus depth of the ordinary 2D display screen, so it will not cause visual fatigue. Help protect eyesight.
  • This application can realize the projection and shooting functions at the same time, which facilitates the simultaneous output of picture information and real-time reception of external image information in practical applications. For example, it can recognize user interaction actions and expression information while displaying.
  • the third aspect of the present application proposes a micro-scanning holographic imager, which includes the following:
  • At least one galvanometer the position of which corresponds to the two-dimensional imaging element, and is used for optically transforming light and forming an equivalent image surface
  • the imaging lens group whose position corresponds to the equivalent image plane, is used to optically transform the light and form a two-dimensional picture; and the focal depth scanning mechanism, which is connected to the galvanometer, is used to control the spatial position of the galvanometer to realize the alignment Volume scanning of two-dimensional images.
  • the depth-of-focus scanning mechanism is respectively connected with the two-dimensional imaging element and/or the imaging lens group to control the spatial position change of the two-dimensional imaging element and/or the imaging lens group to realize volume scanning of the two-dimensional image.
  • the focal depth scanning mechanism is also connected to the imaging lens group, and is used to control the change of the effective focal length of the imaging lens group to realize volume scanning of the two-dimensional image.
  • the imaging lens group at least includes a liquid zoom lens or a flexible zoom lens.
  • the number of galvanometer mirrors is N
  • the mass of any galvanometer mirror is M N g
  • the amplitude is A mm
  • the mass of the outermost lens of the holographic imager is mg, which satisfies:
  • the scanning frequency of the focal depth scanning mechanism is greater than 6 Hz.
  • the two-dimensional imaging element is a projection display element or a photographing photosensitive element.
  • the third aspect of the present application has the advantage that: the present application replaces the high-speed and large-scale scanning equipment of traditional volume scanning by micro-scanning. Security issues; the scanning components are encapsulated inside, not in contact with the outside world, and are not easily damaged; when this application is applied, the eyes need to dynamically adjust the focus depth as when viewing real things, instead of the fixed focus depth of the ordinary 2D display screen, so it will not Causes visual fatigue and helps protect eyesight; this application can realize projection and shooting functions at the same time, which facilitates simultaneous output of picture information and real-time reception of external image information during practical applications.
  • the fourth aspect of the present application provides a two-dimensional Bragg periodic scanning imaging system, including:
  • a two-dimensional imaging element is provided with a pixel array composed of several pixels, and the plane where the pixel array is located is the pixel array plane,
  • An imaging lens group and a two-dimensional Bragg scanning mechanism, respectively connected to the two-dimensional imaging element and/or imaging lens group, for driving the two-dimensional imaging element and/or the imaging lens group to vibrate to achieve the purpose of micro-scanning;
  • the component of the vibration of the two-dimensional imaging element and/or the imaging lens group on the plane parallel to the pixel array is not zero.
  • the component of the vibration of the two-dimensional imaging element and/or the imaging lens group parallel to the pixel array plane can be decomposed into two mutually perpendicular sub-motions, including the first parallel to the row of the pixel array of the two-dimensional imaging element.
  • the frequency of the first sub-motion is f 1
  • the frequency of the second sub-motion is f 2
  • both f 1 and f 2 are greater than 6 Hz.
  • the length of the rows of the pixel array is Lmm
  • the distance or average distance between adjacent pixels between the rows is a 1 mm
  • the height of the columns of the pixel array is Wmm
  • the distance between adjacent pixels between the columns or The average distance is a 2 mm
  • the amplitude of the first sub-motion is ⁇ Lmm
  • the amplitude of the second sub-motion is ⁇ Wmm, satisfying: ⁇ L ⁇ 5a 1 and ⁇ W ⁇ 5a 2 .
  • f 1 >f 2 , and satisfies Where M is the mass of the two-dimensional imaging element, and the unit is g.
  • the two-dimensional imaging element is a photographing photosensitive element or a projection display element.
  • the number of columns and rows of the pixel array are both less than 720.
  • pixel point reduction device for reducing the effective size of the pixel point.
  • the diameter of the largest circle inside the effective optical action area of the imaging lens group on the pixel array plane is Dmm, which satisfies the following relationship:
  • the diameter of the largest circle inside the effective optical action area of the imaging lens group on the pixel array plane is Dmm, which satisfies the following relationship:
  • the fourth aspect of the present application has the advantage that: ultra-high pixel imaging can be achieved with low pixel density and low pixel count elements; it can be achieved even when the two-dimensional imaging element has pixel defects. Use; production yield and cost advantages are significantly better than similar products.
  • FIG. 1 is an imager in which the imaging element 1 is a projection display element and a system schematic diagram of Embodiment 1;
  • Fig. 2 is based on Fig. 1, the imaging element 1 provides a schematic diagram of an equivalent image plane 2 that includes both a physical real image plane and a virtual image plane obtained through optical conversion;
  • Fig. 3 is a system schematic diagram of the imager of the present application in which the projection display element is replaced with a photographing photosensitive element based on Fig. 1;
  • Fig. 4 is a schematic diagram of the equivalent image plane 2 including the physical real image plane and the virtual image plane obtained through optical conversion based on Fig. 3, focusing on the difference between the equivalent image plane 2 and the two-dimensional section 4 in Fig. 3;
  • Figure 5 is a schematic diagram of the system of Embodiment 2.
  • Fig. 6 is a schematic diagram of the system of embodiment 3.
  • FIG. 7 is a schematic diagram of the state of one vibration period of the equivalent image plane 2;
  • FIG. 8 is a schematic diagram of the principle of mechanical zooming of the imaging lens group 3;
  • FIG. 9 is a schematic diagram of the zooming principle of the imaging lens group 3 using a flexible zoom lens
  • Imaging element 1 equivalent image plane 2, imaging lens group 3, two-dimensional section 4, focal depth scanning mechanism 5;
  • FIG. 10 is a schematic diagram of the imager of the present application in which the imaging element 11 is a projection display element and the system of Embodiment 6;
  • FIG. 11 is a system diagram of the imager of the present application in which the projection display element is replaced with a photographing photosensitive element on the basis of FIG. 10;
  • FIG. 12 is a schematic diagram of the system of Embodiment 7.
  • FIG. 13 is a schematic diagram of the system of Embodiment 8.
  • FIG. 14 is a schematic diagram of the system of Embodiment 9;
  • FIG. 15 is a schematic diagram of the state of one vibration period of the second equivalent image plane 41;
  • FIG. 16 is a schematic diagram of the principle of mechanical zooming performed by the imaging lens group 51;
  • FIG. 17 is a schematic diagram of the zooming principle of the imaging lens group 51 using a flexible zoom lens
  • 18 is a schematic diagram of the corresponding relationship between the amplitudes of the galvanometer 31 and the two-dimensional imaging element 11 when they form an angle of 45°;
  • FIG. 19 is a schematic diagram of the system of the imager of the present application when the number of galvanometers 31 is two;
  • FIG. 20 is a schematic diagram of the imager of the present application in which the two-dimensional imaging element 12 is a projection display element and the system of Embodiment 11;
  • FIG. 21 is a system schematic diagram of the imager of the present application in which the projection display element is replaced with a photographing photosensitive element on the basis of FIG. 20;
  • Figure 22 is a schematic diagram of the system of Embodiment 12.
  • FIG. 23 is a schematic diagram of the system of Embodiment 13;
  • FIG. 25 is a schematic diagram of the state of one vibration period of the equivalent image surface 32;
  • FIG. 26 is a schematic diagram of the principle of mechanical zooming performed by the imaging lens group 42;
  • FIG. 27 is a schematic diagram of the zooming principle of the imaging lens group 42 using a flexible zoom lens
  • FIG. 28 is a schematic diagram of the corresponding relationship between the amplitudes of the galvanometer 22 and the two-dimensional imaging element 12 when they form an angle of 45°;
  • FIG. 29 is a schematic diagram of the system of the imager of the present application when the number of galvanometers 22 is two;
  • a two-dimensional imaging element 12 a galvanometer 22, an equivalent image surface 32, an imaging lens group 42, a two-dimensional image 52, and a focal depth scanning mechanism 62;
  • FIG. 30 is a schematic diagram of the system of Embodiment 16.
  • FIG. 31 is a schematic diagram of the system of Embodiment 17.
  • Fig. 32 is a schematic diagram of the system of embodiment 18;
  • FIG. 33 is a schematic diagram of a pixel array on a rectangular two-dimensional imaging element 13;
  • Figure 34 is an enlarged view of I in Figure 33;
  • 35 is a schematic diagram of the projection of the two-dimensional imaging element 13 vibrating on the pixel plane;
  • Fig. 36 is an enlarged view of II in Fig. 35, showing the first and second sub-movement directions and the amplitudes in the respective directions;
  • FIG. 37 is a schematic diagram of pixel point distribution of the original pixel array
  • FIG. 38 is a distribution diagram of the pixel array after filling one pixel point along the row scanning of the pixel array
  • FIG. 39 is a distribution diagram of the pixel array after two pixel points are filled in a row scan of the pixel array
  • FIG. 40 is a schematic diagram of the effective optical area of the imaging lens group 23 on the pixel array plane
  • Figure 41 is a schematic diagram of an ideal imaging area inside the effective optical action area
  • Fig. 42 is a schematic diagram of a pixel reduction device
  • Figure 43 is a schematic diagram of a dual-function system for shooting and projection after adding a beam splitter
  • Two-dimensional imaging element 13, imaging lens group 23, two-dimensional Bragg scanning mechanism 33 Two-dimensional imaging element 13, imaging lens group 23, two-dimensional Bragg scanning mechanism 33.
  • the present application provides a Bragg periodic scanning holographic imager, including an imaging element 1, an imaging lens group 3, and a focal depth scanning mechanism 5 respectively arranged inside the holographic imager;
  • the imaging element 1 is used to provide multiple equivalent image planes 2 that are not coincident or parallel to each other.
  • the number of equivalent image planes 2 is n.
  • These equivalent image planes 2 can be physical real image planes or through optical The transformed virtual image surface or real image surface, etc.
  • the position of the imaging lens group 3 corresponds to the equivalent image plane 2, which is used for optical imaging and is formed with multiple two-dimensional sections 4;
  • the depth-of-focus scanning mechanism 5 is respectively connected with the imaging element 1 and/or the imaging lens group 3, and is used to control the spatial position change of the imaging element 1 and/or the imaging lens group 3 to realize volume scanning of the two-dimensional section 4, preferably back and forth Motion to achieve volume scanning;
  • This type of volume scan is equivalent to the depth of field scan of the 3D image, which can scan out an imaging space, which forms a denser array of two-dimensional slices 4 or a continuous 3D image.
  • This application preferably adopts the control of various components to perform periodic positions Change to achieve periodic volume scanning.
  • Each equivalent image plane 2 and two-dimensional section 4 is full of pixel arrays (two-dimensional), and multiple equivalent image planes 2 and two-dimensional section 4 can respectively form a three-dimensional pixel array.
  • This unique multi-section image The surface structure is very similar to the three-dimensional Bragg lattice structure. The characteristic of this structure is that as long as the entire Bragg cycle is moved, a space much larger than the Bragg unit cell can be scanned, so the scanning frequency can be greatly increased. Due to the very small length of the Bragg cycle, the scanning mechanism has a very small range of motion, which is much more stable and reliable than conventional large-scale scanning systems.
  • the imaging element 1 may be a projection display element or a photographing photosensitive element
  • the scanning imager of the present application is used as a holographic projector:
  • the light of the projection display element is optically transformed by the imaging lens group 3 to form multiple two-dimensional slices 4 in the space, and form a two-dimensional slice array, which is equivalent to the imaging lens group 3 directly optically conjugate with the two-dimensional slice array
  • the spatial position of the projection display element and/or imaging lens group 3 is controlled by the focal depth scanning mechanism 5, preferably periodically, so that the equivalent image plane 2 and the imaging lens group
  • the relative position between 3 or the overall position changes periodically, and the array of two-dimensional slices 4 in the space vibrates in the depth of focus for volume scanning.
  • the previous multi-layer sliced, discontinuous three-dimensional display effect has been scanned.
  • a denser array of two-dimensional slices 4 or a continuous 3D picture is formed to achieve a continuous 3D display effect;
  • the scanning imager of the present application is used as a holographic camera:
  • the light from the external scene is optically transformed by the imaging lens group 3, and then multiple real image two-dimensional sections 4 are generated on the photographing photosensitive element and recorded, which is equivalent to the light passing through the external scene
  • the imaging lens group 3 directly generates the effect of multiple equivalent image planes 2 that are optically conjugated to the external scene after optical imaging;
  • the focal depth scanning mechanism 5 controls the spatial position changes of the photographing photosensitive element and/or the imaging lens group 3, preferably periodically, so that the relative position between the equivalent image plane 2 and the imaging lens group 3 or the overall position periodically changes ,
  • the corresponding depth space optically conjugated with the photosensitive chip or equivalent image plane 2 is also periodically scanned, so that the information at different depths of the scene is recorded separately, so as to record a complete and continuous 3D scene to achieve the purpose of 3D shooting
  • the periodic scanning process occurs in the depth space optically conjugate with the photographing photosensitive chip or the equivalent image plane 2.
  • the equivalent image plane 2 undergoes corresponding periodic scanning, and the above-mentioned equivalent image plane 2 There is an equivalent relationship with the two-dimensional section 4, so the scanning of the equivalent image plane 2 can be equivalent to the scanning of the two-dimensional section 4.
  • each component it is preferable to control each component to perform periodic position changes to realize periodic volume scanning.
  • a continuous space can be scanned out of space.
  • it can be reciprocated at a fixed frequency, or it can be used according to the display content. Scan at different frequencies;
  • the effective focal length of the imaging lens group 3 can be periodically changed by the focal depth scanning mechanism 5, or the reciprocating scanning of the two-dimensional section 4 can be realized.
  • the effective focal length of the imaging lens group 3 can be changed periodically by changing the imaging lens group 3.
  • the relative position and/or overall position of the optical elements can be achieved (mechanical zoom mode), or a liquid zoom lens with zoom function and/or a flexible zoom lens can be arranged in the imaging lens group 3;
  • three-dimensional scans can also be used to further enhance the display effect.
  • adding a scan parallel to the equivalent image plane 2 can further increase the horizontal resolution and make the image quality more delicate.
  • the design of the specific scanning mechanism belongs to common knowledge in the field, and can be designed by oneself according to the actual use scenario, and will not be repeated here.
  • the Bragg periodic scanning holographic imager includes a projection display element, an imaging lens group 3, and a focal depth scanning mechanism 5 respectively arranged inside.
  • the focal depth scanning mechanism 5 is connected to the projection display element and controls the projection display element in the depth of field direction. Periodic back and forth changes occur, so that the relative position between the equivalent image plane 2 and the imaging lens group 3 also periodically fluctuates, and the two-dimensional section 4 that is optically conjugate with the equivalent image plane 2 vibrates in the depth of focus direction. Scan back and forth periodically to achieve a continuous 3D display effect.
  • the Bragg periodic scanning holographic imager includes a projection display element, an imaging lens group 3, and a focal depth scanning mechanism 5 respectively arranged inside.
  • the focal depth scanning mechanism 5 is connected to the imaging lens group 3 and controls the imaging lens group 3 in The direction of the depth of field periodically changes back and forth, causing the relative position between the equivalent image plane 2 and the imaging lens group 3 to periodically change, and the two-dimensional section 4 that is optically conjugate with the equivalent image plane 2 vibrates in the depth of focus direction. Perform periodic scanning back and forth to achieve a continuous 3D display effect.
  • the Bragg periodic scanning holographic imager includes a projection display element, an imaging lens group 3, and a focal depth scanning mechanism 5 respectively arranged inside.
  • the focal depth scanning mechanism 5 is connected to and controlled by the projection display element and the imaging lens group 3, respectively.
  • the spatial positions of the two periodically change back and forth, so that the relative position or the overall position between the equivalent image plane 2 and the imaging lens group 3 periodically changes, and the two-dimensional section 4 that is optically conjugate with the equivalent image plane 2 Vibration occurs in the depth of focus to periodically scan back and forth to achieve a continuous 3D display effect.
  • the Bragg periodic scanning holographic imager includes a projection display element, an imaging lens group 3, and a focal depth scanning mechanism 5 respectively arranged inside.
  • the focal depth scanning mechanism 5 is connected to the projection display element and controls multiple optics in the imaging lens group 3.
  • the relative position and/or overall position of the components change, periodically changing the effective focal length of the imaging lens group 3, as shown in Figure 8.
  • This mechanical zoom causes the spatial position of the two-dimensional section 4 to change periodically. Vibration occurs in the depth of focus to scan back and forth to achieve a continuous 3D display effect.
  • the Bragg periodic scanning holographic imager includes a projection display element, an imaging lens group 3 and a focal depth scanning mechanism 5 respectively arranged inside.
  • the imaging lens group 3 is provided with a flexible zoom lens with zoom function, the focal depth scanning mechanism 5 and the imaging lens
  • the lens group 3 is connected and controls the effective focal length of the flexible zoom lens to periodically change, as shown in Figure 9, so that the spatial position of the two-dimensional section 4 periodically changes correspondingly, and the two-dimensional section 4 vibrates in the depth of focus to scan back and forth. So as to achieve a continuous 3D display effect.
  • the flexible zoom lens in Embodiment 5 can be replaced with a liquid zoom lens or other lenses with zoom function.
  • Embodiments 1 to 5 respectively show that different methods are used to realize the volume scanning of the two-dimensional section 4 back and forth reciprocatingly, and finally achieve the effect of continuous 3D display.
  • the projection display elements in Embodiments 1 to 5 can also be replaced by photographing photosensitive elements, as shown in FIG. 2, to achieve the effect of 3D photography.
  • the focal depth scanning mechanism 5 is operated to realize the reciprocating scanning (volume scanning) of the two-dimensional section 4, and the equivalent image plane 3 which is optically conjugate with the two-dimensional section 4 is also Undergoing a body scan;
  • the vibration controlled by the focal depth scanning mechanism 5 actually corresponds to the scanning of the equivalent image plane 2.
  • the scanning of the two-dimensional section 4 in the focal depth direction is not the same as the scanning of the equivalent image plane 2.
  • Linear correspondence therefore, it is more convenient to design related design parameters with the equivalent image plane 2 as a reference;
  • the amplitude of the equivalent image plane 2 in the focal depth direction (that is, the maximum displacement of the equivalent image plane 2 from the equilibrium position in the focal depth direction) is L 1 mm, and the multiple equivalent image planes 2 distribute depths along the focal depth direction (ie The center distance between the foreground equivalent image plane 2 closest to the imaging lens group 3 and the rear view equivalent image plane 2 farthest from the imaging lens group 3) is L 2 mm, which should satisfy L 1 ⁇ L 2 , then it can Make the amplitude of the volume scan relatively smaller;
  • the above-mentioned equilibrium position of the equivalent image plane 2 is the midpoint between the amplitude point in the focal depth direction of the equivalent image plane 2 and the amplitude point in the opposite direction of the focal depth, and the amplitude point of the equivalent image plane 3 is shown in Fig. 7 As shown: the maximum displacement of the equivalent image plane 2 along the focal depth direction is defined as the amplitude point in the focal depth direction, and the maximum displacement along the opposite direction of the focal depth is defined as the amplitude point in the opposite direction of the focal depth.
  • the scanning amplitude can be made larger or the depth resolution can be smaller for scenes where the pursuit of high depth resolution is not high.
  • the scanning frequency or equivalent frequency of the focal depth scanning mechanism 5 is preferably greater than Hz.
  • the frequency here refers to the reciprocal of the time interval for the moving part to pass through a certain spatial point twice in the same direction.
  • the reciprocal of the time to pass the equilibrium position twice in the same direction can be equivalent to the focal length of the imaging lens group 3 returning from the initial focal length to the reciprocal of the focal length.
  • the initial focal length refers to the imaging lens group 3 when the focal depth scanning mechanism 5 is not operating. Focal length.
  • the focal plane When displaying a 3D picture in a certain space, the focal plane needs to be scanned back and forth in a certain space to complete the update of the full-space picture, so the frame rate of the 3D picture is the depth-of-field scanning frequency.
  • the equivalent frequency refers to the one-way movement of the equivalent image plane 2 relative to the imaging lens group 3, and the movement distance is equal to the maximum adjacent between the adjacent equivalent image planes 2. The reciprocal of the time spent in the spacing process.
  • the initial focal length refers to It is the focal length of the imaging lens group 3 when the focal depth scanning mechanism 5 is not operating.
  • the display content of a movie screen is switched from an indoor scene to an empty outdoor scene or an outer space galaxy scene. At this time, the displayed focal depth changes significantly.
  • the scene switching with large focal depth difference is usually more than one.
  • the conversion process is relatively slow in the frame image, so only the display system can realize the focus depth switching relatively slowly, so the scanning frequency (equivalent frequency) can be much smaller than the frame frequency of the 3D video. This can also greatly reduce the requirements for the calculation and control system, making the system more stable;
  • the display picture is in a relatively small range, such as an indoor scene.
  • the projection space of the equivalent image plane 2 may fully meet the display of this small space range.
  • the 3D scene can be restored more realistically, or in order to make the display effect more delicate, only a very small amplitude scan is required.
  • the focus depth scan requires a larger amplitude scan or overall translation.
  • the depth of field switching does not need to implement a complete scan cycle.
  • the scene of the picture is slowly switched from the near scene to the far scene, and then stays in the distant scene for a period of time, then the depth of focus scan only needs to adjust the picture depth accordingly.
  • the concept of equivalent frequency can be used.
  • the scan frequency can find a suitable design interval to meet the balance of various needs.
  • the scanning frequency (or equivalent frequency) is preferably greater than At Hz, the user's comprehensive score is higher than 60 points, which can meet the needs of general users;
  • n ⁇ 2 and scanning frequency ⁇ Hz are special application scenarios.
  • n ⁇ 3 and scanning frequency ⁇ Hz For some users pursuing the ultimate experience, n ⁇ 3 and scanning frequency ⁇ Hz.
  • the depth resolution of the human eye is much lower than the horizontal resolution, so even if the pixel pitch in the depth direction is large, it will not cause resolution distortion. Therefore, the pixel pitch in the depth direction of the projection screen can be set to be larger, which can effectively reduce Under the conditions of equipment and process costs, a very realistic 3D picture is projected.
  • the mass M g of the imaging element 1 satisfies the relationship between the equivalent image surface number n Among them, the quality M of the imaging element 1 refers to the quality of the remaining part of the holographic imager after removing the imaging lens group, supporting mechanism, and wiring harness and other auxiliary components.
  • holographic projector As an example.
  • the main application field of holographic projector is geometric holographic display system.
  • the holographic projector often needs to be in a state of motion, so its quality cannot be too large, otherwise
  • the inertia brought by the mass is also very large and the control is extremely difficult, and the energy consumption is huge.
  • it will cause a great burden on the supporting structure, and the whole system will be very heavy and heavy. Not practical. Therefore, its quality needs to be reasonably designed.
  • This design relationship indirectly limits the size of the total mass, and gives the upper limit of the holographic projector when the number of equivalent image planes 2 is different.
  • the holographic projector produced will be very practical. Difference.
  • the mass of moving objects in the living room should not exceed 5000g, otherwise there may be a problem to the personnel on the one hand.
  • Safety hazards On the other hand, the supporting structure will be very heavy, take up a lot of space, and is not beautiful enough. For this boundary situation As the upper limit of the design. In actual tests, it was also found that most families are unwilling to accept products that exceed this design boundary.
  • the entire system is more compact, flexible, and beautiful.
  • the actual measurement results show that users generally evaluate products that meet the design rules above 70 points;
  • the Bragg periodic scanning holographic imager of the present application in which the projection display element is used as the imaging element 1 is used as a holographic projector
  • the Bragg periodic scanning holographic imager of the present application in which the photographing photosensitive element is used as the imaging element 1 It is used as a holographic camera, and the above design description is mainly for the explanation of the holographic projector.
  • holographic camera is very similar, based on the principle of reversible light path, holographic projector needs to be considered The problem can also be encountered with holographic cameras, so the above design instructions are also applicable to holographic cameras.
  • the imaging element 1 of the present application may be provided with a plurality of projection display chips and photographing photosensitive chips, respectively, to realize the dual functions of projection and photographing.
  • the present application provides a Bragg periodic scanning holographic imager, which includes an imaging element 11, at least one galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71;
  • the imaging element 11 is used to provide a plurality of first equivalent image planes 21 that do not overlap or are parallel to each other.
  • the number of the first equivalent image planes 21 is n.
  • the first equivalent image planes 21 can be real physical or It is a virtual image surface or a real image surface obtained through optical conversion.
  • the position of the galvanometer mirror 31 corresponds to the position of the first equivalent image plane 21, and is used to optically convert the multiple first equivalent image planes 21 into multiple second equivalent image planes 41, and the second equivalent image plane 41 is
  • the number of the first equivalent image surface 21 and the second equivalent image surface 41 are equal, and both are n;
  • the position of the imaging lens group 51 corresponds to the second equivalent image plane 41, which is used for optical imaging and is formed with a plurality of two-dimensional cut planes 61;
  • the focal depth scanning mechanism 71 is connected to the galvanometer 31, and is used to control the spatial position change of the galvanometer 31 to realize the volume scanning of the two-dimensional section 61, preferably back and forth reciprocating motion to realize the volume scanning;
  • This scan is equivalent to the depth of field scan of the 3D image, which can scan out an imaging space, which forms a denser array of two-dimensional slices 61 or a continuous 3D image.
  • This application preferably adopts the control of various components to perform periodic position changes. To achieve periodic volume scanning.
  • each two-dimensional section 61 is covered with a pixel array (two-dimensional), a three-dimensional pixel array can be formed after volume scanning.
  • the advantage of this structure with a galvanometer 31 is that it only needs to scan in a very small area. A relatively larger equivalent scanning space can be achieved, and the equivalent scanning space can be further enlarged after optical conversion.
  • the movement range of the second equivalent image plane 41 is the equivalent scan range (that is, the area of the second equivalent image plane 41 is multiplied by twice the scan amplitude in the vertical direction, which can be recorded as V equivalent ), and the actual The scanning motion range is the motion range of the galvanometer 31 (that is, the area of the galvanometer 31 is multiplied by 2 times its vertical scanning amplitude, which can be recorded as V scan ), and the ratio of the two is preferably set to be greater than 1.2 (by optical The geometric relationship can realize the setting mode of specific magnification, which will not be repeated here), so as to achieve the purpose of primary magnification, and the optical conversion of the imaging lens group 51 can further magnify the equivalent scanning range, for example, select magnification greater than 5 lens, the imaging space is further enlarged to more than 53 times.
  • Another advantage of this scanning system is that key components such as the two-dimensional imaging element 11 and the imaging lens group 51 can be in a completely static state, or a very slight movement state, so that the system is more reliable.
  • the imaging element 11 may be a projection display element or a photographing photosensitive element:
  • the scanning imager of the present application is used as a holographic projector:
  • the light of the projection display element is optically transformed by the galvanometer 31 and the imaging lens group 51 to form a plurality of two-dimensional slices 61 in the space, and form an array of two-dimensional slices 61, which is equivalent to the imaging lens group 51 directly as shown in Fig. 10
  • the previous multi-layer sliced, discontinuous three-dimensional display effect is scanned to form a denser array of two-dimensional slices 61 or a continuous 3D picture, realizing continuous 3D display effect;
  • the above-mentioned two-dimensional section 61 is optically conjugated with the first equivalent image plane 21 and the second equivalent image plane 41. Therefore, when the two-dimensional section 61 is volume-scanned, the first equivalent image plane 21 and The second equivalent image plane 41 is also undergoing volume scanning at the same time.
  • the above-mentioned two-dimensional section 61 is the real image plane after optical conversion, and the first equivalent image plane 21 and the second equivalent image plane 41 are virtual image planes obtained through optical conversion. ;
  • the scanning imager of the present application is used as a holographic camera:
  • the light from the external scene is optically converted by the galvanometer 31 and the imaging lens group 51, and then multiple real image two-dimensional sections 61 are generated on the photographing photosensitive element and recorded, which is equivalent to the external
  • the imaging lens group 51 After the light of the scene is optically imaged by the imaging lens group 51, the effect of multiple first equivalent image planes 21 and second equivalent image planes 41 that are optically conjugate with the external scene as shown in FIG. 11 are directly generated;
  • the focal depth scanning mechanism 71 is used to control the spatial position of the photographing photosensitive element and/or the imaging lens group 51, preferably periodically, so that the first equivalent image surface 21 and the second equivalent image surface 41 are between the imaging lens group 51
  • the relative position or the overall position of the camera changes periodically, and the corresponding depth space optically conjugated with the photosensitive chip, the first equivalent image plane and the second equivalent image plane 41 also undergo periodic scanning, making the scene at different depths of field
  • the information is recorded separately, so as to record a complete and continuous 3D scene, to achieve the purpose of 3D shooting, according to the optical path is reversible, and the second equivalent image plane 41 is optically conjugated to the depth space of the periodic scanning process, the second equivalent
  • the image plane 41 has undergone corresponding periodic scanning, and the above-mentioned second equivalent image plane 41 and the two-dimensional section 61 have an equivalent relationship, so the scanning of the second equivalent image plane 41 can be equivalent to two-dimensional scanning. Scanning of the dimensional section surface 61, the above-ment
  • the focal depth scanning mechanism 71 is provided to control the spatial position change of the galvanometer 31, so that the relative position between the second equivalent image plane 41 corresponding to the first equivalent image plane 21 and the imaging lens group 51 is changed.
  • a fixed frequency reciprocating scan can also be scanned with different frequencies according to the display content.
  • the design of the scanning mechanism belongs to common knowledge in the field, and the specific implementation method can be designed according to the actual situation, so I will not repeat it here.
  • the effective focal length of the imaging lens group 51 can be further controlled to periodically change through the focal depth scanning mechanism 71, and the volume scanning of the two-dimensional section 61 can also be realized.
  • the effective focal length of the imaging lens group 51 can be changed periodically by changing the imaging lens group 51.
  • the relative position and/or overall position of the internal optical elements can also be achieved by setting a liquid zoom lens with zoom function and/or a flexible zoom lens in the imaging lens group 51;
  • the focal depth scanning mechanism 71 can also be connected to the two-dimensional imaging element 11 and/or the imaging lens group 51, respectively, for controlling the spatial position change of the two-dimensional imaging element 11 and/or the imaging lens group 51 to realize a two-dimensional section.
  • the volume scan of 61 can also achieve the above-mentioned 3D imaging effect.
  • three-dimensional scans can also be used to further enhance the display effect.
  • adding a scan parallel to the equivalent image plane can further increase the horizontal resolution and make the image quality more delicate.
  • the Bragg periodic scanning holographic imager includes a projection display element, a galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71 respectively arranged inside.
  • the focal depth scanning mechanism 71 is connected to the galvanometer 31 and controls the galvanometer
  • the space position 31 is scanned back and forth (or periodically changed), so that the first equivalent image plane 21 provided by the projection display element and the second equivalent image plane 41 after optical conversion by the galvanometer 31 are between the imaging lens group 51
  • the relative position of the two-dimensional section 61 changes periodically, and the two-dimensional section 61, which is optically conjugate with the second equivalent image plane 41, periodically changes in the depth of focus accordingly, so that the two-dimensional section 61 can be scanned back and forth, thus presenting a continuous 3D Picture.
  • the Bragg periodic scanning holographic imager includes a projection display element, a galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71 respectively arranged inside.
  • the focal depth scanning mechanism 71 is connected to the imaging element 11 and the galvanometer 31, respectively.
  • Connect and control the periodic changes of the spatial positions of the two so that the first equivalent image plane 21 provided by the projection display element and the second equivalent image plane 41 after optical conversion by the galvanometer 31 and the imaging lens group 51
  • the relative position changes periodically, and the two-dimensional section 61 that is optically conjugate to the second equivalent image plane 41 changes periodically in the depth of focus, so that the two-dimensional section 61 can be scanned back and forth to present a continuous 3D image.
  • the Bragg periodic scanning holographic imager includes a projection display element, a galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71 respectively arranged inside.
  • the focal depth scanning mechanism 71 is respectively connected to the galvanometer 31 and the imaging lens group 51 connects and controls the periodic changes of the spatial positions of the two, so that the first equivalent image plane 21 provided by the projection display element and the second equivalent image plane 41 after optical conversion by the galvanometer 31 are between the imaging lens group 51
  • the relative position of the two-dimensional section 61 changes periodically, and the two-dimensional section 61, which is optically conjugate with the second equivalent image plane 41, periodically changes in the depth of focus accordingly, so that the two-dimensional section 61 can be scanned back and forth, thus presenting a continuous 3D Picture.
  • the Bragg periodic scanning holographic imager includes a projection display element, a galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71 respectively arranged inside.
  • the focal depth scanning mechanism 71 is respectively connected to the projection display element and the galvanometer 31 It is connected to the imaging lens group 51 and controls the periodic changes of the three spatial positions, so that the first equivalent image plane 21 provided by the projection display element and the second equivalent image plane 41 after optical conversion by the galvanometer 31 and the imaging lens
  • the relative position between the groups 51 changes periodically, and the two-dimensional section 61 that is optically conjugate with the second equivalent image plane 41 periodically changes in the depth of focus accordingly, so that the two-dimensional section 61 is scanned back and forth, thereby Present a continuous 3D picture.
  • the Bragg periodic scanning holographic imager includes a projection display element, a galvanometer 31, an imaging lens group 51, and a focal depth scanning mechanism 71 respectively arranged inside.
  • the focal depth scanning mechanism 71 is connected to and controlled by the galvanometer 31 and the imaging lens group 51, respectively.
  • the spatial position of the galvanometer lens 31 and the effective focal depth of the imaging lens group 51 periodically change, so that the first equivalent image plane 21 provided by the projection display element and the second equivalent image plane 41 after optical conversion by the galvanometer lens 31 and The relative position between the imaging lens group 51 changes periodically, and the two-dimensional section 61 optically conjugate to the second equivalent image plane 41 periodically changes in the depth of focus direction to realize the back and forth scanning of the two-dimensional section 61 , So as to present a continuous 3D picture.
  • the focal depth scanning mechanism 71 can control the effective focal depth of the imaging lens group 51 in the following manner:
  • the focal depth scanning mechanism 71 controls the relative position and/or overall position of the multiple optical elements in the imaging lens group 51 to change (mechanical zoom), and realizes the control of the periodic change of the effective focal length of the imaging lens group 51 ;
  • the imaging lens group 51 in the embodiment 8 and the embodiment 9 can also be increased with a zoom function, and the focal depth scanning mechanism 71 can be used for unified control to realize the back and forth scanning of the two-dimensional section 61.
  • the number of galvanometers 31 is also There may be more than one.
  • FIG. 19 shows a case where the number of galvanometers 31 is two.
  • Examples 6 to 10 respectively embodied the realization of the front and back reciprocating scanning of different two-dimensional section 61, and finally achieved a continuous 3D display effect.
  • the focal depth scanning mechanism 71 is operated to realize the scanning of the two-dimensional section 61, the first equivalent image plane 21 and the second etc. which are optically conjugate with the two-dimensional section 61
  • the effect image surface 41 is also undergoing volume scanning at the same time;
  • the vibration controlled by the focal depth scanning mechanism 71 has a linear correspondence with the scanning of the first equivalent image plane 21 and the second equivalent image plane 41, and based on the law of lens imaging, the scanning of the two-dimensional section 61 in the focal depth direction is The scanning of the first equivalent image plane 21 and the second equivalent image plane 41 is not linear. Therefore, the relevant design parameters should be designed with the first equivalent image plane 21 or the second equivalent image plane 41 as a reference. more convenient:
  • the amplitude of the second equivalent image plane 41 in the depth of focus direction (that is, the maximum displacement of the second equivalent image plane 41 from the equilibrium position in the depth of focus direction) is L 1 mm.
  • the balance position of 41 is the midpoint between the amplitude point in the focal depth direction of the second equivalent image plane 41 and the amplitude point in the opposite direction of the focal depth, and the amplitude point of the second equivalent image plane 41 is shown in Fig. 15 :
  • the maximum displacement of the second equivalent image plane 41 along the focal depth direction is defined as the amplitude point in the focal depth direction
  • the maximum displacement along the opposite direction of the focal depth is defined as the amplitude point in the opposite direction of the focal depth;
  • the amplitude L 1 of the second equivalent image plane 41 optically transformed by the galvanometer 31 should have a geometric correspondence relationship with the amplitude of the galvanometer 31 in the vertical direction.
  • the amplitude of the galvanometer 31 in the vertical direction is A mm, it should be noted that the above-mentioned amplitude A of the galvanometer 31 in the vertical direction should be interpreted as the maximum displacement of the galvanometer 31 from the equilibrium position of the galvanometer 31 in the direction perpendicular to itself during the vibration process, and the vibration of the galvanometer 31
  • the equilibrium position is the midpoint position of the maximum displacement in the forward and reverse directions of the vibration of the galvanometer 31;
  • the amplitude A in the vertical direction of the galvanometer mirror 31 is related to the angle between the galvanometer mirror 31 and the two-dimensional imaging element 11. The following takes the angle between the galvanometer mirror 31 and the imaging element 11 as an example:
  • the number of galvanometers 31 is 1, the amplitude is A mm, and the scanning amplitude L 1 of the second equivalent image plane 41 is
  • the number of galvanometers 31 is 2 and they are arranged parallel to each other, the vibration frequency is the same, and the amplitude is also A mm. Then the amplitude L 1 of the second equivalent image plane 41 is
  • the number of galvanometers 31 is 3 and they are arranged parallel to each other, the vibration frequency is the same, the amplitude is also A mm, then the amplitude L 1 of the second equivalent image plane 41 is
  • the number of galvanometers 31 is N and they are arranged parallel to each other, the frequency is the same, and the amplitude is also A mm. Then the amplitude L 1 of the second equivalent image plane 41 is
  • the plurality of second equivalent image planes 41 have a distribution depth along the focal depth direction, that is, the center distance between the second equivalent image plane 41 closest to the imaging lens group 51 and the second equivalent image plane 41 farthest from the imaging lens group 51 is L 2 mm, and the amplitude L 1 of the second equivalent image plane 41 along the focal depth direction should satisfy L 1 ⁇ L 2 , and only then can the scanning amplitude be relatively smaller.
  • the design can be optimized: Within this design parameter range, it can be ensured that suitable design parameters are found under the premise of making the amplitude small, so that the second equivalent image plane 41 can sweep out a complete continuous space in the space (in fact, the adjacent second etc.
  • the space scanned by the effect image surface 41 still overlaps to a certain extent, which completely avoids the problem of discontinuity in the longitudinal depth of field, while leaving enough design margin, allowing the design to use a part of the scanning cycle to update the display screen, increasing design flexibility ), the scanning amplitude can be reduced to a very small value.
  • the scan amplitude can be made larger or the depth resolution can be smaller for scenes where the depth resolution is not high.
  • the scanning frequency or equivalent frequency of the focal depth scanning mechanism 71 is preferably greater than Hz.
  • the frequency here refers to the reciprocal of the time interval for the moving part to pass through a certain spatial point twice in the same direction.
  • the reciprocal of the time to pass the equilibrium position twice in the same direction for scanning with a zoom mode, it can be equivalent to the focal length of the imaging lens group 51 returning from the initial focal length to the reciprocal of the focal length.
  • the initial focal length refers to the imaging lens group 51 when the focal depth scanning mechanism 71 is not operating. Focal length.
  • the focal plane When displaying a 3D picture in a certain space, the focal plane needs to be scanned back and forth in a certain space to complete the update of the full-space picture, so the frame rate of the 3D picture is the depth-of-field scanning frequency.
  • the equivalent frequency means that when the equivalent image plane moves in one direction with respect to the imaging lens group 51, the movement distance is equal to the maximum adjacent between adjacent second equivalent image planes 41 The reciprocal of the time spent in the spacing process.
  • the initial focal length refers to It is the focal length of the imaging lens group 51 when the focal depth scanning mechanism 71 is not operating.
  • the display effect therefore, only when the overall depth of field of the display content changes significantly, it is necessary to re-match the depth of focus of the display space through the depth of focus scanning action.
  • the display content of a movie screen is switched from an indoor scene to an empty outdoor scene or an outer space galaxy scene.
  • the displayed focal depth changes significantly.
  • the scene switching with large focal depth difference is usually more than one.
  • the conversion process is relatively slow in the frame image, so only the display system can realize the focus depth switching relatively slowly, so the scanning frequency (equivalent frequency) can be much smaller than the frame frequency of the 3D video. This can also greatly reduce the requirements for the calculation and control system, making the system more stable;
  • the display picture is in a relatively small range, such as an indoor scene.
  • the projection space of the equivalent image surface may fully meet the display of this small space range.
  • the focus depth scan requires a larger amplitude scan or overall translation.
  • the depth of field switching does not need to implement a complete scan cycle.
  • the scene of the picture is slowly switched from the near scene to the far scene, and then stays in the distant scene for a period of time, then the depth of focus scan only needs to adjust the picture depth accordingly.
  • the concept of equivalent frequency can be used.
  • the scanning frequency (or equivalent frequency) is preferably greater than At Hz, the user's comprehensive score is higher than 60, which can meet the needs of general users;
  • n ⁇ 2 and scanning frequency ⁇ Hz are special application scenarios.
  • n ⁇ 3 and scanning frequency ⁇ Hz For some users who are pursuing the ultimate experience, n ⁇ 3 and scanning frequency ⁇ Hz.
  • the depth resolution of the human eye is much lower than the horizontal resolution, so even if the pixel pitch in the depth direction is large, it will not cause resolution distortion. Therefore, the pixel pitch in the depth direction of the projection screen can be set to be larger, which can effectively reduce Under the conditions of equipment and process costs, a very realistic 3D picture is projected.
  • the mass M g of the imaging element 11 and the number n of the first equivalent image plane 21 satisfy Among them, the quality M of the imaging element 11 refers to the quality of the remaining part of the holographic imager after removing the imaging lens group, supporting mechanism, and wiring harness and other auxiliary components.
  • holographic projector As an example, the main application field of holographic projector is geometric holographic display system.
  • the holographic projector often needs to be in a state of motion, so its quality cannot be too large, otherwise
  • the inertia brought by the mass is also very large and the control is extremely difficult, and the energy consumption is huge.
  • it will cause a great burden on the supporting structure, and the whole system will be very heavy and heavy. Not practical. Therefore, its quality needs to be reasonably designed.
  • the first equivalent image plane 21 must rely on the existence of a physical entity, so that the greater the number of the first equivalent image plane 21, the greater the overall quality. If you want to design a holographic projector that is as light as possible, you must sacrifice the number of first equivalent image planes 21. If you want to obtain a denser first equivalent image plane 21, you have to receive an increase in quality, and the two cannot be at the same time. Reach the best.
  • This application provides a design criterion for weighing the relationship between the two, namely
  • This design relationship indirectly limits the size of the total mass, and gives the upper limit of the holographic projector in the case of a different number of first equivalent image planes 21.
  • the practicality of the produced holographic projector is reduced. It will be bad.
  • the mass of the moving objects in the living room should not exceed 5000g, otherwise there may be
  • the safety hazards of personnel, on the other hand, the supporting structure will be very heavy, occupy a lot of space, and not beautiful enough. For this boundary situation As the upper limit of the design. In actual tests, it was also found that most families are unwilling to accept products that exceed this design boundary.
  • the entire system is more compact, flexible, and beautiful.
  • the actual measurement results show that users generally evaluate products that meet the design rules above 70 points;
  • the area of the galvanometer 31 is as large as possible, so as to make better use of the effective optical area of the lens.
  • the system scanning frequency needs to be increased.
  • the best configuration for scanning is to use its natural frequency for scanning, and the natural frequency and vibration of the mechanical system.
  • this application provides an easy-to-implement design guideline to help general practitioners in the field design products with excellent performance.
  • the thickness range of the main lens is very narrow, such as SLR cameras, the thickness of the outermost lens (center thickness) is generally between 1 ⁇ 5mm, the actual situation does not consider some extreme special cases, this range Will be narrower, which is mainly restricted by the design law of the imaging lens. Therefore, the quality of imaging lenses often mainly depends on the size of their aperture. In order to match the imaging lens, the area of the galvanometer lens 31 also needs to be within an appropriate range.
  • the problem of the stiffness of the lens that is, the thickness of the galvanometer 31 of a specific area needs to be designed to ensure sufficient stiffness, so the volume of the scanning mirror is also It is determined in a very small range, usually the difference of lens material density is relatively small, so its quality can be further determined in a reasonable range.
  • this application determines the parameter design space that can better show the depth of field detail effect under the premise of ensuring a certain viewing angle (because the design of this system is mainly for the 3D imaging field, so In the design process, it is necessary to give priority to ensuring the performance of depth of field), the quality of any one of the galvanometers 31 is M N g, the amplitude is A mm, and the quality of the outermost lens of the holographic imager is mg, which satisfies:
  • the quality of the scanning lens closest to the outermost lens of the imaging lens is defined as M 1 g
  • the scene movement speed requirements are high, preferably
  • Office application scenarios users have relatively low requirements for image quality, preferably
  • the mass of the outermost lens in the above embodiment is 80g
  • the system can be scaled as a whole to obtain designs of other sizes and qualities. This is very similar to the situation in fluid design, as long as the fluid is fluid If the Reynolds number is similar, the mathematical solution will be very similar. Therefore, when the large model cannot be realized, the small model of the same Reynolds number is usually used for experimental testing. In fact, we have also verified the above experimental schemes under the conditions of 50g, 20g, 10g, 5g, 2g, etc. The user experience feedback is consistent with the feedback results in the above table, which further proves the universality of the design formula.
  • the depth resolution of the human eye is much lower than the horizontal resolution, so even if the pixel pitch in the depth direction is large, it will not cause resolution distortion. Therefore, the pixel pitch in the depth direction of the projection screen can be set to be larger, which can effectively reduce Under the conditions of equipment and process costs, a very realistic 3D picture is projected.
  • projection display chips and photographing photosensitive chips may be provided in the imaging element 11 at the same time to realize the dual functions of projection and photographing.
  • the Bragg periodic scanning holographic imager of the present application in which the projection display element is used as the imaging element 11 is used as a holographic projector
  • the Bragg periodic scanning holographic imager of the present application in which the photographing photosensitive element is used as the imaging element 11 It is used as a holographic camera, and the above design description is mainly for the explanation of the holographic projector.
  • holographic camera is very similar, based on the principle of reversible light path, holographic projector needs to be considered The problem can also be encountered with holographic cameras, so the above design instructions are also applicable to holographic cameras.
  • the present application provides a micro-scanning holographic imager, which includes a two-dimensional imaging element 12, at least one galvanometer 22, an imaging lens group 42, and a focal depth scanning mechanism 62 respectively arranged inside the micro-scanning holographic imager;
  • the galvanometer 22 is set at a position corresponding to the two-dimensional imaging element 12, and is used for optically transforming light and forming an equivalent image surface 32;
  • the position of the imaging lens group 42 corresponds to the equivalent image plane 32, and is used for optically transforming light and forming a two-dimensional picture 52;
  • the focal depth scanning mechanism 62 is connected to the galvanometer 22, and is used to control the spatial position change of the galvanometer 22 to realize volume scanning of the two-dimensional image 52;
  • the two-dimensional imaging element 12 of the present application may be a projection display element or a photographing photosensitive element:
  • the two-dimensional imaging element 12 is a projection display element
  • the projection light of the projection display element is optically transformed by the galvanometer 22 and the imaging lens group 42 in order to project a two-dimensional image 52 in space, which is equivalent to an equivalent
  • the imaging effect of the image plane 32 after the imaging lens group 42 is projected.
  • the focal depth scanning mechanism 62 controls the galvanometer 22 to vibrate, so that the relative position between the equivalent image plane 32 and the imaging lens group 42 changes, and the two-dimensional image 52 follows Vibration also occurs in the depth of focus to achieve volume scanning of the two-dimensional screen 52, and finally achieve the effect of 3D display.
  • the above-mentioned two-dimensional screen 52 and the equivalent image plane 32 have an optically conjugate relationship, so the two-dimensional screen 52 is During volume scanning, the equivalent image surface 32 is also performing volume scanning at the same time, the above-mentioned two-dimensional image 52 is a real image surface after optical conversion, and the equivalent image surface 32 is a virtual image surface obtained through optical conversion;
  • the two-dimensional imaging element 12 is a photographing photosensitive element
  • the light from the external scene is successively optically converted by the imaging lens group 42 and the galvanometer 22 to generate a real two-dimensional picture on the photographing photosensitive element. 52 is recorded, and the light equivalent to the external scene is optically transformed by the imaging lens group 42 to directly generate the imaging effect of the equivalent image surface 32;
  • the focal depth scanning mechanism 62 controls the galvanometer 22 to vibrate, the relative position of the galvanometer 22 and the photographing photosensitive element changes, and the spatial positional relationship between the equivalent image plane 32 and the imaging lens group 42 changes periodically (micro At this time, the optically conjugated depth of field with the photographing photosensitive element or equivalent image plane 32 also changes periodically, so as to achieve the purpose of depth of field scanning, so that the scenes at different depths of field are imaged and recorded separately to realize 3D shooting, according to the optical path Reversible, the process of periodic scanning occurs in the depth space optically conjugated with the photographing photosensitive chip or the equivalent image plane 32, the equivalent image plane 32 also undergoes corresponding periodic scanning, and the above-mentioned equivalent image plane 32 and two There is an equivalent relationship between the two-dimensional pictures 52, so the scanning of the
  • volume scanning is also equivalent to the depth-of-field scanning of the 3D image, and an imaging space can be scanned to achieve the effect of 3D display.
  • a three-dimensional pixel array can be formed after volume scanning.
  • the advantage of this structure is that only a very small range is required. Scanning can achieve a relatively larger equivalent scanning space, and the equivalent scanning space can be further enlarged after optical conversion.
  • the motion range of the equivalent image plane 32 is the equivalent scan range (that is, the area of the equivalent image plane 32 is multiplied by 2 times the scan amplitude in the vertical direction, which can be recorded as V equivalent ), and the actual scan motion range Is the range of motion of the galvanometer 22 (that is, the area of the galvanometer 22 is multiplied by 2 times the scanning amplitude in the vertical direction, which can be recorded as V scan ), and the ratio of the two is preferably set to be greater than 1.2 (which can be achieved by optical geometric relationship The setting mode of a specific magnification is not repeated here), so as to achieve the purpose of primary magnification, and the optical conversion of the imaging lens group 42 can further enlarge the equivalent scanning range. For example, use a lens with a magnification greater than 5 to further increase amplifying the imaging space to greater than 53-fold.
  • Another advantage of this scanning system is that key components such as the two-dimensional imaging element 12 and the imaging lens group 42 can be in a completely static state, or a very slight movement state, thereby making the system more reliable.
  • the present application controls the spatial position change of the galvanometer 22 through the focal depth scanning mechanism 62 provided, preferably periodically, to realize the volume scanning of the two-dimensional screen 52, preferably the two-dimensional screen 52 is reciprocated back and forth to realize the volume scanning. .
  • the galvanometer 22 by mechanically scanning the galvanometer 22 periodically in space, a continuous space can be swept out in space. In practical applications, it can be scanned at a fixed frequency, or different frequencies can be used according to the display content. Perform scanning; the design of the scanning mechanism belongs to common knowledge in the field, and the specific implementation method can be designed according to the actual situation, so I will not repeat it here.
  • the effective focal length of the imaging lens group 42 can be further controlled to change periodically through the focal depth scanning mechanism 62, and the volume scanning of the two-dimensional image 52 can also be realized.
  • the effective focal length of the imaging lens group 42 can be changed periodically by changing the imaging lens group 42.
  • the relative position and/or overall position of the internal optical elements can be achieved (mechanical zoom), or a liquid zoom lens with zoom function and/or a flexible zoom lens can be arranged in the imaging lens group 42;
  • the focal depth scanning mechanism 62 can also be connected to the two-dimensional imaging element 12 and/or the imaging lens group 42, respectively, for controlling the spatial position change of the two-dimensional imaging element 12 and/or the imaging lens group 42 to realize a two-dimensional image.
  • the volume scan of 52 can also achieve the above-mentioned 3D imaging effect.
  • three-dimensional scans can also be used to further enhance the display effect.
  • adding a scan parallel to the equivalent image plane can further increase the horizontal resolution and make the image quality more delicate.
  • the two-dimensional imaging element 12 is used as a projection display element, and a micro-scanning holographic imager including only one galvanometer 22 is taken as an example to further explain the present application:
  • the micro-scanning holographic imager includes a projection display element, a galvanometer 22, an imaging lens group 42 and a focal depth scanning mechanism 62 respectively arranged inside.
  • the focal depth scanning mechanism 62 is connected to the galvanometer 22 and controls the galvanometer 22.
  • the back and forth scanning (or periodic changes) of the spatial position makes the relative position between the equivalent image plane 32 formed by the optical conversion of the galvanometer 22 and the imaging lens group 42 periodically fluctuate, which is the same as the equivalent image plane 32
  • the position of the two-dimensional picture 52 of the yoke also periodically changes along the depth of focus, so that the two-dimensional picture 52 can be scanned back and forth to show the effect of 3D display.
  • the micro-scanning holographic imager includes a projection display element, a galvanometer 22, an imaging lens group 42 and a focal depth scanning mechanism 62 respectively arranged inside.
  • the focal depth scanning mechanism 62 is respectively connected to the projection display element and the galvanometer 22 And control the periodic change of the spatial position of the two, so that the relative position between the equivalent image surface 32 formed by the optical conversion of the galvanometer 22 and the imaging lens group 42 periodically changes, and it is conjugated to the equivalent image surface 32
  • the position of the two-dimensional screen 52 also periodically changes along the depth of focus, so as to realize the back and forth scanning of the two-dimensional screen 52 to present the effect of 3D display.
  • the micro-scanning holographic imager includes a projection display element, a galvanometer 22, an imaging lens group 42 and a focal depth scanning mechanism 62 respectively arranged inside.
  • the focal depth scanning mechanism 62 is respectively connected to the galvanometer 22 and the imaging lens group 42. Connecting and controlling the periodic changes in the spatial position of the two, so that the relative position between the equivalent image plane 32 formed by the optical conversion of the galvanometer 22 and the imaging lens group 42 periodically changes, and it is the same as the equivalent image plane 32.
  • the position of the two-dimensional picture 52 of the yoke also periodically changes along the depth of focus, so that the two-dimensional picture 52 can be scanned back and forth to show the effect of 3D display.
  • the micro-scanning holographic imager includes a projection display element, a galvanometer 22, an imaging lens group 42 and a focal depth scanning mechanism 62 respectively arranged inside.
  • the focal depth scanning mechanism 62 is connected to the projection display element, galvanometer 22 and
  • the imaging lens group 42 is connected and controls the periodic changes of the three spatial positions, so that the relative position between the equivalent image plane 32 formed by the optical conversion of the galvanometer 22 and the imaging lens group 42 changes periodically, which is equivalent to The position of the two-dimensional picture 52 conjugated to the image plane 32 also periodically changes along the depth of focus, so that the two-dimensional picture 52 can be scanned back and forth to show the effect of 3D display.
  • the micro-scanning holographic imager includes a projection display element, a galvanometer 22, an imaging lens group 42 and a focal depth scanning mechanism 62 respectively arranged inside.
  • the focal depth scanning mechanism 62 is respectively connected to the galvanometer 22 and the imaging lens group 42 and controls the vibration
  • the spatial position of the mirror 22 and the effective focal depth of the imaging lens group 42 periodically change, so that the relative position between the equivalent image plane 32 formed by the optical conversion of the galvanometer 22 and the imaging lens group 42 changes periodically, and
  • the position of the two-dimensional frame 52 which is equivalent to the conjugate image plane 32, also periodically changes along the depth of focus, so that the two-dimensional frame 52 can be scanned back and forth to show the effect of 3D display.
  • the focal depth scanning mechanism 62 can realize the control of the effective focal depth of the imaging lens group 42 in the following manner:
  • the focal depth scanning mechanism 62 controls the relative position and/or overall position of the multiple optical elements in the imaging lens group 42 to change (mechanical zoom), and realizes the control of the periodic change of the effective focal length of the imaging lens group 42 ;
  • a flexible zoom lens with zoom function can also be provided in the imaging lens group 42, and the focal length of the flexible zoom lens can be controlled by the focal depth scanning mechanism 62 to realize the control of the periodic variation of the effective focal length of the imaging lens group 42 .
  • Flexible zoom lens can also be replaced by other lenses with zoom function, such as liquid zoom lens, etc.;
  • the imaging lens group 42 in Embodiment 13 and Embodiment 14 can also be increased with a zoom function, and the focal depth scanning mechanism 62 can be used for unified control to realize the front and back reciprocating scanning of the two-dimensional picture 52.
  • the number of galvanometers 22 is also There may be multiple, as shown in FIG. 28, the number of galvanometers 22 is two.
  • Embodiments 11 to 15 respectively reflect the realization of different two-dimensional screens 52 back and forth scanning, and finally achieve the effect of 3D display.
  • the projection display elements in Embodiments 11 to 15 can also be replaced by photographing photosensitive elements, as shown in FIG. 21, to achieve the effect of 3D photography.
  • the focal depth scanning mechanism 62 operates to scan the two-dimensional frame 52 in volume
  • the equivalent image surface 32 that is optically conjugate with the two-dimensional frame 52 is also performing volume scanning at the same time;
  • the vibration controlled by the focal depth scanning mechanism 62 has a linear correspondence with the scanning of the equivalent image plane 32. Based on the lens imaging law, the scanning of the two-dimensional image 52 in the focal depth direction and the scanning of the equivalent image plane 32 are not linear. Correspondence, therefore, it is more convenient to design related design parameters with the equivalent image surface 32 as a reference:
  • the amplitude of the equivalent image plane 32 in the focal depth direction (that is, the maximum displacement of the equivalent image plane 32 from the equilibrium position in the focal depth direction) is L mm, and the above-mentioned equilibrium position of the equivalent image plane 32 is that of the equivalent image plane 32
  • the midpoint between the amplitude point in the focal depth direction and the amplitude point in the opposite direction of the focal depth, and the amplitude point of the equivalent image plane 32 is shown in FIG. Defined as the amplitude point in the direction of focal depth, and the maximum displacement along the opposite direction of the focal depth is defined as the amplitude point in the opposite direction of focal depth;
  • the amplitude L of the equivalent image plane 32 after optical conversion by the galvanometer 22 should have a geometric correspondence relationship with the amplitude of the galvanometer 22 in the vertical direction.
  • the amplitude of the galvanometer 22 in the vertical direction is A mm, It should be noted that the above-mentioned amplitude A of the galvanometer 22 in the vertical direction should be interpreted as the maximum displacement of the galvanometer 22 from the equilibrium position of the galvanometer 22 in the direction perpendicular to itself during the vibration process, and the equilibrium position of the galvanometer 22 Is the midpoint position of the maximum displacement in the forward and reverse directions of the vibration of the galvanometer 22;
  • the amplitude of the vertical direction of the galvanometer 22 is A mm, which is related to the angle between the galvanometer 22 and the two-dimensional imaging element 12.
  • the following takes the angle between the galvanometer 22 and the two-dimensional imaging element 12 as 45° as an example:
  • the number of galvanometers 22 is 1
  • the amplitude is A mm
  • the amplitude L of the volume scan of the equivalent image plane 32 is
  • the number of galvanometers 22 is 2 and they are arranged parallel to each other, the frequency is the same, the amplitude is also A mm, then the amplitude L of the volume scan of the equivalent image plane 32 is
  • the number of galvanometers 22 is 3 and they are arranged parallel to each other, the frequency is the same, and the amplitude is also A mm. Then the amplitude L of the volume scan of the equivalent image plane 32 is
  • the volume scan amplitude can be made larger or the depth resolution can be smaller for scenes where the depth resolution is not high.
  • the scanning frequency or equivalent frequency of the focal depth scanning mechanism 62 is preferably greater than 6 Hz;
  • the frequency here refers to the reciprocal of the time interval for the moving part to pass through a certain spatial point twice in the same direction of motion.
  • the time of passing the equilibrium position of the galvanometer 22 in the same scanning direction twice Counting down, the balance position of the galvanometer 22 has been explained above, so I won’t repeat it here;
  • the equivalent frequency refers to the time taken in the process when the equivalent image plane 32 moves in one direction relative to the imaging lens group 42, and the movement distance is equal to the amplitude L 2 of the equivalent image plane 32.
  • the initial focal length refers to It is the focal length of the imaging lens group 42 when the focal depth scanning mechanism 62 is not operating.
  • the focal plane When displaying a 3D picture in a certain space, the focal plane needs to be scanned back and forth in a certain space to complete the update of the full-space picture, so the frame rate of the 3D picture is the depth-of-field scanning frequency.
  • the frame rate per second during imaging depends on the scanning frequency.
  • the human eye In the actual display process, when the frame rate is greater than 12, the human eye’s persistence principle can be used to form a continuous picture.
  • the scanning frequency of the focal depth scanning mechanism 62 is greater than 6 Hz.
  • the area of the galvanometer 22 is as large as possible, so as to make better use of the effective optical area of the lens.
  • the best configuration for scanning is to scan with its natural frequency, and the natural frequency and vibration of the mechanical system
  • the quality of the lens needs to be smaller, and the corresponding area will be smaller.
  • this application provides an easy-to-implement design guideline to help general practitioners in the field design products with excellent performance.
  • the thickness range of the main lens is very narrow, such as SLR cameras, the thickness of the outermost lens (center thickness) is generally between 1 ⁇ 5mm, the actual situation does not consider some extreme special cases, this range Will be narrower, which is mainly restricted by the design law of the imaging lens. Therefore, the quality of imaging lenses often mainly depends on the size of their aperture.
  • the area of the galvanometer 22 also needs to be within an appropriate range.
  • the thickness of the galvanometer 22 of a specific area needs to be designed to ensure sufficient stiffness, so the volume of the scanning mirror is also It is determined in a very small range, usually the difference of lens material density is relatively small, so its quality can be further determined in a reasonable range.
  • this application determines the parameter design space that can better show the depth of field detail effect under the premise of ensuring a certain viewing angle (because the design of this system is mainly for the 3D imaging field, so In the design process, it is necessary to give priority to ensuring the performance of depth of field), the quality of any galvanometer 22 is M N g, the amplitude is A mm, and the quality of the outermost lens of the holographic imager is m g, which satisfies:
  • the quality of the scanning lens closest to the outermost lens of the imaging lens is defined as M 1 g
  • the scene movement speed requirements are high, preferably
  • Office application scenarios users have relatively low requirements for image quality, preferably
  • the mass of the outermost lens in the above embodiment is 80g
  • the system can be scaled as a whole to obtain designs of other sizes and qualities. This is very similar to the situation in fluid design, as long as the fluid is fluid If the Reynolds number is similar, the mathematical solution will be very similar. Therefore, when the large model cannot be realized, the small model of the same Reynolds number is usually used for experimental testing. In fact, we have also verified the above experimental schemes under the conditions of 50g, 20g, 10g, 5g, 2g, etc. The user experience feedback is consistent with the feedback results in the above table, which further proves the universality of the design formula.
  • the Bragg periodic scanning holographic imager of the present application in which the projection display element is used as the two-dimensional imaging element 12 is used as a holographic projector, and the photographing photosensitive element is used as the two-dimensional imaging element 12.
  • the holographic imager is used as a holographic camera, and the above design description is mainly for the explanation of the holographic projector.
  • the application of the holographic camera is very similar, based on the principle of reversible light path, holographic projection
  • the problems that need to be considered for the holographic camera are also encountered by the holographic camera, so the above design instructions are also applicable to the holographic camera.
  • the two-dimensional imaging element 12 of the present application can be configured to include a projection display element and a photographing photosensitive element at the same time, so as to realize the dual functions of projection and photographing.
  • the depth resolution of the human eye is much lower than the horizontal resolution, so even if the pixel pitch in the depth direction is large, it will not cause resolution distortion. Therefore, the pixel pitch in the depth direction of the projection screen can be set to be larger, which can effectively reduce Under the conditions of equipment and process costs, a very realistic 3D picture is projected.
  • the present application provides a two-dimensional Bragg periodic scanning imaging system, which includes a two-dimensional imaging element 13, an imaging lens group 23, and a two-dimensional Bragg scanning mechanism 33:
  • the two-dimensional imaging element 13 is provided with a pixel array composed of several pixels.
  • the plane where the pixel array is located is the pixel array plane.
  • the distance between adjacent pixels between rows (average distance) is a 1 mm
  • the column length of the pixel array is W mm (for example, between the first pixel in the first column and the last pixel in the first column).
  • the distance between adjacent pixels between columns (average distance) is a 2 mm; the distance between adjacent pixels can be characterized in a variety of ways, and there may be a little deviation between each method of characterization. But the range of values is within a small range.
  • the average value of 5 pixel pitches can be used as the design pixel pitch.
  • there is a simple measurement method such as measuring the number of pixels in a row (Pn), and then dividing the total pitch of the row of pixels by the number of pitches (also the number of pixels minus one, that is, Pn-1 ) Can get an average pixel pitch, and it is also a feasible solution to design with the average pixel pitch as the pixel pitch.
  • the pixel arrangement is not arranged in rows or columns or the pixels are arranged in rows or columns when they are arranged. At this time, you can draw a line segment randomly on the pixel array and divide the length of the line segment by the intersection with the line segment.
  • the number of pixels can also get an average pixel pitch to guide the design.
  • the specific value of the pixel pitch obtained by different measurement methods will have certain differences, these differences are not too big and can be used to guide the design.
  • each pixel contains several sub-pixels (for example, three sub-pixels of red, green and blue form a color pixel).
  • the color pixel that contains sub-pixels needs to be treated as one pixel;
  • the two-dimensional Bragg scanning mechanism 33 is respectively connected with the two-dimensional imaging element 13 and/or the imaging lens group 23 for driving the two-dimensional imaging element 13 and/or the imaging lens group 23 to vibrate to achieve the purpose of micro-scanning, preferably periodic vibration To realize periodic micro-scanning;
  • the component of the vibration of the two-dimensional imaging element 13 and/or the imaging lens group 23 on the plane parallel to the pixel array is not zero.
  • a drive mechanism to connect the two-dimensional imaging element 13 and/or the imaging lens group 23, and the drive mechanism drives the two-dimensional imaging element 13 and/or the imaging lens group 23 to perform two-dimensional operations on a plane parallel to the pixel array.
  • Periodic vibration through similar row scanning and column scanning to achieve full-plane pixel update and imaging, the specific structure of the driving mechanism can be designed according to the actual application, and the implementation method is not limited here;
  • the pixel arrays on the two-dimensional imaging element 13 are usually arranged in rows and columns.
  • the vibration of the two-dimensional imaging element 13 and/or the imaging lens group 23 is on the plane of the pixel array.
  • the projection can be decomposed into two mutually perpendicular sub-motions, as shown in FIG. 36, including a first sub-motion parallel to the rows of the pixel array and a second sub-motion parallel to the columns of the pixel array;
  • the frequency of the first sub-motion is f 1
  • the amplitude is ⁇ L mm
  • the frequency of the second sub-motion is f 2
  • the amplitude is ⁇ W mm
  • both f 1 and f 2 are greater than 6 Hz;
  • the amplitude of the two-dimensional imaging element 13 is the maximum displacement of the two-dimensional imaging element 13 from the equilibrium point in the vibration direction. According to the waveform characteristics of the vibration curve, the equilibrium point is generally between the peak and the trough.
  • the equilibrium point of the two-dimensional imaging element 13 should be understood as the midpoint between the farthest displacements in the forward and reverse directions of the vibration of the two-dimensional imaging element 13;
  • the vibration components of the two-dimensional imaging element 13 on the pixel array plane or the amplitudes of the two sub-motions of the projection decomposition are the maximum displacements ⁇ L mm and ⁇ W mm in the respective directions from the equilibrium point, respectively.
  • the frequency of the first sub-motion and the second sub-motion are the reciprocal of the time interval between two consecutive passes through the same point (such as the initial point, the balance point, or the farthest point, etc.) in the same direction and in the same direction;
  • the frame rate per second during imaging depends on the smaller value between f 1 and f 2.
  • the human eye In the actual display process, when the frame rate is greater than 12, the human eye’s persistence principle can be used to form a continuous picture.
  • the smaller one of f 1 and f 2 also needs to be greater than 6 Hz.
  • the frame rate needs to be greater than 24Hz, so the smaller one of f 1 and f 2 is preferred to be greater than 24 Hz in implementation;
  • the smaller one of f1 and f2 is greater than 36 Hz, which meets the application scenarios of high-speed motion cameras;
  • the smaller one of f1 and f2 is greater than 60 Hz, which meets the application scenarios of autonomous driving sensing;
  • the smaller one of f1 and f2 is greater than 120 Hz, which meets the VR-type high-speed display application scenario;
  • the smaller one of f1 and f2 is greater than 200 Hz, which meets high-speed shooting application scenarios in the scientific research field at this time;
  • FIG. 37 to 39 illustrate the form of filling row pixels into a denser array by scanning. Similarly, scanning can fill column pixels into a denser array. ;
  • a two-dimensional imaging element with a resolution of 648*486 can be used to achieve the actual display effect with a resolution of n*(648*486), where n is greater than 1, that is, a low-resolution chip is used to achieve ultra-high resolution imaging , Improve imaging quality and reduce imaging equipment costs.
  • n is preferably 2-5.
  • a pixel reduction device can also be arranged in front of the pixel array to reduce the effective size of the pixel, thereby making the picture more delicate.
  • a tapered optical waveguide/fiber can be specifically used, the thick end is set outside the pixel, and the thin end is used as the interaction interface with the imaging lens group 23, which is equivalent to reducing the pixel size.
  • the pixel reduction device and the two-dimensional imaging element 13 remain relatively stationary.
  • the two-dimensional imaging element 13 can be a low-cost low-resolution two-dimensional imaging element, for example, a two-dimensional imaging element with a pixel array row number and column number less than 720 rows can be used.
  • the two-dimensional imaging element 13 described in this application can be a projection display element, such as an LCD projection chip, a DMD projection chip, etc.;
  • the imaging system of the present application is a photographing system.
  • the following takes the photographing photosensitive element—CCD two-dimensional imaging element as the two-dimensional imaging element 13 as an example to further illustrate the present application:
  • the two-dimensional Bragg periodic scanning imaging system is composed of a CCD two-dimensional imaging element, an imaging lens group 23, and a two-dimensional Bragg scanning mechanism 33.
  • the CCD two-dimensional imaging element is provided with a pixel array, and the two-dimensional Bragg scanning mechanism 33 Only connect with CCD two-dimensional imaging element.
  • the light of the external scene is optically converted by the imaging lens group 23 to form a photosensitive image on the CCD two-dimensional imaging element.
  • the two-dimensional Bragg scanning mechanism 33 drives the CCD two-dimensional imaging element to vibrate on the plane where the pixel array is located to realize micro-scanning. , Through micro-scanning, the pixel pitch on the imaging surface of the pixel array is filled completely, the area ratio of the pixels is increased, and the originally separated pixel array is supplemented to be relatively denser to improve the resolution of the photosensitive image.
  • the two-dimensional Bragg periodic scanning imaging system is composed of a CCD two-dimensional imaging element, an imaging lens group 23, and a two-dimensional Bragg scanning mechanism 33.
  • the CCD two-dimensional imaging element is provided with a pixel array, and the two-dimensional Bragg scanning mechanism 33 It is only connected to the imaging lens group 23.
  • the light of the external scene is optically transformed by the imaging lens group 23 to form a photosensitive image on the CCD two-dimensional imaging element.
  • the imaging lens group 23 is driven by the two-dimensional Bragg scanning mechanism 33 to vibrate on a plane parallel to the pixel array to achieve micro Scanning: Micro-scanning fills in the pixel pitch on the imaging surface where the pixel array is located, increases the area ratio of the pixels, and supplements the originally separated pixel array into a relatively denser, so as to improve the resolution of the photosensitive image.
  • the two-dimensional Bragg periodic scanning imaging system is composed of a CCD two-dimensional imaging element, an imaging lens group 23, and a two-dimensional Bragg scanning mechanism 33.
  • the CCD two-dimensional imaging element is provided with a pixel array, and the two-dimensional Bragg scanning mechanism 33 They are connected to the CCD two-dimensional imaging element and the imaging lens group 23 respectively.
  • the light of the external scene is optically converted by the imaging lens group 23 to form a photosensitive image on the CCD two-dimensional imaging element.
  • the two-dimensional Bragg scanning mechanism 33 drives the CCD two-dimensional imaging element and the imaging lens group 23 is parallel to the pixel array. Vibration on the plane realizes micro-scanning. Through micro-scanning, the pixel pitch on the imaging surface where the pixel array is located is filled, the area ratio of the pixels is increased, and the originally separated pixel array is supplemented to be relatively denser to improve the resolution of the photosensitive image. .
  • the above embodiments only embody different micro-scanning driving modes through different connection modes among the two-dimensional imaging element 13, the imaging lens group 23, and the two-dimensional Bragg scanning mechanism 33, and are not a limitation of the present application.
  • the above-mentioned micro-scanning is preferred Periodic micro-scanning is achieved by using a two-dimensional Bragg scanning mechanism 33 to drive the two-dimensional imaging element 13 and/or the imaging lens group 23 to periodically vibrate;
  • the CCD two-dimensional imaging element in the foregoing embodiment can also be replaced by other photographing photosensitive elements, and at the same time, according to the principle of reversibility of the light path, the photographing photosensitive element may also be replaced by a projection display element.
  • the micro-scan vibration parallel to the pixel array plane projection decomposition obtained parallel to the pixel array row and column direction components should not exceed 5 pixels. , That is, ⁇ L ⁇ 5a 1 and ⁇ W ⁇ 5a 2 ;
  • the two-dimensional imaging element 13 will inevitably have defective pixels in the actual production process.
  • the two-dimensional imaging element 13 can only be regarded as defective or even scrapped, but there are 5 The probability of continuous pixel bad pixels is very small, almost equal to zero. In this way, if the scanning amplitude is 5 pixels apart, as long as one pixel is normal in 5 consecutive pixels, then it can scan other dead pixels during the micro-scanning process, so that it can be displayed normally. In this way, the yield rate can be guaranteed, so that even the equipment with dead pixels can be used normally;
  • the scanning process is not an integer.
  • part of a vibration period can be discarded, so that the image display avoids the problem of too large changes in scanning speed;
  • the scanning frequency along the row direction of the pixel array and the scanning frequency in the column direction differ greatly when setting.
  • the row scanning frequency can be made larger than the column scanning frequency, or the reverse can be set.
  • a design with a larger line scanning frequency is preferred.
  • the amplitude of the scanning and the quality of the moving parts need to be designed very carefully.
  • the scanning frequency is constant, if the moving amplitude is relatively large, then the rigidity of the moving parts needs to be increased to resist vibration deformation. The quality of the parts needs to be increased.
  • the movement amplitude is relatively small, the requirement for rigidity will be much lower at this time. At this time, the quality of the moving parts can be reduced, so as to increase the natural frequency of the system and improve the scanning efficiency. Therefore, better results can be achieved through reasonable design of parameters such as the quality and amplitude of the moving parts.
  • the quality of the two-dimensional imaging element 13 is M g, and the design test is carried out through the control of amplitude and quality.
  • the specific implementation effect feedback of the system of this application is as follows:
  • the two-dimensional imaging element 13 must be completely within the effective optical action area to be able to image.
  • the effective optical action area refers to the light rays in any direction passing through the imaging lens group 23 and then the two-dimensional imaging element 13 The largest area that can be illuminated on the pixel plane.
  • D mm the diameter of the largest circle existing inside the effective optical action area
  • the imaging system of the present application can also increase the scanning action along the direction perpendicular to the pixel plane in the actual application process, that is, the component sum of the vibration of the two-dimensional imaging element 13 and/or the imaging lens group 23 on the plane parallel to the pixel array.
  • the components perpendicular to the plane of the pixel array are not zero.
  • the purpose of 3D imaging can also be achieved due to the addition of a depth-direction scan.
  • the two-dimensional imaging element 13 of the present application can also use a beam splitter to integrate the photographing photosensitive element and the projection display element into a single system to form a dual-function system, which can realize shooting or recognition while projecting and displaying.
  • the function of user interaction At this time, all the design formulas given in this application are applicable to both the shooting subsystem and the projection subsystem in the system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

布拉格周期扫描式全息成像器,包括分别设置于全息成像器内部的成像元件(1)、成像镜组(3)以及焦深扫描机构(5)。成像元件(1)用于提供多个不重合或者相互平行的等效像面(2)。成像镜组(3)用于光学成像并形成有多个二维切面(4)。焦深扫描机构(5)分别与成像元件(1)和/或成像镜组(3)连接,用于控制成像元件(1)和/或成像镜组(3)的空间位置变动来实现对二维切面(4)进行体扫描。通过引入多焦平面和布拉格周期扫描方式可以稳定地实现超高分辨率和超快帧频的3D成像/投影显示功能,提升用户体验。

Description

扫描式全息成像器和相关系统
本申请要求于2020年05月13日提交中华人民共和国国家知识产权局的8件中国专利申请的优先权,该8件中国专利申请以标号1)至8)区别。其中1)申请号为202010401956.8,发明名称为“二维布拉格周期扫描成像系统”;2)申请号为202010401524.7,发明名称为“一种布拉格周期扫描式全息成像器”;3)申请号为202010401923.3,发明名称为“微扫描式全息成像器”;4)申请号为202010401924.8,发明名称为“一种布拉格周期扫描式全息成像器”;5)申请号为202020786676.9,发明名称为“一种布拉格周期扫描式全息成像器”;6)申请号为202020786662.7,发明名称为“二维布拉格周期扫描成像系统”;7)申请号为202020786678.8,发明名称为“微扫描式全息成像器”;8)申请号为202020787327.9,发明名称为“一种布拉格周期扫描式全息成像器”。以上8件中国专利申请1)至8)的全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学和3D成像技术领域,特别是涉及一种扫描式全息成像器和相关系统。
背景技术
3D显示技术可以在传统的二维显示基础上提供额外的深度信息,因此被认为是下一代显示技术的发展方向。但是目前还没有比较有效的实现3D显示的方案,商用比较成功的案例大多是基于立体图像对的伪3D技术,不能够为用户提供真正有深度信息的3D画面。比如电影院的3D电影,其原理是使用投影仪在屏幕上投射两个二维的左右眼图像对,通过佩戴选择性滤光眼睛,使两只眼睛接收到不同的画面,从而给人造成一种看到3D画面的假象,但其实投射出去的画面只是2D画面。长时间观看还会引起眼睛不适。
利用体扫描成像方式可以实现真正的3D效果,已是一种非常有潜力的3D解决方案。但是体扫描成像3D往往需要一个高速旋转/运动屏幕,系统存在较大的安全隐患,稳定性差,显示空间非常有限,无法直接触碰交互,显示画面程透明状无法表达正确的遮挡关系。
已有专利公开了一种可以实现真实3D显示的方案。其关键部件为一个立体显示模块,立体显示模块通过景深扫描可以实现真实的3D画面重现。其工作原理是使一个焦平面在深度方向上往复扫描(景深扫描)形成一个连续的3D画面。这种方式,虽然可以实现3D画面的投射,但是依赖于单个焦平面的扫描成像,对显示系统的机械结构件的运动速度要求极高,系统的可靠性无法保证,对于画面的刷新速度和画面整体亮度无法实现最优化,同时就造成运算和控制系统及其复杂,难以实现稳定的画面显示,制造成本极高。已有专利提出一种全固态全息投影器,公开了通过在一个投影器内设置多个分立的焦平面实现了一种全固态全息显示的效果。但是这种方式形成的3D画面不是连续的,而实空间中的一个一个切片式画面,不能完全实现连续的3D画面,同时对于景深变动范围较大的3D影像,其视觉表现能力不能满足用户的心里预期。同时存在显示空间有限、无法 正确表现遮挡关系、存在安全隐患,系统可靠性差。此外,还存在设备笨重应用形式限制大等问题。
要实现3D显示,除了具有可以把3D画面显示出来的设备外,还需要有能够实现3D视频记录的设备,根据光路可逆原理用于3D显示的光路,反过来同样可以实现3D视频的拍摄。
对于二维成像设备来说分辨率是关系成像质量的一个至关重要的参数。二维成像设备从最初的480P发展到720P再到1080P成像质量得到了大幅度的提升。但是随着人们对大尺寸超高清成像的追求,常规的成像技术已经很难满足这种苛刻的要求了。
一方面成像质量的提升往往会导致像素数量成平方倍形式增加,像素数量的剧增对加工工艺提出了极大的挑战,大大增加了制造难度;另一方面随着像素数量的增加,像素坏点的概率也大幅增加,良品率大打折扣,导致高品质成像设备生产成本一直居高不下,甚至一些高端的产品只有少数几个公司可以生产。
因此,亟需一种可以用低像素密度、低像素数量的元器件实现超高像素成像的功能的显示方案,最好可以实现像素坏点存在的情况下也能正常使用。
发明内容
本申请要解决的技术问题就在于:提高分辨率,改善用户观看体验。
为解决上述技术问题,本申请第一方面提出一种布拉格周期扫描式全息成像器,包括分别设置于全息成像器内部的:
成像元件,用于提供多个不重合或者相互平行的等效像面,等效像面的数量为n;
成像镜组,其位置与等效像面相对应,用于光学成像并形成有多个二维切面;以及焦深扫描机构,分别与成像元件和/或成像镜组连接,用于控制成像元件和/或成像镜组的空间位置变动,以实现对二维切面进行体扫描。
进一步地,焦深扫描机构的扫描频率或等效频率大于
Figure PCTCN2021093251-appb-000001
Hz。
进一步地,焦深扫描机构通过改变等效像面与成像镜组之间的空间位置和/或成像镜组的有效焦距,实现对二维切面进行体扫描。
进一步地,焦深扫描机构通过改变成像镜组内光学元件的相对位置和/或整体位置来实现对二维切面进行体扫描。
进一步地,成像镜组至少包括液体变焦透镜或柔性变焦透镜。
进一步地,焦深扫描机构控制体扫描沿焦深方向的振幅为L 1mm,多个等效像面沿焦深方向分布深度为L 2mm,满足L 1<L 2
进一步地,成像元件的质量M g,与等效像面的数量n之间满足:
Figure PCTCN2021093251-appb-000002
进一步地,成像元件为投影显示元件或者拍摄感光元件。
进一步地,成像元件内设有若干投影显示芯片以及拍摄感光芯片,以实现投影和拍摄的双功能。
与现有技术相比,本申请第一方面的优点在于:本申请可以实现完全连续的3D场景再现,是真正意义上的全息显示;本申请的工作过程中只需要小幅度(布拉格周期扫描)扫描,就可以实现连续全场景再现,与以往的体扫描3D方式相比,可靠性得以保障,同时还能够把刷新速率提升一个数量级以上,极大改善用户观看体验;无安全隐患、可以实现3D画面的触碰操作,能够正确表现遮挡关系;本申请应用时,眼睛需要与观看真实事物一样进行焦深的动态调整,而不是普通2D显示画面的固定焦深,所以不会造成视觉疲劳,有助于保护视力;本申请可以同时实现投影和拍摄功能,方便实际应用时的同时输出图片信息和实时接收外界图像信息,如用显示的同时可以识别用户交互动作、表情信息。
为解决上述技术问题,本申请第二方面提出一种布拉格周期扫描式全息成像器,包括分别设置于全息成像器内部的:
成像元件,用于提供多个不重合或者相互平行的第一等效像面;
至少一个振镜,位置与第一等效像面相对应,用于将多个第一等效像面光学转化为多个第二等效像面,第一等效像面和第二等效像面的数量均为n;
成像镜组,位置与第二等效像面相对应,用于光学成像并形成有多个二维切面;以及焦深扫描机构,与振镜连接,用于控制振镜的空间位置变动,实现对二维切面进行体扫描。
进一步地,焦深扫描机构还分别与成像元件和/或成像镜组连接,用于控制成像元件和/或成像镜组的空间位置变动,实现对二维切面进行体扫描。
进一步地,焦深扫描机构还与成像镜组连接,用于控制成像镜组的有效焦距,实现对二维切面的体扫描。
进一步地,成像镜组至少包括液体变焦透镜或柔性变焦透镜。
进一步地,单个第二等效像面于焦深方向上振幅为L 1mm、多个第二等效像面沿焦深方向分布深度为L 2mm,满足L 1<L 2
进一步地,成像元件的质量为M g,与第一等效像面的数量n之间满足:
Figure PCTCN2021093251-appb-000003
进一步地,振镜的数量为N,任意一个振镜的质量为M Ng、振幅为A mm,全息成像器最外侧镜片的质量为mg,满足:
Figure PCTCN2021093251-appb-000004
进一步地,焦深扫描机构的扫描频率或等效频率大于
Figure PCTCN2021093251-appb-000005
Hz。
进一步地,成像元件为投影显示元件或者拍摄感光元件。
进一步地,成像元件内同时设有若干投影显示芯片和拍摄感光芯片,以实现投影和拍摄的双功能。
进一步地,成像元件内设有若干投影显示芯片,投影显示芯片可全部替换为拍摄感光芯片,实现拍摄功能。
与现有技术相比,本申请第二方面的优点在于:本申请可以实现完全连续的3D场景再现,是真正意义上的全息显示;本申请的工作过程中只需要小幅度(布拉格周期扫描)扫描,就可以实现连续全场景再现,与以往的体扫描3D方式相比,可靠性得以保障,同时还能够把刷新速率提升一个数量级以上,极大改善用户观看体验;无安全隐患、可以实现3D画面的触碰操作,能够正确表现遮挡关系;本申请应用时,眼睛需要与观看真实事物一样进行焦深的动态调整,而不是普通2D显示画面的固定焦深,所以不会造成视觉疲劳,有助于保护视力。本申请可以同时实现投影和拍摄功能,方便实际应用时的同时输出图片信息和实时接收外界图像信息,如用显示的同时可以识别用户交互动作、表情信息。
为解决上述技术问题,本申请第三方面提出微扫描式全息成像器,包括分别设置于全息成像器内部的:
二维成像元件;
至少一个振镜,其位置与二维成像元件相对应,用于对光线进行光学转化并形成有等效像面;
成像镜组,其位置与等效像面相对应,用于对光线进行光学转化并形成有二维画面;以及焦深扫描机构,与振镜连接,用于控制振镜的空间位置变动,实现对二维画面的体扫描。
进一步地,焦深扫描机构还分别与二维成像元件和/或成像镜组连接,用于控制二维成像元件和/或成像镜组的空间位置变动,实现对二维画面的体扫描。
进一步地,焦深扫描机构还与成像镜组连接,用于控制成像镜组有效焦距的变动,实现对二维画面的体扫描。
进一步地,成像镜组至少包括液体变焦透镜或柔性变焦透镜。
进一步地,振镜的数量为N,任意一个振镜的质量为M Ng、振幅为A mm,全息成像器最外侧镜片的质量为mg,满足:
Figure PCTCN2021093251-appb-000006
进一步地,焦深扫描机构的扫描频率大于6Hz。
进一步地,二维成像元件为投影显示元件或者拍摄感光元件。
与现有技术相比,本申请第三方面的优点在于:本申请通过微扫描替代传统体扫描的高速大范围扫描设备,设备体积极小,有效显示空间极大,无高速运动部件带来的安全问题;扫描部件封装在内部,不与外界接触,不易损坏;本申请应用时,眼睛需要与观看真实事物一样进行焦深的动态调整,而不是普通2D显示画面的固定焦深,所以不会造成视觉疲劳,有助于保护视力;本申请可以同时 实现投影和拍摄功能,方便实际应用时的同时输出图片信息和实时接收外界图像信息。
为解决上述技术问题,本申请第四方面提供一种二维布拉格周期扫描成像系统,包括:
二维成像元件,其上设有由若干像素点组成的像素阵列,像素阵列所在平面为像素阵列平面,
成像镜组;以及二维布拉格扫描机构,分别与二维成像元件和/或成像镜组连接,用于驱动二维成像元件和/或成像镜组振动以实现微扫描的目的;
其中,二维成像元件和/或成像镜组的振动在平行于像素阵列平面上的分量不为0。
进一步地,二维成像元件和/或成像镜组的振动在平行于像素阵列平面上的分量可以分解为两个互相垂直的子运动,包括与二维成像元件的像素阵列的行平行的第一子运动以及与二维成像元件的像素阵列的列平行的第二子运动,第一子运动频率为f 1,第二子运动的频率为f 2,且f 1和f 2均大于6Hz。
进一步地,像素阵列的行的长度为Lmm、行间相邻像素点之间的距离或者平均距离为a 1mm,像素阵列的列的高度为Wmm、列间相邻像素点之间的距离或者平均距离为a 2mm,第一子运动的振幅为ΔLmm,第二子运动的振幅为ΔWmm,满足:ΔL≤5a 1且ΔW≤5a 2
进一步地,f 1>f 2,且满足
Figure PCTCN2021093251-appb-000007
其中M为二维成像元件的质量,单位为g。
进一步地,二维成像元件为拍摄感光元件或者投影显示元件。
进一步地,像素阵列的列数和行数均小于720。
进一步地,还包括用于缩小像素点有效大小的像素点缩小装置。
进一步地,成像镜组在像素阵列平面上的有效光学作用区域内部最大圆形的直径为Dmm,满足如下关系:
0.9746·D 2≥(ΔL+L) 2+(ΔW+W) 2
进一步地,成像镜组在像素阵列平面上的有效光学作用区域内部最大圆形的直径为Dmm,满足如下关系:
(0.51·D) 2≤(ΔL+L) 2+(ΔW+W) 2
与现有技术相比,本申请第四方面的优点在于:可以用低像素密度、低像素 数量的元件实现超高像素成像;可以实现即使在二维成像元件存在像素坏点情况下也能正常使用;生产良品率和成本优势明显优于同类产品。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为成像元件1为投影显示元件的成像器以及实施例1的系统示意图;
图2在图1的基础上,成像元件1提供了同时包含了物理真实像面和通过光学转化得到的虚像面的等效像面2的示意图;
图3为图1的基础上,将投影显示元件替换成拍摄感光元件的本申请成像器的系统示意图;
图4为图3的基础上,等效像面2包含了物理真实像面和通过光学转化得到的虚像面的示意图,重点展示了图3中等效像面2和二维切面4的区别;
图5为实施例2的系统示意图;
图6为实施例3的系统示意图;
图7为等效像面2的一个振动周期的状态示意图;
图8为成像镜组3进行机械变焦的原理示意图;
图9为成像镜组3采用柔性变焦透镜的变焦原理示意图;
图1至图9中附图标记如下:
成像元件1,等效像面2,成像镜组3,二维切面4,焦深扫描机构5;
图10为成像元件11为投影显示元件的本申请成像器以及实施例6的系统示意图;
图11是在图10的基础上,将投影显示元件替换成拍摄感光元件的本申请成像器的系统示意图;
图12为实施例7的系统示意图;
图13为实施例8的系统示意图;
图14为实施例9的系统示意图;
图15为第二等效像面41的一个振动周期的状态示意图;
图16为成像镜组51进行机械变焦的原理示意图;
图17为成像镜组51采用柔性变焦透镜的变焦原理示意图;
图18为振镜31与二维成像元件11成45°角度时,二者振幅对应关系示意图;
图19为振镜31数量为2个时,本申请的所述成像器的系统示意图;
图10至图19中附图标记如下:
成像元件11,第一等效像面21,振镜31,第二等效像面41,成像镜组51,二维切面61,焦深扫描机构71;
图20为二维成像元件12为投影显示元件的本申请成像器以及实施例11的系统示意图;
图21是在图20的基础上,将投影显示元件替换成拍摄感光元件的本申请成像器的系统示意图;
图22为实施例12的系统示意图;
图23为实施例13的系统示意图;
图24为实施例14的系统示意图;
图25为等效像面32的一个振动周期的状态示意图;
图26为成像镜组42进行机械变焦的原理示意图;
图27为成像镜组42采用柔性变焦透镜的变焦原理示意图;
图28为振镜22与二维成像元件12成45°角度时,二者振幅对应关系示意图;
图29为振镜22数量为2个时,本申请的所述成像器的系统示意图;
图20至图29中附图标记如下:
二维成像元件12,振镜22,等效像面32,成像镜组42,二维画面52,焦深扫描机构62;
图30为实施例16的系统示意图;
图31为实施例17的系统示意图;
图32为实施例18的系统示意图;
图33为矩形的二维成像元件13上的像素阵列示意图;
图34为图33中Ⅰ的放大图;
图35为二维成像元件13振动于像素平面上的投影示意图;
图36为图35中Ⅱ的放大图,展示了第一子运动和第二子运动方向及各自方向上的振幅;
图37为原始像素阵列的像素点分布示意图;
图38为沿像素阵列的行扫描填充1个像素点后的像素阵列分布图;
图39为沿像素阵列的行扫描填充2个像素点后的像素阵列分布图;
图40为成像镜组23在像素阵列平面上的有效光学区域示意图;
图41为有效光学作用区域内部理想成像区域示意图;
图42为像素缩小装置示意图;
图43为增加分光镜后的拍摄和投影双功能系统示意图;
图30至图43中附图标记如下:
二维成像元件13,成像镜组23,二维布拉格扫描机构33。
具体实施方式
参照图1至图9,本申请提供一种布拉格周期扫描式全息成像器,包括分别设置于全息成像器内部的成像元件1、成像镜组3和焦深扫描机构5;
成像元件1用于提供多个不重合或者相互平行的等效像面2,等效像面2的像面数为n,这些等效像面2可以是物理真实像面,也可以是通过光学转化得到的虚像面或者实像面等。
成像镜组3的位置与等效像面2相对应,用于光学成像并形成有多个二维切 面4;
焦深扫描机构5分别与成像元件1和/或成像镜组3连接,用于控制成像元件1和/或成像镜组3的空间位置变动,实现对二维切面4进行体扫描,优选前后往复运动实现体扫描;
这种体扫描相当于3D画面的景深扫描,可以扫描出一个成像空间,这个空间内形成更密集的二维切面4的阵列或者是连续的3D画面,本申请优选采用控制各个部件进行周期性位置变动来实现周期性的体扫描。
每一个等效像面2和二维切面4上均满像素阵列(二维),多个等效像面2和二维切面4又可以分别形成三维像素阵列,这种独特的多切面的像面结构与三维布拉格格子结构非常相似。这种结构的特点是只要整体移动一个布拉格周期就可以把一个远远大于布拉格晶胞的空间扫遍,因此可以大大提升扫描频率。由于布拉格周期长度非常小,扫描机构的活动范围非常小,比常规大尺度扫描系统的稳定性、可靠性提高很多。
其中,成像元件1可以是投影显示元件,也可以是拍摄感光元件;
如图1和图2,当以投影显示元件作为成像元件1时,本申请的扫描式成像器就作为全息投影器使用:
投影显示元件的光线经过成像镜组3光学转化后于空间内形成多个二维切面4,并组成一个二维切面阵列,等效于成像镜组3直接把与二维切面阵列光学共轭的多个等效像面2投影出去的显示效果,通过焦深扫描机构5控制投影显示元件和/或成像镜组3的空间位置变动,优选周期性变动,使等效像面2与成像镜组3之间的相对位置或者整体位置发生周期性变动,空间内二维切面4的阵列随之也于焦深方向发生振动来进行体扫描,之前多层切面式、不连续的立体显示效果经过扫描后形成更密集的二维切面4的阵列或者是连续的3D画面,实现连续的3D显示效果;
而上述的二维切面4与等效像面2之间存在光学共轭,因此对二维切面4的阵列进行体扫描时,多个等效像面2也同时在进行体扫描;
如图3和图4,当以拍摄感光元件作为成像元件1时,本申请的扫描式成像器就作为全息拍摄器使用:
类似于上述的投影过程,由光路可逆原理,外部景物的光线经过成像镜组3光学转化后于拍摄感光元件上生成多个实像二维切面4并被记录下来,等效于外部景物的光线经过成像镜组3光学成像后直接生成外部景物光学共轭的多个等效像面2的效果;
这点跟普通的摄像机工作原理非常相似,所不同的是普通相机只有一个感光芯片,只能记录与之对应的光学共轭处的景物信息,而本申请的拍摄感光元件内含有多个感光芯片,因此可以同时记录多个像,且每个像分别对应于不同景深的景物,达到类似切片3D式的拍摄记录。通过焦深扫描机构5控制拍摄感光元件和/或成像镜组3的空间位置变动,优选周期性变动,使等效像面2与成像镜组3之间的相对位置或者整体位置发生周期性变动,相应的与感光芯片或者等效像面 2光学共轭的景深空间也发生周期性的扫描,使得景物不同景深处的信息分别被记录,从而记录下完整连续的3D场景,实现3D拍摄的目的,根据光路可逆,与拍摄感光芯片或者等效像面2光学共轭的景深空间发生周期性的扫描的过程,等效像面2发生了相应的周期性扫描,而上述的等效像面2与二维切面4之间为等效关系,因此对等效像面2的扫描可以等效于对二维切面4的扫描。
本申请优选采用控制各个部件进行周期性位置变动来实现周期性的体扫描。比如,通过机械方式控制成像元件1在空间中周期性的前后往复扫描运动,即可在空间扫出一个连续的空间,实际应用中可以以一个固定的频率往复扫描,也可以根据显示内容需要使用不同的频率进行扫描;
或者是通过焦深扫描机构5控制成像镜组3的有效焦距周期性变动,也可以实现对二维切面4的往复扫描,成像镜组3的有效焦距周期性变动可以通过改变成像镜组3内光学元件的相对位置和/或整体位置来实现(机械变焦方式),也可以在成像镜组3内设置具有变焦功能的液体变焦透镜和/或柔性变焦透镜来实现;
此外,除了进行单纯的一维景深扫描,还可以用三维扫描的方式进一步提升显示效果。比如,增加平行于等效像面2的扫描,这样可以进一步增加横向分辨率,使画质更加细腻。
具体扫描机构的设计属于本领域的公知常识,可以根据实际使用场景自行设计,这里不做赘述。
下面以成像元件1为投影显示元件、等效像面2数量n=3的本申请的全息成像器作为实施例对本申请作进一步的说明:
实施例1
如图1,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、成像镜组3和焦深扫描机构5,焦深扫描机构5与投影显示元件连接并控制投影显示元件于景深方向发生周期性前后往复变动,使得等效像面2与成像镜组3之间的相对位置也发生周期性变动,与等效像面2光学共轭的二维切面4于焦深方向发生振动进行周期性前后往复扫描,从而实现连续的3D显示效果。
实施例2
如图5,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、成像镜组3和焦深扫描机构5,焦深扫描机构5与成像镜组3连接并控制成像镜组3于景深方向发生周期性前后往复变动,使得等效像面2与成像镜组3之间的相对位置发生周期性变动,与等效像面2光学共轭的二维切面4于焦深方向发生振动进行周期性前后往复扫描,从而实现连续的3D显示效果。
实施例3
如图6,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、成像镜组3和焦深扫描机构5,焦深扫描机构5分别与投影显示元件和成像镜组3连接并控制二者空间位置周期性的前后往复变动,使得等效像面2与成像镜组3之间的相对位置或者整体位置发生周期性变动,与等效像面2光学共轭的二维切面4于焦深方向发生振动进行周期性前后往复扫描,从而实现连续的3D显示 效果。
实施例4
布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、成像镜组3和焦深扫描机构5,焦深扫描机构5与投影显示元件连接并控制成像镜组3内设的多个光学元件的相对位置和/或整体位置发生变动,周期性改变成像镜组3的有效焦距,如图8,这种机械变焦使得二维切面4的空间位置对应发生周期性变动,二维切面4于焦深方向发生振动进行前后往复扫描,从而实现连续的3D显示效果。
实施例5
布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、成像镜组3和焦深扫描机构5,成像镜组3内设有具有变焦功能的柔性变焦透镜,焦深扫描机构5与成像镜组3连接并控制柔性变焦透镜的有效焦距发生周期性变动,如图9,使得二维切面4的空间位置对应发生周期性变动,二维切面4于焦深方向发生振动进行前后往复扫描,从而实现连续的3D显示效果。
需要说明的是实施例5中的柔性变焦透镜可以替换为液体变焦透镜或者其他具有变焦功能的透镜。
实施例1~5分别体现了采用不同的方式实现对二维切面4进行前后往复扫描的体扫描,最终都达到连续的3D显示的效果。
根据光路可逆原理,实施例1~5中的投影显示元件也可以用拍摄感光元件来替代,如图2,以实现3D拍摄的效果。
如图7所示,本申请在实际应用时,焦深扫描机构5运作实现对二维切面4进行往复扫描(体扫描)时,与二维切面4光学共轭的等效像面3同时也在进行体扫描;
通过焦深扫描机构5控制的振动其实是与等效像面2的扫描是对应关系,而基于透镜成像规律,二维切面4于焦深方向上的扫描与等效像面2的扫描却不是线性对应关系,因此,相关设计参数要以等效像面2作为参照来设计才更方便;
等效像面2于焦深方向的振幅(即等效像面2于焦深方向上偏离平衡位置的最大位移)为L 1mm,多个等效像面2沿焦深方向分布深度(即最靠近成像镜组3的前景等效像面2与离成像镜组3最远的后景等效像面2的中心距离)为L 2mm,应满足L 1<L 2,此时才能够使体扫描的幅度相对更小;
上述等效像面2的平衡位置分别为等效像面2的焦深方向振幅点与焦深反方向振幅点两个点之间的中点,而等效像面3的振幅点如图7所示:将等效像面2沿焦深方向的最大位移处定义为焦深方向振幅点、沿焦深反方向的最大位移处定义为焦深反方向振幅点。
考虑到只要相邻等效像面2之间的间隙通过扫描动作可以完全扫过即可实 现连续的3D画面空间,所以扫描的振幅只要大于最大的相邻等效像面2之间的间距即可实现完整连续空间的扫描。
设计时可以优选:
Figure PCTCN2021093251-appb-000008
此设计参数范围内,在使得振幅很小的前提下还能保证找到合适设计参数,使得等效像面2可以在空间中扫出一个完整连续的空间(事实上,相邻等效像面2扫过的空间还有一定重合,完全避免纵向景深不连续问题,同时留出足够的设计余量,允许设计时使用一个扫描周期内的一部分用来更新显示画面,增加设计灵活性),又可以把扫描振幅降低到很小。
当然实际应用中,有时候为了表现更细腻的画面效果可以把扫描振幅做的更大一些或者对于深度分辨率追求不高的场景也可以小一些。
实际应用时,所述焦深扫描机构5的扫描频率或者等效频率优选大于
Figure PCTCN2021093251-appb-000009
Hz。这里的频率是指运动部件连续两次同一个方向经过某空间点的时间间隔的倒数,比如成像元件1往复扫描过程中,同一个方向上、连续两次经过平衡位置时间的倒数。此外,对于采用变焦方式进行扫描的情况可以等效于成像镜组3的焦距从初始焦距再次变回该焦距时间的倒数,初始焦距指的是焦深扫描机构5未运作时,成像镜组3的焦距。当然,也可以通过测量投影焦平面连续两次同向扫过空间某一位置的时间间隔的倒数。
在一定的空间内显示3D画面的时候,需要使焦平面在一定空间内前后扫描完成全空间画面的更新,所以3D画面的帧频就是景深扫描频率。
此外,还有一种特殊情况,就是当显示空间发生整体运动时,比如从近景移动到远景的过程,在切换的过程中景深往往只需要单向运动无需往复扫描,那么此时也就无景深扫描的概念,但是显示景深切换过程同样需要在一个比较合适的速度内完成,否则容易出现画面跳动或者拖尾的情况。针对这种情况我们引入等效频率的概念:等效频率是指等效像面2相对于成像镜组3进行单向运动时,运动距离等于相邻等效像面2之间的最大相邻间距的过程中所用时间的倒数。
对于采用变焦方式进行扫描的情况可以采用等效焦距变动过程中从初始焦距再次变为该焦距的时间的倒数(或者是从最大焦距再次变为最大焦距的时间间隔的倒数),初始焦距指的是焦深扫描机构5未运作时,成像镜组3的焦距。当然,也可以通过测量投影焦平面连续两次沿同一方向上扫过空间某一位置的时间间隔的倒数。
实际应用时发现,等效像面2的数量n越大,二维切面相对就会越密集,在一般显示情况下基本上也可以呈现出比较好的立体显示效果,因此只需要在显示内容的整体景深发生较大的变动时,才需要通过焦深扫描动作重新匹配显示空间的焦深。比如,电影画面的显示内容从室内场景转换到空旷的室外场景或者外太空星系场景,此时,显示的焦深发生较大幅度的变动,通常这种大焦深差异场景切换通常都是在多帧图像内完成的,转换过程相对比较缓慢,所以只需要显示系 统能够比较缓慢的实现焦深切换即可,所以扫描频率(等效频率)可以远小于3D视频的帧频。这样也可以大幅度降低对计算和控制系统的要求,使得系统更加稳定;
但是另一方面,n越大必然造成相应部件的总质量增加,系统的固有频率就会降低,这样也就比较难以实现较高的扫描频率,所以必须降低扫描频率下限来保护系统的可靠性。
通常显示画面在一个相对比较小的范围内的,比如室内场景,此时等效像面2的投影空间有可能完全可以满足这种小空间范围的显示,这时候即使不进行焦深扫描动作也可以比较真实的还原3D场景,或者为了使显示效果更细腻,只需要进行非常小的振幅的扫描即可。
只有在显示景深变动范围较大,或者景深整体发生较大变动时,焦深扫描需要做较大振幅的扫描或者整体平移。
需要说明的是,很多时候景深切换并不需要实现一个完整的扫描周期。
比如画面场景由近景缓慢切换到远景,然后停留在远景一段时间,那么焦深扫描只需要相应的调整画面景深即可,此时可以使用等效频率概念。综上,扫描频率可以找到一个合适的设计区间,来满足各方面需求的平衡。
以下是几种实际测试时用户的反馈情况:
Figure PCTCN2021093251-appb-000010
从数据来看对于一般要求不是特别高的应用场景,扫描频率(或者等效频率)优选大于
Figure PCTCN2021093251-appb-000011
Hz时,用户综合打分都高于60分,可以满足一般用户的需求;
当然,为了进一步提高3D显示效果,提高综合性能得分,对于一些特殊应用场景,优选n≥2且扫描频率≥
Figure PCTCN2021093251-appb-000012
Hz;
而对于一些追求极致体验的用户,优选n≥3且扫描频率≥
Figure PCTCN2021093251-appb-000013
Hz。
通常人眼的深度分辨率远低于横向分辨率,所以即使深度方向上像素间距较大也不会造成分辨失真,因此投影画面在深度方向上的像素间距可以设置大一 些,从而可以在有效降低设备和工艺成本的条件下,投射出非常真实的3D画面。
另外,成像元件1的质量M g,与等效像面数量n之间满足
Figure PCTCN2021093251-appb-000014
其中,成像元件1的质量M指的是全息成像器内去除成像镜组,支持机构和线束等辅助部件之后剩余部分的质量。
这里以全息投影器为例进行说明,通常全息投影器的主要应用领域是几何全息显示系统,而这种系统中全息投影器往往需要其处于一种运动状态,因此其质量就不能太大,否则控制一个质量过大的部件运动,由于质量带来的惯性也非常大进而操控难度极大,且能耗极大,另一方面对于支撑结构会造成很大的负担,整个系统就会非常笨重而不实用。因此需要对其质量进行合理设计。理想情况下,整体质量越小越好,但是等效像面2必须依赖于物理实体存在,这样等效像面2的数量越大,整体质量也会越大。如果想设计尽可能轻巧的全息投影器,那么必然需要牺牲等效像面2数量,如果想获得更密集的等效像面2,就不得不接收质量的增加,两者不能同时达到最优。本申请给出了一种权衡两者关系的设计准则,即
Figure PCTCN2021093251-appb-000015
这个设计关系式间接限定了总质量的大小,给出了数量不同的等效像面2的情况下全息投影器的上限边界,超出此上限边界时,制作出的全息投影器实用性就会很差。比如对于客厅显示,使用11个等效像面2来进行景深表现,就可以达达到非常完美的显示效果了,而客厅内运动物体的质量最大不要超过5000g,否则一方面有可能存在对人员的安全隐患,另一方面,支撑结构会非常笨重,占用大量的空间,而且不够美观,对于此边界情况
Figure PCTCN2021093251-appb-000016
作为设计上限。实际测试中也发现绝大多数家庭,不愿意接受超过此设计边界的产品。
此外,对于桌面办公类场景,设计时尽可能优选更为严格的设计规范,优选
Figure PCTCN2021093251-appb-000017
此时整体结构和显示性能都更加理想,实测结果显示,用户对于满足设计规则的产品,普遍评价高于60分;
进一步地,优选
Figure PCTCN2021093251-appb-000018
此时整个系统更加紧凑,灵活,美观,实测结果显示,用户对于满足设计规则的产品,普遍评价高于70分;
进一步地,优选
Figure PCTCN2021093251-appb-000019
此时相当于进一步收紧设计边界,系统不仅紧凑,而且可以增加一些外观设计元素使得系统的客户吸引力更强。实测结果显示,用户对于满足设计规则的产品,普遍评价高于90分;
需要说明的是,投影显示元件作为成像元件1的本申请的布拉格周期扫描式全息成像器是作为全息投影器来使用的,拍摄感光元件作为成像元件1的本申请的布拉格周期扫描式全息成像器是作为全息拍摄器来使用的,而以上的设计说明主要是针对全息投影器的情况来进行的解释说明,但是由于全息拍摄器的应用情况非常相似,基于光路可逆原理,全息投影器需要考虑的问题,全息拍摄器同样也会遇到,因此以上设计说明同样适用于全息拍摄器。
本申请的成像元件1内部可以分别设有若干投影显示芯片以及拍摄感光芯片,以实现投影和拍摄的双功能。
参照图10至图19,本申请提供一种布拉格周期扫描式全息成像器,其内部包含有成像元件11、至少一个振镜31、成像镜组51以及焦深扫描机构71;
成像元件11用于提供多个不重合或者相互平行的第一等效像面21,第一等效像面21的数量为n,第一等效像面21可以是真实存在的物理,也可以是通过光学转化得到的虚像面或者实像面等。
振镜31的位置与第一等效像面21的位置对应,用于将多个第一等效像面21光学转化为多个第二等效像面41,第二等效像面41为通过光学转化得到的虚像面或者实像面等,第一等效像面21和第二等效像面41的数量相等,均为n;
成像镜组51的位置与第二等效像面41相对应,用于光学成像并形成有多个二维切面61;
焦深扫描机构71与振镜31连接,用于控制振镜31的空间位置变动,实现对二维切面61进行体扫描,优选前后往复运动实现体扫描;
这种扫描相当于3D画面的景深扫描,可以扫描出一个成像空间,这个空间内形成更密集的二维切面61的阵列或者是连续的3D画面,本申请优选采用控制各个部件进行周期性位置变动来实现周期性的体扫描。
由于每一个二维切面61上均布满像素阵列(二维),经过体扫描后就可以形成三维像素阵列,这种设有振镜31的结构优点是,只要进行一个非常小范围内进行扫描就可以达到一个相对更大的等效扫描空间,而经过光学转化后可以把等效扫描空间进一步放大。比如第二等效像面41的运动范围为等效扫描范围(也就是第二等效像面41的面积乘以其垂直方向的扫描振幅的2倍,可以记为V 等效),而实际扫描的运动范围为振镜31的运动范围(也就是振镜31的面积乘以其垂直方向的扫描振幅的2倍,可以记为V 扫描),两者的比值优选设置为大于1.2(通过光学几何关系可以实现特定放大倍数的设置模式,这里不做赘述),从而达到一级放大的目的,而成像镜组51的光学转换可以进一步把等效扫描范围进一步放大,比如选用放大倍数大于5的镜头,进一步把成像空间放大到大于5 3倍。
这种扫描系统的另一个优点是可以使二维成像元件11和成像镜组51等关键部件处于完全静止的状态,或者非常轻微的运动状态,从而使系统更加可靠。
其中,成像元件11可以是投影显示元件,也可以是拍摄感光元件:
如图10,当以投影显示元件作为成像元件11时,本申请的扫描式成像器就作为全息投影器使用:
投影显示元件的光线经过振镜31和成像镜组51光学转化后于空间内形成多个二维切面61,并组成一个二维切面61的阵列,等效于成像镜组51直接把如图10和图11所示的、与二维切面61的阵列光学共轭的多个第一等效像面21和第二等效像面41投影出去的显示效果,通过焦深扫描机构71控制振镜31振动,优选周期性变动,使第一等效像面21和第二等效像面41与成像镜组51之间的相对位置或者整体位置发生周期性变动,空间内二维切面61的阵列随之也于焦深方向发生振动来进行体扫描,之前多层切面式、不连续的立体显示效果经过扫描后形成更密集的二维切面61的阵列或者是连续的3D画面,实现连续的3D显示效果;
而上述的二维切面61分别与第一等效像面21和第二等效像面41之间存在光学共轭,因此对二维切面61进行体扫描时,第一等效像面21和第二等效像面41也同时在进行体扫描,上述二维切面61为光学转化后的实像面,第一等效像面21和第二等效像面41为通过光学转化得到的虚像面;
如图11,当以拍摄感光元件作为成像元件11时,本申请的扫描式成像器就作为全息拍摄器使用:
类似于上述的投影过程,由光路可逆原理,外部景物的光线经过振镜31和成像镜组51光学转化后于拍摄感光元件上生成多个实像二维切面61并被记录下来,等效于外部景物的光线经过成像镜组51光学成像后直接生成如图11所示的、与外部景物光学共轭的多个第一等效像面21和第二等效像面41的效果;
这点跟普通的摄像机工作原理非常相似,所不同的是普通相机只有一个感光芯片,只能记录与之对应的光学共轭处的景物信息,而本申请的拍摄感光元件内含有多个感光芯片,因此可以同时记录多个像,且每个像分别对应于不同景深的景物,达到类似切片3D式的拍摄记录。通过焦深扫描机构71控制拍摄感光元件和/或成像镜组51的空间位置变动,优选周期性变动,使第一等效像面21和第二等效像面41与成像镜组51之间的相对位置或者整体位置发生周期性变动,相应的与感光芯片、第一等效像面和第二等效像面41光学共轭的景深空间也发生周期性的扫描,使得景物不同景深处的信息分别被记录,从而记录下完整连续的3D场景,实现3D拍摄的目的,根据光路可逆,与第二等效像面41光学共轭的景深空间发生周期性的扫描的过程,第二等效像面41发生了相应的周期性扫描,而上述的第二等效像面41与二维切面61之间为等效关系,因此对第二等效像面41的扫描可以等效于对二维切面61的扫描,上述二维切面61为光学转化后的实像面,第一等效像面21和第二等效像面41为通过光学转化得到的虚像面。
本申请通过设置的焦深扫描机构71控制振镜31的空间位置变动,从而使得 与第一等效像面21对应的第二等效像面41与成像镜组51之间的相对位置发生变动,优选周期性变动,以实现对二维切面61的体扫描;比如,通过机械方式振镜31在空间中周期性往复扫描运动,即可在空间扫出一个连续的空间,实际应用中可以以一个固定的频率往复扫描,也可以根据显示内容需要使用不同的频率进行扫描,其中,扫描机构的设计属于本领域内公知常识,具体实现方式可以根据实际情况自行设计,这里不做赘述。
还可以进一步通过焦深扫描机构71控制成像镜组51的有效焦距周期性变动,也可以实现对二维切面61的体扫描,成像镜组51的有效焦距周期性变动可以通过改变成像镜组51内光学元件的相对位置和/或整体位置来实现(机械变焦),也可以在成像镜组51内设置具有变焦功能的液体变焦透镜和/或柔性变焦透镜来实现;
进一步地,焦深扫描机构71还可以分别与二维成像元件11和/或成像镜组51连接,用于控制二维成像元件11和/或成像镜组51的空间位置变动,实现二维切面61的体扫描,同样可以实现上述的3D成像的效果。
此外,除了进行单纯的一维景深扫描,还可以用三维扫描的方式进一步提升显示效果。比如,增加平行于等效像面的扫描,这样可以进一步增加横向分辨率,使画质更加细腻。
扫描机构的设计为本领域内的一般通识,可以根据实际应用场景自行设计这里不做赘述。
下面以只包含一个振镜31、成像元件11为投影显示元件、第一等效像面21的数量n=3的本申请的全息成像器为实施例来对本申请作进一步的说明:
实施例6
如图10,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、振镜31、成像镜组51和焦深扫描机构71,焦深扫描机构71与振镜31连接并控制振镜31空间位置的前后往复扫描(或者周期性变动),使得投影显示元件提供的第一等效像面21以及经过振镜31光学转化后的第二等效像面41与成像镜组51之间的相对位置发生周期性变动,与第二等效像面41光学共轭的二维切面61随之于焦深方向发生周期性变动,实现二维切面61的前后往复扫描,从而呈现连续的3D画面。
实施例7
如图12,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、振镜31、成像镜组51和焦深扫描机构71,焦深扫描机构71分别与成像元件11和振镜31连接并控制二者的空间位置的周期性变动,使得投影显示元件提供的第一等效像面21以及经过振镜31光学转化后的第二等效像面41与成像镜组51之间的相对位置发生周期性变动,与第二等效像面41光学共轭的二维切面61随之于焦深方向发生周期性变动,实现二维切面61的前后往复扫描,从而呈现连续的3D画面。
实施例8
如图13,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、振镜31、成像镜组51和焦深扫描机构71,焦深扫描机构71分别与振镜31和成像镜组51连接并控制二者的空间位置的周期性变动,使得投影显示元件提供的第一等效像面21以及经过振镜31光学转化后的第二等效像面41与成像镜组51之间的相对位置发生周期性变动,与第二等效像面41光学共轭的二维切面61随之于焦深方向发生周期性变动,实现二维切面61的前后往复扫描,从而呈现连续的3D画面。
实施例9
如图14,布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、振镜31、成像镜组51和焦深扫描机构71,焦深扫描机构71分别与投影显示元件、振镜31和成像镜组51连接并控制三者的空间位置的周期性变动,使得投影显示元件提供的第一等效像面21以及经过振镜31光学转化后的第二等效像面41与成像镜组51之间的相对位置发生周期性变动,与第二等效像面41光学共轭的二维切面61随之于焦深方向发生周期性变动,实现二维切面61的前后往复扫描,从而呈现连续的3D画面。
实施例10
布拉格周期扫描式全息成像器包括分别设置于内部的投影显示元件、振镜31、成像镜组51和焦深扫描机构71,焦深扫描机构71分别与振镜31和成像镜组51连接并控制振镜31的空间位置以及成像镜组51的有效焦深发生周期性变动,使得投影显示元件提供的第一等效像面21以及经过振镜31光学转化后的第二等效像面41与成像镜组51之间的相对位置发生周期性变动,与第二等效像面41光学共轭的二维切面61随之于焦深方向发生周期性变动,实现二维切面61的前后往复扫描,从而呈现连续的3D画面。
实施例10中,焦深扫描机构71可以通过以下方式实现对成像镜组51的有效焦深的控制:
如图16,焦深扫描机构71控制成像镜组51内设的多个光学元件的相对位置和/或整体位置发生变动(机械变焦),实现对成像镜组51的有效焦距周期性变动的控制;
还可以在成像镜组51内设具有变焦功能的柔性变焦透镜,并通过焦深扫描机构71控制来柔性变焦透镜的焦距来实现对成像镜组51的有效焦距周期性变动的控制,柔性变焦透镜原理如图17所示,柔性变焦透镜还可以由其他具有变焦功能的透镜来替代,比如液体变焦透镜等;
当然实施例8和实施例9中的成像镜组51也可以增加变焦功能,并通过焦深扫描机构71来统一调控,以实现二维切面61的前后往复扫描,另外,振镜31的数量也可以是多个,图19是振镜31的数量为2个的情况。
实施例6~10分别体现了不同的二维切面61的前后往复扫描的实现方式,最终都达到了连续的3D显示效果。
本申请在实际应用时,本申请在实际应用时,焦深扫描机构71运作实现对 二维切面61体扫描时,与二维切面61光学共轭的第一等效像面21和第二等效像面41也同时都在进行体扫描;
通过焦深扫描机构71控制的振动与第一等效像面21和第二等效像面41的扫描是线性对应关系,而基于透镜成像规律,二维切面61于焦深方向上的扫描与第一等效像面21和第二等效像面41的扫描却不是线性对应关系,因此,相关设计参数要以第一等效像面21或第二等效像面41作为参照来设计才更方便:
如图15,第二等效像面41于焦深方向上的振幅(即第二等效像面41于焦深方向偏离平衡位置的最大位移)为L 1mm,上述第二等效像面41的平衡位置为第二等效像面41的焦深方向振幅点与焦深反方向振幅点两个点之间的中点,而第二等效像面41的振幅点如图15所示:将第二等效像面41沿焦深方向的最大位移处定义为焦深方向振幅点、沿焦深反方向的最大位移处定义为焦深反方向振幅点;
因为振镜31的存在,通过振镜31光学转化后的第二等效像面41振幅L 1应该与振镜31垂直方向的振幅之间存在几何对应关系,振镜31垂直方向的振幅为A mm,需要说明的是,上述的振镜31垂直方向的振幅A应解释为振镜31在振动过程中,于垂直于其自身方向上偏离振镜31平衡位置的最大位移,而振镜31的平衡位置为振镜31振动的正反方向上最大位移的中点位置;
振镜31垂直方向的振幅为A与振镜31和二维成像元件11之间的夹角相关联,下面以振镜31和成像元件11的夹角为45°为例说明:
如图18所示,振镜31的数量为1、振幅为A mm,第二等效像面41的扫描振幅L 1
Figure PCTCN2021093251-appb-000020
振镜31的数量为2且相互平行设置,振动频率相同,振幅也均为A mm,那么第二等效像面41的振幅L 1
Figure PCTCN2021093251-appb-000021
振镜31的数量为3且相互平行设置,振动频率相同,振幅也均为A mm,那么第二等效像面41的振幅L 1
Figure PCTCN2021093251-appb-000022
以此类推,振镜31的数量为N且相互平行设置,频率相同,振幅也均为A mm则那么第二等效像面41的振幅L 1
Figure PCTCN2021093251-appb-000023
实际应用时,振镜31数量为多个,而且又不平行设置时,可以根据几何运算得出最终得出第二等效像面41沿焦深方向的振幅L 1
多个第二等效像面41沿焦深方向分布深度即最靠近成像镜组51的第二等效像面41与离成像镜组51最远的第二等效像面41的中心距离为L 2mm,与第二等效像面41沿焦深方向的振幅L 1应满足L 1<L 2,此时才能够使扫描的幅度相对更小。
考虑到只要相邻第二等效像面41之间的间隙通过扫描动作可以完全扫过即可实现连续的3D画面空间,所以扫描的振幅只要大于最大的相邻第二等效像面41之间的间距即可实现完整连续空间的扫描,因此,设计时可以优选:
Figure PCTCN2021093251-appb-000024
此设计参数范围内,在使得振幅很小的前提下还能保证找到合适设计参数,使得 第二等效像面41可以在空间中扫出一个完整连续的空间(事实上,相邻第二等效像面41扫过的空间还有一定重合,完全避免纵向景深不连续问题,同时留出足够的设计余量,允许设计时使用一个扫描周期内的一部分用来更新显示画面,增加设计灵活性),又可以把扫描振幅降低到很小。
实际应用时,为了表现更细腻的画面效果可以把扫描振幅做的更大一些或者对于深度分辨率追求不高的场景也可以小一些。
实际应用时,焦深扫描机构71的扫描频率或者等效频率优选大于
Figure PCTCN2021093251-appb-000025
Hz。这里的频率是指运动部件连续两次同一个方向经过某空间点的时间间隔的倒数,比如成像元件11往复扫描过程中,同一个方向上、连续两次经过平衡位置时间的倒数。此外,对于采用变焦方式进行扫描的情况可以等效于成像镜组51的焦距从初始焦距再次变回该焦距时间的倒数,初始焦距指的是焦深扫描机构71未运作时,成像镜组51的焦距。当然,也可以通过测量投影焦平面连续两次同向扫过空间某一位置的时间间隔的倒数。
在一定的空间内显示3D画面的时候,需要使焦平面在一定空间内前后扫描完成全空间画面的更新,所以3D画面的帧频就是景深扫描频率。
此外,还有一种特殊情况,就是当显示空间发生整体运动时,比如从近景移动到远景的过程,在切换的过程中景深往往只需要单向运动无需往复扫描,那么此时也就无景深扫描的概念,但是显示景深切换过程同样需要在一个比较合适的速度内完成,否则容易出现画面跳动或者拖尾的情况。针对这种情况我们引入等效频率的概念:等效频率是指等效像面相对于成像镜组51进行单向运动时,运动距离等于相邻第二等效像面41之间的最大相邻间距的过程中所用时间的倒数。
对于采用变焦方式进行扫描的情况可以采用等效焦距变动过程中从初始焦距再次变为该焦距的时间的倒数(或者是从最大焦距再次变为最大焦距的时间间隔的倒数),初始焦距指的是焦深扫描机构71未运作时,成像镜组51的焦距。当然,也可以通过测量投影焦平面连续两次沿同一方向上扫过空间某一位置的时间间隔的倒数。
实际应用时发现,第一等效像面21和第二等效像面41的数量n越大,二维切面相对就会越密集,在一般显示情况下基本上也可以呈现出比较好的立体显示效果,因此只需要在显示内容的整体景深发生较大的变动时,才需要通过焦深扫描动作重新匹配显示空间的焦深。比如,电影画面的显示内容从室内场景转换到空旷的室外场景或者外太空星系场景,此时,显示的焦深发生较大幅度的变动,通常这种大焦深差异场景切换通常都是在多帧图像内完成的,转换过程相对比较缓慢,所以只需要显示系统能够比较缓慢的实现焦深切换即可,所以扫描频率(等效频率)可以远小于3D视频的帧频。这样也可以大幅度降低对计算和控制系统的要求,使得系统更加稳定;
但是另一方面,n越大必然造成相应部件的总质量增加,系统的固有频率就会降低,这样也就比较难以实现较高的扫描频率,所以必须降低扫描频率下限来保护系统的可靠性。
通常显示画面在一个相对比较小的范围内的,比如室内场景,此时等效像面的投影空间有可能完全可以满足这种小空间范围的显示,这时候及时不进行焦深扫描动作也可以比较真实的还原3D场景,或者为了使显示效果更细腻,只需要进行非常小的振幅的扫描即可。
只有在显示景深变动范围较大,或者景深整体发生较大变动时,焦深扫描需要做较大振幅的扫描或者整体平移。
需要说明的是,很多时候景深切换并不需要实现一个完整的扫描周期。
比如画面场景由近景缓慢切换到远景,然后停留在远景一段时间,那么焦深扫描只需要相应的调整画面景深即可,此时可以使用等效频率概念。
以下是几种实际测试时用户的反馈情况:
Figure PCTCN2021093251-appb-000026
从数据来看对于一般要求不是特别高的应用场景,扫描频率(或者等效频率)优选大于
Figure PCTCN2021093251-appb-000027
Hz时,用户综合打分都高于60,可以满足一般用户的需求;
当然,为了进一步提高3D显示效果,提高综合性能得分,对于一些特殊应用场景,可以优选n≥2,扫描频率≥
Figure PCTCN2021093251-appb-000028
Hz;
而对于一些追求极致体验的用户可以优选n≥3,扫描频率≥
Figure PCTCN2021093251-appb-000029
Hz。
通常人眼的深度分辨率远低于横向分辨率,所以即使深度方向上像素间距较大也不会造成分辨失真,因此投影画面在深度方向上的像素间距可以设置大一些,从而可以在有效降低设备和工艺成本的条件下,投射出非常真实的3D画面。
另外,成像元件11的质量M g,与第一等效像面21数量n之间满足
Figure PCTCN2021093251-appb-000030
其中,成像元件11的质量M指的是全息成像器内去除成像镜组,支持机构和线束等辅助部件之后剩余部分的质量。
这里以全息投影器为例进行说明,通常全息投影器的主要应用领域是几何全息显示系统,而这种系统中全息投影器往往需要其处于一种运动状态,因此其质量就不能太大,否则控制一个质量过大的部件运动,由于质量带来的惯性也非常大进而操控难度极大,且能耗极大,另一方面对于支撑结构会造成很大的负担,整个系统就会非常笨重而不实用。因此需要对其质量进行合理设计。理想情况下,整体质量越小越好,但是第一等效像面21必须依赖于物理实体存在,这样第一等效像面21的数量越大,整体质量也会越大。如果想设计尽可能轻巧的全息投影器,那么必然需要牺牲第一等效像面21数量,如果想获得更密集的第一等效像面21,就不得不接收质量的增加,两者不能同时达到最优。本申请给出了一种权衡两者关系的设计准则,即
Figure PCTCN2021093251-appb-000031
这个设计关系式间接限定了总质量的大小,给出了数量不同的第一等效像面21的情况下全息投影器的上限边界,超出此上限边界时,制作出的全息投影器实用性就会很差。比如对于客厅显示,使用11个第一等效像面21来进行景深表现,就可以达达到非常完美的显示效果了,而客厅内运动物体的质量最大不要超过5000g,否则一方面有可能存在对人员的安全隐患,另一方面,支撑结构会非常笨重,占用大量的空间,而且不够美观,对于此边界情况
Figure PCTCN2021093251-appb-000032
作为设计上限。实际测试中也发现绝大多数家庭,不愿意接受超过此设计边界的产品。
此外,对于桌面办公类场景,设计时尽可能优选更为严格的设计规范,优选
Figure PCTCN2021093251-appb-000033
此时整体结构和显示性能都更加理想,实测结果显示,用户对于满足设计规则的产品,普遍评价高于60分;
进一步地,优选
Figure PCTCN2021093251-appb-000034
此时整个系统更加紧凑,灵活,美观,实测结果显示,用户对于满足设计规则的产品,普遍评价高于70分;
进一步地,优选
Figure PCTCN2021093251-appb-000035
此时相当于进一步收紧设计边界,系统不仅紧凑,而且可以增加一些外观设计元素使得系统的客户吸引力更强。实测结果显示,用户对于满足设计规则的产品,普遍评价高于90分;
另外,为了追求最优的综合显示效果,需要对各个组件进行精细的设计。
一方面需要提高大视角显示能力,所以振镜31的面积尽可能大一些,这样才能更好的利用镜头的有效光学面积。另一方面还需要尽可能保证优异的景深细 节表现能力,也就是需要提高系统扫描频率,对于机械扫描系统,扫描的最佳配置是利用其固有频率进行扫描,而通常机械系统的固有频率与振动部件的质量之间存在负相关关系。所以镜片的质量需要做的小一些,相应的其面积也会小一些。此外,对于一个产品,提高系统的稳定性同样非常重要,扫描过程中振动的幅度越小,系统越接近固态,稳定性越好,但是振幅太小,景深表现范围又会收到制约,难以完成超大景深的表现。此外,如果运动部件的质量和振幅都比较大时,对系统的反冲作用会很明显,容易出现画面抖动等情况。
综上,对于这种全新的方案,需要同时考虑有效光学利用面积、扫描频率、扫描振幅三个相互对立的指标,而三者不能够同时达到最优设计,需要进行一定的权衡、优化来获得一个比较优异的综合性能。
由于此前并无任何可借鉴的设计经验,所以虽然成像原理比较容易理解,但是真正设计出性能比较优异的产品还是有不小的困难。所以本申请给出一个容易实施的指导设计的规则,来帮助本领域的一般从业人员设计出性能优异的产品。
通常对于一个特定的透镜成像应用场景,主镜片的厚度范围非常窄,比如单反相机,最外侧镜片的厚度(中心厚度)一般在1~5mm之间,实际情况不考虑一些极端特殊案例,该范围会更窄,这主要是受成像镜片设计规律制约的。所以,成像镜片的质量往往主要取决于其口径的大小。为了与成像镜头相匹配,那么振镜31的面积也需要在一个合适的范围内。此外,还需要考虑扫描过程中因振动带来的镜面变形问题,也就是镜片的刚度问题,即对于特定面积的振镜31需要通过对其厚度的设计来保证刚度足够,因此扫描镜的体积也在一个非常小的范围内被确定下来,通常镜片的材质密度差异比较小,所以其质量也可以进一步被确定在一个合理的范围内。
通过以上理论分析权衡各个方面性能,结合实验组装测试本申请确定出在保证一定视角的前提下,能够较好的表现景深细节效果的参数设计空间(由于本系统的设计主要针对3D成像领域,所以设计过程中需要优先保证景深表现能力),任意一个所述振镜31的质量为M Ng、振幅为A mm,全息成像器最外侧镜片的质量为mg,满足::
Figure PCTCN2021093251-appb-000036
需要说明的是对于采用多个振镜31的情况,距离成像镜头最外侧镜片最近的扫描镜片的质量定义为M 1g,其他扫描镜片的质量依次定义为M 2g、M 3g、M 4g……M ng,并且满足:
Figure PCTCN2021093251-appb-000037
对于不同的用户,需求的场景是不一样的,他们的要求也不一样。
针对游戏用户对于场景运动速度要求较高,优选
Figure PCTCN2021093251-appb-000038
办公应用场景,用户对画质要求相对较低,优选
Figure PCTCN2021093251-appb-000039
而对于3D体验要求较高的用户,优选
Figure PCTCN2021093251-appb-000040
以下案例以最外侧镜片质量为80g为例进行实验测试,具体如下表:
Figure PCTCN2021093251-appb-000041
虽然,以上实施例是中最外侧镜片的质量是80g,但是设计时可以考虑把系统进行整体缩放,即可得到其他尺寸、质量的设计,这一点非常类似于流体设计中情况,流体中只要流体的雷诺数相似,那么其数学解就会非常相似,因此在大模型无法实现的情况下通常是使用相同雷诺数的小模型进行实验测试的。事实上,以上实验方案,我们也在50g,20g,10g,5g,2g等情况下验证过,用户体验反馈与上述表内反馈结果一致,进一步证明了设计公式的通用性。
此外,从以上实施反馈还可以总结出一个相对粗糙但是也比较有效的简化设计规则,即
Figure PCTCN2021093251-appb-000042
在一些要求不太严格的场景下,直接只用简化设计规则,同样可以得到相对比较完善的产品。
通常人眼的深度分辨率远低于横向分辨率,所以即使深度方向上像素间距较大也不会造成分辨失真,因此投影画面在深度方向上的像素间距可以设置大一些,从而可以在有效降低设备和工艺成本的条件下,投射出非常真实的3D画面。
成像元件11内可以同时设有若干投影显示芯片和拍摄感光芯片,以实现投影和拍摄的双功能。
需要说明的是,投影显示元件作为成像元件11的本申请的布拉格周期扫描式全息成像器是作为全息投影器来使用的,拍摄感光元件作为成像元件11的本申请的布拉格周期扫描式全息成像器是作为全息拍摄器来使用的,而以上的设计说明主要是针对全息投影器的情况来进行的解释说明,但是由于全息拍摄器的应用情况非常相似,基于光路可逆原理,全息投影器需要考虑的问题,全息拍摄器 同样也会遇到,因此以上设计说明同样适用于全息拍摄器。
为了使本领域技术人员更好地理解本申请的技术方案,下面结合附图对本申请进行详细描述,本部分的描述仅是示范性和解释性,不应对本申请的保护范围有任何的限制作用。
参照图20至图29,本申请提供一种微扫描式全息成像器,包括分别设置于其内部的二维成像元件12、至少一个振镜22、成像镜组42以及焦深扫描机构62;
振镜22设置的位置与二维成像元件12相对应,用于对光线进行光学转化并形成有等效像面32;
成像镜组42的位置与等效像面32相对应,用于对光线进行光学转化并形成有二维画面52;
焦深扫描机构62与振镜22连接,用于控制振镜22的空间位置变动,实现对二维画面52的体扫描;
其中,本申请的二维成像元件12可以是投影显示元件也可以是拍摄感光元件:
如图20,当二维成像元件12是投影显示元件时,投影显示元件的投射光线依次经过振镜22和成像镜组42光学转化后在空间投影出二维画面52,等效于一个等效像面32经过成像镜组42投影后的成像效果,焦深扫描机构62控制振镜22振动,使等效像面32与成像镜组42之间的相对位置发生变动,二维画面52随之也于焦深方向发生振动,实现对二维画面52的体扫描,最终达到3D显示的效果,上述二维画面52与等效像面32存在光学共轭的关系,因此对二维画面52进行体扫描时,等效像面32也同时在进行体扫描,上述二维画面52为光学转化后的实像面,等效像面32为通过光学转化得到的虚像面;
如图21,当二维成像元件12是拍摄感光元件时,根据光路可逆,外部景物的光线依次经过成像镜组42和振镜22的光学转化后,在拍摄感光元件上生成实像的二维画面52并被记录下来,等效于外部景物的光线经过成像镜组42的光学转化后直接生成等效像面32的成像效果;
但是成像过程中只有与拍摄感光元件或者等效像面32处于光学共轭景深处的景物可以被清晰的记录下来,其他景深的景物无法实现清晰的成像记录。当焦深扫描机构62控制振镜22振动时,振镜22与拍摄感光元件的相对位置发生变动,等效像面32与成像镜组42之间的空间位置关系随之周期性发生变化(微扫描),此时与拍摄感光元件或者等效像面32光学共轭景深也跟随发生周期性变化,从而达到景深扫描的目的,使得不同景深处的景物分别成像记录下来,实现3D拍摄,根据光路可逆,与拍摄感光芯片或者等效像面32光学共轭的景深空间发生周期性的扫描的过程,等效像面32也发生了相应的周期性扫描,而上述的等效像面32与二维画面52之间为等效关系,因此对等效像面2的扫描可以等效于对二维画面52的扫描,上述二维画面52为光学转化后的实像面,等效像面 32为通过光学转化得到的虚像面;
上述的体扫描也相当于3D画面的景深扫描,可以扫描出一个成像空间,以此来实现3D显示的效果。
由于投影的二维画面52和拍摄的二维画面52上均布满像素阵列(二维),经过体扫描后就可以形成三维像素阵列,这种结构的优点是,只要进行一个非常小范围内进行扫描就可以达到一个相对更大的等效扫描空间,而经过光学转化后可以把等效扫描空间进一步放大。比如等效像面32的运动范围为等效扫描范围(也就是等效像面32的面积乘以其垂直方向的扫描振幅的2倍,可以记为V 等效),而实际扫描的运动范围为振镜22的运动范围(也就是振镜22的面积乘以其垂直方向的扫描振幅的2倍,可以记为V 扫描),两者的比值优选设置为大于1.2(通过光学几何关系可以实现特定放大倍数的设置模式,这里不做赘述),从而达到一级放大的目的,而成像镜组42的光学转换可以进一步把等效扫描范围进一步放大,比如选用放大倍数大于5的镜头,进一步把成像空间放大到大于5 3倍。
这种扫描系统的另一个优点是可以使二维成像元件12和成像镜组42等关键部件处于完全静止的状态,或者非常轻微的运动状态,从而使系统更加可靠。
本申请通过设置的焦深扫描机构62控制振镜22的空间位置变动,优选周期性变动,实现对二维画面52的体扫描,优选对二维画面52进行前后往复运动的方式来实现体扫描。比如,通过机械方式振镜22在空间中周期性往复扫描运动,即可在空间扫出一个连续的空间,实际应用中可以以一个固定的频率往复扫描,也可以根据显示内容需要使用不同的频率进行扫描;扫描机构的设计属于本领域内公知常识,具体实现方式可以根据实际情况自行设计,这里不做赘述。
还可以进一步通过焦深扫描机构62控制成像镜组42的有效焦距周期性变动,也可以实现对二维画面52的体扫描,成像镜组42的有效焦距周期性变动可以通过改变成像镜组42内光学元件的相对位置和/或整体位置来实现(机械变焦),也可以在成像镜组42内设置具有变焦功能的液体变焦透镜和/或柔性变焦透镜来实现;
进一步地,焦深扫描机构62还可以分别与二维成像元件12和/或成像镜组42连接,用于控制二维成像元件12和/或成像镜组42的空间位置变动,实现二维画面52的体扫描,同样可以实现上述的3D成像的效果。
此外,除了进行单纯的一维景深扫描,还可以用三维扫描的方式进一步提升显示效果。比如,增加平行于等效像面的扫描,这样可以进一步增加横向分辨率,使画质更加细腻。
下面以二维成像元件12为投影显示元件,只包含一个振镜22的微扫描式全息成像器为实施例来对本申请作进一步的说明:
实施例11
如图20,微扫描式全息成像器包括分别设置于内部的投影显示元件、振镜22、成像镜组42和焦深扫描机构62,焦深扫描机构62与振镜22连接并控制振镜22空间位置的前后往复扫描(或者周期性变动),使得经振镜22光学转化形 成的等效像面32与成像镜组42之间的相对位置发生周期性变动,则与等效像面32共轭的二维画面52位置也随之沿焦深方向发生周期性变动,从而实现对二维画面52的前后往复扫描,呈现3D显示的效果。
实施例12
如图22,微扫描式全息成像器包括分别设置于内部的投影显示元件、振镜22、成像镜组42和焦深扫描机构62,焦深扫描机构62分别与投影显示元件和振镜22连接并控制二者的空间位置的周期性变动,使得经振镜22光学转化形成的等效像面32与成像镜组42之间的相对位置发生周期性变动,则与等效像面32共轭的二维画面52位置也随之沿焦深方向发生周期性变动,从而实现对二维画面52的前后往复扫描,呈现3D显示的效果。
实施例13
如图23,微扫描式全息成像器包括分别设置于内部的投影显示元件、振镜22、成像镜组42和焦深扫描机构62,焦深扫描机构62分别与振镜22和成像镜组42连接并控制二者的空间位置的周期性变动,使得经振镜22光学转化形成的等效像面32与成像镜组42之间的相对位置发生周期性变动,则与等效像面32共轭的二维画面52位置也随之沿焦深方向发生周期性变动,从而实现对二维画面52的前后往复扫描,呈现3D显示的效果。
实施例14
如图24,微扫描式全息成像器包括分别设置于内部的投影显示元件、振镜22、成像镜组42和焦深扫描机构62,焦深扫描机构62分别与投影显示元件、振镜22和成像镜组42连接并控制三者的空间位置的周期性变动,使得经振镜22光学转化形成的等效像面32与成像镜组42之间的相对位置发生周期性变动,则与等效像面32共轭的二维画面52位置也随之沿焦深方向发生周期性变动,从而实现对二维画面52的前后往复扫描,呈现3D显示的效果。
实施例15
微扫描式全息成像器包括分别设置于内部的投影显示元件、振镜22、成像镜组42和焦深扫描机构62,焦深扫描机构62分别与振镜22和成像镜组42连接并控制振镜22的空间位置以及成像镜组42的有效焦深发生周期性变动,使得经振镜22光学转化形成的等效像面32与成像镜组42之间的相对位置发生周期性变动,则与等效像面32共轭的二维画面52位置也随之沿焦深方向发生周期性变动,从而实现对二维画面52的前后往复扫描,呈现3D显示的效果。
实施例15中,焦深扫描机构62可以通过以下方式实现对成像镜组42的有效焦深的控制:
如图26,焦深扫描机构62控制成像镜组42内设的多个光学元件的相对位置和/或整体位置发生变动(机械变焦),实现对成像镜组42的有效焦距周期性变动的控制;
如图27,还可以在成像镜组42内设具有变焦功能的柔性变焦透镜,并通过焦深扫描机构62控制来柔性变焦透镜的焦距来实现对成像镜组42的有效焦距周 期性变动的控制,柔性变焦透镜还可以由其他具有变焦功能的透镜来替代,比如液体变焦透镜等;
当然实施例13和实施例14中的成像镜组42也可以增加变焦功能,并通过焦深扫描机构62来统一调控,以实现二维画面52的前后往复扫描,另外,振镜22的数量也可以是多个,如图28所示,振镜22的数量为2个的情况。
实施例11~15分别体现了不同的二维画面52的前后往复扫描的实现方式,最终都达到了3D显示的效果。
根据光路可逆原理,实施例11~15中的投影显示元件也可以用拍摄感光元件来替代,如图21,以实现3D拍摄的效果。
如图25,本申请在实际应用时,焦深扫描机构62运作实现对二维画面52体扫描时,与二维画面52光学共轭的等效像面32也同时在进行体扫描;
通过焦深扫描机构62控制的振动与等效像面32的扫描是线性对应关系,而基于透镜成像规律,二维画面52于焦深方向上的扫描与等效像面32的扫描却不是线性对应关系,因此,相关设计参数要以等效像面32作为参照来设计才更方便:
等效像面32于焦深方向上的振幅(即等效像面32于焦深方向偏离平衡位置的最大位移)为L mm,上述等效像面32的平衡位置为等效像面32的焦深方向振幅点与焦深反方向振幅点两个点之间的中点,而等效像面32的振幅点如图25所示,将等效像面32沿焦深方向的最大位移处定义为焦深方向振幅点、沿焦深反方向的最大位移处定义为焦深反方向振幅点;
因为振镜22的存在,通过振镜22光学转化后的等效像面32的振幅L应该与振镜22垂直方向的振幅之间存在几何对应关系,振镜22垂直方向的振幅为A mm,需要说明的是,上述的振镜22垂直方向的振幅A应解释为振镜22在振动过程中,于垂直于其自身方向上偏离振镜22平衡位置的最大位移,而振镜22的平衡位置为振镜22振动的正反方向上最大位移的中点位置;
振镜22垂直方向的振幅为A mm与振镜22和二维成像元件12之间的夹角相关联,下面以振镜22和二维成像元件12的夹角为45°为例说明:
如图28所示,振镜22的数量为1、振幅为A mm,等效像面32的体扫描的振幅L为
Figure PCTCN2021093251-appb-000043
振镜22的数量为2且相互平行设置,频率相同,振幅也均为A mm,那么等效像面32的体扫描的振幅L为
Figure PCTCN2021093251-appb-000044
振镜22的数量为3且相互平行设置,频率相同,振幅也均为A mm,那么等效像面32的体扫描的振幅L为
Figure PCTCN2021093251-appb-000045
以此类推,振镜22的数量为N且相互平行设置,频率相同,振幅也均为A mm,则等效像面32的体扫描的振幅L为=
Figure PCTCN2021093251-appb-000046
实际应用时,振镜22数量为多个,而且又不平行设置时,可以根据几何运算得出最终得出等效像面32沿焦深方向的振幅L;
实际应用时,为了表现更细腻的画面效果可以把体扫描振幅做的更大一些或 者对于深度分辨率追求不高的场景也可以小一些。
实际应用时,焦深扫描机构62的扫描频率或者等效频率优选大于6Hz;
这里的频率是指运动部件同一运动方向上连续两次经过某空间点的时间间隔的倒数,比如振镜22往复扫描过程中,同一扫描方向上连续两次经过振镜22的平衡位置的时间的倒数,这里的振镜22的平衡位置上面已经解释过,这里不再赘述;
此外,还有一种特殊情况,就是当显示空间发生整体运动时,比如从近景移动到远景的过程,在切换的过程中景深往往只需要单向运动无需往复扫描,那么此时也就无景深扫描的概念,但是显示景深切换过程同样需要在一个比较合适的速度内完成,否则容易出现画面跳动或者拖尾的情况。针对这种情况我们引入等效频率的概念:等效频率是指等效像面32相对于成像镜组42进行单向运动时,运动距离等于等效像面32的振幅L 2过程中所用时间的倒数;
对于采用变焦方式进行扫描的情况可以采用等效焦距变动过程中从初始焦距再次变为该焦距的时间的倒数(或者是从最大焦距再次变为最大焦距的时间间隔的倒数),初始焦距指的是焦深扫描机构62未运作时,成像镜组42的焦距。当然,也可以通过测量投影焦平面连续两次沿同一方向上扫过空间某一位置的时间间隔的倒数。
在一定的空间内显示3D画面的时候,需要使焦平面在一定空间内前后扫描完成全空间画面的更新,所以3D画面的帧频就是景深扫描频率。
成像时每秒的帧频取决于扫描频率,而实际显示过程中,当帧频大于12时就可以利用人眼的视觉暂留原理形成连续的画面,此外有一些特殊场合下,需要营造一些卡顿的画面效果,所以取连贯帧频的一半即可达到此目的,因此优选焦深扫描机构62的扫描频率大于6Hz。
另外,为了追求最优的综合显示效果,需要对各个组件进行精细的设计。
一方面需要提高大视角显示能力,所以振镜22的面积尽可能大一些,这样才能更好的利用镜头的有效光学面积。另一方面还需要尽可能保证优异的景深细节表现能力,也就是需要提高体扫描频率,对于机械扫描系统,扫描的最佳配置是利用其固有频率进行扫描,而通常机械系统的固有频率与振动部件的质量之间存在负相关关系。所以镜片的质量需要做的小一些,相应的其面积也会小一些。此外,对于一个产品,提高系统的稳定性同样非常重要,扫描过程中振动的幅度越小,系统越接近固态,稳定性越好,但是振幅太小,景深表现范围又会收到制约,难以完成超大景深的表现。此外,如果运动部件的质量和振幅都比较大时,对系统的反冲作用会很明显,容易出现画面抖动等情况。
综上,对于这种全新的方案,需要同时考虑有效光学利用面积、扫描频率、扫描振幅三个相互对立的指标,而三者不能够同时达到最优设计,需要进行一定的权衡、优化来获得一个比较优异的综合性能。
由于此前并无任何可借鉴的设计经验,所以虽然成像原理比较容易理解,但是真正设计出性能比较优异的产品还是有不小的困难。所以本申请给出一个容易 实施的指导设计的规则,来帮助本领域的一般从业人员设计出性能优异的产品。
通常对于一个特定的透镜成像应用场景,主镜片的厚度范围非常窄,比如单反相机,最外侧镜片的厚度(中心厚度)一般在1~5mm之间,实际情况不考虑一些极端特殊案例,该范围会更窄,这主要是受成像镜片设计规律制约的。所以,成像镜片的质量往往主要取决于其口径的大小。为了与成像镜头相匹配,那么振镜22的面积也需要在一个合适的范围内。此外,还需要考虑扫描过程中因振动带来的镜面变形问题,也就是镜片的刚度问题,即对于特定面积的振镜22需要通过对其厚度的设计来保证刚度足够,因此扫描镜的体积也在一个非常小的范围内被确定下来,通常镜片的材质密度差异比较小,所以其质量也可以进一步被确定在一个合理的范围内。
通过以上理论分析权衡各个方面性能,结合实验组装测试本申请确定出在保证一定视角的前提下,能够较好的表现景深细节效果的参数设计空间(由于本系统的设计主要针对3D成像领域,所以设计过程中需要优先保证景深表现能力),任意一个振镜22的质量为M Ng、振幅为A mm,全息成像器最外侧镜片的质量为m g,满足:
Figure PCTCN2021093251-appb-000047
需要说明的是对于采用多个振镜22的情况,距离成像镜头最外侧镜片最近的扫描镜片的质量定义为M 1g,其他扫描镜片的质量依次定义为M 2g、M 3g、M 4g……M ng,并且满足:
Figure PCTCN2021093251-appb-000048
对于不同的用户,需求的场景是不一样的,他们的要求也不一样。
针对游戏用户对于场景运动速度要求较高,优选
Figure PCTCN2021093251-appb-000049
办公应用场景,用户对画质要求相对较低,优选
Figure PCTCN2021093251-appb-000050
而对于3D体验要求较高的用户,优选
Figure PCTCN2021093251-appb-000051
以下案例以最外侧镜片质量为80g为例进行实验测试,具体如下表:
Figure PCTCN2021093251-appb-000052
虽然,以上实施例是中最外侧镜片的质量是80g,但是设计时可以考虑把系统进行整体缩放,即可得到其他尺寸、质量的设计,这一点非常类似于流体设计中情况,流体中只要流体的雷诺数相似,那么其数学解就会非常相似,因此在大模型无法实现的情况下通常是使用相同雷诺数的小模型进行实验测试的。事实上,以上实验方案,我们也在50g,20g,10g,5g,2g等情况下验证过,用户体验反馈与上述表内反馈结果一致,进一步证明了设计公式的通用性。
此外,从以上实施反馈还可以总结出一个相对粗糙但是也比较有效的简化设计规则,即
Figure PCTCN2021093251-appb-000053
在一些要求不太严格的场景下,直接只用简化设计规则,同样可以得到相对比较完善的产品。
需要说明的是,投影显示元件作为二维成像元件12的本申请的布拉格周期扫描式全息成像器是作为全息投影器来使用的,拍摄感光元件作为二维成像元件12的本申请的布拉格周期扫描式全息成像器是作为全息拍摄器来使用的,而以上的设计说明主要是针对全息投影器的情况来进行的解释说明,但是由于全息拍摄器的应用情况非常相似,基于光路可逆原理,全息投影器需要考虑的问题,全息拍摄器同样也会遇到,因此以上设计说明同样适用于全息拍摄器。
本申请的二维成像元件12可以同时设置为同时包括投影显示元件和拍摄感光元件,以实现投影和拍摄的双功能。
通常人眼的深度分辨率远低于横向分辨率,所以即使深度方向上像素间距较大也不会造成分辨失真,因此投影画面在深度方向上的像素间距可以设置大一些,从而可以在有效降低设备和工艺成本的条件下,投射出非常真实的3D画面。
请参照图30至图43,本申请提供一种二维布拉格周期扫描成像系统,包括二维成像元件13、成像镜组23以及二维布拉格扫描机构33:
二维成像元件13上设有由若干像素点组成的像素阵列,像素阵列所在平面 为像素阵列平面,像素阵列的行的长度为Lmm(比如第一行第一个像素点与最后一个像素点之间的距离)、行间相邻像素点之间的距离(平均距离)为a 1mm,像素阵列的列的长度为W mm(比如第一列第一个像素点与最后一个像素点之间的距离)、列间相邻像素点之间的距离(平均距离)为a 2mm;相邻像素点之间的距离可以采用多种方式进行表征,每种表征方法之间可能存在一点偏差,但是数值的区间都在一个很小的范围内。像素间距测量时优选按照像素排列的行或者列进行测量,比如在显微镜下测量第一行相邻两个像素之间的间距。通常实际生产过程中像素间距不可能完全相等,因此不同的测量方法,不同的测量点可能存在一定差异,此时可以用5个像素间距的平均值作为设计像素间距。此外,还有一种简单的测量方式,比如通过测量某一行的像素个数(Pn),然后用这一行像素的总间距除以间距的个数(也是像素个数减去一,即Pn-1)即可得到一个平均像素间距,以平均像素间距最为像素间距进行设计也是一个比较可行的方案。对于有些特殊情况,可能像素排列并非是行列的形式排布的或者排布时像素在行或者列上有些偏差,此时可以在像素阵列上随机画一条线段,用线段的长度除以与线段相交的像素点个数,也可以得到一个平均像素间距,用以指导设计。虽然,不同的测量方式获得的像素间距的具体值会有一定差异,但是这些差异并不会太大,都可以用来指导设计。需要说明的是,对于彩色像素,每个像素又包含若干子像素(比如红绿蓝三个子像素组成一个彩色像素),这里需要把包含子像素的彩色像素,当作一个像素来对待;
二维布拉格扫描机构33分别与二维成像元件13和/或成像镜组23连接,用于驱动二维成像元件13和/或成像镜组23振动以实现微扫描的目的,优选进行周期性振动来实现周期性地微扫描;
其中,二维成像元件13和/或成像镜组23的振动在平行于像素阵列平面上的分量不为0。
具体的,我们可以采用一个驱动机构与二维成像元件13和/或成像镜组23相连,驱动机构驱动二维成像元件13和/或成像镜组23在平行于像素阵列所在平面上进行二维周期振动,通过类似行扫描和列扫描的方式来实现全平面像素更新并成像,驱动机构的具体结构可以根据实际应用自行设计,其实现方式这里不做限定;
如图33和图34所示,通常二维成像元件13上的像素阵列都是按照行和列的形式布置的,二维成像元件13和/或成像镜组23的振动在像素阵列平面上的投影可以分解为两个互相垂直的两个子运动,如图36所示,包括与像素阵列的行平行的第一子运动以及与像素阵列的列平行的第二子运动;
其中,第一子运动频率为f 1、振幅为ΔL mm,第二子运动的频率为f 2、振幅为ΔW mm,且f 1和f 2均大于6Hz;
需要说明的是,如图35所示,二维成像元件13的振幅为二维成像元件13于振动方向上偏离平衡点的最大位移,根据振动曲线的波形特性,平衡点一般为波峰和波谷之间的中点,而这里二维成像元件13的平衡点应该理解为二维成像 元件13振动的正反两个方向上最远位移之间的中点;
如图36所示,二维成像元件13的振动于像素阵列平面上的分量或者投影分解的两个子运动的振幅分别为各自方向上偏离平衡点的最大位移ΔL mm和ΔW mm。
而第一子运动和第二子运动的频率分别为各自方向上、同向连续两次经过同一点(如初始点、平衡点或者最远点等)的时间间隔的倒数;
成像时每秒的帧频取决于f 1和f 2之间较小的一个值,而实际显示过程中,当帧频大于12时就可以利用人眼的视觉暂留原理形成连续的画面,此外有一些特殊场合下,需要营造一些卡顿的画面效果,所以取连贯帧频的一半即可达到此目的,因此f 1和f 2中较小的一个也需要大于6Hz。
考虑到用户对于高清,高品质成像质量的追求,比如高速相机或者高清投影设备,帧频需要大于24Hz,所以实施时优选f 1和f 2中较小的一个大于24Hz;
进一步地,优选f1和f2中较小的一个大于36Hz,此时满足高速运动相机应用场景;
进一步地,优选f1和f2中较小的一个大于60Hz,此时满足自动驾驶传感类应用场景;
进一步地,优选f1和f2中较小的一个大于120Hz,此时满足VR类高速显示应用场景;
进一步地,优选f1和f2中较小的一个大于200Hz,此时满足科研领域高速拍摄应用场景;
这种振动微扫描的工作模式通过扫描把成像面上的像素间距填充完整,大大提高像素的面积占比,就像用很多个子成像系统同时扫描从而实现更大尺寸的成像系统,把原本比较离散的像素阵列补充成相对更加密集连续的像素阵列,图37至图39示意了通过扫描把行像素点填充成更加密集的阵列的形式,类似的通过扫描可以把列像素也填充成更加密集的阵列;
比如可以用一个分辨率为648*486的二维成像元件实现分辨率为n*(648*486)的实际显示效果,其中n大于1,即用低分辨率芯片,来实现超高分辨率成像,提高成像质量,降低成像设备成本。进一步地,n优选2~5。
为了进一步提升成像效果,还可以在像素阵列前设置像素点缩小装置,用于缩小像素点的有效大小,从而使画面更加细腻。如图42所示,具体可以使用一个锥形的光波导/光纤,其粗的一端设置在像素外侧,细的一端作为与成像镜组23的交互界面,这样就相当于把像素尺寸缩小了。扫描过程像素点缩小装置与二维成像元件13保持相对静止。
由于本系统具有先天性高分辨率优势,二维成像元件13可以选用低成本的低分辨率二维成像元件,比如可以使用像素阵列行数和列数均小于720行的二维成像元件。
需要说明的是,本申请所述的二维成像元件13既可以是投影显示元件,比如LCD投影芯片、DMD投影芯片等;
也可以是拍摄感光元件,比如CCD二维成像元件、CMOS二维成像元件;
二维成像元件13采用拍摄感光元件时,本申请的成像系统则为拍摄系统,下面以拍摄感光元件—CCD二维成像元件作为二维成像元件13作为实施例来进一步对本申请进行说明:
实施例16
如图30所示,二维布拉格周期扫描拍摄系统由CCD二维成像元件、成像镜组23以及二维布拉格扫描机构33组成,CCD二维成像元件上设有像素阵列,二维布拉格扫描机构33只与CCD二维成像元件连接。
外部的景物的光线经过成像镜组23的光学转化,在CCD二维成像元件上形成感光影像,在通过二维布拉格扫描机构33来驱动CCD二维成像元件于像素阵列所在平面上振动实现微扫描,通过微扫描把像素阵列所在成像面上的像素间距填充完整,提高像素的面积占比,把原本比较分离的像素阵列补充成相对更加密集,以提高感光影像的分辨率。
实施例17
如图31所示,二维布拉格周期扫描拍摄系统由CCD二维成像元件、成像镜组23以及二维布拉格扫描机构33组成,CCD二维成像元件上设有像素阵列,二维布拉格扫描机构33只与成像镜组23连接。
外部的景物的光线经过成像镜组23的光学转化,在CCD二维成像元件上形成感光影像,在通过二维布拉格扫描机构33来驱动成像镜组23在与像素阵列平行的平面上振动实现微扫描,通过微扫描把像素阵列所在成像面上的像素间距填充完整,提高像素的面积占比,把原本比较分离的像素阵列补充成相对更加密集,以提高感光影像的分辨率。
实施例18
如图32所示,二维布拉格周期扫描拍摄系统由CCD二维成像元件、成像镜组23以及二维布拉格扫描机构33组成,CCD二维成像元件上设有像素阵列,二维布拉格扫描机构33分别与CCD二维成像元件和成像镜组23连接。
外部的景物的光线经过成像镜组23的光学转化,在CCD二维成像元件上形成感光影像,在通过二维布拉格扫描机构33来驱动CCD二维成像元件和成像镜组23在与像素阵列平行平面上振动实现微扫描,通过微扫描把像素阵列所在成像面上的像素间距填充完整,提高像素的面积占比,把原本比较分离的像素阵列补充成相对更加密集,以提高感光影像的分辨率。
以上实施例只是通过二维成像元件13、成像镜组23以及二维布拉格扫描机构33之间不同的连接方式来体现不同的微扫描驱动模式,并不是对本申请的限制,同时上述的微扫描优选周期性微扫描,以二维布拉格扫描机构33驱动二维成像元件13和/或成像镜组23进行周期性振动来实现;
上述实施例中的CCD二维成像元件也可以被其他的拍摄感光元件来替代,同时根据光路可逆的原理,拍摄感光元件还可以被投影显示元件来替代。
为了尽可能减小振动幅度,以提高扫描频率和系统可靠性,微扫描振动平行 于像素阵列平面上的投影分解得到的平行于像素阵列的行和列方向上分量均不应超过5个像素点的距离,即ΔL≤5a 1且ΔW≤5a 2
二维成像元件13在实际生产过程中不可避免地会出现像素坏点,对于常规成像系统,一旦出现像素坏点,那么二维成像元件13就只能作为次品,甚至报废,但是出现5个连续的像素坏点的概率非常小,几乎等于0。这样,如果扫描振幅为5个像素点的间距,那么只要连续5个像素点内有一个像素点是正常的,那么微扫描过程中,它就可以扫过其他坏点像素,从而可以正常显示,这样就可以保证良品率,使得即使出现坏点的设备也可以正常使用;
当ΔL≤3a 1且ΔW≤3a 2,此时,坏品率同样比较低,同时振幅更小,系统可靠性进一步提升;
当ΔL≤2.5a 1且ΔW≤2.5a 2时,扫描过程不是整数,这种特殊情况可以弃用掉一个振动周期中的部分区间,从而使图像显示避免出现扫描速度变化太大的问题;
当ΔL≤2a 1且ΔW≤2a 2时,此时,坏品率稍微高一点,但是系统可靠性达到最大幅度保证,也大大提高像素的利用率。
为了使二维成像元件13和成像镜组23之间达到最佳配合,使两者都发挥出最优性能,需要精心设计两者之间的几何关系。
通常在设置的时候沿着像素阵列的行方向上的扫描频率和列方向上的扫描频率差异较大,实际应用中可以使行扫描的频率大于列扫描的频率,也可以反过来设置。本申请优选行扫描频率更大的方式进行设计。对于一个振动式机械扫描系统,扫描的振幅和运动部分的质量需要非常精细的设计,当扫描频率一定时,如果运动振幅比较大,那么此时需要增加运动部件的刚度以抵抗振动形变,相应的部件质量就需要增加,反之如果运动振幅比较小,那么此时对于刚度的要求就降低多,此时可以降低运动部件的质量,从而来提升系统的固有频率,提高扫描效率。因此可以通过对运动部件的质量,振幅等参数进行合理设计达到更好的效果。
二维成像元件13的质量为M g,通过振幅和质量的控制进行设计测试,本申请的系统的具体实施效果反馈如下表:
Figure PCTCN2021093251-appb-000054
通过上表数据发现:设计参数满足
Figure PCTCN2021093251-appb-000055
时,测试效果较好,用户体验打分也较高,但是不再此范围内时,用户体验较差。
本申请所述的成像系统具体实施过程中,二维成像元件13必须完全处于有效光学作用区域内才能够成像,有效光学作用区域指任意方向的光线通过成像镜组23后在二维成像元件13的像素平面上所能照亮的最大区域,本申请中,我们将上述有效光学作用区域内部存在的最大圆形的直径定义为D mm,如图40至图41;
此外,通过实验测试发现,在越靠近有效光学作用区域边界的地方,图像畸变越明显,成像质量变差,通过用户体验发现:
当系统满足0.9604·D 2≥(ΔL+L) 2+(ΔW+W) 2条件时,用户对于成像质量的打分高于60分;
当0.90·D 2≥(ΔL+L) 2+(ΔW+W) 2时,此时用户体验打分高于80分
此外,为了尽可能充分利用有效光学作用区域,系统应该满足:
(0.51·D) 2≤(ΔL+L) 2+(ΔW+W) 2
本申请的成像系统在实际应用过程中还可以增加沿着垂直于像素平面的方向的扫描动作,即二维成像元件13和/或成像镜组23的振动在平行于像素阵列平面上的分量和垂直于像素阵列平面上的分量都不为0。此时除了可以把像素的密度增加外,由于增加了一个深度方向的扫描,还可以实现3D成像的目的。
如图43,本申请的二维成像元件13还可以是利用一个分光镜把拍摄感光元件和投影显示元件整合在一个系统中形成一个双功能系统,实现在投影显示的同时又可以进行拍摄或者识别用户交互动作的功能。此时,本申请给出的所有设计公式对于系统中的拍摄子系统和投影子系统均适用。
以上所述,仅为本申请的一种具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (35)

  1. 布拉格周期扫描式全息成像器,其特征在于,包括分别设置于全息成像器内部的:
    成像元件(1),用于提供多个不重合或者相互平行的等效像面(2),所述等效像面(2)的数量为n;
    成像镜组(3),其位置与等效像面(2)相对应,用于光学成像并形成有多个二维切面(4);以及
    焦深扫描机构(5),分别与成像元件(1)和/或成像镜组(3)连接,用于控制成像元件(1)和/或成像镜组(3)的空间位置变动,以实现对二维切面(4)进行体扫描。
  2. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(5)的扫描频率或等效频率大于
    Figure PCTCN2021093251-appb-100001
    Hz。
  3. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(5)通过改变等效像面(2)与成像镜组(3)之间的空间位置和/或成像镜组(3)的有效焦距,实现对二维切面(4)进行体扫描。
  4. 根据权利要求3所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(5)通过改变成像镜组(3)内光学元件的相对位置和/或整体位置来实现对二维切面(4)进行体扫描。
  5. 根据权利要求3所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像镜组(3)至少包括液体变焦透镜或柔性变焦透镜。
  6. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(5)控制体扫描沿焦深方向的振幅为L 1㎜,多个所述等效像面(2)沿焦深方向分布深度为L 2㎜,满足L 1<L 2
  7. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(1)的质量Mg,与等效像面(2)的数量n之间满足:
    Figure PCTCN2021093251-appb-100002
  8. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(1)为投影显示元件或者拍摄感光元件。
  9. 根据权利要求1所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(1)内设有若干投影显示芯片以及拍摄感光芯片,以实现投影和拍摄的双功能。
  10. 布拉格周期扫描式全息成像器,其特征在于,包括分别设置于全息成像器内部的:
    成像元件(11),用于提供多个不重合或者相互平行的第一等效像面(21);
    至少一个振镜(31),位置与第一等效像面(21)相对应,用于将多个第一 等效像面(21)光学转化为多个第二等效像面(41),所述第一等效像面(21)和第二等效像面(41)的数量均为n;
    成像镜组(51),位置与第二等效像面(41)相对应,用于光学成像并形成有多个二维切面(61);以及
    焦深扫描机构(71),与振镜(31)连接,用于控制振镜(31)的空间位置变动,实现对二维切面(61)进行体扫描。
  11. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(71)还分别与成像元件(11)和/或成像镜组(51)连接,用于控制成像元件(11)和/或成像镜组(51)的空间位置变动,实现对二维切面(61)进行体扫描。
  12. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(71)还与成像镜组(51)连接,用于控制成像镜组(51)的有效焦距,实现对二维切面(61)的体扫描。
  13. 根据权利要求3所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像镜组(51)至少包括液体变焦透镜或柔性变焦透镜。
  14. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:单个所述第二等效像面(41)于焦深方向上振幅为L 1㎜、多个所述第二等效像面(41)沿焦深方向分布深度为L 2㎜,满足L 1<L 2
  15. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(11)的质量为Mg,与所述第一等效像面(21)的数量n之间满足:
    Figure PCTCN2021093251-appb-100003
  16. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:所述振镜(31)的数量为N,任意一个所述振镜(31)的质量为M Ng、振幅为A ㎜,所述全息成像器最外侧镜片的质量为mg,满足:
    Figure PCTCN2021093251-appb-100004
  17. 根据权利要求10所述的一种布拉格周期扫描式全息成像器,其特征在于:所述焦深扫描机构(71)的扫描频率或等效频率大于
    Figure PCTCN2021093251-appb-100005
    Hz。
  18. 根据权利要求10~17任意一项所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(11)为投影显示元件或者拍摄感光元件。
  19. 根据权利要求10~17所述的一种布拉格周期扫描式全息成像器,其特征在于:所述成像元件(11)内同时设有若干投影显示芯片和拍摄感光芯片,以 实现投影和拍摄的双功能。
  20. 微扫描式全息成像器,其特征在于,包括分别设置于全息成像器内部的:
    二维成像元件(12);
    至少一个振镜(22),其位置与二维成像元件(12)相对应,用于对光线进行光学转化并形成有等效像面(32);
    成像镜组(42),其位置与等效像面(32)相对应,用于对光线进行光学成像并形成有二维画面(52);以及
    焦深扫描机构(62),与振镜(22)连接,用于控制振镜(22)的空间位置变动,实现对二维画面(52)的体扫描。
  21. 根据权利要求20所述的微扫描式全息成像器,其特征在于:所述焦深扫描机构(62)还分别与二维成像元件(12)和/或成像镜组(42)连接,用于控制二维成像元件(12)和/或成像镜组(42)的空间位置变动,实现对二维画面(52)的体扫描。
  22. 根据权利要求20所述的微扫描式全息成像器,其特征在于:所述焦深扫描机构(62)还与成像镜组(42)连接,用于控制成像镜组(42)有效焦距的变动,实现对二维画面(52)的体扫描。
  23. 根据权利要求3所述的微扫描式全息成像器,其特征在于:所述成像镜组(42)至少包括液体变焦透镜或柔性变焦透镜。
  24. 根据权利要求20所述的微扫描式全息成像器,其特征在于:所述振镜(22)的数量为N,任意一个所述振镜(22)的质量为M Ng、振幅为A㎜,所述全息成像器最外侧镜片的质量为mg,满足:
    Figure PCTCN2021093251-appb-100006
  25. 根据权利要求20~24任意一项所述的微扫描式全息成像器,其特征在于:所述焦深扫描机构(62)的扫描频率大于6Hz。
  26. 根据权利要求20~24任意一项所述的微扫描式全息成像器,其特征在于:所述二维成像元件(12)为投影显示元件或者拍摄感光元件。
  27. 二维布拉格周期扫描成像系统,其特征在于,包括:
    二维成像元件(13),其上设有由若干像素点组成的像素阵列,所述像素阵列所在平面为像素阵列平面;
    成像镜组(23);以及
    二维布拉格扫描机构(33),分别与二维成像元件(13)和/或成像镜组(23)连接,用于驱动二维成像元件(13)和/或成像镜组(23)振动以实现微扫描的目的;
    其中,二维成像元件(13)和/或成像镜组(23)的振动在平行于所述像素阵列平面上的分量不为0。
  28. 根据权利要求27所述的二维布拉格周期扫描成像系统,其特征在于:所述二维成像元件(13)和/或成像镜组(23)的振动在平行于所述像素阵列平 面上的分量可以分解为两个互相垂直的子运动,包括与二维成像元件(13)的像素阵列的行平行的第一子运动以及与二维成像元件(13)的像素阵列的列平行的第二子运动,所述第一子运动频率为f 1,第二子运动的频率为f 2,且f 1和f 2均大于6Hz。
  29. 根据权利要求28所述的二维布拉格周期扫描成像系统,其特征在于:所述像素阵列的行的长度为L㎜、行间相邻像素点之间的距离或者平均距离为a 1㎜,所述像素阵列的列的长度为W㎜、列间相邻像素点之间的距离或者平均距离为a 2㎜,所述第一子运动的振幅为ΔL mm,所述第二子运动的振幅为ΔW㎜,满足:ΔL≤5a 1且ΔW≤5a 2
  30. 根据权利要求29所述的二维布拉格周期扫描成像系统,其特征在于:f 1>f 2,且满足
    Figure PCTCN2021093251-appb-100007
    其中M为所述二维成像元件(13)的质量,单位为g。
  31. 根据权利要求1所述的二维布拉格周期扫描成像系统,其特征在于:所述二维成像元件(13)为拍摄感光元件或者投影显示元件。
  32. 根据权利要求27所述的二维布拉格周期扫描成像系统,其特征在于:所述像素阵列的列数和行数均小于720。
  33. 根据权利要求27所述的二维布拉格周期扫描成像系统,其特征在于:还包括用于缩小像素点有效大小的像素点缩小装置。
  34. 根据权利要求29所述的二维布拉格周期扫描成像系统,其特征在于:所述成像镜组(23)在像素阵列平面上的有效光学作用区域内部最大圆形的直径为D㎜,满足如下关系:
    0.9746·D 2≥(ΔL+L) 2+(ΔW+W) 2
  35. 根据权利要求34所述的二维布拉格周期扫描成像系统,其特征在于:所述成像镜组(23)在像素阵列平面上的有效光学作用区域内部最大圆形的直径为D ㎜,满足如下关系:
    (0.51·D) 2≤(ΔL+L) 2+(ΔW+W) 2
PCT/CN2021/093251 2020-05-13 2021-05-12 扫描式全息成像器和相关系统 WO2021228120A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202010401923.3 2020-05-13
CN202010401924.8A CN111399333A (zh) 2020-05-13 2020-05-13 一种布拉格周期扫描式全息成像器
CN202020786678.8U CN211698579U (zh) 2020-05-13 2020-05-13 微扫描式全息成像器
CN202010401924.8 2020-05-13
CN202020787327.9 2020-05-13
CN202020786676.9 2020-05-13
CN202020786678.8 2020-05-13
CN202010401956.8A CN111399217A (zh) 2020-05-13 2020-05-13 二维布拉格周期扫描成像系统
CN202010401524.7 2020-05-13
CN202010401956.8 2020-05-13
CN202020786676.9U CN212515339U (zh) 2020-05-13 2020-05-13 一种布拉格周期扫描式全息成像器
CN202020786662.7 2020-05-13
CN202020787327.9U CN211698580U (zh) 2020-05-13 2020-05-13 一种布拉格周期扫描式全息成像器
CN202010401923.3A CN111399332A (zh) 2020-05-13 2020-05-13 微扫描式全息成像器
CN202020786662.7U CN212031858U (zh) 2020-05-13 2020-05-13 二维布拉格周期扫描成像系统
CN202010401524.7A CN111399331A (zh) 2020-05-13 2020-05-13 一种布拉格周期扫描式全息成像器

Publications (1)

Publication Number Publication Date
WO2021228120A1 true WO2021228120A1 (zh) 2021-11-18

Family

ID=78525252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093251 WO2021228120A1 (zh) 2020-05-13 2021-05-12 扫描式全息成像器和相关系统

Country Status (1)

Country Link
WO (1) WO2021228120A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947258A (en) * 1988-10-26 1990-08-07 Array Technologies, Inc. Image transducing apparatus
DE19525153A1 (de) * 1995-07-11 1996-01-04 Michael Dr Arnold Optoelektronisches Abtastverfahren
WO1997042751A2 (en) * 1996-05-06 1997-11-13 The University Of Kansas Three-dimensional display apparatus
US5954414A (en) * 1996-08-23 1999-09-21 Tsao; Che-Chih Moving screen projection technique for volumetric three-dimensional display
US20030111534A1 (en) * 2001-12-14 2003-06-19 Juergen Hillmann Method and arrangement for low-distortion recording of intensity patterns occurring on a contact surface through frustrated total reflection
CN1810046A (zh) * 2003-05-23 2006-07-26 彼得·博尔 用于三维图像显示的方法和装置
CN102980664A (zh) * 2012-11-12 2013-03-20 北京航空航天大学 超像素微扫描方法及相应的红外超分辨率实时成像装置
CN103606181A (zh) * 2013-10-16 2014-02-26 北京航空航天大学 一种显微三维重构方法
CN106990546A (zh) * 2017-05-25 2017-07-28 河北博威集成电路有限公司 一种立体显示装置和用于晶片检测的3d图像再现系统
CN109212771A (zh) * 2018-11-27 2019-01-15 上海天马微电子有限公司 一种三维显示装置及显示方法
CN109541791A (zh) * 2019-01-30 2019-03-29 清华大学 基于亚像素平移的高分辨率光场显微成像系统及方法
CN111105735A (zh) * 2020-01-13 2020-05-05 荆门市探梦科技有限公司 一种全固态全息投影器
CN111190325A (zh) * 2020-01-13 2020-05-22 荆门市探梦科技有限公司 一种全固态全息拍摄器
CN111399217A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 二维布拉格周期扫描成像系统
CN111399332A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 微扫描式全息成像器
CN111399333A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 一种布拉格周期扫描式全息成像器
CN111399331A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 一种布拉格周期扫描式全息成像器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947258A (en) * 1988-10-26 1990-08-07 Array Technologies, Inc. Image transducing apparatus
DE19525153A1 (de) * 1995-07-11 1996-01-04 Michael Dr Arnold Optoelektronisches Abtastverfahren
WO1997042751A2 (en) * 1996-05-06 1997-11-13 The University Of Kansas Three-dimensional display apparatus
US5954414A (en) * 1996-08-23 1999-09-21 Tsao; Che-Chih Moving screen projection technique for volumetric three-dimensional display
US20030111534A1 (en) * 2001-12-14 2003-06-19 Juergen Hillmann Method and arrangement for low-distortion recording of intensity patterns occurring on a contact surface through frustrated total reflection
CN1810046A (zh) * 2003-05-23 2006-07-26 彼得·博尔 用于三维图像显示的方法和装置
CN102980664A (zh) * 2012-11-12 2013-03-20 北京航空航天大学 超像素微扫描方法及相应的红外超分辨率实时成像装置
CN103606181A (zh) * 2013-10-16 2014-02-26 北京航空航天大学 一种显微三维重构方法
CN106990546A (zh) * 2017-05-25 2017-07-28 河北博威集成电路有限公司 一种立体显示装置和用于晶片检测的3d图像再现系统
CN109212771A (zh) * 2018-11-27 2019-01-15 上海天马微电子有限公司 一种三维显示装置及显示方法
CN109541791A (zh) * 2019-01-30 2019-03-29 清华大学 基于亚像素平移的高分辨率光场显微成像系统及方法
CN111105735A (zh) * 2020-01-13 2020-05-05 荆门市探梦科技有限公司 一种全固态全息投影器
CN111190325A (zh) * 2020-01-13 2020-05-22 荆门市探梦科技有限公司 一种全固态全息拍摄器
CN111399217A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 二维布拉格周期扫描成像系统
CN111399332A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 微扫描式全息成像器
CN111399333A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 一种布拉格周期扫描式全息成像器
CN111399331A (zh) * 2020-05-13 2020-07-10 荆门市探梦科技有限公司 一种布拉格周期扫描式全息成像器

Similar Documents

Publication Publication Date Title
US10939085B2 (en) Three dimensional glasses free light field display using eye location
JP4263461B2 (ja) 自動立体光学装置
US7692859B2 (en) Optical system for 3-dimensional display
JP5394108B2 (ja) 3次元映像表示装置
Brar et al. Laser-based head-tracked 3D display research
CN102640035B (zh) 裸眼3d立体图像还原显示方法
JP2018524952A (ja) クローキングシステム及び方法
CN104062766B (zh) 立体图像显示装置及立体图像显示方法
Takaki Development of super multi-view displays
US20120139908A1 (en) Multi-view point 3d display apparatus
Xia et al. Time-multiplexed multi-view three-dimensional display with projector array and steering screen
JP2004279847A (ja) プロジェクタ
US20060023065A1 (en) Multiple program and 3D display with high resolution display and recording applications
Xing et al. Integral imaging-based tabletop light field 3D display with large viewing angle
EP1083757A2 (en) Stereoscopic image display apparatus
Surman et al. MUTED and HELIUM3D autostereoscopic displays
CN111399331A (zh) 一种布拉格周期扫描式全息成像器
WO2021228120A1 (zh) 扫描式全息成像器和相关系统
JP3756481B2 (ja) 三次元表示装置
CN111399333A (zh) 一种布拉格周期扫描式全息成像器
CN111399332A (zh) 微扫描式全息成像器
CN211698580U (zh) 一种布拉格周期扫描式全息成像器
CN212515339U (zh) 一种布拉格周期扫描式全息成像器
CN211698579U (zh) 微扫描式全息成像器
CN109031655B (zh) 透镜组件、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804521

Country of ref document: EP

Kind code of ref document: A1